Chemical Reviews

Volume 86, Number 2 April 1986

Diketene

ROBERT J. CLEMENS

Research Laboratories, Eastman Chemicals Division, Eastman Kodak Company, Klngsport, Tennessee 37662

Received May 15, 1985 (Revised Manuscript Received December 10, 1985)

Contents

/. Introduction

Diketene (4-methyleneoxetan-2-one, 1) is a reactive and versatile compound which is used for the introduction of functionalized C_2 , C_3 , and C_4 units into organic compounds, although it is best known as a reagent for the preparation of acetoacetic acid derivatives.

Diketene appears to be an ideal compound for chemical study; it is inexpensive, readily available, reactive, and highly functionalized. Furthermore, many aspects of diketene chemistry remain either undeveloped or unexplored.

An examination of the literature that references diketene reveals several salient points. First, this litera-

Robert Clemens received his undergraduate education at Ursinus College, worked briefly in the polymer industry, and then completed his doctorate at Princeton University. In 1982, Bob joined the Eastman Chemicals Division Research Laboratories, where he spends much of his time exploring new synthetic applications of diketene and its derivatives, thereby continuing his interest in highly functionalized, small-ring heterocycles.

ture is both fragmented and diverse, with large portions of innovative diketene research documented only in incomplete communications, obscure journals, or patents. Secondly, the chemistry of diketene is inseparably intertwined with that of other acetoacetic acid derivatives, and a chemical understanding of these latter derivatives is essential for the appreciation of diketene chemistry. Finally, there is relatively little synthetic methodology based upon diketene, in spite of some notable successes (vide infra) in this regard.

This review was written in response to the aforementioned points. Thus, a major purpose of this text is to catalog every type of synthetic transformation that has been effected with diketene and to provide a comprehensive guide to the literature written from 1907 through early 1985 which describes this chemistry. A realistic presentation of the patent literature, which was requisite to a thorough review, precluded the tabulation of the specific substrates on which a given reaction was actually run. The reactions shown in the diagrams have therefore been selected as representative examples for which experimental details were provided; the original literature should be examined for information regarding other substrates that were used. If available, a U.S. equivalent has been listed for foreign patent references; *Chemical Abstracts* citations are provided for references that may not be easily accessible.

The first three sections of this review provide an historical perspective on diketene chemistry, an overview of several fundamental diketene reactions, and a discussion of acetoacetylation and some nonheterocyclic applications of acetoacetate derivatives. Heterocyclic chemistry which is based on diketene is discussed in sections IV and V, and the final section describes various other aspects of diketene chemistry.

Throughout this review, liberal digression has been made into the chemistry and utility of acetoacetic acid derivatives. The advantages derived from obtaining a better insight into the synthetic applications of diketene will hopefully outweigh the disadvantages of a more fragmented review.

In 1940, Boese first reviewed diketene chemistry,¹ and an excellent overview of both ketene and diketene chemistry appeared in 1968.² More recently, Kato has reviewed some uses of diketene in heterocyclic syn-

thesis,³ general review articles have been published in Russian,⁴ Japanese,⁵ and Polish,⁶ and several brief sections of diketene chemistry have appeared in books.⁷

A. Historical-Structure Elucidation

The elucidation of the structure of diketene (which required 45 years) provides an interesting insight into diketene chemistry and into the difficulties associated with structure determination in the absence of modern spectral techniques. An understanding of this structure determination is a prerequisite to comprehending pre-1950 papers on diketene chemistry, as no less than five structures (1-5) were seriously considered.

In 1907, Wilsmore prepared ketene by immersing a glowing platinum wire into acetic anhydride and then collecting the resulting gaseous byproducts at low temperature. He noted that ketene dimerized exothermically upon warming to provide a lachrymatory, brown liquid,⁸ and distillation of this crude material at reduced pressure afforded the first pure sample of the ketene dimer.⁹ Wilsmore further noted that this ketene dimer reacted with water to form acetoacetic acid, which subsequently decomposed into carbon dioxide and acetone (Scheme I). The ketene dimer also readily reacted with aniline to form acetoacetanilide, with sodium ethoxide to afford sodium ethyl acetoacetate (6), and provided dehydroacetic acid (7) when exposed to pyridine. On the basis of his early experiments, Wilsmore proposed the acetylketene structure (2) for the ketene dimer.

Shortly thereafter, Staudinger demonstrated that the dimers (e.g., 8) of several substituted ketenes were undoubtedly 1,3-cyclobutanediones.¹⁰ These latter dimers reacted quite differently with aniline than did the ketene dimer and produced acetanilides (e.g., 9) (Scheme II). Nonetheless, Staudinger suggested that Wilsmore's ketene dimer was 1,3-cyclobutanedione in its monoenolic form (4).

Wilsmore reasoned that the product (10 or 11) which resulted from bromination of the ketene dimer would

SCHEME I

8

9

differentiate the two proposed structures 2 and 4¹¹ (Scheme III).

The product, 4-bromoacetoacetyl bromide (11), appeared to support Staudinger's cyclobutanedione structure, but Wilsmore still had difficulty rationalizing the facile, room-temperature conversion of the ketene dimer into dehydroacetic acid (7). Also, the ketene dimer reacted with alcohols under acidic catalysis to give acetoacetate esters, while acetate esters were formed from other cyclobutanediones. Wilsmore noted that the ketene dimer "behaves as if the ring were not completely closed, that is to say, as if its constitution were

$$
\begin{array}{c}\n & 0 & 0 \\
\vdots & \vdots \\
\vdots & \ddots & \vdots \\
\end{array}
$$

 11

A subsequent, detailed study of the chemistry of 2,4-dimethyl-l,3-cyclobutanedione suggested that it was highly unlikely that the ketene dimer was a cyclobutanedione because of the following: (1) all other cyclobutanediones were crystalline solids, while the ketene dimer was not; (2) all other cyclobutanediones formed simple carbonyl derivatives, while the ketene dimer did not; (3) no other cyclobutanedione reacted with alkoxides to form acetoacetic esters.¹²

The debate continued as to which of the (incorrect) structures (2, 3, or 4) was appropriate for the ketene dimer, but no new structures were suggested.

During the ensuing 20 years (1916-1936), diketene found considerable use in the preparation of a variety of acetoacetates and derivatives thereof, but there were no further developments regarding structure determination. In 1936, Hurd reported that ozonolysis of the ketene dimer provided pyruvaldehyde, "identified" as its osazone derivative, and acetic acid.¹³ He therefore suggested a β -crotonolactone structure (5) for the ketene dimer, and he further suggested the possibility of an equilibrium between the acetylketene and β -crotonolactone. Although the structures 2 and 5 were inconsistent with Wilsmore's bromination experiment, the formation of 4-bromoacetoacetates could be rationalized via the known isomerization of 2-bromoacetoacetates into the corresponding 4-isomers. Unfortunately, Hurd and co-workers had identified formaldehyde phenylhydrazone (mp 144-145 ⁰C) as the pyruvaldehyde osazone (mp $143-144$ °C), 13 an error which was not to be recognized for almost 14 years. It should be respectfully noted, however, that Hurd and co-workers made many invaluable contributions to early diketene chemistry in their search for the correct structure of the ketene dimer.

Further complicating structure determination was the failure to isolate ketene or any other gases upon pyrolysis of the ketene dimer.¹⁴ In retrospect, this failure was largely due to inappropriate trapping conditions, and the conversion of diketene into ketene was eventually found to be quite efficient (see section HA).

By 1940, Boese reviewed both the aforementioned structural controversy and the industrial applications of diketene.¹ In his review, Boese reported that the ketene dimer afforded β -butyrolactone (12) upon hydrogenation, and he credited A. L. Wilson with suggesting 4-methylene-2-oxetanone (1) to be the correct structure of the ketene dimer.¹⁵

Hurd noted that while the newly proposed structure (1) conveniently explained both the acetoacetate formation and the hydrogenation product 12, this structure was inconsistent with the formation of dehydroacetic acid. Hurd attempted to refute Wilsmore's earlier bromination experiments by chlorinating the ketene dimer at low temperature, but he isolated only 4 chloroacetoacetyl chloride.¹⁶ Undaunted, Hurd found that diketene reacted with hydrogen chloride to give acetoacetyl chloride, a product which was consistent with an acetylketene structure.¹⁷ Hurd continued as an active proponent of the β -crotonolactone structure, and he assumed that β -crotonolactone (5) underwent a facile transformation into acetylketene.¹⁸

In 1943, Rice and Roberts prepared ketene in excellent yield by pyrolysis of the dimer. They felt that this result was consistent only with the cyclobutanedione structure, because the reaction was not affected by radical inhibitors.¹⁹ These authors did, however, note that the cyclobutanedione structure 3 was inconsistent with the high dipole moment (3.53 D) observed for gaseous diketene.

It was 1950 when Hurd repeated his ozonolysis of diketene, isolated formaldehyde, and accepted the correct methyleneoxetanone structure (1) ,²⁰ thereby ending an unusually long and arduous structure determination of a simple molecule.

In addition to the chemical reactions that were used to determine the structure of the ketene dimer, a variety of physical measurements were made. Prior to 1940, these measurements included determinations of the molecular weight, the refractive index,^{11b} and the ultraviolet spectrum.¹⁸ The dipole moment was measured, 21 and the Raman spectrum was analyzed. 21,22

An infrared spectrum, first obtained in 1946, established that the ketene dimer contained a four-membered ring,²³ and the structure was unequivocally established in 1952 by X-ray diffraction.²⁴ This structure (1) was later corroborated by an historic 18- MHz ¹H NMR study;²⁵ the NMR spectrum has subsequently been assigned²⁶ and corrected,²⁷ and the unusual shift values have been explained.²⁸ Electron diffraction,²⁹ microwave spectroscopy,³⁰ and mass spectrometry³¹ studies have also been performed on diketene.

B. Physical Properties

Diketene is a colorless liquid at 25 °C and has a sharp, pungent odor. A pure sample of diketene melts at -7.5 ⁰C and boils at 127 ⁰C (760 mm) with some decomposition. It is immiscible with hexane and only slightly soluble in water but is readily miscible with most organic solvents.

Although diketene is less toxic than ketene,³² it is a powerful lachrymator. If improperly handled, diketene can cause eye injury or burns to the skin or respiratory tract.

C. Preparation, Storage, and Handling

Diketene is normally prepared by the dimerization of ketene,³³ which in turn is prepared from the pyrolysis of acetic acid, acetic anhydride, or acetone at temperatures near 750 ⁰C. Diketene is most conveniently obtained from a commercial supplier.

Diketene is best shipped and stored as a solid, in which form it can be stored for many months without change. In the liquid state, diketene undergoes gradual discoloration and decomposition. Because diketene can liberate carbon dioxide during its decomposition, it should not be stored in glass bottles. Diketene can be stabilized by the addition of that amount of water sufficient to hydrolyze any residual acetic anhydride present in the crude product.³⁴ Other stabilizers for diketene include sulfur, 35 certain alcohols and phenols, 36 and a series of borate and sulfate salts.³⁷ Thus, unsand a series of borate and suitate saits. Thus, uns-
tabilized diketene was stored for 1 year at 25 °C and decreased from 95.3% to 38.2% assay, while diketene stabilized with 1% anhydrous copper sulfate was stored under similar conditions and retained a 94.5% assay.^{37a} However, no stabilizer is superior to storing diketene in a freezer. The mechanism of stabilization of diketene does not appear to be well understood.

Crude diketene can be purified by high vacuum distillation to provide a high assay material that is acceptable for almost any purpose. Ultrahigh purity diketene (99.99%) has been prepared by low-temperature recrystallization.³⁸

Reactions of diketene are often extremely exothermic, and diketene will rapidly self-condense in the presence of both acidic and basic catalysts. Therefore, it is important that diketene be kept free from contamination during storage, and that provisions be made for adequate cooling when diketene is used in a reaction. Diketene is almost always added portionwise to other reagents to maintain low concentrations of diketene and to facilitate adequate temperature control. Dedicated equipment is generally required for industrial-scale reactions.

D. Uses of Diketene

Diketene has few direct end uses. It is reported to be a potent bactericide which is useful for disinfecting large areas.³⁹ Also, it can raise the octane number of gasoline 0.6 units at a 0.075% (v/v) loading.⁴⁰ In some cationic polymerization reactions, diketene is used as a secondary "catalyst" (activator).

//. Fundamental Reactions of Diketene

Diketene is a strained molecule $(E_{\text{strain}} \sim 22.5 \text{ kcal})$ mol-1) 41 which is readily ring-opened and therefore frequently appears to react as acetylketene (2) or one of its dipolar tautomers (13 or 14).

Nucleophilic ring-opening of diketene usually occurs at the acyl carbon-oxygen bond. Electrophiles react with the double bond of diketene, followed by nucleophilic attack at the lactone carbonyl group (Scheme IV). There are also a few diketene reactions in which ringopening occurs at the vinylic carbon-oxygen bond (see section VLD) and a series of reactions in which the β -lactone ring remains intact (see section VI.B).

 $H_2C=C=CH_2 + CO_2$ 16

rare

Ring-opening of diketene normally results in the formation of an acetoacetic acid derivative, even if this latter compound is only a transient intermediate which undergoes further reaction. Therefore, this review discusses some acetoacetate chemistry (alkylation, nitrosation, halogenation, etc.), but only as this chemistry is related to diketene. A more deliberate treatment of acetoacetate chemistry can be found in other sources.⁴²

A. Pyrolysis

In the gaseous phase (dilute), diketene is thermally stable to temperatures above 400 °C. It can be cracked at higher temperatures to give two molecules of ketene (15) in nearly quantitative yield (Scheme V). This pyrolysis can be performed in a "ketene lamp" with a glowing platinum filament, or in a hot tube, and is an excellent method of laboratory-scale ketene preparation.⁴³

The pyrolysis of diketene has been carefully studied, since theoretical calculations have shown that the thermodynamically favored pathway for diketene pyrolysis would be the formation of allene (16) and carbon dioxide instead of the normally observed ketene.¹⁹ Also, the high-temperature isomerization of diketene into 1,3-cyclobutanedione or 2,4-dimethylene-l,3-dioxetane has been studied via semiempirical SINDO calculations.⁴⁴

The gas-phase pyrolysis of diketene in a quartz tube has been determined to be a homogeneous first-order reaction in which carbon-carbon bond cleavage is the slow step of the reaction. The reaction is under kinetic control, and the activation energy for the conversion of diketene into ketene has been estimated to be 50 kcal $mol^{-1}.⁴⁵$

The formation of allene during pyrolysis of diketene has been reported on two occasions. Thus, passing diketene over a new nichrome filament gave, in addition to ketene, a 6.5% yield of allene and a 6.5% yield of CO2. 46 A patent later claimed that a 16.2% yield of

SCHEME VI

allene had been obtained from the pyrolysis of diketene at 550 ⁰C in a reactor constructed entirely of high-purity copper.⁴⁷ It has not yet been determined whether the allene is formed directly from diketene or is formed from the reaction of ketene and the methylene which results from further pyrolytic decomposition of ketene.

B. Hydrogenation

Diketene can be selectively hydrogenated to provide either β -butyrolactone (12) or butyric acid (17) (Scheme VI).

Early attempts to hydrogenate diketene at 25-100 ⁰C with palladium catalysts led to mixtures of 12 and 17,⁴⁸ but pure β -butyrolactone was later obtained by performing the hydrogenation in ethyl acetate at $0^{\circ}C^{49}$ The deliberate preparation of pure butyric acid requires harsher conditions, such as the use of a Raney nickel catalyst at 200 $^{\circ}$ C and at 150 atm of hydrogen.⁵⁰

C. Ozonolysis

Low-temperature ozonolysis of diketene yields formaldehyde and malonic anhydride (18)^{20,51,52} (Scheme VII). Malonic anhydride is thermally unstable and decomposes near 0° C into carbon dioxide and ketene. This anhydride has been observed in solution by IR and NMR spectroscopy and has been converted into malonate derivatives in up to 76% yield by low-temperature reactions with simple nucleophiles such as aniline and ethanol.

D. Reactions with Hydrogen Halides

Diketene reacts with a slight excess of hydrogen chloride at low temperature to afford acetoacetyl chloride (19) in excellent yield.¹⁷ Methylene chloride and carbon tetrachloride are good solvents for this reaction, and sulfuric and acetic acids have been used as reaction catalysts.⁵³

Acetoacetyl chloride is used in situ at temperatures near -20 °C because it quickly dimerizes at 25 °C to form dehydroacetic acid (7) (Scheme VTII). Acetoacetic acid (20) can be prepared by hydrolysis of acetoacetyl chloride (19),⁵⁴ while chlorination of acetoacetyl chloride **SCHEME VIII**

provides an intermediate for the preparation of 2 chloroacetoacetate esters $(e.g., 21)^{53}$ and 2-chloroacetoacetic acid.⁵⁴ Acetoacetyl chloride can be used as an alternative to diketene for acetoacetylation reac $tions.$ ^{17,55}

Diketene reacts with hydrogen fluoride at low temperature to provide acetoacetyl fluoride (22), which can be isolated (Scheme IX). Acetoacetyl fluoride has been used for the Friedel-Crafts acetoacetylation of a variety of benzene derivatives (see section III.G),⁵⁶ as well as for the preparation of 2-acetoacetylthiophene.^{56c} The acidic reaction conditions used for the in situ generation of acetoacetyl fluoride usually result in the annulation of a methylcyclohexenone ring onto polycyclic aromatic compounds.

E. Halogenation

Elemental chlorine and diketene react to form 4 chloroacetoacetyl chloride (23), which, although more stable than acetoacetyl chloride, is still generally used in situ¹⁶ (Scheme X). For example, a recent industrial preparation of ethyl 4-chloroacetoacetate (24) involved treating a dichloroethane solution of diketene with chlorine at 10 ⁰C, followed by the addition of ethanol. The product was isolated in 90% yield and was free of the 2-chloro isomer.⁵⁷

4-Chloroacetoacetyl chloride reacts further with chlorine to afford 2,4-dichloroacetoacetyl chloride (25), which is also readily derivatized to give dichloroacetoacetates.⁵⁸ At low temperatures, treatment of acetoacetyl chlorides with a stoichiometric amount of water is frequently used to form haloacetoacetic acids;⁵⁴ at elevated temperatures, decarboxylation of these acids provides acetone derivatives. This latter procedure is an excellent method for the preparation of chloroacetone (26) ,⁵⁹ dichloroacetone (27) ,⁶⁰ and other halogenated acetones.

The reactions of diketene with bromine are similar to those of diketene with chlorine, and mixed haloacetoacetates and haloacetones can thus be prepared. Bromoacetoacetate derivatives, however, are less stable than chloroacetoacetates and may rearrange to other bromoacetoacetate isomers.

Diketene reacts with N -bromosuccinimide to give

+ HF

^

CHCI₃

 $+$ | N-Br $-$

SCHEME X

SCHEME XI

3-bromo-4-methylene-2-oxetanone (28), which can be trapped with ethanol at low temperature to provide ethyl 2-bromoacetoacetate in 43% yield⁶¹ (Scheme XI). Likewise, diketene has been chlorinated in the 3-position with $N,2,4$ -trichloroaniline to provide 3-chloro-4methylene-2-oxetanone (29). These latter two reactions, in which the C-3 methylene group in the diketene ring is functionalized, appear to be the only known examples of this type of diketene reactivity. 2-Haloacetoacetate esters are more commonly prepared via halogenation of the corresponding acetoacetate ester.

Haloacetoacetyl halides, and the esters and amides derived therefrom, have found extensive use in organic synthesis. They have been modified by reduction, oxidation, displacement, heterocyclization, and a variety of other reactions. Unfortunately, no single source provides a comprehensive discussion of haloacetoacetic acid derivatives.

0 0

EtOH **43% from <u>1</u>**

Most nucleophiles displace the halogen from 4-haloacetoacetates and acetoacetamides. The cyanide ion, however, attacks the carbonyl group and a rearranged product (30) is formed via an intermediate epoxide 31^{62} (Scheme XII). A recent patent describes in detail an efficient synthesis of citric acid (32) from diketene via 4-chloroacetoacetic acid (isolated) and 3-carbamoyl-3,4-epoxybutyric acid.⁶³

Triphenylphosphine⁶⁴ and sodium diethylphosphite⁶⁵ have both been used to displace bromine from 4 bromoacetoacetate esters and thus to prepare precursors to the phosphorus ylides used in Wittig and Hor**SCHEME XII**

SCHEME XIII

ner-Emmons olefination reactions.

The reduction of 4-functionalized acetoacetates derived from diketene provides a route to chiral 3 hydroxy-4-aminobutyric acids (33) and carnitine⁶⁶ (Scheme XIII).

Heterocyclization reactions which involve haloacetoacetate intermediates are discussed in a later section (V.E).

F. Nitrosation

The nitrosation of diketene illustrates the diverse reactivity which can be realized with different acetoacetic acid derivatives. Diketene reacts with sodium nitrite in ethanol to give α -oximino ester 34 and with isoamyl nitrite in HCl to afford the α -oximino ester 35⁶⁷ (Scheme XIV). These reactions probably proceed via ethyl acetoacetate and acetoacetyl chloride, respectively. Ester 34 has been chemoselectively reduced to either the α -amino- β -keto ester or to racemic ethyl threonate (3G).⁶⁸

The preparation of β -halopyruvaldoximes 37 can be achieved by the nitrosation of 4-haloacetoacetyl halides in situ;⁶⁹ Nitrosation of ethyl 4-chloroacetoacetate, however, yields the α -oximino ester 38, which cyclizes to 39 upon attempted distillation.⁷⁰ The nitrosation of ethyl 2-chloroacetoacetate resulted in deacetylation, thereby producing the hydroximinoyl chloride 40.70 A similar deacetylation has been observed during the reactions of 2-haloacetoacetates and 2-haloacetoacetamides with diazonium salts.⁷¹

G. Hydrolysis

In a pure form, diketene is only very slowly hydrolyzed when admixed with water. The initial product of the hydrolysis of diketene is acetoacetic acid, which subsequently decomposes to carbon dioxide and acetone.

A careful study of the hydrolysis of diketene in dioxane/water indicated that this reaction proceeds via nucleophilic ring opening of the acyl carbon-oxygen bond and that the addition of hydroxide ions promotes the rapid hydrolysis of diketene.⁷² Pyridine accelerates the hydrolysis of diketene via nucleophilic activation, whereas the acetate anion accelerates hydrolysis by general base catalysis. The hydrolysis of diketene is pH insensitive under acidic conditions but sensitive to pH under basic conditions.⁷³

Sodium tetrachloropalladate catalyzes the hydrolysis of diketene, and the palladium complex of acetoacetic acid can be isolated from the reaction mixture.⁷⁴ Crystalline acetoacetic acid has been prepared in 93% yield by acid-catalyzed hydrolysis of diketene, and it is stable for several months at 0° C in the absence of light, air, and humidity.⁷⁵ The ¹H NMR spectrum of acetoacetic acid has been obtained in a variety of solvents.^{54b}

Diketene can be carefully hydrolyzed in 10% aqueous sodium hydroxide to afford sodium acetoacetate (41), which can be conveniently used in situ as an acetone enolate equivalent for Knoevenagel reactions⁷⁶ and for the preparation of allylacetone⁷⁷ (Scheme XV).

The reaction of diketene and water, catalyzed by a tertiary amine, produces a mixture of 2,4,6-heptanetrione (42) and 2,6-dimethyl-4H-pyran-4-one (43).⁷⁸ The heptanetrione 42 is reported to control fungus on rice **79**

H. Ammoniolysis

Treatment of diketene with ammonia can result in the formation of either acetoacetamide (44) or 3 aminocrotonamide (45) (Scheme XVI). Acetoacetamide is prepared by mixing stoichiometric quantities of diketene and ammonia in an inert solvent while the solution is cooled;⁸⁰ a 96% yield of acetoacetamide has thus been obtained.⁸¹ The use of excess ammonia results in the direct formation of 3-aminocrotonamide (45) in yields of 90-94%. This latter compound has insecticidal properties and has also been found to stabilize vinyl polymers.⁸²

The closely related 3-aminocrotonate esters (46) can be prepared from acetoacetate esters by treatment with ammonium acetate in the presence of lead, zinc, lithium, or cadmium acetate.⁸³

Heterocyclic synthesis with acetoacetamide and 3-

SCHEME XIV

H ² N - ^ ..CO2H

ocн,

synthetic intermediates used in the agrichemical, pharmaceutical, and dyestuffs industries. Because it is inexpensive and highly reactive, diketene is frequently the reagent of choice for acetoacetylations on

aminocrotonamide has been reviewed,⁸⁴ and the mechanism of the formation of $2,6$ -dimethyl-3H-4-pyrimidone by pyrolysis of 3-aminocrotonamide has recently been clarified.⁸⁵

Acetoacetamide has been used in an unusual syn- both laboratory and industrial scales

SCHEME XIX

This section of the review describes both acetoacetylation reactions and some applications of the acetoacetic acid derivatives thus formed. Reactions in which a substrate is acetoacetylated and then directly converted into a heterocycle are discussed in the heterocyclization sections (IV and V), where additional references to acetoacetylation reactions may be found.

A. Aliphatic Alcohols

Like water, alcohols do not react rapidly with diketene at room temperature unless the reaction is catalyzed. Catalysts used for acetoacetylating alcohols have included pyridine,⁸⁷ 4-(dimethylamino)pyridine, 88 triethylamine⁸⁹ and other tertiary amines,⁹⁰ sulfuric acid,⁹¹ tertiary phosphines,⁹² sulfonic acids,⁹³ carboxylic acid salts, 94 hydroxides and alkoxides, 95 betaines, $92a$ and sodium tetrachloropalladate.⁹⁶ Triethylamine, pyridine, and sodium acetate are the most widely used catalysts for laboratory acetoacetylation reactions.

Amine catalysts appear to ring-open diketene,^{72,73} and an acetylketene-tertiary amine complex has supposedly been observed via infrared spectroscopy (at 2320 cm-1).⁹⁷ This infrared absorption frequency, however, is closer to that of carbon dioxide (2349 cm^{-1}) than to a typical ketene absorption $({\sim}2150 \text{ cm}^{-1})$; this aspect of diketene chemistry bears further investigation.

Diketene acetoacetylates primary, secondary, and tertiary alcohols smoothly and is especially useful for reactions with hindered or otherwise unreactive alcohols. The relative reactivity of nucleophiles with diketene is in accord with empirical predictions of nucleophilicity; with the exception of amines and thiols, hydroxyl groups can be selectively acetoacetylated in the presence of most other functional groups. The reaction of diketene with deuteromethanol affords exclusively the 4-deutero compound 48 (Scheme XVIII), thereby demonstrating that the initially formed, unconjugated enolate can be trapped prior to isomerization.⁹⁸

Laboratory-scale acetoacetylations of alcohols are often run in an inert solvent at, or slightly above, room temperature; a stoichiometric amount of diketene is used. On an industrial scale, acetoacetate esters are prepared in continuous reactors in which the alcohol, catalyst, and diketene are mixed together at elevated temperatures (50-150 ⁰C) without an additional solvent. SCHEME XX

Numerous processes have been developed for the rapid and efficient preparation of methyl and ethyl acetoacetate.90-95 These latter two esters are easier to handle than diketene, and are often transesterified with other alcohols in an alternate preparation of acetoacetate esters. An especially convenient preparation of acetoacetate esters utilizes the diketene/acetone adduct (see section VI.A).

As with other diketene derivatives, most acetoacetate esters are used as synthetic intermediates. Acetoacetate esters are frequently converted into more highly functionalized β -keto esters via alkylation of the 2methylene group or the 4-methyl substituent (via dianion chemistry).⁹⁹ The hindered *tert-butyl* acetoacetate (49), which is easily prepared from diketene and $tert$ -butyl alcohol, 100 is an especially convenient acetone enolate equivalent because of its facile decarboxylation into gaseous products; 101 the synthesis of the cyclohexenone 50 is illustrative¹⁰² (Scheme XIX). The preparation of 3,3-diarylbutanoates such as 51 demonstrates an alternate application of tert-butyl acetoacetate, in which all carbon atoms of the acetoacetate ester are retained.¹⁰³

The hindered 2,3-dimethyl-2,3-butanediol (52) has been acetoacetylated with diketene and then pyrolyzed to give 2,3-dimethylbutadiene $(53)^{104}$ (Scheme XX).

SCHEME XXI

SCHEME XXII

SCHEME XXHI

U + ⁰ 0 H cat. H2SO⁴ 20°C 55% **+ oo AA**

1-Methylcyclohexene has been similarly prepared from 1-methylcyclohexanol.¹⁰⁵ The dehydration of an alcohol by the pyrolysis of the corresponding acetoacetate derivative appears to be a general reaction of both tertiary and secondary alcohols; this dehydration occurs under neutral conditions at lower temperatures than are required for the pyrolysis of the corresponding acetate esters.^{105b} In the formation of dimethylbutadiene 53, the first elimination reaction would afford an allylic acetoacetate which should be susceptible to Carroll rearrangement (see section III.I). It would be interesting to know whether this side reaction accounted for the low conversion.

The dianion of optically pure menthyl acetoacetate was alkylated, and the resulting acetoacetate was diazotized and converted into the diastereomeric cyclohexanones 54 and 55 (Scheme XXI), which were separated by chromatography and then used as chiral synthons for the preparation of substituted cyclohexanones.¹⁰⁶ A series of chiral acetoacetate esters has been treated with hydride reagents, but the reductions proceeded with limited stereoselectivity.¹⁰⁷ Biochemical reductions of prochiral acetoacetic acid derivatives, however, are often both efficient and stereospecific, and are therefore preferred for the preparation of chiral 3-hydroxybutanoates.¹⁰⁸

Acetoacetate esters of unsaturated alcohols are readily prepared with diketene,87e are requisite intermediates for the Carroll rearrangement (section III.I), and are also often used in the preparation of polymers (section III.H). Other acetoacetate esters which are derived from diketene and unsaturated alcohols have been converted into insecticides, such as 56^{93b} and 57^{87c} **SCHEME XXIV** \sim HO $\sqrt{0}$ $\sqrt{20}$ cat. Et₃N 80°C 89% **59** 0 0 **AA,** OMe OMe **^** $F = (CO)_3$ \longrightarrow $F = (CO)_3$ ÒН 60 0 0

(Scheme XXII). A number of phosphate and thiophosphate enol esters of acetoacetic acid derivatives are used by the agrichemical industry.

The bis acetoacetate of diethylene glycol can be ketalized with *tert*-butyl hydroperoxide to afford the radical initiator 58 $(t_{1/2} = 1 \text{ h at } 135 \text{ °C})^{93}$ (Scheme XXIII). tert-Butyl hydroperoxide itself is readily acetoacetylated with diketene.¹⁰⁹

Hydroxyl groups can be acetoacetylated in the presence of various heteroatoms. (Dimethylamino)ethanol serves as its own catalyst^{90a} during the preparation of 2-(dimethylamino)ethyl acetoacetate.¹¹⁰ The phosphite ester 59 was treated with diketene to provide a nontoxic polypropylene stabilizer^{90b} (Scheme XXIV). Hydroxyl groups adjacent to phosphonate esters are readily ace**SCHEME XXV**

L₀
L₀ \checkmark **¹M³** OH C_{13} $C \rightarrow \gamma$ Ph 90°C $x \sim$ $^{\circ}{\rm H}$ cat. Et₃ N X=CI(72%),Br(90%) $24h$ 61 O O **62** HNO₃ $X = C1$ AgNO³ X = Br 91% \rightarrow 0,NO O O $c_{\mathsf{I},\mathsf{c}}$ and \forall Ph O O o o 1. KOH $NO₂$ $CL₂$.Cl $NO₂$ 63 $K₂CO₃/DMF$ **X = CI 85% O 0- \ •X*0**

SCHEME XXVI

64

SCHEME XXVII

toacetylated at 50 ⁰C with diketene, whereas they only react poorly with ethyl acetoacetate, even under forcing conditions.¹¹¹ Organoiron compound 60 has been acetoacetylated by diketene without event.¹¹²

Diketene is sufficiently reactive to acetoacetylate alcohols that contain electron-withdrawing substituents, including trifluoroethanol¹¹³ and the halogenated, tertiary benzylic alcohol 61.¹¹⁴ Diketene, via haloethyl acetoacetates 62, has been used to prepare halonitro- α acetate ester 63 ,^{91a} nitroalkyl acetoacetates,¹¹⁵ and acetylketene acetal 64¹¹⁶ (Scheme XXV).

The zinc-catalyzed cleavage and anion generation from trichloroethyl acetoacetate esters 65 provides a

method for preparing β -hydroxy ketones¹¹⁷ (Scheme XXVI).

Acetoacetate esters of several nonnucleophilic alcohols have been prepared from diketene and used for the preparation of pyrethroid insecticide precursors, such as 66. One such approach to the cis isomer 66a involved diazotization and deacetylation of the active methylene group of acetoacetate 67 ,¹¹⁸ while the trans isomer $66b$ was prepared by an intramolecular S_N^2 displacement reaction on the intermediate resulting from dehydrochlorination of acetoacetate ester 68¹¹⁹ (Scheme XXVII).

Cephalosporins can be readily acetoacetylated on the

SCHEME XXVIII

SCHEME XXIX

SCHEME XXX

3-hydroxymethyl side chain, and the resultant allylic acetoacetates (e.g., 69) are readily displaced by nucleophiles (Scheme XXVIII). This acetoacetylation/ displacement sequence is routinely used to attach the side chains present in many commercial β -lactam antibiotics; yields are excellent, and carboxylic acids need not be protected.¹²⁰ In fact, the acetoacetyl group will protect the C-3 hydroxymethyl group during removal or alteration of the C-7 acyl side chain.¹²¹

The use of diketene to protect hydroxyl groups during peptide synthesis has been demonstrated with *N-* $[$ (benzyloxy)carbonyl] threonine (70); the acetoacetate group was removed with hydrazine¹²² (Scheme XXIX). Diketene has also been used as an N-protecting group, as discussed in section III.C. Diketene could become valuable as an economical protecting reagent if additional methodology for its removal were to be developed.

