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/ . Introduction 

Although tunnelling in bimolecular reactions has been 
studied since the late 1920s, the importance of tun­
nelling in chemistry is still the subject of much mis­
understanding. Just mentioning the question, "How 
much does curvature in an Arrhenius plot reflect the 
tunnelling contribution to the rate constant?" is likely 
to evoke much discussion and controversy. However, 
for very simple gas-phase reactions, particularly atom-
diatom hydrogen-transfer reactions, many of the 
quantitative questions pertaining to tunnelling have 
been unravelled in the past few years through the use 
of modern theoretical reaction dynamics methods. 
Thus we now have a quantitative understanding of 
tunnelling processes for some simple reactions, and this 
understanding is rapidly extending to more complex 
reactions. 

It is the purpose of this review to discuss these recent 
developments in the theory of tunnelling in bimolecular 
gas phase reaction dynamics. Since our emphasis will 
be on quantitative theories, much of this review will be 
concerned with atom-diatom H and D atom exchange 
reactions where the potential energy surfaces are well 
characterized, and where experimental measurements 
allow for a quantitative comparison between theory and 
experiment. We will, however, also discuss recent de­
velopments which have expanded our qualitative un­
derstanding of tunnelling, including the question of how 
tunnelling should be defined, the validity of the vi-
brationally adiabatic approximation when tunnelling 
is important, and the question of tunnelling times. The 
theories of tunnelling that will be discussed range from 
essentially exact quantum scattering methods to one-
dimensional theories based on reaction path concepts. 
A special emphasis will be placed on the variational-
transition-state-theory description of reaction dynamics 
since this provides one of the most meaningful ways to 
define tunnelling contributions to rate constants. 

Almost all of our discussion will be devoted to H or 
D atom tunnelling in reactions with potential energy 
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barriers. The importance of H atom tunnelling in re­
combination reactions with small or no barriers is a 
potentially important topic that is just starting to re­
ceive attention.1 Tunnelling of atoms other than hy­
drogen isotopes has received very little attention in 
quantitative theoretical studies.2 Electron tunnelling 
in gas-phase charge-transfer reactions has received some 
attention3,4 but is outside the scope of this review. 
Proton and hydride transfer reactions in the gas phase 
are usually not associated with substantial barriers, and 
thus tunnelling has received less attention here than in 
corresponding condensed-phase studies.5 

A closely related review of tunnelling in unimolecular 
reactions can be found elsewhere in this journal edition.6 

Other recent reviews that have touched upon tunnelling 
to some extent include reviews of variational-transi-
tion-state theory by Truhlar, Garrett, and co-work­
e r s , ' 1 0 of accurate quantum reactive scattering calcu­
lations by Schatz11 and by Connor,12 of reduced di­
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mensionality quantum methods by Bowman,13 of infi­
nite-order sudden methods by Jellinek and Kouri,14 of 
semiclassical methods by Miller,15 and of the H3 kinetics 
by Truhlar and Wyatt.16 

To summarize the rest of this review, in the next 
section (section II) we define what we mean by tun­
nelling and use a simple model of reactive scattering to 
illustrate this definition and to indicate the very im­
portant relationship between tunnelling and vibrational 
adiabaticity. Section III then discusses recent exact and 
approximate theoretical studies of tunnelling using 
quantum-scattering methods, while section IV describes 
methods and applications based on reaction path 
models, including those used in connection with varia-
tional-transition-state theory, and section V describes 
path integral methods (and related methods) for de­
scribing tunnelling. 

II. What is Tunnelling? A Simple Model of 
Tunnelling Dynamics 

Although there is no unique definition of what one 
means by the term "tunnelling", in one dimensional 
problems the term "tunnelling" is usually taken to refer 
to reaction that takes place at energies less than the 
classical barrier energy.17 Above the classical barrier, 
deviation between quantum and classical reaction 
probabilities is generally called "non-classical 
reflection". This means that the "transmission 
coefficient" or "tunnelling factor" K which is defined as 
the ratio of quantum to classical thermal rate constants 
actually measures both tunnelling and nonclassical re­
flection. At low temperatures, however, K is dominated 
by "tunnelling" as defined above and thus the term 
"tunnelling factor" is appropriate. 

In two or more dimensions, the above definitions of 
tunnelling and tunnelling factor need to be refined. In 
particular, it is not useful to define tunnelling as reac­
tion that occurs at energies below the classical barrier 
energy because energy locked up in modes perpendi­
cular to the reaction path makes the energy needed to 
surmount the effective barrier to reaction different from 
the classical barrier. Although there is no rigorous way 
to define this effective barrier, a commonly used as­
sumption which underlies variational-transition-state 
theory (VTST) and other theories is to define this 
barrier in terms of vibrationally adiabatic potential 
curves which are generated by diagonalizing the Ham-
iltonian associated with motion pependicular to the 
reaction path connecting reagents and products at each 
point along the reaction path. The technology associ­
ated with evaluating vibrationally adiabatic potentials 
has been discussed elsewhere,7-10'18-21 and often one 
finds that the important bottleneck in determining 
thermal rate constants is that associated with the vi­
brationally adiabatic ground-state (VAG) curve. We 
will denote the VAG barrier by Va

G. 

To be rigorous, we should note that the VTST pre­
scription for locating the bottleneck is based on finding 
a free-energy maximum for either a canonical or mi-
crocanonical ensemble,18-20 and the energy of this 
bottleneck equals Va

G only in the limit of zero tem­
perature or energy. However, for reactions involving 
transfer of a light atom (H or D), usually Va

G is an 
excellent approximation to this free-energy barrier up 
to quite high temperatures or energies. We should also 

note that if the VTST bottleneck is located at the po­
tential surface saddle point, then VTST reduces to 
conventional transition state theory. There are many 
examples of where this does not happen.7-10'18"20 

If we accept the VTST definition of reaction bottle­
neck, then the logical way to measure tunnelling is via 
a transmission coefficient K which is defined as 

K = ^EQ/^VTST (2.1) 

where km is the exact quantum rate constant and &VTST 
is that obtained from VTST treating reaction path 
motions classically but other modes quantum mechan­
ically. According to the definition in eq 2.1, K includes 
for all differences between the VTST and exact rate 
constants, and thus includes for both tunnelling and 
recrossing. At low temperatures, however, one expects 
that K will primarily reflect the influence of tunnelling, 
and thus, just as in the one-dimensional case, it is 
reasonable to refer to it as a "tunnelling factor". 

It may seem that use of the VTST rate constant as 
a reference by which tunnelling is defined is a rather 
specialized definition that may not describe reaction 
bottleneck behavior meaningfully in situations where 
motional time scales are inappropriate for perpendicular 
vibrational motions to be adiabatic, but in fact this is 
actually much more general than a simple consideration 
of adiabatic theory would indicate. Before discussing 
this point in a general sense, let us illustrate it nu­
merically by considering the following two dimensional 
model of reaction dynamics. (References 22-23 describe 
similar models used in other applications.) 

