# The Application of Elemental Fluorine in Organic Synthesis

SUZANNE T, PURRINGTON\* and BRADLEY S. KAGEN

Department of Chemlstry, North Carolina State University, Raleigh, North Carolina 27695-8204

TIMOTHY B. PATRICK

Department of Chemistry, Southern Illinois University, Edwardsville, Illinois 62026-1001

Received May 2, 1986 (Revised Manuscript Received July 11, 1986)

## Contents

| I.    | Introduction                                                     | 997  |
|-------|------------------------------------------------------------------|------|
| II.   | Addition of Fluorine to $\pi$ Bonds                              | 997  |
|       | A. C=C                                                           | 997  |
|       | 1. Alkenes                                                       | 997  |
|       | 2. Heterocycles                                                  | 998  |
|       | 3. Enol Derivatives                                              | 1000 |
|       | B. C==C                                                          | 1001 |
|       | C. C—N                                                           | 1002 |
|       | 1. Imines                                                        | 1002 |
|       | 2. Diazo and Related Compounds                                   | 1002 |
| III.  | Nitrogen Derivatives                                             | 1002 |
|       | A. Isocyanates                                                   | 1002 |
|       | B. Isonitriles                                                   | 1003 |
|       | C. Amides                                                        | 1003 |
| IV.   | Substitution at Unactivated C-H Positions                        | 1003 |
| ۷.    | Electrophilic Aromatic Substitution                              | 1005 |
|       | A. Evaluation of F <sup>+</sup> as a Reactive<br>Intermediate    | 1005 |
|       | B. Reaction of Aromatic Substrates                               | 1005 |
| VI.   | Metathetical Reactions                                           | 1007 |
| VII.  | Preparation of Commercially Unavailable<br>Fluorinating Reagents | 1007 |
|       | A. Organo Fluoroxy Compounds                                     | 1007 |
|       | 1. Acyl Hypofluorites                                            | 1007 |
|       | 2. Fluoroxysulfate Salts                                         | 1012 |
|       | B. N-Fluoro Compounds                                            | 1015 |
|       | C. Halogen Monofluorides                                         | 1015 |
| VIII. | Conclusion                                                       | 1015 |

## I. Introduction

In commemoration of the 100th anniversary of Moissan's discovery of fluorine gas,<sup>1</sup> and with the ever growing interest in fluorinated organic molecules for biomedical applications, a review of the methods of fluorination in organic synthesis is appropriate. Much has been accomplished since Bockemuller first showed the potentially selective nature of fluorine as demonstrated in his fluorination of aliphatic carboxylic acids.<sup>2</sup> Since that time, many new selectively fluorinated organic molecules have been made available from elemental fluorine, including some that are useful intermediates in the synthesis of other non-fluorinated compounds.<sup>3</sup>

There have been a number of publications that deal in part with selective fluorination using elemental fluorine,<sup>4-11</sup> but since 1961<sup>8</sup> there have been no comprehensive compilations. This paper will concentrate on the more recent developments. The direct fluorination of ureas, carbamates, amines, nitro compounds, carboxylate salts, anhydrides,<sup>4</sup> and the commercially unavailable halogen monofluorides<sup>12</sup> have been previously reviewed and will be updated accordingly. Perfluorination reactions, although at times synthetically useful, are too broad a subject and are best left to a separate review.

Until the 1960's, elemental fluorine had been considered too reactive and dangerous to be practical for the fluorination of organic molecules. Fluorine is such a strong oxidizing agent that it reacts with almost any organic compound, usually exothermically, and often with explosive results.<sup>4</sup> The poor solubility of fluorine results in reactions that proceed at the liquid-gas interface.<sup>13</sup> This behavior, coupled with the exothermic nature of the reaction, allows localized hot spots to form which can promote unwanted side reactions.<sup>14</sup> To minimize this effect, solutions of fluorine diluted with inert gases such as nitrogen or argon are usually employed to provide more control and selectivity.<sup>15</sup> Synthetic applications have greatly increased with the commercial availability of these diluted solutions and also with the development of various moderating agents.

# II. Addition of Fluorine to $\pi$ Bonds

#### A. C=C

#### 1. Alkenes

The addition of fluorine to various alkenes is summarized in Table I. Under appropriate reaction conditions, elemental fluorine exhibits reactions that are associated with electrophilic processes<sup>16</sup> in which substrates act as nucleophiles towards fluorine. Merritt<sup>17-20</sup> first recognized the electrophilic nature of  $F_2$  in his investigation of the addition to alkenes. Fluorination of *cis*-stilbene with 1 equiv of  $F_2$  at low pressure and temperature in fluorocarbon solvents resulted in products which show that the syn mode of addition predominated. Merritt<sup>18</sup> ruled out a free-radical pathway



Suzanne T. Purrington was born in New York City. She received her Ph.D. under the direction of Professor Paul D. Barlett at Harvard University in 1963. She joined the faculty at North Carolina State University in 1978. Her current research interests are in the area of development of selective fluorination procedures. Gardening is her main leisure-time activity.



Bradley S. Kagen was born in 1958 and received his B.S. in chemistry from West Virginia State College in May of 1980. He worked for the Union Carbide corporation as a research assistant until June of 1984. Currently, Brad is working towards a master's degree in chemistry at North Carolina State University and plans to open his own business after graduation. His hobbies include song writing, guitar, chess, and all sports.



Dr. Timothy B. Patrick was born in Huntington, WV. He was educated in the public and state school systems, attending Marshall University (B.S.) and West Virginia University (Ph.D.). Following postdoctoral studies at Ohio State University, he joined the faculty at Southern Illinois University at Edwardsville where he is presently a full professor. His research interests are in synthetic and biological organofluorine chemistry, new synthetic methodology, and nuclear magnetic resonance spectroscopy. His hobbies include reading, sports, and business.

based on the observed selectivity and the reaction conditions and proposed a concerted pathway to account for the experimental observations. However, a mechanism that proceeds by way of a tight ion pair,



such as that proposed for acetyl hypofluorite<sup>21</sup> and fluoroxytrifluoromethane<sup>22</sup> additions, is more reasonable (Scheme I). The unstable  $\alpha$ -fluoro carbocation gives rise to the vinyl fluoride (2) by loss of a proton or adds fluoride to give the vicinal difluoride (1). The vinyl fluoride was the precursor to the trifluoro products (3) observed (entries 2, 5, 6, and 13), as shown by the further fluorination of 1,1-diphenyl-2-fluoroethylene (entry 3). Propenylbenzenes (entries 5 and 6), which would lead to a less stabilized intermediate than the other compounds studied, produced the smallest amount of the trifluoride.<sup>20</sup> Further support for the mechanism is found in the fluorination of trans-1phenylpropene in methanol at -78 °C<sup>20</sup> which gave 44% threo and 7% erythro difluoro adducts. In addition, a 49% mixture of the solvent incorporated erythro- and threo-1-methoxy-1-phenyl-2-fluoropropanes was ob-Under the same conditions, cis-1served (eq 1).



phenylpropene gave 12% threo and 38% erythro adducts and 50% of the ethers.

Direct addition of fluorine to steroidal olefins has also been studied<sup>19,23</sup> (entries 7–10). The 16 $\alpha$ -fluoro-17 $\beta$ methyl adduct of entry 8 was assumed to be formed by Kagi–Miescher rearrangement.<sup>23</sup> The vicinal product of entry 8, the 16 $\alpha$ ,17 $\alpha$ -difluoro adduct, displayed the expected syn addition of fluorine to the double bond. Addition was directed to the  $\alpha$  face of the substrate because of the sterically hindered nature of the  $\beta$  face.

# 2. Heterocycles

Generally, CFCl<sub>3</sub> is the solvent of choice for many selective fluorinations; however solubility sometimes proves to be a problem. Purines and pyrimidines exhibit poor solubility in CFCl<sub>3</sub> and require an alternative solvent. Acetic acid has been found to be an ideal solvent, although on occasion other solvents such as methylene chloride,<sup>25</sup> hydrofluoric acid,<sup>26</sup> water,<sup>27</sup> and pyridine<sup>28</sup> have been used. The latter solvents give lower product yields and are not generally employed. However, in the case of 2-pyrimidinone a 38% yield of the 5-fluoro adduct was formed in liquid HF whereas only 5–10% was obtained in acetic acid.<sup>26</sup>

The isoquinoline ring system could not be fluorinated, but fluorination of the related 2-methylisocarbostyril

# TABLE I. Addition of Fluorine to Alkenes in Freon

| entry                                               | substrate                          | product                                                 | %<br>vield  | ref |
|-----------------------------------------------------|------------------------------------|---------------------------------------------------------|-------------|-----|
| 1                                                   | trans-EtOCOCH=CHCO <sub>2</sub> Et | EtOCOCHFCHFCO <sub>3</sub> Et                           | <10         | 24  |
| 2                                                   | $Ph_2C = CH_2$                     | Ph <sub>2</sub> CFCH <sub>2</sub> F                     | 14          | 18  |
|                                                     |                                    | Ph <sub>2</sub> C=CHF<br>Ph <sub>2</sub> CFCHF          | 78          |     |
| 3                                                   | $Ph_2C=CHF$                        | Ph <sub>2</sub> CFCHF <sub>2</sub>                      | 93          | 18  |
| 4                                                   | cis-PhCH=CHPh                      | meso-PhCHFCHFPh                                         | 79          | 18  |
| 5                                                   | trans-PhCH=CHCH                    | <i>di</i> -PhCHFCHFPh<br>PhCHFCHFCH。                    | 16<br>80-90 | 20  |
| Ŭ                                                   |                                    | erythro;threo 31:69                                     |             | -0  |
| C                                                   | ALA DECH-CHCH                      | PhCHFCF <sub>2</sub> CH <sub>3</sub>                    | <3          | 20  |
| 0                                                   | cis-FIICH—CHCH3                    | erythro:threo 78:22                                     | 00-90       | 20  |
|                                                     |                                    | PhCHFCF <sub>2</sub> CH <sub>3</sub>                    | <3          |     |
| 7                                                   | $\rightarrow$                      | $\gamma \gamma \gamma \gamma$                           | 60-70       | 19  |
|                                                     |                                    |                                                         |             |     |
|                                                     |                                    |                                                         |             |     |
|                                                     | 0                                  | 0                                                       |             |     |
|                                                     |                                    | l F<br>F                                                |             |     |
| 8                                                   |                                    | ¥°                                                      | 40          | 20  |
|                                                     | $\searrow^{0}$                     | F                                                       |             |     |
|                                                     | $\sim$                             |                                                         |             |     |
|                                                     |                                    | ۳۰۰۰ H                                                  |             |     |
|                                                     | And H                              | F LUL                                                   | 12          |     |
|                                                     |                                    |                                                         |             |     |
|                                                     |                                    | What is                                                 |             |     |
| •                                                   |                                    | · · · · · · · · · · · · · · · · · · ·                   |             |     |
| 9                                                   | UAC .                              | UAC C                                                   | 10          | 23  |
|                                                     |                                    |                                                         |             |     |
|                                                     |                                    | , , , , , , , , , , , , , , , , , , ,                   |             |     |
|                                                     | J H                                | H Manager                                               |             |     |
| . 10                                                | 0                                  | <i>7</i> 2.                                             | 10ª         | 23  |
|                                                     | $\sim$                             |                                                         |             |     |
|                                                     |                                    | o                                                       |             |     |
|                                                     | of the H                           | ∖_ F<br>F                                               |             |     |
| 11                                                  |                                    |                                                         | 43          | 17  |
|                                                     | CH-                                | CH3                                                     |             |     |
|                                                     | 0.13                               | ∕ F<br>F                                                |             |     |
|                                                     |                                    | (cis and trans)                                         |             |     |
| 12                                                  |                                    |                                                         | 32          | 17  |
|                                                     | $\diamond$                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                  |             |     |
| 13                                                  |                                    | FF                                                      |             |     |
|                                                     |                                    |                                                         |             |     |
|                                                     | 001                                | $\left[ \begin{array}{c} 0 \\ 0 \\ \end{array} \right]$ |             |     |
|                                                     |                                    | trans                                                   | 11          |     |
|                                                     |                                    | cis                                                     | 35          | 17  |
|                                                     |                                    | F F <sub>2</sub>                                        |             |     |
|                                                     |                                    |                                                         |             |     |
|                                                     |                                    |                                                         |             |     |
| 14                                                  | СНз                                | FF                                                      | 20          | 17  |
|                                                     |                                    | С. С. Н.3                                               |             |     |
|                                                     |                                    | $[\bigcirc][\bigcirc]$                                  |             |     |
|                                                     |                                    | <i></i>                                                 |             |     |
| <sup>a</sup> In CF <sub>3</sub> CH <sub>2</sub> OH. |                                    |                                                         |             |     |

(4) was successful.<sup>29</sup> In acetic acid, a 54% yield of the 4-fluoro compound was isolated as shown in eq 2.



Similarly, 1-methyl-5-fluoro-2-pyridone was prepared in 43% yield from 1-methyl-2-pyridone.<sup>29</sup>

A nitrogen-diluted solution of fluorine reacted with pyrimidines for the synthesis of 5-fluorouracil, 6fluorothymine, and many other important biochemical derivatives.<sup>25–28,30–41</sup> In the synthesis of 5-fluorouracil, Cech<sup>25</sup> proposed that the reaction was initiated by syn addition of fluorine across the double bond, followed by solvent assisted elimination of  $F^-$ . In acetic acid, an unstable acetoxy intermediate (5) is formed in this manner (eq 3). The addition of an alcohol to the re-



action mixture, both prior to and after the evaporation of solvent, gave the corresponding stable 5-fluoro-6alkoxy-5,6-dihydrouracil derivative (6). NMR experiments and a crystal structure show that the orientation of the fluorine is cis with respect to the alkoxy group.<sup>42</sup> The alkoxy derivatives can be readily transformed to 5-fluorouracil (7) as indicated in eq 3. Yields for the fluorination of a number of substrates ranged from 50% to quantitative.<sup>30</sup> Recently, Visser et al.<sup>41</sup> have investigated the products of the reaction of F<sub>2</sub> and acetyl hypofluorite with cytosine as well as uracil using <sup>18</sup>F as a tracer. In addition, many nucleosides of uracil derivatives have been fluorinated in the same manner with high yields.<sup>25,28,31,32,34,40</sup>

Antipyrine (8), a lipophilic compound that has been shown to have a high uptake by the brain, can be selectively fluorinated in an aqueous medium<sup>27</sup> or in glacial acetic acid to give the 4-fluoro derivative (9).<sup>43</sup> The preparation of its radiolabeled fluorinated analogue is expected to serve as a means for measurement of regional cerebral blood flow.<sup>43</sup> In glacial acetic acid significant amounts of the 4,4-difluoro adduct (10)<sup>44</sup>



SCHEME II

were also formed, increasing with increased fluorine to substrate ratios (eq 4). In a related reaction, fluorination of 3-carbomethoxypyrazole (11) with fluorine in acetic acid at 20 °C led to the formation of 4-fluoro-3carbomethoxypyrazole (12) in 75% yield based on a 20% conversion of the starting material (eq 5).<sup>45</sup>



#### 3. Enol Derivatives

In an attempt to prepare  $\alpha$ -fluorocarbonyl compounds, a number of enol derivatives have been fluorinated; the results are compiled in Table II. For example, fluorination of the enolized 3-substituted pyruvate esters with 10% fluorine in nitrogen (entries 2–6), gave the  $\alpha$ -fluorinated ketone derivatives in yields as high as 70%. Attempts to fluorinate the related free acid, sodium salt, and trimethylsilyl enol ether (entry 7) were unsuccessful.<sup>46</sup> Direct fluorination of unenolized pyruvates was also unsuccessful and yielded complex product mixtures.<sup>46</sup>

Purrington et al.<sup>47</sup> were able to prepare a number of  $\alpha$ -fluoroaldehydes and ketones (entries 8–17) from trimethylsilyl derivatives in relatively short reaction times (3.5 h). The reactions were run in CFCl<sub>3</sub> with 5% fluorine in nitrogen at -78 °C. The silylated enol of the substrate readily lost innocuous, volatile trimethylsilyl fluoride to give the  $\alpha$ -substituted product. The reaction may proceed via a six-membered cyclic transition state as shown in Scheme II.

Silyl enol ethers of methyl ketones tended to give overfluorinated products and required shorter reaction times (2 h) as well as ultrapure silyl enol ether to obtain the monosubstituted product.<sup>47</sup> Fluorination of silyl ketene acetals (entry 19) has also been performed.<sup>48</sup>

Direct fluorination of enol acetates has not proven to be a good route to  $\alpha$ -fluorocarbonyl compounds. Rozen<sup>49</sup> reported that this reaction gave complex mixtures with no definite isolatable products. However, the simplest case, vinyl acetate<sup>24</sup> gave a 12.5% yield of  $\alpha$ -fluoroacetaldehyde after hydrolysis (entry 1).