Some compounds of medicinal interest have been acetoacetylated to increase their lipophilicity. The /3-dicarbonyl compounds which result from acetoSCHEME XXXI

acetylation with diketene are known to enhance drug absorption in the small intestine.¹²³ The coadministration of either glycerol-1,3-diacetoacetate or 1,2-isopropylideneglycerol-3-acetoacetate with insulin enhances rectal absorption of the insulin.^{123b} Glycerol monoacetoacetate has been used as an alternative to glucose for parenteral nutrition.¹²⁴ In addition, several acetoacetylated steroids exhibit fertility controlling (progestational) activity.¹²⁵ Cassaine, a cardiotonic agent, has also been modified by acetoacetylation.¹²⁶

The transformation of isoxazoles into β -dicarbonyl compounds can be used to convert acetoacetylated isoxazoles (e.g. 71) into poly- β -dicarbonyl compounds such as 72^{127} (Scheme XXX). Several phthalide derivatives, 128 including a precursor (73) to mycophenolic

SCHEME XXXII

SCHEME XXXIII

acid,¹²⁹ have been prepared from such acetoacetylated isoxazoles.

B. Phenols

Both acidic^{130,91a} and basic^{131,87d,90c} catalysts have been employed in the acetoacetylation of phenols with diketene, although triethylamine is most frequently used. The preparation of aryl acetoacetates proceeds rapidly when electron-rich phenols are used (Scheme XXXI). However, under acidic conditions, the resulting acetoacetates may undergo subsequent ring-closure to form coumarins (see section IV.H).

Neither pyridine nor sulfuric acid will catalyze the acetoacetylation of the more acidic phenols by diketene,¹³¹ but even p-nitrophenyl acetoacetate has been prepared by the triethylamine-catalyzed, 25 °C reaction of p-nitrophenol and diketene.¹³²

With hydroquinone, it is possible to achieve selective mono- or diacetoacetylation by controlling the stoichiometry of the reaction^{131a} (Scheme XXXII).

The acetoacetate esters of 1- and 2-naphthols have been coupled with diazonium salts to give dyes which are used in the textile industry.13387e

C. Aliphatic Amines

Primary and secondary aliphatic amines are rapidly acetoacetylated by diketene (Scheme XXXIII). No catalyst is required.

Recent patents describe continuous processes for preparing aliphatic acetoacetamides. Oftentimes the aliphatic amine and diketene are mixed at a temperature slightly above the melting point of the amine; yields of 96-100% are reported.¹³⁴ Several acetoacetamides which are produced from small aliphatic amines are commodity chemicals which are heavily used in the preparation of insecticides such as monocrotophos (74, Azodrin), dicrotophos, and phosphamidon.

The pesticide oxamyl (75) is prepared from N,N-dimethylacetoacetamide, as shown in Scheme XXXIV.¹³⁵ Tranquilizing compounds, such as 76, have been based on 3-hydroxybutyramide derivatives which are readily accessible from diketene and 2-ethylhexylamine.¹³⁶

An extensive series of 2,3-dioximidobutyramides (77) has been prepared from acetoacetamides¹³⁷ (Scheme XXXV), and these functionalized butyramides have been used to form orange-colored nickel chelates that are useful in inks and dyes.¹³⁸ Other dyes, such as 78, have been prepared by coupling diazonium salts with acetoacetamides.¹³⁹

Acetoacetamides react with benzofurazan oxides in a modification of the Beirut reaction¹⁴⁰ to afford bactericidal quinoxaline N,N-dioxides¹⁴¹ (Scheme XXXVI). These quinoxaline dioxides, of which olaquindox (79) is an example, are used as feed additives to promote animal growth. Several procedures for preparing the $N-(2-hydroxyethyl)$ acetoacetamide, which is used in α and analogues of published,¹⁴² and analogues of 79 continue to be reported.

Treatment of acetoacetamides or acetoacetanilides with sodium hypoiodite results in deacetylation to afford diiodoacetates. This latter technique is quite general, and has been used to prepare the iodo analogue (80) of chloroamphenicol¹⁴³ (Scheme XXXVII).

Diketene was converted into an ethylene bridge during the preparation of compounds (e.g., 83) which are active against Parkinsonism. Thus, amino alcohol 81 was acetoacetylated and then converted into diazo- α acetate 82, which was cyclized and reduced¹⁴⁴ (Scheme XXXVIII).

Acetoacetamides have been used in several preparations of β -lactams. Workers at Beecham Laboratories have acetoacetylated perhydrooxazine 84 with diketene and then diazotized and cyclized the resulting acetoacetamide (85) to provide a versatile intermediate for the preparation of thienamycin (86) derivatives¹⁴⁵ (Scheme XXXIX); the use of a chiral oxazine has recently been used to make this synthesis stereospecific.¹⁴⁶ The pyrrolidinone 87, which is produced from the acid-catalyzed reaction of diketene and the protected aminomalonate 88, has also been transformed into thienamycin.¹⁴⁷ Diazoacetamide 89 was used to prepare the biologically inactive tricyclic β -lactam 90.¹⁴⁸

The amino group of 7-aminocephalosporanic acid (7-ACA) is rapidly acetoacetylated at 0^oC to provide a product which exhibits modest antibiotic activity.¹⁴⁹ 6-Acetoacetamidopenicillanic acid can be coupled with nitrile oxides to afford isoxazole side chains, such as the one in dicloxacillin $(91)^{150}$ (Scheme XL). Other β lactams have also been N-acetoacetylated with diketene.¹⁵¹

Diketene has been used to introduce amino acids onto peptides. Phenylalanine was acetoacetylated and treated with hydrazoic acid to effect a Schmidt reaction which provided N -(acetylglycyl)phenylalanine $(92)^{152}$ (Scheme XLI). This latter reaction sequence has been used with 2-alkylated acetoacetates to prepare a variety of dipeptides.¹⁵³ Acetoacetylation of ethyl glycinate, followed by diazotization and reduction, results in the attachment of a DL-allothreonine unit onto a peptide.¹⁵⁴

Diketene was first suggested as an N-protecting group for peptide synthesis in 1965, when an N-acetoacetylated dipeptide was deacetoacetylated with phenylhydrazine.¹⁵⁵ The efficient use of diketene as an SCHEME XXXIV

SCHEME XXXV

SCHEME XXXVI

SCHEME XXXVII

N-protecting group was demonstrated in a recent synthesis of aspartame (93). Thus, aspartic acid was acetoacetylated with diketene in aqueous base and then converted into acetoacetamidoaspartic anhydride, which was coupled with phenylalanine methyl ester. The resulting product was smoothly deacetoacetylated with hydroxylamine to provide the artificial sweetener 93.¹⁵⁶

Large molecules, such as polypeptides, can often be efficiently and selectively acetoacetylated with diketene; the resulting derivatives often show markedly altered activity. For example, insulin can be specifically acetoacetylated on the amino terminus of the β -chain. This reaction provides a derivative with 75-90% of the blood sugar lowering activity of insulin but with only 10% of its immunoreactivity.¹⁵⁷

79

78

Studies on the acetoacetylation of flagellin with diketene showed amino groups to be functionalized in preference to hydroxyl groups and the resulting derivatives to be unaffected by antiflaggellin antibodies.¹⁵⁸ However, thiol residues, such as those in acetylcoenzyme A, are rapidly acetoacetylated with diketene; dethioacetoacetylation was accomplished with sheep liver deacylase.¹⁵⁹

Diketene has been used as a reversible blocking group for free amino groups on enzymes.¹⁶⁰ Transfer ribonucleic acid (t-RNA) is reversibly inactivated by a 15 min treatment with diketene; hydroxylamine was used for deacetoacetylation.¹⁶¹ Guinea pig ileum histamine and acetylcholine receptors are inhibited when treated with diketene,¹⁶² as is deoxyribonucleic acid (DNA)

SCHEME XXXVIII

SCHEME XXXIX

SCHEME XL

photolyase.¹⁶³ Also, acetoacetylation of α -globulin provides a product which is suitable for intravenous administration.¹⁶⁴

Long chain aliphatic amines and polyamines have been acetoacetylated with diketene to afford acetoacetamides. These acetoacetamides are useful as cellulose ester plasticizers, lubricating oils and greases, and for improving metal adhesion.¹⁶⁵

Aliphatic acetoacetamides that are used by the polymers industry are discussed in section III.H.

D. Aromatic Amines

Aromatic amines react with diketene to yield acetoacetarylides (94)^{9a} (Scheme XLII); the rates of these acetoacetylation reactions increase with increasing basicity of the amines.¹⁶⁶

While a catalyst is often not necessary, acetoacetarylide formation may be accelerated by adding a tertiary amine,¹⁶⁷ a mercury salt,¹⁶⁸ or an acid (HCl or HOAc)¹⁶⁹ catalyst. Water and water-soluble alcohols are the commonly used solvents, and yields in excess of 90% are generally realized.¹⁷⁰

Several acetoacetarylides, such as those derived from aniline or toluidine, are commodity chemicals heavily used for the preparation of yellow, orange, and red dyes.¹⁷¹ For example, acetoacetanilide can be coupled with the diazonium salt of 3,3'-dichlorobenzidine (95) to afford a yellow pigment (96) known as pigment yellow 12 (Scheme XLIII), which accounts for over half of the total U.S. production of organic yellow pigments. Likewise, approximately one-quarter of the total U.S. production of orange pigments is that of pigment orange 16, which is derived from 3,3'-dimethoxybenzidine and acetoacetanilide.

Some other dye couplers include 4-chloro-2,5-dimethoxyacetoacetanilide (HR coupler)¹⁷² and 4-acetoacetamidobenzenesulfonic acid.¹⁷³ The alkylation of several dyes which were prepared from acetoacetanilides and aryl diazonium salts has been studied.¹⁷⁴

Diketene has been incorporated into many other azo dyes,¹⁷⁵ some of which have been metalized;¹⁷⁶ the or-

SCHEME XLII

ange-colored cobalt complex 97 is illustrative.¹⁷⁷ A nickel chelate (98), based on acetoacetanilide 99, was prepared by nitrosation and oximation of the arylide prior to metalation¹³⁸ (Scheme XLIV).

A number of acetoacetarylides have been prepared from anilines of pharmaceutical and agricultural interest in the search for enhanced biological activity.¹⁷⁸ Several acetoacetarylides have been further converted into herbicidal 3-methoxycrotonanilides (10O)¹⁷⁹ (Scheme XLV).

The acid-catalyzed cyclization of acetoacetarylide cyanohydrins has been used to make pyrrolidine-2,5 diones, such as 101^{180} (Scheme XLVI).

E. Heterocyclic Amino Groups

There are relatively few examples of acetoacetylation of heterocyclic amino groups in which the ultimate goal was not subsequent ring closure to form a new heterocycle (see sections IV and V). These acetoacetylations are usually straightforward in those instances in which there are no pathways for intramolecular cyclization.

Several heterocyclic acetoacetamides, such as 5 acetoacetamidobenzimidazolone (102) have been used in the preparation of dyes.¹⁸¹ Diketene has also been used to convert a 3-morpholino-l,2,3-oxadiazolium salt (103) into an ylide (104) which has antihypotensive properties¹⁸² (Scheme XLVII). The heterocyclic acetoacetamide 105 has proven useful as a plant growth regulator.¹⁸³ Benzotriazine 1,4-dioxide 106 can be acetoacetylated to afford bactericide 107, which is claimed to be useful as a growth promoter in animals (see compound 79).¹⁸⁴

In acetone, the amino group of heterocycle 108 is readily acylated with diketene to afford the corresponding acetoacetamide (Scheme XLVIII). If this latter reaction is run in water, however, the isolated product is the acetoacetate salt of the protonated heterocycle.¹⁸⁵

F. Other Functional Groups

Diketene acetoacetylates N -arylhydroxylamines (e.g., 109) to afford N -arylacetoacetohydroxamic acids such as 110¹⁸⁶ (Scheme XLIX). When this acetoacetylation reaction is run with excess diketene (phenylhydroxylamine, chloroform, reflux), a small amount (4%) of o-acetonylacetanilide is formed in addition to 110, presumably via the N,0-diacetoacetylated compound.¹⁸⁷ This rearrangement reaction has been developed into a viable synthetic procedure. Thus, N-phenylacetohydroxamic acid (112) can be acetoacetylated with diketene, and the resulting compound (113) will rearrange Retelle, and the resulting compound (113) will rearrange
to the ortho-substituted anilide upon heating.¹⁸⁸ The iV-hydroxyacetoacetanilides 110 are bidentate ligands which chelate strongly with many metal ions.¹⁸⁹

Most reactions between diketene and hydroxylamines are used for the preparation of isoxazole derivatives, as is discussed in section V.B. Oximes are exothermically O-acetoacetylated by diketene in the presence of an amine catalyst.¹⁹⁰

Amides have been acetoacetylated with diketene in refluxing benzene or at room temperature in the presence of trimethylsilyl iodide¹⁹¹ (Scheme L). Early attempts to acetoacetylate N -trimethylsilyl amides under

SCHEME XLIII

SCHEME XLIV

SCHEME XLV

SCHEME XLVI

basic conditions were somewhat less successful and were complicated by further reaction of the products with additional diketene.¹⁹² Quaternary ammonium halides also catalyze the acylation of amides by diketene.¹⁹³

Mercury salts catalyze the reaction of diketene with various weak nucleophiles and have been used in the preparation of an insecticide (114) from an amide and diketene¹⁹⁴ (Scheme LI).

Ureas can be acetoacetylated with diketene in the presence of mercury salts (Scheme LII); further cyclization to uracils often occurs under the stringent reaction conditions which are required when a catalyst is not present.¹⁹⁵

In the presence of a strong base, sulfonamides can be acetoacetylated to provide N -acetoacetylsulfonimides, which are useful as dye intermediates¹⁹⁶ (Scheme LIII). In this latter reaction, it is necessary to add the base and the diketene to the reaction vessel separately but simultaneously. Sulfamoyl fluoride (115) is easily acetoacetylated with diketene under mild conditions to furnish an intermediate which is used in the preparation of the artificial sweetener acesulfame K $(116).$ ¹⁹⁷

Thiols are acetoacetylated with diketene under basic

SCHEME XLVIII

conditions,¹⁹⁸⁻²⁰⁰ provide 3-substituted crotonic acids (117) under acidic conditions,¹⁹⁸ and can also undergo facile radical additions to the double bond of diketene (see section VI.B.l) (Scheme LIV). The synthesis and hydrolysis of thiol acetoacetates has been examined in detail;¹⁹⁹ the spectral properties (IR, NMR) of these compounds have been analyzed.²⁰⁰ A series of thiol acetoacetates has been converted into thio enol ethers.²⁰⁰ Dodecyl thioglycolate S-acetoacetate is claimed to be a heat stabilizer for polyvinyl chloride compounds.²⁰¹

Diketene reacts with sodium tert-butylthiolate to afford $tert$ -butyl acetothioacetate (118) , which can be alkylated specifically in the 2- or 4-position or can be transesterified (Scheme LV). Compound 118 has been used in the synthesis of two mold metabolites (see section IV.L).²⁰²

Thiophosphonate esters can be slowly acetoacetylated under mild conditions to afford the mixed anhydrides 119 and 120 (Scheme LVI). Compound 119 rearranges to an isopropenyl thiophosphonate ester upon heating; this reaction more likely proceeds via an intramolecular attack by sulfur on the ketone of 119 than via a thermal reversion to diketene as suggested in the reference.²⁰³

The formation of dehydroacetic acid (DHA, 7) from 120 closely resembles the self-condensation of acetoacetyl chloride to form DHA.

There is one report of the acetoacetylation of selenophenol with diketene, in the presence of p-toluenesulfonic acid; this product might actually be 3-(phenylselenyl)crotonic acid (see compound 117).²⁰⁴

Anhydrides can be conveniently prepared by decomposition of acetoacetic mixed anhydrides, which are made from a carboxylic acid and diketene²⁰⁵ (Scheme LVII). Thus, a carboxylic acid can be stirred with diketene at room temperature and the desired anhydride can be isolated upon distillation. This latter reaction has also been used for the preparation of pyrophosphate tetraesters from phosphoric acid diesters.²⁰⁶

G. Acetoacetylation at Carbon

Under neutral conditions, diketene and indole combine to afford 1-acetoacetylindole $(121),^{207-209}$ but 3acetoacetylindole (122) is produced when the reaction is run in hot acetic acid²⁰⁸ (Scheme LVIII). Some 3-acetoacetylindoles have been used as intermediates for the preparation of other 3 -acylindoles,²⁰⁸ and several 2-alkyl-3-acetoacetylindoles are claimed to be sedatives and analgesics.²¹⁰

2-Acetoacetylpyrrole (123) is readily prepared by the -5 0C, pyridine-catalyzed reaction of pyrrole and diketene (Scheme LIX); earlier findings²⁰⁹ that this reaction proceeded at 50 ⁰C in the absence of a catalyst probably involved impure pyrrole.²¹¹ The acylation of some substituted pyrroles with diketene has also been investigated,²⁰⁹ and acetoacetylpyrrole has been used in the synthesis of some complex benzo $[1,2-b:4,3-b']$. dipyrroles.²¹¹

Diketene has been used for Friedel-Crafts aceto-

SCHEME XLIX

SCHEME L

SCHEME LI

SCHEME LII

SCHEME LIII

acetylations of alkenes and aromatic compounds. The acetoacetylation of olefins with diketene is catalyzed by H_2SO_4 , BF_3 , or $ZnCl_2$.²¹² Both benzene¹⁷ and the three xylene isomers²¹³ have been acetoacetylated with diketene in the presence of 2 equiv of aluminum trichloride (Scheme LX).

Many acetoacetylations of aromatic rings are run with diketene in hydrogen fluoride, in which acetoacetyl fluoride (22) is the actual acetoacetylating reagent (see section ILD). Acetoacetylated aromatics have been used for the preparation of dyes,^{56b} for chelation with metals,²¹⁴ and for the preparation of a prodrug based on acetoacetylated polystyrene.²¹⁵ The C-acetoacetylation of active methylene groups is readily accomplished with diketene and a variety of bases and is discussed in sections IV.A and IV.B.

H. Acetoacetylation as Applied to Polymer Chemistry

Diketene is attractive to the polymer industry because it rapidly acetoacetylates even very hindered nucleophiles, such as those found in polymers, and because it produces dramatic changes in the physical properties of the compounds that result from this acetoacetylation.

The acetoacetylation of cellulose and cotton was first described in 1937.²¹⁶ Further research showed that cellulose triacetoacetate could be specifically prepared²¹⁷ and that cellulose was extensively acetoacetylated after 8 h at 60 °C in 10% diketene/1% $H_2SO_4/AcOH.^{218}$ Although cotton is not readily acetoacetylated when mixed with diketene, even in the presence of a catalyst, it is quickly acetoacetylated in hexane/benzene.²¹⁹ The resulting derivatized cotton is easily dyed by coupling with diazonium salts. Wool can also be acetoacetylated and then coupled with a diazonium salt to provide a colorfast, yellow fiber.²²⁰ Other fibers with good light-fast and wash-fast colors have been similarly prepared.²²¹

Corn starch²²² and wood²²³ have been acetoacetylated with diketene. The free amino groups of aminoalkylated silica gels can be acetoacetylated to provide

SCHEME LIV

SCHEME LV

SCHEME LVI

SCHEME LVII

an immobilized chelating support;²²⁴ some of these supports have been used for reverse-phase high-pressure liquid chromatography.^{224a} Silica gel itself has been modified with diketene and then used as an ion-exchange resin for uranium.²²⁵

Many synthetic polymers have been modified with diketene, either before, during, or after polymerization. Poly(vinyl alcohol) can be treated with diketene to provide a poly (vinyl alcohol)/poly (vinyl acetoacetate)

copolymer.²²⁶ The modified polymer, frequently 3-6 mol % acetoacetate, is water resistant and resembles poly(vinyl acetate) in its ability to be molded into clear plastic films.²²⁷ Poly(vinyl acetoacetate) is more stable and has better solubility properties than poly(vinyl alcohol).²²⁸ Poly(vinyl acetoacetate) can be coupled with the diazonium salt derived from 4-aminosalicylic acid to afford a polymeric prodrug, which is claimed to release 4-aminosalicylic acid in the lower bowel.²¹⁵

Several polyfunctional polymers,²²⁹ such as poly(vinyl chloride)-co-poly(vinyl alcohol), have been acetoacetylated with diketene.²³⁰ Following acetoacetylation, mixtures of gelatin and poly(vinyl alcohol) are miscible in all proportions and can be used to prepare photographic emulsions.²³¹ Other polymers that contain residual hydroxyl groups, such as polyesters,²³² epoxidederived polymers,²³³ and polymers containing bisphenol A,²³⁴ have been acetoacetylated to provide products with improved physical properties. Similarly, polymers containing residual amino groups, such as poly u rethanes²³⁵ and polyamides,²³⁶ have been stabilized via

SCHEME LVIII

SCHEME LIX

SCHEME LX

SCHEME LXI

acetoacetylation with diketene; one such acetoacetylated polymer can be used for setting hair.²³⁷

Polymers with pendant acetoacetyl groups can be

cross-linked to provide thermoset materials. Cotton has been acetoacetylated and then cross-linked with $\alpha.\omega$ diaminoalkanes²³⁸ via enamine formation. Many O-²³⁹ and N-acetoacetylated²⁴⁰ polymers have been crosslinked with formaldehyde or other aldehydes.²⁴¹

A series of hydroxylated or aminated acrylate,²⁴² acrylamide,²⁴³ and methacrylate²⁴⁴ monomers have been acetoacetylated prior to polymerization. Many copolymers derived from such acetoacetylated monomers are used either in the preparation of gelatin substitutes for the photographic industry or in coatings applications. Other monomers acetoacetylated with diketene have been incorporated into copolymers.²⁴⁵ Allylamine is acetoacetylated with diketene to give N -allylacetoacetamide, which can be polymerized with other monomers to afford copolymers with modified properties.²⁴⁶

The chelation of acetoacetylated polymers with metals provides a means of cross-linking polymers and of introducing metals into plastics. Hard films have been obtained from acetoacetylated polymers chelated with zinc, tin, lead, mercury, aluminum, titanium, zirconium, and beryllium compounds.²⁴⁷ Calcium carbonate can be retained on paper that has been acetoacetylated with diketene.²⁴⁸ Acetoacetylated polymers have been used as ion-exchange resins.²⁴⁹ A polystyrene matrix was acetoacetylated on the aromatic ring with diketene and aluminum trichloride to provide an ionexchange resin which was highly selective for Fe(III). Approximately one-third of the aromatic rings could be functionalized, which resulted in a functional group density of approximately 2.4 mequiv/g.²⁵⁰

A vanadium-chelated acetoacetate resin has been used to catalyze the formation of «-caprolactam from cyclohexanone oxime.²⁵¹ Nylon 6 has been treated with diketene and chelated with calcium, zinc, cobalt, and aluminum compounds to give fibers with good antistatic properties.²⁵² Water-gelled explosives have been prepared from acetoacetylated polymers.²⁵³

Diketene is an effective cocatalyst for the Lewis acid catalyzed polymerization of tetrahydrofuran²⁵⁴ and also acetoacetylates the termini of the product.²⁵⁵ Diketene has been used as a cocatalyst in the organoaluminumcatalyzed polymerizations of trioxane²⁵⁶ and in some low-temperature vinyl polymerizations.²⁵⁷

I. Carroll Rearrangement of Acetoacetates

The Carroll rearrangement²⁵⁸ provides a versatile method for preparing a γ , δ -unsaturated methyl ketone from diketene and an allylic or propargylic alcohol. For

SCHEME LXII

SCHEME LXIII

example, 2-methyl-3-buten-2-ol **(124)** can be treated with diketene, and the resulting acetoacetate can be pyrolyzed to provide 6-methyl-5-hepten-2-one (125)²⁵⁹ (Scheme LXI); this rearrangement reaction is frequently run as a one-pot sequence.

The cyclopentanol **126,** used in an interesting but unsuccessful approach to pentalenolactone, was prepared via Carroll rearrangement of 3-butene-2-ol acetoacetate²⁶⁰ (Scheme LXII).

Propargylic alcohol acetoacetates rearrange to afford conjugated dienones.²⁶¹ 6-Phenyl-3,5-heptadien-2-one (127) has the fragrance of wild strawberries and is used in perfumes and flavorants. 262 In the rearrangement of 1,1-diphenylpropynyl acetoacetate, a nondecarboxylated, primary rearrangement product (128) was iso- $\frac{1}{263}$ (Scheme LXIII).

It is also possible to add diketene and an unsaturated alcohol, simultaneously but separately, to a high-boiling solvent that contains an amine catalyst and to isolate the rearranged product directly. In all cases, the Carroll rearrangement appears to be favored over olefin formation (see section III.A) during pyrolysis of the acetoacetate intermediates.

Aluminum isopropoxide catalyzes the Carroll rearrangement, and, in one example $(129 \rightarrow 130)$, a vield increase of 60% was realized by the addition of this catalyst²⁶⁴ (Scheme LXIV). The Carroll reaction has been used to prepare a number of mono-,²⁶¹ di-, and trisubstituted olefins²⁶⁵ and especially to prepare terpene and steroid derivatives which are important to the perfume and pharmaceutical industries, respectively.²⁶⁶

Geranylacetone (131) has been prepared from linalool (132) in 87% yield by the aluminum isopropoxide catalyzed Carroll rearrangement at 150 °C²⁶⁷ (Scheme LXV). Farnesylacetone has been similarly prepared from nerolidol in 85% yield. Likewise, methylheptenone **125** (available by Carroll rearrangement) and acetylene can be reacted to provide dehydrolinalool (133), which provides pseudoionine (134) upon acetoacetylation and pyrolysis.²⁶⁸

Other perfume components have also been prepared by the Carroll reaction, including cyclic compounds such as 135^{269} and 136^{270} (Scheme LXVI).

The Carroll rearrangement has been used in a total synthesis of the sesquiterpene sinesal $(137)^{271}$ and in the preparation of dihydrojasmone (138),²⁷² thereby demonstrating the compatibility of the Carroll reaction with other functional groups (Scheme LXVII).

The synthesis of the sesquiterpene valerenal (139) is noteworthy for the mild reaction conditions used for the catalyzed Carroll reaction; a different product **(140)** was formed in the absence of the catalyst²⁷³ (Scheme LXVIII).

The Carroll reaction has been used to prepare vitamin D_3 metabolites, as illustrated by the conversion of pregnenolone acetate into 25-hydroxycholesterol (141) in 25% overall yield²⁷⁴ (Scheme LXIX).

The ester enolate modification of the Carroll rearrangement has recently been described,⁸⁸ in which the dianions of allylic acetoacetates such as **142** were found to undergo Carroll rearrangement at low temperature. The intermediate acetoacetic acids **143** could be isolated and then quantitatively decarboxylated at 77 °C (Scheme LXX). The excellent yields obtained with this process, along with the mild reaction conditions, should greatly increase the versatility of the Carroll reaction.

Closely related to the aforementioned enolate modification of the Carroll rearrangement is the esterenolate Claisen rearrangement of 2-butenyl 3 hydroxybutanoate esters. 275 Thus, (E) -2-buten-1-ol was treated sequentially with diketene and sodium borohydride to give ester **144** (Scheme LXXI). Upon

SCHEME LXIV

SCHEME LXV

treatment with 3 equiv of lithium hexamethyldisilazide, this ester (144) rearranged to give the hydroxy acid 145, with good diastereoselectivity. Further variations of this reaction were examined.

SCHEME LXVII

IV. Slx-Membered Heterocycles Derived from Diketene

Diketene contains both electrophilic and nucleophilic centers, enabling it to react with a large number of substrates to provide functionalized heterocycles. The majority of diketene chemistry is heterocyclic in nature.

A. Via C-Acetoacetylation

Heterocyclizations that involve diketene usually begin with acetoacetylation of a substrate, followed by an intramolecular condensation reaction. Normally, the initial acetoacetylation is effectively irreversible, while the ring-closure reaction is often an equilibrium process. As illustrated in the following sections, the type of ring system that will be formed can frequently be predicted on the basis of the initial position of acetoacetylation, while the exact substitution pattern of the nascent heterocycle is a function of the reaction conditions used (and hence the equilibria involved) during the ringclosure step.

When a substrate used for a heterocyclization reaction is initially acetoacetylated on carbon, the formation of a six-membered ring system containing one heteroatom can be expected. The simplest example of this type of reaction is the dimerization of diketene.

1. Diketene Dimerization

Diketene readily self-condenses to form dimers, oligomers, and polymers. The most common diketene dimer, dehydroacetic acid (DHA, 7), and its sodium salt are important as fungicides and food preservatives.

At room temperature, diketene is very slowly converted into DHA upon standing, and DHA is frequently a byproduct of reactions involving diketene. Fortunately, DHA is easily removed from most reactions by either an aqueous bicarbonate wash or by precipitation.

Diketene can be deliberately converted into DHA with a variety of catalysts, and the reaction is rapid and exothermic. Thus, addition of diketene to a solution

SCHEME LXIX

SCHEME LXX

SCHEME LXXI

SCHEME LXXII

of benzene which contains a catalytic quantity of pyridine, followed by cooling, results in the precipitation of DHA from the reaction mixture.^{9,276} Many other basic catalysts will also accelerate this dimerization; these catalysts include sodium acetate, 277 potassium

SCHEME LXXIII

SCHEME LXXIV

sorbate,²⁷⁸ sodium alkoxides,²⁷⁸ phenoxides,²⁷⁹ and imidazole.²⁸⁰ Tertiary amines²⁸¹ are the catalysts most commonly used.

The catalytic activities of numerous tertiary amines in the preparation of DHA from diketene have been compared.²⁷⁸ The catalyst of choice for industrial preparation of DHA from diketene appears to be diazabicyclo[2.2.2]octane (DABCO); under mild reaction conditions (40-50 ⁰C, 15 min), **DHA** yields of over 95% have been realized by using DABCO as the catalyst.^{282,283} Hydroxylated phenols, which also catalyze DHA formation,²⁸⁴ have sometimes been used as cocatalysts.²⁸³

The role of the catalyst in this dimerization reaction is the activation of a molecule of diketene, such that it is rapidly C-acetoacetylated by another diketene molecule. The tertiary amine then becomes the leaving group for ring closure (Scheme LXXII).

Although catalytic amounts of a tertiary amine accelerate **DHA** formation, the use of a stoichiometric quantity of a tertiary amine results in the formation of compounds which are produced from further condensation, such as **147-149²⁸⁶** (Scheme LXXIII). The first of these compounds **(147)** is readily separated from **148** and **149,** and all are reported to be useful indicators for acid-base titrations.²⁸⁶ The use of a strongly basic ion-exchange resin as a catalyst for the self-condensation of diketene resulted in the formation of **147** in excellent yield.¹⁹³ Like DHA, **147** can sometimes be found as an insoluble byproduct of diketene reactions.

Lewis acids have also been used to effect the selfcondensation of diketene. Anhydrous magnesium iodide is reported to efficiently promote the formation of DHA from diketene,²⁸⁷ but it appears to be unique among the Lewis acids in this respect; the use of aluminum tribromide results in the formation of a mixture of **DHA** and 3-carboxy-2,6-dimethyl-4-pyrone (15O)²⁸⁸ (Scheme LXXIV). Compound **150** undergoes facile decarboxylation to give 2,6-dimethyl-4-pyrone (151), a product which can also be prepared by the high-temperature self-condensation of diketene under acidic conditions; the decarboxylation of **150** shifts the DHA/4-pyrone equilibrium to provide the 4-pyrone. The reaction of diketene with 98% hydrogen fluoride also gave a 63% yield of 3-carboxy-2,6-dimethyl-4-

SCHEME LXXV

SCHEME LXXVI

SCHEME LXXVII

pyrone **(150),** along with a small amount of DHA, via dimerization of acetoacetyl fluoride.²⁸⁹

Pyrone **151** can also be prepared in excellent yield by refluxing DHA in aqueous acid, while the action of concentrated sulfuric acid on DHA gives 4-hydroxy-6 methyl-2-pyrone (152)²⁹⁰ (Scheme LXXV). This latter pyrone **(152)** can be used for the preparation of a plant growth regulator, 153.²⁹¹

The polymerization of diketene is discussed in section VLC.

2. β -Dicarbonyl Compounds

Active methylene groups can be acetoacetylated with diketene, and the enolates of the resulting products can be used as the nucleophiles in intramolecular condensations. Thus, the sodium salts of β -keto esters were found to react with diketene to provide orsellinate esters such as 154^{292} (Scheme LXXVI). Subsequent modifications of this latter procedure, including the use of thallium(I) salts of tert-butyl acetoacetate esters, gave $\frac{1}{2}$ greatly improved vields.²⁹³ This condensation reaction has been extended to provide a route to 1,3-dimeth- α oxyfluorenones (e.g., 155^{294} and to 5-substituted resorcinols.²⁹² The use of a strong base for the reaction of diketene and active methylene compounds appears to favor the mode of ring closure in which cyclization occurs via the unconjugated enolate and results in carbon-carbon bond formation.

Resorcinols **(156)** are also formed in the reaction of 0-diketones with diketene and a strong base, while *A-*

pyrones (e.g., **157)** result from the use of triethylamine,²⁹⁵ Aliquat 336,¹⁹³ or sulfuric acid²⁹⁶ as the catalyst (Scheme LXXVII). However, even in the presence of a strong base, dimedone **(158)** gives a 4-pyrone (159).²⁹⁵

Sodium diethylmalonate and diketene combine to give 3-carboethoxy-4-hydroxy-6-methyl-2-pyrone **(160),** which can be decarboethoxylated via the free acid 161.²⁹⁷ This 3-carboxy-2-pyrone **(161)** is more conveniently accessed via the acid-catalyzed decomposition of 5-acetoacetyl-2,2-dimethyl-4,6-dioxo-l,3-dioxane **(162),** which can be prepared from diketene and Meldrum's acid²⁹⁸ (Scheme LXXVIII).

Diketene reacts with malononitrile and other malonate derivatives to form pyrones (163) and pyridones (164).^{299,300} Condensation of diketene with sodium diethyl acetonedicarboxylate gave a mixture of the diester **165** and the substituted resorcinols **166** and 167;³⁰¹ the use of the corresponding magnesium enolate altered the product ratios but did not improve the yields. 301_b 1,3-Dimethylbarbituric acid **(168)** has been acetoacetylated with diketene in the presence of triethylamine; the resulting acetoacetate was converted into pyranopyrimidine 169.³⁰² Based upon the aforementioned reactions of diketene and compounds bearing active methylene groups, it appears that the use of a weak base, such as triethylamine, favors the formation of C-acetoacetylated, noncyclized adducts. These adducts readily cyclize, oftentimes in situ, under more forcing conditions (stronger base, heat, acidic catalyst).