In this model we imagine that one of the coordinates 
in the problem is the reaction path coordinate s, and 
the other is a rotational angle y. The Hamiltonian H 
is taken to be that appropriate for the coplanar inter­
action of an atom with a homonuclear diatomic mole­
cule, taking the total angular momentum to be zero and 
assuming that stretch vibrational motion is adiabatic. 
In this case then, we find 

H = P*/2n + j2/2I + V(s,y) (2.2) 

where the first term refers to reaction path motion, the 
second refers to rotational motion, and the third is a 
coupling term which we take to be 

V(a,y) = B sin2 7/cosh2 (s/L) (2.3) 

This represents an Eckart barrier in the s coordinate 
modulated by sin2 7 such that the 7 = 0 and -K barriers 
vanish and the 7 = ir/2, 3ir/2 barrier is B. Taking 
parameters roughly appropriate to H + H2 (ju = 1224.7 
au, / = 3600 au, B = 1.63 eV and L = 0.500 a0), we 
generate the vibrationally adiabatic potential curves 
given in Figure 1. Note that the rotorlike energy levels 
at s = ±<» transform into oscillator like levels near s = 
0. The VAG barrier is 0.11 eV. Notice especially that 
the oscillator period varies from °°ats = ±°° to2X 1O-14 

s at s = 0, while the time needed for reaction to occur 
(roughly 2L/v where v is the velocity associated with 
an energy of 0.11 eV) is 1 X 1O-14 s. Thus the time scales 
do not seem to be appropriate for vibrationally adia­
batic behavior. 

Figure 2 shows the results of exact quantum-scat­
tering calculations (EQ) using this model, along with 
results from classical trajectories (CT), vibrationally 
adiabatic theory (VA), and rotational sudden (RS) ap-
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Figure 1. Vibrationally adiabatic potentials (in eV) as a function 
of the reaction path coordinate s (in a0) for the lowest 5 states 
of the model Hamiltonian described in text. 
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Figure 2. Reaction probability vs. reagent translational energy 
(in eV) for model described in text. EQ denotes the results from 
an accurate quantum scattering calculation, while CT denotes 
the corresponding classical trajectory probabilities; VA, the results 
of a quantum calculation using vibrationally adiabatic potentials; 
and RS, the results of using a quantum rotational sudden ap­
proximation. 

proximations to the dynamics. (RS assumes that the 
rotor angle is fixed during the reaction and then aver­
ages over results from different orientations.) Plotted 
in Figure 2 is the total reaction probability P vs. reagent 
translational energy for reagents starting in the ground 
rotational state, and we see that the EQ results show 
a well-defined threshold at an energy which is very close 
to the VA threshold, and both are close to the VAG 
barrier. The CT and RS thresholds are by way of 
contrast at zero translational energy as one would ex­
pect given that the y = 0,ir barrier is zero. Below 
threshold we find that the EQ and VA reaction prob­
abilities are almost identical, while well above threshold 
the EQ probability merges in with the CT and RS re­
sults while the VA probability goes to unity. 

Figure 2 graphically demonstrates that exact quan­
tum dynamics is closely governed by the VAG thresh­
old, thus supporting our contention that eq 2.1 provides 
a useful way to define tunnelling. This occurs even 
though the motional time scales seem to be inappro­
priate for VA theory to be right. Well above threshold, 
however, the CT and RS results are more accurate than 
VA for the initial state-resolved probability plotted in 
Figure 2. The agreement of EQ and VA probabilities 
for rotationally excited reagents (not shown) is much 
closer, however, and in fact the EQ cumulative proba­

bility (the sum of P over all initial states) is in excellent 
agreement (better than 1 %) with VA over the entire 
energy range where the EQ probability is greater than 
10"2. The corresponding CT and RS cumulative prob­
abilities are also accurate at high energies but retain the 
threshold error noted in Figure 2. Since it is the cu­
mulative probability near threshold that determines 
thermal rate constants at typical temperatures 
(200-2000 K), the VA rate constants are thus in very 
good agreement with EQ while the CT and RS rate 
constants are not. 

The apparent anomaly in time scales noted above has 
been discussed previously in an analysis of accurate 
quantum results for 3 D H + H2,24 and recently it was 
the subject of a general study of time-delay behavior 
in reactive tunnelling by Abu-Salbi et al.25 They ex­
amined the Eisenbud-Wigner26,27 time-delay matrix ri; 

for several models of reactive scattering, including an 
inverted harmonic oscillator potential and collinear H 
+ H2 and D-I-H2 reactive collisions, T^ is related to 
the scattering matrix Sy and its energy derivative 
dSij/dE by 

Ty = Rel-ihSif1 dSij/dE] (2.4) 

Ty had been studied in earlier calculations using 
collinear quantum methods,28"30 but the new result of 
Abu-Salbi et al. was that Ti; exhibits a maximum at 
energies close to the VAG barrier which can be signif­
icantly larger than that estimated by simple arguments 
such as classical passage times. In addition they found 
that adiabatic behavior should arise if the period of 
internal motion is shorter than (V2*

-) AT where AT is 
the barrier passage time. This was found to occur for 
both collinear H-I-H2 and D-I-H2 over a relatively wide 
range of energies near the VAG barrier. The same 
argument is less conclusive for 3 D H + H2, where the 
slower bend mode should be less adiabatic according 
to their arguments. However this bend mode was found 
to be highly adiabatic in the 3D H + H2 calculations 
in ref 24. An alternative argument to resolve this time 
scale anomaly was given in ref 24 based on how the 
uncertainty principle constrains the minimum energy 
that a wave packet can have in each mode at the point 
that the barrier is crossed. Unfortunately it is hard to 
develop this argument for nonseparable systems in a 
way that rigorously leads to VAG bottleneck without 
invoking the VA approximation first. 

If we ignore this time scale paradox, then the quali­
tative picture of tunnelling that appears from the dis­
cussion so far is one of somewhat deceptive simplicity. 
If tunnelling is dominant then vibrationally adiabatic 
theory always works well, and a relatively simple adi­
abatic theory estimate should be adequate to determine 
K in eq 2.1, and hence the accurate rate constant from 
&VTST- What we have left out of this discussion, how­
ever, is how curvature along the reaction path influences 
tunnelling. (The model used in Figure 1 and 2 leaves 
out curvature.) This point has been studied by several 
groups,31"36 and we will discuss the results of these 
studies in detail in section IV. Suffice it to say for now 
that eq 2.1 and the VAG threshold are still considered 
to be meaningful quantities when curvature is included, 
but the path along which tunnelling occurs has to be 
moved away from the steepest decents path in order to 
calculate accurate tunnelling factors. Of course, even 
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TABLE I. Collinear Exact Quantum Tunnelling Factors 

reaction 0, deg 200 K 300 K ref 
89.3 
89.0 
77.0 
60.0 
60.0 
46.7 
19.0 
13.6 

36 
12 
71 
46 
14 
60 
14 
93 

5.3 
3.0 
7.7 
8.7 
3.7 
9.4 
5.0 
16 

42 
42 
45 
46-49 
45 
54 
55 
55 

H + BrH 
H + BrD 
Mu + H2 (LSTH) 
H + H2 (PK2) 
H + H2 (LSTH) 
0 + H2 
Cl + DCl 
Cl + HCl 

the best of theories based on one dimensional paths is 
not perfect, but it is encouraging that the simple pre­
scription based on adiabatic theory can be generalized 
to broad classes of reactions. 