The addition of elemental fluorine to double bonds has found applications in many other areas of organic chemistry, including the synthesis of modified carbohydrates.<sup>50-54</sup> Fowler et al.<sup>50</sup> have observed the syn addition of fluorine (2.5% in argon) to 3,4,6-tri-O-acetyl glucal, in CFCl<sub>3</sub> at -78 °C for the preparation of 1,2difluorides (entry 18). When the fluorination was performed in acetic acid, 3,4,6-tri-O-acetyl-2-deoxy-2fluoro- $\alpha$ -D-glucopyranosyl acetate was also formed.<sup>51</sup> 2-Deoxy-2-[<sup>18</sup>F]fluoro-D-glucose (14), a compound that is used as a tracer for glucose metabolism in man, has

| TABLE II. Addition of Fluorine to Enol | Derivatives |
|----------------------------------------|-------------|
|----------------------------------------|-------------|

|                                |                                           |                                                        | %        |     |  |
|--------------------------------|-------------------------------------------|--------------------------------------------------------|----------|-----|--|
| entry                          | substrate                                 | product                                                | yield    | ref |  |
|                                | CH <sub>2</sub> =CHOCOCH <sub>2</sub>     | CH <sub>3</sub> FCHFOCOCH <sub>3</sub> <sup>a</sup> )  |          |     |  |
| _                              | <u>2</u> 3                                | CH <sub>2</sub> FCHO <sup>4</sup> }                    | 20       | 24  |  |
|                                | $R_{0}CH = C(OH)CO_{0}R_{1}$              | R <sub>2</sub> CHFCOCO <sub>2</sub> R <sub>1</sub>     |          |     |  |
| 2                              | $R_1 = Et, R_2 = Ph$                      | $R_1 = Et, R_2 = Ph$                                   | 40       | 46  |  |
| 3                              | $R_1 = Me_1 R_2$                          | = Ph                                                   | 50-60    | 46  |  |
| 4                              | $R_1 = Me_1 R_2$                          | = p-PhCl                                               | 65       | 46  |  |
| 5                              | $R_1 = Et, R_2$                           | $= p - PhNO_2$                                         | 46       | 46  |  |
| 6                              | $R_1 = Et, R_2$                           | $= n - \Pr CO$                                         | 70       | 46  |  |
| 7                              | $PhCH=C(OSiMe_3)CO_2CH_3$                 | PhCHFCOCO <sub>2</sub> CH <sub>3</sub>                 | 0        | 46  |  |
| 8                              | PhCH=CHOSiMe <sub>3</sub>                 | PhCHFCHO                                               | 72       | 47  |  |
| 9                              | $CH_3(CH_2)_4CH = CHOSiMe_3$              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CHFCHO | 70       | 47  |  |
| 10                             | $PhC(CH_3) = CHOSiMe_3$                   | PhCF(CH <sub>3</sub> )CHO                              | 52       | 47  |  |
| 11                             | $Ph_2C = CHOSiMe_3$                       | Ph <sub>2</sub> CFCHO                                  | 57       | 47  |  |
| 12                             | PhCH <sub>2</sub> CH=CHOSiMe <sub>3</sub> | PhCH <sub>2</sub> CHFCHO                               | 70       | 47  |  |
| 13                             | $PhC(OSiMe_3) = CHCH_3$                   | PhCOCHFCH <sub>3</sub>                                 | 59       | 47  |  |
| 14                             | o OSiMe-                                  | r O                                                    | 79       | 47  |  |
| 14                             |                                           |                                                        | 70       |     |  |
|                                |                                           | <u> </u>                                               |          |     |  |
|                                |                                           | F                                                      |          |     |  |
| 15                             | OSIMe <sub>3</sub>                        |                                                        | 73       | 47  |  |
|                                |                                           |                                                        |          |     |  |
|                                |                                           | `F                                                     |          |     |  |
| 16                             | $PhC(OSiMe_3) = CH_2$                     | PhCOCH <sub>2</sub> F                                  | 61       | 47  |  |
| 17                             | $PhCH=C(OSiMe_3)Ph$                       | PhCHFCOPh                                              | 64       | 47  |  |
| 18                             | CH2OAc                                    | CH2OAc                                                 | $40^{b}$ | 50  |  |
|                                |                                           |                                                        |          |     |  |
|                                | OAC AC                                    | AC                                                     |          |     |  |
|                                |                                           | F                                                      |          |     |  |
|                                |                                           | CH <sub>2</sub> OAc                                    | 00       |     |  |
|                                |                                           |                                                        | 26       |     |  |
|                                |                                           |                                                        |          |     |  |
|                                |                                           | AcO T                                                  |          |     |  |
| 19                             | $PhCH=C(OEt)OSiMe_3$                      | $PhCHFCO_2Et$                                          | 71       | 48  |  |
| a A and a second and a large h | The shaft work of the CHaDAc 1 h of       | -                                                      |          |     |  |
| "Aqueous workup."              | in acetic acid, is also f                 | ormea (ref 51).                                        |          |     |  |
|                                |                                           |                                                        |          |     |  |
|                                | Acò 🔶 ÒAc                                 |                                                        |          |     |  |
|                                | F                                         |                                                        |          |     |  |
|                                |                                           |                                                        |          |     |  |

been prepared by acid hydrolysis of the difluoride (13) in approximately 20% overall yield, (eq 6).<sup>50</sup> When



using  $^{18}\rm{F}_2$ , an 8% radiochemical yield of 14 was obtained in only 110 minutes, a time equivalent to the half-life of  $^{18}\rm{F}.^{54}$ 

## B. C≡C

Addition of elemental fluorine to alkynes at -78 °C under the conditions used for the olefin addition reactions<sup>17-19</sup> gave various products depending on the nature of the solvent used.<sup>55</sup> When CFCl<sub>3</sub> (or Freon 11) was employed, the acetylenic compounds were tetra-fluorinated. Reducing the amount of fluorine to less than a stoichiometric amount did not produce any difluoro adduct. However, the reaction of substituted tolanes with fluorine produced complex product mixtures including *cis*- and *trans*- $\alpha$ , $\alpha'$ -difluorostilbenes.<sup>56</sup> Rearrangement products including 1,2,2-trifluoro-1,2-diarylethanes, 1,2,2,2-tetrafluoro-1,1-diarylethanes, and 1,1-difluoro-2,2-diarylethenes were observed. Although

the 1,1,2,2-tetrafluoroethanes were the major products at -78 °C, the others predominated at 0 °C. McEwen and co-workers<sup>56</sup> believe that the reaction proceeds by way of a fluorovinyl radical with a partial positive charge on carbon based on product distribution, a small negative  $\rho$ , and inhibition of fluorination by oxygen. Merritt<sup>55</sup> observed a number of products when the

Merritt<sup>55</sup> observed a number of products when the fluorination was run in methanol. 1-Phenyl-1-propyne (15) gave the trifluoro ether (16, 57%) and the dimethyl ketal (17, 20%) as well as the tetrafluoro adduct (18, 23%) (eq 7). The products from solvent incorporation,



where the alkoxy group(s) substituted only at the position that would support a positive charge demonstrates the polar nature of the addition. Compounds of types 16 and 17 were readily hydrolyzed with a 10% solution of sulfuric acid at 50 °C to give  $\alpha,\alpha$ -difluoro ketones.

| entry | substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | product(s)             | %<br>yield | ref |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-----|--|
| 1     | t-BuCOCN <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t-BuCOCHF <sub>2</sub> | 14-15      | 59  |  |
| 2     | A Contraction of the second se |                        | low        | 59  |  |
| 3     | $Ph_2C=N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ph_2CF_2$             | 71         | 58  |  |
| 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 88         | 58  |  |
| 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 80         | 58  |  |
| 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 94         | 58  |  |
| 7     | PhCOCN <sub>2</sub> Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PhCOCF <sub>2</sub> Ph | 79         | 58  |  |
| 8     | $(EtOCO)_2C=N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(EtOCO)_2 CF_2$       | 70         | 58  |  |
| 9     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F F                    | 65         | 58  |  |
| 10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 31         | 11  |  |

#### C. C=N

#### 1. Imines

The low-temperature fluorination of benzaldehyde imines with elemental fluorine gave  $\alpha, \alpha$ -difluoro secondary fluoramines and  $\alpha$ -fluoramines, as shown in eq 8.<sup>57</sup> An electrophilic process was postulated for the

PhCH=NR 
$$\xrightarrow{r_2}$$
 [PhCHFNFR]  $\rightarrow$   
19  
PhCF=NR + PhCF<sub>2</sub>NFR (8)  
20 21

addition that resulted in the intermediate vicinal difluoride (19). The weak N-F bond (64.5 kcal/mol) coupled with the relative acidity of the benzylic proton resulted in dehydrofluorination even at -78 °C to produce compound 20. A second mole of fluorine added to 20 giving the trifluorinated compound 21.

The  $\alpha, \alpha$ -difluorofluoramines could be purified by chromatography on an untreated silica gel column. However, when the silica gel was first dried under vacuum at 160 °C, conversion to the *N*-fluoroimine (22) was observed in 25% yield (eq 9). Hydrolysis of the trifluoro adducts led to *N*-fluoro-*N*-alkylbenzamides (23) as shown in eq 10.<sup>57</sup>

$$\frac{PhCF_2NFR \rightarrow PhCF=NF}{21}$$
 (9)

$$\begin{array}{ccc} PhCF_2NFR & \xrightarrow{H_2O} PhCONFR \\ 21 & & 23 \end{array}$$
(10)

#### 2. Diazo and Related Compounds

Geminal difluorides have been prepared from diazo compounds as shown in Table III. The reaction of fluorine diluted with nitrogen in Freon 11 at -70 °C proceeds for a variety of diazo compounds, however, fluorination was always adjacent to either an aromatic ring or a carbonyl group.<sup>11,58,59</sup> Neither the carbonyl functionality nor any of the C–H bonds were affected in the reactions, suggesting that a free radical pathway for the reaction was unlikely. In addition, the enthalpy for the reaction, calculated to be -154 kcal/mol, may explain the selectivity observed. The mechanism in Scheme III might be considered.

In a related reaction, a number of aryl ketone hydrazones (Table IV) have been shown to react with dilute molecular fluorine to form monofluoro and geminal difluoro derivatives.<sup>60</sup> Oxidation of the hydrazone gave a diazo intermediate, which was found to react with a molecule of HF (generated during the oxidation) to form the monosubstituted product or with elemental fluorine to produce the geminal difluoride. The hydrazones of benzaldehyde, cyclohexanone, and cyclopentanone did not give fluorinated products.

#### III. Nitrogen Derivatives

#### A. Isocyanates

Merritt<sup>61</sup> found that alkyl isocyanates, unlike imines, did not add fluorine to the double bond. Initial side





SCHEME III



chain fluorination was followed by loss of fluorophosgene (COF<sub>2</sub>) and fluorination on nitrogen as shown for *n*-propyl isocyanate in Scheme IV. The product mixture was complicated by the reaction of the isocyanate with HF. *N*-Propylcarbamyl fluoride (24) was found to be the precursor of *N*-fluoro-*N*-propylcarbamyl fluoride (25) and could be excluded when a strong HF scavenger such as sodium carbonate was employed.<sup>61</sup>

### **B. Isonitriles**

The reaction of organic isonitriles<sup>62</sup> was shown to give primarily aza analogues of fluorophosgene (26) which were used in situ due to the susceptibility to hydrolysis. Traces of HF in the reaction mixture resulted in addition and dimerization products (27) and (28) (eq 11).

$$\begin{array}{ccc} \text{RN} & \stackrel{r_2}{\longrightarrow} [\text{RN} & \stackrel{\text{CF}_2}{\longrightarrow} ] \rightarrow \\ & & 26 \\ & \text{RNHCF}_3 + \text{RN} & \stackrel{\text{CFNRCF}_3}{\longrightarrow} (11) \\ & & 27 & 28 \end{array}$$

## C. Amides

Since the Grakauskas review,<sup>4</sup> only two papers have addressed the fluorination of amides. Difluoramino carboxylic acids have been prepared from their corresponding lactams with elemental fluorine.<sup>63,64</sup> The NF<sub>2</sub> group is thought to be a better isostere for CH<sub>3</sub> than CH<sub>2</sub>F in the preparation of fatty acid cardiac imaging agents, because it introduces less polarity into the aliphatic chain as indicated by chromatography.<sup>63</sup> For example, 15-difluoraminopentadecanoic acid (**30**) was prepared by treating the corresponding lactam (**29**) in

#### SCHEME IV





acetonitrile/water (9:1) with a fluorine (2% in nitrogen) in 50% yield (eq 12—isolated as the methyl ester for

$$\underbrace{(CH_2)_{14} - C - N}_{29} \xrightarrow{F_2}_{aq CH_3CN} F_2N(CH_2)_{14}COH (12)$$

analytical purposes). Jewett and Ehrenkaufer found that hydrolysis of the difluoramine group at pH 8 was slow with respect to the half-life of  $^{18}$ F. $^{63}$ 

## **IV. Substitution at Unactivated C-H Positions**

In a process reminiscent of the reaction between ozone and hydrocarbons,<sup>65</sup> dilute elemental fluorine has been shown to selectively replace tertiary hydrogens with retention of configuration for a number of unactivated substrates.<sup>3,66-75</sup> The reactivity of the tertiary C-H bond in electrophilic substitution has also been observed by Olah during the deuterolysis of alkanes with superacids.<sup>76</sup>

The fluorinations were conducted at low temperatures with varying amounts of chloroform in Freon to take advantage of the slight differences in the electron densities of the C-H bonds and optimize product yields. In unstrained molecules the electron density at a tertiary hydrogen is greater than that at secondary or primary so the hydrogen is more vulnerable to substitution. The mechanism proposed for this substitution is illustrated in Scheme V. Chloroform can also act as a free-radical scavenger,<sup>68</sup> which helps prevent overfluorination. When a nonpolar reaction medium was used (pentane or CFCl<sub>3</sub> for example), radical processes interfered and complicated product mixtures resulted.<sup>67</sup> The products of fluorination of various substrates are compiled in Tables V and VI.

Electron withdrawing substituents decrease electron density in molecules and affect the fluorination of nearby tertiary positions. When the tertiary position is  $\beta$  to an ester, the yield of fluorinated product was about half that obtained when it was  $\gamma$  (Table V, entries 22 and 28). Since inductive effects fall off rapidly with distance, field effects may play an important role. Although entries 23 and 24 (Table V) both show about 60% fluorination, the reaction was significantly slower

TABLE V. Tertiary Hydrogen Fluorinations Resulting In Mainly One Product

| entry           | product                                                                                                                  | %<br>yield           | ref          | entry | product                                                                                                                                                               | %<br>yield | ref      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 1               | F CH2CH2OAC                                                                                                              | 40                   | 66           | 29    | r<br>r                                                                                                                                                                | <50        | 67       |
|                 | $\bigcirc$                                                                                                               |                      |              |       |                                                                                                                                                                       |            |          |
| 2               | -OAc                                                                                                                     | 20                   | 66           |       |                                                                                                                                                                       |            |          |
|                 | F                                                                                                                        |                      |              | 30    | $MeO_2C(CH_2)_mC(Me)(F)(CH_2)_nCO_2Me$<br>m = n = 1                                                                                                                   | 2          | 74       |
| 3               | A.F                                                                                                                      | 75                   | 66           | 31    | m = 1, n = 2<br>CH <sub>2</sub> CO <sub>2</sub> (CH <sub>2</sub> ) <sub>-</sub> C(CH <sub>2</sub> )(F)(CH <sub>2</sub> ) <sub>-</sub> O <sub>2</sub> CCH <sub>2</sub> | 10         | 74       |
|                 |                                                                                                                          |                      |              | 32    | m = n = 2<br>m = -2                                                                                                                                                   | 37<br>2    | 74<br>74 |
| 4               | A OAC                                                                                                                    | 20                   | 66           | 33    | m = 2, n = 3                                                                                                                                                          | 3          | /4       |
|                 | 47                                                                                                                       |                      |              |       |                                                                                                                                                                       |            |          |
|                 |                                                                                                                          |                      |              |       | RO                                                                                                                                                                    |            |          |
|                 |                                                                                                                          |                      |              | 34    | $R = CF_3C = 0$                                                                                                                                                       | 34         | 3, 75    |
| 5               | $R_1 = R_2 = H$<br>$R_2 = OM_0 R_2 = Ft$                                                                                 | 50<br>20             | 66<br>66     | 35    | $R = CH_3C = O$                                                                                                                                                       | 50         | 3        |
| 0               | $R_1 = OMe, R_2 - Et$                                                                                                    | 20                   | 00           | 36    | F                                                                                                                                                                     | 25         | 3, 70    |
|                 | $\frown$                                                                                                                 |                      |              |       |                                                                                                                                                                       |            |          |
| 7               |                                                                                                                          | 71_00                | 79 75        |       | CH3CO H                                                                                                                                                               |            |          |
| 8               | R = R<br>R = OH                                                                                                          | 71 <b>-9</b> 0<br>70 | 66<br>66     | 37    |                                                                                                                                                                       | 50         | 3, 75    |
| 9<br>10         | $R = p - O_2 C C_6 H_4 N O_2$<br>$R = N H C O C F_3$                                                                     | 90<br>83             | 66<br>73, 75 |       | стон                                                                                                                                                                  |            |          |
| 11              | ×                                                                                                                        | 70                   | 67           |       |                                                                                                                                                                       |            |          |
|                 | $\bigcup$                                                                                                                |                      |              | 38    | ыл <u>з</u> ео н                                                                                                                                                      | 0          | 71       |
|                 | F                                                                                                                        |                      |              | 00    | СН3                                                                                                                                                                   | U          | /1       |
|                 |                                                                                                                          |                      |              | 39    | F<br>ÇH₂CO₂Me                                                                                                                                                         | 30         | 71       |
| 12<br>13        | cis<br>trans                                                                                                             | 80<br>90             | 67<br>67     |       | Et Me                                                                                                                                                                 |            |          |
| 14              | $CH_3CH_2C(CH_3)(F)(CH_2)_5CH_3$                                                                                         | 60                   | 67           | 40    | ₣ <sup>´</sup> <b>`Ме</b><br>(ÇH <sub>2</sub> ) <sub>3</sub> OCCH <sub>3</sub>                                                                                        | 40         | 71       |
|                 |                                                                                                                          |                      |              |       | F U                                                                                                                                                                   |            |          |
|                 |                                                                                                                          |                      |              | 41    | <br>                                                                                                                                                                  | 60         | 71       |
| 15              | $M^{e}$ $F$<br>trans-Me + p-OCOC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub>                                             | 60                   | 68           |       | (CH <sub>2</sub> ) <sub>2</sub> COCH <sub>2</sub> CCI <sub>3</sub>                                                                                                    |            |          |
| 16              | $cis-Me + p-OCOC_6H_4NO_2$                                                                                               | 65                   | 68           | 42    | CHa                                                                                                                                                                   | 30         | 71       |
|                 |                                                                                                                          |                      |              | 12    | (CH-)-F                                                                                                                                                               | 00         |          |
|                 |                                                                                                                          |                      |              | 43    | 0 V                                                                                                                                                                   | 25         | 72       |
| 17              | $\swarrow_{\rm F}$<br>trans-t-Bu + p-OCOC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub>                                    | 50                   | 68           |       | CO <sub>2</sub> Me                                                                                                                                                    |            |          |
| 18              | $cis-t-Bu + p-OCOC_6H_4NO_2$                                                                                             | 83<br>25             | 68<br>74     |       |                                                                                                                                                                       |            |          |
| 19              | Me                                                                                                                       | 20                   | /4           |       | Ac0'''' F                                                                                                                                                             |            |          |
|                 | F´ ─ `CO₂Me<br>O                                                                                                         |                      |              | 44    |                                                                                                                                                                       | 25         | 72       |
|                 |                                                                                                                          |                      |              |       |                                                                                                                                                                       |            |          |
|                 | F R                                                                                                                      |                      |              |       | ACO                                                                                                                                                                   |            |          |
| 20<br>21        | $R = CH_3$                                                                                                               | 20<br>10             | 74<br>74     |       | <u>B</u> <sup>1</sup> 22                                                                                                                                              |            |          |
| 21              | $R \cdot CH_2 \longrightarrow 0$                                                                                         | 10                   |              |       |                                                                                                                                                                       |            |          |
| 22              | $\mathbf{R} = (\mathbf{C}\mathbf{H}_2)_2 \mathbf{C}\mathbf{O}_2 \mathbf{C}\mathbf{H}_2 \mathbf{C}\mathbf{C}\mathbf{l}_3$ | 55                   | 69           |       |                                                                                                                                                                       |            |          |
| 23<br>24        | $R = (CH_2)_3CH(CH_3)OCOC_6H_4NO_2-p$<br>$R = (CH_2)_2OCOC_6H_4NO_2-p$                                                   | 65<br>60             | 69<br>69     |       | OAc                                                                                                                                                                   |            |          |
| $\frac{25}{26}$ | $\mathbf{R} = (CH_2)_3 CH(CH_3) (CH_2)_2 OCOC_6 H_4 NO_2 - p$<br>$\mathbf{R} = (CH_3)_2 O_2 CCCl_3$                      | 30<br>65             | 69<br>69     | 45    | $R^1 = COCH_3, R^2 = X = H, Y = F$                                                                                                                                    | 37         | 75       |
| 27              | $\mathbf{R} = (\mathbf{CH}_2)_2 \mathbf{OCH}_2 \mathbf{O}(\mathbf{CH}_2)_2 \mathbf{OCH}_3$                               | 20                   | 69           | 46    | $R^1 = R^2 = O, X = F, Y = H$                                                                                                                                         | 20         | 75       |

TABLE V (Continued)



for the compound where the tertiary hydrogen was closer to the electron-withdrawing group. When there were two tertiary positions within the molecule, as with 3,7-dimethyl-1-octyl-*p*-nitrobenzoate (entry 25, Table V), only fluorination at the more remote tertiary position was observed.