B. Via C-Acetoacetylation of Nitrogen-Containing Compounds

1. Acetoacetamides and β -Aminocrotonates

Diketene self-condenses in the presence of amines to provide pyridones, in a manner analogous to the preparation of pyrones from diketene. As before, the reaction proceeds by acetoacetylation on carbon. Thus, 2 equiv of diketene and ammonia combine at 20 °C to give 3-acetyl-4-hydroxy-6-methyl-2-pyridone **(170)** in excellent yield (Scheme LXXIX), presumably by acetoacetylation of the active methylene group of acetoacetamide (acetoacetamide formation is faster than diketene dimerization.303,304 The reaction of diketene with 3-aminocrotonamide results in the formation of the imino analogue **(171)** of 170.³⁰⁵

SCHEME LXXVIII

The action of diketene on anilines affords l-aryl-2 pyridones, such as **172** (Scheme LXXX). Several of these pyridones exhibit fungicidal activity.³⁰⁶ Unhindered, primary aliphatic amines react with 2 equiv of diketene to give 2-pyridones **173,** which can also be obtained by reacting 1 equiv of diketene with an *N*alkylacetoacetamide. Sterically hindered aliphatic amines, however, give 4-pyridones (174); presumably ring closure through the hindered amide nitrogen (path a) becomes slower than enamine formation and subsequent Michael addition (path b).³⁰⁴

This explanation of 2-pyridone vs. 4-pyridone formation is consistent with the isolation of a 4-pyridone (175) from the reaction of diketene with N , N^2 -di-n-butyl-3-aminocrotonamide (176),³⁰⁷ in which the amide nitrogen was hindered and the enamine was preformed (Scheme LXXXI). Also, the reaction of diketene and aminocrotonamide 177, in which the enamine was preformed but the amide unhindered, provided the 2-pyridone 178.³⁰⁸

An attempted acetoacetylation of glycine (and other

SCHEME LXXIX SCHEME LXXIX

amino acids) with excess diketene in aqueous sodium hydroxide resulted in the formation of the 1-substituted 2-pyridones (e.g., 179), as well as N-acetoacetylglycine (Scheme LXXXII). The structure of the product was confirmed via deacetylation to a known compound (18O).³⁰⁹ Treatment of dehydroacetic acid with glycine provided the isomeric structure 181.³¹⁰

Under conditions conducive to acetoacetylation of amides, excess diketene reacts with amides to form

SCHEME LXXXI

l-acyl-2-pyridones (182)¹⁹³ (Scheme LXXXIII). In this reaction, the methylene group of the initially formed acetoacetimide is acetoacetylated, followed by intramolecular ring closure.

 N , N -diacetoacetylamines can be made from acetoacetamides and diketene in the presence of weak bases, such as N,N-disubstituted anilines, thus making another type of 2-pyridone (183) available from diketene³¹¹ (Scheme LXXXIV).

The self-condensation of acetoacetarylides under acidic conditions provides 4-pyridones (Scheme LXXXV),³⁰⁷ some of which (184) have antiinflammatory activity.³¹² The self-condensation of two N -alkylacetoacetamides under acidic conditions, however, gives yet another 2-pyridone derivative (185); small quantities of the isomeric product **186** are sometimes formed.³¹³ Both **185** and **186** are formed via an enamide intermediate; **185** results from ring closure through the conjugated α , β -enamide, while 186 was formed by cyclization of the unconjugated enamide.^{307,313}

The reaction of 3-aminocrotonates with diketene affords 4 -pyridones such as 187 , 314 which have been further converted into fused heterocyclic systems³¹⁵ (Scheme LXXXVI); 3-aminocrotononitriles and cinnamonitriles also react with diketene to provide 4 pyridones, such as **188.** These heterocyclizations begin with a C-acetoacetylation typical of an enamine, but because the enamine nitrogen atoms were not derived from a secondary amine, the nitrogen atom can cyclize on the acetoacetylated intermediate to provide a pyridone.³¹⁴

3-Alkylamino and 3-arylaminocrotonates react with diketene to give 1-substituted 4-pyridones $(189)^{316,317}$ (Scheme LXXXVII). A number of related compounds, such as 4-(methylamino)-3-penten-2-one, also react with diketene to furnish 4-pyridones.³¹⁷ Several plant growth regulators, such as **190,** are prepared from 3-aryl-3 aminopropenoate esters and diketene.²⁹¹ The reaction of enamido esters and diketene has been extended to the preparation of pyranopyrimidines **191** from aminouracils (see compound **169** for comparison).³¹⁸

2-Pyridylacetonitrile reacts with diketene in a manner similar to aminocrotonates and produces the fused, bicyclic 4-pyridone 192³¹⁹ (Scheme LXXXVIII). An intermediate C-acetoacetylated adduct can be isolated.

2. Enamines, Yneamines, and Ketene Acetals

Diketene reacts with enamines to provide six-membered heterocycles containing one ring heteroatom, as would be expected from an initial acetoacetylation on carbon (Scheme LXXXIX). These reactions are frequently described as cycloaddition reactions even though polar intermediates are involved. In part, this description is used because acetylketene has been considered as an intermediate in uncatalyzed, thermal heterocyclization reactions of diketene.

The reaction of diketene with enamines derived from secondary amines gives 4-pyrones that no longer contain nitrogen. These cycloalkylpyrones (e.g., **193)** can be interconverted between their ring-opened **(194)** and ring-closed forms, and they are also smoothly converted into 4-pyridones $(195)^{320}$ (Scheme XC).

The reaction of diketene with enamines has been used in the preparation of 7,8-dihydro-2,6-dimethylchromone $(196)^{321}$ and in a two-step synthesis of the alkaloid isobellendine (198)³²² (Scheme XCI).

In the presence of triethanolamine, enaminones 199 and diketene combine to provide 5,6-unsubstituted 2-pyridones **200** via an anomalous N-acetoacetylation of the enaminone (Scheme XCII); this may be a result of the basic reaction conditions.³²³ As noted previously, pyridone formation can be expected from the reaction of diketene and enamines that were not derived from secondary amines.

Also, unlike most other imines (see section IV.D), iV-aryl imines (e.g., **201, 202)** react with diketene as the enamine and provide 4-pyridones (e.g., **203)**³²⁴ (Scheme

SCHEME LXXXIII

SCHEME LXXXIV

XCIII). l-Methyl-3,4-dihydroisoquinoline is another imine that reacts with diketene at carbon, in an enamine-like manner, to give the fused 4-pyridone 204.³²⁵

The action of yneamines on diketene provides products (205) in which the nitrogenous functionality is retained (Scheme XCIV); these adducts have been converted into various other compounds.³²⁶

Ketene acetals and their congeners undergo polar cycloaddition reactions with diketene to afford substituted 4-pyrones such as **206³²⁷** (Scheme XCV). In one case, an orthoester intermediate (207) was isolated.^{327b} Although yields are generally low, this process is quite general, and a large number of different substituents can be introduced into the product pyrones.

C. Hantzsch Pyridine Synthesis

An important reaction involving diketene derivatives provides yet another series of substituted pyridines. The Hantzsch pyridine synthesis is a preparation of 1,4-dihydropyridines (e.g., **208)** from ammonia (or a

SCHEME LXXXV

primary amine), an aldehyde, and a β -keto ester or a related derivative³²⁸ (Scheme XCVI). Symmetrical 1,4-dihydropyridines are easily prepared by mixing (cautiously) the three reagents.

Unsymmetrical Hantzsch dihydropyridines are best prepared by condensation of a 3-aminocrotonate ester (e.g., **209)** with a 2-alkylidene acetoacetate ester (e.g., 21O)³²⁹ (Scheme XCVII). Many dihydropyridines, such as nifedipine $(211),^{330}$ nimodipine $(212),^{331}$ and nicardipine (213) , 332 act as vasodilators and antihypertensives.³³³ This area of medicinal chemistry is quite active, and many analogous 1,4-dihydropyridines have recently been patented.³³⁴

Dihydropyridines without a 4-substituent can be prepared by using formaldehyde or hexamethylenetetramine in the Hantzsch reaction¹³² (Scheme XCVIII); some of these dihydropyridines (e.g., 215) have been shown to be effective against Walker's carcinoma.³³⁵ Both alkyl and aryl esters of 4-unsubstituted dihydropyridines can be used as antioxidants **(216),** as they are readily oxidized to pyridines under a variety of conditions.¹³² The preparation of pyridines from 1,4-dihydropyridines, via the Hantzsch synthesis, has been used in the total synthesis of the alkaloid clivimine $(217).^{336}$

D. Via N-Acetoacetylation of Polarized Multiple Bonds

Another major type of heterocyclization that involves diketene is that in which diketene initially N-acetoacetylates a substrate containing a C-N multiple bond. The expected product from this type of reaction is a six-membered ring containing two heteroatoms.

Imines unsubstituted on nitrogen react with diketene to afford 1,3-oxazin-4-ones such as 218337 (Scheme XCIX). Under basic conditions, N-substituted imines also react with diketene to afford 1,3-oxazinones.³³⁸ Thus, the action of diketene on diazepam **(219)** provides the tranquilizer ketazolam **(220)** in excellent yield.338b

The reactions of N-substituted imines with diketene under neutral conditions are more complex, and the reaction products are not obviously predictable. Thus, diketene slowly reacts with benzylidene imines such as 221 to afford acetoacetamides (e.g., 222)^{337a,339} (Scheme C). A β -lactam intermediate has been postulated for these reactions,³³⁹ but the lengthy reaction times and the low yields make it difficult to eliminate other re-

SCHEME LXXXVI

SCHEME LXXXVIII

action pathways, such as dissociation of the imine. In the case of ethylidene imine **223,** the more complex products **224** and **225** were formed.³⁴⁰

Cyclopentylideneaniline reacts with diketene under acidic conditions as an enamine, as was discussed in section IV.B. Moderate yields of the 1,3-oxazin-4-ones **227** are slowly formed from diketene and N -acyl imines 226³⁴¹ (Scheme CI).

Diketene reacts with ethyl benzimidate and ethyl phenacetimidate to give oxazinones (e.g. **228)** via isolable intermediate 2-ethoxy-1,3-oxazin-4-ones³⁴² (Scheme CII); imidate esters of pyridinecarboxylic acids react similarly.³⁴³ Oxazinone **228** has been converted into several highly functionalized pyridones,³⁴² into an hydroxypyrimidine,³⁴⁴ and into 1,2,4-triazole 229.³⁴⁵ The related reaction of ribofuranosyl formimidates has been used to prepare C-nucleosides.³⁴⁶

The interaction of diketene, ethyl isobutyrimidate, and ammonia provides 4-hydroxypyrimidine 230, which is known as Oxy-P³⁴⁷ (Scheme **CIII).** This compound is widely used in the manufacture of the insecticide Diazinon (231). Oxy-P has also been prepared from diketene and either isobutyramidine,³⁴⁸ isobutyronitrile, 349 isobutyrate esters, 350 or isobutyramide; 351 overall yields were excellent. The synthesis of Oxy-P is an excellent demonstration of the versatility of diketene and its derivatives in heterocyclic synthesis, and also shows that diketene reactions can indeed provide excellent yields when properly utilized.

Kato determined that the reaction of excess diketene with N -alkylimino ethers in acetic acid produced the complex 1,6-napthyridine derivatives **232** and 233³⁵² (Scheme CIV). However, equimolar quantities of diketene and 2-methoxy-l-pyrroline combined under neutral conditions $(0 °C, no solvent)$ to afford pyrrolooxazinone 234 as the major product;³⁵³ the isomeric product **235** was formed from larger cyclic imino ethers.

A number of hydroxypyrimidines have been prepared from diketene and aliphatic or aromatic amidines;³⁵⁴ N-alkylated benzamidines are normally acylated on the substituted nitrogen atom³⁵⁵ (Scheme CV). Diketene reacted with the amidine functionality of benzodiazocene **236** under mild conditions to afford a mixture of adducts **237** and **238,** which were readily converted into isomeric pyrimidodiazocenes³⁵⁶ (Scheme CVI). A facile 1,3-isomerization of the acetoacetyl group was observed if compound **238** was heated, resulting in the formation of **239.** The reaction of diketene and the benzodiazepine analogous to **236** afforded predominantly the acetoacetamidine.³⁵⁶

Under basic conditions, guanidine reacts with diketene to give 2-amino-4-hydroxy-6-methylpyrimidine (24O);³⁵⁴ biguanide reacts under neutral conditions to afford 2-guanidino-4-hydroxy-6-methylpyrimidine³⁵⁷ (Scheme CVII). Treatment of bis guanidine **241** with diketene provided a mixture of hydroxypyrimidine **242** and triazine $243.357,358$ Diketene and N , N '-diphenylguanidine combine under neutral conditions to give an isolable orthocarbamate intermediate, which is converted into pyrimidone **244** upon acidification.³⁵⁹

Diketene reacts with cyanamide and substituted cyanamides at 25 °C to give 1,3-oxazine-4-ones 245^{326,360} (Scheme CVIII). These 2-aminooxazinones isomerize to their 2-imino isomers upon heating and may be rearranged into 1-substituted uracils (246) following treatment with acetic acid at reflux.³⁶⁰ A trace (5%) of a 3-substituted uracil was isolated from an attempt to effect this latter rearrangement in dilute HCl.³⁶¹ Disubstituted cyanamides and acyl cyanamides react similarly, and the chemistry of the resulting heterocycles has been studied.³⁶² Diketene also combines with isocyanic acid to produce an oxazinedione (247) , 361,362 that has been efficiently converted into both uracil 248

SCHEME LXXXIX

SCHEME XC

198

SCHEME XCI

SCHEME XCII

R = HI53%), Me(46%), iPr(80%>

and pyrazolone 249.³⁶³ This latter paper is noteworthy for the in situ preparation of isocyanic acid from nitrourea.

The reaction of ammonium thiocyanate with diketene provides a good yield of oxazinonethione 250^{361,364} (Scheme CIX). A series of $1,3$ -oxazinimines such as 251 has been prepared in excellent yield from carbo**SCHEME XCIII**

diimides and diketene (Scheme CX); the yields were markedly higher with lengthy, room-temperature reactions than with those run at reflux (benzene, 6 h).³⁶⁵

Diketene reacts with fluorosulfonyl isocyanate to afford N-(fluorosulfonyl)-1,3-oxazine-2,4-dione (252)³⁶⁶ (Scheme CXI). This result is in marked contrast to the reaction of fluorosulfonyl isocyanate with tert-butyl acetoacetate, which provides an acetoacetamide precursor (253) to the artificial sweetener acesulfame K $(116).^{367}$

SCHEME XCIV

SCHEME XCV

The interaction of diketene and isothioureas (254, 255) to afford l,3-oxazine-2,4-dione derivatives is quite sensitive to the reaction conditions $359,368$ (Scheme CXII). An intermediate adduct can be isolated from the 20 °C reaction of isothioureas and diketene; two different structures have been proposed for this intermediate.

SCHEME XCVII

E. Reactions with N-Heterocycles and Their N -Oxides

Diketene reacts readily with many nitrogen heterocycles to give discrete, fused polycyclic products. In the simplest example, pyridine combines with either ketene or diketene to afford the tricyclic system 256, which is frequently referred to as Wollenberg's compound.³⁶⁹ A plausible reaction mechanism is presented in Scheme CXIII.

The reactions of quinoline³⁷⁰ and isoquinoline³⁷¹ with excess diketene in refluxing benzene have been studied. In the case of isoquinoline, lower reaction temperatures favored the O-acetoacetylation required to afford 257 (Scheme CXIV).

The proposed reaction mechanism for the formation of Wollenberg-type compounds is supported by the reaction of diketene and phenanthridine (258), in which a C-acetoacetylated intermediate (259) was isolated prior to conversion into the fused pyrone 260³⁷² (Scheme CXV).

The action of diketene on isoquinolines in carboxylic acid media provides adducts 261^{373} (Scheme CXVI); phthalazine (262) and 2,5-naphthyridine react similarly, while quinoxaline fails to react. This reaction of an acid, diketene, and an isoquinoline appears to be similar to the Reissert reaction and has been suggested to proceed via a mixed acetoacetic anhydride.³⁷³ Benzimidazole (263) reacts with diketene under acidic conditions to afford both the acetonylated adduct 264 and diketopiperidine 265 ; 374 the acidic reaction conditions appear to inhibit the further conversion of 265 into a Wollenberg-type adduct. Acridine reacts slowly with diketene to afford a mixture of starting materials and 9 acridanylacetone 266, presumably via an N-acetoacetylated, 9,10-bridged species such as 267.³⁷⁶

5-Phenyltetrazole is acetoaceylated with diketene at N-2, undergoes intramolecular cyclization via the amide oxygen and extrudes nitrogen to produce 1,3,4-oxadiazoles 268; the byproduct 269 is the result of further condensation of 268 with diketene³⁷⁶ (Scheme CXVII).

The reactions of heterocyclic N -oxides with diketene often provide products resulting from acetonylation α

SCHEME XCVIII

220

SCHEME XCIX

219

to the nitrogen atom. Diketene reacts with quinoline N -oxide (270) to afford pyrone 271³⁷⁷ and with isoquinoline N -oxide (272) to give several products which arise from a common acetonylated intermediate³⁷⁸ (Scheme CXVIII). In the reaction of **270** with diketene, traces of intermediate **273** were isolated and were subsequently converted into quinolinylpyrone 271 in good yield.³⁷⁷ This acetonylation is also observed in the reaction of acridine N-oxide (274) with diketene, in which a 9,10-bridged intermediate is clearly involved.³⁷⁹

4-Aminopyridine N-oxide (275) only reacts with diketene in the presence of a base and gives a poor yield of pyrone 276 (Scheme CXIX). However, simple Nacetoacetylated products have been prepared from

SCHEME C

SCHEME CI

SCHEME CII

several substituted 4-aminopyridine N-oxides.³⁸⁰ 2-Aminopyridine N -oxide can be acetoacetylated with 1 equiv of diketene to afford an 80% yield of a product which will react with additional diketene to produce pyrone 277.³⁸¹

A radical mechanism has been suggested to explain the products that result from the reaction of diketene and N , N -dimethylaniline N -oxide (278)³⁸² (Scheme CXX).

F. Reactions with Aminoheterocycles

Diketene generally reacts with 2-aminoheterocycles to produce fused, bicyclic products. The simplest example of this type of reaction, that of diketene and aminopyridine, has been thoroughly investigated be-

SCHEME CIII

cause of an erroneous (and irreproducible) report on the subject.³⁸³ In fact, diketene reacts with 2-aminopyridine in benzene to afford a mixture of $N-2$ -pyridylacetoacetamide (279) and pyrido[1,2-a]pyrimidinone 280^{384} (Scheme CXXI). Diketene combines with 2-aminopicolines in a similar manner.^{384,385} In many cases, an aminopyridine is allowed to react with diketene under neutral conditions, and then an acidic catalyst is added to facilitate cyclization.³⁸⁵ However, the reaction of 2-aminopyridine and diketene is exothermic and rapid; no intermediate can be isolated.

Many other aminoheterocycles have been reacted with diketene and with acetoacetate esters. Several types of products are produced in these reactions, but little systematic effort has been applied toward controlling which product is formed. In many instances, yields of the "desired" product are low, but the reagents are inexpensive and the product isolation has proven straightforward; these facts apparently discourage efforts to improve the yields.

The reaction of 4-aminopyridine with diketene was originally believed to provide the pyridone 281 ($R =$ H),³⁸¹ but this structure assignment was later revised to that of the isomeric pyrone 282³⁸⁶ (Scheme CXXII). Throughout this review, it can be seen that reactions of diketene under basic conditions frequently lead to the formation of 3-substituted 2,6-dimethyl-4-pyrones.

A series of aminopicolines and other methylated animopyridines were treated with excess diketene to give a mixture of acetoacetamides, pyrones, and pyridones (Scheme CXXII). In general, 2-aminopicolines gave the corresponding acetoacetamide, 3-aminopicolines gave pyridones (e.g., 283), and the more basic 4-aminopicolines provided pyrones.³⁸⁶ Early reports³⁸⁷ that 4-aminoquinoline, when treated with excess diketene, afforded exclusively the pyridone derivative may therefore merit reexamination. 2-Aminoquinoline furnishes the corresponding acetoacetamide in excellent yield upon reaction with diketene,³⁸⁷ as do a variety of other aminoheterocycles.³⁸¹

2-Amino-5-aryl-l,3,4-oxadiazoles react with diketene to afford the isomeric bicyclic systems 284 and 285, which are claimed to be useful as bactericides and plant-growth inhibitors³⁸⁸ (Scheme CXXIII).

2-Amino-l,3,4-thiadiazole reacted with excess diketene under basic conditions to afford equal amounts of the N-acetoacetylated adduct 286 and the 4-pyrone 287389 (Scheme CXXIV); the pure acetoacetamide 286 was more efficiently (84% yield) prepared in the absence of a basic catalyst.³⁹⁰ This acetoacetamide (286) cyclized in concentrated sulfuric acid to afford thiadiazolo[3,2-a]pyrimidin-7-one³⁹⁰ but was transformed into the isomeric thiadiazolopyrimidine 288 if toluenesulfonic acid was used as the catalyst.³⁹¹ The condensation of 2-amino-l,3,4-thiadiazole with ethyl acetoacetate in the presence of polyphosphoric acid afforded a low yield of 288.³⁹⁰

2,5-Diamino-l,3,4-thiadiazole (289) reacted with a stoichiometric quantity of diketene in water to afford a precursor to thiazolopyrimidine 290. With excess diketene, a bis acetoacetate (291) was formed and could not be cyclized³⁹² (Scheme CXXV).

2-Amino-l,3,4-thiadiazines, such as 292, react with diketene to give preparatively useful yields of compounds (e.g., 293) with antiinflammatory activity³⁹³

(Scheme CXXVI). The interaction of 3-amino-5,6 dimethyl-l,2,4-triazine and diketene is more complex. Thus, a mixture of the triazine and 2 equiv of diketene in benzene at reflux afforded 294, which was the result of the expected cyclization plus an acetonylation resembling the reaction of diketene with isoquinoline.³⁹⁴

Aminoisoxazolines derived from aminopentoses have been converted into nucleoside derivatives (295) via intermediate adduct 296³⁹⁵ (Scheme CXXVII).

2-Aminobenzoxazole was treated with diketene at 20 ⁰C to give a hemiaminal (297), which could be dehydrated to provide a single product (298) (Scheme CXXVIII); two tricyclic isomers were observed when the reaction was run in refluxing benzene.³⁹⁶ Benzindoline-2-thione (299) and benzimidazol-2-thione react with diketene to provide fused heterocyclic products via a similar N-acetoacetylation.³⁹⁷

The hemiaminals (300) which precipitated from the reaction of diketene with 2-anilino-2-imidazolines at -5 ⁰C showed analgesic activity; these hemiaminals (300) are easily dehydrated³⁹⁸ (Scheme CXXIX).

2-Aminothiazoline 301 and 2-aminothiazine 302 reacted with diketene to afford bicyclic systems 303 and 304; the latter compound (304) is converted into a β lactam (305) upon photolysis³⁹⁹ (Scheme CXXX).

Some aminoheterocycles have been functionalized on the free amino group prior to reaction with diketene, often via imine or imidate formation. These functionalized heterocycles undergo ring closure via the active methylene group of an acetoacetylated intermediate.⁴⁰⁰ For example, the formimidate of 2-aminopyridine (306) reacts with diketene to afford pyridopyrimidone 307⁴⁰¹ (Scheme CXXXI).

Another example of N-acetoacetylation followed by ring closure is the reaction of diketene and benzimidoacetate 308 to give the fused, tricyclic ring system 309 in excellent yield³⁷⁴ (Scheme CXXXII). A more extensively functionalized analogue (310) of this benzimidoacetate also reacted with diketene to afford a fused, tricyclic heterocycle. The analogous benzothiazole reacted similarly, while the benzoxazole failed to react.⁴⁰²

Also, 2-pyridyl isocyanate and isothiocyanate react with diketene to yield pyridopyrimidones 311^{403} (Scheme CXXXIII).

G. Reactions with Ureas

It has long been known that diketene reacts with urea to give 6-methyluracil (312)⁴⁰⁴ (Scheme CXXXIV). While this reaction proceeds in the absence of a catalyst (toluene, reflux),⁴⁰⁵ the yield can be greatly improved with a catalyst such as pyridine⁴⁰⁶ or a mercury(II) salt.⁴⁰⁷ Recent improvements in the preparation of 6-methyluracil from diketene include the use of diazabicyclo[2.2.2]octane (DABCO) as a catalyst in $ACOH/Ac₂O$ solvent.⁴⁰⁸ A statistical optimization of the preparation of 6-methyluracil in a pyridine/ $Ac_2O/$ AcOH system resulted in yields of nearly 90%.⁴⁰⁹

In pyridine at 20 °C, diketene acetoacetylates N-alkylureas almost exclusively on the unsubstituted amino group, and the resulting acetoacetimides can be cyclized to give l-alkyl-6-methyluracils (313) (Scheme CXXXV). The use of hot acetic acid for this latter reaction, however, affords a mixture of 1- and 3-alkyluracils.⁴¹⁰ The

SCHEME CVI

SCHEME CVII

SCHEME CVIII

SCHEME CX

SCHEME CXI

reaction of N -phenylurea with diketene appears to be more complex and gave both 6-methyl-l-phenyluracil (314) and the 4-pyrone 315 from the same reaction mixture.⁴¹¹

Authentic samples of 1-substituted and 3-substituted 6-methyluracils have been prepared from diketene by

other routes^{410,412} (Scheme CXXXVI); one 3-substituted uracil (316) is a preemergent herbicide.⁴¹³ Two closely related analogues of 316, terbacil (317) and bromacil (318), are also herbicides.

 NN -Dimethylurea reacts with diketene in acetic acid at 90 ⁰C to afford 6-methyl-l,3-oxazin-2,4-dione (247) in over 60% yield (Scheme CXXXVII); this oxazine is easily converted into uracils.⁴¹⁴

N,N'-Disubstituted ureas react with diketene to give low to moderate yields of the corresponding uracils (320) (Scheme CXXXVIII), some of which exhibit analgesic and antiinflammatory activity.⁴¹⁵

Diketene and thiourea combine under basic condi but give the thiouracil (Scheme CXXXIX).

SCHEME CXIII

SCHEME CXIV

SCHEME CX V

The l,3-diphenyl-2-thiouracil analogous to compound 320 has been prepared from diketene and *N,N'-di*phenylthiourea.³⁹⁷

Under basic conditions, sulfamide and diketene react to provide the $2.1.3$ -thiadiazine derivative $323,^{416}$ which

Clemens

SCHEME CXVII

is readily brominated to afford a product (324) that acts as a bromonium ion source⁴¹⁷ (Scheme CXL). Thus, the bromine in 324 can be quantitatively titrated with iodine, while the bromine in the analogous 5-bromouracil is essentially unaffected by iodine.

N-alkylsulfamides and diketene combine to afford either 1- or 3-substituted 2,1,3-thiadiazine S,S-dioxides, depending upon the reaction conditions used $417,418$ (Scheme CXLI). Basic reaction conditions result in the formation of 1-substituted 2,1,3-thiadiazines (325), while acidic conditions give the 3-isomer (326).⁴¹⁸ However, in an attempt to prepare glycoside analogues of 325, diketene was reacted with N-(tetrakis-0 acetylglucopyranosyl)sulfamide in nitromethane at 20

SCHEME CXIX

SCHEME CXX

SCHEME CXXI

°C with pyridine as a catalyst; pyrone formation resulted. These reaction conditions favored pyrone formation even in the absence of the glycoside,⁴¹⁹ a result which is consistent with other pyridine-catalyzed di-

ketene reactions throughout this review (c.f. compounds 315, 321).

Treatment of phosphonamides with diketene provides phosphadiazines (327)⁴²⁰ (Scheme CXLII), which can undergo a variety of further reactions.⁴²¹

The reaction of diketene with semicarbazones resembles that of diketene and urea, and yields N -imino uracils (328)⁴²² (Scheme CXLIII). An isomeric 3 aminouracil is obtained from the reaction of acetone thiosemicarbazone and diketene.⁴²³ If the free amino group of a semicarbazone were to be hindered or deactivated, then the imine would be expected to react with diketene (see section IV.D).

H. Acid-Catalyzed Cyclization of Acetoacetates and Acetoacetarylldes

Phenyl acetoacetates prepared from diketene can be converted into coumarins (329) by acid-catalyzed cyclization (Scheme CXLIV). As would be expected, the cyclization reaction becomes more facile with the addition of electron-donating substituents on the aromatic rings. Thus, while p-chlorophenyl acetoacetate provides only 1% of the corresponding coumarin, resorcinol monoacetoacetate cyclizes rapidly and in excellent yield.⁴²⁴

Aryl acetoacetates can be prepared from phenols and diketene in the presence of a base or in the presence of a catalytic amount of acid at low temperature. Coumarins become the expected reaction product when an excess of concentrated strong acid is used as the reaction solvent.⁴²⁵

The reactions of dihydroxynaphthalenes with diketene and the subsequent cyclization of the resulting acetoacetates have been extensively studied. Some of these dihydroxynaphthalene acetoacetates cyclize at room temperature⁴²⁶ (Scheme CXLV).

4-Substituted aryl acetoacetates (e.g., 330) have been converted into coumarins such as 331 in good yield; the

SCHEME CXXII

SCHEME CXXIII

halogen facilitates further elaboration of these couma- $\text{rins}^{\tilde{427}}$ (Scheme CXLVI).

Aromatic thiols have been acetoacetylated and cyclized with polyphosphoric acid (PPA). This reaction results in the formation of either a thiocoumarin (332) or a thiochromone (333), depending the specific thiophenol used (Scheme CXLVII). The literature regarding this cyclization is complicated by the fact that many workers had prepared their starting materials via the acid-catalyzed reaction of thiols and diketene and

were therefore working with 3-arylthiocrotonic acids instead of aryl acetothioacetate esters.¹⁹⁸ It appears that chromone formation is generally favored from either of these precursors, although 3-methoxybenzenethiol provides the coumarin in both instances.⁴²⁸ Likewise, a selenochromone has been prepared from diketene and selenophenol, but the structure of the intermediate is unclear.²⁰⁴ A definitive study of the preparation and structure of thio- and selenocoumarins and thio- and selenochromones from diketene would be most helpful.

Acetoacetarylides cyclize to afford quinolone derivatives, and some vasodilators $(334)^{429}$ and cyan dye couplers⁴³⁰ have been prepared by such cyclization (Scheme CXLVIII). An acid-catalyzed cyclization of an acetoacetarylide has been used in the total synthesis of the alkaloid eupolauramine (335).⁴³¹

In the case of m-phenylenediamine, treatment with 1 mol of diketene results in rapid cyclization to the aminoquinolone 336, but the second equivalent results only in acetoacetylation⁴³² (Scheme CXLIX). A similar

SCHEME CXXIV

SCHEME CXXVI

SCHEME CXXVII

failure to effect a bis cyclization was encountered during the synthesis of nybomycin (337) ;⁴³³ note the regiochemistry of the second cyclization.

A compound (338) with antihypertensive activity has been prepared via acid-catalyzed cyclization of an acetoacetylated tetrahydroquinoline derivative⁴³⁴ (Scheme CL).

The hydroxyquinolizinone 339 reacts with diketene in acetic acid to give a fused heterocycle⁴³⁵ (Scheme CLI).

A series of indoles and indolines has been acetoacetylated and then cyclized into fused heterocycles with PPA⁴³⁶ (Scheme CLII).

I. Miscellaneous Preparations of Slx-Membered Rings

There is a series of diketene reactions in which a heteroatom is acetoacetylated and then the methylene group of the resulting acetoacetate is condensed with an electrophilic carbon atom. For example, salicylaldehyde is acetoacetylated and the resulting adduct undergoes a Knoevenagel condensation to afford 3 acetylcoumarin (340)⁴³⁷ (Scheme CLIII).

7-Acetyl-6-aminotetralin (341) reacts with diketene by an acetoacetylation/ring-closure sequence to give the cyclohexaquinolone derivative S42⁴³⁸ (Scheme CLIV). 2,4-Dihydroxyquinoline 343 can be prepared from methyl anthranilate and diketene.⁴³⁹ The N-acetoacetylation of carboline 344, followed by base-catalyzed cyclization, provided the D ring of geissoschizine $(345).440$

Aminoacetylpyrroles such as 346, and N-1-functionalized analogues thereof, have been acetoacetylated with diketene and then cyclized with base to afford bicyclic systems (349) (Scheme CLV), which inhibit the activity of prostaglandin synthetase.⁴⁴¹ A series of red-violet anthraquinone dyes (e.g., 350) has been prepared by acetoacetylation/ring-closure reactions with diketene.⁴⁴²

Several β -hydroxy ketones react with diketene to give acetoacetates which provide lactones after ring closure. For example, diacetone alcohol can be acetoacetylated and then treated with potassium hydroxide to afford dihydropyrone 351^{443} (Scheme CLVI); other β -hydroxy aldehydes react similarly. This cyclization of hydroxy ketones is more general and therefore more commonly used for the preparation of five-membered rings from α -hydroxy ketones (see section V.C).

The condensation of the active methylene group of an acetoacetarylide onto a nitro group provides a novel route to quinoxalone N -oxides such as 352^{444} (Scheme CLVII).

Diketene reacts with o-aminobenzamide to afford a dyestuff precursor $(353)^{445}$ (Scheme CLVIII). The related benzoxazinone 354 is prepared from the reaction of diketene and anthranilic acid. Adduct 354 can be treated with methylhydrazine to provide an aminopyrazole which is readily converted into a series of compounds (e.g., 355) that are useful as viruscides and antidepressants.⁴⁴⁶

V. Flve-Membered Heterocycles Derived from Diketene

A. Reactions with Hydrazines

The reaction of hydrazines with acetoacetate esters is commonly used to prepare pyrazolones, but these

SCHEME CXXIX

pyrazolones can also be prepared directly from hydrazines and diketene. Thus, hydrazine hydrate is claimed to react with diketene in methanol to afford an excellent yield of 5-methyl-3-pyrazolone (35S)⁴⁴⁷ (Scheme CLIX). Pyrazolone 356 has also been prepared in low yield from diketene and acetyl hydrazide.⁴⁴⁸ Methylhydrazine and diketene react to provide 2,5-dimethyl-3-pyrazolone (357) in excellent yield; other alkyl pyrazolones were similarly prepared.⁴⁴⁹

5-Methyl-3-pyrazolone is readily alkylated on the active methylene group and couples with diazo compounds to form intermediates of great importance in dyestuff manufacture. Also, the hydrazine moiety in 3-pyrazolones can be exchanged with substituted hydrazines to prepare substituted pyrazolones.⁴⁵⁰

Phenylhydrazine reacts with diketene to give *N'* phenylacetoacetohydrazide 3-phenylhydrazone (358),⁹ which provides a 2-phenyl-3-pyrazolone (359) upon

SCHEME CXXX

heating with an additional equivalent of diketene (Scheme CLX). Presumably this additional diketene rapidly removes phenylhydrazine from the equilibrium because, if this ring closure is effected in hydrochloric acid without the addition of diketene, the isolated product is 1-phenyl-3-pyrazolone 360.⁴⁶¹ Therefore, it is possible to selectively prepare either of the two 3 pyrazolone isomers from a common intermediate. A mild, one-pot reaction is used to prepare commercially desirable 5-methyl-2-aryl-3-pyrazolones such as 361.⁴⁵² These arylpyrazolones are coupled with diazonium salts to form colorants, such as the pyrazolone pigment 362, which is known as Pigment Yellow 10.

