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/ . Introduction 

It has been known for a long time that the rate at 
which reactants diffuse toward one another in solution 
can affect the rate at which they react. The first person 
to suggest that this might be the case was Smoluchow­
ski.1 In a short section in a paper otherwise devoted 
to colloidal aggregation, he noted that if the intrinsic 
rate of a chemical reaction were rapid, diffusion could 
be a rate-limiting process. Applying the same reasoning 
to chemical reactions that Smoluchowski applied to 
colloids, the steady-state bimolecular rate constant for 
an instananeously fast reaction can be calculated to be2 

kobs = 4irD'R (D 
Here the constant D' is the sum of the diffusion con­
stants for the reactants and R represents a fictitious 
encounter radius at which the reaction can occur. The 
superscript obs on the rate constant emphasizes that 
this is the empirical rate constant, in terms of which the 
reaction rate, V+, can be written 

V+ = k<*»pApB (2) 

with pA and pB the number densities of the two reac­
tants . 

There is abundant experimental evidence that the 
physical idea behind the Smoluchowski calculation is 
correct.2-6 Using values for D ' a n d R that are typical 
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of small molecules in aqueous solution, one estimates 
that koba ~ 4 X 109 M - 1 s"1. That is, in fact, about as 
large as bimolecular rate constants get in aqueous so­
lution, even though in the gas phase the rate constant 
for the same reaction may be several orders of magni­
tude larger. 

One of the first attempts to verify the Smoluchowski 
theory in a quantitative fashion was carried out by 
Noyes and co-workers.7,8 They examined the recom­
bination kinetics of iodine atoms following their pho­
tolysis from molecular iodine in CCl4. This reaction is 
not completely diffusion controlled, and their experi­
ments were analyzed using the Collins-Kimball gen­
eralization of eq 1. For identical reactants this is5 

kobs = 2 i r D ' r t f e ° / ( 2 i r D ' f l + k0) (3) 

where /z° is the intrinsic bimolecular rate constant. 
Using corrected values of the diffusion constants and 
gas-phase estimates of k0, eq 3 agrees with the measured 
values of koha at 25 0C and 38 0 C if R is 3.5 A. This 
number is less than the internuclear separation of 4.3 
A based on the van der Waals radius of an iodine atom, 
and seems somewhat small. As we discuss in section 
ILC, even in dilute solution the Collins-Kimball for­
mula for identical reactants given in eq 3 is in error by 
a factor of two. The correct formula is9,10 
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koba = 2irDRk°/(2irDR + k0) (4) 

where D is the diffusion constant of an iodine atom. 
With this change the data of Noyes can be fit10 with an 
encounter radius of 7 A. Although this value seems 
somewhat large, the comparisons are sensitive to the 
value of the diffusion constant D, which has a good deal 
of experimental uncertainty associated with it. If D is 
made somewhat larger, as first suggested by Noyes and 
Levison,11 then eq 4 leads to a more plausible value of 
R, while eq 3 leads to a less plausible value. Given the 
uncertainty in the experimental values, the agreement 
between eq 4 and experiment seems quite reasonable. 

Several other careful experiments have been reported 
in which the observed rate constant has been measured 
as a function of solvent viscosity and temperature.12'13 

In all cases the agreement with the theoretical predic­
tion of Smoluchowski or Collins and Kimball has been 
quite good. Recently, several groups14,15 have been able 
to resolve transient diffusion effects on the bimolecular 
reaction rate constant. These, too, agree well with the 
elementary theory. 

Besides the intrinsic reaction rate constant, there are 
many other processes that can effect the way in which 
diffusion influences rapid bimolecular reactions. De-
bye16 showed that the potential of mean force between 
ionic reactants would produce an ionic strength de­
pendence on the observed rate constant. This depen­
dence has been verified for a number of reactions and 
was utilized in an elegant experiment by Schwarz6 to 
verify that the charge on the putative hydrated electron 
was, in fact, -e. The original Smoluchowski calcualtion 
included only the effect of diffusion in dilute solution, 
and recently17"19 extensions of the theory to more con­
centrated solutions have been undertaken. This in­
troduces a concentration dependence into kohs, which 
can be attributed to the bimolecular lifetime.20 Simi­
larly the effect of competing unimolecular reactions, the 
so-called unimolecular lifetime effect,20 can be impor­
tant for reactions like fluorescence quenching.21 Both 
of these lifetime effects are discussed in section ILC. 
Finally, the effect of rotational diffusion can be im­
portant, especially for molecules of irregular shape, and 
the theory of this effect has been considered by a 
number of authors.22"26 

Restricting translational motion to one or two di­
mensions is known to exert a major influence on dif­
fusion effects on rapid reactions. These theoretical 
results are of special interest because the Smoluchowski 
theory gives a divergent result for steady-state rate 
constants in one and two dimensions. Calculations 
based on statistical nonequilibrium thermodynamics 
have provided an alternative approach which is free of 
this divergence.20 In two dimensions the theoretical 
expressions for rate constants should be useful for an­
alyzing rapid reactions in membranes. 

Over the past decade, which is the focus of this re­
view, the theory of the effect of diffusion on reaction 
rates has made considerable advances. Indeed, it is fair 
to say that the theory has far out distanced experiments 
in this area. One of the purposes of this review is to 
bring these advances to the attention of experimen­
talists with the hope of stimulating a new round of 
experimental work on diffusion effects. 

The theories that have been developed so far can be 
grouped into several categories. In section II we de­

scribe those theories that are based on a hydrodynam-
ic-level picture of diffusion effects. These include the 
classical theory of Smoluchowski and its extensions, 
theories based on mean-first-passage times, and fluc­
tuation theory calculations based on statistical none­
quilibrium thermodynamics. A second type of theory 
is based on a proposal by Waite27 to use two-particle 
correlation functions to describe diffusion. The scope 
of that theory has been extended substantially by Fix-
man and Wilemski,28 and we examine these theories in 
section III.A. The effect of the relaxation of molecular 
velocities has been treated by both ab initio methods 
and the Fokker-Planck equation. These theories are 
reviewed in sections III.B and III.C. Finally, numerical 
calcualtions have been used to simulate diffusion ef­
fects. Several types of procedures have been utilized, 
and these are reviewed in section III.D. 

In section IV a critique of the present status of the 
theory of diffusion effects is given. There we note that 
the only really tractable calculations that include all of 
the important physical and chemical effects are those 
based on statistical nonequilibrium thermodynamics.20 

We compare that theory with numerical simulations 
and recommend there that further simulations be car­
ried out. Finally in section V we compare the results 
of calculation to the experiments that are presently 
available. There we also suggest several lines of ex­
perimental work, whose results we believe should prove 
interesting. 

/ / . Hydrodynamlc-Based Theories 

A. The Smoluchowski Theory and Its 
Generalizations 

The idea that developed out of Smoluchowski's work 
on colloidal aggregation was to think of one of the 
reactants in a bimolecular reaction as a stationary sink. 
If the general bimolecular reaction is 

£obs 

A + B • products (5) 

then A is treated as a stationary sink. Diffusion is taken 
into account by assuming that the motion of B with 
respect to A is governed by Fick's law of diffusion with 
the relatively diffusion constant D' = DA + DB. The 
number density of B then satisfies 

dPE/dt = D V 2 P B (6) 

By introducing a Dirichlet boundary condition at the 
radial distance r = R and assuming that at t = 0 the 
density everywhere outside R is the same as the bulk 
density, pB, Smoluchowski found the solution1 

PB(r,t) = pejl - * erfc [(r - ^ / 2 ( Z n ) 1 / 2 ] ! (7) 

where erfc is the complementary error function. In the 
Smoluchowski theory the reaction rate per A molecule 
is set equal to the flux of B particles which impinge at 
the encounter radius. This leads ot the general ex­
pression for kohs 

feobs = 4TR2D XdpB/dr)R/pB (8) 

and using eq 7 to the following specific expression, 

kohs = 4TrD^[I + R/irD't)1'2} (9) 
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For t large with respect to the characteristic time R2/D', 
one recovers the steady-state expression in eq 1. This 
transient time dependence has been verified for the 
quenching of tryptophan fluorescence by iodide14 and 
for the quenching of 1,2-benzanthracene fluorescence 
by CBr4 in a variety of organic solvents.15 

To account for the fact that reaction is not instan­
taneous, Collins and Kimball29 substituted the radiation 
boundary condition 