In Table VI, two or more monofluorinated products were observed because there were two or more tertiary hydrogens available for substitution. The reaction generally only gave a monofluorinated product even when two tertiary centers were available in the molecule. Once substituted, the electronegative fluorine decreased the electron density available at the other tertiary position (Table VI, entries 4 and 5).

The p character of the C-H bond in rings varies with ring size due to differing amounts of bond strain. This is exemplified by the increasing reactivity of tertiary hydrogens as ring size increases from three to six carbons, entries 38-41 (Table V). Competition from radical fluorination was significant in larger ring systems due to the increased ratio of nontertiary to tertiary hydrogens (entry 42). Molecular fluorine also reacted with unactivated polycyclic compounds selectively fluorinating tertiary bridgehead positions (entries 2, 4, 7-10).

Susceptibility of ethers to oxidation by fluorine (entry 27) resulted in decreased hydrogen substitution as well as carbonyl-containing byproducts.<sup>69</sup>

The substitution of tertiary hydrogens with fluorine has been extended to fluorination of various steroids (entries 34-37). Monofluorination has been accomplished at the C-5 ( $\beta$ ), C-14 ( $\alpha$ ), and C-17 ( $\alpha$ ) positions of bile acids,<sup>72</sup> the C-9 center in corticoids, the C-14 position in cardenolides, and the C-17 for conversion of plant sterols into steroids of biomedical interest.<sup>3</sup> The highly polar transition state and substituent inductive effects at proximal and/or remote sites to two or more tertiary hydrogens can be used to predict the fluorination products.<sup>3</sup>

## V. Electrophilic Aromatic Substitution

### A. Evaluation of F<sup>+</sup> as a Reactive Intermediate

The development of fluorinating agents that have a tendency to follow electrophilic patterns of substitution with a variety of substrates has prompted the question, "Does the fluoronium (F<sup>+</sup>) ion exist?" The many examples of syn addition of fluorine to double bonds<sup>17-19</sup> suggest the absence of a fluoronium ion. Olah and co-workers,<sup>77</sup> have ruled out a bridged fluoronium species in the equilibration of the 2,3-dimethyl-3-fluoro-2-butyl cation in superacid solution on the basis of spectral observations. Christie<sup>78,79</sup> theorizes that the fluoronium ion cannot exist because no group of atoms,

SCHEME VI





even those containing fluorine, should have a greater electronegativity than fluorine, the most electronegative atom. However, Cartwright and Woolf<sup>80</sup> argue that the existence of NF<sub>4</sub><sup>+</sup> and XeF<sup>+</sup> salts infer the presence of positive fluorine. With regard to monofluorination of aromatic rings, theoretical studies have compared the stability of a bridged fluoronium ion and an open protonated fluorobenzene. Hehre and Hiberty<sup>81</sup> have shown that a bridged fluoronium ion intermediate would lie at an energy maximum, some 20.5 kcal/mol higher than a protonated fluorobenzene.

#### **B.** Reaction of Aromatic Substrates

Early attempts to substitute aromatic rings with elemental fluorine were plagued with problems. The introduction of dilute solutions of molecular fluorine has greatly enhanced the ability to control reactions of this type. Cacace et al.<sup>13</sup> have performed aromatic substitutions on a variety of aromatic rings with molecular fluorine (<0.76% F<sub>2</sub> in N<sub>2</sub>), at low conversions (0.01%), near the lower limit of analytical sensitivity. The reactions run in CFCl<sub>3</sub> at -78 °C show first-order kinetics under these conditions, dependent only on the amount of aromatic substrate present.<sup>13,82</sup> Fluorination positions on substituted benzene rings mimicked the pattern generally observed for electrophilic aromatic substitution.<sup>13,83</sup> A plot of the partial rate factors vs.  $\sigma^+$  constants for polar aromatic substitution gave a  $\rho^+$ value of -2.45 (correlation coefficient of 0.993), supporting the proposed mechanism shown in Scheme VI. For these low-temperature reactions, radical processes could be discounted.

Grakauskas<sup>83</sup> was able to fluorinate several aromatic compounds on a synthetically useful scale. The substitution pattern also suggested electrophilic addition. The reactions were generally run in acetonitrile at -20°C, and for methyl benzoate gave 74% *p*-, *o*-, *m*fluorobenzoates (1:3:5, respectively).

Sams et al.<sup>14</sup> have utilized molecular sieves to minimize the possibility of secondary reactions with  $F_2$ . As a result, polymer formation that has been commonly observed with increasing conversion to product was absent. After optimization of the reaction conditions (-78 °C, no solvent), Sams obtained almost 20% o- and p-difluorobenzenes from fluorobenzene.

TABLE VI. Tertiary Hydrogen Fluorinations Resulting in Two or More Products



<sup>a</sup>Dichloride was treated with fluorine, followed by reduction with Zn and alkaline hydrolysis.

Misaki<sup>84,85</sup> has monofluorinated a variety of oxygenated aromatic substrates in high yields using molecular fluorine (11% in nitrogen). Fluorination of a 10% solution of phenol at -20 °C, at 10% conversion to the monofluorinated product gave fluorophenols with an ortho to para product ratio of 22:1. However, at greater conversions (51-56%), under identical reaction conditions the ortho to para ratio was 3.6:1, an indication that there was some further reaction of the ortho product with time. Apparently, as the conversion increased, some of the ortho isomer was changed to an unidentified polymeric material, an experimentally observed

TABLE VII. Fluorination of Substituted Phenols RPhOH in  $CH_3CN$ 

|                   | Τ,  | %          |                                |     |
|-------------------|-----|------------|--------------------------------|-----|
| R                 | °Ċ  | conversion | products, %                    | ref |
| 2-CH <sub>3</sub> | -20 | 70.8       | (4-F) 27.5; (6-F) 22.5         | 84  |
| 3-CH <sub>3</sub> | -20 | 67.7       | (4-F) 20.7; $(2-F + 6-F)$ 46.4 | 84  |
| $4 - CH_3$        | -20 | 78.0       | (32) 38.4; (33) 23.1           | 84  |
| $4 - CO_2H$       | -10 | 63.3       | $(2-F)$ 59.4; $(2,6-F_2)$ 14.4 | 85  |
| $2 - CO_2 H$      | -10 | 79.0       | $(4-F)$ 55.9; $(4,6-F_2)$ 21.0 | 85  |
| 2-CHO             | 10  | 62.9       | (4-F) 32.1; (6-F) 22.1,        | 85  |
|                   |     |            | $(4,6-Fe_2)$ 5.1               |     |
| 4-Ph              | -10 | -          | $(2-F)$ 50.1; $(2,6-F_2)$ 21.5 | 85  |
| Н                 | 20  | 56.1       | (2-F) 38.9; (4-F) 10.7         | 84  |
|                   |     |            |                                |     |

byproduct. Temperature also seemed to have an effect on the isomeric ratios. Misaki found that at 10% conversion and at 10 °C, phenol yielded only a 10:1 ortho to para ratio. In addition, at lower temperatures greater conversions and fewer sunsequent reactions were observed.

Misaki<sup>84</sup> also investigated the fluorination of the various substituted phenols. Those results are summarized in Table VII. p-Cresol (31) produced a very interesting side product in addition to the expected o-fluoro derivative (32) (eq 13). 4-Fluoro-4-methyl-



2,5-cyclohexadienone (33) was observed in yields as high as 42.1% in tetraglyme at -20 °C. Interestingly, he<sup>85</sup> observed fluorination of salicylaldehyde, but oxidation and fluorination of salicyl alcohol. Misaki has also used anhydrous HF as a solvent for the fluorination of several phenolic compounds.<sup>85</sup> Salicyclic acid gave a 72.6% yield of 3-fluoro salicylic acid, while phenyl salicylate gave a mixture of 3- and 5-fluorophenyl salicylates in 88.6% yield.

When radiolabeling was applied to L-dopa (34) to measure the metabolism of the neurotransmitter dopamine in the brain, a 0.5% solution of  $[^{18}F]F_2$  at -65 °C in HF gave a 5.8% chemical yield and a 3.0% radiochemical yield of 6- $[^{18}F]$ fluoro-L-dopa (35) (eq 14).<sup>86</sup>



Major byproducts were the 2-fluoro and 5-fluoro-L-dopa in 12% (36) and 1.7% (37) yields, respectively. Liquid

TABLE VIII. Fluorination of Organometallic Compounds in FCCl<sub>3</sub> with  $F_2$  at -78 °C

| MArR                                          |                                     | % vield.         |        |
|-----------------------------------------------|-------------------------------------|------------------|--------|
| M                                             | R                                   | radiochem (chem) | ref    |
| $Sn(n-Bu)_3$                                  | 3,4(OCH <sub>3</sub> ) <sub>2</sub> | 56               | 87     |
| $Sn(n-Bu)_3$                                  | 4-OCH <sub>3</sub>                  | 72               | 87     |
| $\operatorname{Sn}(n-\mathbf{B}\mathbf{u})_3$ | $4-CH_3$                            | 82               | 87     |
| $Sn(n-Bu)_3$                                  | 3-CH <sub>3</sub>                   | 58               | 87     |
| $Sn(n-Bu)_3$                                  | $2-CH_3$                            | 54               | 87     |
| $Sn(n-Bu)_3$                                  | Н                                   | 72               | 87     |
| $Sn(n-Bu)_3$                                  | 4C1                                 | >95              | 87     |
| $Sn(n-Bu)_3$                                  | 4F                                  | >95              | 87     |
| SiMe <sub>3</sub>                             | Н                                   | 20 (23)          | 90     |
| $SiMe_2Bu$                                    | н                                   | 21 (24)          | 90     |
| $SiMePh_2$                                    | н                                   | 14 (16)          | 90     |
| SiMe <sub>3</sub>                             | 4-CN                                | 14 (16)          | 90     |
| $SiMe_3$                                      | 4-Cl                                | 14 (16)          | 90     |
| $Sn(n-Bu)_3$                                  | н                                   | 38 (70)          | 89, 91 |
| $\mathbf{SnPh}_3$                             | н                                   | 8 (15)           | 89, 91 |
| ${\operatorname{SiPh}}_3$                     | н                                   | (2.4)            | 89     |
| $PbPh_3$                                      | н                                   | (0)              | 89     |
| HgPh                                          | н                                   | (26)             | 89     |
| $SiMe_3$                                      | н                                   | 24.5             | 88     |
| $SiMe_3$                                      | 4-CH₃                               | 27.9             | 88     |
| $SiMe_3$                                      | 4-OCH <sub>3</sub>                  | 21.3             | 88     |
| $SiMe_3$                                      | 4-Cl                                | 21.5             | 88     |
| $SiMe_3$                                      | $4-SiMe_3$                          | 21.6             | 88     |
| HgPh                                          | Н                                   | (40)             | 92     |

HF was chosen to minimize the oxidation of L-dopa which is initiated by the deprotonation of the hydroxyl group.

The use of fluorine to cleave aryl metal bonds is summarized in Table VIII.  $[^{18}F]F_2$  gave exceptional radiochemical yields for the *p*-chloro and *p*-fluoro tin substrates (>95%).<sup>87</sup> Yields of the aryl fluoride were generally higher when the reaction was run in CCl<sub>4</sub> at 0 °C rather than CFCl<sub>3</sub> at -78 °C.

A number of aryltrimethylsilanes have been successfully substituted at the ipso position with both radioactive elemental fluorine  $([^{18}F]F_2)^{88-90}$  (eq 15) and

$$\bigcup_{R}^{SiMe_3} \underbrace{I^{18}_{F}}_{R} \bigoplus_{R}^{18} \underbrace{I^{18}_{F}}_{R} \bigoplus_{R}^{18}$$

acetyl hypofluorite (CH<sub>3</sub>COO<sup>18</sup>F).<sup>87,88</sup> (See section VIII.A.1). Reaction yields were generally low (under 30%) and gave various F for H substitutions. In general, [<sup>18</sup>F]F<sub>2</sub> gave the higher radiolabeled product yields, a result that was attributed to the milder electrophilic character of the acetyl hypofluorite. In addition, the reaction was much cleaner with F<sub>2</sub> as a reagent. The substitution ratios for fluorination at silicon vs. hydrogen were dependent on the substituent para to the leaving trimethylsilyl group. When the group was strongly ring activating, F for H substitution increased relative to silyl substitution.

#### VI. Metathetical Reactions

Rozen has found that elemental fluorine (1.5% in nitrogen) reacts with both iodo- and bromoadamantanes in CFCl<sub>3</sub> to give the corresponding fluoro derivative in yields as high as 99%.<sup>93</sup> 1-Bromoadamantan-4-one, 3,5-dimethyl-1-bromoadamantane and methyl (3-bromo-1-adamantyl)acetate were fluorinated by a me-

tathetical process to give the fluoro adducts in 95%. 97%, and 90% yields, respectively. The intermediacy of a stable adamantyl cation was postulated because tertiary fluorides were formed in higher yields than secondary fluorides. Further, solvent incorporation of an ethoxy and hydroxy group was observed when ethanol or water was present in the halogenated solvent. When 2-iodoadamantane reacted with fluorine in methylene chloride, 47% 2-chloroadamantane was isolated in addition to 50% 2-fluoroadamantane.93 In previous work, Barton et al. observed debromination upon fluorinating a 5,6-dibromide steroid;<sup>3</sup> however, fluorine for bromine substitution was not mentioned. The 5,6-dichloro derivative of the same steroid did not dechlorinate, but underwent substitution at a remote tertiary hydrogen. This result is consistent with Rozen's observation that 1-chloroadamantane and other chloro compounds do not react with elemental fluorine.

The mechanism postulated for the reaction requires oxidation of the halogen in secondary haloadamantanes and tertiary bromoadamantanes. Tertiary iodoadamantanes, however, are easily ionized to a stable carbocation and could react with fluoride ion generated from the reaction of the iodo nucleophile with fluorine.<sup>93</sup>

In a related reaction, L-cysteine and 2-(diethylamino)ethanethiol have been successfully fluorinated and simultaneously desulfurized in 33% and 25%, respectively.<sup>94</sup> The reaction was carried out in liquid HF saturated with gaseous BF<sub>3</sub> at -78 °C. L-Cysteine (38) afforded 3-fluoro-L-alanine (39) in 33% yield along with 3% difluoro byproduct (40) (eq 16). The mechanism

$$\begin{array}{c} \text{HSCH}_{2}\text{CH}(\text{NH}_{2})\text{CO}_{2}\text{H} \xrightarrow{F_{2}/\text{He}} \\ \mathbf{38} \\ \text{FCH}_{2}\text{CH}(\text{NH}_{2})\text{CO}_{2}\text{H} + F_{2}\text{CHCH}(\text{NH}_{2})\text{CO}_{2}\text{H} \text{ (16)} \\ \mathbf{39}, 33\% \qquad 40, 3\% \end{array}$$

for the reaction was thought to proceed via oxidation of the sulfur followed by fluoride ion displacement of  $SF_3^+$  which is known to exist in liquid HF.<sup>95</sup>

1-Bromo- and 1-iodo-3,3,3-trinitropropane underwent a metathetical reaction with elemental fluorine in anhydrous  $CCl_4$  at 0 °C to give the 1-fluoro-3,3,3-trinitropropane in yields as high as 90% (eq 17).<sup>96</sup> The

$$O_2 N \xrightarrow{X} O_2 N \xrightarrow{F_2} O_2 N \xrightarrow{F} (17)$$

$$X = Br - 1$$

mechanism for the reaction was presumed to be free radical because formation of the dimer, 1,1,1,6,6,6hexanitrohexane, was also observed.