Phenylhydrazones of aromatic ketones and aldehydes react with diketene (acetic acid, reflux) to give pyrazolin-3-ones (363) (Scheme CLXI). Phenylhydrazones of most aliphatic carbonyl compounds provide similar products (364) when heated with diketene in benzene that contains a trace of acid. 453 Cyclic hydrazones (pyrazolines) react with diketene under neutral conditions to afford fused piperidine-2,4-diones $(365).454$

A pyridazin-3-one derivative (366) with antihypertensive activity has been prepared from diketene and benzil monohydrazone⁴⁵⁵ (Scheme CLXII).

Other types of molecules with N-N bonds also react with diketene. Hydrazobenzene and diketene combine, in the presence of triethylamine, to give a good yield

SCHEME CXXXIII

of 3-pyrazolone 367⁴⁵⁶ (Scheme CLXIII). The photolytic reaction between an azo compound and diketene results in the formation of a piperidazinedione (368). In this latter example, the preparation of a large number of analogues demonstrated that only one isomer is obtained from unsymmetrical azo compounds.⁴⁵⁷

Diketene reacts with l-(ethylamino)-3-methylindole (369) to provide the tricyclic ring system 37O⁴⁵⁸ and also with l-iminopyridinium (371) and 1-iminoquinolinium ylides to provide bicyclic ring systems such as 372⁴⁵⁹ (Scheme CLXIV). The acetoacetylated ylide 373 was an isolable intermediate and required a strong base for cyclization.

Unexpectedly, treatment of N -phenyl- N -methyl-

hydrazine with diketene and then with PPA afforded the fused heterocycle 374 (Scheme CLXV). One intermediate (375) was isolated.⁴⁶⁰

312

B. Reactions with Hydroxylamine and Derivatives

Under most conditions, diketene or acetoacetate esters react with hydroxylamine to give 3-methylisoxazol-5-one (376)^{461,462} (Scheme CLXVI). It has recently been shown, however, that the isomeric 3-hydroxy-5 methylisoxazole (377) can be prepared from diketene and hydroxylamine by carefully maintaining the pH between 9 and 10; in this pH range the free hydroxylamine is the predominant species and will thus be acetoacetylated on nitrogen.⁴⁶³

The 3-hydroxy-5-methylisoxazole (377) is a useful plant protecting agent, known as Tachigaren or Hymexazol, and a variety of synthetic routes to this compound have been developed. Thus, N -acetoacetyl- O benzylhydroxylamine (378) was produced with a stoichiometric amount of diketene in the absence of a catalyst (Scheme CLXVII). Debenzylation of 378, followed by treatment with acid, afforded 3-hydroxy- 5 -methylisoxazole $(377).$ ⁴⁶² The preparation of this agrichemical has been refined by the incorporation of an acid-labile blocking group on the oxygen, such as the tert-butyl group. An attempted use of an O-acyl protecting group resulted in Lossen rearrangement of the intermediate acetoacetamide and, consequently, in the preparation of oxazol-2-one 379 in good yield.⁴⁶⁴

 $N, O-Bis(trimethylsilyl)hydroxylamine (380) was$ treated with diketene and the resulting acetoacetate was **SCHEME CXXXV**

SCHEME CXXXVI

SCHEME CXXXVII

SCHEME CXXXVIII

cyclized with acid to provide 3-hydroxy-5-methylisoxazole (377) (Scheme CLXVIII). This isoxazole was further elaborated into muscinol (382), a hallucinogen found in mushrooms.⁴⁶⁵

N-Substituted hydroxylamines are acetoacetylated on nitrogen with diketene and then rapidly cyclize to form tertiary alcohols (383) which can be either dehydrated or alkylated⁴⁶⁶ (Scheme CLXIX).

N-Phenylacetoacetohydroxamic acid (110), readily prepared from N-phenylhydroxylamine and diketene, is readily cyclized in the presence of $BF₃$ to afford the oxazole 384¹⁸⁶ (Scheme CLXX). Treatment of 110 with aroyl chlorides is claimed to result in cyclization and acylation, providing a one-pot preparation of the her-

SCHEME CXXXIX

SCHEME CXL

SCHEME CXLI

bicide 385.⁴⁶⁷ N-Hydroxylsulfonamides react with diketene to provide 3-methyl-2-sulfonylisoxazolones.⁴⁶¹

Hydroxylamine or O-substituted hydroxylamines react with excess diketene in the presence of triethylamine to provide 2-pyridones $(386)^{\frac{2}{62}}$ (Scheme CLXXI).

An N,0-dialkylated hydroxylamine (387) was treated with diketene and then with base. This reaction provided the requisite N -hydroxypyridone for a total synthesis of (\pm) -tenellin (388), a naturally occurring yellow pigment⁴⁶⁸ (Scheme CLXXII).

Aliphatic amidoximes (389) react with diketene to afford acetonylated 1,2,4-oxadiazoles (390) in reasonable yields (Scheme CLXXIII); the chemistry of the acetonyl side chain has been studied.⁴⁶⁹ The reactions of aryl-1,2,4-oxadiazoles (391), which are prepared from aromatic amidoxime acetoacetates 392, have also been studied. The action of a strong base on 392 results in an alternate mode of cyclization and provides 1,2,4 oxadiazol-5-one 393.⁴⁷⁰

Heterocycles containing N-O bonds have also been prepared from acetoacetate derivatives, such as the

SCHEME CXLII

SCHEME CXLIV

SCHEME CXLV

SCHEME CXLIII

328

SCHEME CXLVI

analgesic **394** prepared from an acetoacetarylide⁴⁷¹ (Scheme CLXXIV). A furazan (395) with antihypertensive activity has been prepared from an acetoacetamide.⁴⁷² The condensation of an N-methoxyacetoacetamide with an α -acetoxy aldehyde was used to prepare the 2,5-dimethylfuran derivative 396⁴⁷³ (Scheme CLXXV).

C. Reactions with Hydroxy Ketones

 α -Hydroxy ketones undergo a sequential aceto-

SCHEME CXLVII

acetylation/condensation reaction to give five-membered rings, such as the butenolide 397, which was derived from 5-hydroxy-4-octanone⁴⁷⁴ (Scheme CLXXVI). These butenolides are easily converted into furan-3 carboxylic acids (e.g., 398).474a

Furanones such as **399** have been similarly prepared from a-hydroxy acids,⁴⁷⁵ and S-carlosic acid **(400)** has been synthesized from dimethyl (S)-malate and diketene⁴⁷⁶ (Scheme CLXXVII). An alternate, diketene-based approach to carlosic acid proceeds via transesterification of functionalized teri-butyl acetothioacetates.⁴⁷⁷

D. Reactions with Amino Ketones

Diketene also reacts with α -amino ketones in an acetoacetylation/condensation sequence to give pyrrolidinones, such as 401 and 402,⁴⁷⁸ and with α -amino acids and their esters^{309b,439} to afford pyrrolidinediones 403⁴⁷⁹ (Scheme CLXXVIII). A number of these compounds have interesting biological properties as plant regulators, 480 depressants, 481 and antibiotics. $482,479c$

SCHEME CXLVIII

SCHEME CLIII

SCHEME CLII

SCHEME CXLIX

SCHEME CLVI

Büchi cyclized N-acetoacetyl-S-benzyl-L-cysteine ethyl ester enroute to the antibiotic holomycin $(404)^{483}$ (Scheme CLXXIX). The reaction of diketene with an α -amino ester has been used in a synthesis of the mycotoxin DL- β -cyclopiazonic acid (405);⁴⁶⁴ the synthesis of a-cyclopiazonic acid **(406)** has recently been described and uses diketene in a similar manner.⁴⁸⁵ Other substituted pyrrolidine-2,4-diones (tetramic acids, e.g., 407) have been used as precursors for the preparation of naturally occuring antibiotics such as streptolydigin and the tirandamycins.⁴⁸⁶

As would be expected, α -amino amides and α -amino nitriles can also be used to prepare pyrrolidinone derivatives. In the case of the α -amino amides, anilides

SCHEME CLVII SCHEME CLVII

afford different products **(408)** than are obtained **(409)** with aliphatic N-substituents⁴⁸⁷ (Scheme CLXXX). The acetoacetamide of aspartimide **410** rearranges to a tetramic acid derivative.⁴⁸⁸ α -Amino nitriles can be used to prepare aminopyrrolinones such as **41**1.⁴⁸⁹ Azahomoadamantane **412** reacts with diketene to afford a fused ring system $(413).490$

The reactions of aminotropones and aminotropolones with diketene have been extensively studied.⁴⁹¹ In the presence of a stoichiometric quantity of diketene, acetoacetamidotropones and -tropolones are readily prepared (Scheme CLXXXI). With excess diketene, mixtures of pyrone and pyridone derivatives are formed as a result of further condensation of the aminotropolone acetoacetate with diketene;⁴⁹² the composition of the product mixtures was found to be dependent on the acidity of the aminotropone.⁴⁹³ 2-Acetoacetamidotropones undergo ring closure to give cyclohepta $[b]$ pyrrole derivatives, 492 such as the aldose reductase inhibitor 414.⁴⁹⁴

Acetoacetamides have been nitrosated and converted into α -aminoacetoacetamides which were used for the preparation of a series of herbicidal pyrroles (e.g. 415) (Scheme CLXXXII); conversely, the acetoacetic ester could be nitrosated and reductively condensed with an acetoacetamide.⁴⁹⁵

E. Heterocycles Derived from Haloacetoacetates

Haloacetoacetate esters derived from diketene are frequently used in heterocyclic synthesis; several ilDiketene

SCHEME CLIX

SCHEME CLX

SCHEME CLXI

SCHEME CLXII

SCHEME CLXVI

SCHEME CLXVII

SCHEME CLXIV

373

SCHEME CLXX

SCHEME CLXXI

SCHEME CLXXII

SCHEME CLXXIII

SCHEME CLXXIV

SCHEME CLXXV

SCHEME CLXXVI

SCHEME CLXXVII

ridoxine can be made from 2-chloroacetoacetamide in formic acid/formamide at moderate temperature;⁴⁹⁶ further heating results in the formation of imidazoles (417) from the same reactants (Scheme CLXXXIII). This latter imidazole synthesis has been used in the preparation of antisecretory compounds, such as cimetidine⁴⁹⁷ and its analogues.⁴⁹⁸

The thiazole 418 , which results from vitamin B₁ degradation, has been prepared from 2-chloroacetoacetate esters and thioformamide⁴⁹⁹ (Scheme CLXXXIV). Another thiazole (419) derived from diketene is a patented antisecretory agent.⁵⁰⁰

Aminofuran 420 and cyanopyrrole 421 can be prepared from ethyl 2-chloroacetoacetate and the sodium salt of acetoacetonitrile⁵⁰¹ (Scheme CLXXXV).

The reaction of 2-chloroacetoacetic acid derivatives with diazonium salts provides oxalyl chloride derivatives

HO T Vo CO2Et 1. 5°C Ph S. A • Ph^S, L-V N H i 2. NaOEt/20°C N H , O 42% 404 **V-0**
 CO₂**Et**
 CO₂**Et base** 405 **H 406 ,CO2Et ^ 2g c ^c 1. MeNH2 /^ N ^ ⁰ I 9 + MeN- » [Me • CO2 Et 2. NaOEt 2. 0.2 N HCI**
31% M **95% Me** $\frac{3}{8}$ **Me CO2Et t 407**

lustrative examples follow. 2-Chloroacetoacetic acid derivatives are commonly used intermediates for the preparation of five-membered heterocycles, such as oxazoles, imidazoles, and thiazoles. In virtually every example of heterocyclization in which a 2-chloroacetoacetic acid derivative is utilized, the carbons at the 2 and 3-positions are incorporated into the heterocyclic nucleus and the product contains a pendant methyl group. Thus, the oxazole (416) used for preparing py-

(e.g., 423) which are useful intermediates for the preparation of pyrazoles⁷¹ (Scheme CLXXXVI). In one such application, N-propargylacetoacetamide was converted into the pyrrolopyrazole 422 via the nitrile imine generated from 423.71b

The fungicide carboxin (424) provides an example of a six-membered heterocycle accessible from 2-haloacetoacetates.⁵⁰² Likewise, L-cysteine ethyl ether ester has been treated with ethyl 2-chloroacetoacetate (and

SCHEME CLXXIX

Clemens

SCHEME CLXXX

SCHEME CLXXXI

SCHEME CLXXXII

SCHEME CLXXXIII

SCHEME CLXXXIV

SCHEME CLXXXV

several 2-chloroacetoacetamides) to form 1,4-thiazidines, such as 425⁵⁰³ (Scheme CLXXXVII).

In general, 2-bromoacetoacetates are less stable than chloroacetoacetates and are seldom used in organic synthesis. However, an alkylative sulfide contraction of thioamide 427, prepared from ethyl 2-bromoaceto-

SCHEME CLXXXVII

SCHEME CLXXXVIII

acetate, has recently been used to make carbapenam 426⁵⁰⁴ (Scheme CLXXXVIII).

4-Haloacetoacetate esters undergo at least three different types of heterocyclization reactions. In the first type, ring closure occurs on the halogen and the keto group, while in the second type the halogen remains intact and cyclization occurs on the ester and keto groups of the acetoacetate. This latter type of cyclization is important to diketene chemistry because it facilitates the preparation of compounds without a pendant methyl group. In the third type of heterocyclization, the halogen is converted into a hydroxyl group and the molecule is lactonized to afford a tetronic acid.

Diketene is used extensively for the preparation of substituted acetoacetamido side chains for β -lactam antibiotics, and most of these heterocyclizations fall into the first of the aforementioned reaction types. Thus, 4-(chloroacetoacetamido)cephalosporanic acid (428), prepared from chlorine, diketene, and 7-aminocephalosporanic acid (7-ACA) (Scheme CLXXXIX), ex-

SCHEME CXC

chains have been introduced by displacement of the side chain halogen or by ring closure of the resulting adducts (e.g., 429).⁵⁰⁶ Conversion of 4-haloacetoacetamido side chains into aminothiazoles with thiourea has been used to prepare several antibiotics with outstanding activity (c.f. 43O)⁵⁰⁷ (Scheme CXC). This aminothiazoleacetic acid side chain (431) is also prepared separately for attachment to other β -lactams.⁵⁰⁸ Another common

SCHEME CXCI

433

SCHEME CXCII

SCHEME CXCIII

0 0 o°C-> ,N-O ⁺ 43B
 7 9 OEt 11 60.75%

SCHEME CXCV

SCHEME CXCVI

Examples of the second type of 4-haloacetoacetate heterocyclization, in which the halogen remains intact, are also fairly common. Sweet-tasting analogues of the artificial sweetener acesulfame K (116) have been prepared from diketene via ring closure of the enolate of

SCHEME CXCVII

SCHEME CXCVIII

 β -lactam side chain (c.f. 432) is prepared via nitrosation of the active methylene group of 4-haloacetoacetamides prior to cyclization with thiourea.⁵⁰⁹

Methylation of the oxime affords yet another series of active compounds.⁵¹⁰ Other heterocycles, such as 433, have also been attached to 7-ACA via diketene chemistry⁵¹¹ (Scheme CXCI).

The functionalized aminothiazole 434, prepared from 4-haloacetoacetates, is claimed to be a post-emergent herbicide.⁵¹² It should be noted that the 4-bromoacetoacetate intermediate used to make 434 was prepared by the facile thermal isomerization of the 2 bromo isomer (Scheme CXCII).

The reaction of ethyl 4-bromoacetoacetate with cyanoethenedithiols to form 435 and 436 has been explored⁵¹³ (Scheme CXCIII).

The outcome of a reaction can be influenced by the acetoacetic acid derivative used. The different reactivities of the ester 437 and the acid bromide 438 toward benzohydroxamide facilitated the preparation of two completely different products⁵¹⁴ (Scheme CXCIV).

The ethyl ester of L-cysteine reacts with ethyl 4 bromoacetoacetate to afford the 1,4-thiazidine 439⁵⁰³ (Scheme CXCV).

a 4-chloroacetoacetamide⁵¹⁵ (Scheme CXCVI).

Hydrazines have been used to prepare herbicidal pyrazoles (440) from 4-substituted acetoacetates⁵¹⁶ (Scheme CXCVII). In this instance, the halide was displaced prior to cyclization. Similarly, amidines have been used to prepare analogues **(441)** of diazinon from 4-bromoacetoacetates.⁵¹⁷

A recent synthesis of pyrimidone derivatives 442 and **443** provided yet another example in which the halomethyl group was carried through the heterocyclization and then utilized in a subsequent reaction⁵¹⁸ (Scheme CXCVIII).

4-Chloroacetoacetates are precursors to tetronic acid **444,** via 4-alkoxy and 4-hydroxyacetoacetate intermediates⁵¹⁹ (Scheme CXC**IX**). Closely related is the chiral synthesis of $(-)$ -4-hydroxypyrrolidin-2-one (445) , a natural product isolated from *Amanita muscaria.⁵²⁰*

F. Miscellaneous

Diketene reacts with sulfonium ylides to give furanones.⁶²¹ Thus, acyl dimethylsulfonium methylides 446 and **447** are acylated with diketene, and the resulting enolates displace dimethyl sulfide to afford 2-acyl-3 hydroxy-5-methylfuran **448** and the spirocyclic furanone **449,** respectively⁵²² (Scheme CC). Isoquinolinium ylide **450** is similarly acetoacetylated with diketene but undergoes ring closure via the carbon terminus of the enolate intermediate to afford 451.⁵²³ Sulfilimine ylides react with diketene to afford new ylides **(452),** presumably via a four-membered cyclic intermediate.⁵²⁴

Isonitriles react with diketene to afford highly functionalized butenolides (453) (Scheme CCI), which are useful as aging inhibitors for rubber.⁵²⁵

Allylamine is readily converted into N-allylacetoacetamide with diketene,²⁴⁶ and this adduct can be cyclized into 2-acetonyloxazoline **456⁵²⁸** (Scheme CCII). Other amines react similarly to provide substituted oxazolines. Alternately, 2-hydroxyethyl amines can be acetoacetylated with diketene and cyclized into oxazolines upon treatment with thionyl chloride at reflux. Acetoacetylated aziridines also rearrange to oxazolines.⁵²⁷

The reaction of 2-mercaptoaniline with diketene in benzene provides one major product, but two different structures have been ascribed to this compound

Clemens

SCHEME CXCIX

SCHEME CC

SCHEME CCII

SCHEME CCIII

SCHEME CCIV SCHEME COV

(Scheme CCIII); the available chemical and spectral data is ambiguous, and further research is warranted.397,528 In hot dimethyl sulfoxide, diketene reacts with 2-mercaptoaniline to afford a benzothiazinone, via an intermediate disulfide.

Diketene condenses with o-phenylenediamine to provide diazepinone 457;⁵²⁹ other o-diaminoheterocycles provide analogous fused diazepinones (458)⁵³⁰ (Scheme CCIV). Diazepinones have also been prepared from o-nitroanilines and diketene via an acetoacetylation/ reduction/ring-closure sequence.⁵³¹

VI. Other Reactions of Diketene

A. Reactions with Carbonyl Compounds

Diketene reacts with carbonyl compounds to produce several types of adducts, such as 2- and 4-substituted acetoacetates and l,3-dioxin-4-ones. Thus, in the presence of p-toluenesulfonic acid, diketene reacts with acetone to afford $2,2,6$ -trimethyl-4 H -1,3-dioxin-4-one $(459)^{532}$ (Scheme CCV). A number of analogous 1,3dioxin-4-ones have been similarly prepared from other μ aromatic and aliphatic ketones⁵³³ and aldehydes.⁵³⁴ In addition to acidic catalysts, zinc sulfate in pyridine, 535 a palladium(II) complex, $74b$ and a quaternary amine r_{est} resin⁵³⁶ have also been used to catalyze dioxinone formation. The product that resulted from the reaction catalyzed by zinc sulfate was incorrectly identified as isopropenyl acetoacetate.

SCHEME CCVI

The diketene/acetone adduct 459 is an extremely useful diketene derivative. The physical properties and the handling characteristics of this adduct are similar to those of methyl acetoacetate, but the reactions more closely resemble those of diketene.⁵³⁷ Upon pyrolysis, 459 provides acetylketene (460), which is useful for acetoacetylation and cycloaddition reactions.⁵³⁸ In general, the chemistry of other l,3-dioxin-4-ones has not been extensively investigated.

Diketene reacts with benzaldehyde in the presence of sodium acetate to give benzalacetone $(461)^{14}$ (Scheme CCVI). When benzaldehyde and diketene are reacted under acidic conditions, the benzylideneacetoacetic acid intermediate 462 can be isolated and then readily decarboxylated to benzalacetone.⁵³⁹ Cinnamaldehyde reacts similarly.

SCHEME CCVII

SCHEME CCXI

CCL.

SCHEME CCX

 Cl_3CCO_2 Et

472

 $\overline{\text{cc}}$

467

 N aHCO₃

The titanium tetrachloride catalyzed reaction of diketene with aldehydes provides 4-substituted acetoacetates 463,^{540,541} which are readily cyclized under basic conditions to give 6-substituted 4-hydroxy-5,6-dihvdro-2-pyrones (464)⁵⁴⁰ (Scheme CCVII). This reaction has been used in the synthesis of kawains (465) , 540
(\pm)-pestalotin (466), 541 compactin (467), 542 and a series of postemergent herbicides.⁵⁴³

In a closely related reaction, diketene reacts with acetals and ketals in the presence of titanium tetrachloride to produce 4-substituted acetoacetates, such as 468 (Scheme CCVIII). This reaction provides a good alternative to dianion chemistry for producing acetoacetic esters that are functionalized at C-4.544

Surprisingly, the use of catalytic amounts of boron trifluoride in place of stoichiometric quantities of titanium tetrachloride in the above reaction of acetals with diketene yields 2-substituted acetoacetates (469)⁵⁴⁵ (Scheme CCIX). Upon treatment with acid, these latter compounds can be converted into methyl vinyl ketones (470) .

Diketene reacts with aqueous formaldehyde to provide 2,6-heptanedione $(471)^{546}$ (Scheme CCX).

SCHEME CCXII

SCHEME CCXIII

SCHEME CCXIV

SCHEME CCXV

C. Reactions of the Exocyclic Double Bond of **Diketene**

There is a series of diketene reactions in which the exocyclic double bond of diketene reacts, but the β lactone ring remains intact.^{3a,547} Almost all the reactions of the exocyclic olefin in diketene can be categorized as radical addition reactions, carbene or nitrene additions, or photochemical $[2 + 2]$ reactions.

1. Radical Addition Reactions

Although diketene reacts with chlorine to give 4chloroacetoacetyl chloride, the double bond can be chlorinated with sulfuryl chloride in the presence of a radical initiator to give 4-chloro-4-(chloromethyl)oxe-
tan-2-one (472)⁵⁴⁸ (Scheme CCXI). A number of halogenated compounds, including tetrahalomethanes, trichloroacetyl chloride, and trichloroacetonitrile have been added to diketene under radical conditions.⁵⁴⁹ The resulting adducts can be ring-opened to provide 4substituted acetoacetate derivatives.

Other compounds which are capable of undergoing homolytic cleavage and addition to olefins also combine with diketene to give 4-substituted oxetanones. For example, diethyl phosphite reacts with diketene via radical cleavage of the phosphorous-hydrogen bond⁵⁵⁰ (Scheme CCXII).

Secondary alcohols, such as isopropyl alcohol, react with diketene under radical conditions, and the oxetanones 473 which result have been further converted into conjugated dienoic acids 474 and dihydropyrones 475⁵⁵¹ (Scheme CCXIII).

481

PhM₆ HCI Ig) PhHgCCI₃ $\Delta/72%$ EtOH/81% $CO₂Et$

480

SCHEME CCXVII

SCHEME CCXVIII

SCHEME CCXIX

Sulfur compounds react with the double bond of diketene under both radical and ionic conditions. The highly activated $SCIF₅$ reacts spontaneously with diketene, and the resulting adduct 476 can be ring-opened and decarboxylated or dimerized, presumably via an acetoacetyl chloride intermediate 652 (Scheme CCXIV).

Aliphatic thiols undergo an exothermic, radical addition to diketene, and the resulting sulfides (477) precipitate from hydrocarbon solvents in high yield⁵⁵³ (Scheme CCXV). Bis(oxetanones) have been similarly prepared from the reaction of dithiols and diketene.⁵⁵⁴ The diketene/thiol adducts **477** have been converted into alkenes, polymers, crotonate esters, and γ -lactones. Pyrolysis of 477 affords a mixture of products that result from either the rearrangement of a thiironium intermediate or from the elimination of $CO₂$ ⁵⁵³ γ -Lactones, such as 478, have been prepared by treating adducts 477 with sulfuric acid. The direct reaction of diketene and thiols in sulfuric acid, however, affords β -alkylthiocrotonic acids 479.555

2. Carbene and Nitrene Additions

Carbenes add to the electron-rich double bond of diketene to give spirocyclopropanes.⁵⁵⁶ Thus, the addition of dichlorocarbene to diketene affords a bicyclic system **(480)** which, upon treatment with nucleophiles, gives cyclopropylacetate esters such as **481⁵⁵⁷** (Scheme CCXVI).

Carbenes generated from pyrolysis or photolysis of diazo compounds also react with diketene to give a mixture of diastereomeric spirocyclopropanes $(482)^{558}$ (Scheme CCXVII). The reaction of diketene and diazo ketone **483** has been used in yet another preparation of cis-jasmone (484).⁵⁵⁹

Ethyl diazoacetate reacts with diketene to provide two diastereomeric spirocycles which have been converted into levulinic acid **(485)** and other derivatives^{558,560} (Scheme CCXVIII). Di-tert-butyl diazomalonate and diketene have been used to prepare the unsymmetrical keto triester 486.⁵⁶¹

Other diazo compounds, such as the diazotized phosphite ester 487, react with diketene to provide cyclopropanes⁵⁶² (Scheme CCXIX).

Nitrenes generated from acyl azides or from ethyl

SCHEME CCXX

SCHEME CCXXI

azidoformate also add to the exocyclic double bond of diketene; the spirocyclic intermediates which are produced rapidly rearrange to afford N-acyltetramic acids (488) in low yield⁵⁶³ (Scheme CCXX). This preparation of tetramic acids has been used to introduce the pyrrolinone ring (C) during a total synthesis of althiomycin (489).⁵⁶⁴

3. Photochemical $[2 + 2]$ Reactions

The exocyclic olefin in diketene undergoes photochemical $[2 + 2]$ reactions to give mixtures of diastereomeric spirocyclobutanes (Scheme CCXXI). These $[2 + 2]$ reactions are sensitive to both the substrate and the reaction conditions, with dimethyl maleic anhydride

SCHEME CCXXII

2:1 mixture of stereoisomers

(in acetone) providing a much better yield of photoadduct than maleic anhydride (in acetonitrile).⁵⁶⁵ *N-*Phenylmaleimides also react with diketene, and the resulting cycloadducts can be ring-opened to give acetoacetates **490** or pyrolyzed to provide methylenecyclobutanes **49**1.⁵⁶⁶

Photochemical $[2 + 2]$ reactions have been observed with diketene and uracil,⁵⁶⁷ 6-methyluracil,⁵⁶⁸ 6-azauracil,⁵⁶⁹ isophorone,⁵⁷⁰ 4-methoxy-1-methyl-2pyridone,⁵⁷¹ and a series of 4-substituted-2-quinolones $(c.f. 492)^{571}$ (Scheme CCXXII).

In the photochemical reaction of dimedone acetate (493) with diketene, the diastereomeric $[2 + 2]$ adducts 494 and 495 were isolated; the absolute stereochemistry was assigned on the basis of subsequent aminolysis experiments⁵⁷² (Scheme CCXXIII).

The initially derived products from the photochemical $[2 + 2]$ reaction of dimedone with diketene were not obtained, but instead the ring-expanded products 496 and 497 were isolated⁵⁷⁰ (Scheme CCXXIV).

Carbonyl compounds also react with diketene via

SCHEME CCXXV

photochemical $[2 + 2]$ reactions. The primary adduct **498** is isolated when benzaldehyde is reacted with diketene (Scheme CCXXV). The use of benzophenone in the above reaction results in the formation of a mixture of products, all arising from the initially formed photocycloadduct 499.⁵⁷³

4. Other Cycloaddition Reactions

The double bond of diketene participates in thermal $[4 + 2]$ cycloaddition (Diels-Alder) reactions. For example, diketene acts as an electron-rich dienophile when reacted with dimethoxytetrachlorocyclopentadiene and provides spirocyclic adduct **500** in low yield⁵⁷⁴ (Scheme CCXXVI). In a Diels-Alder reaction with 3,6-bis(carbomethoxy)tetrazine (501), however, diketene acts as an allene equivalent because the primary adduct **502** decarboxylates spontaneously.⁵⁷⁵

In the reaction of diketene with nitrile oxide 503, the primary cycloadduct rapidly decarboxylates and the decarboxylated product reacts further (Scheme CCXXVII); diketene thus becomes an allene equivalent

SCHEME CCXXVI

SCHEME CCXXVII

SCHEME CCXXVIII

in this reaction.⁵⁷⁶ Bis nitrile oxides, such as 504, combine with diketene to form high molecular weight polymers.⁵⁷⁷

Diketene combines with nitrone 505 to form the intermediate cycloadduct 506, which loses $CO₂$, rearranges, and is then acetoacetylated to afford pyrrolidinone 507⁵⁷⁸ (Scheme CCXXVIII).

C. Polymerization of Diketene

Diketene can be polymerized with $HgCl₂^{579}$ or with

SCHEME CCXXIX

an ion-exchange resin¹⁹³ to afford a low molecular weight polymer (508, $M \sim 1630$) containing unconjugated methylene groups in the monomer unit (Scheme CCXXIX). Crystalline diketene polymers have also been prepared by using BF_3^{580} or metal hydroxides as the catalysts.⁵⁸¹ Degradation of the above polymers in acidic methanol yields methyl acetoacetate; this decomposition provides evidence for enol ester structures. Diketene can be polymerized with γ radiation⁵⁸² in a polymerization which has been shown to proceed via a cationic intermediate.⁵⁸³ Metal chelate catalysts also convert diketene into liquid polymers.⁵⁸⁴

Diketene can be copolymerized under free radical conditions to afford a polymer which contains a β -lactone ring in the monomer unit; diketene readily forms copolymers with other vinyl monomers such as vinyl acetate, vinyl chloride, vinylidene chloride, and acrylonitrile.⁵⁸⁵ Polymers containing up to 20 mol % diketene were found to be suitable for use as fibers.⁵⁸⁶ The β -lactone rings in the diketene/acrylonitrile copolymer 509 have been reacted with nucleophiles to provide more elaborately functionalized polymers^{586,587} (Scheme CCXXX). Several of these functionalized diketene copolymers are claimed to be useful in films and fibers,⁵⁸⁸ pressure-sensitive adhesives,⁵⁸⁹ and metal extraction.⁵⁹⁰ A 1:1 poly(vinylidene cyanide)-co-diketene polymer has been ring opened with a variety of nucleophiles to produce dye-receptive copolymers.⁵⁹¹

D. Reactions with Organometallic Reagents and Related Compounds

Acetoacetate derivatives chelate with metal ions, and these chelates have often been used in the purification

of acetoacetates. Diketene reacts with organoboron, organoaluminum, and organotin compounds to afford acetoacetate complexes such as 510 and 511⁵⁹² (Scheme CCXXXI).

When diketene is reacted with (dimethylamino)trimethylsilane a mixture of the conjugated (512) and the unconjugated (513) enol ethers is isolated⁵⁹³ (Scheme CCXXXII). No effort was made to optimize formation of the unconjugated product, which could be a useful synthetic intermediate. In a related reaction, trimethylsilyl azide reacted exothermically with diketene; a mixture of isocyanates 514 and 515 was isolated by distillation.⁵⁹⁴

Diketene "inserts" into the tin-nitrogen bond of N -(trimethylstannyl)benzophenone imine (516) to afford an unconjugated stannyl enol ether which can be cyclized into a piperidine-2,4-dione⁵⁹⁵ (Scheme CCXXXIII).

Silylated phosphines and diketene combine to afford the unconjugated enol ethers 517, which can either be partially isomerized or hydrolyzed to give phosphino esters 518⁵⁹⁶ (Scheme CCXXXIV). Diketene is reported to react with dimethyl O-trimethylsilyl phosphite to provide the orthoester 519.⁵⁹⁷

Diketene reacts with palladium(II) compounds and water to form π -allyl complexes of acetoacetic acid (52O);⁵⁹⁸ the use of alcoholic solvents affords complexes of acetoacetate esters⁹⁶ (Scheme CCXXXV). The addition of pyridine to these latter complexes causes rearrangement of the π -allyl complex to the $4\text{-}\sigma$ complex $(521).$ ⁵⁹⁹ These $4-\sigma$ complexes (521) have been carbonylated to afford esters of acetonedicarboxylic acid $(522).⁶⁰⁰$ A recent patent describes the direct conversion of diketene, carbon monoxide, and methanol into dimethyl acetonedicarboxylate in the presence of methyl nitrite and palladium (II) chloride.⁶⁰¹

50:50

Treatment of mercury(II) compounds with diketene gives acetoacetates mercurated in the 2-position; these intermediates (523) have been used in the preparation of methyl 2-bromoacetoacetate⁶⁰² (Scheme CCXXXVI).