III. Quantum Scattering Studies of Reactive 
Collisions 

Thanks to advances in scattering theory as well as to 
the availability of fast computers, it is now possible to 
calculate reaction rate constants for many atom-diatom 
reactions almost exactly for a given potential surface. 
Unfortunately, the only reaction for which the potential 
surface is known to "chemical accuracy" (~0.1 kcal/ 
mol) is H + H2, but at least for this reaction and its 
isotopomers one can quantitatively estimate rate con­
stants for comparison with experiment. Even for re­
actions where the surface is not known accurately, exact 
results for a given surface allow for the study of tun­
nelling on that surface. Of course, the rate constants 
from a quantum scattering calculation do not by them­
selves indicate the importance of tunnelling, but by 
using eq 2.1 (or other theories37-39), one can determine 
the importance of tunnelling in these reactions. 

We will begin our discussion of quantum scattering 
calculations by considering exact calculations done in 
one rather than three physical dimensions. Such cal­
culations are much easier than three dimensional cal­
culations and have been more extensively analyzed. We 
then discuss recent three-dimensional accurate quan­
tum studies, followed by results from several approxi­
mate quantum methods. We will not go into the tech­
nology of these calculations since very detailed papers 
on that topic have appeared.40,41 

A. Collinear Exact Quantum Studies 

Connor8 has extensively reviewed the collinear exact 
quantum studies of atom-diatom reactions. Here we 
restrict our discussion to those studies that specifically 
examined tunnelling and for which comparable three 
dimensional calculations have since been done. 

Table I presents the tunnelling factors K defined using 
eq 2.1 for several collinear reactions. The accurate 
results were taken from ref 42 (H + BrH, H + BrD 
using the surface of ref 43-44), ref 45 (Mu + H2), ref 
46-49 (H + H2 on surface no. 2 of Ref 50 (denoted 
PK2)), ref 45 (H + H2 on the surface of ref 51-53 (de­
noted LSTH)), ref 54 (O + H2), and ref 55 (Cl + DCl, 
Cl + HCl), and many of the K'S were previously tabu­
lated by Garrett and Truhlar.35 kVTST

 m eq 1 was in 
all cases defined using the improved canonical varia­
tional theory (ICVT) of ref 18 (see refs 35 and 55). Mu 
in this table stands for muonium (n+e~) which is an 
isotope of hydrogen with a mass of about 1Z9. The 
parameter /3 in the table stands for the kinematically 

defined "skew" angle between reagent and product 
translational coordinates using a coordinate system that 
diagonalizes the kinetic energy. Mathematically, /3 is 
defined by 

/3 = tan l (mB(mA + mB + mc)/(mkmc)) 1/2 (3.1) 

where the atoms are labelled A, B, C with B being the 
atom which is exchanged during reaction, and m{ (i = 
A, B, C) is the mass of atom i. Physically, /3 provides 
a measure of the amount of reaction path curvature, 
with /3 = 90°, corresponding to the light-heavy-light 
mass combination that minimizes curvature and /3 = 0° 
to the heavy-light-heavy combination that maximizes 
curvature. 

The reactions in Table I have barriers of 5.5 kcal/mol 
(H + BrH (D)), 8.5 kcal/mol (Cl + HCl (DCl)), 9.1 
kcal/mol (PK2), 9.8 kcal/mol (LSTH), and 12.5 
kcal/mol (O + H2). Evidently the K values are not easily 
correlated with barrier height, and there is no 
straightforward correlation with /3 either. We will see 
later however that /3 does play an important role in 
determining the optimum tunnelling path. 

Perhaps the most notable conclusion from Table I is 
how big the K values actually are. The smallest tun­
nelling factor at 300 K is 3.0, meaning that tunnelling 
contributes 75% of the total rate constant. Tunnelling 
factors at 200 K range up to 93, meaning that 98.9% 
of the reaction rate constant is due to tunnelling. In 
addition, we note that tunnelling in the Br transfer 
reactions H + BrH and H + BrD is comparable in im­
portance to that for the other reactions. Tunnelling 
does depend strongly on isotope, however, with the 
deuterated systems having K'S that are often more than 
a factor of two smaller then their H-atom counterparts. 
As one might expect, the Mu + H2 K value is much 
larger than that for H + H2, but here one has to note 
that the VAG barrier for Mu + H2 is quite different in 
both location and shape from that for H + H2, and thus 
the differences between these two reactions are due to 
a combination of mass-dependent effects that can both 
decrease and increase the K values. This applies to a 
lesser extent to the other reactions, and as a result it 
is impossible to write down a simple analytical formula 
that explains all the results in Table I. There are, 
however, some very good numerical theories that can 
be used to describe the results in Table I in terms of 
tunnelling along one-dimensional paths, and we will 
discuss these in section IV. 

B. Three-Dimensional Accurate Quantum 
Studies 

The methods that have been used to date to deter­
mine accurate rate constants for atom-diatom reactions 
in three dimensions are all based on coupled-channel 
("close-coupling") technology. The first calculations of 
this type were done on the H-I -H 2 reaction56"60 and 
used CC calculations in each arrangement channel 
followed by a matching procedure to construct globally 
acceptable scattering solutions. Recent calculations 
using this approach have considered H + H2,

61 D + H2,
62 

H + D2
63 and Mu + H2,64 all on the LSTH potential 

surface. In all of these recent calculations, the cou­
pled-states (CS) approximation65-67 was invoked. This 
method appears capable of generating results which are 
accurate to 20% under a variety of circumstances. 
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TABLE II. Three-Dimensional Tunnelling Factors 

reaction /3, deg 200K 300 K ref 

TABLE III. Rate Constants and Isotope Effects for H + 
H2 and H + DH (PK2 Surface) 

89.3 
89.0 
70.5 
65.9 
60 
60 
57.0 
54.7 
54.7 
48.2 
46.7 
37.6 
13.6 

46.7 
15 
250 
19 
556 
83 

303 
68 

28 

5.5 
3.2 
12 
3.2 
23 
6.9 
7.1 
17 
6.7 
7.1 
19 
12 
17 

69 
69 
11 
62 
59 
61 
73 
11 
62 
73 
73 
73 
75 

H + BrH 
H + BrD 
H + DH (PK2) 
H + D2 (LSTH) 
H + H2 (PK2) 
H + H2 (LSTH) 
O + DH 
D + H2 (PK2) 
D + H2 (LSTH) 
O + D2 
0 + H2 
O + HD 
Cl + HCl 

Since the LSTH potential surface for H3 is also quite 
accurate, the rate constants from all of these recent CS 
calculations are in excellent agreement with experi-
rnent.45,46,48 Accurate calculations have also been done 
using CC (and related methods) on light-heavy-light 
reactions, where the matching is trivial.68'69 

Another accurate quantum approach that is especially 
well suited for describing tunnelling is the coupled-
channel distorted wave (CCDW) method.70"72 This uses 
perturbation theory to calculate the reactive cross 
sections and thus is only accurate at low energies or 
temperatures where reaction is truly a perturbation. 
Because it uses accurate nonreactive wave functions, it 
is, however, capable of determining essentially exact 
results in this perturbative limit, and the results of 
applications to H + H2 are in fact in excellent agree­
ment with matching based CC results.70 Applications 
of the CS version of CCDW (denoted CSDW) have 
recently been made to O + H2 (HD, D2)73 and Cl + 
HCl.74-75 

Table II summarizes the three-dimensional tunnelling 
factors that have been obtained to date in accurate 
calculations. (These results are adapted from ref 18-20, 
35, 61, 66, 76, and 77). To the extent possible, the 
reactions listed in Table II correspond to reactions in­
cluded in Table I, enabling a comparison of tunnelling 
factors in one and three dimensions. Simple adiabatic 
theory would predict that the main change in going 
from ID to 3D is the addition of the bending zero point 
energy to the VAG barrier. Differences in tunnelling 
between ID and 3D thus reflect how the bending energy 
varies along the reaction path, and if the bend force 
constant is independent of reaction path coordinate 
near the bottleneck, then the tunnelling factor will be 
independent of dimensionality. On the other hand, if 
the force constant peaks at the bottleneck then the 3D 
barrier will be "thinner" than ID and the 3D tunnelling 
factor will be larger. In Tables I and II we see evidence 
for both possibilities, with K for H + BrH and H + BrD 
approximately independent of dimension, and K for H 
+ H2 larger in 3D than in ID on both the PK2 and 
LSTH surfaces. 