## VII. Preparation of Commercially Unavailable Fluorinating Reagents

#### A. Organo Fluoroxy Compounds

## 1. Acyl Hypofluorites

The research impetus in hypofluorite chemistry has recently changed focus from  $CF_3OF$  to the acyl hypofluorites ( $CH_3COOF$ ,  $CF_3COOF$ ) and cesium fluoroxysulfate ( $CsSO_4F$ ). The chemistry and properties of  $CF_3OF$ , the only commercially available hypofluorite,

TABLE IX. Reaction of Alkenes with Acyl Hypofluorites

|                  | whether                                                                                                                                     |                                                                                                                                                                      | 1 0 1                                    | <i>m</i> 111         |                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|--------------------------|
| entry            | substrate                                                                                                                                   | product                                                                                                                                                              | hypofluorite                             | % yield              | rei                      |
| 1                | trans-PhCH=CHPh                                                                                                                             | threo-PhCHFCHPhOAc                                                                                                                                                   | CH₃COOF                                  | 50                   | 102, 123                 |
| 2                | cis-PhCH=CHPh                                                                                                                               | threo-PhCHFCHPhOAc                                                                                                                                                   | CH <sub>3</sub> COOF                     | 1                    | 102, 123                 |
| 3                | trans-p-MeOPhCH=CHPh                                                                                                                        | threo-p-MeOPhCH(OAc)CHFPh <sup>a</sup>                                                                                                                               | CH₃CCOF                                  | 51<br>42             | 123                      |
| 4                | trans-p-MeOPhCH=CHMe                                                                                                                        | threo-p-MeOPhCH(OAc)CHFCH <sub>3</sub> <sup>b</sup><br>erythro isomer                                                                                                | CH₃COOF                                  | 13<br>57<br>13       | 123                      |
| 5                | $\bigcirc$                                                                                                                                  | F<br>OAc                                                                                                                                                             | CH₃COOF                                  | 60                   | 123                      |
| 6<br>7<br>8<br>9 | C <sub>10</sub> H <sub>21</sub> CH=CH <sub>2</sub><br>trans-PhCH=CHCO <sub>2</sub> Et<br>cis-PhCH=CHCO <sub>2</sub> Me<br>trans-PhCH=CHCOPh | C <sub>10</sub> H <sub>21</sub> CH(OAc)CH <sub>2</sub> F<br>threo-PhCH(OAc)CHFCO <sub>2</sub> Et<br>erythro-PhCH(OAc)CHFCO <sub>2</sub> Me<br>threo-PhCH(OAc)CHFCOPh | CH₃COOF<br>CH₃COOF<br>CH₃COOF<br>CH₃COOF | 30<br>57<br>50<br>70 | 123<br>123<br>123<br>123 |
| 10               |                                                                                                                                             |                                                                                                                                                                      | CH₃COOF                                  | 55                   | 123                      |
| 11               | $OI^{\circ}J^{\circ}$                                                                                                                       | C C C C C C C C C C C C C C C C C C C                                                                                                                                | CH₃COOF                                  | 95                   | 123                      |
| 12               |                                                                                                                                             |                                                                                                                                                                      | CH₃COOF                                  | 64                   | 123                      |
| 13               |                                                                                                                                             |                                                                                                                                                                      | CH₃COOF                                  | 90                   | 123                      |
| 14               | trans-PhCH=CHPh                                                                                                                             | threo-PhCHFCH(OH)Ph                                                                                                                                                  | CF <sub>3</sub> COOF                     | 62                   | 105                      |
| 15               | cis-PhCH=CHPh                                                                                                                               | erythro-PhCHFCH(OH)Ph                                                                                                                                                | CF₃COOF                                  | 58                   | 105                      |
| 16<br>17         | trans-PhCH=CHPh-p-CO <sub>2</sub> Me<br>cic-PhCH=CHPh-p-CO <sub>2</sub> Me                                                                  | threo-PhCH(OH)CHFPh-p-CO <sub>2</sub> Me                                                                                                                             | CF <sub>3</sub> COOF                     | 80<br>25             | 105                      |
| 18               | trans-PhCH=CHPh-p-COMe                                                                                                                      | three-PhCH(OH)CHFPh-p-COMe                                                                                                                                           | CF <sub>3</sub> COOF                     | 23                   | 105                      |
| 19               | trans-PhCH=CHPh-p-Cl                                                                                                                        | threo-PhCH(OH)CHFPh-p-Cl<br>threo-PhCHFCH(OH)Ph-p-Cl                                                                                                                 | CF <sub>3</sub> COOF                     | 32<br>32             | 105                      |
| 20               | trans-CH=CHPh<br>CO <sub>2</sub> Me                                                                                                         | three - CHFCH(OCOCF <sub>3</sub> )Ph<br>CO <sub>2</sub> Me                                                                                                           | CF <sub>3</sub> COOF                     | 40                   | 105                      |
|                  |                                                                                                                                             | erythro isomer                                                                                                                                                       |                                          | 14                   |                          |
| 21               | trans-PhCH=CHPh-p-OMe                                                                                                                       | erythro-FCH(OH)CHFPh<br>MeO                                                                                                                                          | CF <sub>3</sub> COOF                     | 57                   | 105                      |
| 22               | trans-PhCH=CHPh-p-Me                                                                                                                        | <i>threo</i> isomer<br>PhCHFCH(OH)Ph-p-Me }<br>PhCH(OH)CHFPh-p-Me∮                                                                                                   | CF <sub>3</sub> COOF                     | 14<br>48             | 105                      |
|                  |                                                                                                                                             | PhCHFCH(OH)Ph-p-Me                                                                                                                                                   |                                          | 8                    | 105                      |

<sup>a</sup> In addition 5% threo- and 14% erythro-1-acetoxy-1-(3-fluoro-4-methoxyphenyl)-2-fluoro-2-phenylethane was formed. <sup>b</sup> In addition, 15% of a mixture of threo- and erythro-1-acetoxy-1-(3-fluoro-4-methoxyphenyl)-2-fluoropropane was isolated.

#### SCHEME VII



were reviewed in 1978 by Hesse<sup>97</sup> and will not be discussed. Recent synthetic studies with CF<sub>3</sub>OF have in-

volved reactions with diarylethenes,<sup>98</sup> diazo com-pounds,<sup>59</sup> steroids,<sup>23</sup> arenes,<sup>99</sup> and silyl enol ethers.<sup>6,100</sup> Cady prepared and characterized trifluoroacetyl hy-pofluorite, CF<sub>3</sub>COOF (41), in 1953,<sup>101</sup> but hypofluorite chemistry did not move to the forefront until 1981 when Rozen discovered a general synthetic procedure for acetyl hypofluorite,  $CH_3COOF$  (42).<sup>16,102,103</sup> The synthesis of trifluoroacetyl hypofluorite (41) from sodium trifluoroacetate $^{104-107}$  as well as perfluoroalkyl hypofluorites<sup>108</sup> (43 and 44) is outlined in Scheme VII. Compounds 43 and 44 formed in the absence of moisture or acid have synthetic utility similar to that of 41 and 42. Rozen and Barnette extended the solution preparation to the formation of stable long-chain

-

# TABLE X. Aromatic Substitution by Acyl Hypofluorites

| entry          | substrate                 | product(s)               | %<br>yield | ref      | entry    | substrate                                                                                    | product(s)                                   | %<br>yield                            | ref                  |
|----------------|---------------------------|--------------------------|------------|----------|----------|----------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------|
| 1              | PhOMe                     | 2-FPhOMe<br>4-FPhOMe     | 77<br>8    | 16       | 17       | NHAC                                                                                         | NHAC                                         | 34                                    | 16                   |
| 2              | OMe                       | OMe                      | 39         | 16       |          |                                                                                              | F                                            |                                       |                      |
|                | $\bigcirc$                | F                        |            |          |          | CF3                                                                                          | F.                                           | 28                                    |                      |
|                | ÓMe                       | ÓMe                      |            |          |          |                                                                                              |                                              | 20                                    |                      |
|                |                           | OMe                      | 55         |          |          |                                                                                              | $\mathbb{Q}$                                 |                                       |                      |
|                |                           | F                        |            |          |          |                                                                                              | ĊF3                                          |                                       |                      |
| 0.7            |                           |                          | 10         |          | 18       |                                                                                              |                                              | 67                                    | 16                   |
| 3"             | PhOEt                     | 2-FPhOEt<br>4-FPhOEt     | 46<br>6    | 16       |          |                                                                                              |                                              |                                       |                      |
| 4 <sup>b</sup> | $2R_1OPhOR_2$             | -<br>F                   | -          | 16       | 19       | NHAC                                                                                         | Me Me                                        | 85                                    | 16                   |
| б              |                           | ОМе                      | 42         | 16       | 15       |                                                                                              | Į OĮ                                         | 00                                    | 10                   |
|                | ✓ `NO₂                    | F NO2                    |            |          | 20       | Me' 🗸 NHAc                                                                                   | Me Y F                                       | 79                                    | 16                   |
| 6              | NO <sub>2</sub>           | F NO2                    | 47         | 16       | 20       |                                                                                              |                                              | 12                                    | 16                   |
|                | MeO                       | MeO                      |            |          |          | CF3                                                                                          | CF3 × F                                      |                                       |                      |
| 7              | NO2                       | F NO <sub>2</sub>        | 62         | 16       | 21       | NHAC                                                                                         | NHAC                                         | 65                                    | 16                   |
|                | но                        | но                       |            |          |          | Br                                                                                           | Br                                           |                                       |                      |
| 8°             | ОН                        | F                        | 9          | 16       | 22       | MeO SnBu <sub>3</sub>                                                                        | Meo                                          | 68 <sup>e</sup>                       | 87                   |
|                | CO2Me                     | O OH                     |            |          |          | $\langle \mathbf{v} \rangle$                                                                 | $\langle \varphi \rangle$                    |                                       |                      |
|                | -                         | CO2Me                    |            |          | 23       | ഠ്Me<br>4-MeOPhSnBu₂                                                                         | о́ме<br>4-MeOPhF                             | $78^e$                                | 87                   |
|                |                           | OT OH                    | 14         |          | 24       | 4-MePhSnBu <sub>3</sub>                                                                      | 4-MePhF                                      | 72e                                   | 87<br>87             |
|                |                           | F CO <sub>2</sub> Me     |            |          | 25<br>26 | 2-MePhSnBu <sub>3</sub>                                                                      | 2-MePhF                                      | 57e                                   | 87                   |
| 9ª             | PhNHAc                    | 2-FPhNHAc<br>4-FPhNHAc   | 55<br>8    | 16       | 27<br>28 | PhSnBu <sub>3</sub><br>4-ClPhSnBu <sub>2</sub>                                               | PhF<br>4-ClPhF                               | 72°<br>68°                            | 87<br>87             |
| 10             | PhNHCOCF <sub>3</sub>     | 2-FPhNHCOCF <sub>3</sub> | 57         | 16       | 29       | 4-FPhSnBu <sub>3</sub>                                                                       | 4-FPhF                                       | 73°                                   | 87                   |
| 11<br>12       | PhNHCO-t-Bu<br>2-MePhNHAc | 2-FPhNHCO-t-Bu           | 52<br>0    | 16<br>16 | 30       | PhOMe                                                                                        | 2-FPhOMe<br>4-FPhOMe                         | 64<br>21                              | 121, 127             |
| 13             | 2-BrPhNHAc                |                          | 0          | 16       | 31       | 4-MeOPhHgOAc                                                                                 | 4-MeOPhF                                     | 65                                    | 121, 127             |
| 14             | CF3                       | CF3                      | 62         | 16       | 32       | PhNHAC                                                                                       | 2-FPhNHAc<br>4-FPhNHAc                       | 44<br>22                              | 121, 127             |
|                | NHAC                      | NHAC                     |            |          | 33<br>34 | 4-AcOHgPhNHAc<br>PhOH                                                                        | 4-FPhNHAc<br>2-FPhOH                         | 60<br>45                              | 121, 127<br>121, 127 |
| 15             | NHAc                      | F                        | 32         | 16       |          |                                                                                              | 4-FPhOH                                      | 30                                    | 121, 127             |
| 10             |                           | NHAC                     | 02         | 10       | 35<br>36 | 2-HOPhHgCl<br>4-HOPhHgCl                                                                     | 2-HOPhF<br>4-HOPhF                           | 53<br>47                              | 121, 127<br>121, 127 |
|                | Y Ma                      | $\bigcirc$               |            |          | 37       | PhH                                                                                          | PhF                                          | 18                                    | 121, 127             |
|                | Me                        | Me                       |            |          | 38<br>39 | PhHgCl<br>PhCH₂                                                                              | PhF<br>2-FPhCH。                              | 55<br>8                               | 121, 127<br>121, 127 |
|                |                           | NHAC                     | 28         |          |          |                                                                                              | 3-FPhCH <sub>3</sub>                         | 1                                     | ,                    |
|                |                           | ↓↓<br>F                  |            |          |          |                                                                                              | 4-FPhCH <sub>3</sub><br>PhCH <sub>2</sub> F  | 4<br>1                                |                      |
|                |                           | l<br>Me                  |            |          | 40       | PhHgOAc                                                                                      | PhF                                          | 58                                    | 121, 127             |
|                |                           |                          | 11         |          | 41<br>42 | 4-MePhSiMe <sub>3</sub>                                                                      | 4-MePhF                                      | 10°"<br>13 <sup>e,f</sup>             | 88<br>88             |
|                |                           | <u>ío</u> ř              |            |          | 43       | 4-MeOPhSiMe <sub>3</sub>                                                                     | 4-MeOPhF                                     | 9 <sup>e,f</sup>                      | 88                   |
|                |                           | F Me                     |            |          | 44<br>45 | 4-BrPhSiMe <sub>3</sub>                                                                      | 4-BrPhF                                      | 13 <sup>-4</sup><br>14 <sup>e,f</sup> | 88                   |
|                |                           | NHAC                     | 10         |          | 46<br>47 | 4-MeCOPhSiMe <sub>3</sub>                                                                    | 4-MeCOPhF                                    | $6^{e,f}$                             | 88                   |
|                |                           |                          |            |          | 48       | 4-Me <sub>3</sub> SiPhSiMe <sub>3</sub>                                                      | 4-FPhSiMe <sub>3</sub>                       | 16 <sup>e,j</sup>                     | 88                   |
|                |                           | -   +<br>Me              |            |          | 49<br>50 | K <sub>2</sub> [PhSiF <sub>5</sub> ]<br>K <sub>2</sub> [PhCH <sub>2</sub> SiF <sub>2</sub> ] | PhF<br>PhCH₅F                                | 20 <sup>e</sup><br>6 <sup>e</sup>     | 135<br>135           |
| 10             | NIL 1 4 -                 | . NH An                  | 05         |          | 51       | $K_2[4CH_3PhSiF_5]$                                                                          | 4-CH <sub>3</sub> PhF                        | 18"                                   | 135                  |
| 16             | NHAC                      |                          | 25         | 16       | 52       | $PhNH_2$                                                                                     | 2-FPhNH <sub>2</sub><br>4-FPhNH <sub>2</sub> | $\frac{3.5}{2.5}$                     | 127                  |
|                |                           | F                        |            |          | 53       | 4-AcOHgPhNH <sub>2</sub>                                                                     | 4-FPhNH <sub>2</sub>                         | 4                                     | 127                  |
|                | Br                        | F.                       | 47         |          | 55<br>55 | 3-ACOHgPINH <sub>2</sub><br>PhCl                                                             | 3-FPhNH <sub>2</sub><br>2-FPhCl              | 19<br>5                               | 127<br>127           |
|                |                           |                          |            |          | 56       | L-dona                                                                                       | 4-FPhCl                                      | 5<br>1°                               | 199                  |
|                |                           | $\forall$                |            |          | 00       | 2-uopa                                                                                       | o-r n-uopa                                   | 7                                     | 122                  |
|                |                           | Br                       |            |          |          |                                                                                              |                                              |                                       |                      |

<sup>a</sup> 50% conversion. <sup>b</sup>  $R_1 = R_2 = Me$ ;  $R_1 = Me$ ,  $R_2 = Ac$ ;  $R_1 = R_2 = Ac$ ;  $R_1 = Me$ ,  $R_2 = OCOCF_3$ ;  $R_1 = Me$ ,  $R_2 = i$ -Pr. No definite monofluoro products; only tars were observed. <sup>c</sup> 70% conversion. <sup>d</sup> 80% conversion. <sup>e</sup> Radiochemical yield from CH<sub>3</sub>CO<sub>2</sub><sup>18</sup>F. <sup>f</sup> Ring fluorination also observed.

| TABLE XI. | Reaction | of Hype | ofluorites | with | Derivati | ves of | Various | Carbonyl | Com | pounds |
|-----------|----------|---------|------------|------|----------|--------|---------|----------|-----|--------|
|           |          |         |            |      |          |        |         |          |     |        |

| entry | substrate                                                  | product                                                  | % yield            | ref                |
|-------|------------------------------------------------------------|----------------------------------------------------------|--------------------|--------------------|
| 1     | EtOCOCOCH <sub>2</sub> CO <sub>2</sub> Et                  | EtOCOCOCHFCO <sub>3</sub> Et                             | 65ª                | 120                |
| 2     | [EtOCOCOCHCO <sub>2</sub> Et] <sup>-</sup> Na <sup>+</sup> | EtOCOCOCHFCO <sub>9</sub> Et                             | 75ª                | 120                |
| 3     | MeCOCH <sub>2</sub> CO <sub>2</sub> Et                     | MeCOCHFCO <sub>2</sub> Et                                | 72ª                | 120                |
| Å     | [MeCOCHCO <sub>2</sub> Et] <sup>-</sup> Na <sup>+</sup>    | MeCOCHFCO <sub>2</sub> Et                                | 81ª                | 120                |
| 5     | $\sim \circ$                                               | $\wedge \wedge$                                          | 304                | 120                |
| 0     |                                                            | r f                                                      | 50                 | 120                |
|       | CO2Me                                                      | F<br>CO <sub>2</sub> Me                                  |                    |                    |
| 6     |                                                            | $\sim \rho^{0}$                                          | 60 <sup>a</sup>    | 120                |
|       | Na <sup>+</sup>                                            | F                                                        |                    |                    |
|       |                                                            | ĈO₂Me                                                    |                    |                    |
| 7     |                                                            |                                                          | 30"                | 120                |
|       | СОМе                                                       | F<br>COMe                                                |                    |                    |
| 8     |                                                            | ~0                                                       | 90ª                | 120                |
| -     | Na <sup>+</sup>                                            |                                                          |                    |                    |
|       | СОМе                                                       | F<br>COMe                                                |                    |                    |
| 9     |                                                            | $\sim ^{\circ}$                                          | 92ª                | 120                |
| -     | Na <sup>+</sup>                                            | CO2EI                                                    |                    |                    |
|       |                                                            |                                                          | F 00               | 190                |
| 10    | $[CH(CO_2Me)_2]^{-}Na^{+}$                                 | $CHF(CO_2Me)_2$                                          | 52"                | 120                |
| 11    | $[EtC(CO_2Et)_2]$ -Na <sup>+</sup>                         | $EtCF(CO_2Et)_2$                                         | 774                | 120                |
| 12    | PhCOCH <sub>2</sub> Li                                     | PhCOCH <sub>2</sub> F                                    | 754                | 123                |
| 13    | $2-C_{10}H_7COCH_2L_1$                                     | $2 - C_{10}H_7 COCH_2F$                                  | °60                | 123                |
| 14    |                                                            | 0                                                        | 86ª                | 123                |
|       | L1 <sup>+</sup>                                            |                                                          |                    |                    |
| 15    | n-BuCOCHLiCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>  | n-BuCOCHFCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 54ª                | 123                |
| 16    | n-C <sub>6</sub> H <sub>13</sub> CHLiCO <sub>2</sub> Et    | $n-C_{6}H_{13}CHFCO_{2}Et$                               | 67ª                | 123                |
| 17    |                                                            | 1                                                        | 37ª (ax)           | 123                |
| 17    |                                                            | F                                                        | 40ª (eg)           | 123                |
|       | Na <sup>+</sup>                                            | ↓<br>↓                                                   |                    |                    |
| 18    | ĢAc                                                        | G                                                        | $85^{b,c}$ (eq)    | 104, 106, 107, 109 |
|       |                                                            | F                                                        |                    |                    |
|       |                                                            |                                                          |                    |                    |
| 10    |                                                            | $\frown$                                                 | ASE (trans)        | 106 107            |
| 19    |                                                            | +                                                        | $29^{\circ}$ (cis) | 100, 107           |
| 90    |                                                            | F<br>C=0                                                 | 87¢                | 107                |
| 20    | (CH <sub>2</sub> ) <sub>10</sub>                           | (CH <sub>2</sub> ) <sub>10</sub>                         | 01                 |                    |
|       | Сн                                                         | CHF                                                      |                    |                    |
| 21    |                                                            |                                                          | <b>4</b> 5°        | 106, 107           |
|       | OIOI SCH2                                                  |                                                          |                    |                    |
| 22    | OAc                                                        | 0                                                        | 85°                | 104                |
|       | *                                                          | 3 J F                                                    |                    |                    |
|       |                                                            | w L                                                      |                    |                    |
| 99    | ና<br>₽৮ሮዝ <del>_</del> ሮ(೧ፊል)ሮዛ ₽ኑ                         | <sup>ус</sup><br>РЬСНЕСОСН <sub>А</sub> РЬ               | 50°                | 106                |
| 20    |                                                            |                                                          | 620                | 106                |
| 24    |                                                            | Ph-                                                      | 02                 | 100                |
|       | 011 <u>2</u>                                               | CH <sub>2</sub> F                                        | 202                |                    |
|       |                                                            | Р <b>h()</b> -С-СН <b>F</b> 2                            | 29 <sup>c</sup>    |                    |
|       | <b>、</b>                                                   |                                                          | 051                |                    |
| 0 F   | . Y                                                        |                                                          | 65,                | 106                |
| 25    | ACO.                                                       |                                                          |                    |                    |