Diketene reacts with the cyclopentadienyldicarbonylmanganese-THF complex to afford the η^2 allene complex⁶⁰³ and with an osmium cluster compound to afford the η^2 -allene cluster complex and carbon dioxide⁶⁰⁴ (Scheme CCXXXVII). Reaction of diketene with a nickel(O) compound yielded carbon dioxide and a polymer derived from allene.⁶⁰⁵

Diketene has been successfully carbonylated, albeit with low conversion, to provide methyl succinic anhydride (524)⁶⁰⁶ (Scheme CCXXXVIII).

Early research into the reaction of diketene with Grignard reagents was disappointing. Methylmagnesium iodide reacted with diketene to give traces

SCHEME CCXXXIII

SCHEME CCXXXIV

SCHEME CCXXXV

SCHEME CCXXXVI

of mesityl oxide, presumably formed from diacetone alcohol, and large amounts of dehydroacetic acid.^{11b,14} A thorough study of the diketene/Grignard reaction showed that diketene reacts with phenylmagnesium bromide to afford acetophenone and diphenylmethylcarbinol. 287

In the presence of a nickel(II) catalyst, (trimethylsilyl) magnesium chloride reacts with diketene at the of the carbon-oxygen bond to give 3-methylene-4-
(trimethylsilyl)butyric acid (525)⁶⁰⁷ (Scheme CCXXXIX). Palladium, cobalt, and copper catalysts are less effective. The product of this Grignard reaction has been converted into dihydropyrones 526⁶⁰⁸ and has

SCHEME CCXXXVII

524

been alkylated to afford an intermediate 527 which has been used to prepare (\pm) -trixagol (528).⁶⁰⁹

Other Grignard reagents add to diketene in the presence of cobalt(II) iodide. A variety of 3-methylene carboxylic acids 529 have been prepared from Grignards which were derived from both saturated and unsaturated primary halides⁶¹⁰ (Scheme CCXL); secondary and tertiary Grignards provided greatly reduced yields. The addition of a Grignard reagent to diketene has also been used in the synthesis of several terpenoids and of the *Cecropia juvenile* hormone.⁶¹⁰ With nickel or palladium catalysts, organozinc and organoaluminum compounds add to diketene in a fashion similar to that of Grignard reagents.⁶¹¹

SCHEME CCXXXIX

VII. Conclusion

A general summary of diketene chemistry might be that the fundamental reactions of diketene (hydrogenation, halogenation, acetoacetylation) are well understood, but that many other diketene reactions are not well developed. Because of economic interests, excellent diketene-based routes to diazinon and aminothiazoleacetic acid have been developed; thus, the potential of diketene as an intermediate for the preparation of heterocycles is clearly demonstrated. Hopefully, this review will make some of the unexplored areas of diketene chemistry more apparent, will encourage further development of the underexplored areas, and will stimulate new ideas for diketene chemistry.

Acknowledgments. Professor T. Kato and Drs. J. A. Hyatt and D. C. Palmer provided many helpful comments regarding the manuscript; C. L. Benge provided invaluable assistance in locating patent literature, and the Technical Information Center of the Eastman Chemicals Division assisted in preparing the manuscript. Eastman Chemicals Division management is acknowledged for supporting the project.

Addendum

The slow decomposition of diketene in the presence of acetic acid has been studied.⁶¹² Pyrolysis of Oacetoacetylated hydroxamic acids affords isocyanates in good yield.⁶¹³ An enantioselective synthesis of

(+)-geissochizine (345) has been developed.⁶¹⁴ Several 4-hydroxy-2-pyrones and 4-hydroxycoumarins have been acetoacetylated at C-3 with diketene under basic conditions.⁶¹⁵ The application of diketene in heterocyclic synthesis continues: the scope of the intramolecular condensation of acetoacetanilides with nitro groups (Scheme CLIV) has been increased,⁶¹⁶ and a rhodium-catalyzed carbenoid insertion has been used to prepare 4-acetyl-1,2-diazetidin-3-ones from α -diazoacetoacetohydrazides.⁶¹⁷ Thiadiazines were prepared from diketene and S,S-dialkylsulfur diimides,⁶¹⁸ and some 2-substituted pyrimidines and 3-acetyl-2-aminopyridines were prepared from diketene and 4-amino-1-azabutadienes.⁶¹⁹

Registry No. Diketene, 674-82-8.

References

-
- (1) Boese, A. B., Jr. *Ind. Chem. Eng.* **1940,** *32,* 16. (2) See section "Ketene, Dimere-Ketene, Keten-Polymere, Kohlensuboxid, Kohlensubsulfid, Keten-imine, Keten-acetale und deren Derivate": Borrmann, D. In "Methoden der Organis-
chen Chemie (Houben-Weyl)"; 4th ed.; Thieme Verlag: chen Chemie (Houben-Weyl)"; 4th ed.; Thieme Verlag: Stuttgart, 1968; Vol. 7, Part 4, p 53.
- (3) (a) Kato, T. *Ace. Chem. Res.* **1974,** 7, 265. (b) Kato, T. *Lect. Heterocycl. Chem.* **1982,** *6,* 105.
- (4) Perekalin, V. V.; Sokolova, T. A. Usp. Khim. 1956, 25, 1351.
(5) (a) Kato, T. Yuki Gosei Kagaku Kyokaishi 1968, 26, 311. (b)
Kato, T. Kagaku no Ryoiki, Zokan 1970, 92, 203.
-
- (6) (a) Jankowski, Z.; Stolarski, R. *Przem. Chem.* 1975, *54,* 378. (b) Jankowski, Z.; Stolarski, R. *Przem. Chem.* **1974,** *53,* 128.
- (7) (a) "Ketene in Organic Synthesis": Lacey, R. N. In "Advances in Organic Chemistry"; Interscience: New York, 1960; p 214. (b) "Ketene and Ketene Dimers": Hasek, R. H. In "Kirk-Othmer: Encyclopedia of Chemical Technology
- (8) (a) Stewart, A. W.; Wilsmore, N. T. M. Nature (London)
1907, 75, 510. (b) Stewart, A. W.; Wilsmore, N. T. M. J.
Chem. Soc. 1907, 91, 1938. (c) Wilsmore, N. T. M. Proc.
Chem. Soc. 1907, 23, 229.
- (9) (a) Chick, F.; Wilsmore, N. T. M. *J. Chem. Soc.* 1908, 93-94, 946-950. (b) Chick, F.; Wilsmore, N. T. M. *Proc. Chem. Soc.* 1908, *24,* 100.
- (10) Staudinger, H.; Bereza, S. *Chem. Ber.* 1909, *42,* 4908-4918.
- (11) (a) Chick, F.; Wilsmore, N. T. M. *Proc. Chem. Soc.* 1910, *26,* 217. (b) Chick, F.; Wilsmore, N. T. M. *J. Chem. Soc.* 1910, *97,* 1978.
- (12) Schroeter, G.; Kesseler, H.; Liesche, O.; Muller, R. F. *Chem. Ber.* 1916, *49,* 2697-2745.
- (13) Hurd, C. D.; Williams, J. W. *J. Am. Chem. Soc.* **1936,***58,* 962. See also ref 20 for corrections.
- (14) Hurd, C. D.; Roe, A. S. *J. Am. Chem. Soc.* 1939, *61,* 3355. Ketene can actually be prepared from diketene at 440 °C. See: Andreades, S.; Carlson, H. D. *Org. Synth.* 1965, *45,* 50.
- (15) Boese credits A. L. Wilson of the Mellon Institute of Industrial Research with first suggesting the correct structure for diketene.
- (16) Hurd, C. D.; Abernethy, J. L. *J. Am. Chem. Soc.* 1940, *62,* 1147.
- (17) Hurd, C. D.; Kelso, C. D. *J. Am. Chem. Soc.* 1940, *62,* 1548. (18) Calvin, M.; Magel, T. T.; Hurd, C. D. *J. Am. Chem. Soc.*
-
- 1941, *63,* 2174. (19) Rice, F. O.; Roberts, R. *J. Am. Chem. Soc.* 1943, *65,* 1677. (20) Hurd, C. D.; Blanchard, C. A. *J. Am. Chem. Soc.* 1950, *72,*
- 1461-1462. (21) Angus, W. R.; Leckie, A. H.; LeFevre, C. G.; LeFevre, R. J. W.; Wassermann, A. *J. Chem. Soc.* 1935, 1751. (22) (a) Kohlrausch, K. W. F.; Skrabal, R. *Proc—Indian Acad.*
-
- Sci., Sect. A 1938, 8A, 424. (b) Taufen, H. J.; Murray, M. J.

J. Am. Chem. Soc. 1945, 67, 754.

(23) (a) Whiffen, D. H.; Thompson, H. W. J. Chem. Soc. 1946,

1005. (b) Miller, F. A.; Koch, S. D., Jr. J. Am. Chem. Soc.

19
-
-
-
- (27) Brookes, D.; Sternhell, S.; Tidd, B. K.; Turner, W. B. *Aust. J. Chem.* 1965, *18,* 373-377.
- (28) Matter, V. E.; Pascual, C; Pretsch, E.; Pross, A.; Simon, W.; Sternhell, S. *Tetrahedron* 1969, *25,* 2023-2034.
- (29) Bregman, J.; Bauer, S. H. *J. Am. Chem. Soc.* 1955, *77,*1955.
- (30) Moenning, F.; Dreizler, H.; Rudolph, H. D. Z. Naturforsch.
1967, 22, 1471.
(31) (a) Long, F. A.; Friedman, L. J. Am. Chem. Soc. 1953, 75, 2837. (b) Olivares, J. A.; Flesch, G. D.; Svec, H. J. Int. J.
Mass. Spectrom.
- (32) Wooster, W. A.; Lushbaugh, C. C; Redeman, C. E. *J. Am. Chem. Soc.* **1946,** *68,* 2743.
- (33) (a) Hanford, W. E.; Sauer, J. C. *Org. React.* **1946,** 3, 108-140. (b) William, J. W.; Krynitsky, J. A. *Org. Synth.* 1941, *21,* 13-14. (c) Gibaud, A.; Willemart, A. *Bull. Soc. Chim. Fr.* 1955, 620-621.
- (34) Jacobs, M. L.; Higdon, B. W. (Celanese) U.S. Patent 3759955,1973.
- (35) Zima, H. (Lonza) U.S. Patent 3271420, 1965; Br. Patent 1015080, 1965; *Chem. Abstr.* 1966, *64,* 11092.
- (36) (a) Sasaki, T.; Kaneko, T. (Daicell Co., Ltd.) Japan Kokai 70-38806, 1970; *Chem. Abstr.* 1971, *74,* 87811. (b) Luczak, J.; Kulawinek, M. Polish Patent 126438,1984; *Chem. Abstr.* 1985, *102,* 149097.
- (37) (a) Hitzler, F. (Farbenfabriken Bayer A.-G.) Ger. Offen. 890341, 1953; *Chem. Abstr.* **1958,** *52,* 14658. (b) Kirzner, N. A. USSR Patent 102864,1956; *Chem. Abstr.* 1958, *52,* 5453.
- (38) (a) Lonza, Br. Patent 852 865, 1960; *Chem. Abstr.* 1961, 55, 12299. (b) Keller, H. (Lonza) Swiss Patent 423754, 1967; *Chem. Abstr.* **1968,** *68,* 21825.
- (39) (a) Spiner, D. R.; Hoffmann, R. K. (U.S. Army) U.S. Patent 3733413,1973; *Chem. Abstr.* 1973, *79,*101158. (b) Pierce, A. C. (Allied Chemical Corp.) Fr. Patent 1579873, 1969; *Chem. Abstr.* **1970,** *73,* 34192.
- (40) Esso Research and Engineering, Br. Patent 927637, 1963; *Chem. Abstr.* **1964,** *61,* 4134. (41) Mansson, M.; Nakase, Y.; Sunner, S. *Acta. Chem. Scand.*
- 1968, *22,* 171-174.
- (42) (a) "Beilsteins Handbuch der Organischen Chemie", 4th ed.;

Springer-Verlag: Berlin, 1962; Vol. 3, pp 1178-1228. (b)

"Kirk-Othmer Encyclopedia of Chemical Technology", 2nd

ed.; Wiley: New York 1963; Vol. 1, pp 153-
- (43) Andreades, S.; Carlson, H. D. *Org. Synth.* 1965, *45,* 50-54. (44) Jug, K.; Dwivedi, C. P. D.; Chickos, J. S. *Theor. Chim. Acta* 1978 *49* 249—257
- (45) (a) Chickos, J. S.J. *Org. Chem.* 1976, *41,* 3176-3179. (b) Chickos, J. S.; Sherwood, D. E., Jr.; Jug, K. *J. Org. Chem.*
- 1978, *43,* 1146.
- (46) Fitzpatrick, J. T. *J. Am. Chem. Soc.* 1947, *69,* 2236.
- (47) Conley, R. T.; Rutledge, T. F. (Air Reduction Co., Inc.) U.S. Patent 2 818456, 1957; *Chem. Abstr.* 1958, *52,* 6391.
- (48) Aller, B. V., (British Industrial Solvents, Ltd.) Br. Patent 688269, 1953; *Chem. Abstr.* 1954, *48,* 2767.
- (49) Sixt, J. (Wacker Chemie G.m.b.H.) U.S. Patent 2 763664, 1956; *Chem. Abstr.* 1937, *31,* 5115.
- (50) Hagemeyer, H. J. (Eastman Kodak Co.) U.S. Patent 2 484 498, 1949; *Chem. Abstr.* 1950, *44,* 6427.
- (51) Perrin, C. L.; Arrhenius, T. *J. Am. Chem. Soc.* 1978, *100,* 5249-5251.
- (52) Perrin, C. L. U.S. Patent 4251447,1981; *Chem. Abstr.* 1981, *95,* 6539.
- (53) Blum, R.; Tenud, L. (Lonza A.-G.) Eur. Pat. Appl. 37015, 1981; *Chem. Abstr.* 1982, *96,* 19682.
- (54) (a) Boosen, K. L. (Lonza A.-G.) U.S. Patent 3 701803,1970; Ger. Offen. 1931964, 1970; *Chem. Abstr.* 1970, *72,* 121018. (b) Grande, K. D.; Rosenfeld, S. M. *J. Org. Chem.* 1980, *45,* 1626-1628.
- (55) Perekalin, V. V.; Lerner, O. M. *Zh. Obsch. Khim.* 1951, *21,* 1995-2001; *Chem. Abstr.* 1952, *46,* 8115.
- (56) (a)Olah, G. A.; Kuhn, S. J. *J. Org. Chem.* 1961,26, 225. (b) Eiglmeier, K. (Farbwerke Hoechst, A.-G.) Ger. Offen. 2 209692,1973; *Chem. Abstr.* 1973, *79,*137936. (c) Eiglmeier, K. U.S. Patent 3937 737, 1975; U.S. Patent 4082 807, 1975;
Ger. Offen. 2337 396, 1975; Chem. Abstr. 1975, 83, 78865. (d)
Eiglmeier, K. U.S. Patent 3865 879, 1974; Ger. Offen.
2262 857, 1974; Ger. Offen. 2262 858, 1974; Che
- (57) (a) Sekiyama, K.; Numoto, N. (Nippon Synthetic Chemical Ind. Co., Ltd.) Japan Kokai 76-113 824, 1976; *Chem. Abstr.* 1977, 86, 139408. (b) Gross, M. (Lonza A.-G.) U.S. Patent 4473 508, 1984; Eur. Pat. Appl. 28 709, 1 102, 5715. (c) Dianippon Ink and Chemicals, Inc. Japan
Kokai Tokkyo Koho 83-157747, 1983; *Chem. Abstr.* 1984,
100, 51103. (d) VanSickle, D. E.; Newland, G. C.; Siirola, J.
J.; Cook, S. L. (Eastman Kodak) U.S. Patent 4 468

310 Chemical Reviews, 1986, Vol. 86, No. 2 Clemens

- (58) Boosen, K. (Lonza, Ltd.) U.S. Patent 3 950412, 1976; *Chem. Abstr.* **1976,** *85,* 20628.
- (59) Boese, A. B., Jr. (Carbide and Carbon Chemicals Corp.) U.S.
- Patent 2209683, 1930; *Chem. Abstr.* **1941,** *35,* 139. (60) Nollett, A. J. H.; Ladage, J. W.; Mijs, W. J. *Reel. J. R. Neth. Chem. Soc.* **1975,** *94,* 59-60.
- (61) Blomquist, A. T.; Baldwin, F. H. *J. Am. Chem. Soc.* **1948,** *70,* 29-30.
- (62) Kato, T.; Sato, M.; Kimura, H. *J. Chem. Soc, Perkin Trans. 1* 1979, 529-53
- (63) (a) Wiegand, K. E. (Ethyl Corp.) U.S. Patent 3911002,1975; *Chem. Abstr.* **1976,** *84,* 73658. (b) Dagani, M. J.; Pearon, T. H. (Ethyl Corp.) U.S. Patent 3 769338, 1973; *Chem. Abstr.* **1974,** *80,* 36714.
- (64) van der Goorbergh, J. A. M.; van der Gen, A. *Tetrahedron*
Lett. 1980, 21, 3621-3624.
(65) Bodalski, R.; Pietrusiewicz, K. M.; Monkiewicz, J.; Koszuk,
J. *Tetrahedron Lett.* 1980, 21, 2287-2290.
-
- (66) (a) Miyamoto, S.; Shigeoka, S.; Imaki, K.; Kurono, M. Ya-
hugaku Zasshi 1979, 99, 633-641; Chem. Abstr. 1979, 91,
192953. (b) Zhou, B.; Gopalan, A. S.; VanMiddlesworth, F.;
Shieh, W. R.; Sih, C. J. J. Am. Chem. Soc. 1
- (67) Tinti, M. O.; Quaresima, E.; DeWitt, P. (Sigma-Tau Industrie Farmaceutishe Riunite S.p.A.) Br. Patent 2089799, **1982;** BeIg. Patent 891615, 1982; *Chem. Abstr.* **1982,** *97,* 182859.
- (68) Kato, T.; Sato, M. *Yakugaku Zasshi* 1967, *87,* 1209-1211; *Chem. Abstr.* **1967,** *68,* 95285.
- (69) Taylor, E. C; Portnoy, R. C. *J. Org. Chem.* **1973,***38,* 806-808. (70) Hesse, G.; Krehbiel, G. *Chem. Ber.* **1955,** *88,* 130-135.
- (71) (a) Ahrens, H.; Koch, H.; Schröder, E.; Biere, H.; Kapp, J. (Schering A.-G.) U.S. Patent 4042706, 1977; Fr. Demande 2320095, 1977; Chem. Abstr. 1978, 88, 22901. (b) Garanti, L.; Sala, A.; Zecchi, G. Synth. Commun. 197
- (72) Briody, J.M.; Satchell, D.P.N. *J. Chem. Soc.* **1965,** 3778-3785. (73) Briodv, J. M.; Satchell, D. P. N. *Chem. Ind. (London)* 1964, 893.
- (74) (a) Okeya, S.; Kawaguchi, S. *Bull. Chem. Soc. Jpn.* 1984, 57,
1217–1221. (b) Okeya, S.; Ogura, T.; Kawaguchi, S. *Kogyo
Kagaku Zasshi* 1969, 72, 1656–1660; *Chem. Abstr.* 1970, 72,
- 30858. (75) Eck, H. (Wacker Chemie G.m.b.H.) Br. Patent 1346 701,
- 1974; Ger. Offen. 2154875, 1973; *Chem. Abstr.* 1973, *79,* 18109.
- (76) Kaku, T.; Katsuura, K.; Sawaki, M. (Nippon Soda Company, Ltd.) U.S. Patent 4 335184,1982; Japan Kokai Tokkyo Koho 80-141429, 1980; *Chem. Abstr.* **1981,** *94,* 120871.
- (77) Moulin, F. (Lonza, A. G.) Swiss Patent 647495, 1985; *Chem. Abstr.* 1985, *102,* 203605.
- (78) Marcus, E.; Chan, J. K.; Strow, C. B. *J. Org. Chem.* 1966, *31,* 1369-1372.
- (79) Kuraray Co., Ltd. Japan Kokai Tokkyo Koho 80-108803, 1.980; *Chem. Abstr.* **1980,** *93,* 216680.
- (80) (a) Chick, F.; Wilsmore, N. T. M. *J. Chem. Soc.* **1910,** *97,* 1982. (b) Kato, T.; Yamanaka, H.; Shibata, T. *Chem. Pharm. Bull.* **1967,** *15,* 921-924.
- (81) (a) Eck, H.; Spes, H. (Wacker Chemie G.m.b.H.) Br. Patent
1326 861, 1972; Ger. Offen. 2106 650, 1972; Chem. Abstr.
1972, 77, 151513. (b) Kuenstle, G.; Jung, H. (Wacker Chemie
6.m.b.H.) Ger. Offen. 3101 650 1982; Chem. 144409.
- (82) (a) Inoi, T.; Sueyoshi, K.; Fuji, M.; Shoji, K.; Shudo, A.; Yoshizaki, T.; Matsuo, Y. (Chisso Corp.) U.S. Patent 3703 518, 1971; Ger. Offen. 2037 388, 1971; Chem. Abstr. 1971, 74, 141009. (b) Pressler, W.; Meidert, H
- (83) Heckles, J. S. (Armstrong Cork Co.) U.S. Patent 4 046803, 1977; *Chem. Abstr.* 1977, *87,* 167559.
- (84) Kato, T.; Katagiri, N.; Daneshtalab, M. *Heterocycles* 1975,
- 413-438.

(85) (a) Shim, S. C.; Kim, D. W.; Moon, S. S.; Chae, Y. B. J. Org.
 Chem. 1984, 49, 1449-1450. (b) Kato, T.; Yamanaka, H.; Kawamata, J.; Shibata, T. Chem. Pharm. Bull. 1968, 16, 1835-1837. (c) Kato, T.; Yamanak *hedron* **1967,** *23,* 2965-2971.
-
- (86) Yamato, M.; Oshima, K. *Yakugaku Zasshi* 1965, 85, 943-947;

Chem. Abstr. 1966, 64, 5200.

(87) (a) Bader, A. R. (PPG) U.S. Patent 2812340, 1957; Chem.

Abstr. 1958, 52, 1655. (b) Bader, A. R.; Vogel, H. A. (PPG)

U.S Riebel, H. J.; Wuppertal, D.; Brokmeier, D.; Hammann, I.
(Bayer A.-G.) U.S. Patent 3819753, 1973; Ger. Offen.
2156446, 1973; *Chem. Abstr.* 1973, 79, 53544. (d) Kijima, S.;
Imabayashi, S.; Nakamura, T. (Eisai Co., Ltd.) Ja 74-13179, 1974; Chem. Abstr. 1974, 80, 108375. (e) Arend, G.;
Brokmeier, D.; Nischk, G.; Lindner, C.; Sueling, C. (Bayer
A.-G.) Ger. Offen. 2626 173, 1977; Chem. Abstr. 1978, 88,
89140. (f) Kuznetsov, N. V.; Makarenko, V.
- (88) Wilson, S. R.; Price, M. F. J. Org. Chem. 1984, 49, 722.
(89) Fischer, E.; Mauz, O.; Mayer, N.; Pfahler, G. (Hoechst A.-G.)
U.S. Patent 4053541, 1976; Ger. Offen. 2505152, 1976;
Chem. Abstr. 1976, 85, 177493.
- (90) (a) Hoechst A.-G. Neth. Appl. 75-08253,1975; *Chem. Abstr.* 1977, *86,* 89198. (b) Probst, O.; Hornig, L.; Hirsch, L. (Farbwerke Hoechst) U.S. Patent 3417129,1965; Neth. Appl. 6508184, 1965; *Chem. Abstr.* **1966,** *64,* 17430. (c) Moschel, A. (Farbwerke Hoechst A.-G.) U.S. Patent 3 542 855,1968; Fr. Demande 1512761, 1968; *Chem. Abstr.* **1969,** *70,* 58559.
- (91) (a) Brintzinger, H.; Janecke, J. *Chem. Ber.* **1950,***83,*103-106. (b) Marti, O.; Zimmerli, W. (Lonza Ltd.) U.S. Patent 3651130, 1972; *Chem. Abstr.* **1972,** *76,* 139949. (c) Lonza, U.S. Patent 3117186, 1962; Br. Patent 903613, 1962; *Chem. Abstr.* **1963,** *58,* 3321.
- (92) (a) Farbwerke Hoechst A.-G. U.S. Patent 3445 509, 1965;
Neth. Appl. 6508 185, 1965; Chem. Abstr. 1966, 64, 15747. (b)
Probst, O.; Hornig, L. (Farbwerke Hoechst A.-G.) Br. Patent
1175 240, 1968; Fr. Demande 1549 825, 1
- (93) (a) Priddy, D. B. (Dow) U.S. Patent 4 288 379, 1981; Chem.

Abstr. 1982, 96, 35863. (b) Sticker, R. E. (FMC Corp.) U.S.

Patent 3 651 226, 1972; Chem. Abstr. 1972, 77, 19397. (c)

Kasper, W.; Matthias, G.; Schulz, G. 1912406 1970; *Chem. Abstr.* **1971,** *74,* 31553.
- (94) (a) Eck, H.; Spes, H. (Wacker Chemie G.m.b.H.) Br. Patent 1218509, 1971; *Chem. Abstr.* **1971,** *74,* 87434. (b) Eck, H.; Spes, H. (Wacker Chemie G.m.b.H.) U.S. Patent 3 549693, 1970; Ger. Offen. 1643195, 1972; *Chem. Abstr.* **1973,** *78,* 29261.
- (95) Isoshima, T. *Annu. Rep. Shionogi Res. Lab.* **1955,** 5, 44-47; *Chem. Abstr.* **1956,** *50,* **16688.**
- (96) Tezuka, Y.; Ogura, T.; Kawaguchi, S. *Bull. Chem. Soc. Jpn.* **1969,** *42,* 443-446.
- (97) Pestemer, M.; Lauerer, D. *Angew. Chem.* **1960,** *72,* 612-618. (98) Johnson, J. R.; Shiner, V. J., Jr. *J. Am. Chem. Soc.* **1953,** 75, 1350-1355.
- (99) For examples, see: "The Total Synthesis of Natural Products"; ApSimon, J., Ed.; Wiley: New York, 1983; Vol. 5, pp 8, 10, 22, 70, 90, 98.
- (100) Lawesson, S. O.; Gronwall, S.; Sandberg, R. *Org. Synth.* **1962,** *42* 28—29
- (101) Renfrew, W. B.; Walker, G. B. *J. Am. Chem. Soc.* 1948, *70,* 3957—3958
- (102) Snider, B. B.; Faith, W. C. *Tetrahedron Lett.* 1983, *24,* 861-864.
- (103) Mauz, O. *Ann. Chem.* **1974,** *23,* 345-351.
- (104) (a) Daev, N. A.; Dashunin, V. M. Tr. Vses. Nauchno-Issled.
Inst. Sint. Nat. Dushistych Veshchestv 1961, 47-56; Chem.
Abstr. 1962, 57, 16380. (b) Daev, N. A.; Dashunin, V. M.
Khim. Nauka Promst. 1958, 3, 127-128.
- (105) (a) Frisell, C; Lawesson, S. O. *Ark.Kemi* **1961,***17,* 401. (b) Kashdan, D. S., Eastman Chemicals Division, Research Laboratories, unpublished results.
- (106) Taber, D. F.; Saleh, S. A.; Korsmeyer, R. W. *J. Org. Chem.* **1980,** *45,* 4699-4702.
-
- (107) Takano, S.; Morimoto, M.; Ogasawara, K. *Yakugaku Zasshi*
1983, 103, 1257-1263; *Chem. Abstr.* 1984, 101, 7444.
(108) (a) Sebach, D.; Sutter, M. A.; Weber, R. H.; Züger, R. H.
1984, 63, 1-9. (b) Ridley, D. D.; Stralo *Chem. Soc, Chem. Comm.* **1975,** 400. (c) Wipf, B.; Kupfer, E.; Bertazzi, R.; Leuenberger, H. G. W. *HeIv. Chim. Acta* **1983,** *66,* 485-488.
-
- (109) Harman, D. A. (Shell) U.S. Patent 2608570, 1952; *Chem.*
Abstr. 1**954, 48, 3387.**
(110) Kopp, R.; Groegler, G.; Freitag, H. A.; Rasshofer, W. (Bayer
A. G.) Ger. Offen. 3134592, 1983; *Chem. Abstr.* 1**983**, *98*, 180399
- (111) Pudovik, A. N.; Zimin, M. G.; Sobanov, A. A.; Zabirov, N. G.

Zh. Obshch. Khim. 1976, 46, 770–773.

(112) Pearson, A. J.; Ham, P.; Rees, D. C. J. Chem. Soc., Perkin

Trans. 1 1982, 489-497.
-
-
-
-
-
-
-
- (113) Pratt, R. F.; Bruice, T. C. J. Am. Chem. Soc. 1970, 92, 5956.

(114) Pews, R. G. (Dow Chemical) U.S. Patent 4329491, 1982;

Chem. Abstr. 1982, 97, 71464.

(115) Taisho Pharmaceutical Co., Ltd. Japan Kokai Tokkyo Koh

2607064, 1976; *Chem. Abstr.* **1981,** *95,* 132921; **1978,** *88,* 190851; **1977,** *86,* 72674. (c) Shimazu, S.; Chishiro, M.; Shiraishi, M. (Takeda) Japan Kokai 77-93785, 1977; *Chem. Abstr.* **1978,***88,* 50884. (d) Tsushima, S.; Shiraishi, M.; Chiyo, M. (Takeda) Japan Kokai 77-136191, 1977; *Chem. Abstr.* **1978,** *88,* 105381.

- (121) Tsushima, S.; Matsumoto, N.; Kato, M. (Takeda Chemical Ind., Ltd.) U.S. Patent 4 286 088; 1981; Ger. Offen. 2853176, 1979; *Chem. Abstr.* **1979,** *91,* 91654.
- (122) Kinoshita, H.; Ishikawa, H.; Kotake, H. *Bull. Chem. Soc. Jpn.* **1979,** *52,* 3111-3112.
- (123) (a) Sawai Pharmaceutical Co., Ltd. Br. Patent 2044609,1980; Japan Kokai Tokkyo Koho 80-113723, 1980; *Chem. Abstr.* **1981,** *94,* 162744. (b) Nishihata, T.; Kim, S.; Morishita, S.; Kamada, A.; Yata, N.; Higuchi, T. *J. Pharm. Sci.* 1983, *72,* 280.
- (124) Birkhahn, R. H.; Border, J. R. *Am. J. Clin. Nutr.* **1978,** 436-441.
- (125) (a) Coombs, R. V.; Galantay, E. E. (Sandoz Patents, Ltd.) Can. Patent 943952,1974; *Chem. Abstr.* **1974,** *81,* 25857. (b) Galantay, E. E.; Habeck, D. A. (Sandoz-Wander, Inc.) U.S. Patent 3961053; *Chem. Abstr.* **1976,**85,17786. (c) Galantay, E. E. (Sandoz-Wander, Inc.) U.S. Patent 3997664, 1976; *Chem. Abstr.* **1977,** *86,* 140329.
- (126) Cronlund, A. *Acta Pharm. Suec.* **1976,** *13,* 27-34; *Chem. Abstr.* **1976,** *85,* 33231.
- (127) Auricchio, S.; Ricca, A.; de Pava, O. V. *Gazz. Chim. Ital.* 1980, *110,* 567.
- (128) Auricchio, S.; Ricca, A.; de Pava, O. V. *Gazz. Chim. Ital.* **1980,** *110,* 567-569.
- (129) Auricchio, S.; Ricca, A.; de Pava, O. V. *J. Org. Chem.* 1983, *48,* 602-604.
- (130) Gleason, A. H. (Standard Oil Development Co.) U.S. Patent
- 2 180953, 1939; Chem. Abstr. 1940, 34, 1685.
(131) (a) Rall, K. B.; Perekalin, V. V. Zh. Priklad. Khim. (Leningrad) 1952, 25, 1330–1335; Chem. Abstr. 1953, 47, 11155. (b)
Pohl, F. J.; Schmidt, W. U.S. Patent 2 351 366, 194
- (132) (a) Chekavichus, B. S.; Sausinsh, A. E.; Dubur, G. Y. *Khim. Geterotsikl. Soedin.* **1975,**1238-1245; *Chem. Abstr.* **1976,** *84,* 17091. (b) Uldrikis, Y. R.; Dubur, G. Y.; Dipan, I. V.; Che-kavichus, B. S. *Khim. Geterotsikl. Soedin.* **1975,**1230-1237.
- (133) (a) Heertjes, P. M.; van Beek, H. C. A. Melliand Textilber.
1960, 41, 320-322. (b) Moser, P. (Ciba Geigy A.-G.) U.S.
Patent 4 231 921, 1980; U.S. Patent 4 377 690, 1983; Japan
Kokai Tokyo Koho 79-19 983, 1979; Chem. *Abstr.* 1976, *84,* 180354.
- (134) (a) Pochan, M. (Lonza Ltd.) Swiss Patent 523 223, 1972;
 Chem. Abstr. 1972, 77, 100857. (b) Stocker, A. (Lonza) U.S.

Patent 3778474, 1973; *Chem. Abstr.* 1974, 80, 59503. (c)

Kunstle, G.; Spes, H.; Siegl, H. (Wa
- (135) Raleigh, E. W. (DuPont) U.S. Patent 3557089, 1971.
- (136) Sakuma, A.; Torii, S.; Yanagisawa, I. U.S. Patent 3 639 457, 1976; Japan Kokai 76-82220, 1976.
- (137) Beger, J.; Thielemann, C. *J. Prakt. Chem.* **1981,** *323,* 337-344.
- (138) Henning, G. (Badische Anilin und Soda Fabrik A.-G.) U.S. Patent 3 795528, 1973; Ger. Offen. 2159440, 1973; *Chem. Abstr.* **1974,** *81,* 27334.
- (139) Straley, J. M.; Fischer, J. G. (Eastman Kodak) U.S. Patent 3993637, 1976; *Chem. Abstr.* **1977,** *86,* 74396. (140) Haddadin, M. J.; Issidorides, C. H. *Heterocycles* **1976,** *4,*
- 767-816.
- (141) (a) Robertson, R. L.; Kasubick, R. V. (Pfizer) U.S. Patent 3767657, 1973; Fr. Demande 2132378, 1972; *Chem. Abstr.*
1**973**, 78, 159673. (b) McFarland, J. W. (Pfizer) Br. Patent
1453677, 1975; Br. Patent 1453678, 1975; Ger. Offen.
2500447, 1975; *Chem. Abstr.* 1**975,** 83, 193383. (T. H.; Richardson, K. (Pfizer) U.S. Patent 3907994, 3915975, 1975; *Chem. Abstr.* **1976,** *84,* 59564, 17427. (d) McFarland, J. W. (Pfizer) U.S. Patent 3948911,1976; *Chem. Abstr.* **1976,** 85, 33083. (e) Cronin, T. H.; Richardson, K. (Pfizer) U.S.
Patent 4007 184, 1977; *Chem. Abstr.* 1**977**, 86, 190008. (f)
Schmid, W.; Basler, W.; Burckhardt, U., (Ciba-Geigy A.-G.)
U.S. Patent 4092415, 1977; Ger. Offen. 270 Patent 619 456, 619 457, 619 458, 1980; Chem. Abstr. 1977, 87, 184551; 1977, 94, 103424-103426. (g) Schmid, W. (Ciba-Geigy A.-G.) Swiss Patent 630 908, 1982; Chem. Abstr. 1982, 97, 216223. (h) Maul, W.; Scherling, D.; Seng and references therein.
- (142) Daicell Chemical Industries, Ltd. Japan Kokai Tokkyo Koho 83-131951, 1983; *Chem. Abstr.* **1983,** *99,* 212166. (143) Stephen, A.; Schulz, G.; Reinshagen, H. *Ann. Chem.* **1974,** 363-368.
-
- (144) (a) Jones, J. H.; McClure, D. E. (Merck) Eur. Pat. Appl.