Table II also allows us to study the dependence of K 
on isotope in some detail. In all cases one sees a 
tendency for K values to be smaller for reactions in­
volving D than H, and this applies both to the case that 
D is the atom transferred (primary isotope effect) and 
that it is not. Note also how strongly that K depends 
on potential surface for H + H2 and D + H2. Table II 
indicates that the PK2 K'S are larger than the LSTH n's 
by more than a factor of 3. This strong sensitivity to 
barrier shape adds significance to the excellent agree-

200K 300K 
Rate Constants (cm3/molecule s) 

H + H2 CS 1.6 (-17) 1.0 (-15) 
VTST 2.9 (-20) 4.4 (-17) 

H + DH CS 1.2 (-17) 1.1 (-16) 
VTST 4.8 (-21) 9.5 (-18) 

Isotope Ratios (H + H2/H + DH) 
CS 13 11 
VTST 6.0 4.6 

Activation Energies (kcal/mol) 
H + H2 CS 4.9 

VTST 8.7 
H + DH CS 5.4 

VTST 9.1 

H + H2 

H + DH 

Preexponential Factors (cm3/molecule s) 
CS 
VTST 
CS 
VTST 

3.9 (-12) 
1.0 (-10) 
9.2 (-13) 
3.7 (-11) 

ment between theory and experiment that has been 
found for H + H2 and D + H2 on the LSTH sur­
face.45'46'61 

The results in ref 76 can also be used to study the 
interplay between tunnelling and isotope effects. Let 
us consider the two reactions H- I -H 2 and H + DH, 
which differ only in the mass of the atom being trans­
ferred. Table III summarizes rate constants and isotope 
effects for these reactions as obtained from CS and 
VTST calculations on the PK2 surface. The table in­
dicates that VTST (without tunnelling) only accounts 
for about 45% of the H + H 2 /H + DH isotope ratio at 
both temperatures (4.6 from VTST versus 11 from CS 
at 300 K). Since it is customary in condensed-phase 
chemistry to discuss tunnelling contributions to isotope 
effects in terms of contributions from preexponential 
factors A and activation energies, E&, values for these 
quantities (obtained by fitting an Arrhenius expression 
to the 200 and 300 K rate constants) are also included 
in Table III. The table indicates that both A and Ea 

contribute significantly to the isotope ratio, and that 
both quantities change significantly in going from 
VTST to CS. In accordance with simple intuition, the 
activation energy is lower for H-I-H2 than for H + DH, 
and the difference between the two reactions is larger 
when tunnelling is included (CS values) than when it 
is not (VTST). Perhaps more significant, however, is 
how much E& and A change in going from VTST to CS 
for each isotope. The change in Ea is 3.8 kcal/mol for 
H-I-H2 and 3.7 kcal/mol for H + DH. Recalling that 
the PK2 saddle point energy is 9.1 kcal/mol, the table 
indicates why extreme caution should be used in rela­
ting measured activation energies to barrier heights. 
Notice also that the A factors decrease by large factors 
when tunnelling is included. This partially compensates 
the increase in rate constant expected from the decrease 
in activation energy, and since the decrease in A is 
isotope-dependent, it renders useless any attempt to 
interpret tunnelling as an effect which changes activa­
tion energies but not preexponential factors. 

Another way to use accurate quantum rate constants 
is to fit the rate constants to transition-state-theory 
expressions which use simple one-dimensional reaction 
path formulas to describe tunnelling. This approach 
has recently been considered by Pacey78 who used the 
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Eckart tunnelling factor79 to derive apparent transi­
tion-state properties, including imaginary frequencies 
by comparison with CC rate constants for H + H2.59 

This type of analysis is of relevance to the use of similar 
fits to experimental data to infer potential surface 
properties, and it indicates how to interpret Arrhenius 
plot curvature and temperature-dependent activation 
energies in terms of more fundamental dynamical fea­
tures. As one might expect, the fitted parameters do 
not agree accurately with the saddle point properties 
of the surface used to generate the rate constants. 
Deviations between actual and fitted parameters could 
be related to the importance of tunnelling along paths 
which depart from the minimum energy path. (This 
point will be considered in greater detail in section IV.) 
Unfortunately, the Pacey comparison has not yet led 
to the development of improved parametrized formulas 
for relating potential surface properties to rate con­
stants. 

C. Approximate Quantum Calculations 

In this section we examine the ability of approximate 
quantum mechanical calculations to describe tunnelling. 
The methods we consider are distinguished from the 
reaction path methods of Section IV in that they de­
scribe at least two degrees of freedom in a dynamically 
accurate way (i.e., are fully coupled) and they differ 
from the methods of the previous section in that they 
neglect some part of the potential energy coupling be­
tween different degrees of freedom. For atom-diatom 
reactions with collinear saddle points, all of the com­
monly used approximate methods have been designed 
to treat the collinear (stretching) degrees of freedom 
accurately so that effects of reaction path curvature 
should be accurately described. This leaves the internal 
angular (bending) degrees of freedom to be approxi­
mated (external rotational couplings are approximated 
using the CS method described earlier), and this has 
been done from two different points of view. One ap­
proach called the infinite order sudden approximation 
(IOSA) assumes that angular motion is slow and thus 
the internal bending angle is fixed during each colli­
sion.14 This is identical with the RS method described 
in Section II. The other approach which we call re­
duced dimensionality exact quantum (RDEQ) dynam­
ics13 assumes that bending is adiabatic (the same as the 
VA method of Section II) and thus influences the active 
degrees of freedom only through the addition of a local 
bending eigenvalue at each value of the stretch coor­
dinates. The RDEQ approach has also been developed 
in the context of reaction surface Hamiltonians,80 and 
in view of the results of our model in section II, it would 
be expected to be more accurate than IOSA. 

