
Chem. Rev. 1987, 87, 1359-1399 1359 

Optical Spectroscopy of Oriented Molecules 

JOHN SCHELLMAN* 

Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 

HANS PETER JENSEN 

Chemistry Department A, Technical University of Denmark, DK-2800 Lyngby, Denmark 

Received June 16, 1986 (Revised Manuscript Received May 4, 1987) 

Contents 
I. Introduction 1359 

I I . Phenomenology: Definition of the Problem 1361 
A. Jones or Field Vectors 1362 
B. Matrix Representations of Optical Systems 1362 
C. Infinitesimal Layers and Infinitesimal 1364 

Transformations, the General Jones Matrix 
D. Stokes Vectors and Mueller Matrices 1366 
E. Modulation Spectroscopy 1368 
F. Symmetry Considerations 1371 
G. Systems Showing Only One Kind of 1371 

Anisotropy 
H. Systems with Mixed Anisotropies 1372 
I. Summary of the Phenomenology 1373 
J. Experimental Measurement 1374 

1. Illustrations with Pure Measurements of 1374 
CD, LD, CB, LB, and LB' 

2. Applications and Artifacts 1376 
I I I . Molecular Interpretation 1378 

A. Applicability of the Lattice Gas Formalism 1378 
1. Absorption 1378 
2. Linear Dichrolsm, Oriented Molecules 1378 
3. Circular Dichroism 1379 
4. Evaluation of the Assumptions 1380 

B. Interpretation of the Formulas 1382 
1. Orientational Averages 1382 
2. Molecular Cylindrical Averaging 1384 
3. Determination of Spectroscopic Matrix 1385 

Elements 
4. Crystals: The Case of D3 Complexes 1386 

IV. Applications and Examples 1389 
A. Biopolymers 1389 

1. Methods of Orientation 1389 
2. Specific Examples 1389 

B. Linear Dichroism of Stretched Films 1390 
C. Single-Crystal Circular Dichroism Spectra 1393 

of Coordination Compounds 
D. Liquid Crystals 1395 

V. Conclusions 1396 

/. Introduction 

This review covers the interpretation of experiments 
in the field of polarization modulation spectroscopy. 
Only transmission spectroscopy will be discussed, so 
such subjects as fluorescence, reflection spectroscopy, 
Rayleigh and Raman scattering, and other types of 
spectroscopy will not be considered. Other recent re­
views in this general area are given in ref 1-8, though 
none of these covers the same ground as the present 
review. 

Over the past 50 years or so the information sought 
in spectroscopic investigations has gradually become 
more sophisticated. At first, spectral bands were 
characterized only by their wavelengths, i.e., by the 
energy differences between the excited and the ground 
states. Later, it was shown that, with the assumption 
of Born-Oppenheimer separability, the integrated ab­
sorption over a vibronic band is directly proportional 
to the square of the electronic transition moment with 
fixed nuclei.9 As a result experimental and theoretical 
results for intensities could be compared to obtain in­
creased information on selection rules, assignments, 
molecular structure, etc. For molecules with high sym­
metry the orientation of electric transition moments in 
the molecular framework can be deduced by symmetry 
arguments. The interest in finding the direction of 
transition moments in molecules of low symmetry led 
to the study of polarized absorption in crystals and 
other oriented systems. Out of this has grown the 
current status of the field in which absorption, circular 
dichroic, and linear dichroic spectra are being obtained 
for a large variety of systems. Applications have de­
veloped simultaneously in the areas of inorganic, or­
ganic, and biological chemistry. 

One could paraphrase this quest for sharpened 
spectroscopic information in the following way. An 
electronic transition is characterized by a series of 
transition matrix elements, one for each relevant 
quantum mechanical operator. The frequency of ab­
sorption establishes the energy matrix element for the 
excited state; the measurement of intensity usually 
provides a value for the square of the electric dipole 
transition matrix element. Polarized absorption spec­
troscopy permits the evaluation of the three compo­
nents of the electric transition moment in the molecular 
framework. Circular dichroism studies, which became 
common 20 years ago, provide information about the 
components of the orbital magnetic moment operator. 
Finally, in the contemporary state of development, 
studies are made on oriented systems using both line­
arly and circularly polarized light. Such studies provide 
the possibility for the measurement of transition matrix 
elements of operators of the form r^g, where r repre­
sents a Cartesian coordinate, p , the linear momentum, 
and a,/3 = x,y,z. As is well-known, magnetic moments 
and quadrupole moments can be generated as linear 
combinations of these operators, so they are included 
in this extended set. The motivation for the experi­
mental determination of these quantities is that all of 
these matrix elements are easily calculated when suit­
able wave functions are available. These matrix ele-
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ments are functions of molecular conformation as well 
as electronic structure, and their experimental deter­
mination can be used either to determine conformation 
or to provide a powerful basis for testing the adequacy 
of our theoretical understanding of the electronic 
structure of molecules. At present the agreement be­
tween experiment and theory for the more subtle matrix 
elements of circular polarization spectroscopy is usually 
qualitative at best. Rather than being discouraging, this 
should be regarded as an incentive for increased ex­
perimentation in this field, since the data obtained 

provide guidelines on the path to a better understand­
ing of the electronic excited states of molecules. 

As is usual, these new measurements have fluorished 
only because of technological developments that have 
made them possible and convenient. A number of years 
ago, H. Cary stated that the accurate measurement of 
small difference spectra requires the comparison of 
signals in space or in time.10 Methods such as half-
shade devices, compensators, and double-beam ar­
rangements separate signals in space so that simulta­
neous comparisons can be made. Newer methods using 
choppers and other modulation devices, coupled with 
ac circuitry, permit the comparison of intensities over 
a short period of time with a single beam. The inven­
tion of such devices as the Faraday modulator or the 
polarization modulator described later in this review, 
coupled with devices such as the lock-in amplifier, has 
opened the path to the determination of all the optical 
constants of an oriented system with great accuracy. 
(We refer the reader to a little-known work of J. Ho-
frichter, who determined the absorption, linear di­
chroism, birefringence, circular dichroism, and optical 
rotatory dispersion of a number of biological molecules 
in a flow instrument.11) Since the incident beam and 
the transmitted beam may both be represented by 
Stokes vectors of four components, the optical behavior 
is determined by a matrix of 16 coefficients, of which 
7 are independent if there is no depolarization by 
scattering or other processes. This is called the Mueller 
matrix. It will be shown later how all of these (with one 
uninteresting exception) may be measured directly with 
simple optical and electronic apparatus involving a 
modulator and two polarizers. 

Techniques are being developed12 that use more than 
one modulator, operating at more than one frequency. 
These are used for the study of circularly and linearly 
polarized scattering, where 10 of the 16 matrix elements 
are independent.13 We also mention here briefly the 
work of Fuller and his associates, who have developed 
techniques and instruments for measuring several of the 
Mueller matrix elements simultaneously.13a,b Their 
methods will be discussed in section ILJ. 

It is reasonably safe to conclude that the problem of 
the measurement of the elements of the Mueller matrix 
of a system have been essentially solved, though arti­
facts which arise from the combination of unavoidable 
anisotropics of the measuring system with the anisot­
ropics under investigation can cause severe dificulties. 
Such problems can be overcome in favorable cases and 
will be discussed later. The principal difficulty lies in 
unscrambling the optical effects contained in the 
measured optical constants (Mueller matrix elements). 
For "pure" cases, i.e., cases that show either linear or 
circular anisotropics, but not both, this does not con­
stitute a problem. But, as will be seen, the relationships 
are very complicated for the general case. Only by 
understanding the interplay of effects at the pheno-
menological level as well as the molecular level can one 
hope to design experiments and interpretive procedures 
that realize the full potential of the method. 

This review is an attempt at describing the pheno-
menological theory necessary for the interpretation of 
modulation spectroscopy for the general case. We also 
discuss the approximate formalism used to relate these 
results to the optical tensors of molecular systems. We 
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have not tried to present a survey of results in the field. 
We have, however, included several examples in the 
section on applications. These examples have been 
selected to indicate the diversity of applications and 
methods of molecular orientation. 

The subject matter that follows is divided into three 
main sections. In section II the transfer function for 
a general optical sample (i.e., a system possessing both 
linear and circular anisotropy) is developed in the Jones 
and Stokes formalism. This leads to a phenomenolog-
ical definition of circular dichroism, linear birefringence, 
etc. for the general case. It is then shown how phase-
modulation techniques permit the measurement of all 
useful Mueller matrix elements (up to 15 out of 16 with 
the apparatus of Figure 2). The main problem is to 
convert knowledge of these matrix elements into in­
formation on the seven basic optical quantities, and this 
is discussed at some length. Section III deals with the 
molecular interpretation of the optical quantities. Since 
this is mainly done by using lattice gas equations, the 
first half of the discussion analyzes the applicability of 
these formulas to real systems, while the second half 
relates the phenomenological parameters to quantum 
mechanical spectroscopic matrix elements that are de­
pendent on orientation, conformation, and electronic 
structure. Section IV presents a number of applications 
in summary form. Work is being vigorously pursued 
at present in the fields of inorganic, organic, and bio­
physical chemistry, and the examples are selected to 
demonstrate the diversity of applications. Finally, since 
sections III and IV describe results and their inter­
pretation, whereas section II deals with problems and 
technicalities, the nonspecialist may wish to defer the 
reading of this section by assuming that the basic set 
of optical properties are experimentally available. The 
sorting out of these experimental properties is, however, 
the fundamental challenge of the field. 

/ / . Phenomenology: Definition of the Problem 

This review will discuss the measurement and in­
terpretation of the polarized spectroscopy of anisotropic 
systems such as crystals or oriented macromolecules or 
films. To avoid unnecessary complications the sample 
will be considered to be confined between two plane 
surfaces perpendicular to a collimated incident light 
beam. Only the properties of the transmitted light will 
be discussed, so the phenomena under consideration are 
absorption and refraction, dichroism, and birefringence. 
Reflections from the surface of the sample or from the 
cell that contains it are also ignored, though in practice 
corrections for reflection must often be made. It is also 
assumed that the scattering of light by the sample is 
sufficiently small that it does not affect the intensity 
or polarization of the transmitted beam appreciably. 
Thus we exclude the effects of differential light scat­
tering, which are at present being intensively investi­
gated in a number of laboratories.14 

The discussion will also be restricted to linear optical 
systems. A system is linear if signals transmitted by 
it are linearly superposable. If input signals f-J,t) and 
f2(t) produce output signals ̂ 1(O and g2(t), respectively, 
then an input signal of C-J1H) + C2Z2M will produce an 
output of Cigi{t) + crffzit), where C1 and C2 are arbitrary 
constants. The importance of this is that we can regard 
a real input signal, which is a very complex function of 

time, as a Fourier superposition of monochromatic 
waves and consider only the response of the system to 
monochromatic light. Thus all the formulas of this 
section will refer to a monochromatic beam of light that 
can be regarded as a Fourier component of a real light 
signal. If it is necessary, the input beam can be Fourier 
analyzed and the output beam synthesized by the 
principle of superposition. This is rarely necessary in 
standard (continuous wave) spectroscopy. In the phe­
nomenological analysis, where use is made of optical 
calculus, we will be dealing with the transfer function15 

for the simple process 

incoming light -*• light passing through sample -* 
emerging light 

which can be represented by the operator equation 

vF = OpV1 (1) 

vF and V1 comprise the set of parameters that describe 
the state of the incoming and final (outgoing) light 
beam, i.e., intensity, polarization, and phase. Op is an 
operator representing the effect produced by the sam­
ple. There are two well-known vector representations 
of light and one matrix representation. Since our 
analysis will concentrate mainly on the vector repre­
sentations, the operator Op has the property of trans­
forming one vector into another and thus can be rep­
resented by a matrix. 

We know from the theory of the propagation of 
electromagnetic waves in anisotropic media that the 
transmission of light within the medium may be re­
garded as the superposed propagation of two waves, 
each with its own polarization, velocity, extinction, and 
direction. In the case of simple transparent crystals like 
calcite, the propagating waves are orthogonal linearly 
polarized waves with different refractive indices. The 
direction of polarization of the eigenrays is determined 
by the symmetry of the crystal and the direction of 
propagation. With crystals that are absorbing and also 
optically active, the two propagating waves are ellip-
tically polarized and in general are not orthogonal. Two 
elliptically polarized light waves are orthogonal when 
the principal axes of their respective ellipses are per­
pendicular, they have opposite sense (right and left 
handed), and they have the same axial ratio. For some 
crystals there is a special direction of propagation for 
which there is only one eigenray.15a 

The observation of transmitted light reveals two ex­
treme cases. In the limit of thick specimens, long op­
tical paths, coupled with strong birefringence, can lead 
to the emergence of two separated beams. In this case 
two operators, one for each beam, are required to de­
scribe the experiment. The polarization states of the 
two beams are the eigenpolarizations of the crystal. 
Their polarization states depend on the direction of the 
incoming beam, but not on its polarization. When the 
beams are separated, the system is acting as a refractive 
polarizer. The operators for the optical system are 
described mathematically as projection operators. The 
other extreme is when the sample is sufficiently thin 
that the emergent beam can be regarded as the coherent 
superposition of the doubly refracted beams. Spec-
troscopists almost invariably work under conditions 
that approach the thin-specimen limit, and the re­
mainder of the discussion will be confined to this case. 
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TABLE I. Jones Vectors for Several Polarizations 

linear / c \ 

right ( + ) or left (-) circular 1/9/' ^ 

right ( +) or left (-) elliptical, long axis vertical 

general elliptical, long axis at angle a to vertical 
Lit) 
R(«)(±i

a
b) R = ( 

c = cos a, s = sin a, a = polarization angle from vertical 

ibla = tan 0,0 = ellipticity 

cos a -sin a 
sin a cos a/ 

We would like to emphasize here an important point. 
The behavior of light in an absorbing, optically active, 
anisotropic medium is extremely complex. The waves 
are a superposition of the two eigenpolarizations with 
different refractive indices and absorption coefficients 
usually going in different directions. The extraordinary 
wave is not even transverse. It is important to bear in 
mind that the operator phenomenology does not at­
tempt to describe the nature of light in the sample. The 
two beams that are compared are the light before it 
enters the sample and the light after it leaves the sam­
ple. Thus the intensity and state of polarization is being 
compared in the same medium, usually air. Of course 
it is the anisotropic medium that produces the changes 
in the light, and the principal interest is to determine 
phenomenological coefficients of the sample and even­
tually formulate a molecular interpretation. 

There are several mathematical ways of representing 
light. The most common are the Jones vector, the 
Stokes vector, and the density matrix. Our analysis will 
be based mainly on the vector representations, but the 
density matrix will arise at times in the theoretical 
discussion. We assume that the reader is familiar with 
the Jones and Stokes representations of light. They are 
described in many sources.1^20 The Jones vectors may 
be thought of as being analogous to any of the Maxwell 
field vectors E, B, H, D, and A. Like the transverse 
components of these vectors, the Jones vector is two-
dimensional and is written in complex form in order to 
introduce phase differences between the components. 
The components of the Stokes vector are intensities. 
The first component is the total intensity, and the other 
three components describe the polarization of the light 
in terms of the extent to which it is linearly polarized 
at 0° and 45° relative to a chosen axis and the degree 
to which it is circularly polarized. For completely po­
larized light, one can transform freely from the Jones 
to the Stokes representation. The two representations 
are limited but in different ways. The Stokes vector 
can describe unpolarized or partially depolarized light 
but contains no phase information. The Jones vector 
is associated with a phase factor and can be used in 
describing interference phenomena, but it cannot be 
used for partially polarized light. With the methods 
discussed in this paper, neither unpolarized light nor 
absolute phase effects will be of importance, so that it 
is possible to base the discussion on either vector rep­
resentation. In practical experiments one is always 
ultimately measuring intensities rather than wave am­
plitudes, and this makes it convenient to express results 
in terms of the Stokes components. On the other hand, 
it is easier to develop fundamental relationships with 
the Jones vectors, partly because of their similarity to 
the field vectors, but mainly because they are two-di­
mensional and satisfy a simple spinor algebra. Conse­
quently formulas will be developed with the Jones 
representation and then will be transformed to the 

Stokes representation for practical applications. Rep­
resentative Jones vectors are shown in Table I. 