4nR2D'(dpB/dr)R = k°pB(R,t) (10) 

where k0 is the intrinsic reaction rate constant, for the 
Dirichlet boundary condition in the Smoluchowski 
theory. At steady state this leads to the expression 

kob» = AwD'Rk0/(ATD'R + k0) (11) 

For reactions in which k0 » ArrD 'R, feobs reduces to eq 
1 and the reaction rate is said to be diffusion controlled. 
If k0 « ATD1R, then kohs = k0 and the rate is reaction 
controlled. Recently, Pedersen has shown how the re­
action probability for a partially diffusion-controlled 
reaction can be expressed in terms of the probability 
for the analogous diffusion-controlled reaction.30 

Debye16 improved the basic Smoluchowski theory by 
adding the effect of molecular interactions between 
reactants. Such interactions add a convective compo­
nent to the relative flux, which has the form 

; = -D\VpB + V(w/kBT)pB] (12) 

where a> is the so-called potential of mean force. The 
rate constant is still determined by the magnitude of 
the flux at the encounter radius, and using the radiation 
boundary condition, one finds the steady-state rate 
constant2 

fcobs = 4TrDM0Z(AIrDK + k0) (13) 

where 

l / j? = f°exp(w/kBT)r2 dr 

k0 = k0 exp(-w(R)/kBT) (14) 

Thus by suitably redefining the encounter radius and 
the intrinsic rate constant one recovers the Collins-
Kimball expression in eq 11. The redefined parameters, 
however, depend on the potential of mean force. In 
dilute solution the Debye-Hvickel potential of mean 
force simplifies to w(r) = -(zAzBe2/e)(ic -1/r), where /T1 

is the Debye-Huckel length which depends on the ionic 
strength. The resulting expression for the rate constant 
of charged reactants in the diffusion-controlled case is 

fcobs _ 4TD'zAzBr0 exp(zAzBr0K)/[exp(zAzBr0/,R)-l] 
(15) 

The constant r0 = e2/kBTt is the Onsager length, which 
is about 7 A in water at room temperature. Equation 
15 predicts a kinetic salt effect for rapid reactions that 
is in good agreement with experiment.2 

Recently there has been an attempt to improve the 
Debye formula in eq 15 taking into account concen­
tration effects on the reactants.31 Numerical solutions 
of the time-dependent Debye-Smoluchowski equation 
using the Crank-Nicholson method have also been re­
ported.32 Other authors have considered the effect of 
a diffusion constant which depends on distance, with 

the hope of improving the short-distance description 
of molecular dynamics.33'34 And recently a series solu­
tion for the Laplace transform of the solution to the 
Debye-Smoluchowski equation has been obtained. 
This solution appears to converge rapidly for many 
potentials.35 

In some applications, e.g., fluorescence quenching, one 
of the reactants, e.g., the fluorophore, can disappear via 
a parallel unimolecular reaction, e.g., fluorescence. It 
would seem that the effect of the unimolecular reaction 
ofB, 

K 
B — • product (16) 

could be easily taken into account in the Smoluchowski 
formalism. Introducing the unimolecular lifetime, TU 

= l/ku, the effect of the unimolecular reaction is added 
to the diffusion equation to give 

dpB/dt = D V 2 P B - T11-
1PB (17) 

as suggested by Monchick.36 Equation 17, however, 
does not admit a steady-state solution given the usual 
boundary conditions.10 An alternative possibility10 is 
that ApB = PB _ PB satisfies eq 17, i.e., 

dAPB/dt = D'V2APB - V 1 A p 8 (18) 

This also reduces to the Smoluchowski equation when 
the lifetime is infinite and, furthermore, has a form 
suggested by the fluctuation theory described in section 
ILC. Eq 17 admits the following steady-state solution 
for the radiation boundary condition10 

PB(r) = pB(l - feobs exp[-£(r - R)]/AivD'r[l + &]) 
(19) 

with £ = ( D ' T J - 1 / 2 . The corresponding expression for 
the rate constant in the diffusion controlled limit is 

feobs _ 4VD'R[1 + ^/(DV11)1/2] (20) 

which is reminiscent of the transient rate constant in 
eq 9. According to eq 20, when the lifetime is long, one 
recovers the Smoluchowski result. The effect of the 
unimolecular lifetime is to increase the diffusion-con­
trolled rate constant, and in the limit that the lifetime 
is zero, it is easy to see using eq 19 that diffusion will 
have no effect on the rate constant. 

A number of groups have considered the effect of 
concentration on random and ordered arrays of sta­
tionary sinks.17-19 This is only a formal analogue of the 
Smoluchowski picture of chemical reactions in solution 
since one cannot refer the relative motion of B to more 
than one sink. These calculations are somewhat more 
appropriate for the trapping of excitons or mobile 
species by stationary traps in solids. The basic differ­
ential equation in these calculations is eq 6. However, 
one now imagines an array of iV spherical sinks of radius 
R1, i = l,2...,N with their centers located at positions 
r ; throughout a volume V. The diffusion constant D' 
is now that of the mobile species, B, which is assumed 
to be dilute. Adopting the Dirichlet boundary condition 
at the surface of the sinks, one establishes a well-de­
fined, if formally intractable, problem. Several math­
ematical techniques have been used to tackle the solu­
tion to this problem, including analogies from electro­
statics,17 scattering theory,18 the method of induced 
forces,37 and effective medium theories.38""40 Some of 
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these calculations introduce source and sink densities 
directly into the diffusion equation, a technique which 
takes the place of the explicit boundary described 
above. 

Using the electrostatic analogy Felderhof and 
Deutch33 obtained an expansion of the reaction rate 
constant for a random array of sinks all of radius R of 
the form 

koba = 4TTDBR[1 + (30)1/2 + 12.710 +(30/2) In 0 + 
0 ( 0 3 / 2 l n 0 ) ] (21) 

where 0 = 4xi?3pA/3 is the volume fraction. This has 
been verified using Monte Carlo studies37 of an array 
of sinks that react with B, provided from a central 
source at r = 0. This same calculation demonstrated 
that for 4> < 0.1 the steady-state density profile of the 
mobile reactant B could be fit to the formula 

pB{r) = (q0/4*DBr) e x p K r ) (22) 

with (J0 the source strength at the origin and the cor­
relation length £~x = CR2/30)1/2. Its generalizations for 
diffusion-controlled reactions are discussed in section 
ILC. 

The lowest order correction term in eq 21 has been 
obtained by a variety of methods. The simplest10 is to 
notice that the bimolecular lifetime of B is TB = 1/ 
fcobspA. If this lifetime is substituted in the place of TU 

in eq 17, one obtains a result for the rate constant that 
is analogous to eq 20, namely 

kobs = 4irDBR[l + R/{DB/kob*pK)ll2) (23) 

In contrast to eq 20, eq 33 must be solved for kobs. Its 
solution is 

fcobs _ 4,Tj)8A[X + 3^/2 + (120 + 902)!/2/2] (24) 

Thus to lowest order in 0, 

kob* = 4irDBR[l + (30)1/2] (25) 

The density dependence that this introduces into the 
rate constant becomes appreciable at about 10~2 M. 
Because it arises from the finite bimolecular lifetime 
of B, we have called this the bimolecular lifetime ef­
fect.20'41 

Some time ago Sole and Stockmayer22 considered 
rotational effects on rapid reactions using a generali­
zation of the Smoluchowski theory. In addition to a 
position coordinate to describe relative translational 
diffusion, relative angular coordinates were introduced 
to describe relative rotational diffusion. Calculations 
with the theory are difficult even in the simplest cases. 
Using the Stokes-Einstein expressions for the transla­
tional and rotational diffusion constants, one can es­
timate the average time, TT, required to for translational 
diffusion to move the reacting molecules around each 
other as well as the average time, rR, required for the 
relative orientation to change appreciably. For mole­
cules of equal size the ratio T R / T T is 4, which shows that 
rotational relaxation requires a time comparable to 
translational relaxation. Recent calculations with a 
modified form of the Solc-Stockmayer theory25 have 
been performed for spherical molecules with a limited 
domain of reactivity on their surfaces. When the ratio 
TR/'TT is very small, there is ample time for reorienta-
tional motion, and the Smoluchowski result kobs = 
AvD1R is obtained. If the ratio TR/TT is the order of 4 

or smaller, then the value of k°h% can be reduced sig­
nificantly, depending on the size of the reactive do­
mains. Several groups have performed similar calcu­
lations to estimate association constants for the binding 
of proteins in solution to cell surfaces.42"44 