EP-80117,1983; *Chem. Abstr.* 1983, *99,*175780. (b) McClure, D. E. (Merck) U.S. Patent 4431647,1984; *Chem. Abstr.* 1984, *100,* 209851.

- (145) (a) Ponsford, R. J.; Southgate, R. *J. Chem. Soc, Chem. Commun.* **1979,** 846-847. (b) Ponsford, R. J.; Southgate, R. (Beecham) U.S. Patent 4245089, 1981. (c) Southgate, R.; Smale, T. C; Ponsford, R. J. (Beecham) Eur. Pat. Appl. 8497, 1980; *Chem. Abstr.* **1980,** *93,* 168114.
-
- (146) Smale, T. C. Tetrahedron Lett. 1984, 25, 2913-2914.

(147) (a) Richter, G.; Vegyeszeti, G. R. Br. Patent 2112 772, 1982;

Belg. Patent 891687, 1982; Chem. Abstr. 1982, 97, 162686.

(b) Simig, G.; et. al. Tetrahedron
- (148) Bright, G. M.; Dee, M. F.; Kellogg, M. S. *Heterocycles* 1980, *14,* 1251-1254.
- (149) (a) Numata, M.; Yamaoka, M.; Imashiro, Y.; Minamida, I. (Takeda Chemical Ind. Co., Ltd.) Ger. Offen. 2446 901, 1975;
Chem. Abstr. 1975, 83, 79262. (b) Heusler, K.; Bickel, H.;
Fechtig, B.; Peter, H.; Scartazzini, R. (Ciba-Geigy A.-G.)
Swiss Patent 562 250, 561 220, 1975; Chem. Ltd.) Eur. Pat. Appl. 30630, 1981.
- (150) (a) Borowicz, P. (Tarchominskie Zallady Farmaceutyczne) Pol. Patent 94382,1977; *Chem. Abstr.* **1979,** *90,* 103946. (b) Nayler, J. H. C. (Beecham) U.S. Patent 3 239 507, 1962.
- (151) Heusler, K.; Bickel, H.; Fechtig, B.; Peter, H. (Ciba-Geigy) U.S. Patent 4430498,1984; *Chem. Abstr.* 1984, *100,* 209526.
- (152) Yamamoto, M.; Obe, S. Japan Kokai 72-16417,1972; *Chem. Abstr.* **1972,** *77,* 151703.
- (153) Chiba, T.; Sasaki, M.; Sakaki, J.; Kato, T. *Yakugaku Zasshi* **1983,** *103,* 1024; *Chem. Abstr.* **1984,** *100,* 103867.
- (154) Looker, J. H.; Peet, N. P. *Synth. Commun.* **1978,** 8, 383-390. (155) D'Angeli, F.; Filira, F.; Scoffone, E. *Tetrahedron Lett.* 1965, 605-608.
- (156) Dryden, H. L.; Hill, J. B. (G. D. Searle) U.S. Patent 4440677, 1984; *Chem. Abstr.* **1984,** *101,* 38834.
- (157) Lindsay, D. G.; Shall, S. (National Research and Develop-ment Corp.) U.S. Patent 3869437, 1975; U.S. Patent 3950517, 1976; *Chem. Abstr.* 1975, *83,* 108831; **1976,** *85,* 68301.
-
- (158) Parish, C. R. *J. Exp. Med.* 1971, *134,* 1-20. (159) Decker, K.; Lynen, F. *Proc. Int. Congr. Biochem. 3rd* 1955, 36; *Chem. Abstr.* 1956, *50,* 14025.
- (160) (a) Habeeb, A.; Atassi, M. Z. *Biochemistry* **1970,** *9,* 4939-4944. (b) Marzotto, A.; Pajetta, P.; Scoffone, E. *Biochem. Biophys. Res. Commun.* **1967,** *26,* 517-521.
- (161) Erhardt, F.; Zachau, H. G. *Hoppe-Seyler's Z. Physiol. Chem.* **1970,** *357,* 567-570; *Chem. Abstr.* **1970,** *73,* 21336.
- (162) Arezzini, C.; Rossini, L.; Segre, G. *Pharmacol. Res. Commun.* **1969,** *1,* 295-302.
- (163) Kim, Y.; Denson, J.; Werbin, H. *Photochem. Photobiol.* 1977, *26,* 417-419.
- (164) Stephan, W. (Biotest-Serum Institut G.m.b.H.) U.S. Patent 4154819, 1977; Ger. *Offen.* 2539800, 1977; *Chem. Abstr.* **1977,** *86,* 161283.
- (165) Caldwell, J. R. (Eastman Kodak) U.S. Patent 2 462 358,1949;
- Chem. Abstr. 1949, 43, 4289.
(166) (a) Lyashenko, V. D.; Sokolova, T. A. J. Gen. Chem. USSR
(Engl. Transl.) 1947, 17, 1868–1875; Chem. Abstr. 1949, 43,
1247. (b) Knizek, J.; Lejdar, E.; Vetesnik, P., Collect. Czech.
Chem.
- (167) (a) Lacey, R. N.; Connolly, E. E. (British Industrial Solvents, Ltd.) Br. Patent 715896, 1954; U.S. Patent 2 714117, 1955; *Chem. Abstr.* 1955, *49,*13290,15953. (b) Branch, S. J. (Distillers Co., Ltd.) U.S. Patent 3121743, 1964; *Chem. Abstr.* **1964,** *61,* 4279.
- (168) Gunar, V. L.; Ovechkina, L. F.; Mikhailopulo, I. A.; Zavialov,
S. I. USSR Patent 174 183, 1965; Chem. Abstr. 1966, 64, 644.
(169) Luczak, J.; Budzisz, T.; Krach, Raczynska, H. E. Pol. Patent
90 804, 94 218, 1977; Che
-
- (170) (a) Hille, E.; Rueck, R. (Hoechst A.-G.) Br. Patent 1541460,
1976; Ger. Offen. 2519036, 1976; *Chem. Abstr.* 1**977**, 86,
72239. (b) Dainippon Ink and Chemical Co. Japan Kokai
71-26453, 1971. See also J. Synth. Method
-
- (171) "Pigment Handbook"; Patton, T. C, Ed.; Wiley: New York, 1973; Vol. I, pp 429-583. (172) (a) Dainippon Ink and Chemicals, Inc. Japan Kokai Tokyo Koho 82-126453, 1982; *Chem. Abstr.* 1982, *97,* 182000. (b) Heise, H.; Moerler, D. (Hoechst A.-G.), Eur. Pat. Appl. 53713, 1982; Chem. Abstr. 1982, 97, 162615. (c) Berthold, R.; Tronich, W. (Hoechst A.-G.) U.S. Patent 4 169 851, 1979; Ger. Offen. 2749 327, 1979; Ger. Paszthory, E.; Hille, E.; Seifert, K. G.; Zimmermann, V. (d) Paszthory, E.;
- Offen. 2 702 584, 1978; *Chem. Abstr.* 1978, *89,* 181225.

312 Chemical Reviews, 1986, Vol. 86, No. 2 Clemens

- (174) Dyumaev, K. M.; Lisitsyna, E. S.; Tambieva, O. A.; Zaitsev, B. E. *Zh. Org. Khim.* **1978,** *14,* 562-569. (175) (a) Skowronski, R.; Szalecki, W.; Omakowska, J. Pol. Patent
- 107 574, 1980; *Chem. Abstr.* 1981, 95, 80516. (b) Hari, S.; Cseh, G.; Roueche, A. (Ciba-Geigy A.-G.) Br. Patent 1 552514, 1978; Ger. Offen. 2739041, 1978; *Chem. Abstr.* 1978, 88, 192673. (e) Nerad, Z. Czech. Patent 206 9 *Chem. Abstr.* **1975,** *83,* 61647; **1980,** *92,* 111705. (e) Hurter, R.; Fasciati, A. (Ciba Geigy A.-G.) U.S. Patent 4248773,1979; Ger. Offen. 2852037,1979; *Chem. Abstr.* **1979,** *91,* 92984. (f) Kraemer, E. (Bayer A.-G.) Br. Patent 2016504, 1979; Ger. Offen. 2809 200, 1979; Chem. Abstr. 1979, 91, 212568. (g)
Radtke, V. (BASF A.-G.), Ger. Offen. 2647 485, 1978; Chem.
Abstr. 1978, 89, 112332. (h) Hurter, R. (Ciba-Geigy A.-G.)
U.S. Patent 4 211 698, 1976; Ger. Offen. 2836 2166911, 1976; *Chem. Abstr.* 1976,85, 125805. (k) Dehnert, J.; Lamm, G. (BASF A.-G.) U.S. Patent 3 950321, 1976; *Chem. Abstr.* **1976,** *85,* 64785. (1) Dehnert, J.; Lamm, G. (BASF A.-G.) Ger. Offen. 2251719. 1974; *Chem. Abstr.* **1974,** *81,* 93031.
- (176) (a) Beffa, F. (Ciba-Geigy A.-G.) Eur. Pat. Appl. EP 48693,
1982; Chem. Abstr. 1982, 97, 57114. (b) Wenghoefer, J.;
Messier, D. G. (American Hoechst Corp.) U.S. Patent
4 138 395, 1979; Chem. Abstr. 1979, 91, 58684. (c
- (177) Fuchs, H.; Filzinger, K. (Hoechst A.-G.) U.S. Patent 4118381, 1978; Ger. Offen. 2604 220, 1977; *Chem. Abstr.* **1977,** *87,* 186057.
- (178) (a) Bosone, E.; Camaggi, G.; DeVries, L.; Garavaglia, C; Garlaschelli, L.; Cozzo, F.; Overeen, J. C; Lorusso, S. (Montedison s.P.A.) U.S. Patent 4291049, 4425357, 1979; Ger. Offen. 2903612, 1979; Chem. Abstr. 1980, 92, 41601. (b)
Kobayashi, T.; Hiranuma, H.; Onoya, M. (Mitsubishi Yuka
Yakuhin Co., Ltd.) Japan Kokai 76-149 240, 1976; *Chem.*
Abstr. 1977, 87, 84687. (c) Kubela, R.; Musil, V 1977, 86, 139853. (d) Harfenist, M. U.S. Patent 3896 235,
1975; Ger. Offen. 2 143 570, 1972; *Chem. Abstr.* 1972, 77,
19404. (e) Kilbourn, E. E.; Weir, W. D. (Rohm and Haas Co.)
U.S. Patent 4 060636. 1977: *Chem. Abstr.* 1 Rohr, W.; Fischer, A. (Badische Anilin und Soda Fabrik
A.-G.) Ger. Offen. 2034 242, 1972; U.S. Patent 3784 564, 1974;
Chem. Abstr. 1972, 76, 99379; Chem. Abstr. 1974, 80, 70559.
(g) Adams. C. D. W. (Du Pont) U.S. Patent 40 U.S. Patent 3 927069, 3943163,1976; *Chem. Abstr.* **1977,** *86,* 171121.
- (179) Perronnet, J.; Girault, P. (Roussel-UCLAF) Br. Patent
1487992, 1976; Ger. Offen. 2616757, 2544313, 1976; Fr.
Demande 2320936, 1977; U.S. Patent 4036633, 1977; Chem.
Abstr. 1977, 86, 43420; 1977, 87, 200829; 1976, 85,
- (180) Hebenrock, K. F. Ann. Chem. 1978, 320-326.

(181) (a) Sahm, W.; Hille, E.; Schiller, W. (Hoechst A.-G.) U.S.

Patent 4087610, 1978; Ger. Offen. 2518922, 1976; Chem.

Abstr. 1977, 86, 72652. (b) Hari, S.; Wick, A. (Ci
-
- (182) Masuda, K.; Imashiro, Y. (Takeda Chemical Industry Co.)
U.S. Patent 3812 128, 1974; Chem. Abstr. 1975, 82, 170958.
(183) Herkenrath, E. (Lonza A.-G.) U.S. Patent 4070364, 1977;
Ger. Offen. 2457 689, 1975; Chem. Abstr
-
-
- Bechlars, F. (Bayer A.-G.) U.S. Patent 3991 189, 1974; Ger.

Offen. 2255 825, 1974; Chem. Abstr. 1974, 81, 105578.

(185) Paul, H.; Sitte, A. Z. Chem. 1977, 17, 176-177.

(186) Matter, M.; Vogel, C.; Bosshard, R. (HACO A.-
- (188) Coates, R. M.; Said, I. *J. Am. Chem. Soc.* **1977,** *99,* 2355-2357. (189) Kettrup, A.; Seshadri, T.; Cramer, M. *Talanta* **1979,** *26,*
- 303-307.
- (190) Marcus, E.; Hughes, J. L. (Union Carbide) U.S. Patent 3 483 231, 1969.
- (191) (a) Yamamoto, Y.; Ohnishi, S.; Azumo, Y. Synthesis 1981,
122-124; Chem. Pharm. Bull. 1982, 3505-3512. (b) Perekalin,
V. V.; Lerner, O. M. Zh. Priklad. Khim. (Leningrad) 1956, 29, 1609; *Chem. Abstr.* **1957,** *51,* 2637.
- (192) Yamamoto, Y.; Kimura, H. *Chem. Pharm. Bull* **1976,** *24,* 1236-1241.
- (193) Dehmlow, E. V.; Shamout, A. R. *Ann. Chem.* **1982,** 2062-2067.
- (194) Leber, J. P. (Sandoz, Ltd.) Swiss Patent 551 950, 552 016,
1974; Chem. Abstr. 1974, 81, 104787, 104788.
(195) Zavyalov, S. I.; Gunar, V. I.; Mikhailopulo, I. A. Izv. Akad.
Nauk SSSR, Ser. Khim. 1965, 200.
-
- (196) Petersen, S. *Chem. Ber.* **1950,** *83,* 551-558.
- (197) Pietsch, H.; Clauss, K.; Jensen, H.; Schmidt, E. (Hoechst A.-G.) Ger. Offen. 2453063, 2447201, 1976; U.S. Patent 4052453, 1977; *Chem. Abstr.* **1977,** *86,* 105973; **1976,** *85,* 20635.
- (198) (a) Yaggi, N. F.; Douglas, K. T. *J. Chem. Soc, Chem. Com-mun.* **1977,** 609-610. (b) Nakazumi, H.; Asada, A.; Kitao, T. *Bull. Chem. Soc. Jpn.* **1980,** *53,* 2046-2049.
- (199) Yaggi, N. F. Ph.D. Dissertation, Duquesne University, Pittsburgh, 1980; *Diss. Abstr. Int. B* **1981,** *41,* 2623.
- (200) Duus, F.; Jakobsen, P.; Lawesson, S. O. *Tetrahedron* **1968,** *24* 5323-5336
- (201) Gay, M. (Rhone-Poulenc Ind., S.A.) Fr. Demande 2445827, 1980; *Chem. Abstr.* **1981,** *94,* 209766.
- (202) Booth, P. M.; Fox, C. M. J.; Ley, S. V. *Tetrahedron Lett.* **1983,** *46,* 5143-5146.
- (203) Zimin, M. G.; Afanasev, M. M.; Pudovik, A. N. *Zh. Obshch. Khim.* **1980,** *50,* 746-751, *Chem. Abstr.* **1980,** *93,* 113877.
- (204) Ruwet, A.; Janne, D.; Renson, M. *Bull. Soc. Chim. BeIg.* **1970,** *79* 81—88
- (205) Hagemeyer, H. J. (Eastman Kodak) U.S. Patent 2476859, 1949; *Chem. Abstr.* **1949,** *43,* 8398.
- (206) Mukaiyama, T.; Hata, T. (Asahi Kasei Kogyo) Fr. Demande 1361963, 1962; *Chem. Abstr.* **1964,** *61,* 14586.
- (207) (a) Harley-Mason, J. Chem. Ind. (London) 1951, 886-887. (b)
Perekalin, V. V.; Slavachevskaya, N. M. Zh. Obsch. Khim.
1954, 24, 2164-2168; Chem. Abstr. 1956, 50, 300.
- (208) Bergman, J. *Acta Chem. Scand.* **1968,** *22,* 1063-1066. (209) Treibs, A.; Michl, K. H. *Justus Liebigs Ann. Chem.* **1952,** *577* 129—138
- (210) DeCointet, P.; Pigerol, C; Broil, M.; Eymard, P.; Werbenec, J. P. *Eur. J. Med. Chem.-Chim. Ther.* **1976,** *11,* 471-479.
- (211) Sundberg, R. J.; Pearce, B. C. *J. Org. Chem.* **1985,** *50,* 425-432.
- (212) Byrns, A. C. (Union **Oil** of **California)** U.S. Patent 2 453 619, 1948; *Chem. Abstr.* **1949,** *43,* 2634.
- (213) Estes, R. R.; Tockman, A. *Trans. Ky. Acad. ScL* **1952,** *13,* 265-269.
- (214) (a) Neunteufel, R. A.; Pfueller, P. (Hoechst A.-G.) Ger. Offen. 2631526, 1978; *Chem. Abstr.* **1978,** *88,*139983. (b) Doebler, C; Krause, H. W., E. Ger. Patent 102308,1973; *Chem. Abstr.* **1975** *82* 77588
- (215) Wang, P. C; Dawson, D. J. (Dynapol) U.S. Patent 4489197, 1984.
- (216) Wiezevich, P. J.; Gleason, A. H. (Standard Oil Development Co.) U.S. Patent 2103505,1937; *Chem. Abstr.* **1938,** *32,*1718.
- (217) Staudinger, H. G.; Eicher, T. *Makromol. Chem.* **1953,** *10,* 261-279.
- (218) Kirillova, G. N.; Radchenko, G. O. *Zh. Priklad. Khim. (Leningrad)* **1964,** *37,* 918-920; *Chem. Abstr.* **1964,** *61,* 3290.
- (219) Iida, H.; Kuwabara.; Konishi, K. *Kogyo Kagaku Zasshi* **1959,** *62,* 566-574; *Chem. Abstr.* **1962,** *57,* 14008.
- (220) Lange, K.; Dutka, G.; Dutka, L. (V.E.B. Filmfabrik Afga Wolfen) Ger. Offen. 1099160, 1961; *Chem. Abstr.* **1961,** *55,* 25272
- (221) Konishi, K.; Kitao, D.; Maruyama, Y.; Odachi, T. Japan Kokai Tokkyo Koho 73-02717 1973; *Chem. Abstr.* **1974,** SO, 84688.
- (222) Nippon Synthetic Chemical Ind. Co., Ltd. Japan Kokai Tokkyo Koho 81-11902,1981; *Chem. Abstr.* **1981,** *95,* 45099.
-
- (223) Karlsons, I.; Svalbe, K.; Neimanis, E.; Ozolina, I.; Sterns, S.
USSR Patent 532525, 1976; Chem. Abstr. 1977, 86, 18650.
(224) (a) Seshadii, T.; Kampschulze, U.; Kettrup, A. Fresenius' Z.
Anal. Chem. 1980, 300, 124-12 **1982,** *54,* 101-105.
-
-
- (225) Kettrup, A.; Grote, M.; Seshardi, T. Foschungsber. Landes

Nordrhein-Westfalen 1982; Chem. Abstr. 1984, 100, 144700.

(226) (a) Jones, G. D. (General Aniline and Film Corp.) U.S. Patent

2536 980, 1951; Chem. Abstr. *Chem. Abstr.* **1980,** *93,* 221331; **1981,** *94,* 66456; **1982,** *97,* 56653, 7002.
- (228) Lonza. Swiss Patent 310838, 1956; *Chem. Abstr.* **1957,** *51,*
- 3186. (229) (a) Hoy, K. L.; Carder, C. H. *J. Paint Technol.* **1974,** *46,* 70-75. (b) Hoechst A.-G. Br. 1131374, 1968; *Chem. Abstr.* **1969,** *70,* 4984.
-
- (230) Coenen, M.; Hamann, K. (Farbenraoriken Bayer A.-G.) Ger.

Offen. 887 123, 1953; Chem. Abstr. 1956, 50, 13506.

(231) Wahl, O.; Pelz, W. (Agfa A.-G.) Ger. Offen. 937 867, 1956;

Chem. Abstr. 1959. 53, 1968.
- (232) (a) Lonza. Br. Patent 815843, 1959; *Chem. Abstr.* **1959,** *53,* 23086. (b) Bahr, V.; Rellensmann, W.; Resz, R.; Nischk, G. (Farbenfabriken Bayer A.-G.) Ger. Offen. 1260686, 1968; *Chem. Abstr.* **1968,** *68,* 70112.
- (233) (a) Berger, D. (Chemische Werke Huels A.-G.) Ger. Offen. 2621423,1977; *Chem. Abstr.* 1978, *88,* 52059. (b) Mori, K.; Hanyuda, T.; Yamada, H.; Ishikawa, T. (Showa Highpolymer Co., Ltd.) Japan Kokai 74-116020,1974; *Chem. Abstr.* **1975,** *83,* 11356.
- (234) Kawamuro, H. (Matsushita Electric Works Ltd.) Japan Kokai 75-54647, 1975; *Chem. Abstr.* **1975,** *83,* 165932.
- (235) (a) Asano, K.; Ajitsuchi, M. (Kanebo Co., Ltd.) Japan Kokai Tokkyo Koho 72-40711, 1972; *Chem. Abstr.* **1974,** *80,* 4667. (b) Armstrong World Ind., Inc. Japan Kokai Tokkyo Koho 81-129219, 1981; *Chem. Abstr.* **1982,** *96,* 69879.
- (236) Konkin, A. A.; Smol'nikova, L. G.; Gabrielyan, G. A. USSR Patent 170611, 1965; *Chem. Abstr.* 1965, *63,* 10112.
- (237) Jones, G. D.; Roth, H. H. (Dow Chemical) U.S. Patent 3546336, 1970; *Chem. Abstr.* **1971,** *74,* 79486.
- (238) Reblin, H. *Chimia* 1968, *22,* 230-233.
- (239) (a) Bodesheim, F.; Hahn, G.; Nischk, G. Ger. Offen. 1222204, 1966; *Chem. Abstr.* **1966,** *65,* 12332. (b) Cunningham, R. H.; Wolfarth, E. F. (Eastman Kodak) U.S. Patent 3584391,1971; *Chem. Abstr.* **1969,** *75,* 89381.
- (240) (a) Schoenberg, J. E.; Ray-Chaudhuri, D. K. (National Starch and Chemical Corp.) U.S. Patent $3\,944\,428$, 1976; *Chem. Abstr.* 1976, 85, 23016. (b) Hagemeyer, H. J. (Eastman Kodak) U.S. Patent $2\,663\,617$, 1953; (c) Caldwell, J. R.; Martin, J. C. (Eastman Kodak) U.S. Patent 3099641, 1963; *Chem. Abstr.* **1964,** *60,* 5713.
- (241) (a) Nippon Synthetic Chemical Industry Co., Ltd. Japan Kokai Tokkyo Koho 80-157 641, 1980; Chem. Abstr. 1981, 94, 157845. (b) Dykstra, T. K. Off. Gaz. U.S. Pat. Off., Pat. 1971, 886, 215; Chem. Abstr. 1971, 75, 2823
- (242) (a) Marx, M. (BASF A.-G.) Br. Patent 1161095, **1977,** Ger. Offen. 1793803, 1977; *Chem. Abstr.* **1978,** *88,* 51365. (b) Marx, M. *Markromol. Chem.* **1966,** *93,* 126-136.
- (243) (a) Ponticello, I. S.; Hollister, K. R.; Tuites, R. C. (Eastman Kodak) U.S. Patent 4 215 195, 4 247 673, 4 346 231, 4 421 915, 4 438 278, 1982; Eur. Pat. Appl. 13 147, 1980; Chem. Abstr. 1981, 94, 4391. (b) Konishir
- (244) (a) Nippon Synthetic Chemical Co., Ltd. Japan Kokai Tok-
kyo Koho 80-40 711, 1980; *Chem. Abstr*. 1980, 93, 73909. (b)
Res. Discl. 1981, 205, 22; *Chem. Abstr.* 1981, 95, 204468.
- (245) (a) Braun, H.; Rinno, H.; Rauterkus, K. J. (Hoechst A.-G.) U.S. Patent 4296 226, 1981; Eur. Pat. Appl. 22545, 1981; Chem. Abstr. 1981, 94, 193785. (b) Heckles, J. S. (Armstrong) U.S. Patent, 4217 439, 4221 902, 1980; Chem. Abstr. 1980, 93, 240512; Chem. Abstr. 1980, 93, 240512; Ch
- (246) Jones, G. D. (General Aniline and Film Corp.) U.S. Patent 2561205, 1951; *Chem. Abstr.* **1952,** *46,* 1032.
- (247) (a) Graive, J. R.; Bufkin, B. G. *J. Coatings Technol.* **1980,***52,* 73-87. (b) Du Pont, Br. Patent 791325, 791326,1958; *Chem. Abstr.* 1958,*52,*14193. (c) Ritz, J.; Reese, J. (Reichold-Albert Chemie A.-G.) U.S. Patent 3874903, 4016141, 1977; Ger. Offen. 2164489, 1973; *Chem. Abstr.* **1973,** *79,* 127005. (d) Hesse, W.; Jurgen, R. (Reichold-Albert Chemie A.-G.) Br. Patent 1425656, 1973; Ger. Offen. 2211950, 1973; *Chem. Abstr.* **1974,***80,*49377. (e) Numa, N. (Kansai Paint Co., Ltd.) Br. Patent 2042559,1980; Ger. Offen. 2937909,1980; *Chem. Abstr* **1980** *93* 133938
- (248) Thummer, R.; Schubert, K. *Wochenbl. Papierfabr.* **1979,***107,*
- 645-646, 648-649; Chem. Abstr. 1979, 91, 176900.
(249) (a) Lieser, K. H. (Riedel-de-Haen A.-G.) Ger. Offen. DE
3019159, 1981; Chem. Abstr. 1982, 96, 53207. (b) Djmali, M.
6.; Lieser, K. H. *Angew. Makromol. Chem.* 1983, 11
- (250) Sugii, A.; Ogawa, N.; Ochiai, T. *Chem. Pharm. Bull.* **1977,***25,* 1596-1600.
- (251) Japan Kokai 74-94692,1974; *Chem. Abstr.* **1976,** *84,*165410.
- (252) (a) Takeshita, T.; Miyauchi, N.; Yoshikawa, M. *Kobunshi Kagaku* 1971, *27,* 906-913; *Chem. Abstr.* **1971,** 75, 119121. (b) Mukhin, B. A.; Andrichenko, Y.; Druzhinina, T. V.; Gabrielyan, G. A.; Rogovin, Z. A. *Faserforsch. Textiltech.* **1976,** *27,* 277-285; *Chem. Abstr.* **1976,** 85, 78397.
- (253) Bolza, F.; Jellinek, T.; Neill, K. G.; Tankey, H. W. (ICI Australia Ltd.) U.S. Patent 4077 820, 1975; Ger. Offen. 2438081, 1975; *Chem. Abstr.* **1977,** *86,* 157833.
- (254) (a) Saigusa, T.; Imai, H.; Furukawa, J. Makromol. Chem.
1962, 54, 218–221. (b) Tsurana, S.; Yamamoto, J. (Sanyo Chemical Ind., Ltd.) Japan Kokai 70-22341, 1970; Chemical Ind., Ltd.) Japan Kokai 75-10 398, 1975; Chem
-
- (255) Saito, A. (Sanyo Chemical Ind., Ltd.) Japan Kokai 75–126796, 1975; Chem. Abstr. 1976, 84, 60261.
126796, 1975; Chem. Abstr. 1976, 84, 60261.
(256) Inoue, S.; Kataoka, T. (Toyo Rayon Co., Ltd.) Japan Kokai 67–8937, 19
-

1966; *Chem. Abstr.* **1966,** *64,* 12840.