A. Jones or Field Vectors 

Jones vectors have the general form 

m = ( m - ) 

and are usually normalized with the condition 

m*«m = Hi1In = Im1I
2 + |m2|

2 = 1 

where a normalized vector indicates unit intensity. The 
above formula indicates two types of notation. The 
form at the left is a vector scalar product, and the as­
terisk means complex conjugation. The next form is 
matrix notation, and the superscript dagger indicates 
the conjugate transpose so that mf is a row matrix. The 
vector for the incoming radiation will always be repre­
sented by a unit vector. After the radiation passes 
through the sample, there are changes in intensity, 
polarization, and phase. The latter is ambiguous since 
phase is a function of time and position and varies 
whether there is a sample or not. We define the change 
in phase relative to the case where there is no sample: 
x' = the phase in the presence of the sample minus the 
phase in the absence of a sample, x' is given by the 
Fresnel formula 

X'= [2v(n-l)Z]/\o (2) 

where n is the refractive index, Z is the path length 
through the sample, and X0 is the vacuum wavelength. 
It is convenient also to represent absorption processes 
by the diminution of the magnitude of the polarization 
vector. Thus for a homogeneous, isotropic medium, we 
represent the outgoing light wave as 

mF = m I e x p [ H x
/ - A e ) / 2 ] (3) 

where Ae is the absorbance in base e. The relative 
intensity of the outgoing beam is given by 

m / m p — e AemI
tmi = e Ae (4) 

since In1 is normalized. The change in absolute phase 
has disappeared from the intensity formula. It is useful 
to define a general phase shift with a real and an im­
aginary part x - (x' - iAe)/2. This is similar to using 
real and imaginary parts of the refractive index and is 
preferable since the retardance and absorbance are 
closer to the actual experimental quantities that are 
measured. For generality we will represent the prop­
erties of an isotropic sample without optical activity by 
the matrix eix<r0, where <r0 is the unit matrix in two 
dimensions. 

B. Matrix Representations of Optical Systems 

We now wish to set up a correspondence between the 
sample under consideration, or any transmitting optical 
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TABLE II. Notations and Definitions 

effect 

mean absorbance 
mean refractive index 
(x - y) linear dichroism 
(x - y) linear birefringence 
45° linear dichroism 
45° linear birefringence 
circular dichroism 
circular birefringence 

1. 

phenomenological 
symbol 

Ae 
n 
LD 
LB 
LD' 
LB' 
CD 
CB 

Basic Retardances and Absorbances 

definition0 

In 10(A1 + Ay)/2 

In 10(A1 - Ay)/2 
[2ir(ra, - ny)l]/\0 

In 10(A46 - A136)/2 
[2x(rc45 - n1S6)/]/X0 

l n l O ( A _ - A + ) / 2 
[2ir(rc_ - n+)l]/\0 

relation to expt 

(In 10) (Cl 
2Tm(IfX0) 
(In 10)Aec(J/2) 
2ir&n(l/\0) 
(In W)Ae'c(l/2) 
2xArc'(VXo) 
(In 10)Ae±c(//2) 
7r(a/90) 

2. Generalized Retardances 
Z / = L B ' - * X D ' 
C = CB - iCD 
L = Lh- iLD 
T = TB- iTD 

Jones19 

2K 

V 
-2p0 

-2go 
-2p46 

-2^45 
25 
-2« 

Hofrichter 
and Schellman47 

2K" 
K' 

250" 
2S0' 
2a"45 
25'45 
20" 
20' 

Go30 

yc 

7&3 
703 
7^i 
TO1 

-7&2 
-702 

3. Mixed Retardances 
T = (L' -C L) 
T-T* = '\Lf + \Cf + \Lf = LB'= + LD'= + CB= + CD= + LB= + LD= 
T-T = T2 = a - ib 
|T=| = TT* = |T]= = (a2 + 6=)1/= 
a = TB2 - TD2 = LB'2 + CB2 + LB2 - LD'2 - CD2 - LD2 

6 = 2TB-TD = 2(LB'-LD' + CB-CD + LB-LD) 
TB = ±V2(|T|2 + a)1'2 

TD = ±72(|T|= - a)1'2 

"A stands for standard absorbance, n for refractive index, I for path length through the medium, c for molar concentration, and X0 f°r the 
vacuum wavelength of light. Subscripts specify the polarization of light as x, y, 45° to the x axis, 135° to the x axis, circular right (+), or left 
(-); a is the rotation in degrees in the polarimeter convention. 

TABLE III. Jones Matrices 

45° linear retardance 
/ cos L' /2 
v - i s inL' /2 

- i sin L72 
cos L'12 ) = ( 

optical activity (%?>% £ $ ) = ( ^ C $ 2 

x,y linear retardance ( - i i /2 
dX/2 ) = (' 

-iLB/2 

'in terms of magnitudes and angles 
LD = LDx cos 2x 
LB = LB9 cos 26 

cos LB72 - i sin L B 7 2 \ / c o s h LD72 
- i ' s inLB72 cos LB72 / V - s i n h L D ' / 2 
sin CB/2 \ / cosh CD/2 i sinh CD/2 \ 

2 cos CB/2 / V-I sinh CD/2 cosh CD/2 ) 
\ /e-LD/2 v 

eihB!2) V eLD/2^ 

LD' = LDx sin 2x 
LB' = LBg sin 2$ 

-sinh LD72^ 
cosh LD'/2 > 

device, and a set of 2 X 2 matrices. Since the input and 
output waves are represented by two-dimensional com­
plex vectors, the relation between them can always be 
represented by the most general matrix transformation 
in two dimensions, i.e., a two-by-two matrix containing 
four independent complex numbers, or eight parameters 
in all. As was established by Jones,20 these eight pa­
rameters correspond to the eight physical measure­
ments one can make on such a system with a given light 
path: mean absorption, mean refraction, optical rota­
tion, circular dichroism, and two parameters each for 
linear birefringence and linear dichroism. The mean 
absorbance and mean refractive index are the means 
of the two eigenvectors, not the isotropic absorbance 
and refractive index. The latter four parameters can 
be defined either in terms of the magnitude of the bi­
refringence and dichroism and the orientation of their 
principal axes or in terms of the linear birefringence and 
dichroism determined with respect to two axes at an 
angle of 45° to one another. The latter is the most 
useful in optical calculus since the parameters come in 
linearly. It is easy to set up a matrix representation of 
the eight physical effects, taken one at a time, and this 
has been done in many places.1'4'12-15-20 We wish to keep 
our theoretical discussion as close as possible to ex­
periment, and for this purpose we have introduced the 
eight quantities Ae, n, CB, CD, LB, LD, LB', LD'. 

These are defined in Table II, which also gives formulas 
for the matrices for the eight physical effects. They are 
standard quantities except that all absorptions and 
dichroisms are in base e and must be divided by In 10 
for the usual absorbances. Also, the circular birefrin­
gence is twice the optical rotation. It is useful to go one 
step further and define a general retardation for each 
of the birefringence-dichroism pairs; thus 

L = LB - iLD 

L ' = LB' - iUy 

C = CB - iCD 

(5) 

Several experimentalists have expressed dissatisfaction 
with this set of definitions since they do not represent 
the actual measured quantities, which are usually dif­
ferences in absorbance, refractive indices, or optical 
rotation. A glance ahead to Table VI or eq 62 certainly 
convinces one of their appropriateness to the Mueller 
calculus. It seems to us to be worthwhile to present this 
complicated theory in a harmonious form with variables 
all of the same dimensionality. Conversion to the 
various experimental quantities is then easily done via 
the formulas of Table II. 

All the quantities in eq 5 have the units of radians, 
and the real and imaginary parts of each of the general 
retardances are Kronig-Kramers transforms of one 
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another.8 As can be seen in Table III, defining general 
retardances as sums of their dispersive and absorptive 
parts is equivalent to setting up operators that are 
products of the dispersive and absorptive operators. 
Note also that the pairs of operators on each line of eq 
5 commute with one another, but do not commute with 
the operators on the other lines. 

When the symmetry of the sample is high enough 
(uniaxial crystals, flow- or field-oriented molecules, 
monoclinic crystals in certain orientations, etc.), the 
principal axes for linear retardation and for linear di-
chroism are symmetry determined and coincide, and it 
is possible to choose a coordinate system such that the 
linear birefringence and dichroism can be represented 
by a single matrix, usually the L matrix of Table III. 
In this case the X axis is identified with the slow or fast 
axis of the sample. In the general case, suppose that 
the linear dichroism has a maximum value of LDx (or 
a minimum value, i.e., change of sign) at an angle of x 
and a maximum value of LBe at an angle 6. Then the 
standard parameters of L and L ' are related to LDx, 
LB,,, x, and 9 by the formulas 

LD = LDx cos 2X LD' = LDx sin 2X 

LB = LB9 cos 20 LB' = LB„ sin 20 

There is a one-to-one correspondence between the 
mathematical properties of the matrices of Table III 
and the physical measurements that can be made. The 
fact that the components of C, L, and L ' commute with 
their partners indicates that the measurements also 
commute. A system that has optical rotation and cir­
cular dichroism may be simulated by passing light 
through a circularly dichroic sample and then an op­
tically active one, by reversing this order, or by mixing 
the effects in one sample. The net result is that CD 
measurements are not affected by CB and vice versa. 
Also, LD measurements are not distorted by the pres­
ence of LB, but they are affected by LB'! As long as 
the matrix algebra is applied to simple systems, i.e., 
materials or devices that do not produce simultaneous, 
noncommuting effects, the calculation of polarization 
properties is quite straightforward and well established. 
The theory of instruments that measure circular bire­
fringence and dichroism and linear birefringence and 
dichroism is easily described in a simple and effective 
manner using matrix methods. 

Conversely, if a system requires more than one of the 
matrices C, L, or L', the purity of the measurement is 
destroyed and the analysis of the optical effects can be 
rather complicated. For example, certain combinations 
of linear birefringence and dichroism in a sample will 
appear as CD signals in a CD spectrometer. In fact any 
two of the three optical effects of eq 5 can combine to 
simulate signals for the third. Our principal concern 
for the rest of this section will be the problem of han­
dling mixed, or noncommuting, optical properties the­
oretically and the way in which this mixing affects the 
measurements of polarization spectroscopy. 

C. Infinitesimal Layers and Infinitesimal 
Transformations, the General Jones Matrix 

One of the most cogent ways of conceiving of the 
optical properties of a system is as the cumulation of 
the effects of progressive infinitesimal layers. The 
Beer-Lambert law is derived in this way, and the de-

TABLE IV. Infinitesimal Jones Matrices 

absorption / 1 - I'X 0 \ 
refraction ^O l - i ' x ' ° X ° 

L' (_}L.I2 -f'12) = .„-(«L'/2)„ 

C (-C/2 P ) = "° + (iCI2)"i 
T / l - i X / 2 0 \ _ ... I0, 

ff»=V0 l ) * ' = ( l o ) ' 1 = ' i 0/ ^ = V 1 - i ) 

rivation may be extended to linear and circular di­
chroism. Alternatively, one may formulate the trans­
mission properties of an optical sample in the manner 
of Fresnel as the coherent superposition of incident and 
scattered radiation. In this way absorbance, refraction, 
optical rotation, etc. may be conceived of as the su­
perposition or interference of secondary waves scattered 
from layers of the sample with the primary or incident 
wave. Absorptive properties arise from destructive in­
terference. These methods, especially in the form of 
a generalization by Ewald and Oseen have been applied 
to refracting and absorbing systems21,22 and to optically 
active ones.23,24 To the authors' knowledge no one has 
succeeded in developing formulas in this rigorous way 
for mixed optical properties. Fortunately we are only 
interested in obtaining phenomenological formulas for 
restricted systems of the kind described above, and we 
thus avoid the formidable problem of the physical de­
scription of the transmission of light in optically active, 
anisotropic, absorbing media. 

As shown by Jones many years ago, it is very useful 
to conceive of the effect of an optical sample as the 
cumulation of the operators for infinitesimal layers. In 
the work below we will be comparing the optical be­
havior of a sample of thickness Z with that of a sample 
of thickness Z + dZ and we thus inquire about the 
added effect of the infinitesimal layer of thickness AZ. 
This layer may contain all eight of the properties dis­
cussed above. When the thickness and therefore the 
optical effects become infinitesimal, the four basic 
matrices take the form shown in Table IV. This result 
is obtained by expanding the trigonometric functions 
and discarding quadratic and higher terms. We note 
that there is a one-to-one correspondence between the 
four infinitesimal matrices and the Pauli matrices, in­
cluding the identity a0. Each of the four infinitesimal 
matrices is equal to the identity plus an infinitesimal 
transformation. These transformations constitute a Lie 
group of the kind that has important implications in 
quantum mechanics.25,26 To the first order in infini­
tesimals the four optical matrices commute with one 
another. An infinitesimal sample with all four of the 
basic optical properties may be represented as the 
product of the four infinitesimal matrices, in any order, 
which we evaluate as 

((T0 - ix<ro)(ao ~ i(l'/2)<n)((To+ i(C/2)«r2) X 
(<j0 - i(L/2)<r3) s <r0 - i[Xff0 + (L'/2)cl - (C/2)a2 + 

[L/2)a3] + ... s <x0 - iR (6) 

where R is the retardance matrix for the infinitesimal 
layer 
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It should be noted from Table II that the four quan­
tities x» C, L, and L' contain the thickness of the 
specimen via the Fresnel or Lambert formulas. To 
simplify the analysis, the thickness of an infinitesimal 
layer will be written as AZ = Z/N, where N is the 
number of layers, and the length factor will be removed 
from R by defining 

J? = R\Z/N) (8) 

where R' is now a finite matrix with components de­
fined per unit length. With (<r0 - iR'Z/N) as the op­
erator for one of the infinitesimal layers, the operator 
for the N layers of the sample is given by51 

J = lim (<T0 - iR'(Z/N))N = e~iR'z = e^ (9) 

In the last step Z has been reincorporated into R to 
form a finite matrix based on the real thickness of the 
sample. This is done so that the elements of R corre­
spond with the absorbances and retardances measured 
experimentally. 

It should be clear from the foregoing that the Jones 
calculus in polarization space is very closely related to 
the algebra of spin V2 particles. We will now make use 
of this analogy. The required spin formulas will be 
found in most intermediate texts on quantum me­
chanics. The book of Merzbacher is especially appro­
priate for our application.27 The matrix for a rotation 
of a spin system by an angle 8 about an axis defined by 
unit vector n is given by 

U = exp[-i(0/2)n-<7] (10) 

where <r is the "vector" whose components are the three 
Pauli matrices <r1; <T2, and a3. If we define a generalized 
retardance vector T = (L', -C, L) (see Table II) and 
normalize it by dividing by 

T= (L'2+ C2 + L2)1'2 (11) 

then, using eq 7, we can express R as 1UbC0O + T-o) and 
the general Jones matrix can be written as 

J = expB'fl] = e-''*/2 e x p B V R / 2 ] = 
e"''*/2 expB(T/2)(T/T)-<r] (12) 

The notation T-«r to represent the last three terms of 
eq 6, or the anisotropic part of R, will be used in the 
subsequent analysis. Here T/ T is a normalized com­
plex vector that plays the role of the unit vector n, and 
T, a complex number, plays the role of 8. Jones ob­
tained his general matrix for the combination of all 
linear transmission effects by recognizing that J and 
R of eq 7 have the same eigenvectors, transforming to 
the principal axes of R, expanding the exponential 
operator in the principal axis basis, and then trans­
forming back to the original basis. The result is given 
in eq 13 below. We obtain this result in one step using 
the spin equation28 

exp[i(0/2)n-(r] = <r0 cos (6/2) - in-a sin (6/2) 

which translates as 
J = g-«x/2){ff0 c o s (T /2) - (i/T)(T><r) sin (T/2)} (13) 

This equation is fundamental to the treatment of 
noncommuting optical effects. 