Understanding the effect of diffusion in one and two 
dimensions is of experimental importance for rapid 
reactions in membranes. The Smoluchowski theory, 
unfortunately, does not always lead to well-poised 
problems in one and two dimensions. For example, the 
steady-state calculation of the bimolecular rate constant 
is inconsistent with the boundary condition at infinity, 
i.e., pB = pB, in one and two dimensions.34 This is be­
cause the solutions to Laplace's equation are linear and 
logarithmic in one and two dimensions and so diverge 
at infinity. Various methods have been suggested to 
countervene this problem.45"47 The basic idea is to 
change the boundary condition at infinity into a 
boundary condition near by the sink. For example, if 
the encounter radius is R, one can locate a circular 
boundary at b = (l/wpA)1/2 > R, which associates with 
each A molecule an area wb2 equal to its average fraction 
of the surface area. By use of the Dirichlet boundary 
condition at r = R, the steady-state solution of the 
diffusion equation is10 

kobaOa 
PB(r) = -^p\n(r/R) (26) 

where pB is defined as the average density of B in the 
annulus between r = R and r = b. Using the two di­
mensional analogue of eq 8 to obtain the rate constant 
gives 

k°bs = 2*D\1 - (R/b)2]/{ln (b/R) - y2[l - (R/b)2}\ 
(27) 

When the density of A is low, this gives the asymptotic 
formula 

kobs = 2vD'/[\n (b/R)-l/2] (28) 

as originally obtained by Adam and Delbruck.46 A re­
lated result with the l/2 changed to 3 / 4 was obtained 
by Berg and Purcell47 using mean-passage times. As we 
discuss in section ILC, the correct term appears to be 
7 - In V2 = 0.2306..., where 7 is Euler's constant. 

It is worth noting that is does not seem possible to 
include the effect of diffusion of A molecules or the 
relative diffusion of several A and B molecules in the 
context of the Smoluchowski theory. This is due to the 
fact that the A molecules are taken as stationary objects 
through which the B molecules diffuse according to 
Fick's law. The simultaneous effect of both reactants 
diffusing can be important at higher concentrations,20 

and this limitation constitutes a drawback of the 
Smoluchowski approach. 

B. Mean-Passage Time Theory 

The calculation of mean-passage times has been 
useful in a number of areas of chemistry and physics.48 

As applied to rapid reactions in solution,49 the calcu­
lation involves a mean time for reaction. The theory 
is based on the same hydrodynamic ideas that underlie 
the Smoluchowski theory, except that now the Debye-
Smoluchowski equation, i.e., 

dp/dt = V-(D 'Vp + V{to/kBT)p) (29) 
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is interpreted as involving the probability density, p-
{r,t), of finding a B molecule at position r around a 
central A molecule. One way of using this equation is 
to place a spherical boundary at r = b, where B mole­
cules are reflected, and to use either the Dirichlet or 
radiation boundary condition at the encounter radius, 
R. If b is infinite and the density is such that the av­
erage number of A molecules in the volume is one, then 
the basic Smoluchowski picture is recovered. If b is not 
infinite, the equation can be used to represent the 
diffusion, say, of two ends of a polymer chain of length 
b toward one another. 

The basic idea is to calculate the mean time it takes 
a B molecule, originally at a distance r0 from the origin, 
to react. Thus one needs to solve eq 29 for the con­
ditional probability density p(r0\r,t), where p(r0,r,0) 
= 5(r - r0). To obtain the mean time to reaction note 
that 

p(r0)t) = J*drp(r0|r,£) (30) 

is the probability of not reacting, i.e., it is the relative 
fraction of particles that have not been removed at r 
= R at time t. The conditional mean time for reaction 
is then defined in the following way. The fraction of 
B molecules which react in the time interval t to t + 
dt is -(dp(r0,t)/dt) dt. Thus the mean time of reaction 
for a molecule starting at r 0 is50 

Hr0) = - Ct(dp(r0,t)/dt) dt = fpk-o,*) dt (31) 
Jo »̂ 0 

where the second equality follows by integrating by 
parts. Averaging over the initial distribution of posi­
tions for B, W1Cr0), gives the unconditional mean 
passage time 

T= JV1(I-OMr0) dr0 (32) 

One can interpret r as the bimolecular lifetime, so that 
in this theory the bimolecular rate constant is 

fe°bs = 1/TPA (33) 

It is easy to show49 that r(r0) defined by eq 31 solves 
the equation 

(V-DV - D 'V(co/feBT)-V)T(r0) = -1 (34) 

where the operator in parenthesis is the adjoint of the 
differential operator in eq 29. The minus one reflects 
the fact that p(r0,0) = 1 and that in a finite volume 
p(r0,°°) = 0. Equation 34 has been solved analytically49 

in one, two, and three dimensions using the radiation 
boundary condition. The solution is 

Ar0) = £°dx [DXxMx)]-1 j'dy w(y) + 

[k0/4TrDXR)R2W1(R)] (35) 

where the diffusion constant can depend on r, d = 1, 
2, or 3 dimensions and 
W,(r) = 

r-1"1 exp(-o>(r)/kBT)/ C dy y^ex^-ob) / kBT) (36) 
•sR 

is the equilibrium probability density in the absence of 
reaction. In the case that the potential of mean force 
vanishes, the average over Wx in eq 32 for a constant 
diffusion coefficient gives49 

T = (62/^0[(l - «)2/3 + D'(l - a)/k°b] d = 1 

r = (tf/Dnia2 - % - In o/2(l - a2) + TrCR(I -
a2)/2k°ba] d = 2 

T = (62/D0[(l - «)2(5 + 6a + 3a2 + a3)/15a(l + 
a + a2) + 4wD'R2(l - a3)/Sk°ba2] d = 3 (37) 

with a = R/b. To compare with the Smoluchowski 
theory one should chose the volume associated with the 
system to contain exactly one A molecule. Thus, for 
d = 3, 4ir63pA/3 = 1, etc. If that is done, then taking 
the limit b -* «, pA -» 0 and using (27) to obtain kohs 

gives the Collins-Kimball equation 12 in three dimen­
sions; 

feobs = 2TrDy[In (b/R) - 3/4 + izD'/k0] (38) 

in two dimensions; and 

kob* = 3D £Afe°/(fe0 + 3DK) (39) 

in one dimension. The diffusion-controlled limit of eq 
38 agrees with the low-density limit of Berg and Pur-
cell47 in two dimensions, and the prediction in one di­
mension agrees qualitatively with recent numerical 
simulations51 and the statistical thermodynamic theory 
in section ILC. 

These mean' passage time calculations have been ex­
tended in several ways. In two dimensions the problem 
of the trapping of membrane-bound receptors by 
clathrin-coated pits involves sinks with a finite life­
time.52 This problem involves an additional stochastic 
process which describes the disappearance of the coated 
pits. It has been solved in two dimensions.53 An idea 
related to the mean reaction time is the so-called con­
ditional-mean-residence time50 

r(r°|r)= C"p(r°[r,t) dt (40) 

It is related to the conditional-mean-reaction time by 
r(r°) = JVCr0Ir) dr and has been calculated in three 
dimensions. In related work, a generalized moment 
method has been introduced, which may be useful for 
calculating mean-reaction times.54 

C. Statistical Nonequilibrium Thermodynamic 
Theory 

1. Nonequilibrium Radial Distribution Functions 

The basic quantity needed to predict the bimolecular 
reaction rate is the average distribution of one kind of 
reactant around the other. One way of expressing this 
is to use the radial distribution function. The radial 
distribution function, gABCT>£), of B molecule around 
a central A molecule is defined by55 

gAB(r,t) = pB(r,t)/pB (41) 

where pB(r,t) is the average number density of B with 
r = rB- rA. The radial distribution function is well-
known in equilibrium statistical mechanics55 and at 
equilibrium it can be obtained using molecular dynam­
ics calculations or various approximation schemes.56 

What is needed to describe reaction rates, especially for 
rapid reactions, is a nonequilibrium radial distribution 
function.20 Generally one may also need to have in­
formation about the internal states of the molecules, 
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e.g., rotational or vibrational states. For molecules of 
spherical symmetry, the radial distribution depends 
only on r = \r\. 