Another class of approximate quantum methods is 
based on the distorted-wave approximation. In contrast 
to the CCDW method of the previous section, here the 
nonreactive wave functions are approximated by neg­
lecting potential couplings. Two commonly used ap­
proaches of this sort are the frozen molecule distorted 
wave (FMDW) method of Suck SaIk and co-workers,81'82 

and the vibrationally adiabatic distorted wave (VADW) 
method of Clary and Connor83 and Tang, Choi, and 
co-workers.84'85 Normally these methods (especially 
FMDW) are not useful for quantitative rate constant 
estimates, but recent developments using VADW have 

TABLE IV. Accurate and Approximate Tunnelling Factors for 
D + H„ — DH + H (LSTH Surface) 

T, K accurate" RDEQ11 IOSAe VADW* QCTe M C ~ 

200 68 63 176 195 68 60 
300 6.4 7.0 17 8.9 11 6.7 
400 2.8 3.5 6.2 3.5 4.8 3.2 

"Reference 62. 'Reference 86. 'Reference 87. dReference 84. 
Reference 88. /Reference 20 (there denoted ICVT/MCPVAG). 

led to promising results as will be noted below. 
Table IV presents K values for the D- I -H 2 -* DH + 

H reaction (LSTH potential surface) from all of the 
approximate quantum methods discussed so far,83'86"88 

as well as from the accurate quantum calculations of 
the previous section. D + H2 is actually the only re­
action for which all of these methods have been applied, 
but the results in Table IV are representative of other 
comparisons between accurate and approximate quan­
tum results that have been made.13,61'64,69'73 In partic­
ular, we note that the RDEQ results from ref 86 are in 
excellent agreement with the accurate values, while the 
IOSA K values from ref 87 are high by factors of 2-3. 
The direction of the errors in IOSA is consistent with 
the results in Figure 2 where we found that IOSA ov­
erestimates the reaction probability in the threshold 
region. Pollak has proposed that one way to correct 
IOSA for this threshold error is to shift the IOSA cross 
sections upward in energy by the bending zero point 
energy which IOSA ignores.89 He reports that this im­
proves the agreement between IOSA and accurate rate 
constants. The reason for this is clear from Figure 2, 
although it should also be evident from that figure that 
it will not necessarily lead to an accurate description 
of tunnelling since the IOSA barrier does not have the 
same shape as the VAG barrier. 

Considering now the VADW results in Table IV, we 
note that K is too high at 200 K but becomes more 
accurate as T increases, becoming comparable to the 
RDEQ value at 400 K. This indicates that VADW is 
capable of modestly accurate results, which is a sig­
nificant improvement over the results of earlier com­
parisons59 using less sophisticated versions of VADW. 

The sixth column in Table IV contains the K values 
from quasiclassical trajectory (QCT) calculations.88 

Although it may seem somewhat out of place in a review 
of tunnelling to discuss classical results, we note in 
Table IV that the QCT K values are in better agreement 
with the accurate values than some of the approximate 
quantum results. Actually, this surprising agreement 
between classical and quantum mechanics is the result 
of close to perfect cancellation between two opposing 
errors. The first is the absence of tunnelling, which 
tends to make the QCT rate constants too low, while 
the second is the absence of vibrationally adiabatic zero 
point energy constraints (noted in Figure 2) which tends 
to make the QCT rate constants too high.24 Evidently 
it is only by accident that the results cancel as well as 
they do, and in fact there are systems where the QCT 
rate constants are known to be in poor agreement with 
accurate results in both positive64 and negative73 di­
rections. 

The overall conclusion of the comparisons in Table 
IV is that the RDEQ method is the most reliable of the 
approximate quantum methods for determining ther­
mal rate constants for atom-diatom reactions with 
collinear reaction paths. Formulation and testing of the 
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method for more general classes of reactions still re­
mains to be done, but even in its present state it has 
been of great use in studies of tunnelling and isotope 
effects in the O + H2 — OH + H reaction,90'91 and a 
recent comparison of CSDW and RDEQ results for that 
reaction73 confirms the expected accuracy of RDEQ in 
this application. 

IV. Reaction Path Methods 

The concept of using a one-dimensional reaction path 
to calculate tunnelling factors is an old one which dates 
to the beginnings of quantum mechanics. The work of 
Eckart79 and of Bell92 are especially noteworthy in this 
regard since they both determined approximate solu­
tions to one dimensional Schrodinger equations which 
have been used to interpret tunnelling behavior. An 
approximation to the Bell expression for K known as the 
Wigner tunnelling factor93 is also in widespread use. 

These early attempts at developing one-dimensional 
tunnelling factors did not use rigorous theory to de­
termine where the tunnelling path should be located, 
but it was commonly assumed that this path should be 
chosen as the minimum-energy path (MEP) between 
reagents and products. In recent years, however, the 
question of tunnelling paths has received more rigorous 
attention, beginning with the semiclassical S-matrix 
studies of collinear H + H2 by Miller and coworkers.94"96 

In these studies it was found that the primitive semi-
classical S-matrix is determined at low energies by a 
single classical trajectory which follows a complex time 
contour which takes it through the "corner cutting" 
region of the potential energy*surface. This behavior 
coincides with the results from collinear exact quantum 
calculations37"39 wherein the wavefunction is observed 
to maximize away from the MEP in the corner cutting 
region at energies where tunnelling is dominant. 

One practical problem with using the complex tra­
jectory approach to determining tunnelling probabilities 
is that it is computationally difficult to find the complex 
path in time that the trajectory should take to tunnel 
between reagents and products such that it satisfies 
both reagent and product boundary conditions. To 
circumvent this, a simpler (though less rigorous) ap­
proach to tunnelling was proposed by Marcus and 
Coltrin31 (MC) who used vibrationally adiabatic argu­
ments to define a one dimensional path which follows 
the locus of outer vibrational turning points between 
reagents and products. A simple imaginary time con­
tour is then sufficient to tunnel through the barrier. 
Table IV compares tunnelling coefficients obtained by 
Garrett et al.20 using the MC path for D-I-H2 with those 
from accurate results. The table indicates that the 
results are in excellent agreement with the accurate K 
values, with the largest difference being only 14%. The 
relationship between the MC and complex trajectory 
approaches has been studied by Altkorn and Schatz,36 

who found that the MC path is a close approximation 
to the best purely imaginary time path that satisfies the 
semiclassical boundary conditions, and that this best 
imaginary time path is a very close approximation to 
the complex trajectory path of Miller and coworkers. 

Truhlar, Garrett, and co-workers7-10-18-21'33-35'77'97 have 
extended this work on one-dimensional purely imagi­
nary time reaction paths by developing several new 
methods for defining the paths and for calculating 

TABLE V. Accurate and Approximate Transmission 
Coefficients for H + H2, D + H2, H + HD, and H + DH 
(PK2 Surface) 

T, K W SCTSAG LAG accurate ~ 

(A) H + H2 — H2 + H (Distinguishable Atoms) 
200 12 211 411 556 
300 5.7 14 21 23 

(B) D + H2 — DH + H 
200 10 82 173 303 
300 5.2 8.1 13 17 

(C) H + DH — HD + H (Distinguishable Atoms) 
200 7.8 243 258 250 
300 4.1 14 12 12 

transition probabilities from them. Three of these 
methods are in common use at present and are denoted 
SCTSAG, LCG, and LAG. The simplest is the small-
curvature tunnelling semiclassical adiabatic ground-
state (SCTSAG) method,33 which treats curvature along 
the reaction path perturbatively and thus is most ap­
propriate for large skew angle light-heavy-light reac­
tions. For H + H2, it is approximately equivalent to 
the MC approximation, though it recasts the tunnelling 
factor calculation in terms of tunnelling along the MEP 
with a coordinate dependent mass as opposed to tun­
nelling along the locus of outer turning points path with 
a constant mass. A related tunnelling factor has also 
been derived by Miller98 using the reaction path Ham-
iltonian formulation99"103 that serves as the general 
theory by which the role of curvature in reaction dy­
namics is understood. 