We are trying to develop a notation with as much 
physical content as possible. The quantity T intro­
duced above (T stands for total since it depends on all 

six retardance effects) is a complex number, which must 
be distinguished from the absolute magnitude (T*-T)1/2. 
It may be shown, as was first done by Jones, that the 
eigenvalues of the general optical sample are given as 
exp[-i(x/2) ± i(T/2)]. Thus the quantity that describes 
the real birefringence and dichroism of the sample, i.e., 
the difference in phase shift and absorbance of the 
ordinary and extraordinary rays, is T. T may be written 
as the sum of real and imaginary parts 

T = TB - JTD (14) 

In the general case TB and TD are the physical bire­
fringence and dichroism of the doubly refracted waves 
which are normally elliptical. On the other hand, LD, 
CB, etc. are constructs that are useful, but artificial, 
since in the general case the birefringence and di­
chroism are neither linear nor circular. 

TB and TD may be expressed in terms of the six 
standard linear and circular anisotropics. We write 

T-T = a - ib = T2 = TB2 - TD2 - 2JTD-TB (15) 

Using de Moivre's theorem to take the square root of 
T2 = a - ib, we have 

TB = (a2 + b2)V4 cos (6/2) 

TD = (a2 + h2)V4 S i n «?/2) (16) 

where a = LB2 + LB'2 + CB2 - LD2 - LD'2 - CD2 and 
b = 2(LB-LD + LB'-LD' + CB-CD). 8 is the angle that 
satisfies 

cos 8 = a(a2 + b2)'1'2 

sin 8 = b(a2 + ft2)"1/2 (17) 

There are of course two roots of T2, only one of which 
is given by eq 16. The other root involves the angle (6 
+ 2TT)/2 = (8/2) + IT. This generates the same roots as 
eq 16 but with the signs of both TB and TD reversed. 
Since TB and TD are defined as the difference in the 
real (refractive) and imaginary (absorptive) parts of the 
retardation, changing the sign of both merely reverses 
the roles of the two eigenpolarizations in defining TB 
and TD. The second root introduces nothing new in 
a physical sense, since the signs of all birefringences and 
dichroisms are a matter of arbitrary definition. Only 
the relative sign of TB and TD have physical signifi­
cance, and these may be obtained from eq 16. 

TB and TD are often obtained algebraically as 

/ (a2 + 62)l/2 + a V/2 

TB = ±( 2 j 
/ (a2 + 62)V2 - a V

/ 2 

TD = ±1 I (18) 

but sign information is lost so care is required. If a 
system is simple, i.e., only one of the three quantities 
L', C, or L is operative, then TB and TD reduce to the 
ordinary birefringence and dichroism. If a material is 
not absorbing, then TB = (LB2 + CB2)1^ a formula 
which is well-known in crystal optics. This notation 
differs slightly from that of a previous publication by 
the authors.29 For convenience in translation, we have 
also indicated in Table II the symbols utilized by Go30 

for the six physical quantities required to specify the 
vector T. 
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We recall now the commutative properties of the 
Pauli spin matrices 

aj-ak = iai = -ok-Oj (19) 

where j , k, and I are 1, 2, and 3 cyclically permuted. We 
have seen that the retardances L', C, and L are corre­
lated with the matrices O1, a2, and o3. From this and 
eq 19 it may be anticipated that an optical system will 
generate artifactual signals according to the following: 

L'+ C = L artifact 

C + L = L'artifact 

L + U = C artifact 

Since circular birefringence and circular dichroism tend 
to be orders of magnitude smaller than linear effects, 
the last of these relations is particularly troublesome 
for the measurement of CD and optical rotation in an­
isotropic media. These artifacts show up in the detailed 
formulas for the general sample.4,11,20 

D. Stokes Vectors and Mueller Matrices 

In the absence of depolarizing effects, the formulas 
that have been obtained in the previous section can be 
used to analyze the properties of any optical systems, 
but it is preferable to switch to an intensity repre­
sentation. Practically all modern optical instruments 
use some device such as a photomultiplier tube that 
transduces light intensity into an electrical signal. 
Consequently a representation such as the Stokes vector 
is more directly connected with experiment. We rep­
resent the Stokes vector as s0, S1^s2, S3, where the com­
ponents are the Stokes parameters. The order of the 
parameters is total intensity, 45° linear polarization, 
circular polarization, x or y axis linear polarization). We 
use this notation with some trepidation. The Stokes 
parameters have been represented in a variety of orders 
and with a wide variety of symbols.4,5,7,8,13-19,22,30-42 The 
actual symbols used (e.g., P0 , P1 , P2, P3,1, M, C, S; I, 
Q, U, V) are not particularly important but changes in 
order can be quite confusing, especially in comparing 
elements of the 4 X 4 Mueller matrix. The Perrin order 
(s0, S3, S1, S2 in our notation) appears to be the most 
common, though ref 8, 30, 36, and 38 use the ordering 
which we propose. Our notation and numbering bring 
out the direct correlation between the Stokes parame­
ters and the corresponding spin matrices. We do not 
do this because of a desire for formal elegance. One can 
literally "see" total intensity, 45° polarization, circular 
polarization, and 0° polarization by looking at the forms 
of the four spin matrices in the order 0-3. Other no­
tations have no physical context. The parameters are 
defined in the usual way. S0 is the total intensity, S1 

(with S2 = S3 = 0) indicates the presence of light po­
larized linearly at 45°, s3 (with S1 = S2 = 0) indicates the 
presence of light polarized linearly at 0°, and s2 (with 
S1 = S3 = 0) indicates the presence of circularly polarized 
light. If s2 = 0, there is linear polarization at azimuth 
tan (2a) = S1Zs3. In general the light may be construed 
as a combination of unpolarized and elliptically polar­
ized light, with only the latter contributing to S1, S2, and 
S3. The azimuth of the principal axis of the ellipse, a, 
is given by tan (2a) = S1Js3, and the ellipticity, /3, by tan 
(2/?) = S2(S1

2 + s3
2)-V2. 

Textbooks on optics outline the ways that the Stokes 
parameters can be measured directly by using perfect 

polarizers and quarter-wave plates. The way in which 
they can be measured with phase-modulation spec­
troscopy comes from the following analysis. For com­
pletely polarized light the Stokes parameters may be 
calculated from the Jones vector with the formula 
(Chapter 4 of ref 17) 

S1 = m V1-Hi (20) 

where m is the corresponding Jones vector. We obtain 

s0 = W1
2 + m2 

S1 = Tn^m2 + TH1Tn2* = 2 Re (Tn^m2) 

S2 = -Hm^m2 - TTi1Tn2*) = 2 Im (Tn^m2) 

S3 = Tn1 - m2
2 (21) 

The matrix operator that represents an optical in­
strument or experimental sample is a 4 X 4 Mueller 
matrix. In a previous publication4 we showed that the 
Mueller matrix could be generated from the Jones 
matrix by the formation of a direct product followed 
by a transformation. We will here develop the con­
nection in another way, which will be shown later to 
correspond very closely with the type of experiment 
done in modulation spectroscopy. Suppose that the 
Jones description of an experiment is given as 

nip = Jm 1 (22) 

Then according to (21) the Stokes vector components 
of the emerging light are given by 

(Sp)1- = mpV.-mp = Xa1HtT(T1J)Ia1 (23) 

The operator JV1-J in this formula is a 2 X 2 matrix and 
thus can be written in the form of a linear combination 
of the Pauli matrices including the identity 

3 

JV; J = LM1J(Tj (24) 

j'-o 

Substituting this result into eq 23 gives 
3 3 

(sp),- = EAfy(mIV,-mi) = HM^s^j (25) 
/ - 0 J=O 

but this is just the ith row of the matrix transformation 
from the incoming Stokes vector S1 to the outgoing 
Stokes vector sF. The My are therefore the elements 
of the transformation matrix in Stokes space, the 
Mueller matrix,16,19 and we write 

Sp = Ms1 (26) 

The rule then is simple. To find the My element of M, 
form the product J^otJ, and then express the result in 
the form of a sum of Pauli matrices. The coefficient 
of Oj in the expansion is the desired element, My. 

As a simple example we evaluate the second row (M{k, 
k = 0,3) for a material showing only optical activity. 
Then 

' = ( - ! ' ) ^ = C "c) 

^^>-(.c-c)(; JX-: v= 
/ - s i n 20 cos 20\ „_ . „„ 
( cos 20 sin 20 ) =cos2S <r, - sm 20 *3 

where s = sin 6 and c = cos 6. Thus the elements of the 
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TABLE V. First Row of Mueller Matrix and Some 
Definitions 

M00 = e-\[X + (W/2)(T-T*)] 
M01 = e-A,[U-LD' - V-LB' + W-(LB-CD - CB-LD')] 
M02 = e-\[U-CD + V-CB + W-(LB-LD' - LB'-LD)] 
M03 = e-A<[-U-LD - V-LB + W-(CB-LD' - LB'-CD)] 
U = (TD sinh TD + TB sin TB) /TT* 
V = (TB sinh TD - TD sin TB) /TT* 
W = (cosh TD - cos TB) /TT* 
X = (cosh TD + cos TB)/2 

row are 0, cos 28,0, and -sin 20. Similar manipulations 
with the other rows yield the entire matrix as 

M = 

1 0 0 0 
0 cos 26 0 -sin 20 
0 0 1 0 
0 sin 29 0 cos 20 

a result which is well-known. 
We now wish to apply this formula to the general case 

where «7 is given by eq 13. The first row of the general 
Mueller matrix is developed by decomposing the op­
erator 

JtT0J = e~A°[ff0 cos T* + i(T*-o-)(sin T*)/T*] X 

[o-0 cos T - i(T-<r)(sin T)/T] =e"M|cos T|V0 + 

[ cos T sin T*mj, cos T* sin T m 1 - T -a - T-a j + 

(TM(T.<r)|^p-| } (27) 

Note that a is self-adjoint. Before dealing with this 
complicated expression, it will be useful to consider the 
significance of its terms. e~A° represents the mean 
transmission of the two eigenpolarizations. The first 
term in the brackets is a a0 term and contributes to M00, 
which is the main transmission term. M00 is the ratio 
of total intensity out to total intensity in. This term 
keeps track of the fact that the two eigenpolarizations 
have different absorption coefficients and are attenu­
ated at different rates as they pass through the sample. 
Another contribution to M00 arises later. The middle 
term in brackets is linear in the spin matrices and in 
the optical quantities L', C, and L. These might be 
called the direct contributions of the optical properties. 
For example, L and L* are coefficients of the o-3 term. 
This will bring LD effects into M03. Similarly LD' ap­
pears in M0I and CD in M02. 

The last term contains products of spin matrices and 
products of optical parameters. Because of the prop­
erties of spin matrices, products of identical terms (say, 
(LV3)(La3)) yield a0 terms and contribute to the first 
column of M. Products of two different kinds (say, 
(LV1)(L(T3)) yield spin matrices of the third kind and 
thus lead to artifactual response as discussed earlier. 
The algebra of these product effects is given by the spin 
formula 

(o-.T*)(o-.T) = (T*-T)o-0 + i<T-(T* X T) (28) 

The job of substituting (28) into (27), converting the 
formula to real form, and combining terms is rather 
tedious and will not be repeated here. The results, 
obtained by different methods, have already been 
published.4,8 Instead we state directly the results for 
the first row of M in Table V. 

This table should be studied carefully. The elements 
of the Mueller matrix for the general sample are com-

4 6 

LB (radians) 

I 0--

0.4-

0 2 4 0 6 

LB(radians) 

Figure 1. Values of the functions U, V, and W as a function of 
TB with TD set at 0.2. U1 V, and W are defined in Table V. TB 
is the real part of the retardance of the medium, which reduces 
to LB or CB in simple cases. TD is the imaginary, or absorptive, 
part of the retardance, which reduces to LD or CD in simple cases. 
Formulas for TB and TD for the general case are given in eq 18 
and Table II. The dominant contribution to TB is usually or­
dinary linear birefringence, so the plots are essentially an in­
vestigation of the effect of birefringence on the Mueller matrix 
elements. A and B are for large and small retardances, respec­
tively. 

plicated and can be grouped in a number of ways. The 
grouping of Table V in which the functions U, V, W, 
and X appear as factors has special advantages in the 
limit of small anisotropics and in the approach to this 
limit, where a small anisotropy is defined by \T\ « 1. 
This mode of factoring was introduced by Disch and 
Sverdlik,43 though our analysis and notation differ from 
theirs. These functions are dependent only on TD and 
TB, i.e., on the scalar magnitude of the physical bire­
fringence and dichroism. In order to depict these 
functions we assume a value for TD of 0.2. This upper 
limit estimate is arrived at as follows. Since adequate 
light must penetrate the sample for spectra to be taken, 
A„ will not normally exceed 2-3. Typical maximal 
values of AA/A might be about 0.15, though larger 
values can be obtained with simple crystals where all 
chromophores can be identically oriented. We thus take 
0.2 to be a typical upper limit for TD. Note the factor 
of 2 in the definition of LD in Table II. With this 
assumption U, V, and W can be plotted as functions 
of TB, which can be quite large. (X occurs only on the 
diagonal and is not important in polarization modula­
tion spectroscopy.) The curves are shown in Figure 1. 
U approaches unity as TB and TD - • 0. The U term 
represents the pure measurement of a dichroism or 
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TABLE VI. General Mueller Matrix0 

0 

1 

2 

3 

0 

X 
+ W/2-(T-T*) 

-U-LD' 
-V-LB' 
-W-(LB-CD - CB-LD) 

(/•CD 
+ V-CB 
-W-(LB-LD' - LB'-LD) 

-U-LD 
-V-LB 
-W-(CB-LD' - LB'-CD) 

0 The entire table is to be multiplied by « 

1 

-(/-LD' 
-V-LB' 
+ W-(LB-CD-CB-LD) 

X 
+ W-(LB'2 + LD'2) 
-W/2-(T-T*) 

U-LB 
-V-LD 
-W-(CB-LB' + CD-LD') 

(/-CB 
-V-CD 
+ W-(LB-LB' + LD-LD') 

>~Ae, where Ae is the mean i 

2 

U-CD 
+ V-CB 
+ W-(LB-LD'-LB'-LD) 

-U-LB 
+ V-LD 
-W-(CB-LB' + CD-LD') 

X 
+ W-(CD2 + CB2) 
-W/2-(T-T*) 

U-LB' 
-V-LD' 
-W-(CB-LB + CD-LD) 

3 

-U-LD 
-V-LB 
+ W-(CB-LD' - LB'-CD) 

-U-CB 
+V-CD 
+W-(LB-LB' + LD-LD') 

-U-LB' 
+ V-LD' 
-W-(CB-LB + CD-LD) 

X 
+ W-(LB2 + LD2) 
-W/2-(T-T*) 

absorbance of the two eigen polarizations. 

birefringence. We can define an artifact-free mea­
surement on the general sample as one in which U = 
1 and all other factors vanish. V approaches 0 for small 
TB (thin samples). W approaches 0.5, but one can see 
by inspection that W in the table is always multiplied 
by a factor which is less than the denominator of W. 
Thus the size of the W term cannot be greater than that 
of its numerator. This equals cosh (TD) - cos (TB) and 
approaches zero quadratically for small TB and TD. 
The oscillatory behavior of U generates channeled 
spectra, i.e., cyclic variations in retardance as the bi­
refringence is changed, usually as a function of wave­
length. As is well-known these oscillations are sinu­
soidal for a purely linearly birefringent sample. What 
we are talking about here, however, are the oscillations 
that would occur in an attempted measurement of CD 
or LD as a function of TB, which in turn depends on 
sample thickness. 