While first-principle calculations of nonequilibrium 
radial distribution functions are not presently possible, 
the statistical theory of nonequilibrium thermodynam­
ics provides an alternative way of calculating radial 
distribution functions. This theory is hierarchical in 
its structure and can be applied at various levels of 
complexity.57"59 The hydrodynamic level of the theory 
has been used recently to describe rapid reactions.9,20 

It involves the same basic ingredients as the Smolu-
chowski theory, namely reaction rates and diffusion 
fluxes, but uses them in a systematic fashion to calcu­
late the nonequilibrium radial distribution function. 
The theory takes into account density fluctuations due 
to reaction and diffusion and does not require a fixed 
molecular frame of reference as in the Smoluchowski 
theory. 

2. Rate Constants and the Radial Distribution Function 

The rate of a bimolecular chemical reaction can be 
described using an intrinsic reactivity function. This 
function is the rate constant for molecules separated 
by a distance r and in particular internal states. In the 
simplest approximation the intrinsic reactivity depends 
only on r, and the observed bimolecular rate constant 
can be written9'20'41 

fcobs = f k°(r)gAB(r,t) dr (42) 

Under steady state conditions, the radial distribution 
function is independent of time, and in an isotropic 
medium it depends on r. In this case one has 

feobs = 4T C °> ( r ) £ A B ( r ) r 2 d r ( 4 3 ) 

The explicit form of the reactivity function depends on 
the reaction under consideration. For reactions oc­
curring within a narrow range of separations, one can 
use the Smoluchowski reactivity20 

k°(r) = k°8°(r - R)/4Trr2 (44) 

whereas for energy transfer via the dipolar mechanism 
the Forster reactivity60 is 

k°(r) = r-
l(R/r)6 (45) 

with T the fluorescence lifetime and R an effective 
length. Other reactivity functions have been proposed 
for processes involving electron transfer61 and overlap 
of molecular orbitals.20 

3. Density Fluctuations and the Radial Distribution 
Function 

To calculate the radial distribution function using 
statistical nonequilibrium thermodynamics it is neces­
sary to first calculate the density-density correlation 
function.57'58 When pi(r,t) is used to represent the 
density of species i and p\{r,t) to represent its average 
value, the density fluctuation is 5pi(r,t) = p;(r,t) - p r 

(r,t). The density-density correlation function is then 
defined as 

o^r,r',t) = {5pi(r,t)6Pi(r',t)) (46) 

where the angular brackets represent an ensemble av­

erage. Radial distribution functions can be determined 
from the relationship 

gu(r,r',t) = 

1 - 8(r - rO V & t o ) + <Tii(r'r'^/Pi(r,t)Pi(r',t) (47) 

In a steady-state ensemble of an isotropic fluid eq 47 
reduces to 

gq(\r - r\) = 1 - S(r - r%t/p? + c^r - r])/p?pf* 
(48) 

Calculation of the density-density correlation func­
tion is based on the stochastic partial differential 
equations that are solved by the conditional density 
fluctuations. These are the density fluctuations that 
result from an ensemble in which the densities are 
known precisely at an initial time. The stochastic 
equations that are solved by the conditional flucutations 
are, in general, coupled, linear, and time-dependent 
equations.57-59 If dp is the column vector of density 
fluctuations, then57"59 

dbp/dt = H(p(p°,t)5p + ? (49) 

where H(p(p°,t)) is matrix of relaxation rates obtained 
by linearizing the deterministic rate equations around 
their average value, p(p°,t). The functions /j(£) are 
nonstationary, Gaussian processes which vanish on the 
conditional average. Their covariance also depends on 
the conditional average value and has the form 

<?i(«)/j(tO> = yii(P(p°,t))S(t - t) (50) 

The matrix 7y is determined by the molecular processes 
that are occurring58 and involves no undetermined 
parameters. The simplest application of the theory is 
the dimerization reaction20,41 

A + A -*• products (51) 

The conditional average equation for pA(pA°,t) is 

dpA(r,t)/dt = -2k°b*pA
2 +DAV2pA + K (52) 

where K represents a constant, uniform source of A to 
assure that a steady state is possible. The conditional 
fluctuations satisfy the stochastic differential equation 

ddpA/dt = -4feob9pA5PA + DAVHpA + / (53) 

with 

Cf Wf(Kf)) = 
(4k°**pA

2 - 2DAVt-pAVr)b(r - rMt - f) (54) 

So far there has been no attempt to solve the general 
time-dependent problem to obtain the density-density 
correlation for arbitrary initial conditions. However, 
at steady states, p can be replaced by pss everywhere in 
the stochastic differential equations, which simplifies 
calculations considerably. For example, Fourier 
transformation of eq 53 and 54 leads to the steady-state 
correlation function20 

(5pA(r,t)dpA(r',t)r = 

where T 1 = (J9A/4feobsPA89)1/2- The steady-state condi­
tion for eq 52 gives K = 2kohspA

as. Combining that with 
(48) and (55) yields 
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§AA(r) = 1 -
koh» expKr) 

(56) 
2irDAr 

Another way to obtain this result is by multiplying the 
steady-state version of eq 53 by hpA{r',t) and averaging 
to obtain the partial differential equation solved by Ap 
s P A ( S A A - D - This yields10 

dAP/dt = 2(L>AV2Ap - 4feobspAAp) - 4feob8pA
25(r - r) 

(57) 

As pA -* 0, eq 57 reduces to precisely the equation 
suggested by Smoluchowski with D' = 2DA. Its 
steady-state solution is easily found to be 

Ap88 = -feob8pA
88 exp(-£r)/27rDAr (58a) 

in agreement with (56). Equation 56 disagrees with the 
radial distribution function for identical reactants based 
on the Smoluchowski theory.5,8 That theory gives 

£AASmol(r) = 1 - k°b*/4irDAr (58b) 

whereas even at low density, so that £ -* 0, eq 56 gives20 

gAA(r) = 1 - kohs/2irDAr (59) 

Equations 56 and 59 agree with the overall number 
fluctuations at steady state calculated by using master 
equations,20 whereas (58) is off by a factor of 2. On the 
other hand, if only half the diffusion flux at the en­
counter distance is used in the Smoluchowski calcula­
tion, then eq 59 rather than (58) is obtained. It seems 
proper to assign only half of the diffusion flux to the 
reaction rate in the case of identical reactants, and eq 
56 appears to give the correct low-density limiting be­
havior. 

Steady-state calculations for more complicated re­
action schemes are easy to perform. For nonidentical 
reactants, as in eq 5, one obtains20 

fcobs 

gjxir) = 1 -

(a -2/3) 
iirD'r 

expt-r/?1/2) + expi-ra1'2) (60) 
| _ 2 ( a - 0 ) r v " 2(o- /3) 

where the correlation lengths are 

a-1'2 = [Z)ADB/fe°b8(pBDB+pADA)]1/2 

,3-1/2 = [D,/kobz{pA+pB)]l/2 (61) 

In dilute solution both a and /3 —* 0, and eq 60 reduces 
to the Smoluchowski result 

gAB(r) = 1 - fc°b8/47rD'r (62) 

Equation 60 can also be obtained from the partial 
differential equation satisfied by the matrix of densi­
ty-density correlation functions10 (cf. eq 57). This 
equation couples together all three density correlation 
functions, e.g., CTAA, <TAB, and o-BB and cannot be reduced 
to an equation for a single, scalar quantity. 

Using these methods the radial distribution function 
has also been calculated for the scheme9,20'21 

A + hv -* A 

fcobe _ _ 

A + B - A + B' 

which corresponds to excitation, fluorescence, and bi-
molecular quenching of the excited fluorophore A. Only 
two independent densities, pA and pB, are involved in 
the calculation and one finds that20 

SABW = 1 -

JjObS 

4xD il a(fi - y) 

exp(-r^1 2) + 

205 - X1)(ZS - X2) 

«(Xi -y) 1 

2(X1 - /S)(X1 - X2) 

"(X2 - y) 

expH-Xi1/2) 

2(X2 - /S)(X2 - X 3] exp(-ry2V
2)) (64) 

where the three correlation lengths and other relevant 
parameters are defined by 

a = [(ku + k°b*pB)DB + k°h*pADA]/DADB 

y = 2M°b9pA/[(feu + koh*pB)DB + kob*pADA] 

/3 = [feu + fe°b8(pA + pB)]/L>' 

X1 = (a /2 ) ( l + [1 - 27/a]1 /2) 

X2 = («/2)( l - [1 - 27/a]1 '2) (65) 

When the unimolecular lifetime, TU = l/ku, is infinite, 
eq 64 and 65 reduce to eq 60 and 61, which were ob­
tained for the bimolecular reaction. The use of eq 64 
to examine fluorescence quenching in both dilute and 
concentration solutions is described in section V. Sim­
ilar calculations have been performed on a variety of 
reaction schemes, including absorption by static sinks64 

and schemes in which the reverse reaction is taken into 
account.20 These are straightforward and involve only 
Fourier transforms and linear algebra. 