| entry | substrate                                 | product   | % yield                           | ref              |  |
|-------|-------------------------------------------|-----------|-----------------------------------|------------------|--|
| 26    | OAc                                       | ₽<br>₽    | 80°                               | 106              |  |
| 27    | ACO                                       | F.        | <b>40–</b> 50°<br>60 <sup>b</sup> | 106<br>109       |  |
| 28    | ACO                                       | F         | 85 <sup>5,c</sup>                 | 106, 10 <b>9</b> |  |
| 29    | Aco                                       | or former | 27° (α)<br>43° (β)                | 106              |  |
| 30    | ÇAc                                       | ₹<br>Ţ    | 85°                               | 106              |  |
| 31    |                                           |           | 78ª                               | 118, 11 <b>9</b> |  |
| 32    |                                           |           | 84ª                               | 118, 119         |  |
| 33    |                                           |           | 96ª                               | 119              |  |
| 34    |                                           |           | 53ª                               | 119              |  |
| 35    | $X^{\circ}$                               |           | 83ª                               | 119              |  |
| 36    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |           | 71ª                               | 119              |  |

<sup>a</sup> Acetyl hypofluorite. <sup>b</sup>Oxidizing solution obtained from  $F_2 + C_7 F_{15} CO_2 K$ . <sup>c</sup> Hypofluorite formed from  $CF_3 CO_2 Na + F_2$ .

fluoroxy compounds such as  $CF_3(CF_2)_7OF$ ,  $CF_3(CF_2)_6$ - $CF(OF)_2$ , and  $CF_3(CF_2)_6COOF$ , which were obtained as a mixture from  $CF_3(CF_2)_6COOK$ . The mixture proved somewhat stable for extended periods and exhibits similar chemistry.<sup>109,110</sup>

Rozen's procedure for the preparation of  $CH_3COOF$ (42) consisted of bubbling fluorine gas, diluted to 5–10% concentration with nitrogen, through a mixture of sodium acetate in glacial acetic acid and  $CFCl_3$  at -78 °C. The yields of 42 were 50–80% and reactions were conducted on a 30–50 mmol scale. It is noteworthy that acetyl hypofluorite is the first hypofluorite prepared that is not perfluorinated.

Rozen's procedure has been extended to the use of ammonium and other alkali metal salts, especially in the preparation of fluorine-18 labeled 42.51,89,111 Jewett has developed a method for the preparation in a gassolid phase system which permits the separation of gaseous 42 from contaminants and is followed by condensation in a solvent suitable for subsequent reactions (CFCl<sub>3</sub>, CH<sub>3</sub>COOH, CH<sub>2</sub>Cl<sub>2</sub>, CH<sub>3</sub>OH, hexane, DMF). Jewett's procedure is useful for the preparation of the fluorine-18 labeled hypofluorite.<sup>112-114</sup> Because radiolabeled  $F_2$  contains only one <sup>18</sup>F atom, the preparation of CH<sub>3</sub>COO<sup>18</sup>F is accompanied by nonradiolabeled species. Thus, radiochemical specific activities of the resulting products are low to moderate, but not high.

Acetyl hypofluorite has generally been prepared and used in situ. Adam has reported that an explosion occurred on condensation.<sup>115</sup> Spectral characterizations of **42** have been determined by Rozen<sup>116</sup> for solution preparations. Appelman<sup>117</sup> has also characterized the hypofluorite by spectral methods on pure samples prepared by Jewett's gas-phase synthesis.

The reactions of CH<sub>3</sub>COOF (42) with a wide number of substrates have been investigated by Rozen and many other workers. <sup>16,21,51,87,88,102,103,118-130</sup> There have been relatively few investigations on CF<sub>3</sub>COOF or the other acyl hypofluorites.<sup>105-108,114</sup> The reaction products are subject to strong solvent and temperature effects and may indicate the involvement of some radical processes as observed for trifluoromethyl hypo-

SCHEME VIII



fluorite.<sup>131-134</sup> Thus, with extrapolation to acyl hypofluorite chemistry, reactions of 41 and 42 may be viewed as electrophilic processes in which the substrate alkene or arene serves as a nucleophile, but radical processes may also be operational. An initial one-electron transfer step, as indicated in Levy's work and for which precedence exists in SET reactions of fluorocarbons,<sup>133</sup> would allow a second step in which either a fluoride ion or radical is transfered (Scheme VIII).

The reactions of acyl hypofluorites, with nucleophilic olefinic and aromatic substrates have proven of great synthetic utility for the introduction of a single fluorine atom at a predictable site in the substrate. Numerous alkene substrates have shown remarkable stereoselective syn additions with both 41 and 42. High regioselectivity introducing the fluorine atom at the nucleophilic site and the acylate function at the site predicted for the more stable carbocation, has also been observed. Fluorohydrin derivatives were formed in 20-90% yields (Table IX). Trans-stilbenes gave three products; and cis-stilbenes gave erythro products with high stereoselectivity (entries 1-4, 14-22). That a higher degree of stereoselectivity is observed with CF<sub>3</sub>COOF rather than  $CH_{3}COOF$  has been ascribed to the fact that  $CF_{3}CO_{3}^{-1}$ is a harder anion than  $CH_3CO_2^-$ . (Table IX, compare entries 1 and 14.) Thus, it reacts more rapidly with the hard  $\alpha$ -fluoro carbocation of the tight ion pair.<sup>21</sup> In the presence of stilbenes with activated rings, both addition to the double bond and fluorination ortho to the activating  $(OCH_3)$  group are observed<sup>21,102,104,105,107,108</sup> (entries 3 and 4).

Heterocyclic substrates have received very limited attention in reactions with acyl hypofluorites. A study of the reaction of bimane with  $CH_3COOF$  by Rozen and Kosower proved interesting as shown (eq 18).<sup>125</sup>



The reaction of various aromatic substrates with 41 or 42 are compiled in Table X. In the fluoroaromatic derivatives produced, the fluorine atom was generally ortho to the substituent, although mixtures were routinely obtained (entries 15–17). The best results were obtained when activating substituents (OCH<sub>3</sub>, OH, NHAc) were present. The ortho substitution by fluorine arose from an addition-elimination sequence at the electron-rich site in the substrate.<sup>16,103,121</sup> In the case of piperonal (45), isolation and characterization of an addition product (46) in 55% yield serves as evidence for the process<sup>16</sup> (eq 19).



Investigations of aryl metallic compounds have shown that substituents other than hydrogen on an aromatic ring may be replaced by fluorine during reaction with CH<sub>3</sub>COOF. Such studies have application in the preparation of fluorine-18 ring-substituted aromatic derivatives. Adam showed that the aryl-tin bond in several substrates was readily converted to an arylfluorine bond in 57-78% radiochemical yield from CH<sub>3</sub>COO<sup>18</sup>F (entries 22-29).<sup>87</sup> Visser discovered that the aryl-mercury bond was specifically converted to the aryl-fluorine function in 47-65% yield in a process adaptable to fluorine-18 chemistry (entries 31-40).<sup>121</sup> Ward prepared 2-fluoroestradiol on a large scale by reaction of a 2-trifluoroacetyl mercury estradiol derivative with CH<sub>3</sub>COOF.<sup>136</sup> The aryl-silicon bond of both arylsilanes and aryl silicates are converted specifically to the aryl-fluorine function.<sup>88,135</sup> In the case of aryl silanes a high degree of replacement of aryl-H bonds accompanied this reaction. Shiue observed radiochemical yields of 5-15% and Si/H substitution ratios from 12.9/1 to 0.9/1 (entries 41-48).<sup>88</sup>

The lithium enolates of ketones were found to react smoothly with CH<sub>3</sub>COOF to yield  $\alpha$ -fluoroketones (37–86%) as shown in Table XI. Other alkali metals were useful but yields tended to be lower, while unactivated ketones reacted poorly.<sup>120,123</sup> Enol acetates were also excellent substrates, and  $\alpha$ -fluorocarbonyl compounds formed in 50–90% yield. Steroidal enol acetates with a wide range of structural complexity have also been used (entries 22,27–30).<sup>6,21,104,106,107,114</sup>

Several workers have investigated the fluorination of vinyl ether derivatives of carbohydrates with emphasis on the preparation of fluorine-18 labeled sugars (entries 31-36).<sup>51,109,118,119,124,127-130</sup> Bida<sup>130</sup> first observed the solvent-dependent formation of 2-deoxy-2-fluoro-D-mannose (47), a side product in the preparation of 2-deoxy-2-fluoro-D-glucose (48). Shiue found that 47 was formed in 4% yield in low polarity solvents (CFCl<sub>3</sub>, CCl<sub>4</sub>) but in 20% yield in high polarity solvents (HOAc, CH<sub>3</sub>OH, DMF)<sup>124</sup> (eq 20). The size of the substituent on the hydroxyl had no effect on the relative yields.<sup>126</sup>



# 2. Fluoroxysulfate Salts

Although it had been known for some time that bubbling fluorine gas through an aqueous solution of sodium sulfate gave an oxidizing solution,<sup>137</sup> only in 1981 did Appelman discover that the use of cesium or

| TABLE XII. | Fluorinated | Products | Obtained | Using | CsSO <sub>4</sub> F |
|------------|-------------|----------|----------|-------|---------------------|
|            |             |          |          |       |                     |

|                    | entry                         | substrate                                                                               | CsSO <sub>4</sub> F:substrate | product <sup>a</sup> (% yield)           | ref        |
|--------------------|-------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|------------|
|                    |                               | OR OR                                                                                   |                               |                                          |            |
|                    |                               | $\bigcirc$                                                                              |                               |                                          |            |
|                    | 1                             | R = H                                                                                   | 1:1                           | 6.2:1 (70-80%)                           | 140        |
|                    | 2                             | R = Me                                                                                  | 1:1                           | 2.8:1 (70-80%)                           | 140        |
|                    | 3                             | R = 2-Bu                                                                                | 1:1                           | 1.8.1 (70-80%)<br>1.2.1 (70-80%)         | 140        |
|                    | •                             |                                                                                         |                               | F F F                                    |            |
|                    |                               | (0)0)                                                                                   |                               |                                          |            |
|                    | 5                             | R = H                                                                                   | 1.3:1                         | 5:1(38-42%)                              | 141        |
|                    | 6                             | R = OH                                                                                  | 1:1                           | 4.9:1 (60-80%)                           | 140        |
|                    | 7                             | R = OMe                                                                                 | 1:1                           | 2.8:1 (60-80%)                           | 140        |
|                    | . 8                           | R = OEt                                                                                 | 1:1                           | 2.6:1(60-80%)                            | 140        |
|                    | 9<br>10                       | R = 0 - i - Pr                                                                          | 1:1<br>2:1                    | 1.61(60-80%)<br>C.H.F (30-35%)           | 140        |
|                    | 11                            |                                                                                         | 2.1                           |                                          | 141        |
|                    | 11                            |                                                                                         | 2.1                           |                                          | 141        |
|                    |                               | $\left( O\right) $                                                                      |                               | IOTOT IOT Y                              |            |
|                    |                               |                                                                                         |                               | F Street                                 |            |
|                    |                               |                                                                                         |                               | F F<br>6:1 (70%)                         |            |
|                    | 12                            |                                                                                         | 1.3.1                         | F A A                                    | 141        |
|                    | 12                            |                                                                                         | 1.0.1                         |                                          | 141        |
|                    |                               | (O)O)                                                                                   |                               |                                          |            |
|                    |                               |                                                                                         |                               |                                          |            |
|                    |                               |                                                                                         |                               |                                          |            |
|                    | 13                            | Ph <sub>2</sub> C=CH <sub>2</sub>                                                       | 1.2:1                         | $^{7.5:1}_{PhoC} = CHF(70\%)$            | 144        |
|                    | 14                            | 1                                                                                       | 1.2:1                         | F                                        | 144        |
|                    |                               |                                                                                         |                               | (22*/4)                                  |            |
|                    |                               |                                                                                         |                               |                                          |            |
|                    |                               |                                                                                         |                               |                                          |            |
|                    |                               |                                                                                         |                               | (31%)                                    |            |
|                    | 15                            | $PhC(CH_3)C=CH_2$                                                                       | 1.2:1                         | $PhC(CH_2F) = CH_2 (30\%)$               | 144        |
|                    |                               |                                                                                         |                               | $PhC(CHF_2) = CH_2^{-}(32\%)$            |            |
|                    | 16                            | OCOMe                                                                                   | 1.2:1                         | O<br>II E                                | 144        |
|                    |                               | $\land$                                                                                 |                               | (70-88%)                                 |            |
|                    |                               | (CH <sub>2</sub> I <sub>n</sub>                                                         |                               | (CH <sub>2</sub> ) <sub>n</sub>          |            |
|                    |                               | n = 1-4                                                                                 |                               |                                          |            |
|                    |                               | $\sim$                                                                                  |                               |                                          |            |
|                    |                               | $\left( O\right) $                                                                      |                               | $\left( OIO \right)  \left( OIO \right)$ |            |
|                    |                               | $\sim$                                                                                  |                               |                                          |            |
|                    | 17                            | R = H                                                                                   | 1:0.7                         | 8:1 (51%)                                | 142        |
|                    | 18                            | R = Me                                                                                  | 1:0.7                         | 3.5:1 (50%)                              | 142        |
|                    | 19<br>20                      | $\mathbf{R} = \mathbf{E}\mathbf{t}$<br>$\mathbf{R} = \mathbf{i}_{\mathbf{P}}\mathbf{P}$ | 1:0.7                         | 3:1(50%)                                 | 142        |
|                    | 20                            | R = H                                                                                   | 1:1.6                         | $6.2:1 (72\%)^{b}$                       | 142        |
|                    | 22                            | R = Me                                                                                  | 1:1.6                         | 3.9:1 (83%) <sup>b</sup>                 | 142        |
|                    | 23                            | R = Et                                                                                  | 1:1.6                         | $6.9:1 (79\%)^b$                         | 142        |
|                    | 24<br>25                      | $\kappa = i - r$ $PhNHAc$                                                               | 1:1.6                         | 6.9:1 (11%)°<br>2.FPhNHAs (75%)          | 142<br>142 |
|                    | 20                            | I HIVIIMU                                                                               | 1.1                           | 4-FPhNHAc (11%)                          | 142        |
|                    | 26                            | PhCH <sub>3</sub>                                                                       | 1.4:1                         | 2-FPhCH <sub>3</sub> (31%)               | 142        |
|                    |                               |                                                                                         |                               | 3-FPhCH <sub>3</sub> (4%)                |            |
|                    | 27                            | PhNO <sub>2</sub>                                                                       | 1.4:1                         | $2-FPhNO_{2}(6\%)$                       | 139        |
|                    |                               | <b>2</b>                                                                                |                               | 3-FPhNO <sub>2</sub> (16%)               |            |
|                    |                               |                                                                                         |                               | 4-FPhNO <sub>2</sub> (3%)                |            |
| <sup>a</sup> And r | product ratio. <sup>b</sup> F | rom 6–23% difluorination                                                                | was observed.                 |                                          |            |

rubidium sulfate led to the isolation of solid, relatively stable anionic hypofluorites, cesium fluoroxysulfate and rubidium fluoroxysulfate<sup>138,139</sup> (eq 21). Cesium fluor-

$$M_2SO_4 + F_2 \rightarrow MSO_4F + MF$$
 (21)

$$M = Cs \text{ or } Rb$$

oxysulfate was prepared easily in 2-5-g batches and stored in the cold for long periods without significant loss of activity. CsSO<sub>4</sub>F has detonated occasionally on contact with metal surfaces, and should be handled in small quantities. The initial chemistry of CsSO<sub>4</sub>F, described by Appelman, showed that CsSO<sub>4</sub>F is espe-