Figure IB shows the values of the functions at lower 
ranges of TB. These curves suggest that a method of 
evaluating a pure optical effect in a system with mixed 
anisotropics is to make measurements as a function 
of sample thickness and extrapolate back to a thick­
ness of zero. At any rate measurements of linear bi­
refringence (the dominant factor in TB) should always 
be made on a system so that the order of magnitude 
of W and V can be estimated and a judgment made 
on the magnitude of the artifacts they produce. The 
result is that when TB is less than 0.3 or so, the off-
diagonal terms of M are dominated by the U terms. 
This is the limit discussed by Go30 and by Troxell and 
Scheraga,38 where all six anisotropic parameters are 
segregated in the M matrix. These are the most fa­
vorable circumstances for measurement. For large TB, 
on the other hand, one observes channeled spectra when 
TB is varied. This is shown in Figure IB. The varia­
tions in TB could arise, for example, from the dispersion 
of the retardance with wavelength. Twelve radians of 
retardance is in fact the appropriate value for a 0.1-
mm-thick piece of quartz cut parallel to its optic axis, 
using visible light. 

To develop the remainder of the M matrix we must 
expand the following expressions as linear combinations 
of Pauli matrices and identify the M^ as indicated 
above. 

second row J^axJ 

third row J^a2J 

fourth row tPa^J 

This is done with J from eq 13 by using the product 
rule for Pauli matrices, eq 19, together with eq 28, and 
combining terms. The final matrix, utilizing the U, V, 
W, and X notation, is given as Table VI. The main 
task of modulation spectroscopy is to measure the ele­
ments of the matrix, M , at least the three or four ele­
ments that are dominated by interesting optical effects. 

E. Modulation Spectroscopy 

The modern use of modulation techniques in polar­
ization spectroscopy followed the original papers of 
Grosjean and Legrand.43a A review of the instrumen­
tation and applications has been presented by Hipps 
and Crosby43b and by Drake.430 The basic polarization 
modulator consists of a polarizer, which we shall con­
sider to provide pure x-axis polarization of the light, 
followed by a time-varying retarder with its axis set at 
45° to the x axis. The Stokes vector for the light that 
emerges from a polarization modulator is found by 
simply applying the matrix of a 45° retarder to the 
Stokes vector for x-polarized light of unit intensity. The 
result is 

S1 = (1, 0, sin 2§, cos 2§) (29) 

where § is the retardance (see, for example, ref 4). In 
a modulation experiment § is a function of time. With 
certain electrooptical devices it can assume a variety of 
forms (square waves, sawtooth waves, etc.), but in the 
photoelastic modulator,44 which will be the focus of this 
discussion, § is a sinusoidal function of time 

§ = («0/2) sin ft (30) 

where / is 2 T times the modulation frequency and S0 is 
the amplitude of the modulation, which can be adjusted 
by controlling the voltage of the circuit that drives the 
modulator. We note that the Stokes components sin 
(S0 sin ft) and cos (S0 sin ft) contain not only the fun­
damental frequency but its harmonics. 

There are three basic arrangements for a polarization 
experiment, which are illustrated in Figure 2. The 
modulated light, represented by eq 29, is passed 
through the sample, and the output signal is then 
measured, either directly or after passage through an 
analyzing polarizer set at 45° or 90° to the initial po­
larizer. Another arrangement, more of theoretical than 
practical interest, uses a circular polarizer as analyzer. 
We shall now show how these arrangements permit the 
mapping of the Mueller matrix for the sample. The 
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TABLE VII. Polarizers 

Chemical Reviews, 1987, Vol. 87, No. 6 1369 

linear 0° 

linear 45° 

linear, arbitrary angle 

right circular 

' / a 

1 0 0 1 
0 0 0 0 
0 0 0 0 
1 0 0 1 
1 1 0 0 
1 1 0 0 
0 0 0 0 
0 0 0 0 

1 sin 2a 0 cos 2a 
sin 2a sin2 2a 0 sin 2a cos 2a 
0 0 0 0 
cos 2a sin 2a cos 2a 0 cos2 2a 

1 0 1 0 
0 0 0 0 
1 0 1 0 
0 0 0 0 

(o o) = 1^"0 + "^ 

(\ \) ='/,(«'.+ »,) 

/ cos a sin a cos a \ _ 
V sin a cos a sin2 a / 

1It(C0 + sin 2a (T1 + cos 2a a3) 

1 - j 
( , 1 ' ) = ' /2(a„ + <72) 

input to the sample is given by eq 29, so that its output 
is given by the Stokes vector 

SF = Mai •• 

M00 +SM02 + cM0 
M10 + sMl2 + CM1 
M20 + sM22 + cM2 
M30 + sM,2 + cM, 

(31) 

where Mis the Mueller matrix of the sample, and s and 
c are sin 2§ and cos 2§, respectively. 

The first experimental arrangement of Figure 2 de­
tects only the intensity, and therefore is a way of 
measuring the zeroth element of the vector in eq 31. 
This is tantamount to exploring the first row of the 
sample matrix. Detection of the individual terms of the 
intensity component, which is equivalent to detecting 
the zeroth, second, and third columns, is effected by 
Fourier analysis. The photomultiplier signal that is 
developed is proportional to 

M00 + sin (5/2 sin ft)M02 + cos (6/2 cos /J)Af03 (32) 

which is a sum of the first row responses. By use of the 
standard expansions45 

sin 2§ = sin (S0 sin ft) = 
2J1(S0) sin ft + 2J3(S0) sin 3ft + ... 

cos 2§ = J0(S0) + 2J2(S0) cos 2ft + J4(S0) cos 4ft + ... 
(33) 

the total signal can be resolved as a dc component, ac 
components at / and 2f, and higher harmonics. The 
intensities of the dc, /, and 2/ components, as detected 
by dc amplification and lock-in amplifiers, is given by 

7dc = M00 + J0(S0)M03 

If = (4/Tr)J1(S0)M02 

I2, = (4/Tr)J2(S0)M03 

(34) 

The Jk(S0) are known in principle but in practice are 
established as part of an instrument proportionality 
constant that is determined experimentally. Harmonic 
analysis thus permits the determination of the first row 
of the sample matrix except for M01. This can be de­
termined by rotating the sample or modulator by 45°. 
As will be discussed below, the rotation of a sample by 
45° effectively converts L effects into L'effects and vice 
versa and interconverts M01 and M03. 

The second experimental arrangement of Figure 2 
permits the measurement of the second row of the 

Frequency 

"1 

Linear Dichroism 

90° 45V/ 

2f 

2 Linear Birefringence 

90° « 7 

Circular Birefringence 

2f 

Linear Birefringence 

90° «'// 
0 

Figure 2. Three arrangements for polarization spectroscopy (see 
Experimental Measurements (J). From left to right, the optical 
elements are the polarizer, modulator, sample, optional analyzer, 
and photomultiplier. Figure adapted from ref 11. 

sample matrix. The matrices for 45°, circular, and 90° 
polarizers are given in Table VII. It is easy to see from 
the simple structure of the 45° matrix that its output 
intensity, s, is the sum of the first two Stokes compo­
nents of its input, divided by 2. Consequently the 
output of the entire arrangement is given by half the 
sum of the S0 and S1 elements of eq 31. Harmonic 
analysis of the resulting signal again takes the form of 
eq 34, but now contains the sum of the first- and sec­
ond-row elements of the sample matrix (eq 35). 

/d c = (M00 + M10) + J0(S0)(M03 + M13) 

If = (4/7T)J1(S0)(M02 + M12) (35) 

hf = (4/Tr)J2(S0)(M03 + M13) 

Since M00, M01, and M02 are determined by the first 
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Figure 3. Measurement of Mueller matrix elements. (A) 
Schematic presentation of the elements of the Mueller matrix 
that can be measured by the arrangements of Figure 2. Elements 
marked 1, 2, and 3 are detectable by the corresponding ar­
rangements of that figure. Elements marked V, 2', and 3' are 
detectable if the direction of the light path is reversed. (B) Effect 
of a rotation of the sample by 45° on the elements of the Mueller 
matrix. Black dots connected by tie lines indicate interconversion 
of matrix elements by the 45° rotation. Open circles indicate 
invariant matrix elements. 

measurement, M10, M20, and M30 may be determined by 
difference. 

It should be clear from this analysis and the form of 
the matrices for polarizers in Table VII that the use of 
a 0° (or 90°) polarizer (arrangement 3 of Figure 2) will 
give photomultiplier signals which are sums of terms 
coming from the zeroth and third rows of the matrix 
and that circular polarizers detect signals which are 
sums of the zeroth and second rows of the matrix. 

one 
-—period—-
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Detection with circular polarizers has not been included 
among the practical arrangements for modulation 
spectroscopy because they are not achromatic (see also 
the complications discussed in ref 42). Consequently 
circular polarizers are suitable for studies at a single 
wavelength, or a narrow region of wavelengths, but not 
for general spectroscopic investigations. The third ar­
rangement of Figure 2 is not commonly used and may 
in fact lead to practical difficulties. As discussed in the 
legend of Figure 4, this arrangement passes a strong 2/ 
signal in the absence of a sample, so that imperfections 
in the optics or electronics could lead to spurious effects. 

A scan of the matrix elements detected by the three 
types of experiment is shown in Figure 3. 

It is also possible to reverse the order of the optical 
elements in Figure 2, i.e., to interchange the positions 
of the light source and photomultiplier in the figure so 
that unpolarized light first passes through the detection 
polarizer (if there is one), then through the sample, and 
finally the modulator. Using the same methods as 
above, it is not difficult to show that the three exper­
imental arrangements, used in reverse, develop the 
zeroth, second, and third columns of the sample matrix 
and that the rows can be distinguished by harmonic 
analysis. Thus if we perform all six experiments, all the 
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CB 
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Figure 4. Response of a polarization spectrophotometer to five isolated optical effects: CD, LB, LD, CB, and LB'. The polarization 
figures in the boxes refer to the successive states of polarization as the retardation is varied through its cycle. In the upper part of 
the diagram, where the modulation spans quarter-wave retardation only, the symbols a, b, c, d, and e refer to retardations of 0, x/2, 
0, -ir/2, and 0, respectively. The intervening elliptical polarizations are not indicated in the drawing. In the middle section, where 
the modulation is half-wave, A, B, C, D, and E represent retardations of 0, x, 0, -*•, and 0, respectively, with intervening circular and 
elliptical polarizations left out. The CD and LD signals are easy to understand. A circularly dichroic material absorbs right and left 
circularly polarized light to different extents, so that there is a maximum-minimum relationship of intensity between states b and 
d. As a result the transmitted intensity varies sinusoidally with the same frequency as the modulator, and the difference is directly 
detectable as an ac signal at the modulator frequency. One could say that the circularly dichroic material serves as a detector of the 
circularly polarized light in the incoming radiation. The same argument applies to LD measurements except that two cycles of linear 
polarization appear per modulator cycle, so that the LD signal appears at 2/. For a pure LB signal the polarization is not affected 
for vertically polarized light, so that all the effects are seen with the alternating circularly polarized components b and d. These are 
converted into elliptical polarizations alternately oriented at ±45°. The analyzer, oriented at 45°, alternately sees the long and short 
axes of the elliptical polarization, leading to an ac signal at the fundamental frequency that is proportional to LB. For a sample showing 
pure CB, circularly polarized light is transmitted without change in polarization, so there is no signal at the fundamental frequency. 
On the other hand, the linearly polarized beams A, B, and D are tipped to polarizations slightly clockwise or anticlockwise depending 
on the sign of the optical rotation. As a result, one is turned toward the direction of transmission of a 45° analyzer, and the other 
away from it, leading to an alternating signal at 2/. The LB' apparatus detects LB' at the fundamental frequency. In the LB case 
we had right and left circularly polarized light converted to elliptical polarization oriented at ±45°. In this case we have LB' converting 
circularly polarized light to elliptical polarizations at 0° and 90°. It is just the previous case rotated by 45°. On the other hand, in 
the LB' arrangement there is a very strong 2/ signal, even in the absence of a sample, arising from the fact that the analyzer transmits 
one of the modulator polarizations and totally rejects the other. All the other arrangements have a null ac signal with no sample and 
ideal components. Since imperfections in the optics and electronics could allow some of the strong 2/ signal to be detected at the 
fundamental frequency, it is not advisable to use this mode except for very strong LB' systems. It is normally possible to rotate the 
sample or the polarizer modulator combination by 45° to convert LB' into LB. 
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matrix elements have been measured except M11 and 
Af22. It turns out that M11 is obtainable by symmetry, 
but M22 really requires a circular polarizer for its 
measurement. The matrix is, however, overdetermined 
already, since it is dependent only on seven parameters. 
The diagonal elements, except for M00, have so far not 
been of practical interest. 

We close this section with a demonstration of the 
similarity between the formal method of deriving ex­
pressions for the sample Mueller matrix and the ex­
perimental procedures discussed in this section. We 
take the second experimental arrangement of Figure 2. 
If the Jones matrix for the sample is J, then the matrix 
for the sample plus the detection polarizer is P45</, 
where P 4 5 is the 45° linear polarizer. Multiplying this 
matrix by its adjoint, in the manner used in the pre­
vious section, we have 

(.TP45)(P45J) = (JP45J) = lMf«oJ + J**iJ) (36) 

where account has been taken of the fact that the op­
erators for polarizers are self-adjoint and that, when 
ideal, they are idempotent, i.e., P2 = P. Nothing is 
gained by polarizing light twice, though for real polar­
izers there will be some light loss that must be ac­
counted for with an attenuation factor. The Jones 
matrices for polarizers for 45°, right circular, and 0° 
polarized light may be written in terms of Pauli ma­
trices as is shown in Table VII. This leads to the form 
at the right of the table. We see that the use of these 
polarizers introduces Pauli matrices into eq 36 in the 
same way as the formalism for developing rows of the 
Mueller matrix of the sample. No polarizer is equiva­
lent to <T0 and develops the zeroth row; a 45° polarizer 
is equivalent to V2(Oo + ffi) ^ d develops the zeroth and 
first rows. Clearly circular and x/y polarizers develop 
the second and third rows of M, respectively, together 
with the zeroth row. 

F. Symmetry Considerations 

Another way of exploring further elements of the 
Mueller matrix is by sample rotation. It is clear that 
L and L' are defined only with respect to specific ori­
entations of the sample, so that rotation introduces 
transformations between L and L'elements. By defi­
nition a rotation of the sample by -45° brings the 45° 
axis into conjunction with the x axis and introduces the 
transformations 

LD — -LD' LD' — LD 
LB — -LB' LB' — LB 

All the other quantities in the matrix elements show 
cylindrical symmetry and are not affected by rotation 
about the direction of the light beam (TB, TD, CB, CD, 
a, b, etc.). Using the above rules, we find the following 
transformations: 

before 

M 0 3 -
M 3 0 -
M 3 2 -
M 3 3 -
M 3 1 -
M 2 3 -

after 

M01 
M10 
M12 
M1, 

" M 1 3 

M21 

The elements M00, M22, M02, and M20 are invariant to 
rotation. The rule is that 3's are converted to l's and 
l's to 3's. When a 3 is converted to a 1, the matrix 

element is multiplied by - 1 . The pattern of connections 
is shown in Figure 3B, where the tie lines represent the 
interconversions. The result is that by using the three 
experimental arrangements with the modulator in front 
of the sample and rotating the sample by 45° all the 
elements but four can be measured. These are the four 
elements of the M2/ row. The six standard measure­
ments of LD, LB, LD', LB', CD, and CB are possible 
with this arrangement if there are no noncommuting 
optical properties. For the general sample 12 mea­
surements can be made, which, in principle, are more 
than enough to determine the 7 optical properties of 
the system. Reversing the direction of light through the 
sample permits the measurement of all but M22. Apart 
from M00, which gives the dc intensity, the diagonal 
elements are not of particular interest since none of the 
direct terms (U terms) occur there. 