4. Calculation of Rate Constants 

The statistical thermodynamic calculation of the ra­
dial distribution function at steady state proceeds in­
dependently of the calculation of the rate constant. 
After obtaining the radial distribution function, one 
needs to use eq 43 to calculate kohs. Since the radial 
distribution function depends on the observed rate 
constant, eq 43 must still be solved for kohs after the 
integral is carried out. These steps depend on the 
choice of the intrinsic reactivity function. The simplest 
choice is the Smoluchowski reactivity, for which eq 43 
becomes 

koha = k°gAB(R) (66) 

Equation 66 is generally easy to solve by iteration. 
Although calculations with other intrinsic reactivities 
have been performed, the resulting equations are more 
complicated than (66). 

For the dimerization reaction in (51), Equation 66 
becomes20 

Uobs = 
2irDAR exp(£fl)fe° 

(2wDAR exp(£fi) + k0) 
(67) 

(63) 

Since £ depends explicitly on feobs and pA (see below eq 
55), Equation 67 is a transcendental equation. It is 
easily solved by iteration, starting with a first approx­
imation of kobs = 2irDARk°/(2TrDAR + k0). In the limit 
of diffusion control, (67) reduces to 



174 Chemical Reviews, 1987, Vol. 87, No. 1 Keizer 

/jobs _ 2irDAflexp(ffl) (68) 

The exponential factor is important at concentrations 
above ICT3M or so and has its origin in the finite bi­
molecular lifetime, rB, of an A molecule.20 Indeed, £_1 

can be written as 

T 1 = ('B-DA)1/2 (69) 

which is roughly the root means square distance that 
an A molecule diffuses in its bimolecular lifetime. 

For nonidentical reactants the transcendental equa­
tion for feobs which results from the Smoluchowski re­
activity can be written 

4irD'RC(R)k0 

k = ; (70) 
AvD'RC(R) + k0 

where C(R) is a correction factor to the Collins-Kimball 
equation. In general, 1/C(R) is a weighted sum of ex­
ponentials of the form £ A exp(-aji?) with C; and a ; 

dependent on densities and rate constants. For exam­
ple, in dilute solution the radial distribution function 
for the fluorescence quenching problem in eq 64 gives21 

C(R) = 

[ (a - 2/3) a V1 

^^)^-m + ^J)^al,2R)\ 
(71) 

with a = 1 /T U D A and /3 = 1/TUD'. Notice that in this 
case there are corrections to the Collins-Kimball for­
mula even in dilute solution. This is the unimolecular 
lifetime effect.20 When the unimolecular lifetime is the 
order of a nanosecond, this effect is appreciable in 
typical aqueous and organic solvents. 
5. One and Two Dimensions 

The statistical theory is as easy to apply in one and 
two dimensions as it is in three dimensions.9,20 Oper­
ationally, one simply interprets the position variable as 
a scalar or a two vector and proceeds as in three di­
mensions. The simplest calculations involve an infinite 
straight line or a planar geometry. The only difference 
between calculations in these geometries and calcula­
tions in three dimensions is that the Yukawa-type ex­
ponential factors are replaced by other functions. The 
correspondence in two dimensions is20 

e x p K r ) / 2 r - X0(^r) (72) 

where K0 is the Bessell function of imaginary argument 
(McDonald function) of order zero, while in one de-
mension20 

e x p H r ) / 2 a r — exp(-£r)/£ (73) 

For example, using eq 73 the radial distribution func­
tion for the dimerization reaction in eq 51 can be 
written in one dimension as 

#AA ( 1 )M = 1 - k°h* expKr ) /D A £ (74) 

By use of eq 66 and 74 the bimolecular rate constant 
for this reaction can be found easily. Under conditions 
of diffusion control it reduces to 

kobs = DA£ exp(£fl) (75) 

Since | = (4kohBpA/DA)^2, it follows that in dilute so­
lution the exponential in eq 75 can be ignored. Solving 

the resulting equation gives 

feobs = 4pADA (76) 

Thus the diffusion-controlled rate of dimerization 
should be proportional to the third power of the density 
in one dimension. 

The correspondence in eq 72 can be used to obtain 
the radial distribution function for trapping of a dilute 
mobile species by static sinks in two dimensions,65 i.e., 
for the reaction A + B -— A. To do this we set joB = 0 
followed by DA = 0 in eq 60 and 61, which in three 
dimensions gives 

fcobs 

£ABW = 1 - J ^ , exp(-r[k°b*pA/DB]V2) ( 7 7 ) 

and 
fcobs 

£AB ( 2 )W = 1 - —K0(r[kohaPA/DB]V2) 

in two dimensions. Thus using the Smoluchowski re­
activity one obtains in the diffusion controlled limit 

&obs = 4*RDB exp(R[kohspA/DB]^2) (78) 

in three dimensions and 

/e°bs = 2irDB/K0(R[k°b*pA/DB]V2) (79) 

in two dimensions. By using the asymptotic formula 
K0(x) = [In (x/2) + y] with y = 0.5772... Euler's con­
stant, it is easy to show65 that as pA -* 0 

fc°bs - 27rDB/[ln (b/R) - y + In y/l] (80) 

where irb2 = pA
l. Except for the term - 7 + In V2 = 

0.231, this is identical with the results obtained by 
Adam and Delbruck46 or Berg and Purcell.38 Based on 
eq 78 the low-density result in three dimensions agrees 
with the Smoluchowski theory while the first iteration 
gives a lowest order density correction64 

£obs = 47rflDB[l + GV)1/2] (81) 

which also agrees with the Smoluchowski approach.19 

For higher densities, eq 78 and 79 must be solved nu­
merically by iteration. 

Calculations have been carried out for more com­
plicated reaction schemes in two dimensions, including 
fluorescence quenching9,20 and the trapping of mobile 
receptors by clathrin-coated pits.65 This latter example 
has the mechanism 

*obs 

P + R i = ± P 
K 

Pi=:P* (82) 
\ 

where R is the receptor, P is the coated pit on the 
membrane surface, and P* is the pit below the surface. 
This process is interesting for two reasons. First, the 
second reaction causes coated pits to disappear and 
reappear. Thus although the pits are immobile in the 
membrane, they are not always competent for the 
trapping reaction. The second interesting aspect of this 
problem is the unimolecular dissociation reaction, e.g., 
the reverse of the bimolecular trapping process. De­
tailed calculations,65 which can be carried out analyti­
cally, show that if ku is large enough, the effect of dif-
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fusion is completely eliminated in this system. On the 
other hand, if ku = 0, the binding of low-density lipo­
protein receptors to coated pits should be about 84% 
diffusion-controlled on human fibroblasts cells. 

6. Extensions of the Elementary Theory 

The elementary statistical theory can be extended in 
several ways. It is possible to include the effect of 
molecular interactions on the nonequilibrium radial 
distribution function.20 This requires using the spatially 
nonlocal version of hydrodynamic fluctuation theory.63 

For hard spheres this theory requires a knowledge of 
the static structure factor and has been successful in 
predicting the dynamical structure factor obtained by 
independent molecular dynamics calculations. When 
applied to the dimerization reaction,20 this theory pro­
duces corrections to the Debye result in eq 13. 