For many reactions, SCTSAG is superior to MC since 
it avoids unphysical loops in the tunnelling path that 
can arise from the MC prescription for constructing the 
path. In addition, SCTSAG is readily generalized to 
the treatment of polyatomics.97 Its main defect arises 
in the treatment of large curvature reactions, where it 
often underestimates tunnelling. Table V compares 
SCTSAG and accurate tunnelling factors for several 
isotopes of the H-I-H2 reaction at 200 and 300 K, using 
results derived from ref 76. Also included in the table 
are results from the Wigner method (labelled W) 
evaluated using the MEP potential. The table indicates 
that SCTSAG K values are much closer to the accurate 
results than are the W results. For the large skew angle 
(70.5°) H + DH reaction, the SCTSAG K'S are also in 
excellent quantitative agreement with the accurate re­
sults. However the accuracy of SCTSAG deteriorates 
as the skew angle decreases, with the poorest results 
seen for the smallest skew angle reaction (D + H2). 

A method that has been developed for treating large 
curvature reactions (such as the heavy-light-heavy 
mass combination) is called LCG for large-curvature-
ground-state method.34 See also ref 104-107. This 
method uses a straight-line path that cuts the corner 
between reagents and products. The precise location 
of this path is determined by maximizing the tunnelling 
probability, and often it lies well inside the locus-of-
outer-turning-points path. Applications of this method 
to the Cl + HCl reaction108 indicate generally good 
agreement with collinear exact quantum results, though 
there is a tendency to underestimate tunnelling at low 
temperatures. 

The most general method for determining tunnelling 
probabilities that has been developed by Truhlar and 
co-workers is the least action ground-state (LAG) me-
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thod.35 This method calculates the tunnelling proba­
bilities along a family of paths that spans the range 
from small to large curvatures, from this determines the 
optimum path for each energy, and then evaluates a 
thermally weighted average of the results to determine 
the overall tunnelling factor. Through this process, 
LAG becomes roughly equivalent to SCTSAG in the 
small-curvature limit, and to LCG in the large-curvature 
limit. Extensive comparisons of LAG rate constants 
with accurate quantum results in three dimensions have 
been done, and they indicate that LAG makes an av­
erage error of only 15%.76 Tunnelling factors derived 
from this comparison are included in Table V under the 
"LAG" column, and we see that the results are com­
parable to SCTSAG for the small curvature H + DH 
reaction and are much more accurate than SCTSAG for 
the larger curvature H + H2 and D- I -H 2 reactions. 

Although the accuracy of the LAG method still needs 
to be tested in its application to more general classes 
of reactions, the success of the method to date repre­
sents a real triumph of reaction path methods for cal­
culating tunnelling factors and thermal rate constants. 
Among the questions that still remain about its utili­
zation are (1) its accuracy in describing tunnelling to 
and from vibrationally excited states (where LAG is 
replaced by the more general LA theory69), (2) how to 
describe reactions which exhibit extensive recrossing at 
threshold (e.g., F + H2

7""10), and (3) whether LAG is 
quantitative for describing tunnelling when there is 
significant reaction path curvature in more than two 
coordinates (i.e., is the LAG choice of parametrized 
tunnelling paths still appropriate?) 

V. Path Integral and Related Methods 

Another approach to tunnelling in bimolecular col­
lisions is based on the idea of directly evaluating the 
following formally exact expression for the thermal rate 
constant fe110"112 

k(T) = ZR"1 f" dt tr[Fe-(W-itlWFe-(f>l2 + itlh)H} 

(5.1) 

where F is the flux operator 

F = \ [«(*)(p./m) + (ps/m)8(s)]. (5.2) 

In eq 5.2, ps/m is the velocity operator for motions 
along the reaction path and 8 is a Dirac delta function. 
ZR in eq 5.1 stands for the reagent partition function 
and tr denotes "trace". Equation 5.1 can be derived in 
several ways, one of which was developed by Miller113 

in his formulation of quantum-transition-state theory. 
A closely related semiclassical theory also developed by 
Miller113'114 will not be reviewed here. The technology 
associated with evaluating the trace in eq 5.1 is cur­
rently at a rather early stage of its development, so the 
types of applications considered so far are much less 
sophisticated than have been considered using the 
methods of sections III and IV of this review. The most 
accurate results generated to date with this approach 
have involved direct numerical evaluation of the trace 
using square integrable basis functions.115 Applications 
of this approach have so far been limited to collinear 

H + H2, where it has been found that the number of 
functions needed to generate converged results is com­
parable to the number needed to converge i?-matrix 
theory results in applications to the same problem.116 

A second approach to evaluating eq 5.1 is via path 
integrals.110-112 Here it is important to distinguish be­
tween methods which treat all the degrees of freedom 
equivalently in evaluating the trace via path integrals 
vs. methods which explicitly set up path integrals only 
for motions along the reaction coordinate and use in­
fluence functional to describe the rest.112,117'118 The 
first type of method has become popular in statistical 
mechanics,119-123 but has so far not been useful in gas-
phase dynamics problems because of computational 
difficulties.112,117 The second approach has seen more 
widespread use in gas-phase applications112,117 and is a 
computationally tractable approach, but its accuracy 
depends on the accuracy of the influence functional 
used to describe effects arising from degrees of freedom 
not explicitly included in the calculation. At this point 
such influence functional have only been developed for 
the case of linearly coupled harmonic oscillators per­
pendicular to the reaction path. This is what was used 
by Yamashita and Miller112 in their study of the 
three-dimensional H-I-H2 reaction using the reaction 
path Hamiltonian.99-100 They obtained a tunnelling 
factor at 300 K in good agreement with accurate 
quantum results on the PK2 surface (25 vs. 23). This 
result is consistent with previous studies,77 which in­
dicate that the neglect of anharmonicity is not very 
important for H + H2. Thus this appears to be a 
promising approach to the determination of accurate 
quantum rate constants for reactions for which an-
harmonic effects are not important. An important 
challenge for future work will be to develop more pow­
erful influence functional methods that allow for the 
treatment of anharmonicity in the motions of the per­
pendicular modes. 

VI. Acknowledgment 

This research was supported by a grant from the 
National Science Foundation (CHE-8416026). I thank 
Prof. H. Mayne for correcting an error in an early 
version of Figure 2. 

References 
(1) Bowman, J. M.; Lee, K. T.; Romanowski, H.; Harding, L. B. 

ACS Symp. Series 1984, 263, 43. 
(2) Turner, R. A.; Raff, L. M.; Thompson, D. L. J. Chem. Phys. 

1984, 80, 3189. 
(3) Miller, W. H.; George, T. F. J. Chem. Phys. 1972, 56, 5637. 
(4) Garrett, B. C; Truhlar, D. G. In Theoretical Chemistry: 

Advances and Perspectives Henderson, D., Ed.; Academic: 
New York, 1981; Vol. 6A, p 215. 