The reader should be reminded that the above ar­
guments deal only with transmission measurements and 
cannot be applied to the Mueller matrix for nonforward 
scattering. Workers in the scattering field have recently 
devised very ingenious techniques for using multiple 
modulators at different frequencies to select for par­
ticular matrix elements through overtone and combi­
nation frequencies.12 These techniques can also be 
applied to transmission studies of the kind discussed 
here. At the present time the relative advantages of 
using multiple modulators or rotating the sample and 
using an additional rotatable analyzer are not clear. 
The multiple modulators sharpen the discrimination 
but add a number of optical elements that may or may 
not increase the difficulty with instrumental artifacts. 
At the moment the multiple modulator technique is an 
exciting new development which is as yet untested for 
transmission spectroscopy. 

At any rate the system is in principle overdetermined. 
There are only six parameters to be determined in the 
matrix since the average transmission of the sample can 
be determined independently and cancels out when the 
ratios are taken by the instrument (see the Experi­
mental Measurement Section). Measurements with and 
without a 45° analyzer and at two sample orientations 
permit the measurement of the first two rows of the 
matrix, from which the six elements can be calculated. 
In practice, there may be artifacts introduced by other 
optical components, and the magnitudes of the param­
eters may be so disparate that the larger ones com­
pletely wash out the smaller. These problems are dis­
cussed in the section on mixed anisotropics and in the 
discussion of experimental apparatus. 

G. Systems Showing Only One Kind of 
Anisotropy 

Systems whose optical properties may be represented 
by just one of the optical pairs (L', C, or L) are easily 
investigated with polarization modulation spectroscopy. 
We discuss two cases, mainly as background for the 
next section. Since CB and CD or LB and LD normally 
go together, at least for spectroscopists, we present the 
matrices containing the pairs of conjugate effects, eq 
37 for a chiral system and eq 38 for a linearly aniso­
tropic system with L' = 0. 

LD and LB are large effects and can usually be 
measured rather easily. The principal LD signal ap­
pears in M03 with no analyzer, and the principal LB 
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Mc = 

M L = e"Ae 

' cosh CD 
0 
sinh CD 

1O 

0 
cos CB 
0 
sin CB 

sinh CD 
0 
cosh CD 
0 

0 
-sin CB 

0 
cos CB 

cosh LD 0 0 -sinh LD 
0 cos LB -sin LB 0 
0 sin LB cos LB 0 

v-sinh LD 0 0 cosh LD 

(37) 

(38) 

signal appears in M12 with a 45° analyzer. It should be 
noted that the dependence of the signal on LB is si­
nusoidal. Since LB can amount to many radians even 
for very thin specimens, one often sees channeled 
spectra in the mode which detects M12. When this 
occurs it is a sign that the sample is too thick or that 
LB is so large that measurements of small quantities 
such as CB will be impossible. The size of the sample 
can be trimmed to diminish the magnitude of the LB 
signal (see Figure IA) but, if LB is large, this will be 
effective only over a narrow range of wavelength. 

In purely chiral systems CD is picked up in the fun­
damental mode and CB at 2/ with a 45° analyzer. The 
optical rotation signal is also a sinusoidal function of 
CB, but this constitutes a curiosity rather than a 
problem since the effect can only be observed with very 
thick crystals with high optical activity. Commercial 
instruments nowadays provide the choice of the / or 2/ 
mode for the measurement of CD or LD on the same 
instrument. 

H. Systems with Mixed Anisotropics 

We now consider the complications that arise when 
circular and linear effects are mixed. The usual object 
is to measure circular dichroism in the presence of linear 
dichroism and birefringence or vice versa. It might be 
questioned whether it has any meaning to discuss the 
linear and circular dichroism of a material that is in fact 
elliptically dichroic, but we shall adhere to the position, 
stated earlier in this section, that CD, LD, etc. may be 
defined by the way they appear in the matrices for 
infinitesimal systems. This provides an operationally 
effective definition of the six anisotropic quantities. 
The molecular interpretation of the six parameters is 
reserved for a later section. 

Before looking at the equations that will govern the 
measurements, it is worthwhile to review the orders of 
magnitude of the quantities under consideration. As 
discussed earlier the absorptive quantities A, LD, and 
CD are naturally limited by the necessity for having a 
transmission through the sample that is sufficiently 
large to permit measurement. This places A < 2. For 
partially oriented systems linear dichroism is less than 
about 10% of the total absorption. When it is larger, 
we are entering the realm of dichroic polarizers. CD 
will normally be in the neighborhood of 1CT3-10"5 of the 
total absorption. 

The range of birefringence depends on whether a 
transparent or absorbing medium is being studied. If 
the medium is transparent, the order of magnitude of 
n - 1 is about unity, and the upper limit to An is several 
tenths. There is, however, no limit to the thickness of 
the specimen. A 1-mm thickness of quartz cut parallel 
to the optic axis has an LB of about 105 radians and 
a CB of about 0.75 radian at a wavelength of 589 nm. 
This type of system is of interest to the crystal physicist 

or mineralogist. A chemist, on the other hand, usually 
wishes to obtain data on particular spectral transitions 
and normally works in regions of absorption, where the 
above-mentioned transmission limits are in effect. In 
the region of an absorption band CB is usually of the 
same order of magnitude as CD, but LB can be very 
much larger than LD. Within an absorption band CD 
arises only from the absorbing transition, while CB 
arises, not only from that transition but from the tails 
of all the "Cotton Effects" of all the transitions of the 
molecular system. These, however, are of both signs, 
and extensive empirical experience has shown that the 
background curve is small and that most of the optical 
rotation, like the circular dichroism, is dominated by 
the absorption band under investigation. The same 
kind of principle applies to LB and for the same reason. 
There is a zero-valued sum rule controlling the total 
contribution of all terms. It is found, however, that LB 
is often greater than LD. This is particularly true for 
studies of oriented polymer systems where form bire­
fringence, solvent ordering, and other effects contribute, 
which have nothing to do with the chromophore under 
investigation. For the purpose of our estimates we shall 
make the assumption that LB s LD but with the caveat 
that this may be incorrect for systems in which the 
chromophore makes up only a small part of the total 
system, i.e., the system also contains solvent, ligands, 
etc. 

On the basis of the above discussion we now consider 
the following as reasonable estimates of the parameters 
for the study of mixed anisotropics: Ae = 2 - 4; LD = 
LB = 0.2; and CD = CB = lO^-lO"6. In setting up this 
example of experimental conditions the strengths of the 
CD and CB signals have been intentionally selected to 
be small compared to that of LD and LB, as is more 
often the case in practice. The purpose is to discuss the 
problems that arise in the measurement of a weak signal 
(CD, CB) in the presence of a much stronger, conflicting 
one (LD, LB). If the investigator is lucky enough to be 
working with a sample with A«±/e s 10~2 and with weak 
LD and LB (some rnr* transitions, d-d transitions), 
then the situation is much more favorable, but can 
easily be recalculated. 

As can be seen in eq 37 and 38, the four quantities 
CD, CB, LB, and LD are localized in the matrix ele­
ments M02, M13, M12, and M03, respectively, when the 
systems are simple. These same matrix elements are 
the most useful for analyzing systems complicated by 
noncommuting properties. We consider now the ex­
plicit forms of these four matrix elements together with 
M00, which is involved in the dc measurement that is 
an intrinsic part of the experiment. We have 

M00 = X + IV(T-T*) 

M02 = W(LB-LD' - LD-LB') + U-CD + V-CB 

M03 = W(CB-LD' - CD-LB') - [/-LD - V-LB 

M12 = -W(CB-LB' + CD-LD') - U-LB + V-LD 

M13 = W(LD-LD' + LB-LB') - U-CB + V-CD (39) 

To simplify the results we will assume that LB' and LD' 
can be simultaneously eliminated by rotating the sam­
ple. This is true for systems that have been oriented 
by electric, magnetic, or flow fields. It is also true for 
uniaxial crystals and for monoclinic crystals if the di-
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rection of propagation of the light is in the plane of the 
nonorthogonal angle. Under these circumstances the 
proper rotation of the crystal can eliminate LB' and LD' 
so that the W terms in M02 can be made to vanish. It 
is useful to examine the behavior of the quantities U, 
V, W, and X as TB and TD become small. This can 
be done for crystals by varying the thickness; for solu­
tions it may be done by varying the concentration or 
degree of orientation. By a straightforward expansion 
of the trigonometric and hyperbolic functions we find 
that for small anisotropics 

U=I- [(TD2 - TB2)/6] + ... = 1 - (a/6) + ... 

V = 1A2Ml - (a/20) + ...) 

W=l/2- (a/24) + ... 

X = I + 1Z2(O,2 + b2)1'2 (40) 

The quantities a and b were defined earlier (Table II). 
This shows that V approaches zero quadratically as a 
function of sample thickness (Figure 1), while U and 
X approach unity quadratically and W approaches 0.5 
quadratically. With the values assumed for the pa­
rameters given above, a and b will be totally dominated 
by the values of LB and LD. This will give us values 
for U, V, W, and X of 0.987, 0.0067, 0.497, and 1.057, 
respectively. We note that even though the quantity 
W tends to 0.5, it is multiplied by terms that are 
quadratic in sample thickness or concentration and so 
tend to zero more rapidly than the U terms which are 
linear. Therefore the measurement of the four matrix 
elements specified in eq 39 will provide fairly accurate 
values for the four quantities even if they are of dis­
parate magnitude. Thus it is possible in principle to 
measure CD or CB in the presence of linear anisotropics 
that are orders of magnitude greater. 

The difficulty which is hidden in the above analysis 
is that a polarization modulator instrument measures 
the properties not only of the sample but of the entire 
optical train. Consequently, if the instrument has its 
own LD response, and this is true of most photomul-
tipliers, then LB of the sample will interact with it to 
give spurious CD and CB signals. If optical components 
have slight strains or imperfections, they will contribute 
birefringence components that can interact with the LD 
of the sample or the photomultiplier. The only way to 
handle such problems is to use a birefringent plate in 
the apparatus to explore the dichroic properties of the 
apparatus and dichroic polarizers to explore the bire­
fringence properties. Then the components can be 
oriented and compensators and depolarizers introduced 
to bring these difficulties to a minimum. These stra­
tegies will be discussed in the experimental section. 

A sample for which the linear birefringence and di-
chroism axes do not coincide may also be investigated 
in principle. What one needs to do, after minimizing 
the artifacts in the manner just outlined, is to study all 
five key matrix elements as a function of sample angle. 
This is equivalent to seven matrix elements in the first 
two rows of the matrix. One then has sufficient data 
to solve the system, provided the experiments are 
sufficiently accurate. This is a long and complicated 
process, especially if wavelength is being scanned at the 
same time, and, to our knowledge, general systems of 
this kind have not been solved as yet. 

I. Summary of the Phenomenology 

We now review a few of the practical considerations 
that come out of the above analysis. 

(1) The three experimental arrangements outlined in 
Figure 2 plus detection of DC, /, and 2/ signals, where 
/ is the angular frequency of the polarization modulator, 
permit the experimental evaluation of nine Mueller 
matrix elements. This number is extended to 12 by 
symmetry considerations and sample rotation. Placing 
the modulator after the sample in the optical train ex­
tends this number to 15. 

(2) In practice the measurement of five matrix ele­
ments (M0O) -̂ 02» M)3> -̂ 12. and M13) is sufficient if these 
are combined with sample rotation of 45°. Only the 
first two experimental setups of Figure 2 are required 
for this measurement. 

(3) If only linear or circular anisotropy is present, CD, 
CB, LD, and LB are easily detectable as can be seen by 
the matrices of eq 37 and 38. 

(4) In the general case the material is dichroic and 
birefringent, but the eigenwaves are elliptical and not 
necessarily orthogonal. The difference in phase retar­
dation, TB, and the difference in the base e absorption 
coefficient, TD, are important ingredients of the theory. 
Even though the birefringence and dichroism are in fact 
elliptical, analysis in terms of linear and circular pa­
rameters is possible and useful. 

(5) A useful form of the Mueller matrix is given in 
Table VI as a function of the fundamental seven-pa­
rameter set: LB', LD', CD, CB, LD, LB, and A. The 
elements also depend on functions of TB and TD that 
are defined in Table V. This form is useful for small 
signals and complex systems. As the total retardance 
becomes small because of the use of thinner specimens, 
lower concentrations, or weaker fields, U approaches 
unity and the U terms generate the desired quantity 
in a particular matrix element. The W terms are non-
commuting terms. They arise because of the incom­
patibility of the optical phenomena. If one type of 
retardance is combined with a second type of retar­
dance, it generates an artifactual signal for the third 
type of retardance. For example, LB and LD' generate 
CD signals. By use of the relations at the bottom of 
Table III, (LB-LD' - LB'LD) = sin 2(x - 0)LDxLB„. 
This factor is intrinsic to the sample and is not changed 
by orientation. It clearly vanishes, however, if the 
symmetry of the sample system is high enough that LB 
and LD have the same axes (6 = x or 6 = x ± (T /2) ) . 
Even when present, W terms can be eliminated by 
varying thickness or concentration, since the W terms 
are quadratic in these variables and the U term is linear. 
The V terms describe "complementary" artifacts. For 
example, in measuring CB, CD combines with the total 
retardances to give a spurious signal and vice versa. V, 
however, goes rapidly to zero for thin specimens or 
dilute solutions (see Figure 1). 

(6) A very serious source of error lies in the fact that 
the anisotropic properties of the sample can interact 
with noncommuting anisotropic properties of the in­
strument, resulting in artifacts. For example, the 
nonisotropic response of most PM tubes to polarized 
light leads to an effective LD, which can interact with 
a sample LB' to give an apparent CD signal. Small 
birefringences in the optical train can also interact with 
linear dichroism in the sample. These effects can be 
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diminished by testing with elements with strong bire­
fringence or linear dichroism, reorienting optical com­
ponents and using depolarizers and compensators. 
References to the literature on this subject will be given 
in the experimental section. 

(7) An order of magnitude calculation of the problem 
of measuring CD in the presence of LD and LB is not 
so unfavorable as is generally supposed, provided LD 
and LB have the same axis. 

J. Experimental Measurement41113ab3843ac'44a 

1. Illustrations with Pure Measurements of CD, LD, 
CB, LB, and LB' 

A typical optical train for a polarization spectropho­
tometer is shown in Figure 2. It consists of a linear 
polarizer (P), a photoelastic modulator (M), the cell 
compartment, an optional rotatable polarizer (A), and 
a photomultiplier connected to a lock-in amplifier so 
that signals of either the same or double the frequency 
of the modulator may be detected. Light from a 
monochromator passes through the entrance polarizer 
and then through the photoelastic modulator set with 
principal axes at 45° to that of the polarizer. For visible 
and near ultraviolet light, the modulator is a section of 
fused silica driven to sinusoidal oscillation by mechan­
ical coupling to a piezoelectric quartz crystal. Both the 
quartz crystal and the silica section are cut to have an 
identical resonant frequency, which is nominally 50 
kHz. This provides a periodically varying birefringence 
in the silica plate with an amplitude that is determined 
by the strength of the output of the driving oscillator. 
The modulator is described in ref 44. 

As was discussed earlier, the retardation of (M) is 
given by § = (<50/2) sin ft (eq 30), and the polarizer-
modulator output is given by the Stokes vector (1,0, 
sin 2S, cos 25) (eq 29). As can be seen from the structure 
of this Stokes vector and the expansions of eq 33, the 
resulting radiation may be regarded as a superposition 
of circularly polarized light (modulated at the funda­
mental frequency and higher odd harmonics) and 0/90° 
linearly polarized light (modulated at 2/ and the higher 
even harmonics). By tuning to the fundamental fre­
quency, one detects the response of the sample to cir­
cularly polarized light, by tuning to 2/, the response to 
alternating 0/90° linearly polarized light. After leaving 
the sample, the light either goes directly to the photo-
multiplier, as in the first arrangement in the figure, or 
through an analyzer set at 45° or 90° to the original 
polarization, as depicted in the second and third ar­
rangements. 