The theory has also been used to examine the effects 
of rotational diffusion on rapid reactions.26 These 
calculations are based on the density-density correla­
tion function in position and orientation space. The 
simplest orientational problem involves a single angular 
coordinate, 0, on identical reactants. This calculation 
has been carried out in two and three dimensions. If 
the reactivity function in two-dimensions is 

5(Ir - T7I-R)(I + cos(0 - 00) 
k°(\r - i>\,\9 - 0'|) = k0 

Air 

(83) 

then the observed rate constant in two dimensions is26 

fcobs 1 

fcob* = #>•!_ - [ K 0 ( I i ? ) + K0(i/TTtfiR)] J (84) 

with Tj2 = Z)r/8kob8joA, Dx the rotational diffusion con­
stant, and £ defined below eq (55). If rotational diffu­
sion is rapid, one recovers the result obtained with the 
neglect of rotational effects, since Hm K0(x) = 0, x -— 
C O 1 

Another extension of the theory includes the effect 
of heat conduction. This can be carried out in a sys­
tematic way by including fluctuations in the internal 
energy density.67 This introduces the thermal diffu-
sivity, DT, into the calculation, which is normally ne­
glected since in most solutions thermal diffusion is 
much faster than mass diffusion. One exception is 
diffusion of solvated electrons in certain organic sol­
vents,13 which is abnornally fast. The effect of the 
thermal diffusivity can arise for two reasons. If there 
is a large heat of reaction, the rate at which energy 
diffuses away from a reaction pair may effect the re­
action rate. On the other hand, the activation energy 
for diffusion may affect the diffusion-controlled rate. 
This latter problem has been solved for the dimerization 
reaction, and the effect of the activation energy of 
diffusion was shown67 to be less than 10%. The effect 
of the heat of reaction should be larger, but thus far no 
calculations have been carried out. 

/ / / . Other Theories 

A. The Walte and Wilemskl-Fixman Theories 

Waite27,67 seems to have been the first person to 
systematically introduce the joint two-particle proba­
bility density and the radial distribution function into 

the theory of rapid chemical reactions. His idea was 
to find a partial differential equation satisfied by the 
joint probability density that would involve a coupling 
between diffusion and reaction. The equation that 
Waite derived was suitable for localized reaction centers 
in solution.68 In an initially homogeneous solution 
Waite showed that his theory reduced to the Smolu-
chowski theory for the Dirichlet boundary condition 
and to the Collins-Kimball theory for the radiation 
boundary condition.27 

Wilemski and Fixman28 generalized Waite's approach 
in two ways. First they suggested that one consider the 
joint probability density for all N particles and attempt 
to find the dynamical equation that it satisfies. In doing 
so they were motivated by the fact that the usual 
Smoluchowski theory, which is couched in terms of 
boundary conditions, can be rephrased in terms of an 
inhomogeneous-reaction-sink term. For example, the 
equation 

dpB/dt = D V 2 P B - {k°pA/4wR2)8(r - R) (85) 

is equivalent28'69 to the Smoluchowski theory with the 
radiation boundary condition if one uses an appropriate 
Greens function to solve (85). 

In this spirit Wilemski and Fixman28 introduced a 
complicated hierarchy of TV-particle probability densi­
ties to describe diffusion effects. In the simplest case 
the reactants B are not affected by the reaction and the 
hierarchy involves the functions ^(r1(...,rn,t), defined 
as the probability of finding an /V-particle configuration 
in which a particular molecule A; is still capable of 
reaction. Thus 

$i(t ) = JVidiv.-dr,, (86) 

is the probability that A; is still reactive and NA(t) = 
Y,i<t>iit) is the number of A's which have not yet reacted. 
Wilemski and Fixman assumed that the 1̂- satisfy the 
coupled particle differential equations 

d+i/dt = -g+i - k°E S(Aj1By)̂ i (87) 
;' 

where g is a generalized diffusion operator and S(A,,B;) 
is a generalized sink term for i and j , in analogy to the 
final term in eq 85. In a homogeneous solution the sum 
over j in eq 87 is independent of i and (87) reduces to 
the simple form 

dxp/dt = -g4>-k°Sj/ (88) 

When integrated, eq 88 leads to the equation 

dNA/dt = -k°n(t)NA (89) 

where 

r,(t) = fst dr1...dr„/</.(t) = u(t)/0(t) (90) 

is the conditional probability for finding a B molecule 
near A given that A is still capable of reaction. Thus 
k°r)(t) is the rate constant in the Wilemski-Fixman 
theory. 

The usual choice for the generalized diffusion oper­
ator is g = -DAZ;^ 2 + -DBLJ-V/ and for a single A 
molecule the resulting equation has a formal solution 
in terms of products of single particle Greens functions 
for the diffusive motion of B. Introducing the ap­
proximation28 
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4< = ikquW/'veq (91) dj/dt = - f t / + DV pB) (96) 

where ^eq and veq are the equilibrium values of \p and 
v, one obtains the following integral equation for u(t): 

v(t) = 

Ueq - A0W6, J* 'dr U(T) - ^0 j ' d r K(t - T)U(T) dr (92) 

The kernel K(t) can be written in terms of an integral 
of the sink term and the single particle Greens function 
for free diffusion. Recently Weiss70 has provided a 
systematic analysis of this approximation and has 
shown for a 5-function sink that (92) leads to the correct 
survival probability. Other approximate solutions to 
the Wilemski-Fixman equation have been consid­
ered71,72 and Doi73 has obtained a variational principle 
for the rate constant. Various forms of the theory have 
been used to treat reaction between reactive groups 
attached to the end of a polymer chain,74,75 intramo­
lecular reactions within macromolecules,76 and trapping 
by static sinks.38,77 Calculations with the Wilemski-
Fixman theory are rather involved and often only nu­
merical calculations are feasible. 

B. Fokker-Planck Theories 

It is tacitly assumed in most theories of diffusion-
controlled reactions that the velocity distribution of 
reactants is the equlibrium Maxwell distribution. This 
is sensible since in solution the relaxation time asso­
ciated with molecular velocities is the order of T = 1O-13 

s, i.e., approximately the time between collisions. The 
average distance that molecules move in this time is 
(6DT)1^2, which is the order of tenths of an Angstrom 
in typical solvents. Consequently, any non-Maxwellian 
character of the velocity distribution should be washed 
out on the time scale of diffusion effects. Nonetheless, 
it has been of interest to pin down this matter more 
precisely, which can be done using the Fokker-Planck 
equation.78"83 Another question that can be addressed 
with this approach is what the boundary condition 
should be in the Smoluchowski theory. 

The Fokker-Planck equation is78'79 

df/dt + v -V/ = VAM) +^v-DVJ (93) 

where f is the friction constant and / is the probability 
density for position, r, and velocity, v, of the center of 
mass of a molecule. In the form of (93), the equation 
describes a single particle in a solvent. The generali­
zation to many molecules, including induced interac­
tions due to the hydrodynamic motion of the fluid, has 
also been examined.80 If / represents a mobile molecule 
B, then the appropriate sink boundary condition for a 
stationary, spherical reaction partner with its center at 
0 is79 f(R,v,t) = 0 for all * > 0 and all vsuch that v-R 
> 0. This latter condition implies that there is no 
contribution to the flux of B molecules at R due to 
molecules moving out of the sink. From eq 93 one can 
derive a systematic approximation to the equation 
solved by the number density of B, i.e., 

PB(O = PBff(r,v,t) dv (94) 

One finds the continuity equation 

dpB/dt = -V-j (95) 

and the constitutive equation 

Equations 95 and 96 are coupled, although the flux in 
eq 96 relaxes with a characteristic time T = T1 which 
is the order of a collision time. Thus to a good ap­
proximation one can use the steady-state solution j = 
-DVpB in eq 95 and recover the Smoluchowski equation. 
Under this steady state condition the boundary con­
dition reudces to79 

DVpB-R/R = (V)P3(R)/2 (97) 

where (v) is the average speed. Equation 97 is the 
radiation boundary condition introduced by Collins and 
Kimball with an explicit expression for k0 = (v)/8irR2. 
This represents an upper bound for the intrinsic rate, 
which for the Maxwell distribution is k0 = (kBT/ 
8ir3m)1/2/R2, where m is the mass of B. 