- (258) Carroll, M. F. *J. Chem. Soc.* **1940,** 704, 1266; 1941, 507.
- (259) Kimel, W. (Hoffmann LaRoche) U.S. Patent 2638484,1953; *Chem. Abstr.* **1954,** *48,* 2763.
- (260) Cane, D. E.; Thomas, P. J. *J. Am. Chem. Soc.* **1984,** *106,* 5295-5303.
- (261) (a) Lacey, R. N. *J. Chem. Soc.* **1954,** 827. (b) Carroll, M. F. (A. Boake, Roberts and Co., Ltd.) Br. Patent 762656,1956; *Chem. Abstr.* **1957,** *51,*12143.
- (262) Kimel, W. (Hoffmann LaRoche, Inc.) U.S. Patent 2812 353, 1957; *Chem. Abstr.* **1958,** *52,* 3860.
- (263) Kato, T.; Chiba, T. *Chem. Pharm. Bull.* **1975,** *23,* 2263-2267. (264) (a) Yamamoto, A.; Ishihara, T. (Shin-Etsu Chemical Industry Co., Ltd.) Japan Kokai 77-49 445, 1977; Chem. Abstr. 1978, 88 , 169600; 1976, 84 , 179676. (b) Kitagaki, T.; Vamamoto, A.; Ishihara, T. (Shin-Etsu) U.S.
- (265) Hoffmann, W.; Baumann, M. (BASF A.-G.) Ger. Offen. 2532799, 1977; *Chem. Abstr.* **1977,** *86,* 155831.
- (266) (a) Fujita, Y.; Ohnishi, T.; Nishida, T.; Omura, Y.; Mori, F.
(Kuraray Co., Ltd.) Japan Kokai Tokkyo Koho 78-105 407,
1978; *Chem. Abstr*. 1979, 90, 23332. (b) Ohnishi, T.; Fujita,
Y.; Nishida, T.; Ishiguro, M.; Hoso Japan Kokai Tokkyo Koho 79-14905, 1979; *Chem. Abstr.* **1979,** *91,* 5383.
- (267) Ninagawa, Y.; Nakahara, F.; Nakamoto, T.; Kawaguchi, T. (Kuraray Co., Ltd.) Japan Kokai 77-68115, 1977; *Chem. Abstr.* **1977,** *87,* 184730.
- (268) Suga, K.; Vruma, S. *Chiba Daigaku Kenkyu Hokoku* **1964,** *15,* 13-17; *Chem. Abstr.* **1964,** *61,* 13347.
- (269) Okuda, O.; Miyawaki, H.; Miyazaki, S. (Taiyo Perfumery Co., Ltd.) Japan Kokai 75-94141, 75-95142, 1975; *Chem. Abstr.* **1975,** *83,* 183306, 183307.
- (270) Baumann, M. (BASF A.-G.) Ger. Offen. 2533796, 1977; *Chem. Abstr.* **1977,** *87,* 84620. (271) (a) Baumann, M.; Hoffmann, W.; Pommer, H. *Ann. Chem.*
- **1976,** 1626. (b) Hoffmann, W. (Badische Anilin und Soda Fabrik A.-G.) Ger. Offen. 2143991,1973; *Chem. Abstr.* 1973, *78,*135659.
- (272) Cookson, P. C; Parsons, P. J. *J. Chem. Soc, Chem. Commun.* **1976,** 990.
- (273) Bohlmann, F.; Lonitz, M. *Chem. Ber.* 1980,*113,* 2410-2423.
- (274) (a) Narwid, T. A.; Cooney, K. E.; Uskokovic, M. R. *HeIv. Chim. Acta* **1974,***57,* 771-781. (b) Narwid, T. A.; Uskokovic, M. R. (Roche) U.S. Patent 3856780, 1974; *Chem. Abstr.* **1975,** *82,* 86501.
- (275) Fujisawa, T.; Tajima, K.; Ito, M.; Sato, T. *Chem. Lett.* 1984, 1169-1172.
- (276) Boese, A. B., Jr. (Carbide and Carbon Chemicals, Ltd.) Can. Patent 384872, 1939; *Chem. Abstr.* **1940,** *34,* 1335.
- (277) Nagakowa, Y.; Fujita, S. (Nippon Synthetic Chemical In-dustry Co., Ltd.) Japan Kokai 23 322, 1961; *Chem. Abstr.* **1962,** *57,* 16415.
- (278) Meshcheryakova, G. F.; Plyanskii, N. G.; Ignatov, V. A. *Izv. Vyssch. Ucheb. Zaved., Khim. Khim. Tekhnol.* **1971,** *14,* 232-237; *Chem. Abstr.* **1971,** 75, 87789.
- (279) Steele, A. B.; Boese, A. B., Jr.; Dull, M. F. *J. Org. Chem.* 1949, *14,* 460.
- (280) Marcus, E.; Chan, J. K. F. (Union Carbide) U.S. Patent 3592826,1971; Br. Patent 1224642,1971; *Chem. Abstr.* 1971, 75, 5701.
- (281) Branch, S. J. (Distillers Co., Ltd.) U.S. Patent 2849456,1958; *Chem. Abstr.* **1959,** 53, 4306.
- (282) (a) Minamidate, M.; Veda, I. (Nippon Synthetic Chemical Ind. Co., Ltd.) Japan Kokai 74-31688, 1974; *Chem. Abstr.* **1974,** *81,* 25554. (b) Friedl, Z.; Dofek, R. Czech. Patent 156584, 1975; *Chem. Abstr.* **1976,** *85,* 46390. (c) Friedl, Z.; Dofek, R., Czech. Patent 165170, 1976; *Chem. Abstr.* 1977, *86,* 139858.
- (283) Kortvelyessy, G.; Matolcsy, K.; Sziliagyi, J.; Wurdits, I.; Hartmann, J. *Ger. Offen.* 2254546,1973; *Chem. Abstr.* 1973, *79,* 66173.
- (284) Kortvelyessy, G.; Matolcsy, K.; Sziliagyi, J.; Vastagh, A.; Wurdits, I. *Kern. Kozl.* **1974,***42,*186-192; *Chem. Abstr.* **1975,** *83,* 43133.
- (285) Marcus, E.; Chan, J. K. *J. Org. Chem.* **1967,** *32,* 2881-2886.
-
- (286) Marcus, E.; Chan, J. K. (Union Carbide) U.S. Patent 3449372, 1969; Chem. Abstr. 1969, 71, 91308.
(287) Gibaud, A.; Willemart, A. Bull. Soc. Chim. Fr. 1956, 432-441.
(288) Oda, R.; Takashima, S.; Okano, M. Bull. Chem.
- (289) Eigimeier, K.; Bestian, H. (Hoechst, A.-G.) Ger. Offen.
2359401, 1975; Chem. Abstr. 1975, 83, 97019.
(290) Collie, J. M. J. Chem. Soc. 1891, 59, 607.
(291) Carlson, G. R. (Rohm and Haas Co.) Eur. Pat. Appl. 40082,
19
-
-
-
- (293) Hase, T. A.; Suokas, E.; McCoy, K. *Acta Chem. Scand., Ser. B* **1978,** *B32,* 701-702.
- (294) Nakano, J.; Katagiri, N.; Kato, T. *Chem. Pharm. Bull.* **1982,** *30,* 2590-2594.
- (295) Kato, T.; Yamamoto, Y.; Hozumi, T. *Chem. Pharm. Bull.* **1973,** *21,* 1840-1843.
- (296) Hamamoto, K.; Isoshima, T.; Yoshioka, M. *Nippon Kagaku Zasshi* **1958,** *79,* 840-843; *Chem. Abstr.* **1960,** *54,* 4552.
- (297) Suzuki, E.; Sekizaki, H.; Inoue, S. *Synthesis* **1975,** 652-653. (298) Kang, J.; Kim, Y. H.; Park, M.; Lee, C. H.; Kim, W. J. *Synth. Commun.* **1984,** *14,* 265-269.
- (299) Kato, T.; Kubota, Y.; Tanaka, M.; Takahashi, H.; Chiba, T. *Heterocycles* **1978,** *9,* 841-844.
- (300) Pietsch, H. (Hoechst A.-G.) Ger. Offen. 2 726685, 1979; *Chem. Abstr.* **1979,** *90,* 137676.
- (301) (a) Suzuki, E.; Katsuragawa, B.; Inoue, S. *J. Chem. Soc, Perkin Trans. 1* **1977,** 72-73. (b) Yamato, M.; Kusunoki, Y. *Chem. Pharm. Bull.* **1981,** *29,* 1214-1220.
- (302) Shoji, N.; Kondo, Y.; Takemoto, T. *Chem. Pharm. Bull.* **1973,** *21,* 2639-2642.
- (303) Yoshizaki, T.; Sueyoshi, K.; Shudo, A.; Matsuo, Y.; Fujii, M. (Chisso Corp.) Japan Kokai 72-47 393, 1972; *Chem. Abstr.* **1973,** *78,* 124457.
- (304) Kato, T.; Kubota, Y. *Yakugaku Zasshi* **1969,** *89,*1477-1481; *Chem. Abstr.* **1970,** *72,* 31559.
- (305) Kato, T.; Yamanaka, H.; Kawamata, J.; Shimomura, H. *Chem. Pharm. Bull.* **1969,** *17,* 1889-1895.
- (306) (a) Nagai, S.; Yorie, T.; Hirota, Y.; Hibi, T.; Sato, K.; Yamamura, H.; Wada, T.; Aoi, I. (Hokko Chemical Industry Co. Ltd.) Japan Kokai 77-66 630, 1977; Chem. Abstr. 1978, 88, 1599. (b) Kato, T.; Kubota, Y. Yakugaku 1212-1218; *Chem. Abstr.* **1968,** *68,* 95644.
- (307) Pierce, J. B.; Ariyan, Z. S.; Ovenden, G. S. *J. Med. Chem.* **1982,** *25,* 131-136.
- (308) Kato, T.; Chiba, T.; Sasaki, M.; Kamo, M. *Yakugaku Zasshi* **1981,** *101,* 40-47; *Chem. Abstr.* **1981,** *95,* 7179.
- (309) (a) Garratt, S.; Shemin, D. J. Org. Chem. 1963, 28, 1372–1373.
(b) Kato, T.; Kubota, Y. *Yakugaku Zasshi* 1967, 87, 1219–
1225; Chem. Abstr. 1968, 68, 87536. (c) Gunar, V. I.; Ovechkina, L. F.; Zavyalov, S. I. *Izv. Akad. Nauk SSSR Ser. Khim.* **1965,** 1885-1886.
- (310) Iguchi, S.; Hisatsune, M.; Himeno, M.; Muraoka, S. *Chem. Pharm. Bull.* **1959,** 7, 323.
- (311) (a) Dimroth, P.; Radtke, V. *Ann. Chem.* **1979,** 769-775. (b) Radtke, V. (BASF A.-G.) Ger. Offen. 2 705 562,1978; *Chem. Abstr.* **1978,** *89,* 215429.
- (312) Pierce, J. B.; Ariyan, Z. V.; Ovenden, G. S. (Uniroyal Inc.) Can. Patent CA 1115278,1982; *Chem. Abstr.* **1982,***97,* 55701.
- (313) Jayalakshmi, R.; Neelakatan, P.; Rao, S. N.; Iyengar, D. S.; Bhalerao, U. T. *Indian J. Chem., Sect. B* **1979,** *18B,* 366.
- (314) Kato, T.; Yamanaka, H.; Hozumi, T. *Yakugaku Zasshi* **1971,** *91,* 740-749, 772-779; *Chem. Abstr.* **1971,** *75,* 129619. (315) Horlein, G.; Kubel, B.; Studeneer, A.; Salbeck, G. *Ann. Chem.*
- **1979,** 371-386. (316) Ziegler, E.; Herbst, L; Kappe, T. *Monatsh. Chem.* **1969,***100,*
- 132-135.
- (317) Kato, T.; Hozumi, T. *Yakugaku Zasshi* 1973, *93,* 1084-1086; *Chem. Abstr.* **1973,** *79,* 105033.
- (318) Ogura, H.; Sakaguchi, M. *Chem. Pharm. Bull.* **1973,** *21,* 2014-2018.
- (319) Kato, T.; Atsumi, T. *Yakugaku Zasshi* **1967,** *87,* 961-966; *Chem. Abstr.* **1968,** *68,* 47422.
- (320) (a) Hunig, S.; Benzing, E.; Hubner, K. *Chem. Ber.* **1961,** *94,* 486-490. (b) Eiden, F.; Wanner, K. T. *Arch. Pharm.* 1984, *317* 958—962
- (321) Millward, B. B. *J. Chem. Soc.* **1960,** 26-30.
- (322) Lounasmaa, M.; Langenskiold, T.; Holmberg, C. *Tetrahedron Lett.* **1981,** *22,* 5179-5180.
- (323) Franke, W. K.; Kuether, J. *Fette, Seifen, Anstrichem.* 1980, *82,* 82-86; *Chem. Abstr.* **1980,** *93,* 95102.
- (324) (a) Kato, T.; Yamanaka, H.; Yamamoto, Y.; Sakamoto, T. *Yakugaku Zasshi* **1970,** *90,* 613-617; *Chem. Abstr.* **1970,** *73,* 45305. (b) Kappe, T.; Herbst, I.; Ziegler, E. *Monatsh. Chem.* **971,** *102*, 848
-
- (325) Sakamoto, M.; Akimoto, T.; Akiyama, Y.; Fukutomi, K.; Ishii, K. Chem. Pharm. Bull. 1984, 32, 1170–1174.
(326) Ficini, J.; Genet, J. P. Bull. Soc. Chim. Fr. 1974, 2086–2088.
(327) (a) Gomper, R.; Stetter, J. Tetrahedr
-
- (328) (a) Hantzsch, A. Ann. Chem. 1882, 215, 1–82. (b) Alternate
preparation: Aristegui Barquin, J. J. Spanish Patent 503958,
1982; Chem. Abstr. 1982, 97, 162837.
Tacke, R.; Bentlage, A.; Sheldrick, W. S.; Ernst, L.; Towa
-
- (330) (a) "USAN and USP Dictionary of Drug Names", USP:

Rockville, MD, 1981; p 259. (b) Bossert, F.; Horstmann, H.;

Meyer, H.; Vater, W. Arneim—Forsch. 1979, 29, 226-229;

Chem. Abstr. 1979, 90, 179914.

(331) "USAN and
- Rockville, MD, 1981; p 261.
- (332) (a) "USAN and USP Dictionary of Drug Names"; USP: Rockville, MD, 1981; p 258. (b) Carrasco, E. G. (Industrial Farmaceutica de Levante S.A.) Spanish Patent ES 499 727,
1982; *Chem. Abstr*. 1982, 97, 216022. (c) Iwanami, M.; Shi-banuma, T.; Fujimoto, M.; Kasai, R.; Take-
banuma, T.; Tukahashi, K.; Murakami, M. *Chem. Pharm. Bull.* **1979,** *27,* 1426-1440.
- (333) Tacke, R.; Bentlage, A.; Towart, R.; Meyer, H.; Bossert, F.; Vater, W.; Stoepel, K. *Z. Naturforsch. B: Anorg. Chem., Org. Chem.* **1980,** *35B,* 494-501.
- (334) (a) Junge, B.; Bossert, F.; Meyer, H.; Wehinger, E.; Vater, W.; Heise, A.; Kazda, S.; Stoepel, K. (Bayer A.-G.) U.S. Patent 4 179 500, 1979; Ger. Offen. 2641 746, 1978; Chem. Abstr. 1978, 89, 44142. (b) Yoshitomi, Ph Ltd. Japan Kokai Tokkyo Koho 82-167967, 82-200386, 82-
200387, 1982; 83-159461, 1983; *Chem. Abstr.* 1983, *98,*
107166, 215490, 215491; 1984, *100,* 51460. (c) Yoshitomi
Pharmaceutical Industries, Ltd. Eur. Pat. Appl. 889 *Chem. Abstr.* **1984,***100,* 85591. (d) Kamibayashi, M.; Tsu-chiya, S.; Hiratsuka, K. (Tokyo Tanabe Co., Ltd.) U.S. Patent 4419518,1983; *Chem. Abstr.* **1984,***100,*103191. (e) Mauko Pharmaceutical Co. Ltd. Japan Kokai Tokkyo Koho 83- 201 764, 1983; *Chem. Abstr.* 1984, *100*, 138968. (f) Zumin
Tricerri, S.; Casagrande, C.; DeMarchi, F.; Nicola, M. (Pierrel,
s.p.A.) Eur. Pat. 97 821, 1984; *Chem. Abstr.* 1984, *101*, 55114.
(g) Meguro. K.: Nagaoka. A. (1983; *Chem. Abstr.* **1984,** *100,* 209872.
- (335) Tirzitis, G.; Preisa, I.; Uldrikis, Y.; Zidermane, A.; Duburs, G.; Bisenieks, E. Belgian Patent 882498, 1981; *Chem. Abstr.* **1981,** *94,* 156764.
- (336) Kobayashi, S.; Imakura, Y.; Ishikawa, H.; Sasakawa, E. *Heterocycles* **1980,** *14,* 751-754.
- (337) Kato, T.; Sakamoto, T. *Yakugaku Zasshi* **1967,** *87,* 1322- 1325; *Chem. Abstr.* **1968,** *68,* 114524.
- (338) (a) Maujean, A.; Chuche, J. *Tetrahedron Lett.* 1976, 2905-2908. (b) Hach, V. (Delmar Chemicals, Ltd.) Br. Patent 1479202, 1976; Ger. Offen. 2512092, 1975; *Chem. Abstr.* **1976,** *84,* 17444. (c) Hsi, R. S. P. *J. Labelled Compd.* **1974,** *10* 389—398
- (339) (a) Kato, T.; Yamamoto, Y.; Sekita, H.; Sakamoto, T. *Yakugaku Zasshi* 1967, 87, 691–694; *Chem. Abstr.* 1967, 67, 81891.
(b) Kato, T; Yamamato, Y. Chem. Abstr. 1967, 67, 81891.
(b) Kato, T. Yamamato, Y. Chem. Pharm. *Bull. Chem. Soc. Jpn.* **1962,** *35,* 1843.
- (340) Kato, T.; Yamamoto, Y.; Sakamoto, T. *Yakugaku Zasshi* **1970,** *90,* 1400-1405; *Chem. Abstr.* **1971,** *74,* 53434.
- (341) Matsuda, L; Yamamoto, S.; Ishii, Y. *J. Chem. Soc, Perkin Trans. 1* **1976,** 1523-1528, 1528-1532.
- (342) Kato, T.; Yamamoto, Y. *Chem. Pharm. Bull.* 1967, *15,* 1334-1338.
- (343) Kato, T.; Kondo, M. *Chem. Pharm. Bull.* **1976,** *24,* 356-359. (344) (a) Kato, T.; Yamamoto, Y.; Kondo, M. *Chem. Pharm. Bull.* **1975,***23,*1873-1879. (b) Kato, T.; Yamamoto, Y.; Kondo, M. *Heterocycles* **1975,** *3,* 293-296.
- (345) Yamamoto, Y.; Azuma, Y.; Miyakawa, K. *Chem. Pharm. Bull.* **1978,** *26,* 1825-1831.
- (346) Katagiri, N.; Tabei, N.; Atsuumi, S.; Haneda, T.; Kato, T. *Chem. Pharm. Bull.* **1985,** *33,* 102-109.
- (347) Blackwell, J. T.; Gupton, J. T.; Miyazaki, T. U.; Nabors, J. B.; Pociask, J. R. (Ciba-Geigy A.-G.) U.S. Patent 4 163 848, 1978; U.K. Pat. Appl. 2027 710, 1980; Chem. Abstr. 1980, 92, 58804; 1981, 94, 65717.
- (348) Omori, M.; Miyazaki, H.; Hasegawa, K.; Watanabe, Y.; Utsugi, Y. (Nippon Kayaku Co., Ltd.) Japan Kokai 73-39943,
1973; Chem. Abstr. 1974, 80, 108569.
2009) Pociask, J. R. (Ciba-Geigy Corp.) U.S. Patent 4052396, 1977;

-
- **(350)** (a) Blackwell, J. T.; Gupton, J. T.; Nabors, J. B. (Ciba-Geigy Corp.) U.S. Patent 4052 397, 1977; *Chem. Abstr.* 1977, *87,* 201580. (b) Kato, T.; Yamanaka, H.; Shibata, T. *Yakugaku Zasshi* **1967,***87,* 955-960. (c) Kato, T.; Yamanaka, H.; Kon-no, S. *Yakugaku Zasshi* **1970,** *90,* 509-511.
- (351) Gupton, J. T., III; Jelenevsky, A. M.; Miyazaki, T. U.; Petree,
H. E. (Ciba-Geigy) U.S. Patent 4018771, 1977; Chem. Abstr.
1977, 87, 23326.
(352) Kato, T.; Sakamoto, T. Chem. Pharm. Bull. 1975, 23,
- 2629-2633.
- (353) Kato, T.; Yamamoto, Y.; Kondo, M. *Heterocycles* **1975,** *3,* 927-930.
- (354) (a) Lacey, R. N. (British Industrial Solvents, Ltd.) Br. Patent 699812,1953; *Chem. Abstr.* **1954,** *49,* 2527. (b) Parry, D. R.; Williams, A. G. (ICI Ltd.) U.S. Patent 3997 537, 1977; Ger. Offen. 2520832, 1975; *Chem. Abstr.* **1976,** *84,* 135703. (c) Uchida, H.; Iwasawa, H.; Ohta, M. *Bull. Chem. Soc. Jpn.*
-
- 1973, 46, 3277–3280.

(355) Sitte, A.; Paul, H. Chem. Ber. 1969, 102, 615–622.

(356) (a) Natsugari, H.; Meguro, K.; Kuwada, Y. Chem. Pharm.

Bull. 1979, 27, 2927–2937. (b) Kuwada, Y.; Natsugari, H.; Meguro, K. (Takeda Che 3 978058, 4175079, 1979; Ger. Offen. 2 251291, 2 261777,
- (357) Furukawa, M.; Yoshida, T.; Goto, M.; Hayashi, S. *Chem. Pharm. Bull.* **1973,** *21,* 2594-2601. (397 (358) Furukawa, M.; Hayashi, S. *Synthesis* **1973,** 536-537.
-
- (359) Lacey, R. N. *J. Chem. Soc.* **1954,** 839-849. (398
- (360) Kato, T.; Chiba, T.; Shimizu, T.; Takahashi, H. *Chem. Pharm. Bull.* **1981,** *29,* 862-866. (361) Gunar, V. I.; Mikhailopulo, I. A.; Ovechkina, L. F.; Zavyalov, (399
- S. I. *Khim. Geterotsikl. Soedin.* **1967,** 48-50; *Chem. Abstr.* **1967,** *67,* 54097. (400 (362) Perronnet, J.; Girault, P.; Taliani, L. *J. Heterocycl. Chem.*
- **1981,** *18,* 433-435.
- (363) Yogo, M.; Hirota, K.; Senda, S. J. Chem. Soc., Perkin Trans. (401)
1982, 473–475.
(364) Gunar, V. I.; Ovechkina, L. F.; Zavyalov, S. I. Izv. Akad. (402)
Nauk SSSR, Ser. Khim. 1965, 1076–1077; Chem. Abstr. 1965,
- *63,* 8346. (403
- (365) (a) Farbenfabriken Bayer A.-G. Br. Patent 797972, 1958; *Chem. Abstr.* **1959,** *53,* 3059. (b) Lacey, R. N.; Ward, W. R. (404
- *J. Chem. Soc.* **1958,** 2134-2144. (366) Pietsch, H.; Clauss, K.; Schmidt, E.; Jensen, H. (Hoechst A.-G.) U.S. Patent 4 009161,1976; Ger. Offen. 2 434 563,1976; (405 *Chem. Abstr.* **1976,** *84,* 135684.
- (367) (a) Clauss, K.; Jensen, H. (Farbwerke Hoechst A.-G.) U.S. (406 Patent 3917589, 1975; Ger. Offen. 2264235, 1974; *Chem.*
- *Abstr.* **1975,** *83,* 43389. (b) See also ref 197. (368) Veronese, A. C; D'Angeli, F. *Ann. Chim. (Rome)* **1970,** *60,* (407 374-382; *Chem. Abstr.* **1970,** *73,* 87611.
- (369) Wollenberg, O. *Chem. Ber.* **1934,** *67,* 1675. (408;
- (370) (a) Kato, T.; Kitagawa, T.; Yamamoto, Y. *Yakugaku Zasshi*
1963, 83, 267–271; Chem. Abstr. 1963, 59, 6371. (b) Kato, T.;
Kitagawa, T. *Yakugaku Zasshi* 1964, 84, 874.
- (371) (a) Kato, T.; Chiba, T.; Shiraishi, T.; Sasaki, T. *Yakugaku Zasshi* **1980,***100,* 571-573; *Chem. Abstr.* **1981,** *94,* 65498. (b) (410 Kato, T.; Yamanaka, H.; Niitsuma, T.; Wagatsuma, K.; Oiz-umi, M. *Chem. Pharm. Bull.* **1964,***12,* 910. (c) Akhrem, A. (41i; A.; Moiseenkov, A. M.; Krivoruchko, V. A. *Dokl. Akad. Nauk*
- *SSSR* **1973,***210,* 1087-1089; *Chem. Abstr.* **1973,** *79,*105102. (412 (372) Kato, T.; Yamamoto, Y. *Chem. Pharm. Bull.* **1966,** *14,* $752-755.$ (413)
- (373) (a) Yamanaka, H.; Shiraishi, T.; Sakamoto, T.; Matsuda, H. Chem. Pharm. Bull. 1981, 29, 1049–1055. (b) Yamanaka, H.; (414)
Shiraishi, T.; Sakamoto, T. Heterocycles 1975, 3, 1069–1073.
(374) Kato, T.; Daneshtalab, M. Chem. Pharm. Bull. 1976, 24, (415)
- 1640-1645.
- (375) Kato, T.; Yamamoto, Y. *Chem. Pharm. Bull.* **1967,***15,*1426. (376) Kato, T.; Chiba, T.; Daneshtalab, M. *Chem. Pharm. Bull.* (416
- **1976,** *24,* 2549-2552.
- (377) (a) Kato, T.; Yamanaka, H.; Sakamoto, T.; Shiraishi, T. (417)
Chem. Pharm. Bull. 1974, 22, 1206–1209. Correction of: (b)
Kato, T.; Yamanaka, H. Chem. Pharm. Bull. 1964, 12, 18–22. (418)
- (378) (a) Yamanaka, H.; Sakamoto, T.; Shiraishi, T. *Heterocycles* **1975,** 3, 1065-1068. (b) Yamanaka, H.; Sakamoto, T.; Shi- (419 raishi, T. *Chem. Pharm. Bull.* **1981,** *29,* 1044-1048. (420
- (379) Kato, T.; Chiba, T.; Daneshtalab, M. *Heterocycles* **1974,** *2,* $15 - 318.$
- (380) Kato, T.; Katagiri, N.; Tanaka, M.; Wagai, A.; Harimaya, K. (421 *Chem. Pharm. Bull.* **1980,** *28,* 2129-2135.
- (381) Kato, T.; Yamanaka, H.; Niitsuma, T.; Wagatsuma, K.; Ozu-mi, M. *Chem. Pharm. Bull.* **1964,** *12,* 910-916. (422 (382) Taylor, G. A. *J. Chem. Soc, Perkin Trans. 1* **1979,** 376-378.
- (383) Stockelmann, G.; Specker, H.; Riepe, W. *Chem. Ber.* **1969,** (423 *102,* 455.
- (384) Kato, T.; Yamanaka, H.; Katagiri, N.; Masuda, S. Chem.
Pharm. Bull. 1972, 20, 142-146.
- Pharm. Bull. 1972, 20, 142-146.
(385) (a) Yale, H. L.; Toeplitz, B.; Gougoutas, J. Z.; Puar, M. J.
Heterocycl. Chem. 1973, 20, 123, 142-146. (b) Yale, H. L.;
Spitzmiller, E. R. J. Heterocycl. Chem. 1977, 14, 637–642. (426)
- (386) Kato, T.; Yamanaka, H.; Katagiri, N.; Masuda, S. *Chem. Pharm. Bull.* **1972,** *20,* 133-141. (387) Kato, T.; Yamanaka, H.; Moriya, H. *Yakugaku Zasshi* **1964,**
- *34,* 1201-1205; *Chem. Abstr.* **1965,** *62,* 7750. (427 (388) Kamizono, H.; Taniguchi, E.; Maekawa, K. *J. Fac. Agric*
- *Kyushu Univ.* **1979,** *24,* 125-132; *Chem. Abstr.* **1980,** *92,* (428 215377.
- (389) Lauer, R. F.; Zenchoff, G. *J. Heterocycl. Chem.* **1976,** *13,* 291-293.
- (390) Okabe, T.; Taniguchi, E.; Maekawa, K. J. Fac. Agric. Kyushu

Univ. 1973, 17, 195-202; Chem. Abstr. 1973, 79, 32002. (429)

(391) Okabe, T.; Taniguchi, E. Maekawa, K. Bull. Chem. Soc. Jpn.

1974, 47, 2813-2817.

(392)
-
-
- (394) Daneshtalab, M.; Tehrani, M. H. H. *Heterocycles* **1984,** *22,* (431
-
- 1095–1099.

(395) (a) Drizina, I. *Tezisy Dokl.—Resp. Konf. Molodykh Uch.*—
 Khim., 2nd 1977, 11–12; *Chem. Abstr.* 1978, 89, 180273. (b) (433)

Drizina, I.; Snikeris, D.; Liepins, E.; Stankevich, E. I. Khim. *Geterotskil. Soedin.* **1978,**1115-1119; *Chem. Abstr.* **1979,** *90,* (434 23499.
- Kato, T.; Chiba, T.; Daneshtalab, M. *Heterocycles* **1975,** *3,*
- 723–726.
(397) Sakamoto, M.; Akimoto, T.; Fukutomi, K.; Ishii, K. Chem.
- Sakamoto, M.; Akimoto, T.; Fukutomi, K.; Ishii, K. *Chem. Pharm. Bull.* **1984,** *32,* 2516-2521.
- Staehle, H.; Kummen, W.; Koeppe, H.; Stockhaus, K. (C. H.
Boehringer und Sohn) Ger. Offen. 2234622, 1974; Chem.
Abstr. 1974, 80, 120993.
Kato, T.; Katagiri, N.; Izumi, U.; Miura, Y.; Yamazaki, T.;
Hiriai, Y.; Heterocycles
-
-
- Kato, T.; Masuda, S. *Chem. Pharm. Bull.* **1975,** *23,* (401) Kato, T.;
2251-2256. Kato, T.; Chiba, T.; Okada, T. *Chem. Pharm. Bull.* **1979,** *27,*
- 1186-1189.
- Kato, T.; Masuda, S. *Chem. Pharm. Bull.* **1974,** *22,* 1542-1546.
- (a) Gleason, A. H. (Standard Oil Development Corp.) U.S. Patent 2174239,1939; *Chem. Abstr.* **1940,***34,*450. (b) Boese, A. B. (Carbide) U.S. Patent 2138756, 1938.
- Iwakura, Y.; Nagakubo, K.; Hosogane, C. *J. Chem. Soc. Jpn.* **1954,** *57,* 947-949.
- (a) Khromov-Borisov, N. V.; Karlinskaya, R. S. *Zh. Obsch. Khim.* **1956,** *26,*1728-1729; *Chem. Abstr.* **1957,***51,* 2809. (b) USSR Patent 101690, 1955; *Chem. Abstr.* **1957,** *51,* 12989.
- (407) Zavialov, S. I.; Gunar, V. I.; Mikhailopulo, I. A.; Ovechkina, L. F. *Tetrahedron* **1966,** *22,* 2003-2006.
- Eck, H.; Spes, H. (Wacker Chemie G.m.b.H.) Br. Patent 1371155, 1973; Ger. Offen. 2138802, 1973; *Chem. Abstr.* **1973,** *78,* 124622.
- Yeksler, M. A.; Vitvitskaya, A. S. *Khim.-Farm. Zh.* **1982,***16,* 727-729; *Chem. Abstr.* **1982,** *97,* 55772. Gunar, V. I.; Zavyalov, S. I. *Dokl. Akad. Nauk SSSR* **1964,**
- *158,* 1358-1361.
- Gunar, V. L; Zavyalov, S. I. *Isv. Akad. Nauk. SSSR, Ser. Khim.* **1965,** 747-748.
- Ralph, R. K.; Shaw, G.; Naylor, R. N. *J. Chem. Soc.* **1959,** 1169-1178.
- Levih, G. (Du Pont) U.S. Patent 3 769290, 1973; *Chem. Abstr.* **1974,** *80,* 27282.
- Ahmed, S.; Lofthouse, R.; Shaw, G. *J. Chem. Soc, Chem. Commun.* **1974,** *23,* 959.
- Senda, S.; Inoue, S.; Seto, E.; Ogina, A.; Kise, M.; Kitanto, M. (Nippon Shinyaku Co., Ltd.) Japan Kokai 74-36686, 1974; *Chem. Abstr.* **1974,** *81,* 63657.
- Die, R.; Diez, J.; Garcia-Munoz, G.; Madronero, R.; Stud, M. *J. Heterocycl. Chem.* **1972,** *9,* 973.
- Pilgrim, K.; Skiles, R. D. *J. Heterocycl. Chem.* **1980,** *17,* 977-979.
- Diez, J.; Garcia-Munoz, G.; Madronero, R.; Stud, M. *J. Het-
erocycl. Chem.*, 1973, *10, 4*69–472.
Goya, P.; Stud, M. *J. Heterocycl. Chem.* 1978, *15, 4*77–479.
Preobrazhenskaya, M. N.; Tolkachev, V. N.; Levi, I. S.;
Korn
-
- *Chem. Abstr.* 1975, *82,* 43369.
- Garaeva, L. D.; Osipova, E. M.; Preobrazhenskaya, M. N. *Khim. Geterosikl. Soedin.* **1978,** 972-976; *Chem. Abstr.* **1979,** *90,* 6367.
- Kato, T.; Katagiri, N. *Chem. Pharm. Bull.* **1970,** *18,* (422) Kato, T.;
2278-2283.
- Tsuji, T.; Otsuka, Y. *Chem. Pharm. Bull.* **1978,** *26,* 2765-2767.
-
-
-
-
- Lacey, R. N. J. Chem. Soc. 1954, 854-860.

(a) Rall, K. B.; Perekalin, V. V. Zh. Obsch. Khim. 1955, 25, 815-821. (b) Padva, G. D. Zh. Priklad. Khim. (Leningrad) 4160, 33, 489-490; Chem. Abstr. 1960, 54, 13110.

(a) Perekal
- Aichinger, G.; Boltze, K. H.; Jacobi, H.; Seidel, P. R. (Tro-
ponwerke Dinklage and Co.) Ger. Offen. 2502588, 1976;
Chem. Abstr. 1976, 85, 142998.
Aoki, K.; Seoka, Y.; Yokota, Y. (Fuji Photo Film Corp., Ltd.)
U.S. Patent 4
-
-
-
-
- (a) Aldrich, P. E.; Berezin, G. H. (Du Pont) Ger. Offen. 2 728029,1978; *Chem. Abstr.* **1978,** *88,*105172. (b) Aldrich,

P. E.; Berezin, G. H. (Du Pont) U.S. Patent 4218448,1980; *Chem. Abstr.* 1980, *93,* 239264. (c) Du Pont. Neth. Appl. 77-07062, 1977; *Chem. Abstr.* 1978,*88,* 190614. (d) Aldrich, P. E.; Berezin, G. H. (Du Pont) Ger. Offen. 2854 725, 2854727, 1979; *Chem. Abstr.* 1979, *91,* 107989, 140732.