TABLE XIII. Use of N-Fluoro Compounds for Fluorination

| entry | substrate                                                                                               | reagent  | product                                                                           | % yield | ref   |
|-------|---------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------|---------|-------|
| 1     | PhC(CO <sub>2</sub> Et) <sub>2</sub> -Na <sup>+</sup>                                                   | a        | PhCF(CO <sub>2</sub> Et) <sub>2</sub>                                             | 20-39   | 145   |
|       |                                                                                                         |          | $PhCFHCO_2Et$                                                                     | 0-5     |       |
| 2     | $PhCH_2C(CO_2Et)_2$ -Na <sup>+</sup>                                                                    | а        | PhCH <sub>2</sub> CHFCO <sub>2</sub> Et                                           | 30–33   | 145   |
| 3     | $CH_3C(CO_2Et)_2$ -Na <sup>+</sup>                                                                      | а        | $CH_3CF(CO_2Et)_2$                                                                | 17      | 145   |
| 4     | $CH(CO_2Et)_2$ -Na <sup>+</sup>                                                                         | а        | $F_2C(CO_2Et)_2$                                                                  | 5       | 145   |
| r     |                                                                                                         | ~        | $HCF(CO_2Et)_2$                                                                   | 9       | 146   |
| 5     | c-C-HMgBr                                                                                               | a        | r IIr<br>c-C-H-F                                                                  | 11      | 140   |
| 7     | $CH_{0}(CH_{0}) = CH(MgBr)CH_{0}$                                                                       | a        | $CH_{2}(CH_{2})_{c}CHFCH_{2}$                                                     | 5       | 146   |
| •     |                                                                                                         | -        | 0                                                                                 | 36-44   | 146   |
| 0     |                                                                                                         | a        | ,↓ _F                                                                             | 30-44   | 140   |
|       |                                                                                                         |          |                                                                                   |         |       |
| •     | $\sim$                                                                                                  |          |                                                                                   | 11 00   | 1.40  |
| 9     | í Ì                                                                                                     | a        | PhCHFCOPh                                                                         | 11-33   | 146   |
|       |                                                                                                         |          |                                                                                   |         |       |
|       | PhCH==CPh                                                                                               |          |                                                                                   |         |       |
| 10    | (CH <sub>3</sub> ) <sub>2</sub> CHCH=CCH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                 | a        | $(CH_3)_2 CHCHFCOCH_2 CH(CH_3)_2$                                                 | 23      | 146   |
|       | Ň                                                                                                       |          |                                                                                   |         |       |
| 11    | PhC(CO <sub>2</sub> Et) <sub>2</sub> -Na <sup>+</sup>                                                   | ь        | $PhCF(CO_2Et)_2$                                                                  | 81      | 147   |
| 12    | $CH_3C(CO_2Et)_2$ -Na <sup>+</sup>                                                                      | ь        | $CH_3CF(CO_2Et)_2$                                                                | 53      | 147   |
| 13    | PhMgBr                                                                                                  | с        | PhF                                                                               | 50      | 147   |
| 14    | 0-                                                                                                      | С        | он                                                                                | 60      | 147   |
|       | ~ ⊥ <sup>κ+</sup>                                                                                       |          | F                                                                                 |         |       |
|       | (O(O))                                                                                                  |          |                                                                                   |         |       |
|       |                                                                                                         | 7        | $\sim$                                                                            |         | 1.47  |
| 15    | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> SO <sub>2</sub> N- $t$ -Bu <sup>-</sup> Li <sup>+</sup> | a        | CH3                                                                               | 66      | 147   |
|       |                                                                                                         |          | <u> </u>                                                                          |         |       |
| 16    | PhOMe <sup>-</sup> Li <sup>+</sup>                                                                      | d        | 3-FC <sub>6</sub> H <sub>4</sub> OMe                                              | 24      | 147   |
| 17    | OLi                                                                                                     | d        | 0                                                                                 | 35      | 147   |
|       | $\sim$                                                                                                  | u        | F                                                                                 |         |       |
|       | $\times$ k                                                                                              |          | $\mathbf{x}$                                                                      |         |       |
| 19    | IDECOCHCH(CH) 1-K+                                                                                      | d        | PLCOCHECH(CH)                                                                     | 81      | 147   |
| 10    | $CH_{2}(CH_{2})_{12}MgBr$                                                                               | d<br>d   | $CH_{2}(CH_{2})_{12}F$                                                            | 15      | 147   |
| 20    |                                                                                                         | d        | F                                                                                 | 31      | 147   |
| 20    | () -i) K <sup>+</sup>                                                                                   | u        | $\sim$                                                                            | 51      | 147   |
|       |                                                                                                         |          | $\left( O \right) $                                                               |         |       |
| 91    | $(CH_{*})_{*}CNO_{*}$                                                                                   | c        | (CH <sub>a</sub> ) <sub>a</sub> CFNO <sub>a</sub>                                 | 83-87   | 147   |
| 22    | $[Ph_{3}CCO_{3}]^{2-2}Li^{+}$                                                                           | d        | Ph <sub>2</sub> CFCO <sub>2</sub> H                                               | 69      | 147   |
|       | CH <sub>2</sub>                                                                                         | d        | CH <sub>3</sub>                                                                   | 52      | 147   |
| 20    | l p                                                                                                     | u        |                                                                                   | 02      |       |
|       |                                                                                                         |          |                                                                                   |         |       |
|       |                                                                                                         |          |                                                                                   |         |       |
|       | Ph O                                                                                                    |          | Ph O                                                                              |         |       |
|       |                                                                                                         |          |                                                                                   |         |       |
| 24    | л-С <sub>в</sub> н <sub>13</sub> н                                                                      | е        | л-С <sub>8</sub> н <sub>13</sub> н                                                | 71      | 148   |
|       |                                                                                                         |          |                                                                                   |         |       |
|       |                                                                                                         |          |                                                                                   |         |       |
| 25    |                                                                                                         | е        |                                                                                   | 76      | 148   |
|       | H                                                                                                       |          | HF                                                                                |         |       |
| 96    | 6-C-H- 6-C-H-                                                                                           | <u>^</u> | a-Calla a-Calla                                                                   | 95      | 149   |
| 26    | "·····································                                                                  | e        | " oguy                                                                            | 60      | 140   |
|       | H                                                                                                       |          | H F                                                                               |         |       |
|       | (CHa)aCHCHaCHa CHa                                                                                      | _        |                                                                                   | 75      | 1 4 9 |
| 27    |                                                                                                         | е        |                                                                                   | 75      | 140   |
|       | H Li                                                                                                    |          | H F                                                                               |         |       |
| 28    | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                       | е        | (CH3)2CHCH2CH2 CH3                                                                | 75      | 148   |
| -0    |                                                                                                         |          |                                                                                   |         |       |
|       | Lí Ĥ                                                                                                    |          | F H                                                                               | 1       |       |
| 29    | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                       | е        | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 88      | 148   |
|       |                                                                                                         |          | $\sim$                                                                            |         |       |
|       |                                                                                                         |          |                                                                                   | 00      | 1.40  |
| 30    | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                       | е        | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 83      | 148   |
|       | Ц                                                                                                       |          | F H                                                                               |         |       |
| 0.    |                                                                                                         | ~        | 0 4-0 4-                                                                          | 74      | 148   |
| 31    |                                                                                                         | E        |                                                                                   | 14      | 140   |
|       |                                                                                                         |          | ↓ ↓ ↓ F                                                                           |         |       |



<sup>a</sup>N-Fluoro-2-pyridone. <sup>b</sup>N-Fluoro-N-neopentyl-p-toluenesulfonamide. <sup>c</sup>N-Fluoro-N-tert-butyl-p-toluenesulfonamide. <sup>d</sup>N-Fluoro-Nexo-2-norbornyl-p-toluenesulfonamide. <sup>e</sup>N-tert-Butyl-N-fluorobenzenesulfonamide.

cially useful as a fluorination agent for aromatic substrates.<sup>138,139</sup> Although presently unknown,  $CsSO_4^{18}F$ should be as easily prepared as  $CH_3COO^{18}F$  and thus, enhance the scope of radiofluorination methods.

Fluorinations using  $CsSO_4F$  are summarized in Table XII. Zupan used  $CsSO_4F$  reactions catalyzed by  $BF_3$ in the fluorination of a wide range of aromatic derivatives (entries 1-6). Mixtures of fluoro isomers were obtained (entries 7-9).<sup>140-143</sup> Electron-withdrawing substituents such as trifluoromethyl or carbomethoxy gave only small product conversions to the meta product (see entry 27). Aniline and N,N-dimethylaniline only gave tars at -20 °C. Zupan observed a direct relation between product yields and the ratio of cesium fluoroxysulfate to substrate for naphthalene derivatives (entries 5-9, 17-24). Appelman suggested the mechanism in Scheme IX to account for observations of both electrophilic and radical character in the reactions of  $CsSO_4 \tilde{F}$  with aromatics.<sup>138</sup> Zupan also communicated that alkenes and enol acetates fluorinated at room temperature with  $CsSO_4F$  (entries 13-16).<sup>144</sup>

## B. N-Fluoro Compounds

*N*-Fluoro-2-pyridone<sup>145,146</sup> and various *N*-fluoro-*N*alkylsulfonamides<sup>147</sup> have been shown to be useful fluorinating reagents, under very mild conditions. The results of fluorinations using these reagents are compiled in Table XIII. *N*-Fluoro-2-pyridone is prepared from the direct fluorination of 2-(trimethylsiloxy)pyridine with molecular fluorine (eq 22). The driving



force for fluorination with the pyridone may be rearomatization of the pyridine nucleus. Barnette prepared *N*-fluoro-*N*-alkylsulfonamides by treatment of *N*-alkylsulfonamides with elemental fluorine diluted in nitrogen.<sup>147</sup> These compounds are more stable than *N*fluoro-2-pyridone and provide better yields of fluorinated products as shown in Table XIII (entries 1 and 11, 3 and 12, 5 and 13).

#### C. Halogen Monofluorides

An excellent, comprehensive review was recently published by Boguslavskaya<sup>12</sup> on the utility of halogen fluorides in organic synthesis. Rozen et al.<sup>149–152</sup> have used elemental fluorine to generate IF and BrF in situ. Table XIV is a compilation of the iodofluorination and bromofluorination products from various alkenes and alkynes. IF reacted with olefins regioselectively in Markovnikov fashion as shown by entries 12 and 13. SCHEME IX



SCHEME X



RCF2CI2H





The reaction proceeded by way of an iodonium ion and resulted in stereospecific anti addition (entries 18-21). The addition of BrF is less regioselective but the Markovnikov isomer predominated (entry 14). Because of the greater reactivity of BrF, a proton source such as ethanol or isopropyl alcohol was needed as a moderator. A drawback to the reagent is an accumulation of up to 10% of the solvent incorporated bromoether.

Both IF and BrF reacted with aliphatic alkynes, both terminal and nonterminal, to generate  $CF_2$  groups (entries 1–11).<sup>150</sup> The anticipated mechanism for the reaction is similar to that for olefins with a second molecule of IF adding across the halogenated  $\pi$  bond so as to generate the more stable carbocation at the fluorinated carbon (Scheme X).

Phenylacetylene (entry 4) gave in addition to the expected difluoro product, a trifluoro derivative. A phenonium ion was the postulated intermediate in this reaction as illustrated in Scheme XI. The formation of 1,1,2,2-tetrafluorodiphenylethane, obtained from diphenyl acetylene (entry 8), was attributed to the facile ionization of the intermediate benzylic iodide.<sup>150</sup>

### VIII. Conclusion

The synthetic applications for elemental fluorine have grown considerably in the past 25 years. No longer are perfluorinated hydrocarbons the major area of study in fluorine chemistry. The importance of selective fluo-