C. Ab Initio Theories 

Several first-principal investigations of diffusion ef­
fects that are based on the underlying classical me­
chanical equations of motion have been published. If 
the A molecules are treated as immobile and the effect 
of solvent is neglected, then the resulting dynamical 
equation for the position and momentum distribution 
of B is a linear Boltzmann-type equation.84 In the 
simplest case A and B interact like hard spheres, and 
B molecules react only at the encounter radius. The 
solution of this problem is technically difficult and only 
formal results, or results valid for small reactivities, have 
been presented. In the limit that the sink radius is 
large, the Collins-Kimball formula for the rate constant 
is recovered.84 

A more ambitious ab initio theory has been outlined 
by Cukier, Kapral, and co-workers.85 This theory is 
based on the calculation of the two-particle distribution 
functions for the reaction 

A + B — C + D (98) 

The dynamical equations that are developed are based 
on the canonical equilibrium ensemble and, thus, do not 
contain a complete description of the nonequilibrium 
correlations. In the simplest form of the theory, the 
bimolecular collision operators are based on hard-sphere 
interactions and reactive collisions occur with proba­
bility aR, although modification of the theory permits 
nonimpulsive forces to be added. As of yet the kinetic 
equations have not been solved, and the theory has not 
been applied to experiment. 

D. Numerical Simulations 

Several types of numerical calculations have been 
proposed to simulate diffusion-controlled reactions. 
Molecular dynamics calculations on a Lennard-Jones 
liquid have been used to assess the effect of short-
ranged spatial correlations on rapid reactions.34 Such 
correlations can lead to caging of reactants, which has 
been proposed to enhance the reaction rate. These 
correlations were used to calculate an effective distance 
dependence for the relative diffusion constant. The 
calculations suggest that the effective diffusion constant 
drops from its bulk value by a factor of two or so within 
a few molecular diameters. Subsequent authors have 
incorporated this idea into caging calculations based on 
the Debye-Smoluchowski equation (cf. eq 99 below).33 
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Several different types of numerical calculations, 
collectively called Brownian dynamics, have been ap­
plied to rapid reactions in solution. These calculations 
are based on the Debye-Smoluchowski equation, often 
with the inclusion of a distance-dependent diffusion 
constant. Thus one seeks to solve an equation like86 

dPB/dt = V.[D(r)(VpB + V(U1ZkQT)Ps)] (99) 

where /oB can be interpreted as a probability density for 
finding B molecules. Under steady-state conditions the 
diffusion-controlled rate constant is 

kD = [ J"[exp(a>/feBT)/47rr2D(r)] dr]"1 (100) 

In one approach,86-88 the observed rate constant is 
calculated as 

kohs = kBp (101) 

where p accounts for nonreactive collisions. In this 
approach the quantity p is calculated by simulating 
trajectories of a B molecule undergoing Brownian 
motion in the potential «(r ) . The details of these sim­
ulations vary, and hydrodynamic interactions can be 
included by using an appropriate diffusion tensor. The 
basic idea is to move the B molecule under the influence 
of the velocity field v = -DVu/kBT and a Wiener 
process. Both spherical molecules86 and dumbells87 

have been considered, and the approach has been ex­
tended to account for asymmetrically disposed centers 
of force.88 

A somewhat different simulation procedure is based 
on Monte Carlo techniques.89""92 Instead of moving in­
dividual molecules, one calculates the probability dis­
tribution after a small time step using various algor­
ithms. This technique has been applied to both re­
active91,92 and nonreactive diffusion91 and leads to nu­
merical expressions for the probability density of B 
molecules. The calculations are easy to perform in one 
dimension and appear to be applicable to three di­
mensions as well. So far this technique has not pro­
vided any useful comparisons with experiment. 

Another type of Monte Carlo simulation has been 
used to find steady-state solutions to a Wilemski-Fix­
man type equation.37 With the addition of a source 
term of strength q°, the Wilemski-Fixman equation can 
be applied to the absorption of mobile particles (B) 
released at the origin and trapped by randomly placed, 
immobile sinks (A). This problem is relevant for late-
stage precipitation from supersaturated solutions. The 
steady-state density profile can be solved formally using 
irreducible surface multipole moments. The formal 
solution can be evaluated by a Monte Carlo procedure 
using a randomly generated distribution of sinks, fol­
lowed by numerical solution of a truncated multipole 
hierarchy. If the packing fraction, <$>, is below 0.1, this 
procedure yields a density profile of the form 

Qo 
PBOO = ~^-r exp(-fr) (102) 

where £ is proportional ^1/2. At higher packing fractions 
deviations from eq 102 are found, although in that re­
gime the Monte Carlo method is less reliable. Equation 
102 is identical in form to the quantity Ap = PA(SAB ~ 
1) obtained for trapping by static sink using statistical 
nonequilibrium thermodynamics.64 

IV. Critique of Present Theories 

All of the theoretical approaches discussed in sections 
II and III have inherent advantages and disadvantages. 
The basic Smoluchowski theory, which is the text book 
approach, has the advantage of being simple and 
physically transparent, at least for reactions in solution. 
It has numerous disadvantages including ambiguities 
associated with boundary conditions in one and two 
dimensions,34 the inability of the theory to incorporate 
relative and absolute diffusion effects,22 the difficulty 
in incorporating the effect of elevated concentrations 
of reactants,19 the absence of a consistent way to include 
unimolecular lifetimes,10 and the restriction to re­
activities localized at the encounter radius. 

Some of the other theories have been devised to re­
move these restrictions. The Wilemski-Fixman theo­
ry,28 for example, circumvents the problem of localized 
reactivity by incorporating source terms with explicit 
spatial dependence. Calculations with that theory, 
however, are difficult, and at present no systematic 
procedure has been provided for formulating the basic 
dynamical equations. Indeed, only the effect of relative 
diffusion is included in the usual formulation of the 
theory. 

The mean-passage time theories are applicable in one 
and two dimensions.49 Although they, therefore, remove 
this limitation of the Smoluchowski theory, the ex­
pressions for the rate constants in one and two dimen­
sions appear to be only qualitatively correct. While we 
noted in eq 39 that the mean passage time gives a rate 
constant in one dimension that is proportional to the 
density at low densities, its coefficient disagrees with 
fluctuating nonequilibrium thermodynamics. Similarly, 
the rate constant for two dimensions is quantitatively 
different from the result based on the thermodynamic 
theory.65 

In many ways the most complete theory of diffu­
sion-controlled reactions is that based on statistical 
nonequilibrium thermodynamics.20,41 Although that 
theory was not created for the purpose of treating rapid 
reactions, it provides a systematic way to calculate 
nonequlibrium radial distribution functions. As de­
tailed in section II.C, that theory is not beset with the 
problems that plague the Smoluchowski theory. It 
yields results that are reasonable in one and two di­
mensions and automatically includes concentration and 
lifetime effects. Another virtue of the statistical theory 
is that the analytical results are easy to obtain, which 
means that it is not necessary to introduce approxi­
mations into the calculations. For example, the rate 
constant for trapping by stationary sinks is a simple 
exercise with the statistical theory,64 whereas only as­
ymptotic expansions or approximate expressions have 
been obtained using the Smoluchowski or other theo­
ries.19 

A disadvantage of the statistical thermodynamic 
theory is that it is difficult to carry out calculations for 
transient situations. This is due ot the fact that the rate 
constant becomes time dependent. This means that one 
can no longer calculate the radial distribution function 
first and then obtain the rate constant by self-consist­
ency. Instead one must solve coupled, time-dependent 
partial differential equations for the radial distribution 
functions. This difficulty should not be surprising since 
even the time-dependent Debye-Smoluchowski equa-
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tion has not yet been solved except in special cases. 
Transient dynamics on the nanosecond time scale 

have been treated successfully using the Smoluchowski 
theory.1415 The effect of more rapid processes, such as 
vibrational momentum relaxation, can be included in 
Fokker-Planck and ab initio theories. These effects 
may prove important for reactions on the picosecond 
time scale. Indeed, on that time scale diffusion is too 
slow to be important and other effects, such as solvent 
relaxation, will dominate. 

Numerical simulations of diffusion effects on rapid 
reactions have not yet been fully exploited. With the 
advent of supercomputers, simulations would appear 
to provide a promising approach to test theoretical 
calculations. Using relatively straightforward algor­
ithms one should be able to examine concentration 
effects, the effect of geometry and intermolecular in­
teractions, lifetime effects, and the effect of dimen­
sionality. Such information is needed to assess the 
usefulness of the theories described in this review and 
various approximations that have been introduced. 