We represent the functioning of the instrument by 
showing its response to the "pure" phenomena CD, LD, 
LB', CB, and LB in Figure 4. This figure provides a 
physical picture of some of the relations derived 
mathematically in the preceding sections. The sets of 
boxes contain polarization figures for the polarization 
states as a function of the retardance of the modulator 
in steps of x /2 or x. Successive figures show the evo­
lution of each state of polarization as the light goes 
through the train of optical elements. See the figure 
captions for details. It will be noted that LD' is missing 
from the detectable phenomena of Figures 2 and 4. 
Examination of the Mueller matrices shows that this 
optical effect shows up only in response to the second 
component of the Stokes vector (±45° polarization), and 

this is absent from the modulator setup of Figure 2. 
One must either rotate the polarizer-modulator com­
bination or the sample by 45°. It is preferable to do 
the latter. This leaves the orientations of the polarizer, 
modulator, and analyzer intact. These are usually 
carefully oriented to reduce artifacts before measure­
ments are made. 

Absolute measurements are not made in polarization 
spectroscopy, though this presumably is possible. In­
stead the instrument is calibrated with materials of 
known anisotropics. This has the result of canceling 
out a large number of optical and electronic factors that 
depend on wavelength and which slowly drift. For 
circular dichroism standardization is performed with 
epiandrosterone, camphor sulfonic acid, (+)-[Co(en)3]

3+, 
or similar stable, reproducible substances with a prom­
inent circular dichroism band. A procedure for cali­
bration of circular dichroism that makes use of the 
linear dichroism produced by partial reflection from 
thin silica plates has recently been proposed.448 Silica 
components have the advantages of durability and re­
producibility over chemical substances in solution. For 
linear dichroism a popular standard for calibration is 
a microscope coverslip, oriented at the Brewster angle, 
for which the transmission of orthogonal polarizations 
may be calculated from the refractive index. For this 
type of standard, which depends on selective partial 
reflection, it is necessary to correct for multiple internal 
reflections. Procedures for doing this, with the required 
formulas and tables, have recently become available.448 

In our laboratory we use a Rochon polarizer oriented 
at 45° ± 3° from the polarization of the modulator. Use 
of the last equation of Table VII shows that the ap­
parent linear dichroism of this system is sin (6°) = 
±0.105 with a small nonlinearity correction which is 
easily calculated (see below). Another convenient 
procedure for the standardization of linear dichroism 
makes use of stretched films containing oriented 
dyes.44b'c 

The signal processing is usually arranged so that the 
ratio of the ac to dc signals is recorded. This cancels 
out instabilities in the light source and electronic com­
ponents. From eq 34 we see that for / and 2/ detection 
these ratios are given by 

lf 

'dc 

(4A)J1(S0)M02 

M00 + J0(S0)M03 

Iv = (4/7T)J2(S0)M03 

(41a) 

(41b) 

For the special, but very important, cases of measure­
ments of CD and LD in the absence of interfering an­
isotropics, these relations become 

I, 
y- = (4/1T)J1(S0) tanh (CD) s (4/X)J1(S0)CD (42a) 
^dc 

I. 

he 

v (4/X)J2(S0) tanh (LD) 

1 + J0(50) tanh (LD) 
s (4/X)J2(S0)LD (42b) 

where the rightmost expressions are for the usual case 
of small signals. For CD the value of S0 is adjusted to 
maximize J 1 (first-order Bessel function, maximum 
J1(X) = 0.58 for x = 1.8). This is done by adjusting the 
output of the modulator driver to give a maximum CD 
signal with a circularly dichroic substance in the ap-
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paratus. The driver is programmed to maintain this 
maximum as the wavelength is varied. For LD the 
modulator is adjusted to maximize J2 (max J2(x) = 0.49 
for x = 3.1). The functions J0, J1, and J2 are tabulated 
in ref 45. 

The same relations apply for the general case (eq 41), 
but it is the matrix elements M02, M03, and M00 that 
enter into the equations rather than simple functions 
of CD and LD (see eq 34). Fuller and his associates 
have derived methods for measuring a number of ma­
trix elements M^ simultaneously. We give a brief dis­
cussion of their technique to show that the methods 
developed above for a conventional polarization mod­
ulation experiment can be readily applied to other 
situations. The following rules, which have been either 
explicitly or implicitly demonstrated in the preceding 
theoretical discussion, will be of help. 

(1) A circular polarizer set at 0° is a linear retarder 
with LB = 7r/2 and LD = 0. From eq 38 we see that 
its matrix is 

Qo = 

1 0 0 0 
0 0 - 1 0 
0 1 0 0 
0 0 0 1 

(2) The effect of Q0 on a Stokes vector is to inter­
change S1 and S2. Its effect on a Mueller matrix is to 
interchange row 1, M1;, with row 2, M2,-. The change 
in sign of row 2 will not be of concern in polarization 
modulation spectroscopy. 

(3) The effect of polarizer Pj, which produces the pure 
polarization described by the Stokes component, s;, is 
to produce an intensity (s0 + s;)/2. Thus the effect of 
P1, a 45° polarizer, on s0, S1, S2, and S3 results in the 
intensity component (s0 + s;)/2. This addition is of 
course accompanied by the rejection of one of the two 
states of polarization described by s;. Pj, operating on 
a Mueller matrix, yields a first row that is the sum of 
the zeroth and jih rows divided by 2. These properties 
have been brought out both in the discussion of the 
experiental arrangements of Figures 2 and 4, where 
polarizers were used as detection of rows of the Mueller 
matrix of the sample, and in the theory of the Mueller 
matrix. 

We can now describe the first apparatus of Fuller and 
his associates.13* The aim is to measure LD and LD' 
simultaneously. The important matrix elements are 
M03 and M13 (see eq 38 or 62). This is done very simply 
by putting a quarterwave plate set at 0° between the 
modulator and the sample in the first arrangement of 
Figure 2. Schematically we have 

polarizer 45° 
modulator 

sample 

where s and c are as in eq 29 and 30. The intensity of 
the photomultiplier is given by M00 - sM01 + cM03. The 
M01 may be detected in precisely the same way as M02 
in a CD experiment. Signal processing is arrayed so 
that the fundamental and overtone frequencies are 
detected at the same time. If the axis of birefringence 
matches that of the dichroism (S = x in our notation), 

then the magnitude of the LD, LDx, and the angle x 
can be followed as a function of time by using the 
formulas at the bottom of Table III. If B and x are not 
identical, LD and LD' can still be determined in the 
thin-sample limit, provided LB9 is not too much greater 
than LDx. 

We shall not go into the details of the second ex­
perimental arrangement.1315 The beam is split, and half 
is processed as just outlined. The aim for the other 
beam is to get information on LB and LB', which are 
prominent in M21 and M23. A circular polarizer would 
combine these elements in the first row (intensity), but 
circular polarizers are not easily found. However, the 
combination P1QQ acts as a circular polarizer. Q0 in­
terchanges rows 1 and 2, and P1 combines row 1 with 
the intensity row. The net result is the combination 
of row 2 with row 0. In the complete apparatus both 
the fundamental and overtone for both beams are an­
alyzed simultaneously to give measurements of M01, 
M03, M21, and M23. Special cases are discussed where 
this leads to experimental values for LD, LD', CB, and 
LB'. 

Finally, it is often necessary to know the isotropic 
absorbance of the anisotropic system under investiga­
tion. If the method of orientation is by a flow, electric, 
or magnetic field, one can simply turn off the field and 
measure the transmission. In other cases, such as 
crystals or stretched films, this is not possible. In such 
cases one measures the transmission directly either by 
summing two polarized absorptions or by using unpo-
larized light. As stated in the discussion following eq 
27, the apparent absorbance is the mean absorbance of 
the two eigenvectors for the system. 

It is important to realize that dichroic systems do not 
obey the Lambert law, i.e., the intensity of the trans­
mitted radiation is not a simple exponential function 
of the path length. Each of the eigenvectors will obey 
Lambert's law in most cases. They do so, however, with 
different absorption coefficients so that the polarization 
state of the light and the apparent absorbance depend 
on path length. 

We shall discuss the evaluation of the isotropic ab­
sorbance from the apparent absorbance for the partic­
ular case of a strongly dichroic uniaxial system: Ax = 
AY 9* Az. Primes will indicate absorbances to the base 
e, and the dichroism will be evaluated as (Az - Ax), 
which is customary for uniaxial systems. The analysis 
is thus suitable for stretched films, fibers, and uniaxial 
crystals. We define the following absorbances: 

apparent absorbance 

Aapp' = -In (1/I0) 

isotropic absorbance 

>W = (Ax' + AY' + A2') / 3 = (2 A/ + Az ')/3 

mean absorbance 

A'm = (A2 + Ax)/2 

dichroism 

AA'= A2'-Ax' 

Note that A 'm is the quantity that appears as Ae in eq 
27 and in Tables II, III, and VI. 

A formula for Aapp is readily obtained since the ratio 
of output to input intensity for unpolarized light is 
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simply M00. The reader can readily verify that for pure 
LD and LB the birefringence part of M00 cancels out, 
leaving M00 = e'Aa' cosh LD or Aapp ' = AJ - In (cosh 
LD) = AJ - In (cosh (AA'/2)). 

From the identity (A2 + Ax)/2 = (Az + 2Ax)/3 + (A2 

- Ax)IQ we have AJ = A1J + (AA'/6) so that Ai90' = 
Aapp' - (AA'/6) + cosh (AA'/2). Conversion to base 10 
absorbances yields AUo = Aapp - (AA/6) + In cosh 
(2.303AA/2). Though differing in appearance this is 
identical with the formula derived by Norden for this 
case.3 The correction can be large for strong linear 
dichroism. When polarization modulation techniques 
are used, AA is often small. On the other hand, if the 
linear dichroism is sufficiently strong that AA can be 
measured by subtracting separately measured values 
of Ax from A2, the use of this formula is mandatory. 
If the system is not uniaxial, absorbance measurements 
must be made for at least two propagation directions. 

2. Applications and Artifacts 

We now explore several cases where artifacts or 
nonlinearity are introduced into the measurement. The 
examples are selected in order to bring out some of the 
more serious pitfalls that may be encountered, as well 
as some fundamental principles which have not been 
stressed previously. Though the general formalism 
applies to all types of anisotropic media, biaxial as well 
as uniaxial, measurements are most frequently made 
on uniaxial systems and the following discussion will 
be restricted to this case. 

Below we will work with the following notation. The 
angles are defined in a plane perpendicular to the di­
rection of the light path: a = orientation of the po­
larizer in the polarizer-modulator combination; x = 

orientation of the axis of the uniaxial sample (for ex­
ample, one of the principal axes for LD of the sample); 
and d = orientation of the strain axis of an external 
optical element. 

Nonlinearity of Strong Signals. We will start by 
considering a medium displaying LD and LB, but no 
circular anisotropy, and it will be further assumed that 
the instrument is strain free. Using the experimental 
arrangement of Figure 2 and measuring at twice the 
modulation frequency, we can calculate the instrument 
signal to be 

T2/ cos (2(% - «)) tanhLD 

7JC
 = 4 / , r 1 - J0(S0) cos (2(x - a)) tanh LD 

(43) 

by a straightforward application of the matrices.4 The 
signal is maximized when a = x> so that the optic axis 
may be located by rotating the sample or the polariz­
er-modulator. When this is achieved, LD can then be 
determined. Since J 0 is about -0.3 when J 2 is at its 
maximum, the second term in the denominator becomes 
insignificant for small values of LD, and it is just for 
these small values that tanh (LD) may be approximated 
by LD. Specifically for LDs of 0.17 and 0.40, tanh (LD) 
is overestimated by 1 and 5%, respectively, when the 
linear approximation is used. For these cases the 
magnitude of the J 0 term in the denominator is about 
0.05 and 0.12, respectively, which is significant relative 
to 1.0. Thus somewhere above an LD of 0.1, depending 
on the accuracy of the experiment, the linear relation­
ship between the detected signal and the linear di­
chroism begins to break down and data processing re­

quires more elaborate treatment. A trick which could 
be used to avoid the J 0 interference is to set the mod­
ulator amplitude so that J 0 = O.O.46 At this point, 
however, the J 2 function is no longer at its maximum. 
Thus if one wanted to use this procedure over a wide 
spectral range, a special wavelength program for the S0 

amplitude would be required in order to maintain the 
calibration of the instrument. 

A better procedure has been developed by Norden 
and Seth.448 Equation 41b or 42b may be written in the 
form 

K1 tan fe(LD) 
A A = 

app 1 + K2 tan fe(LD) 

where AAapp is the instrumental measurement /2//^dc-
In this form K1 and K2 are instrumental constants 

and can represent not only the Bessel functions of eq 
41 and 42 but any instrumental imperfections such as 
tracking of the modulator program. K1 and K2 are 
potentially functions of wavelength. The formula can 
be inverted to give LD in terms of the experimental 
quantity AAapp. 

- i Kl + A A a p p ( 1 " K*] 

L D = / 2 l n K1 - AAapp(l + K2) 

This relation was used to determine the instrumental 
constants of two commercial circular dichroimeters with 
the gratifying result that K1 and K2 were essentially 
independent of wavelength.448 

Strain in the Optical Components. Before we 
discuss the effects of strain (i.e., linear birefringence) 
on the measurement of CD and LD, a few general re­
marks have to be made. The signal detected at the 
photomultiplier is the intensity variation. Pure bire­
fringence effects, both linear and circular, by their na­
ture, change only the polarization of light and do not 
affect its intensity. Thus a birefringent element alone, 
following the polarizer-modulator combination, gen­
erates no signal. But if a polarizer or, more generally, 
a linear dichroism is inserted between the birefringence 
and the detector, the polarization oscillations induced 
by the birefringence will be transformed into intensity 
oscillations. Thus with the appropriate optical ar­
rangement of birefringence followed by linear di­
chroism, CB and LB can be measured conveniently in 
the / and 2/ mode. (Figure 2, ref 4, 11, and 47) In 
particular, in the / mode, LB is optimized if the po­
larizer following it has its polarization axis at 45° to the 
LB axis, while no signal is produced if the axes are 
parallel. These remarks also apply if the birefringence 
under consideration is an undesirable artifact of an 
optical component of the instrument. One cannot 
conclude too hastily that strain in all elements which 
follow the sample will cause no difficulty in the mea­
surement of CD or LD, because all photomultipliers 
have at least a slight dependence of sensitivity on the 
direction of linear polarization. This is equivalent to 
a small linear dichroism signal. End-on photomulti­
pliers should always be oriented to minimize the artifact 
produced by their detection of strain birefringence in 
an empty instrument. 

Measuring CD in the Presence of LD and Strain. 
We now consider artifacts in the CD mode due to 
strains in the optical elements preceding the sample. 
We assume a uniaxial medium with LD axis at x and 
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with all optical effects sufficiently small that only the 
linear term in the expansion of the sample matrix is 
required (see eq 62 and 67). In addition, a strain matrix 
is included that precedes the sample. The birefringence 
magnitude is L B / and its angle is 6, where the super­
script e stands for external. The resulting signal in the 
/ mode is 

L CD - LBe
eLDx sin (2(x - O)) 

J- = (4 /X)J 1 (S 0 ) - — TT7 (44) 
he 1 " </o(<50)LDx cos (2(x - 6)) 

This demonstrates that the LDx of the medium couples 
with the strain of the optical component to induce an 
apparent CD signal. In a spectroscopic study the signal 
will track the LD absorption curve of the substance and 
appear as a spurious CD band, even in an achiral sys­
tem. Because the LD of an oriented system is often 2 
or 3 orders of magnitude larger than its CD, even a 
small strain can cause disastrous effects (see the dis­
cussion later in this section). 