| TABLE XIV. | <b>Iodofluorination</b> | and Bromofluorination | Products |
|------------|-------------------------|-----------------------|----------|
|            |                         | ······                |          |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | entry | substrate                                                          | XF       | product(s)                                                                         | % yield  | ref      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|----------|----------|
| $\begin{array}{ccccccc} 2 & CH_{1}CH_{2}CH_{2}CH_{1} & 1 & CH_{1}CH_{2}CH_{2}CH_{2} & 80 & 180 \\ 4 & PhC=CCH_{1} & 1 & CH_{1}CH_{2}CH_{2}CH_{1} & 80 & 130 \\ 5 & PhC=CCH_{1} & 1 & PhCF_{1}CH_{2}CH_{1} & 46 & 130 \\ 6 & PhC=C(CH_{2})_{n}CH_{1} & 1 & PhCF_{1}CH_{2}CH_{2}CH_{1} & 46 & 130 \\ 7 & PhC=C(CH_{3})_{n}CH_{1} & 1 & PhCF_{1}CH_{2}CH_{2}CH_{1} & 46 & 130 \\ 7 & PhC=CCH_{2} & PhCF_{2}CH_{2}CH_{2}CH_{2} & 40 & 130 \\ 7 & PhC=CCH_{3}CH_{3} & PhCF_{1}CH_{2}CH_{3}CH_{3} & 46 & 130 \\ 7 & PhC=CCH_{3}CH_{3} & PhCF_{1}CH_{2}CH_{3}CH_{3} & 46 & 130 \\ 7 & PhC=CCCH_{3}CH_{3} & PhCF_{1}CH_{2}CH_{3}CH_{3} & 46 & 130 \\ 7 & PhC=CCH_{3}CH_{3} & PhCF_{1}CH_{2}CH_{3}CH_{3} & 46 & 130 \\ 7 & PhC=CCH_{3}CH_{3} & PhCF_{1}CH_{2}CH_{3}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{3}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{3}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{2}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{2}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{2}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{2}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{2}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{2}CH_{3} & 70 & 130 \\ 7 & PhC=CCO_{2}E_{1} & PhCF_{1}CH_{2}CH_{2}CH_{3} & 70 & 140 \\ 7 & PhC=CHCH_{3}CH_{2}CH_{2}CH_{2}CH_{3} & 70 & 140 \\ 7 & PhC=CHCH_{3}CH_{2}CH_{2}CH_{2}CH_{3} & 70 & 140 \\ 7 & PhC=CHCH_{3}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | $CH_3(CH_2)_3C \equiv CH$                                          | Br       | $CH_3(CH_2)_3CF_2CHBr_2$                                                           | 60       | 150      |
| $\begin{array}{ccccccc} SHQ = CCH_{q} & I & CH_{q}CF_{Q}CLQH_{q} & 88 & 130 \\ FPAC=CH & I & PACF_{Q}CH_{q} & 40 & 130 \\ FPAC=CCH_{q}CH_{q} & I & PACF_{Q}CH_{q} & 43 & 130 \\ FPAC=CCH_{q}CH_{q}CH_{q} & I & PACF_{Q}CF_{Q}H_{q} & 43 & 130 \\ FPAC=CCH_{q}CH_{q}CH_{q} & I & PACF_{Q}CF_{Q}H_{q} & 43 & 130 \\ FPAC=CCH_{q}CH_{q}CH_{q} & I & PACF_{Q}CF_{Q}H_{q}CH_{q} & 43 & 130 \\ FPAC=CCH_{q}CH_{q}CH_{q} & I & PACF_{Q}CF_{Q}H_{q}CH_{q} & 43 & 130 \\ FPAC=CCH_{q}CH_{q}CH_{q} & I & PACF_{Q}CF_{Q}H_{q}CH_{q} & 43 & 130 \\ FPAC=CCPh & I & PACF_{Q}CF_{Q}H_{q}CH_{q} & 43 & 130 \\ FPAC=CCD_{h} & Br & PACF_{Q}CO_{h}H_{q} & 70 & 150 \\ FPAC=CCD_{h} & Br & PACF_{Q}CO_{h}H_{q} & 70 & 150 \\ I & MoCOC=CCO_{h}H_{q} & I & CH_{Q}CH_{Q}CH_{q}CH_{q} & 70 & 150 \\ I & MoCOC=CCO_{h}H_{q} & I & CH_{Q}CH_{Q}CH_{q}CH_{q} & 70 & 150 \\ I & CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q}CH_{q} & 70 & 150 \\ I & CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q}CH_{q} & 70 & 150 \\ I & CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q} & 70 & 160 \\ CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q} & 70 & 160 \\ CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q} & 70 & 160 \\ CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q} & 70 & 160 \\ CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q} & 70 & 160 \\ CH_{q}(CH_{q})CH=CH_{q} & I & CH_{q}(CH_{q})CH_{q}CH_{q} & 70 & 160 \\ CH_{q}(CH_{q})CH=CH_{q} & I & I & I \\ I & I & I & I & I & I & I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | $CH_3(CH_2)_3C \equiv CH$                                          | Ι        | $CH_3(CH_2)_3CF_2CHI_2$                                                            | 80       | 150      |
| $\begin{array}{cccccccccc} + & \mathbf{P} NC = C H & \mathbf{H} \\ \mathbf{P} NC = C C H & \mathbf{H} \\ \mathbf{P} NC = C C H_{j} C H & \mathbf{H} \\ \mathbf{P} NC = C C H_{j} C H & \mathbf{H} \\ \mathbf{P} NC = C C H_{j} C H & \mathbf{H} \\ \mathbf{P} NC = C C H_{j} C H & \mathbf{H} \\ \mathbf{P} NC = C C H_{j} C H \\ \mathbf{P} C = C C H_{j} C H \\ \mathbf{H} \\ \mathbf{P} C = C C H_{j} C H \\ \mathbf{H} \\ \mathbf{P} C = C C H_{j} C H \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{P} C = C C H_{j} C H \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} C C C C D \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} C C C C C C H \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} C C C C C C H \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} C C C C C C C \mathsf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | $CH_3C \equiv CCH_3$                                               | I        | $CH_{3}CF_{2}CI_{2}CH_{3}$                                                         | 85       | 150      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4     | PhC=CH                                                             | Ι        | PhCF <sub>2</sub> CI <sub>2</sub> H                                                | 40       | 150      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          | PhCF <sub>2</sub> CFIH                                                             | 45       |          |
| $ \begin{array}{cccccc} 6 & \operatorname{PhC=CCH}_{j_{2}}CH_{j} & \operatorname{FI}_{j} & \operatorname{PhCF}_{j_{2}}CH_{j_{2}}CH_{j} & \operatorname{FI}_{j_{2}}H_{j_{2}} & \operatorname{FI}_{j_{2}}H_{j_{2}} & \operatorname{FI}_{j_{2}}H_{j_{2}} & \operatorname{FI}_{j_{2}}H_{j_{2}}H_{j_{2}} & \operatorname{FI}_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2}}H_{j_{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5     | PhC≡CH                                                             | Br       | $PhCF=CBr_2$                                                                       | 40       | 150      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                    |          | $PhCF_2CBr_2H$                                                                     | 45       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6     | $PhC \equiv C(CH_2)_4 CH_3$                                        | Ι        | $PhCF_2CI = CH(CH_2)_3CH_3$                                                        | 45       | 150      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          | $PhCF_2CFI(CH_2)_4CH_3$                                                            | 20       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7     | $PhC \equiv C(CH_2)_4 CH_3$                                        | Br       | $PhCF_2CFBr(CH_2)_4CH_3$                                                           | 45       | 150      |
| $\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8     | PhC≡CPh                                                            | Ι        | PhCF <sub>2</sub> CF <sub>2</sub> Ph                                               | 60       | 150      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          | PhCF <sub>2</sub> COPh                                                             | 20       |          |
| 9 $PhC=CPh$ Br $PhC=Cph$ 66 100<br>10 $PhC=CCopEt$ 77 150<br>11 $MeCOCO=C=CCo,Me$ 77 150<br>12 $CH_1(CH_2,CH=CH_2)$ 70 150<br>13 $CH_2(CH_2,CH=CH_2)$ 70 150<br>14 $CH_1(CH_2,CH=CH_2)$ 70 150<br>15 $CH_2(CH_2,CH=CH_2)$ 70 150<br>16 $CH_2(CH_2,CH=CH_2)$ 70 150<br>17 $CH_2(CH_2,CH=CH_2)$ 70 150<br>16 $CH_2(CH_2,CH=CH_2)$ 70 150<br>17 $CH_2(CH_2,CH=CH_2)$ 70 150<br>16 $CH_2(CH_2,CH=CH_2)$ 70 150<br>17 $CH_2(CH_2,CH=CH_2)$ 70 150<br>18 $O_1(CH_2,C)=C=CH_2(H_2,CH)$ 70 150<br>19 $O_1$ 1 $CH_2(CH_2,CH=CH_2)$ 70 150<br>10 $CH_2(CH_2,CH=CH_2)$ 70 150<br>10 $CH_2(CH_2,CH=CH_2)$ 70 150<br>10 $CH_2(CH_2,CH=CH_2)$ 70 150<br>11 $CH_2(CH_2,CH=CH_2)$ 70 150<br>12 $CH_2(CH_2,CH=CH_2)$ 70 150<br>13 $CH_2(CH_2,CH=CH_2)$ 70 150<br>14 $CH_2(CH_2,CH=CH_2)$ 70 150<br>15 $CH_2(CH_2,CH=CH_2)$ 70 150<br>16 $CH_2(CH_2,CH=CH_2)$ 70 150<br>17 $CH_2(CH_2,CH=CH=CHP)$ 1 $CH_2(CH_2,CH=CH=CHP)$ 45 149<br>17 $CH_2(CH=CHP)$ 1 $CH=CHPh$ 1 $CH=CHPPh$ 42 149<br>17 $CH=CHPh$ 1 $CH=CHPh$ 41 $CH=CHPPh$ 42 149<br>41 $CH=CHPh$ 1 $CH=CHPh$ 41 $CH=CHPh$ 42 149<br>41 $CH=CHPh$ 42 149<br>42 $CH=CHPh$ 41 $CH=CHPh$ 43 149<br>41 $CH=CHPh$ 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149, 44 149,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                    |          | PhCOCOPh                                                                           | 10       |          |
| $\begin{array}{ccccc} & PhC@COPh & 15 \\ PhC=CCO_Bt & product & 15 \\ PhC=CCO_Bt & 70 \\ PhC=CCO_B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9     | PhC=CPh                                                            | Br       | PhCF <sub>2</sub> CBr <sub>2</sub> Ph                                              | 65       | 150      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                    |          | PhCOCOPh                                                                           | 15       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10    | PhC=CCO <sub>2</sub> Et                                            | Br       | PhCF <sub>2</sub> CBr <sub>2</sub> CO <sub>2</sub> Et                              | 70       | 150      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11    | MeOCOC=CCO <sub>2</sub> Me                                         | Br       | MeOCOCF <sub>2</sub> CBr <sub>2</sub> CO <sub>2</sub> Me                           | 70       | 150      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12    | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> CH=CH <sub>2</sub> | I        | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CHFCH <sub>2</sub> I               | 70       | 150, 151 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13    | $CH_{2}(CH_{2})_{0}CH=CH_{2}$                                      | Ī        | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CHFCH <sub>2</sub>                 | 70       | 149      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14    | $CH_{2}(CH_{2})_{2}CH = CH_{2}$                                    | -<br>Br  | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CHFCH <sub>2</sub> Br              | 66       | 149, 152 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ••    |                                                                    | 21       | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CHB <sub>7</sub> CH <sub>2</sub> F | 18       | 110, 102 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15    | (CHa)aC=CH(CHa)aCH(CHa)CHaCHO                                      | T        | (CH_) CFCH(I)(CH_) CHCH_CH(CH_)CH_CHO                                              | 50       | 149      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16    | $CH_{0}(CH_{0})_{0}CF = CH_{0}$                                    | Ť        | CH <sub>a</sub> (CH <sub>a</sub> ) <sub>2</sub> CF <sub>2</sub> CH <sub>2</sub> I  | 75       | 149      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17    | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CHFCH <sub>2</sub> | R.       | CH <sub>a</sub> (CH <sub>a</sub> ) <sub>2</sub> CF <sub>2</sub> CH <sub>2</sub> Br | 40       | 149      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * 1   | ~                                                                  | -        |                                                                                    |          | 110      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18    |                                                                    | 1        | · · · · · · · · · · · · · · · · · · ·                                              | 45       | 149, 151 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          | trans-                                                                             |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | <u> </u>                                                           | -        | F'                                                                                 |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19    |                                                                    | 1        |                                                                                    | 64       | 149, 151 |
| 20 $\bigcirc$ Br $\bigvee_{rass} \bigvee_{rass} \bigvee_{rass} (f) = 0$ $(f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                    |          |                                                                                    |          |          |
| 20 $\bigcirc$ Br $reast + \int_{-\pi}^{+\pi}$ 61 149,<br>$reast + \int_{-\pi}^{+\pi}$ 45 149,<br>21 $f + \bigcirc$ Free 45 149,<br>22 $trans-PhCH=-CHPh$ I $meso-PhCHFCHPPh$ 42 149<br>d!PhCHFCHPPh 15 149<br>d!PhCHFCHPPh 65 149,<br>23 $cis-PhCH=-CHPh$ Br $meso-PhCHFCHPPh$ 65 149,<br>24 $trans-PhCH=-CHPh$ Br $erytho-PhCHFCHBrPh$ 65 149,<br>25 $cis-PhCH=-CHPh$ Br $trice-PhCHFCHBrPh$ 65 149,<br>26 $(2)-PhCCH_3]=-CHPh$ I $trice-PhCHFCHBrPh$ 75 149<br>27 $trans-p-CH_3COC_{2}H_{4}CH=-CHPh$ I $p-CH_3COC_{4}H_{5}CHFPh$ 75 149<br>28 $MeOCOCH_{2}CH=-CH_{2}$ Br $MeOCOCH_{2}CHFCHFPh$ 75 149<br>29 $f = \int_{-\pi}^{0}$ Br $f = \int_{\pi}^{-\pi} \int_{\pi}^{0} \int_{\pi}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                    |          | trans-                                                                             |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20    |                                                                    | Br       | Br                                                                                 | 61       | 149 152  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20    | $\langle \rangle$                                                  | Di       |                                                                                    | Ŭ1       | 140, 102 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          | trans-                                                                             |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          |                                                                                    |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21    |                                                                    | Ι        | F                                                                                  | 45       | 149, 151 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          |                                                                                    |          |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                    |          |                                                                                    |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          | 7                                                                                  |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | იი    | trans DhCH-CHDh                                                    | т        | maso DhCUFCUFDh                                                                    | 12       | 140      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22    | trans-r non-onr n                                                  | 1        |                                                                                    | 42       | 149      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00    | ale DhCU-CUDh                                                      | т        |                                                                                    | 42       | 140      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20    |                                                                    | 1        | J DLOUEOUEDL                                                                       | 15       | 149      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04    | trane DhCU-CUDh                                                    | <b>D</b> |                                                                                    | 00       | 140 159  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24    | ale DhCU—CUDh                                                      | Dr<br>D- | three DhCUECUD-Dh                                                                  | 04<br>65 | 149, 102 |
| 28 (2)-FRUCH <sub>3</sub> )=CHFI 1 interver inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20    | $(7)$ DLC(CH) $\rightarrow$ CHDL                                   | Dr<br>T  |                                                                                    | 75       | 149, 102 |
| 27 $trans-p-CH_3COC_6H_4CH=CHPh$ I $p-CH_3COC_6H_3CHPPh$ 75 149<br>28 $MeOCOCH_2CH=CH_2$ Br $MeOCOCH_3CHPPh$ 76 149,<br>29 $f=0^{\circ}$ Br $f=f=0^{\circ}$ 90 149,<br>30 $0^{\circ}f=0^{\circ}$ Br $f=f=0^{\circ}$ 90 149,<br>31 cholesterol acetate I $f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^{\circ}f=0^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26    | (2)-PhC(CH <sub>3</sub> )=CHPh                                     | 1        | three-PhC(CH <sub>3</sub> )FCHFPh                                                  | /0<br>15 | 149      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07    |                                                                    |          | erythro-PhC(CH <sub>3</sub> )FCHFPh                                                | 15       | 1.40     |
| 28 MeOCOCH <sub>2</sub> CH=CH <sub>2</sub> Br MeOCOCH <sub>2</sub> CHFCH <sub>2</sub> Br 50 149,<br>29 $\Box = 0^{\circ}$ Br $= \int_{r} \int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27    | trans-p-CH <sub>3</sub> COC <sub>6</sub> H <sub>4</sub> CH=CHPh    | 1        | p-CH <sub>3</sub> COC <sub>6</sub> H <sub>5</sub> CHFCHFPh                         | 75       | 149      |
| 28 MeOCOCH_2CH=CH_2<br>29 $\Box = 0$ Br MeOCOCH_2CHBrCH_2Br 30<br>29 $\Box = 0$ Br $= \Box = 0$ 90 149,<br>30 $\Box = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                    | -        | erythro:threo= 9:1                                                                 | -        |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28    | $MeOCOCH_2CH=CH_2$                                                 | Br       | MeOCOCH <sub>2</sub> CHFCH <sub>2</sub> Br                                         | 50       | 149, 152 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          | $MeOCOCH_2CHBrCH_2F$                                                               | 30       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29    | $\sim ^{\circ}$                                                    | Br       | ~O                                                                                 | 90       | 149, 152 |
| 30 $\bigoplus_{r} \bigoplus_{r} \bigoplus$                                                                                                                                                                                          |       |                                                                    |          |                                                                                    |          | ,        |
| 30 $\bigcup_{r} \bigcup_{r} \bigcup$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                    |          | FBr                                                                                |          |          |
| 30 $\bigcirc + + + = + = + = + = + = + = + = + = + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20    | • 0 0                                                              | <b>D</b> | o 0 0                                                                              | 50       | 140 150  |
| 31 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>34 cholesterol acetate<br>35 cholesterol acetate<br>36 149<br>$\downarrow \downarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30    |                                                                    | Dr       |                                                                                    | 50       | 149, 102 |
| 31 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>34 progesterone<br>35 I49<br>36 I49<br>36 I49<br>37 I5 I49<br>36 I49<br>37 I5 I49<br>38 progesterone<br>38 progesterone<br>39 progesterone<br>30 progesterone<br>31 I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                    |          |                                                                                    |          |          |
| 31 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>31 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>34 cholesterol acetate<br>34 cholesterol acetate<br>35 149<br>36 cholesterol acetate<br>37 cholesterol acetate<br>38 cholesterol acetate<br>39 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 cholesterol acetate<br>34 cholesterol acetate<br>35 149<br>36 cholesterol acetate<br>37 cholesterol acetate<br>38 cholesterol acetate<br>39 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 cholesterol acetate<br>34 cholesterol acetate<br>35 cholesterol acetate<br>36 cholesterol acetate<br>37 cholesterol acetate<br>38 cholesterol acetate<br>39 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 cholesterol acetate<br>34 cholesterol acetate<br>35 cholesterol acetate<br>36 cholesterol acetate<br>37 cholesterol acetate<br>38 cholesterol acetate<br>39 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>30 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 cholesterol acetate<br>34 cholesterol acetate<br>35 cholesterol acetate<br>36 cholesterol acetate<br>37 cholesterol acetate<br>37 cholesterol acetate<br>38 cholesterol acetate<br>39 cholesterol acetate<br>30 cholesterol acetate<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 cholesterol acetate<br>34 cholesterol acetate<br>35 cholest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                    |          | Br                                                                                 |          |          |
| 31 cholesterol acetate<br>32 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>31 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>34 for the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                    | -        | F                                                                                  |          |          |
| 32 cholesterol acetate<br>32 cholesterol acetate<br>Br $r = 15$ 149<br>r = 15 149 149 149<br>r = 15 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31    | cholesterol acetate                                                | 1        | - www                                                                              | 65       | 149      |
| 32 cholesterol acetate Br $\downarrow_{F_{1}}$<br>$\downarrow_{CO}$ $\downarrow_{F_{1}}$<br>$\downarrow_{CO}$ $\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$<br>$\downarrow_{F_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                    |          |                                                                                    |          |          |
| 32 cholesterol acetate<br>32 cholesterol acetate<br>Br<br>$AcO = \frac{15}{1}$<br>$AcO = \frac{15}{149}$<br>$f = \frac{15}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                    |          |                                                                                    |          |          |
| 32 cholesterol acetate<br>32 cholesterol acetate<br>33 progesterone<br>33 progesterone<br>34 Br<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                    |          | ACU F                                                                              |          |          |
| 32 cholesterol acetate<br>32 cholesterol acetate<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>Br<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO} \leftarrow \downarrow$<br>$A_{CO}$ |       |                                                                    |          | I                                                                                  |          |          |
| $A_{CO} \leftarrow f_{F} = B_{r}$ $f_{Rr} = 55  149$ $A_{CO} \leftarrow f_{F} = f_{Rr}$ $A_{CO} \leftarrow f_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32    | cholesterol acetate                                                | Br       | mm                                                                                 | 15       | 149      |
| AcO $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                    |          |                                                                                    |          |          |
| AcO $\downarrow_{F}$<br>Br<br>$\downarrow_{Br}$<br>$\downarrow_{F}$<br>$\downarrow_{Br}$<br>$\downarrow_{AcO}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{Rr}$<br>$\downarrow_{AcO}$<br>$\downarrow_{Br}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{F}$<br>$\downarrow_{$                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                    |          |                                                                                    |          |          |
| Br<br>$AcO \leftarrow fr \\ Br \\ Fr \\ Fr \\ Fr \\ Fr \\ Fr \\ Fr \\ F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                    |          | ACU F                                                                              |          |          |
| 33 progesterone Br $progesterone$ $grad bar progesterone$ $grad bar progesterone grad bar progesterone grad bar progesterone grad bar progesterone (149)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                    |          | Br                                                                                 |          |          |
| 33 progesterone Br $progesterone = Br + progesterone = Br + proge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                    |          | 1°vv                                                                               | 55       | 149      |
| 33 progesterone Br $\#p$ 60 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                    |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                             |          |          |
| 33 progesterone Br $\#p$ 60 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                    |          |                                                                                    |          |          |
| 33 progesterone Br #p 60 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                    |          | AcO Rr                                                                             |          |          |
| 33 progesterone Br #p 60 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                    |          | F                                                                                  |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33    | progesterone                                                       | Br       | man #p                                                                             | 60       | 149      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | -                                                                  |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                    |          |                                                                                    |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                    |          |                                                                                    |          |          |

rination methods and biologically active fluorinated compounds are gaining increasing recognition in the scientific community, with special emphasis on radiolabeled fluorinated compounds (as medicinal tracers), fluorinated enzyme inhibitors, pharmaceutically useful compounds, and pesticides. Selectivity and product yields are no longer the exception to the rule, and are becoming more commonplace. The exploration of moderating reagents such as acetyl hypofluorite, cesium fluoroxysulfate, and halogen monofluorides are further extending the applications of fluorine to the production of new compounds that in the past years have been elusive.

Acknowledgments. The helpful comments of Dr. S. Rozen and Dr. S. G. Levine are deeply appreciated.

**Registry No.** F<sub>2</sub>, 7782-41-4.

#### References

- Moissan, H. C.R. Hebd. Seances Acad. Sci. 1886, 102, 1543.
   Bockemuller, W. Justus Liebigs Ann. Chem. 1933, 506, 20.
   Barton, D. H. R.; Hesse, R. H.; Markwell, R. E.; Pechet, M.
- M.; Rozen, S. J. Am. Chem. Soc. 1976, 98, 3036.
  (4) Grakauskas, V. Intra-Sci. Chem. Rep. 1971, 5, 85.
  (5) Lagow, R. T.; Margrave, J. L. Prog. Inorg. Chem. 1979, 26,
- 161
- (6) Rozen, S.; Filler, R. Tetrahedron 1985, 41, 1111.
   (7) Gerstenberger, M. R. C.; Haas, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 647.
- Tedder, J. M. Adv. Fluor. Chem. 1961, 2, 104. (8)
- (9) Haas, A.; Lieb, M. Chimia 1985, 39, 134.
  (10) Stephens, R.; Tatlow, J. C. Quart. Rev. 1962, 16, 44.
  (11) Vyplel, H. Chimia 1985, 39, 304.
- (12) Boguslavskaya, L. S. Russ. Chem. Rev. (Engl. Transl.) 1984, 53, 1178.
- (13) Cacace, F.; Giacomello, P.; Wolf, A. P. J. Am. Chem. Soc. 1980, 102, 3511.
- (14) Sams, L. C.; Reames, T. A.; Durrance, M. A. J. Org. Chem. 1978, 43, 2273.
- (15) Humiston first used various diluents to moderate the reactivity of fluorine. Humiston, B. J. Phys. Chem. 1919, 23, 572.
- (16) Lerman, O.; Tor, Y.; Hebel, D.; Rozen, S. J. Org. Chem. 1984, 49, 806.
- (17) Merritt, R. F.; Johnson, F. A. J. Org. Chem. 1966, 31, 1859.
  (18) Merritt, R. F. J. Org. Chem. 1966, 31, 3871.
  (19) Merritt, R. F.; Stevens, T. E. J. Am. Chem. Soc. 1966, 88,

- Merritt, R. F. J. Am. Chem. Soc. 1967, 89, 609. (20)
- (21)Rozen, S.; Lerman, O.; Kol, M.; Hebel, D. J. Org. Chem. 1985, 50, 4753.
- (22)Barton, D. H.; Hesse, R. H.; Jackman, G. P.; Ogunkoya, L.;
- Barton, D. H., Hesse, R. H., Soc., Perkin Trans. 1 1974, 739.
  Barton, D. H. R.; Lister-James, J.; Hesse, R. H.; Pechet, M. M.; Rozen, S. J. Chem. Soc., Perkin Trans. 1 1982, 1105.
  Yakubovich, A. Ya.; Rozenshtein, S. M.; Ginsburg, V. A.; Smirnov, K. M. Zh. Obsch. Khim. 1966, 36, 150. (23)(24)
- Cech, D.; Holy, A. Collect. Czech. Chem. Commun. 1976, 41, (25)
- 3335.
- (26)Cech, D.; Beerbaum, H.; Holy, A. Collect. Czech. Chem. Commun. 1977, 42, 2694.
- Diksic, M.; Di Raddo, P. Tetrahedron Lett. 1984, 25, 4885. Meinert, H.; Cech, D. Z. Chem. 1972, 12, 292. Kobayashi, Y.; Kumadaki, I.; Yamashita, T. Heterocycles (27)
- (28)(29)
- 1982, 17, 429. Cech, D.; Hein, L.; Wuttke, R.; Janta-Lipinski, M. V.; Otto,
- (30)A.; Langen, P. Nucleic Acids Res. 1975, 2, 2177.
- (31) Cech, D.; Meinert, H.; Etzold, G.; Langen, P. J. Prakt. Chem. 1973, 315, 149.
- (32) Cech, D.; Herrmann, G.; Holy, A. Nucleic Acids Res. 1977, 1, 3259.
- Kumadaki, I.; Nakazawa, M.; Kobayashi, Y.; Muruyama, T.; (33)
- (35) Ruffadaki, I.; Nakazawa, M.; Kobayashi, I.; Muruyama, I.; Honjo, M. Tetrahedron Lett. 1983, 24, 1055.
   (34) Schwarz, B.; Cech, D.; Holy, A.; Skoda, J. Collect. Czech. Chem. Commun. 1980, 45, 3217.
   (35) Fowler, J. S.; Finn, R. D.; Lambrecht, R. M.; Wolf, A. P. J. Nucl. Med. 1973, 14, 63.
   (36) Koning, J.; Schonherr, M.; Wolter, P.; Wunsche, M.; Cech, D. Z Chem. 1984, 24, 252.
- . Chem. 1984, 24, 253
- (37) Has, A.; Kortmann, D. Chem. Ber. 1981, 114, 1176.
   (38) Barton, D. H. R.; Hesse, R. H.; Toh, H. T.; Pechet, M. M. J. Org. Chem. 1972, 37, 329.