(5) Melander, L.; Saunders, W. H., Jr. Reaction Rates of Isotopic 
Molecules, 2nd ed.; Wiley: New York, 1980. 

(6) Miller, W. H. Chem. Rev. 1987, 87, 19. 
(7) Truhlar, D. G.; Garrett, B. C. Ace. Chem. Res. 1981,13, 440. 
(8) Truhlar, D. G.; Hase, W. L.; Hynes, J. T. J. Phys. Chem. 

1983, 87, 2664, 5523(E). 
(9) Truhlar, D. G.; Garrett, B. C. Annu. Rev. Phys. Chem. 1984, 

35 159 
(10) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. In Theory of 

Chemical Reaction Dynamics; Baer, M., Ed.; CRC: Boca 
Raton, FL, 1985; Vol. 4, p 65. 

(11) Schatz, G. C. In Theory of Chemical Reaction Dynamics; 
Clary, D. C, Ed.; D. Reidel: Dordrecht, Holland, 1986; p 1. 

(12) Connor, J. N. L. Comput. Phys. Commun. 1979, 17, 117. 
(13) Bowman, J. M. Adv. Chem. Phys. 1985, 61, 115. 
(14) Jellinek, J.; Kouri, D. J. In Theory of Chemical Reaction 

Dynamics; Baer, M., Ed.; CRC: Boca Raton, FL, 1985; p 1. 



Tunnelling In Bimolecular Collisions Chemical Reviews, 1987, Vol. 87, No. 1 89 

(17) 

(18) 

(19) 
(20) 

(23) 
(24) 
(25) 

(15) Miller, W. H. Adv. Chem. Phys. 1974, 25, 69; 1975, 30, 77. (71 
(16) Truhlar, D. G.; Wyatt, R. E. Annu. Rev. Phys. Chem. 1976, (72 

27, 1. 
Weston, R. E.; Schwartz, H. A. Chemical Kinetics; Pren- (73 
tice-Hall: Englewood Cliffs, NJ, 1972. (74 
Garrett, B. C ; Truhlar, D. G. J. Phys. Chem. 1979,83,1052, 
3058(E). (75; 
Garrett, B. C ; Truhlar, D. G. J. Phys. Chem. 1980, 84, 805. (76! 
Garrett, B. C ; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. 
J. Phys. Chem. 1980, 84, 1730. (77 

(21) Garrett, B. C; Truhlar, D. G. J. Chem. Phys. 1984, 81, 309. 
(22) Shoemaker, C. L.; Wyatt, R. E. J. Chem. Phys. 1982, 77,4994. (78 
"" Pollak, E.; Wyatt, R. E. Chem. Phys. Lett. 1984, 110, 340. (79 

Schatz, G. C. J. Chem. Phys. 1983, 79, 5386. (80 
Abu-Salbi, N.; Kouri, D. J.; Baer, M.; Pollak, E. J. Chem. (81 
Phys. 1985, 82, 4500. 

(26) Eisenbud, Dissertation, Princeton, 1948. (82 
(27) Wigner, E. P. Phys. Rev. 1955, 98, 145. (83 
(28) Levine, R. D.; Wu, S. F. Chem. Phys. Lett. 1971, 11, 557. 
(29) Schatz, G. C; Kuppermann, A. J. Chem. Phys. 1973,59, 964. (84 
(30) Kuppermann, A., In Potential Energy Surfaces and Dynam­

ics Calculations; Truhlar, D. G., Ed.; Plenum: New York, (85 
1981; p 375. 

(31) Marcus, R. A.; Coltrin, M. E. J. Chem. Phys. 1977, 67, 2609. (86 
(32) Marcus, R. A. J. Phys. Chem. 1979, 83, 2041. 
(33) Skodje, R. T.; Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. (87 

1981, 85, 3019. 
(34) Garrett, G. C; Truhlar, D. G.; Wagner, A. F.; Dunning, T. H. (88 

J. Chem. Phys. 1983, 78, 4400. (89 
(35) Garrett, B. C; Truhlar, D. G. J. Chem. Phys. 1983, 79, 4931. (90 
(36) Altkorn, R. I.; Schatz, G. C. J. Chem. Phys. 1980, 72, 3337. 
(37) Bowman, J. M.; Kuppermann, A.; Adams, J. T.; Truhlar, D. (91 

G. Chem. Phys. Lett. 1973, 20, 229. 
(38) Truhlar, D. G.; Kuppermann, A. J. Chem. Phys. 1972, 56, (92 

2232. (93 
(39) Latham, S. L.; McNutt, J. F.; Wyatt, R. E.; Redmon, M. J. (94 

J. Chem. Phys. 1978, 69, 3746. McNutt, J. F.; Wyatt, R. E.; 
Redmon, M. J. J. Chem. Phys. 1984, 81, 1704. (95 

(40) Walker, R. B.; Light, J. C. Annu. Rev. Phys. Chem. 1980, 31, (96 
401. 

(41) Schatz, G. C; Kuppermann, A. J. Chem. Phys. 1976, 65, 4642. (97 
(42) Clary, D. C. Chem. Phys. 1981, 71, 117. 
(43) Baer, M.; Last, I. In Potential Energy Surfaces and Dynam­

ics Calculations; Truhlar, D. G., Ed.; Plenum: New York, (98' 
1981; p 519. (99; 

(44) Last, I.; Baer, M. J. Chem. Phys. 1981, 75, 288. 
(45) Bondi, D. K.; Clary, D. C ; Connor, J. N. L.; Garrett, B. C ; (100; 

Truhlar, D. G. J. Chem. Phys. 1982, 76, 4986. 
(46) Romelt, J. Chem. Phys. Lett. 1980, 74, 263. 
(47) Kuppermann, A.; Kaye, J. A.; Dwyer, J. P. Chem. Phys. Lett. (101 

1980, 74, 257. 
(48) Manz, J.; Romelt, J. Chem. Phys. Lett. 1980, 76, 337. (102 
(49) Diestler, D. J. J. Chem. Phys. 1971, 54, 4547. 
(50) Porter, R. N.; Karplus, M. J. Chem. Phys. 1964, 40, 1105. (103 
(51) Liu, B. J. Chem. Phys. 1973, 58, 1925. 
(52) Siegbahn, P.; Liu, B. J. Chem. Phys. 1978, 68, 2457. (104 
(53) Truhlar, D.; Horowitz, C. J. J. Chem. Phys. 1978, 68, 2466; (105 

1979, 71, 1514(E). 
(54) Clary, D. C ; Connor, J. N. L.; Edge, C. J. Chem. Phys. Lett. (106 

1979, 68, 154. 
(55) Bondi, D. K.; Connor, J. N. L.; Manz, J.; Romelt, J. MoI. (107 

Phys. 1983, 50, 467. (108! 
(56) Kuppermann, A.; Schatz, G. C. J. Chem. Phys. 1975,62, 2502. 
(57) Elkowitz, A. B.; Wyatt, R. E. J. Chem. Phys. 1975, 62, 2504. (109 
(58) Walker, R. B.; Stechel, E.; Light, J. C. J. Chem. Phys. 1978, (110 

69 2922. 
(59) Schatz, G. C; Kuppermann, A. J. Chem. Phys. 1976,65, 4668. ( I l l 
(60) Elkowitz, A. B.; Wyatt, R. E. J. Chem. Phys. 1976, 65, 4642. (112 
(61) Colton, M. C ; Schatz, G. C. Int. J. Chem. Kinet. 1986, 18, (113 