There are, however, a number of ways to minimize 
the problem. The first and most effective is to propa­
gate light down the axis of the uniaxial system. (This 
does not work for biaxial samples.) This, however, is 
often impossible (stretched films, transverse flow, etc.), 
and in any case it only provides direct information on 
one diagonal component of the CD tensor (see section 
III.B.4). 

A second method can be applied if the sample and 
the element producing the strain can be oriented rela­
tive to one another. In this case the angle (x - 6) can 
be brought to zero, which eliminates the problem as 
may be seen from eq 44. Another method is to insert 
a variable strain device (e.g., a clamped window) before 
the sample and to adjust its orientation and strain to 
cancel out the indigenous strain of the other compo­
nents. In spectroscopic work this method may cause 
difficulty because of the difference in dispersion of the 
birefringence of the various components, but in practice 
components tend to be made of the same materials. In 
UV-vis work, for example, one has fused silica in the 
cell, lenses, and windows, and quartz in the Rochon 
prism. 

Chen et al. have used a second modulator with a 
different frequency placed directly after the sample in 
order to remove spurious signals originating from po­
larization effects in components subsequent to the 
sample.48 A final method, used by Tunis-Schneider and 
Maestre,49 is to average two measurements taken with 
sample orientations differing by 90°. As can be seen 
by substitution in eq 44 above, this results in equal and 
opposite contributions of the strain artifact that cancel 
in the averaging. 

In conclusion we will briefly review several papers 
dealing with artifacts and the dangers of measuring 
circular dichroism in linearly anisotropic systems. 

As far back as 1969 Disch and Sverdlik43 realized that 
the apparent CD spectrum of an oriented system differs 
from that of the true spectrum because of the effects 
of linear dichroism and birefringence. They calculated 
the effects that would be observed (underestimation of 
CD, red and blue shifts, spurious bands) for a number 
of examples. Tunis-Schneider and Maestre introduced 
their sample rotation method in 1970 (see above). This 
has been used by other authors since its publication and 
is claimed to work well in cases of organic molecules in 

various orienting media such as stretched films.50 In 
that same year Hofrichter demonstrated the use of a 
birefringence compensator and gave an extensive dis­
cussion of artifacts.11 

In 1971 the problem of coexisting circular and linear 
anisotropics was further explored by Troxell and 
Scheraga.38 They made use of the Stokes vector for­
malism and the power series of the general Mueller 
matrix as formulated by Go.30 Their discussion of the 
second order matrix of the combined sample and in­
strument provides a very instructive and practical view 
of the way that instrument anisotropics combine with 
sample anisotropics to give spurious effects. Our own 
paper4 generalized these results by deriving the explicit 
form of the Mueller matrix for the most general case. 

Norden and co-workers have dealt considerably with 
the problem of obtaining accurate circular dichroism 
data and have presented an analysis of the artifacts and 
correction factors in CD spectrometers that result from 
linear anisotropy.52,53 They measured the retardation, 
produced by ambient strain, of a Pockels cell and a 
photoacoustic modulator. These turned out to be 0.1 
and 0.02 radians, respectively! Using a formula equiv­
alent to eq 44 above, they concluded that for a molecule 
like DNA, the LD is sufficiently large and the CD 
sufficiently small that the changes in CD induced by 
orientation are not measurable. They also found that 
the birefringence axis of the modulator drifts with time, 
which makes it difficult to set the angle of the bire­
fringence so that the artifact is minimized. 

Lately Shindo and co-workers have given a thorough 
discussion of the artifacts in CD spectroscopy.54-57 They 
show how the general Mueller matrix formalism4 is very 
powerful in the design, analysis, and evaluation of po­
larization instruments. These points have also been 
stressed by Tsankov et al.58 and Schoenhofer et al.8 As 
one example of the extensive analyses of Shindo et al., 
we cite their conclusions about the so-called LCICD 
(liquid crystal induced circular dichroism) effect. They 
point out that the data supporting the existence of this 
effect may be insufficient in several cases.55,56 They do 
not deny the possibility that achiral molecules are op­
tically active in cholesteric liquid crystals (see section 
IV.D and references cited therein (144-151). This 
would, in fact, be a form of induced circular dichroism 
that is well-known in other fields, e.g., binding to pro­
teins, Pfeiffer effect, etc. On the other hand, from an 
error analysis of commercial CD spectrometers, they 
conclude that merely obtaining a CD signal from such 
systems does not adequately demonstrate the existence 
of the effect. 

We close this section with two comments. The first 
is that the investigation of media with mixed anisot­
ropics should always be accompanied by controls and 
checks for artifacts. This can be done by rotating op­
tical elements or the sample and by introducing sources 
of LD, LB, and CB and checking the results. Film 
polarizers and thin sections of quartz will produce these 
effects very strongly. Another procedure that has been 
tried is the independent measurement of CB and CD 
and a quantitative comparison via the Kronig-Kramer's 
transform.588 Errors in other optical properties caused 
by CD are not normally very important. Second, the 
problems discussed in this section are superposed on 
the intrinsic difficulty of unraveling the Mueller matrix 
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elements in complicated cases. The instrument itself 
does not determine CD or LD in the first arrangement 
of Figure 2. It determines M02 and M03. This section 
has dealt with methods of determining those matrix 
elements. If the system is complex, one then must turn 
to section ILH for further analysis. As was shown there, 
it will frequently be possible to resolve the problem for 
systems where the axes for linear birefringence and 
linear dichroism are parallel, but the general case with 
strong interference may defy analysis. 

/ / / . Molecular Interpretation 

A. Applicability of the Lattice Gas Formalism 

With methods developed by Jones and others, the 
phenomenology section has shown that there is a one-
to-one correspondence between the transfer function 
of an infinitesimal layer of optical material and two-
dimensional matrix operators. The eight independent 
parameters of a complex 2 X 2 matrix correspond to the 
eight independent optical properties that may be 
measured for the direct transmission of light through 
an infinitesimal sample. Additional parameters are 
required for scattering at an arbitrary angle.13'34 In cases 
where linear and circular anisotropies do not exist si­
multaneously, it is easy to show which elements of the 
matrix correspond to each optical effect. Since there 
is no obvious way of discussing the optical activity of 
a sample that has elliptical polarization eigenvectors, 
we have simply defined all eight parameters to match 
their equivalent roles in the general Jones matrix for 
an infinitesimal sample. For example, the skew sym­
metric part of the matrix corresponds to optical rotation 
(CB/2). These same parameters are then carried over 
into the transfer matrix for Stokes parameters as well. 
Because phase information is lost in the Stokes repre­
sentation, there remain seven independent parameters 
in the Mueller matrix. The mean refractive index is the 
missing parameter. 

This approach takes care of a difficult problem as far 
as pure phenomenology is concerned, but it arises again 
in the question of the molecular interpretation of these 
optical quantities. In order to relate experiment to 
molecular theory it is necessary to solve the field 
equations for anisotropic systems. The molecular 
properties then come in as quantum mechanical for­
mulas for susceptibilities. This is an extremely difficult 
area when systems are absorbing, linearly anisotropic, 
and chiral. Rigorous formulas exist for isotropic re­
fraction and absorption (Ewald-Oseen method21,22'59) 
or for purely chiral systems.23,60 There has also been 
considerable progress in obtaining practicable solutions 
of Maxwell's equations in a general anisotropic medium, 
particularly by the Russian school.61 Finally there have 
been elegant advances in the interpretation of crystal 
spectroscopy using the exciton approach.62-64 None of 
these have led, however, to a set of interpretive formulas 
that may be utilized directly to obtain molecular pa­
rameters in the general case. On the other hand, 
quantum mechanical formulas have been derived for 
the optical properties of an oriented ensemble of non-
interacting molecules (the lattice gas model), and the 
purpose of this section is to inquire into the circum­
stances under which these formulas may be used to 
interpret the experimental quantities, defined as phe-

nomenological matrix elements. 
Our approach is to consider the formulas for ab­

sorptive processes only, including linear and circular 
dichroism. These are of most interest in chemical ap­
plications, and we assume that the dispersive properties 
may be obtained by the appropriate Kronig-Kramers 
transforms. The three basic formulas are, therefore, the 
lattice gas relations for absorption, linear dichroism, and 
circular dichroism. These formulas have been widely 
stated in the literature. We make use of our own 
publications65"67 to avoid problems of notation. 

1. Absorption65 '66 

Absorption is defined by 

e = (Xp/K)D0n (45) 

where K = 3(2303)hc/8ir3iV = 0.9186 X 10"38 and D0m 

is the dipole strength given by D0m = ju0m-Mmo> where Ii0n 

is the electric transition moment of the jump to excited 
state m. p(X) is the shape function for the band. It is 
defined so that its integral over the band equals unity: 
Jp(X) dX = 1. The useful form of this equation for the 
determination of molecular matrix elements from ex­
perimental data involves integration over the absorption 
band. This requires some kind of band resolution for 
overlapping bands 

D0m = Kf(e/X)d\^K/\maxj'edX (46) 

2. Linear Dichroism, Oriented Molecules65 

We begin by using a molecularly defined coordinate 
system. This will be symmetry determined if the 
molecule has symmetry, and one of the axes can be 
taken to correspond with the direction of the transition 
moment in a simple nondegenerate absorption. In this 
case, if v is a unit vector in the direction of the electric 
field of the radiation, then66 

«v = (XPv/K)vD0n-v (47) 

Here D0n is the dipole strength tensor. As an example, 
the xy or 12 element of this tensor is (Dxy)0n = 
3(Mx)om(/"y)mo- The shape function p is subscripted since 
it depends in general on orientation. Indeed the 
splitting and shape changes of degenerate systems 
provide one of the most interesting observations that 
can be made with linear dichroism measurements. The 
factor of 3 is introduced into D because the average of 
the tensor expression over all orientations is V3 the 
trace of D, which leads back to eq 45. If we first take 
v to be in the x direction and then in the y direction 
and evaluate the difference, the formula for linear di­
chroism of the 0 —* m band (LD from the phenome­
nology section) is obtained. 

A«,_y = (X/K)[Px(Dxx)0m - Py(Dyy)0m] (48) 

where px and py are separately normalized shape func­
tions. On integrating, the formula for the matrix ele­
ments is obtained 

(D1x)Om " (Dyy)0m = K C-^dX (49) 

If the transition is nondegenerate, then the x axis could 
have been taken along the direction of the transition 
moment so that (Dxx)0n = 3D0n. If the transition mo-
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ment makes an angle 0 with v, then (Dxx)0m = 3 cos2 6 
D0m. These formulas are based on very simple geome­
tric considerations, but it is rare that one can make 
direct use of the molecular coordinate system. In the 
case of molecules oriented by flow, stress, or electro­
magnetic fields, orientation is not complete and what 
is seen in the laboratory is a distribution over orienta­
tions. In the case of crystals, there may be a number 
of molecules of different orientations in the cell. In 
addition, the orientation of the light beam may make 
an arbitrary angle with the crystal axes. At any rate 
there is always a linear relation between the orientation 
of a vector u in the laboratory and molecular coordinate 
systems. 

uL = OnM (50) 

O is the transformation matrix from one coordinate 
system to the other.68 Using the 1,2,3 notation for co­
ordinates we have 

(Mt)Om = S O1JUlV)0n (51) 

O1J must be averaged over the molecular distribution 
function. For example, the xy component of the dipole 
strength tensor in the laboratory frame is given by 

j,h=l 

A very important practical case is the quantity LD, 
discussed in the phenomenological section. This is 
proportional to DXx ~ DYY m the laboratory frame and 
is given by 

2Xp 
A £ y = -=rE<O17O1* - O2jO2k)(ny)0m(^)m0 (52) 

The coefficient (OyO\k - Oy02k) depends exclusively 
on the orientational distribution of the molecules in the 
system and is called the orientation function for LD. 
Orientation functions have been evaluated for most 
important distributions.3 With the help of symmetry 
it is often possible to determine the components of the 
dipole strength tensor in molecular coordinates from 
the above relations. LD' in the molecular frame is given 
by 

Aefy =
 2Y ( ^ W O n /OmVMy )mO (53) 

For a nondegenerate transition it is always possible to 
make this vanish by a suitable choice of axes and this 
is usually done. This topic will be resumed in section 
B. 

3. Circular Dichroism 

The circular dichroism of an isotropic system of 
noninteracting molecules is given by65,66 

AeT = ( ^ ) f l o m ; Rom =K/A J*(AeT/X) dX (54) 

where R0m, the rotatory strength, is defined by R0m = 
Im\fi0m'Mm0}. Mm0 is the magnetic moment matrix el­
ement associated with the transition from state O to m, 
a is the shape function for the circular dichroism of the 
band, and K has its previous significance. For the case 

of a molecule with a definite orientation, eq 54 must be 
replaced by the formula67 

Ae1 •(¥) k-^om-k (55) 

where k is a unit vector in the direction of propagation 
of the light, ak(X) is the orientation-dependent shape 
factor, and R0n is the rotatory strength tensor. In diad 
form it is given by 

R< Om 
3e 

2mc 
Im {Mom X (pr)m0) (56) 

for molecules small compared with the wavelength of 
light. Other forms of this formula exist where the 
electric dipole is replaced by the dipole velocity or 
momentum operators. We shall not pursue the relative 
merits of these formalisms, which have been much 
discussed in the literature, p r is the diad product of 
the momentum and position operators. Cross products 
of diads are clumsy to work with, and we have found 
it preferable to accomplish the cross multiplication via 
the antisymmetric matrix 

U = I M3 O - M 1 ) 
V - M 2 M1 O / 

(57) 

The subscripts on the lower right of the brackets in­
dicate that all of the quantities within are matrix ele­
ments between the designated states. The rotatory 
strength tensor is then given as 

R(\m ~ 
3e 

2mc 
Im f[/0m-(pr)m0i (58) 

For the usual case where light is considered to be 
propagated along the z axis, we have67 

RzZ = ^ 0 I m {{»y)om(PxZ)mO ~ (V-x)om(Pyz)mo\ (59) 

Equations for the x and y axes may be obtained by 
permuting the indices cyclically. We give formulas for 
two off-diagonal elements 

(°xy)om ~ 
3e 

2mc I m {Oi2)(PvJy) - (Mv)(P2y)!om;mO 

(ftyxfmO ~ 
3e 

2mc 
I m {(Mx)(P*«) " (Mz)(Px*)}om;mO (60) 

from which the other four off-diagonal elements can be 
obtained by cyclic permutation. The rotatory strength 
tensor is not symmetric, but it is easily shown that only 
its symmetric part contributes to circular dichroism in 
eq 55. The circular dichroism tensor depends on matrix 
elements that differ from those of absorption and or­
dinary dichroism. This is the motivation for circular 
dichroism studies on oriented molecules. Circular di­
chroism has a different sensitivity to molecular con­
formation and provides additional details about the 
electronic excitation process. 

For most applications eq 55 must be converted to 
laboratory coordinates. The method is the same as that 
discussed for linear dichroism. Though the molecular 
distribution function is identical for the averaging of 
linear dichroism and circular dichroism, the so-called 
orientation functions for the two types of dichroism 
differ because linear dichroism is associated with the 



1380 Chemical Reviews, 1987, Vol. 87, No. 6 Schellman and Jensen 

polarization vectors of the light (eq 47), while circular 
dichroism is associated with the propagation vector of 
the light (eq 55). Molecular distribution functions have 
been derived for systems in electric, magnetic, and flow 
fields. The distribution is of course accurately known 
for solved crystal structures. A review of the theory and 
experimental methods of obtaining orientation func­
tions for all of these methods has been given by Nor-
den.3 

4. Evaluation of the Assumptions 

Equations 45, 47, 54, and 55 are the mainstays of the 
interpretation of electronic absorption spectroscopy. 
They permit the conversion of experimental measure­
ments into the quantitative determination of excitation 
matrix elements. In principle there are 11 matrix ele­
ments that can be obtained which are equivalent to the 
three components of the electric moment, the three 
components of the magnetic moment, and the five 
quadrupole components. As we shall see, however, 
magnetic and quadrupole moments do not arise directly 
in the theory except for the isotropic case and special 
molecular symmetries. 