- (39) Kobayashi, Y.; Kumadaki, I.; Nakazato, A. Tetrahedron Lett. 1980, 21, 4605. The assignment of configuration of 5-fluoro-6-alkoxy-5,6-dihydrouracil reported in this paper is reported by Robins.<sup>42</sup> Visser et al.<sup>41</sup> report the presence of both *cis*and trans-5-fluoro-6-acetoxy-5,6-dihydrouracil. Diksic, et al. (Diksic, M.; Farrokhad, S.; Colebrook, L. D. Can. J. Chem. 1986, 64, 424) have also examined the stereochemistry of this reaction. (40) Shiue, C.-Y.; Wolf, A. P.; Friedkin, M. J. Labelled Compd.
- Radiopharm. 1984, 21, 865.
  (41) Visser, G. W. M.; Boele, S.; Halteren, B. W. v.; Knops, G. H. J. N.; Herocheid, J. D. M.; Brinkman, G. A.; Hoekstra, A. J. Org. Chem. 1986, 51, 1466,
- (42) Robins, M. J.; MacCross, M.; Naik, S. R.; Ramani, G. J. Am. Chem. Soc. 1976, 98, 7381.
   (43) Shiue, C.-Y.; Wolf, A. P. J. Labelled Compd. Radiopharm.
- 1981, 18, 1059.
- (44) Adduct is questionable according to the experimental procedure. The hydroxy group is assumed to come from the hydrolysis of the acetate group, although no water was made available.
- (45) Kvasyuk, E. I.; Mikhalopulo, I. A.; Pupeiko, N. E.; Tsekh, D. Zh. Org. Khim. 1983, 19, 462.
   (46) Tsushima, T.; Kawada, K.; Tsuji, T.; Misaki, S. J. Org. Chem.
- (46) Isusnima, 1.; Rawaua, K., Isuji, Y., Internation, C. L. 1982, 47, 1107.
  (47) Purrington, S. T.; Lazaridis, N. V.; Bumgardner, C. L. Tetrahedron Lett. 1986, 27, 2715.
  (48) Purrington, S. T.; Lazaridis, N. V.; Bumgardner, C. L., un-
- (48) Purrington, S. 1.; Lazarius, N. v.; Buingardner, C. L., unpublished results.
  (49) Rozen, S.; Lerman, O. J. Am. Chem. Soc. 1979, 101, 2782.
  (50) Ido, T.; Wan, C.-N.; Fowler, J. S.; Wolf, A. P. J. Org. Chem. 1977, 42, 2341.
  (51) Shiue, C.-Y.; Salvadori, P. A.; Wolf, A. P.; Fowler, J. S.; MacGregor, R. R. J. Nucl. Med. 1982, 23, 899.
  (52) Fowler, J. S.; Mac Gregor, R. R.; Wolf, A. P.; Farrell, A. A.; Karlettom, K. J. Ruth, T. J. J. Nucl. Med. 1981, 22, 376.

- Karlstrom, K. I.; Ruth, T. J. J. Nucl. Med. 1981, 22, 376.
   Barrio, J. R.; MacDonald, S.; Robinson, G. D., Jr.; Najafi, A.; Cook, J. S.; Kuhl, D. E. J. Nucl. Med. 1981, 22, 372.
   Ido, T.; Wan, C.-N.; Casella, V.; Fowler, J. S.; Wolf, A. P.; Reivich, M.; Kuhl, D. E. J. Labelled Compd. Radiopharm. 1072, 14, 172 1**978**, *14*, 17
- Merritt, R. F. J. Org. Chem. 1967, 32, 4124. (55)
- McEwen, W. E.; Guzikowski, A. P.; Wolf, A. P. J. Fluorine (56)Chem. 1984, 25, 169.
- (57) Merritt, R. F.; Johnson, F. A. J. Org. Chem. 1967, 32, 416.
   (58) Patrick, T. B.; Scheibel, J. J.; Cantrell, G. L. J. Org. Chem.
- 1981, 46, 3917. Leroy, J.; Wakselman, C. J. Chem. Soc. Perkin Trans. 1 1978, (59) 1224.
- Patrick, T. B.; Flory, P. A. J. Fluorine Chem. 1984, 25, 157. Merritt, R. F. J. Org. Chem. 1967, 32, 1633. Ruppert, I. Tetrahedron Lett. 1980, 21, 4893. (60)
- (61)
- (62)
- (63)Jewett, D. M.; Ehrenkaufer, R. E. J. Fluorine Chem. 1983, 22.475
- (64) Grakauskas, V.; Baum, K. J. Org. Chem. 1970, 35, 1545.
   (65) Cohen, Z.; Keinen, E.; Mazur, Y.; Varkony, T. H. J. Org.
- Cohen, Z.; Keinen, E.; Mazur, Y.; Varkony, T. H. J. Org. Chem. 1975, 40, 2141. Gal, C.; Rozen, S. Tetrahedron Lett. 1985, 26, 2793. Gal, C.; Rozen, S. Tetrahedron Lett. 1984, 25, 449. Rozen, S.; Gal, C.; Faust, Y. J. Am. Chem. Soc. 1980, 102,
- (66)
- (67)
- (68) 6860.
- (69) Gal, C.; Ben-Shoshan, G.; Rozen, S. Tetrahedron Lett, 1980, 21. 5067

- 21, 5067.
   Barton, D. H. R. Pure and Appl. Chem. 1977, 49, 1241.
   (71) Rozen, S.; Gal, C. J. Fluorine Chem. 1985, 27, 143.
   (72) Rozen, S.; Ben-Shushan, G. Tetrahedron Lett. 1984, 25, 1947.
   (73) Barton, D. H. R.; Hesse, R. H.; Markwell, R. E.; Pechet, M. M.; Toh, H. T. J. Am. Chem. Soc. 1976, 98, 3034.
   (74) Gal, C.; Rozen, S. J. Fluorine Chem. 1982, 20, 689.
   (75) Alker, D.; Barton, D. H. R.; Hesse, R. H.; Lister-James, J.; Markwell, R. E.; Pechet, M. M.; Rozen, S.; Takeshita, T.; Toh, H. T. Nouv. J. Chim. 1980, 4, 239.
   (76) Olah. G. A.: Halnern, Y.: Sten. J.: Mo, Y. K. J. Am. Chem.
- (76) Olah, G. A.; Halpern, Y.; Sten, J.; Mo, Y. K. J. Am. Chem. Soc. 1971, 93, 1251.
   (77) Olah, G. A.; Prakash, G. K. S.; Krishnamurthy, V. V. J. Org.
- Chem. 1983, 48, 5116. Christe, K. O. J. Fluorine Chem. 1983, 22, 519. Christe, K. O. J. Fluorine Chem. 1984, 25, 269. Cartwright, M. M.; Woolf, A. A. J. Fluorine Chem. 1984, 25,

- (80)
- (81) Hehre, W. J.; Hiberty, P. C. J. Am. Chem. Soc. 1974, 96, 7163. (82)
- Cacace, F.; Wolf, A. P. J. Am. Chem. Soc. 1978, 100, 3639. Grakauskas, V. J. Org. Chem. 1970, 35, 723. Misaki, S. J. Fluorine Chem. 1981, 17, 159. Misaki, S. J. Fluorine Chem. 1982, 21, 191. (83)
- (84)
- (85)
- (86) Firnau, G.; Chirakal, R.; Garnett, E. S. J. Nucl. Med. 1984, 25.1228
- (87) Adam, M. J.; Ruth, T. J.; Jivan, S.; Pate, B. D. J. Fluorine Chem. 1984, 25, 329.

- (88) Speranza, M.; Shiue, C.-Y.; Wolf, A. P.; Wilbur, D. S.; Angelini, G. J. Fluorine Chem. 1985, 30, 97.
  (89) Adam, M. J.; Berry, J. M.; Hall, L. D.; Pate, B. D.; Ruth, T.
- J. Can. J. Chem. 1983, 61, 658.
- (90) Di Raddo, P.; Diksic, M.; Jolly, D. J. Chem. Soc., Chem. Commun. 1984, 159.
- (91) Adam, M. J.; Pate, B. D.; Ruth, T. J.; Berry, J. M.; Hall, L.
- (b) J. Chem. Soc., Chem. Commun. 1981, 733.
  (92) Naumann, D.; Lange, H. J. Fluorine Chem. 1983, 23, 37.
  (93) Rozen, S.; Brand, M. J. Org. Chem. 1981, 46, 733.
  (94) Kollonitsch, J.; Marburg, S.; Perkins, L. M. J. Org. Chem.
- 1976, 41, 3107. (95) Azeem, M.; Brownstein, M.; Gillespie, R. J. Can. J. Chem.
- Harden, W., Brownstein, W., Ghrespie, R. S. Carl. S. Chen.
   1969, 47, 4159.
   Eremenko, L. T.; Natsibullin, F. Ya.; Nesterenko, G. N. Izv.
   Akad. Nauk SSSR 1968, 1362.
   Hesse, R. Isr. J. Chem. 1978, 17, 60. (96)
- (97)
- (98) Patrick, T. B.; Cantrell, G. L.; Inga, S. J. Org. Chem. 1980, 45.1409.
- (99) Patrick, T. B.; Cantrell, G. L.; Chang, C.-Y.; J. Am. Chem. Soc. 1979, 101, 7434.
  (100) Middleton, W. J.; Bingham, E. M. J. Am. Chem. Soc. 1980,
- 102, 4846.
- (101) Cady, G. H.; Kellog, K. B. J. Am. Chem. Soc. 1953, 75, 2501.
   (102) Rozen, S.; Lerman, O.; Kol, M. J. Chem. Soc., Chem. Commun. 1981, 443.

- mun. 1981, 443.
  (103) Lerman, O.; Tor, Y.; Rozen, S. J. Org. Chem. 1981, 46, 4629.
  (104) Rozen, S.; Lerman, O. J. Am. Chem. Soc. 1979, 101, 2782.
  (105) Rozen, S.; Lerman, O. J. Org. Chem. 1980, 45, 672.
  (106) Rozen, S.; Menahem, Y. J. Fluorine Chem. 1980, 16, 19.
  (107) Rozen, S.; Menahem, Y. Tetrahedron Lett. 1979, 725.
  (108) Lerman, O.; Rozen, S. J. Org. Chem. 1980, 45, 4122.
  (109) Barnette, W. E.; Wheland, R. C.; Middleton, W. J.; Rozen, S. J. Org. Chem. 1985, 50, 3698 I. Org. Chem. 1985, 50, 3698.
- (110) Mulholland, G. K.; Ehrenkaufer, R. E. J. Org. Chem. 1986, 51, 1482.
- (111) Fowler, J. S.; Shiue, C.-Y.; Wolf, A. P.; Salvadori, P. A.; MacGregor, R. R.; J. Labelled Compd. Radiopharm. 1982, 19, 1634.
- (112) Jewett, D. M.; Potocki, J. F.; Ehrenkaufer, R. E. Synth. Commun. 1984, 14, 45. (113) Jewett, D. M.; Potocki, J. F.; Ehrenkaufer, R. E. J. Fluorine
- Chem. 1984, 24, 477.

- (114) Diksic, M.; Jolly, D. Int. J. Appl. Radiat. Isot. 1983, 34, 893.
  (115) Adam, M. J. Chem. Eng. News 1985, 63(7), 2.
  (116) Hebel, D.; Lerman, O.; Rozen, S. J. Fluorine Chem. 1985, 30, 141.
- (117) Appelman, E. H.; Mendelsohn, M. H.; Kim, H. J. Am. Chem. Soc. 1985, 107, 6515.
   (118) Adam, M. J. J. Chem. Soc., Chem. Commun. 1982, 730.
   (119) Adam, M. J.; Pate, B. D.; Nesser, J.-R.; Hall, L. D. Carbo-
- hydr. Res. 1983, 124, 215.

Purrington et al.

- (120) Lerman, O.; Rozen, S. J. Org. Chem. 1983, 48, 724.
   (121) Visser, G. W. M.; Haltern, B. W. v.; Herscheid, J. D. M.; Brinkman, G. A.; Hoekstra, A. J. Chem. Soc., Chem. Commun. 1**984**, 655.
- (122)Chirakal, R.; Firnau, G.; Couse, J.; Garnett, E. S. Int. J. Appl. Radiat. Isot. 1984, 35, 651.

- (123) Rozen, S.; Brand, M. Synthesis 1985, 665.
  (124) Shiue, C.-Y.; Wolf, A. P. J. Nucl. Med. 1985, 26, P129.
  (125) Kosower, E. M.; Hebel, D.; Rozen, S.; Radkowski, A. E. J.
- Org. Chem. 1985, 50, 4152. Shiue, C.-Y.; Wolf, A. P. J. Fluorine Chem. 1986, 31, 255. Visser, G. W. M.; Bakker, C. N. M.; Halteren, B. W. v.; (126)(127)Herscheid, J. D. M.; Brinkman, G. A.; Hoekstra, A. J. Org.
- Chem. 1986, 51, 1886. Van Rijn, C. J. S.; Herscheid, J. D. M.; Visser, G. W. M.; Hoekstra, A. Int. J. Appl. Radiat. Isot. 1985, 36, 111. (128)
- (129) Ehrenkaufer, R. E.; Potoki, J. F.; Jewett, D. M. J. Nucl. Med.
- 1984, 25, 333. (130) Bida, G. T.; Satyamurthy, N.; Barrio, J. R. J. Nucl. Med. 1984, 25, 1327.
- (131) Fifolt, M. J.; Olezak, R. T.; Mundhenke, R. F.; Bieron, J. F. J. Org. Chem. 1985, 50, 4576. (132) Johri, K. K.; DesMarteau, D. D. J. Org. Chem. 1983, 48, 242.

- (133) Levy, J.; Sterling, D. J. Org. Chem. 1985, 50, 5615.
  (134) Feiring, A. E. J. Org. Chem. 1985, 50, 3269.
  (135) Speranza, M.; Shuie, C.-Y.; Wolf, A. P.; Wilbur, D. S.; Angelini, G. J. Chem. Soc., Chem. Commun. 1984, 1448.
  (136) Chauvette, P.; Jones, D.; Jones, N.; Saurtzendruber, J.; Ward, J. Chem. Soc. Chem. Commun. The Wilton File Science and Sci
- J. S.; Rozen, S. Abstracts of Papers, 7th Winter Fluorine
- J. S.; Rozen, S. Abstracts of Fapers, ith Winter Fluorine Conference, Orlando, FL, 1985; Abstract 52.
  (137) Fichter, F.; Humpert, K. Helv. Chim. Acta 1926, 9, 602.
  (138) Ip, D. P.; Arthur, C. D.; Winans, R. E.; Appelman, E. H. J. Am. Chem. Soc. 1981, 103, 1964.
  (139) Appelman, E. H.; Basile, L. J.; Hayatsu, R. Tetrahedron
- 1984, 40, 189.
- (140) Stavber, S.; Zupan, M. J. Chem. Soc., Chem. Commun. 1981, 148.

- (141) Stavber, S.; Zupan, M. J. Fluorine Chem. 1981, 17, 597.
  (142) Stavber, S.; Zupan, M. J. Org. Chem. 1985, 50, 3609.
  (143) Patrick, T. B.; Darling, D. J. Org. Chem. 1986, 51, 3242.
  (144) Stavber, S.; Zupan, M. J. Chem. Soc., Chem. Commun. 1981, 795.
- (145) Purrington, S. T.; Jones, W. A. J. Org. Chem. 1983, 48, 761.
   (146) Purrington, S. T.; Jones, W. A. J. Fluorine Chem. 1984, 26,
- (147) Barnette, W. E. J. Am. Chem. Soc. 1984, 106, 452.
   (148) Lee, S. H.; Schwartz, J. J. Am. Chem. Soc. 1986, 108, 2445.
- (149) Rozen, S.; Brand, M. J. Org. Chem. 1985, 50, 3342.
   (150) Rozen, S.; Brand, M. J. Org. Chem. 1986, 51, 222.
   (151) Rozen, S.; Brand, M. Tetrahedron Lett. 1980, 21, 4543.

- (152) Rozen, S.; Brand, M. J. Fluorine Chem. 1982, 20, 419.