961. (114 
(62) Colton, M. C ; Schatz, G. C , unpublished results. (115 
(63) Schatz, G. C. Chem. Phys. Lett. 1984, 108, 532. 
(64) Schatz, G. C. J. Chem. Phys. 1985, 83, 3441. (116 
(65) Elkowitz, A. B.; Wyatt, R. E. MoI. Phys. 1976, 31, 189. (117 
(66) Kuppermann, A.; Schatz, G. C; Dwyer, J. Chem. Phys. Lett. (118 

1977,45,71. 
(67) Schatz, G. C. Chem. Phys. Lett. 1983, 94, 183. (119 
(68) Clary, D. C ; Garrett, B. C; Truhlar, D. G. J. Chem. Phys. (120 

1983, 78, 777. (121 
(69) Clary, D. C. J. Chem. Phys. 1985, 83, 1685. 
(70) Schatz, G. C; Hubbard, L. M.; Dardi, P. S.; Miller, W. H. J. (122 

Chem. Phys. 1984, 81, 231. (123 

Suck, S. H. Phys. Rev. 1983, A27, 1803. 
Choi, B. H.; Poe, R. T.; Tang, K. T. J. Chem. Phys. 1984,81, 
4979. 
Schatz, G. C. J. Chem. Phys. 1985, 83, 5677. 
Amaee, B.; Connor, J. N. L.; Schatz, G. C. Chem. Phys. Lett., 
in press. 
Schatz, G. C , unpublished results. 
Garrett, B. C; Truhlar, D. G.; Schatz, G. C. J. Am. Chem. 
Soc. 1986, 108, 2876. 
Garrett, B. C ; Truhlar, D. G. Proc. Natl. Acad. ScL U.S.A. 
1979, 76, 4755. 
Furue, H.; Pacey, P. D. J. Chem. Phys. 1985, 83, 2878. 
Eckart, C. Phys. Rev. 1930, 35, 1303. 
Carrington, T.; Miller, W. H. J. Chem. Phys. 1984, 81, 3942. 
Suck SaIk, S. H.; Klein, C. R.; Lutrus, C. K. Chem. Phys. 
Lett. 1984, UO, 112. 
Suck, S. H. Phys. Rev. 1977, A15, 1983; 1982, A27, 187. 
Clary, D. C; Connor, J. N. L. MoI. Phys. 1981, 41, 689; 1981, 
43, 621. 
Sun, J. C ; Choi, B. H.; Poe, R. T.; Tang, K. T. J. Chem. 
Phys. 1980, 73, 6095; 1983, 78, 4523; 1983, 79, 5376. 
Choi, B. H.; Poe, R. T.; Sun, J. C; Tang, K. T. J. Chem. 
Phys. 1981, 74, 5686. 
Bowman, J. M.; Lee, K. T.; Walker, R. B. J. Chem. Phys. 
1983, 79, 3742. 
Abu Salbi, N.; Kouri, D. J.; Shima, Y.; Baer, M. J. Chem. 
Phys. 1985, 82, 2650. 
Mayne, H. R.; Toennies, J. P. J. Chem. Phys. 1981, 75,1794. 
Pollak, E. J. Chem. Phys. 1985, 82, 106. 
Lee, K. T.; Bowman, J. M.; Wagner, A. F.; Schatz, G. C. J. 
Chem. Phys. 1982, 76 3583. 
Bowman, J. M.; Wagner, A. F.; Walch, S. P.; Dunning, T. H. 
J. Chem. Phys. 1985, 81, 1739. 
Bell, R. P. Trans. Faraday Soc. 1959, 55, 1. 
Wigner, E. Z. Phys. Chem. Abt. B 1932, 19, 203. 
George, T. F.; Miller, W. H. J. Chem. Phys. 1972, 56, 5722; 
1972, 57, 2458. 
Hornstein, S. M.; Miller, W. H. J. Chem. Phys. 1974, 61, 745. 
Doll, J. D.; George, T. F.; Miller, W. H. J. Chem. Phys. 1973, 
58, 1343. 
Isaacson, A. D.; Sund, M. T.; Rai, S. N.; Truhlar, D. G. J. 
Chem. Phys. 1985, 82,1338. Isaacson, A. D.; Truhlar, D. G. 
J. Chem. Phys. 1982, 76, 1380. 
Miller, W. H. J. Chem. Phys. 1982, 76, 4904. 
Miller, W. H.; Handy, N. C ; Adams, J. E. J. Chem. Phys. 
1980, 72, 99. 
Miller, W. H. In Potential Energy Surfaces and Dynamics 
Calculations, Truhlar, D. G., Ed.; Plenum: New York, 1981; 
p 265. 
Marcus, R. A. J. Chem. Phys. 1966, 45, 4493; 1966, 45, 4500; 
1968, 49, 2610. 
Hofacker, G. L. Z. Naturforsch A: Phys., Phys. Chem., 
Kosmophys. 1963, 18, 607. 
Witriol, N. M.; Stettler, J. D.; Ratner, M. A.; Sabin, J. R.; 
Trickey, S. B. J. Chem. Phys. 1977, 66, 1141. 
Babamov, V. K.; Marcus, R. A. J. Chem. Phys. 1981, 74,1790. 
Babamov, V. K.; Lopez, V.; Marcus, R. A. J. Chem. Phys. 
1983, 78, 5621. 
Hiller, C; Manz, J.; Miller, W. H.; Romelt, J. J. Chem. Phys. 
1983, 78, 3850. 
Ovchinnikova, M. Ya. Chem. Phys. 1979, 36, 85. 
Bondi, D. K.; Connor, J. N. L.; Garrett, B. C; Truhlar, D. G. 
J. Chem. Phys. 1983, 78, 5981. 
Garrett, B. C; Truhlar, D. G. J. Phys. Chem. 1985, 89 2204. 
Miller, W. H.; Schwartz, S. D.; Tromp, J. W. J. Chem. Phys. 
1983, 79, 4889. 
Yamamoto, T. J. Chem. Phys. 1960, 33, 281. 
Yamashita, K.; Miller, W. H. J. Chem. Phys. 1985, 82, 5475. 
Miller, W. H. J. Chem. Phys. 1974, 61, 1823. 
Miller, W. H. J. Chem. Phys. 1975, 62, 1899. 
Tromp, J. W.; Miller, W. H. J. Chem. Phys., manuscript in 
preparation. See also ref. 110. 
Zvijac, D.; Light, J. C. Chem. Phys. 1976, 12, 237. 
Jaquet, R.; Miller, W. H. J. Phys. Chem. 1985, 89, 2139. 
Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path 
Integrals; McGraw-Hill: New York, 1965; p 273. 
Doll, J. D.; Freeman, D. L. J. Chem. Phys. 1984, 80, 2239. 
Doll, J. D. J. Chem. Phys. 1984, 81, 3536. 
Behrman, E. C ; Wolynes, P. G. J. Chem. Phys. 1983, 79, 
6277. 
Wolynes, P. G. Phys. Rev. Lett. 1981, 47, 968. 
Thirumalai, D.; Berne, B. J. J. Chem. Phys. 1984, 81, 2512. 