- (435) Kappe, T.; Linnau, Y. *Ann. Chem.* 1972, *761,* 25-33.
- (436) (a) Franke, U.; Roeder, E. *Arch. Pharm.* 1976, *309,*131-137, 185-189. (b) Neidlein, R.; Moller, F. *Synthesis* 1978, 685-686.
- (437) Rail, K. B.; Perekalin, V. V. *Zh. Obsch. Khim.* 1955, *25,* 259-264; *Chem. Abstr.* 1956, *50,* 1794.
- (438) Prieto, J.; Vega, A.; Moragues, J. *J. Heterocycl. Chem.* 1976, *13* 813—819
- (439) Lacey, R. N. J. Chem. Soc. 1954, 850-854.
- (440) Hachmeister, B.; Thielke, D.; Winterfeld, E. *Chem. Ber.* 1976, *109,* 3825-3836.
- (441) (a) Tarzia, G.; Panzone, G.; Carminati, P.; Schiatti, P.; Selva,
D. Farmaco, Ed. Sci. 1976, 31, 81–97; Chem. Abstr. 1976, 85,
21271. (b) Tarzia, G.; Panzone, G. (Gruppo Lepetit, S.p.A.)
U.S. Patent 3983127, 1976; Ger
- (442) (a) Kirzner, N. A.; Yui, F. B.; Porai-Koshits, E. A. *Zh. Obsch. Khim.* 1960, *30,* 890-896; *Chem. Abstr.* 1961, *55,* 531. (b) Skowronski, R.; Omakowska, J. Polish Patent 107 974,1980; *Chem. Abstr.* **1981,** *95,* 99326.
- (443) (a) Lacey, R. N. *J. Chem. Soc.* 1954, 816-822. (b) Lacey, R. N.; Graham, P. E. (Distillers Co., Ltd.) Br. Patent 740076, 1955; *Chem. Abstr.* 1956, *50,* 16867.
- (444) (a) Toman, J.; Klicnar, J.; Machacek, V. *Collect. Czech. Chem. Commun.* 1978, *43,* 2179-2189. (b) Sakata, G.; Mak-ino, K.; Morimoto, K. *Heterocycles* 1985, *23,* 143-151.
- (445) Kempler, F. E.; Klischat, M.; Quadbeck-Seeger, H. J. (BASF A.-G.) Ger. Offen. 2 232366, 1974; *Chem. Abstr.* 1974, *81,* 14715.
- (446) (a) Bristol-Myers Co. Br. Patent 1355 205,1973; Fr. Demande 2149275, 1973; *Chem. Abstr.* 1973, *79,* 78794. (b) DeWaId, H. A. (Parke-Davis and Co.) U.S. Patent 3790576, 1974; *Chem. Abstr.* 1974,*80,* 82962. (c) Crenshaw, R. R.; Luke, G. M.; Siminoff, P. (Bristol-Myers Co.) Ger. Offen. 2446821, 1975; *Chem. Abstr.* 1975,*83,* 97285. (d) Crenshaw, R.; Luke, G. M.; Siminoff, P. *J. Med. Chem.* 1975, 19, 262-275. Bristol Myers Can. Patent 1032 538,1978; *Chem. Abstr.* 1978, *89* 179995
- (447) Ube Industries, Ltd. Japan Kokai Tokkyo Koho 80-108856, 1980; *Chem. Abstr.* 1981, *94,* 175114.
- (448) Nagakubo, K. *Nippon Kagaku Zasshi* 1960, *81,* 305-308. (449) Fukui, K.; Matsurami, S. (Ube Ind., Ltd) Japan Kokai Tok-kyo Koho 79-106467, 1979; *Chem. Abstr.* 1980, *92,* 58773.
- (450) Kato, T.; Yamanaka, H.; Hamaguchi, F. *Yakugaku Zasshi* 1963, *83,* 741-744; *Chem. Abstr.* 1963, *59,* 13964.
- (451) Lecher, H. Z.; Parker, R. P.; Conn, R. C. *J. Am. Chem. Soc.* 1944, *66,* 1959-1963.
- (452) (a) Levin, P. A. *Zh. Obsch. Khim.* 1957, *27,* 2864-2866. (b) Skowronski, R.; Szalecki, W. Polish Patent 105501, 1980; *Chem. Abstr.* 1980, *93,*132486. (c) Johnston, F. U.S. Patent 2017 815 1933.
- (453) Kato, T!; Katagiri, N. *Chem. Pharm. Bull.* 1970, *18,* 2269-2277.
- (454) Farbwerke Hoechst A.-G. Fr. Demande 1441937, 1966; *Chem. Abstr.* **1967,** *66,* 55492.
- (455) Bimber, R. M.; Buchman, R.; DePompei, M. F.; Powers, L. J. (Diamond Shamrock Corp.) U.S. Patent 4286091, 1981; *Chem. Abstr.* **1982,** *96,* 6747.
- (456) Kato, T.; Sato, M.; Tabei, K.; Kawashima, E. *Chem. Pharm. Bull.* 1975, *23,* 456-459.
- (457) Kato, T.; Sato, M.; Tabei, K. *J. Org. Chem.* 1974, *39,* 3205-3210.
- (458) Somei, M.; Matsubara, M.; Natsume, M. *Chem. Pharm. Bull.* 197*5 *23* 2891—2898 (459) Kato, T.'; Masuda, s! *Chem. Pharm. Bull.* 1975,*23,* 452-455.
-
- (460) Kornet, M. J.; Thio, A. P.; Tolbert, L. M. *J. Org. Chem.* 1980, *45,* 30-32.
- (461) Fujimoto, M.; Sakai, M. *Chem. Pharm. Bull.* 1965, *13,* 248—252
-
- (462) (a) Kato, T.; Katagiri, N.; Minami, N. Chem. Pharm. Bull.
1972, 20, 1368–1373. (b) Kato, T. Japan Kokai 73-32867,
1973; Chem. Abstr. 1978, 79, 32026.
(463) (a) Jacobsen, N.; Kolind-Andersen, H.; Christensen, J. Can.
 102, 149256.
- (464) (a) Fukumi, H.; Oohata, K.; Takada, K. *Heterocycles* 1979, *12,* 1297-1299. (b) Konishiroku Photo Industry Co., Inc. Japan Kokai Tokkyo Koho 82-167950, 1982; *Chem. Abstr.*
-
- 1983, 98, 126774.
(465) Oster, T. A.; Harris, T. M. J. Org. Chem. 1983, 48, 4307-4311.
(466) Perronet, J.; Girault, P.; Demoute, J. P. J. Heterocycl. Chem.
1980, 17, 727-731.
(467) Sankyo. Japan Kokai Tokkyo Koho 82-70 878
-
- (468) Williams, D. R.; Sit, S. Y. *J. Org. Chem.* 1982,*47,* 2846-2851. (469) (a) Kuebel, B. *Monatsh. Chem.* 1982, *113,* 781-792. (b) Kuebel, B. (Hoechst, A.-G.) Ger. Offen. 3010322, 1981; *Chem. Abstr.* **1982,** *96,* 20105.
- (470) (a) Sasaki, T.; Yoshioka, T. *Bull. Chem. Soc. Jpn.* 1969, *42,* 3008-3010. (b) Tabei, K.; Kawashima, E.; Takada, T.; Kato, T. *Chem. Pharm. Bull.* **1982,** *30,* 336-340.
- (471) Kaemmerer, F. J.; Schleyerbach, R. (Hoechst A.-G.), U.S. Patent 4284786, 4351841, 1980; Ger. Offen. 2854439,1980; *Chem. Abstr.* **1980,** *93,* 239392.
- (472) Schoenafinger, K.; Beyerle, R.; Mogilev, A.; Bohn, H.; Just, M.; Martorana, P. A.; Nitz, R. E. (Cassella A.-G.) U.S. Patent 4356178, 1982; EP 54872, 1982; *Chem. Abstr.* 1982, *97,* 216189
- (473) Linhart, F.; Girgensohn, B.; Zeeh, B. (BASF A.-G.) U.S. Patent 4240973, 1980; *Chem. Abstr.* 1980, *93,* 8000.
- (474) (a) Lacey, R. N. *J. Chem. Soc.* 1954, 822-826. (b) Avetisyan, A. A.; Mangasaryan, T. A.; Dangyan, M. T.; Matsoyan, S. G.
Zh. Org. Khim. 1971, *7, 964–967; Chem. Abstr.* 1971, *75,*
76113*h.* (c) Falsone, G.; Hundt, B. *Arch. Pharm.* 1985, 318, 190-192.
- (475) Lacey, R. N. *J. Chem. Soc.* 1954, 832-839.
- (476) Bloomer, J. L.; Kappler, F. E. *J. Org. Chem.* 1974, *39,* 113. (477) Booth, P. M.; Fox, C. M. J.; Ley, S. V. *Tetrahedron Lett.* 1983, *24,* 5143-5146.
- (478) Kato, T.; Sato, M.; Yoshida, T. *Chem. Pharm. Bull.* 1971,*19,* 292-296.
- (479) (a) Schmidlin, T.; Tamm, C. *HeIv. Chim. Acta* 1980, *63,* 121-131. (b) Matsuo, K.; Kitaguchi, I.; Takata, Y.; Tanaka, K. *Chem. Pharm. Bull.* 1980,*28,* 2494-2502. (c) Matsuo, K.; Kimura, M.; Kinuta, T.; Takai, N.; Tanaka, K. *Chem. Pharm. Bull.* 1984, *32,* 4197-4204.
- (480) Ibi, A.; Taniguchi, E.; Maekawa, K. *Agric. Biol. Chem.* 1979, *43,* 1641-1646.
- (481) Hasegawa, H.; Tsuda, N. (Yoshitomi Pharmaceutical Co., Ltd.) Japan Kokai 74-16869, 1974; *Chem. Abstr.* 1975, *82,* 97929.
- (482) Bhat, S. V.; Kohl, H.; Ganguli, B. N.; DeSouza, N. J. *Eur. J. Med. Chem.-Chim. Ther.* **1977,** *12,* 53-57.
- (483) Buchi, G.; Lukas, G. *J. Am. Chem. Soc.* 1964,*86,* 5654-5658.
- (484) Holzapfel, C. W.; Gildenhuys, P. J. S. *Afr. J. Chem.* 1977, *30,* 125-127; *Chem. Abstr.* 1977, *87,* 151941. (485) Kozikowski, A. P.; Greco, M. N.; Springer, J. P. *J. Am. Chem. Soc.* 1984, *106,* 6873-6874.
- (486) Lee, V. J.; Branfman, A. R.; Herrin, T. R.; Rinehart, K. L., Jr. *J. Am. Chem. Soc.* 1978, *100,* 4225-4236.
- (487) Kato, T.; Sato, M. *Yakugaku Zasshi* 1972, *92,* 1507-1514; *Chem. Abstr.* **1973,** *78,* 84162.
- (488) Cartwright, D.; Lee, V. J.; Rinehart, K. L., Jr. *J. Am. Chem. Soc.* 1978, *100,* 4237-4239.
- (489) Kato, T.; Sato, M. *Yakugaku Zasshi* 1972, *92,* 1515-1520; *Chem. Abstr.* **1973,** *78,* 97451.
- (490) Sasaki, T.; Eguchi, S.; Okano, T. *J. Org. Chem.* 1981, *46, U7A-4417.*
- (491) Ogura, K.; Sasaki, H.; Seto, S. *Bull. Chem. Soc. Jpn.* 1965, *38,* 306-313.
- (492) (a) Seto, S.; Sasaki, H.; Ogura, K. *Bull. Chem. Soc. Jpn.* 1966, *39,* 281-285. (b) Toda, H. *Yakugaku Zasshi* 1967, *87,*1351- 1358; *Chem. Abstr.* 1968, *69,* 2687.
- (493) Toda, H.; Seto, S. *Chem. Pharm. Bull.* 1971,*19,* 1477-1482. (494) Treasurywala, A.; Palameta, B.; Bogri, T.; Bagli, J. (Ayerst) U.S. Patent 4 337 265, 1982.
- (495) Moon, M. W.; Church, A. R.; Steinhards, A. (Upjohn) Br. Patent 1384097,1384098, 1975; Ger. Offen. 2235811,1973; *Chem. Abstr.* **1973,** *78,* 136056.
- (496) Coffen, D. L. (Hoffmann LaRoche) U.S. Patent 4093654, 1978; *Chem. Abstr.* 1978, *89,* 179983.
- (497) (a) Durant, G. J.; Emmett, J. C; Ganellin, C. R. (Smith, Kline, and French Laboratories, Ltd.) U.S. Patent 3876647, 1975. (b) Erlenmeyer, H. *HeIv. Chim. Acta* 1948, *31,* 32.
- (498) Von Bebenburg, W.; Schulmeyer, N.; Szelenyi, I.; (Deutsche Gold and Silber-Scheideanstalt vorm. Roessler) Ger. Offen.
2905 134, 1979; Chem. Abstr. 1980, 92, 22506.
(499) Clarke, H. T.; Gurin, S. J. Am. Chem. Soc. 193
-
- 1876-1881.

(500) Kawasaki, T.; Osaka, Y.; Tsuchiya, T. (Kureha Chemical Industry Co., Inc.) U.S. Patent 4 363813, 1981; Ger. Offen.

3026 054, 1981; Chem. Abstr. 1981, 95, 7265.

(501) Blount, J. F.; Coffen, D. L.; Katona
-
-
- 1834 and references therein.

(503) Chiba, T.; Sato, H.; Kayaba, T.; Kato, T. *Heterocycles* 1984,

22, 387-390.
-
- (504) Bachi, M. D.; Breiman, R.; Meshulam, H. J. Org. Chem. 1983,
48, 1439-1444.
(505) Takeda Chemical Industry Co., Ltd. Japan Kokai Tokkyo
Koho JP 81-53 311, 1981; Chem. Abstr. 1982, 96, 199408.
(506) (a) Numata, M.; Yam
- Nishimura, T. (Takeda Chemical Industries, Ltd.) U.S. Pat-

ent 4239758, 1980; U.S. Patent 4172 891,1977; Ger. Offen. 2714419,1977; *Chem. Abstr.* 1978,*88,* 22962. (b) Matsuo, T.; Sugahara, T.; Matsuya, K. (Takeda) Japan Kokai 78-15395, 1978; *Chem. Abstr.* 1978, *89,* 43452. (529)

- (507) (a) Numata, M.; Minamida, L; Yamaoka, M.; Shiraishi, M.; (530) Miyawaki, T., (Takeda Chemical Industries, Ltd.) U.S. Pat-ent 4421912, 4 379924, 1983; U.S. Patent 4080498, 1975; Japan Kokai 75-111093,1975; *Chem. Abstr.* 1978,*88,* 89682. (b) Kakeya, N.; Yoshimura, Y. (Takeda) U.S. Patent 4080498, 4260607,1981; Ger. Offen. 2735732,1978; *Chem.* (531) *Abstr.* 1978,*89,* 24330. (c) Takaya, T.; Masugi, T.; Takasugi, H.; Kochi, K. (Fujisawa Pharmaceutical Co., Ltd.) U.S. Patent 4 254 260, 1976; Ger. Offen. 2 625 015, 1976; Chem. Abstr.
- 1977, *86,* 171476. (508) Huwiler, A.; Tenud, L. (Lonza A.-G.) U.S. Patent 4 391979, 1983; Eur. Pat. Appl. 34340, 1981; *Chem. Abstr.* 1981, *95,* 203928
- (509) (a) Numata, M.; Minamida, L; Tsushima, S. (Takeda Chem- (533) ical Industries Ltd.) U.S. Patent 4264595, 1978; and Ger. Offen. 2 727 753, 1978; *Chem. Abstr.* 1978, *88,* 190871. (b) (534) Nishimura, T.; Tsushima, S. (Takeda) Br. 1602876, 1978; Ger. Offen. 2818025,1978; *Chem. Abstr.* 1979, *90,* 72220. (c) (535) Numata, M.; Minamida, I.; Tsushima, S. (Takeda) U.S. Patent 4179502 1979; Ger. Offen. 2805608, 1978; *Chem. Abstr.* 1979,*90,* 23077. (d) Nakao, H.; Fujimoto, K.; Ishihara, (536) S.; Sugawara, S.; Iganashi, I. (Sankyo Co., Ltd.) Eur. Pat. Appl. EP 49118, 49119,1982; *Chem. Abstr.* 1982, *97,* 72185. (537) (e) Reiner, R. (F. Hoffmann LaRoche and Co., A.-G.) U.S. (538) Patent 4412070, 1982, Eur. Pat. Appl. 49499, 1982; *Chem. Abstr.* 1982, *97,* 55581. (f) Borrevang, P.; Petersen, H. B.; Komiyama, T. Eur. Pat. Appl. 18155, 1980; *Chem. Abstr.* 1981, *95,*150682. (g) Takatani, T.; Takasugi, H.; Tozuka, Z.
- (Fujisawa Pharmaceutical Co., Ltd.) Japan Kokai Tokkyo (539)
Koho 79-44 695, 1979; Chem. Abstr. 1979, 91, 211492.
(510) (a) Takaya, T.; Takasugi, H.; Tsuji, K.; Chiba, T. (Fujisawa (540)
Pharmaceutical Co., Ltd.) U.S. Pate Nakao, H.; Sugawara, S. (Sankyo Co., Ltd.) Br. Patent (543)
2051 066, 1980; Ger. Offen. 3020 625, 1980; *Chem. Abstr.*
1981, 94, 192359. (c) Masugi, T.; Ogino, T.; Takaya, T.; Tsuji, (544)
K. (Fujisawa Pharmaceutical Co., P.; Moutonnier, C; Peyronel, J. F. (Rhone-Poulenc Ind.) U.S. (545) Patent 4307233, 4307230, 4307116, 1981; Ger. Offen.
3019430,1980;*Chem. Abstr.* 1981,*95,*187274,150683,7308. (546)
(e) Toyama Chemical Co., Ltd. Br. Patent 2089339,1982;
- Ger. Offen. 3137 854, 1982; *Chem. Abstr.* 1982, *97,* 72184. (511) Takaya, T.; Masugi, T.; Ogino, T.; Tsuji, K. (Fujisawa Pharmaceutical Co., Ltd.) U.S. Patent 4242510, 4371531, 1978, Ger. Offen. 2 758159, 1978; *Chem. Abstr.* 1978, *89,* (547) 215421. (512) (a) Cahoy, R. P. (Gulf Research and Development Corp.) U.S.
- Patent 4120690, 1978; *Chem. Abstr.* 1979, *90,* 121579. (b) (548) Cahoy, R. P. (Gulf) U.S. Patent 4232163,1980; *Chem. Abstr.* 1981, *94,* 103350.
- (513) Chiba, T.; Sato, H.; Kato, T. *Chem. Pharm. Bull.* 1983, *31,* (549) 2480-2483.
- (514) Takada, T.; Tabei, K.; Kawashima, E.; Kato, T. *Chem. Pharm. Bull.* 1982, *30,* 3987-3993.
- (515) (a) Clauss, K. *Ann. Chem.* 1980, 494-502. (b) Clauss, K. (550) (Hoechst A.-G.) Ger. Offen. 2943103, 1981.
- (516) Maurer, F.; Riebel, H. J.; Schroder, R.; Hammann, I.; Hom-eyer, B., Stendel, W. (Bayer A.-G.) Ger. Offen. 2644588, (551) 2721188,1978; *Chem. Abstr.* 1978,*89,*43409,43777; 1979,*90,*
- 72182. (552) (517) Maurer, F.; Riebel, H. J.; Schroder, R.; Hammann, I.; Horn- (553) eyer, B.; Stendel, W. (Bayer A.-G.) U.S. Patent 4168304,
-
- 1979, (554) (518) Chiba, T.; Sato, H.; Kato, T. *Heterocycles* 1984,*22,* 493-496. (519) Miller, R.; Tenud, L. (Lonza A.-G.) Eur. Pat. Appl. 67408, (555) 67409, 67410, 1982; *Chem. Abstr.* 1983, *98,* 178749,179198, 215472.
- (520) Santaniello, E.; Casati, R.; Milani, F. J. Chem. Res., Synop.
- 1984 132-133. (521) Take'i, H.; Higo, M.; Saito, K.; Mukaiyama, T. *Bull. Chem.*
- *Soc. Jpn.* 1968, *41,* 1738. (557) (522) Mukaiyama, T.; Higo, M.; Katsuyama, H. (Fuji Photo Film Co., Ltd.) U.S. Patent 3 869 480,1972; Japan Kokai 72-30 659, (558) 1972; Ger. Offen. 2 213108, 1972; *Chem. Abstr.* 1973, *78,*
- 16035, 29643. (523) Kato, T.; Chiba, T.; Tanaka, S. *J. Heterocycl. Chem.* 1976,
- 13, 461-464. (524)

(524) Sakamoto, M.; Miyazawa, K.; Kuwabara, K.; Tomimatsu, Y. (689)

Chem. Pharm. Bull. 1979, 27, 2116-2121. (525) Degener, E.; Ley, K.; Wagner, K.; Heitzler, H. (Bayer A.-G.)

(525) Degener, E.; Ley,
-
-
-
-

zhanova, N. Y. *Khim. Geteroskl. Soedin.* 1978, 1049-1052; *Chem. Abstr.* 1979, *90,* 6290. (b) Ried, W.; Marx, W. *Chem. Ber.* 1957, *90,* 2683-2687.

- Ried, W.; Stahlhofen, P. *Chem. Ber.* 1957, *90,* 825-828.
- (a) Tominaga, Y.; Fujito, H.; Matsuda, Y.; Kobayashi, G. *Heterocycles* 1979,*12,* 401-404. (b) Tominaga, Y.; Fujito, H.; Norisue, H.; Ushiroguchi, A.; Matsuda, Y.; Kobayashi, G. *Yakugaku Zasshi* 1980,*100,* 699-705; *Chem. Abstr.* 1981, *94,* 47285.
- Solomko, Z. F.; Pikalov, V. L.; Avramenko, K. I.; Khmel, M. P.; Pribega, L. V. USSR Patent 749836, 1980; *Chem. Abstr.* 1981 *94* 139851
- (a) Carroll, M. F.; Bader, A. R. *J. Am. Chem. Soc.* 1953, 75, 5400-5402. (b) Carroll, M. F.; Bader, A. R. *J. Am. Chem. Soc.* 1952, *74,*6305. (c) Structure confirmation: Bader, A. R.; Gutowsky, H. S.; Heescher, J. P. *J. Org. Chem.* 1956, *21,* 821-822.
- Carroll, M. F. (A Boake, Roberts and Co., Ltd.) Br. Patent 749749, 1956; *Chem. Abstr.* 1957, *51,* 7415.
- Pietsch, S.; Schaeffer, G. (Farbwerke Hoechst A.-G.) Ger.
- Offen. 2149650, 1973; *Chem. Abstr.* 1973, *79,* 126507. Balyan, K. V.; Shtangeev, A. L. *Zh. Obschch. Khim.* 1954,*24,* 238-241. The "isopropenyl acetoacetate" described in this paper has since been shown to be a l,3-dioxin-4-one.
- Dehmlow, E. V.; Shamout, A. K. *Ann. Chem.* 1982, 1753-1755.
- Clemens, R. J. *Kodak Lab. Chem. Bull.* 1984, *55* (3), 1-4.
- (a) Clemens, R. J.; Hyatt, J. A. *J. Org. Chem.* 1985, 50, 2431-2435. (b) Hyatt, J. A.; Feldman, P. L.; Clemens, R. J. *J. Org. Chem.* 1984, *49,* 5105-5108. (c) Clemens, R. J. (Eastman Kodak) U.S. Patent 4496 747 1985; *Chem. Abstr.* 1985, *102,* 166615. Kato, T.; Chiba, T.; Sato, M. *Chem. Pharm. Bull.* 1978, *26,*
- 3877-3879.
- Izawa, T.; Mukaiyama, T. *Chem. Lett.* 1975, 161-164.
- Izawa, T.; Mukaiyama, T. *Chem. Lett.* 1978, 409-412.
- Girotra, N. N.; Wendler, N. L. *Tetrahedron Lett.* 1982, *23,* 5501-5504.
- Watson, K. G. (ICI) U.K. Patent 2140803, 1984; *Chem. Abstr.* 1985, *102,* 184973. (a) Izawa, T.; Mukaiyama, T. *Chem. Lett.* 1974, 1189-1192.
-
-
- (b) Ishikawa, T.; Yamamoto, M. Chem. Pharm. Bull. 1982,
30, 1594-1601.
Yufit, S. S.; Kucherov, V. F. Izv. Akad. Nauk SSSR, Ser.
Yufit, S. S.; Kucherov, V. F. Izv. Akad. Nauk SSSR, Ser.
Khim. 1960, 1658-1663; Chem. Abstr. 1
- For a review of these reactions, see: Kato, T.; Chiba, T. *Yuki Gosei Kagaku Kyokaishi* 1981, *39,* 733-740; *Chem. Abstr.* 1981, *95,* 168405.
- Dingwall, J. G.; Tuck, B. (Ciba-Geigy A.-G.) U.S. Patent 4398033, 1982; Eur. Pat. Appl. 60808, 1982; *Chem. Abstr.* 1983, *98,* 53675.
- (a) Dingwall, J. G.; Tuck, B. (Ciba-Geigy A.-G.) U.S. Patent 4363923, 1981; Fr. Demande 2479 215, 1981; *Chem. Abstr.* 1982, *96,* 122615. (b) Ciba Geigy, A.-G. Eur. Pat. 111440, 1984; *Chem. Abstr.* 1984,*101,* 151874.
- Dingwall, J. G.; Tuck, B. (Ciba-Geigy A.-G.) U.S. Patent 4384966, 1981; Fr. Demande 2479231, 1981; *Chem. Abstr.*
- 1982, *96,* 123013. Kato, T.; Sato, M.; Kitagawa, Y.; Sato, R. *Chem. Pharm.*
- *Bull.* 1981, *29,* 1624-1628. Kleemann, G.; Seppelt, K. *Chem. Ber.* 1979,*112,* 1140-1146. Hull, G. A.; Daniher, F. A.; Conway, T. F. *J. Org. Chem.* 1972, *37,* 1837-1840.
- Theobald, C. W. (Du Pont) U.S. Patent 2675392, 1954; *Chem. Abstr.* 1955, *49,* 4722.
- (a) Dingwall, J. G.; Tuck, B. *Angew. Chem., Int. Ed. Engl.* 1983, *22,* 498-499. (b) Hertenstein, U. *Angew. Chem.* 1980, *92* 123-124.
-
-
- Kato, T.; Chiba, T.; Sato, M.; Katagiri, N.; Suzuki, Y.; Sato, R.; Yashima, T. Fukusokan Kagaku Toronkai Koen Yoshishu, 12th 1979, 36-40; Chem. Abstr. 1980, 93, 26176.
Kato, T.; Chiba, T.; Sato, R.; Yashima, T. J. Org. Che
-
- Kato, T.; Katagiri, N.; Sato, R. *J. Chem. Soc, Perkin Trans. 1979*, 525–528
- Kato, T.; Katagiri, N.; Sato, R. *Chem. Pharm. Bull.* 1979, *27,*
- 1176-1180. Kato, T.; Katagiri, N.; Sato, R. *J. Org. Chem.* 1980, *45,* 2587-2592.
- (a) Kato, T.; Suzuki, Y.; Sato, M. *Chem. Lett.* 1978, 697-698.

(b) Kato, T.; Suzuki, Y.; Sato, M. *Chem. Pharm. Bull.* **1979,** *27,* 1181-1185.

- (564) Inami, K.; Saito, Y.; Shiba, T. *Peptide Chem.* **1982,** 137. (565) Kato, T.; Chiba, T.; Tsuchiya, S. *Chem. Pharm. Bull.* **1980,**
- *28,* 327-330. (566) Chiba, T.; Tsuchiya, S.; Kato, T. *Chem. Pharm. Bull.* 1981, *29* 3715.
- (567) Chiba, T.; Takahashi, H.; Kato. T. *Heterocycles* **1982,** *19,* 703-704.
- (568) Chiba, T.; Takahashi, H.; Kato, T.; Yoshido, A.; Moroi, R. *Chem. Pharm. Bull.* **1982,** *30,* 544-551.
- (569) Hyatt, J. A.; Miller, M., Eastman Chemicals Division Research Laboratories, unpublished results.
- (570) Kato, T.; Sato, M.; Kitagawa, Y. *J. Chem. Soc, Perkin Trans. 1* **1978** 352-356
- (571) Chiba,'T.; Kato, T.; Yoshida, A.; Moroi, R.; Shimomura, N.; Momose, Y.; Naito, T.; Kaneko, C. *Chem. Pharm. Bull.* **1984,** *32,* 4707-4720. Correction of: Chiba, T.; Okada, M.; Kato, T. *J. Heterocycl. Chem.* **1982,***19,* 1521-1525; *Chem. Pharm. Bull.* **1983,** *31,* 2669-2676.
- (572) Kato, T.; Sato, M.; Kitagawa, Y. *Chem. Pharm. Bull.* **1978,** *26,* 632-635.
- (573) Kato, T.; Sato, M.; Kitagawa, Y. *Chem. Pharm. Bull.* **1975,** *23,* 365-370.
- (574) Clemens, R. J., Eastman Chemicals Division Research Laboratories, unpublished results.
- (575) Seitz, V. G.; Dhar, R.; Mohr, R. *Chem.-Ztg.* **1983,** 707, 172-173.
- (576) d'Alcontres, G. S.; Cum, G.; Gattuso, M. *Ric. Sci.* **1967,** *37,* 750-753; *Chem. Abstr.* **1968,** *68,* 95733.
- (577) Kurita, K.; Hirakawa, N.; Dobashi, T.; Iwakura, Y. *J. Polym. Sci., Polym. Chem. Ed.* **1979,** *17,* 2567-2575.
- (578) Aversa, M. C; Cum, G.; d'Alcontres, G. S.; Uccella, N. *J. Chem. Soc, Perkin Trans. 1* **1972,** 222-225.
- (579) (a) Furukawa, J.; Saegusa, T.; Mise, N.; Kawasaki, A. *Mak-romol. Chem.* **1960,***39,* 243-245. (b) Kawasaki, A.; Furukawa, J.; Saegusa, T.; Mise, M.; Tsuruta, T. *Makromol. Chem.* **1960,** *42,* 25-32.
- (580) Oda, R.; Munemiya, S.; Okano, M. *Makromol. Chem.* **1961,** *43,* 149-151.
- (581) Spes, H.; Altenschoepfer T. (Wacker-Chemie, G.m.b.H.) U.S. Patent 3036057, 3153019, 1962; Ger. Offen. 1141454, 1962; *Chem. Abstr.* **1963,** *58,* 6942.
- (582) Okamura, S.; Hayashi, H.; Kitanishi, Y.; Watanabe, H.; Nishii, M. *Nippon Isotope Kaigi Hobunshu* **1961,** *4,* 309-314, 450-456.
- (583) (a) Kamada, K.; Hayashi, K.; Okamura, S. *Nippon Hoshasen* Kobunshi Henkyu Kyokai Nempo 1962, 4, 155–162; Chem.
Abstr. 1965, 62, 7875. (b) Takahura, K.; Fujioka, S.; Otsuku,
N.; Hatada, M.; Hayashi, K.; Hirota, K. Okamura, S. *Nippon Hoshasen Kobunshi Henkyu Kyokai Nempo* **1962,** *4,* 177- 182; *Chem. Abstr.* **1965,** *62,* 7876.
- (584) Dubsky, G. J.; Stark, B. P. (Ciba Geigy) U.S. Patent 3458483, 1965; Fr. Demande 1397 538, 1965; *Chem. Abstr.* **1965,** *63,* 7131.
- (585) (a) Noro, K.; Morimoto, G. *Kogyo Kagaku Zasshi* **1962,** *65,* 399-401; *Chem. Abstr.* **1962,***57,*10028/. (b) Coffmann, D. D. (Du Pont), U.S. Patent 2 585537, 1952; *Chem. Abstr.* **1952,** *46,* 4279. (c) Iwakura, Y.; Tamikado, T.; Fujimoto, Y.; Ikegami, S.; Maruyama, M. *Kobunski Kagaku* **1958,***15,* 469-474; *Chem. Abstr.* **1960,** *54,* 11555.
- (586) Gabrielyan, G. A.; Stanchenko, G. I.; Rogovin, Z. A. *Khim. Volokna* **1965,** 13-16; *Chem. Abstr.* **1966,** *64,* 9865.
- (587) (a) Gabrielyan, G. A.; Rogovin, Z. A. *Khim. Volokna* **1963,** 2-5; *Chem. Abstr.* **1965,** *62,* 14871. (b) Matsuoka, K., Takemoto, K., Imoto, M. *Kogyo Kagaku Zasshi* **1966,** *69,* 759- 761; *Chem. Abstr.* **1966,** *65,* 20224.
- (588) Gray, H. W.; Theobald, C. W. (Du Pont) U.S. Patent 2653146, 1953; *Chem. Abstr.* 1954, *48.* 1068.
- (589) Franzen, K.; Lehmann, H. (P. Beiersdorf and Co., A.-G.) U.S. Patent 3189480,1963; Br. Patent 938217,1963; *Chem. Abstr.* **1964,** *60,* 734.
- (590) Werntz, J. H. (Du Pont) U.S. Patent 2 722 481, 1955; *Chem.*
- *Abstr.* **1956,** *50,* 4760. (591) Gateff, G.; Klupar, J. A. (B. F. Goodrich Co.) U.S. Patent 2842525, 1958; *Chem. Abstr.* **1959,** *53,* 3776.
- (592) (a) Horder, J. R.; Lappert, M. F. *J. Chem. Soc, Chem. Com*mun. 1967, 485-486. (b) Horder, J. R.; Lappert, M. F. J.
Chem. Soc. A 1969, 173-177. (c) Urata, K., Itoh, K.; Ishii, Y.
J. Organomet. Chem. 1973, 63, 11-15. (d) Bodesheim, F.;
Hahn, G.; Nischk, G. (Bayer A.-G.) Ger. Offen.
- (593) Sheludyakov, V. D.; Kozyukov, V. P.; Petrovskaya, L. L; Mironov, V. F. *Khim. Geterotsikl. Soedin.* **1967,** 185-186.
- (594) Kricheldorf, H. R. *Chem. Ber.* **1973,** *106,* 3765-3768. (595) Suzuki, H.; Matsuda, I.; Itoh, K.; Ishii, Y. *Bull. Chem. Soc. Jpn.* **1974,** *47,* 2736-2738.
- (596) Couret, C; Satge, J.; Couret, F. *Organomet. Chem.* **1973,** *47,* 67-78.
- (597) (a) Pudovik, A. N.; Sobanov, A. A.; Bakhtiyarova, I. V.; Zimin, M. G. *Zh. Obsch. Khim.* **1983,** *53,* 2665-2669; *Chem. Abstr.* **1984,** *100,* 121227. (b) Sobanov, et. al. USSR Patent 1028673, 1983; *Chem. Abstr.* **1984,** *100,* 6841.
- (598) Okeya, S.; Ogura, T.; Kawaguchi, S. *Inorg. Nucl. Chem. Lett.* **1969,** 5, 713-716.
- (599) Baba, S.; Sobata, T.; Ogura, T.; Kawaguchi, S. *Bull. Chem. Soc. Jpn.* **1974,** *47,* 2792-2796.
- (600) White, A. W., Eastman Chemicals Division Research Laboratories, unpublished results.
- (601) Uchiumi, S.; Ataka, K. (Ube Industries, Ltd.) Eur. Pat. Appl. 83-110641, 1984; *Chem. Abstr.* **1985,** *101,* 90431.
- (602) Kozankova, M. A.; Lutsenko, I. F.; Nesmayanov, A. N. *Zh.*
- *Obsch. Khim.* **1965,** 1447-1453. (603) Herrmann, W. A.; Weichmann, J.; Ziegler, M. L.; Pfisterer, H. *Angew. Chem., Int. Ed. Engl.* **1982,** *21,* 551.
- (604) Arce, A. J.; Deeming, A. J. *J. Chem. Soc, Chem. Commun.* **1982,** 364-365.
- (605) Yamamoto, T.; Ishizu, J.; Yamamoto, I. *Bull. Chem. Soc. Jpn.* **1982,** *55,* 623-624.
- (606) Pino, P.; VonBezard, D. U.S. Patent 4186140, 1978; Ger. Offen. 2807251, 1978; *Chem. Abstr.* **1979,** *90,* 6235.
- (607) (a) Itoh, K.; Yogo, T.; Ishii, Y. *Chem. Lett.* **1977,**103-106. (b) Itoh, K.; Ishii, Y.; Yogo, T. (Anjinomoto Co., Inc.) Japan Kokai Tokkyo Koho 79-22326,1979; *Chem. Abstr.* **1980,** *92,* 6686.
- (608) Itoh, K.; Fukui, M.; Kurachi, Y. *J. Chem. Soc, Chem. Commun.* **1977,** 500-501.
- (609) Armstrong, R. J.; Weiler, L. *Can. J. Chem.* **1983,** *61,* 2530-2539.
- (610) Fujisawa, T.; Sato, T.; Gotoh, Y.; Kawashima, M.; Kawara, T. *Bull. Chem. Soc Jpn.* **1982,** 3555-3559.
- (611) (a) Abe, Y.; Goto, H.; Sato, M.; Kato, T. *Chem. Pharm. Bull.* **1983,** *31,* 1108-1111. (b) Abe, Y.; Sato, M.; Goto, H.; Suga-wara, R.; Takahashi, E.; Kato, T. *Chem. Pharm. Bull.* **1983,** *31,* 4346-4354.
- (612) Bianchi, D.; Rivolta, L.; Tartari, V. *Chim. Ind. (Milan)* 1985, *67,* 245-249; *Chem. Abstr.* **1985,** *103,* 104225.
-
-
- (613) Mukaiyama, T.; Nohira, H. J. Org. Chem. 1961, 26, 782–784.
(614) Winterfeldt, T. et al. *Liebigs. Ann. Chem.* 1985, 1752–1763.
(615) Marcus, E.; Stephen, J. F.; Chan, J. K. J. *Heterocycl. Chem.* **1969,** *6,* 13-22.
- (616) Makino, K.; Sakata, G.; Morimoto, K.; Ochiai, Y. *Heterocy-cles* **1985,** *23,* 1729-1734. (617) Moody, C. J.; Pearson, C. J.; Lawton, G. *Tetrahedron Lett.*
-
- **1985,** *26,* 3171-3172. (618) Ried, W.; Pauli, R. *Chem. Ber.* **1985,** *118,* 2561-2564.
- (619) Barluenga, J.; Tomas, M.; Gotor, V. *J. Chem. Res., Synop.* 1984, 154-155.