V. Comparison with Experiments 

In the introduction we mentioned the classical ex­
periments of Noyes7'8 on the recombination rate of 
iodine atoms, which are compatible with the revised 
Collins-Kimball formula in eq 4. Among the many 
convincing verifications of the elementary theory are 
the reactions of the solvated electron.4'6 These have 
been used to verify the kinetic salt effect arising from 
the Debye expression in eq 15, and to verify the Col­
lins-Kimball formula for nonidentical reactants. Par­
ticularly compelling agreement has been obtained for 
reactions of the solvated electron in certain organic 
solvents where the diffusion constant of the electron, 
De, is anomolously large.13 In tetramethylsilane De = 
2.6 cm2 s"1 at room temperature, while De = 2.9 X 10"2 

cm2 s"1 in cyclopentane, and De = 3.4 X 10~3 cm2 s"1 in 
benzene. By systematically varying solvent and tem­
perature for the reaction 

SF6 + e" — SF6" (103) 

it has been possible to verify quantitatively the de­
pendence of the Collins-Kimball equation (11) on the 
diffusion constant.13 One finds an encounter radius of 
R = 13.8 A and a value of k0 = 2 X 1014 MT1 s_1, de­
termined by the thermal de Broglie wavelength of the 
electron. 

In the past decade the transient change in the bi-
molecular rate constant predicted by the Smoluchowski 
in eq 9 has been observed. In fluorescence quenching 
the transient time dependence of kohs leads to the no-
nexponential rate expression81 exp(-at - 2btll2) with a 
= ku + ATtDTlpn and b = Ap^D)1I2R2, where k^1 is the 
unimolecular lifetime and pB is the bulk density of the 
quencher. Nemzek and Ware14 first verified these ex­
pressions for the quenching of 1,2-benzanthracene 
fluorescence by CBr4 in organic solvents. Recent ex­
periments on the quenching of tryptophan fluorescence 
by iodide in aqueous solution15 is also compatible with 
this rate law. Those data yield an encounter radius of 
R = 3.4 A, a relative diffusion constant of 1.1 X 1(T5 cm2 

s"1, and a fluorescence lifetime of &u
_1 = 3 ns. 

There have been a number of attempts to rationalize 
curvature in experimental Stern-Volmer quenching 

oi 1 1 1 1 1 1 
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Figure 1. Stern-Volmer plots of the ratio of the intensity of 
fluorescence, /, at the given molar concentration to its value, I0, 
in the absence of quencher. The circles, squares, triangles, and 
diamonds are experimental points from ref 98 (•) and ref. 97 
(•,A,4). The full lines are calculated in ref. 21 and 41 by using 
eq 104 and eq 106-108. The parameter values used in the cal­
culations are (A = fluorophore, B = quencher) quinine/7' (D A = 
4 X 10"6 cm2 s"\ DB = 1.2 X 10"5 cm2 s"\ R = 5.5 A, T0 = 19 ns); 
perylene/02 (D A = 9 X 10"6 cm2 s"1, DB = 4 X 10"6 cm2 s"\ R = 
3.2 A, T0 = 5.4 ns); 9-vinylanthracene/02 (D A = 7 X 10"6 cm2 s~\ 
DB = 4 X 10""5 cm2 s_l, R = 3.6 A, T0 = 11 ns); tryptophan/02 (DA 
= 7 X 10"6 cm2 a-1, DB = 2.6 X 10~5 cm2 s_1, R = 2.7 A, T0 = 2.7 
ns). The dashed line is the extrapolated curve based on kohs = 
4wD'R for quinine/r reaction. 

plots using the theories described in this review. The 
Stern-Volmer equation94 gives the ratio of the intensity 
of fluorescence in the absence of quencher, I0, to that 
in the presence of quencher, / , at steady state 

I0/I = 1 + T0fe
obsPB (104) 

where T0 is the fluorescence lifetime in the absence of 
quencher. Positive curvature in a plot of I0/1 versus 
pB implies that kohs is an increasing function of density. 
Thus such plots should be able to test the density de­
pendence associated with the bimolecular lifetime effect 
treated in eq 21-25 and eq 67-71. Positive curvature 
can also result from a weak association of the fluoro­
phore and quencher,95 although this can be ruled out21,96 

by checking that 

T0A = I0/I (105) 

where T is the lifetime of the fluorophore in the presence 
of quencher. 

A fairly convincing comparison to experimental 
Stern-Volmer plots has been made21 using the diffu­
sion-controlled limit of eq 64 and 65. These equations 
come from statistical nonequilibrium thermodynamics 
and require a knowledge of diffusion constants for 
quencher and fluorophore, the encounter radius, and 
the lifetime T0. In Figure 1 data for the quenching of 
three organic fluorophores by molecular oxygen and 
quinine by iodide is compared to the equation21'41 

feob8 = ^D'RC[R) (106) 

with21-41 
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C(R) = 
(DR - Dx) (DA + D8) 

(107) 

and 

/T1 = [(DA + DB)/(r0-
1+feob8pB

8s)] 

a"1 = [DAZ(T0-1 + feob8pB
88)] (108) 

Agreement with experiment is rather good for the dif­
fusion constants and encounter radii given in the figure 
legend. For all four reactions the lifetimes T0 are known 
and the diffusion constants have been measured or can 
be estimated.97-100 The encounter radii were chosen21 

to fit the limiting slope of the Stern-Volmer plots and 
are the order of 3-6 A. For oxygen quenching the 
systems are known97 to satisfy the condition (105), so 
that static quenching can be ruled out as the cause of 
the curvature. 

Stern-Volmer plots have also been fitted101 by using 
the expression in eq 25. This result provides the lowest 
order density correction to feobB for a stationary fluoro-
phore and can be derived either from extensions of the 
Smoluchowski theory (cf. eq 21) or from statistical 
thermodynamics (cf. eq 81). The values of R which are 
required to fit the data in this way depend strongly on 
solvent and temperature and in some case are extremely 
large (30-40 A). Equation 25 is not necessarily a good 
approximation at densities where curvature is observed 
experimentally (0.01 M), and this equation is not rec­
ommended for comparing with experiments. Other 
expressions have been introduced to fit experimental 
Stern-Volmer data.102 Although parameters can be 
chosen to obtain agreement with experiment, the jus­
tification for these theoretical expressions seems weak. 

Very few useful experimental measurements on 
two-dimensional systems are available. Hudson and 
co-workers have examined the photodimerization re­
action of excited parinaric acid with its ground state 
form in phospholipid bilayers.103 Although this is a 
rapid reaction, a decrease in viscosity of the bilayer of 
four orders of magnitude induced by lowering the tem­
perature through the bilayer phase transition has almost 
no effect on the reaction rate constant. This insensi-
tivity is due to the unimolecular lifetime effect. Indeed 
the excited state of parinaric acid has a lifetime of only 
5 ns, and so during its lifetime it can move only a few 
tenths of an angstrom even at the temperatures at 
which the bilayer is a fluid. This eliminates the effects 
of diffusion, as described for fluorescence quenching in 
section III.C.4. This qualitative explanation is born out 
by detailed calculations.20 

We are aware only of computer "experiments" with 
which to compare calculations for one-dimensional 
systems.104 Recently51 large-scale Monte Carlo calcu­
lations have been used to obtain the observed rate 
constant for the dimerization reaction A + A —* A. 
According to the statistical nonequilibrium thermody­
namic result in eq 76 the reaction rate should be pro­
portional to PA3 at low densities. This is precisely what 
is observed in the Monte Carlo simulations.51 Although 
the published data do not provide a value for feobs, itself, 
it would be interesting to compare the proportionality 
constant to the value 16DA/9, as predicted for this 
stoichiometry by the statistical theory. It should be 

noted that the mean passage time theory in eq 37 and 
34 also predicts a low density rate proportional to pA

3 

for this reaction, with a proportionality constant of 6DA. 
The advances in the theory of diffusion effects on 

rapid reactions outlined in this review bode well for 
future comparisons with experiment. Deviations from 
the Smoluchowski theory by a factor the order of three 
or more should be easy to document in many situations. 
Particularly interesting are rapid reactions in mem­
branes. Few measurements of rate constants for reac­
tions which occur in membranes have been reported 
even though these are of great interest in cell biology 
and biophysics. Some specific problems for which data 
would be particularly useful include the effect of long-
ranged chemical reactivity on rate constants (e.g., in 
dipolar energy transfer), the effect of the bimolecular 
lifetime and other competing reaction processes, the 
effect of increasing concentration of reactants, the 
combined effect of concentration and ionic forces among 
charged reactants, and the effect of rotational diffusion. 
These problems arise both in solution and membranes 
and systematic experiments would be extremely useful 
in helping to understand the importance of these ef­
fects. 
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