The question is when these basic and comparatively 
simple equations can be used to interpret experimental 
results. To decide on this we will now enumerate the 
restrictive assumptions that are made in their deriva­
tion: (1) They are all derived with the assumption of 
simple, pure states of the polarization of radiation, 
which do not obtain in the type of experiment we are 
considering. (2) The molecules are assumed to be in­
dependent; i.e., excitations on one chromophore do not 
interact with those on other chromophores. (3) The 
molecules are assumed to be small relative to the 
wavelength of light. (4) Strong anisotropic effects such 
as nontransverse radiation fields or physical separation 
of rays are not considered. (5) The intensity is atten­
uated by absorptive processes only; scattering losses are 
not significant. 

We shall now show that only item 2, chromophore 
interaction, is a serious practical worry. We do not 
consider item 4 in the above list further since we have 
seen in the phenomenology section that it is not possible 
to disentangle the signals which result from thick, 
highly anisotropic samples. If one is faced with such 
specimens, it would be better to separate the beams and 
study the polarizations of the eigenvectors. This is a 
viable alternative to ordinary transmission spectroscopy. 
If molecules are not small compared with the wave­
length of light (item 3), which occurs in polymers and 
large biological molecules, then a more general formu­
lation must be used. Explicit work has been done in 
the case of helical polymers.69,70 

We will also not discuss the case of scattering samples 
(item 5) since the interest of this review is in standard 
transmission spectroscopy. Methods of working with 
scattering samples and interpreting the results have 
been discussed by Maestre and co-workers.71 

Item 1, the assumption that the theoretical quantities 
and the phenomenological coefficients may be identified 
with one another, requires more discussion. The de­
rivation of eq 45 is obtained by calculating the proba­
bility of an absorptive quantum jump of a molecule in 
a thin lamina (Lambert-Beer method). Though the 
radiation is assumed to be linearly polarized, the mol­

ecules are randomly oriented, and the absorption of the 
assembly of molecules in the thin layer is obtained by 
averaging over all orientations of the molecules. This 
is equivalent to using nonpolarized light. Hence for­
mula 1 is apparently restricted to the attenuation of the 
intensity of nonpolarized light in an absorbing medium. 
The circular dichroism formulas are obtained as fol­
lows.66 By use of perturbation theory, the absorption 
of left circularly polarized light by a thin lamina con­
taining isolated molecules is obtained. The result for 
pure right circularly polarized light is also calculated, 
and then the latter is subtracted from the former. This 
gives an equation for AI, the differential absorption of 
left and right circularly polarized light. Equations for 
linear dichroism are obtained in the same way, except 
that two orthogonal states of linear polarization are used 
instead of the two states of circular polarization.66 

It turns out that the absorption and linear and cir­
cular dichroism obtained in this way are identical with 
those defined as phenomenological coefficients in the 
Jones or Mueller calculus. To see this we obtain the 
Mueller matrix for an infinitesimal lamina of a general 
sample showing all optical effects. The general Mueller 
matrix may be written as 

M = e~H (61) 

with 

/ Ae LD' -CD L D x 

/ LD' Ae LB CB \ 
^ - I - C D - L B Ae LB' j (62> 

x LD CB -LB' Ae ' 

This was first shown by Go30 and later derived by us 
from the general Jones matrix.4 For an infinitesimal 
layer the exponential may be expanded to terms linear 
in the thickness of the sample 

M=E-H (63) 

We use E for the unit matrix because / already stands 
for the intensity and the input vector. If the input 
vector to the lamina is Sj, the output vector may be 
written as 

sF = Ms1 (64) 

and the change in the Stokes vector occasioned by 
passing through the lamina is 

sF - S1 = -Hsi (65) 

Since we are only interested in intensities, we obtain 
the first row as 

(«F)O - («i)o = -ZHoj(Sl)j (66) 
i 

The quantity on the left is clearly the change in in­
tensity. It is convenient to use normalized Stokes 
vectors; i.e., all components are divided by the intensity 
I. We then obtain 

51/I = -EH01(S1), (67) 

where the components (s{)j are normalized to unit in­
tensity. 

What we are doing now is calculating the effect of a 
general infinitesimal sample, containing all optical ef­
fects, on simple polarization vectors, using eq 67. For 
unpolarized light the Stokes vector is (1,0,0,0), and we 
obtain 
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81/I = -Ae (68) 

Recall that Ae contains the infinitesimal path element 
dZ, so that this is the classical Lambert expression. If 
one uses left circularly polarized light, the Stokes vector 
is (1,0,-1,0), and we obtain 

61 /I = -Ae + CD (69) 

For right circularly polarized light the result is the same 
except for the sign of the CD term, so that the differ­
ence may be expressed as 

ATV/ = 2CD (70) 

This is precisely the identification that is made for 
circular dichroism in the theoretical derivation of eq 54 
and 55 since CD = (In 10/2)AA. Similar identifications 
may be verified for LD and LD' as is obvious from the 
structure of the matrix H. The main point is that the 
presence of a noncommuting mixture of optical prop­
erties does not interfere with identification of the var­
ious optical effects and that the transfer coefficients Ae, 
CD, LD, and LD' defined phenomenologically turn out 
to be identical with the quantities calculated quantum 
mechanically. 

On the other hand, interaction with surrounding 
molecules (item 2) takes place in all condensed systems. 
If the surrounding molecules are transparent to the 
probing radiation, the interaction problem takes the 
form of the evaluation of the internal field correction. 
Apart from cubic or isotropic systems, where the Lor-
enz-Lorentz formula may be used, this factor is not 
known and is usually roughly approximated or ignored. 
One does not usually know the local geometry of sur­
rounding molecules in solutions, films, liquid crystals, 
etc., so that a calculation cannot even be made. These 
considerations limit the accuracy of calculations of in­
tensities, or conversely they limit the precision of the 
determination of dipole or rotatory strengths. It is 
generally conceded that the accuracy with which these 
quantities can be determined is not better than 10% 
or so in condensed media. Further causes for inaccu­
racy come from the fact that eq 45,47, 54, and 55 make 
use of the Born-Oppenheimer factorization and the fact 
that the measurement of intensities is often not precise, 
especially in the case of overlapping bands. 

A more interesting situation develops when the ab­
sorbing chromophore is surrounded by other absorbing 
chromophores. Two special cases of interest are crystals 
and polymeric molecules in solution or films. The case 
of polymers has been very thoroughly investigated.72 

They usually can be treated as linear systems, often of 
known structure. Polypeptide and DNA helices are the 
most extensively investigated examples. In these cases 
the entire polymeric system is treated as an assembly 
of coupled excitations. Degenerate and nondegenerate 
bands are included so that exciton bands and their 
interactions with one another are present as compo­
nents of the theory. In addition, in some calculations, 
the polarizability tensors of the groups are approxi­
mated so that there is an attempt to cover the complete 
set of electronic excitations. As a result all interactions 
within the molecule are taken into account. In such 
cases chromophore interaction, far from being an an­
noying source of error, is often the main interest of the 
investigation, since most if not all of the characteristic 
spectroscopic features of polymer molecules arise from 
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Figure 5. Band splitting with a unit cell possessing a mirror plane 
as its only element of symmetry. Mixing of the first transition 
with the second will change both the total intensity of absorption 
and the polarization of both bands. 

the interactions (band splitting, hypochromism, circular 
dichroism). The idealized formulas presented above 
then apply to excitations that are delocalized over the 
entire molecule. An example of a helical polymer will 
be presented in section IV.A. 

The other case of extensive interaction arises in the 
case of crystals of absorbing molecules. In crystals there 
are, in general, elements of point symmetry as well as 
translational symmetry. There are two main results of 
these symmetries on chromophore interactions. The 
first is the Davidov splitting of the translational excitons 
into species related to the point symmetry. This leads 
to polarization modes of the excitons and to selection 
rules that are well understood.62,63 We note here only 
that the polarization of a given level of an exciton band 
is determined by the symmetry of the arrangement of 
chromophores in the unit cell, and not by the polari­
zation of the bands in the chromophores themselves. 
Polarizations in crystals are parallel or perpendicular 
to mirror planes, parallel or perpendicular to rotational 
or screw axes, etc. and are not determined by the ori­
entation of transition moments in the chromophores 
(except for intensity). This will be seen in an example 
given below. One result of this is that the determination 
of the direction of transition moments in the chromo­
phore often requires the accurate measurement of the 
intensity of absorption bands in the crystal, and not the 
direction of maximum absorption. 

The second effect is that a crystal absorption band 
arising from an exciton with a given point symmetry 
interacts with excitons of all other electronic absorption 
bands of the same symmetry. This can lead to serious 
errors in evaluating the matrix elements for molecular 
excitation, such as the energy, dipole strength, polari­
zation, etc. As an example, we consider a crystal with 
two molecules per unit cell related by a plane of sym­
metry (Figure 5). The only features that are shown in 
the figure are the electric transition moments. For 
simplicity the molecules that generate the moments are 
suppressed. The mirror plane is indicated by a central 
vertical line in the unit cell. The two linear combina­
tions possible for a pair of chromophores are repre­
sented in the columns of the figure together with their 
polarizations and symmetry species. The two rows 
represent different electronic excitations with different 
polarizations in the molecules. There should in fact be 
a row for every electronic excitation of the molecule. If 
we neglect the third dimension for simplicity, the di­
rection of the transition moment of the first band would 
hopefully be found by comparing the intensities of the 
absorption of x and y polarized light. We would have 
in fact 
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tan2 6 = Iy/Ix (71) 

However, because of the interactions of the bands, the 
absorption of the A' and A" species of the band under 
investigation will borrow intensity from the A' and A" 
branches, respectively, of all other electronic transitions 
of the molecule. Hypochromicity (or hyperchromicity) 
is a tensor property that not only changes the intensity 
of absorption but also changes the apparent polarization 
of absorption. A further complication arises from the 
fact that the energy of interaction of the bands, and 
thus of all related phenomena, depends on the direction 
of propagation of light through the crystal. These ef­
fects are well understood, but their analysis is com­
plicated and often inaccurate. Attempts at calculating 
crystal spectra for molecules with known spectral 
properties (dipole strength, transition moment direc­
tions) has been rather successful.64'73 The more difficult 
problem of extracting molecular spectral properties has 
been attacked in a number of ways by various authors. 
Chen and Clark have in fact even attempted to invert 
the full crystal theory, which involves performing re­
tarded dipole sums over the crystal as a function of 
direction of propagation.74 This is done in an iterative 
fashion until self-consistency is attained. 

The main message of this discussion is that the lattice 
gas formulas presented above are only of qualitative 
application to crystals in general. We have dealt only 
with absorption and polarized absorption. The prob­
lems associated with the circular dichroism are even 
more difficult. Crystal spectra are amenable to simple 
interpretation only if interactions are sufficiently weak 
that exciton interaction effects are effectively absent. 
Fortunately there are such systems. The weak d-d 
transitions of a number of inorganic complexes con­
stitute an important class of systems that can be stud­
ied, and an example of this type of application will be 
given below. Other systems are crystals of biological 
molecules where the chromophores are often diluted by 
a large volume fraction of nonabsorbing groups and also 
host-guest systems where the nonabsorbing host mol­
ecules provide a wide separation between the absorbing 
guest molecules. Evidence for significant chromophore 
interaction can be sought experimentally by comparing 
crystal spectra with solution spectra and by examining 
the crystal spectra for evidence of gross changes in band 
shape. Rough calculations are also helpful. For exam­
ple, it is easily shown by using the dipole approximation 
that a strong transition (c = 104) roughly 5 A from a 
weak transition (e = 100) interacts with the latter with 
an energy of only 50 cm-1. 

Finally the circular dichroism formula must not be 
applied to cholesteric liquid crystals. Equations 58-60 
are based on the assumption that the dimensions of the 
interacting system are small compared to the wave­
length of light. It is well established that the charac­
teristic chiral properties of cholesteric phases arise from 
the long-range chirality of orientation of the mole­
cules.748'75 The repeat distance in the liquid crystal is 
often of the same order as the wavelength of light. 

B. Interpretation of the Formulas 

1. Orientational Averages 

Molecular orientation is normally produced by flow, 
stress, or electromagnetic fields or by the formation of 

crystals or liquid crystals. Crystals are distinguished 
from the other cases by the fact that only a few discrete 
molecular orientations are present, whereas the other 
physical situations must be described by continuous 
distribution functions. We first address the cases of 
continuous distributions and take up the crystalline case 
later. 

Orientational averages come into the problem via 
equations like 47, 52, or 55, which we put into the 
general form 

Tv = v-I^-v = vWT^Ct^ (72) 

Here TL is the tensor for the electric dipole strength 
or rotatory strength in the laboratory frame, T M is the 
tensor in the molecular frame, and v is a unit vector 
that corresponds to the direction of polarization of light 
for linear dichroism and to the direction of propagation 
of light for circular dichroism. Tv is proportional to the 
intensity of absorption associated with v. As discussed 
above, the transform from molecular to laboratory co­
ordinate frames can be accomplished by eq 50. O is the 
matrix of direction cosines 

( Xx Xy X Z \ 
Yx Yy Yz J (73) 

Zx Zy Zz ' 
where Xy, for example, is the cosine of the angle be­
tween the X axis in the laboratory and the y axis in the 
molecular frame. 

We now consider a very important simple case. This 
arises when the molecule being oriented has effective 
cylindrical symmetry about an axis. This is true of 
molecules with 3-fold or higher rotation axes, helices, 
ellipsoidal proteins in flow fields, molecules oriented by 
their electric or magnetic moments, etc. In this case 
the molecular tensor property takes the form 

TM=?" a j or TM = / a \ (74) 

where the z ox x axis, respectively, has been selected as 
the cylindrical axis. The latter form is used in 
stretched-film analysis. Equation 74 should be obvious 
on symmetry grounds and will be demonstrated below. 
This formula can be rewritten as 

T M = a / + ( 6 - o ) ( 0 J (75) 

where I is the unit tensor. Note that the first term is 
isotropic and is unaffected by a transformation to the 
laboratory coordinate system. Transforming to the 
laboratory frame with O yields 

Th=al+ (b-a)o( 0 \o> 

and on multiplying out the matrices we find 

TL = al + (b - a)[ (YZ)(XZ) (YZY (Y1)(Zx) (76) 
\(ZZ)(XZ) (ZZ)(YZ) (Zz)1 J 

Finally, adding the quantity (b - a) /3 to the first term 
and subtracting it from the second, we obtain 

^ = T1 8 0J+
 2 / s ( ^ p ) s (77) 

Tiso is the isotropic dipole or rotatory strength, given 
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by (2a + £>)/3 I, and S is the orientation tensor. Its 
components are the order parameters 

Su = (3 cos 6lM cos 8Jz - bu)/2 (78) 

where 8Iz is the angle between axis 3 in the molecular 
frame and axis J in the laboratory frame. These may 
also be defined more generally for the case where cyl­
indrical averaging is not appropriate.75 

These formulas are simple to apply if the averages 
are known. For example the Z-X linear dichroism is 
directly proportional to (Dzz - DXx) (see eQ 48), and 
from eq 77 this is 

(Dzz ~ DXX)L = %(DZZ - DXX)™(SZZ - Sxx) (79) 

In many cases the molecular distribution is known and 
may be calculated from a model. (See ref 3 for a review 
of known distributions.) In this case linear dichroism 
methods can be used to determine the dichroism in the 
molecular frame. This permits the calculation of di­
rections of transition moments. In other cases the di­
rection of transition moments is known and the formula 
permits the determination of order parameters. The 
formula may also be applied to the rotatory strength 
associated with a given direction, say, the Z direction, 
in the laboratory. 

R»- ~2 I (Szz) (80) 

The first term is the isotropic rotatory strength, which 
is not affected by orientation, and the second term is 
the orientational part. Measurement of this second 
component permits the evaluation of matrix elements 
that are not accessible with ordinary measurements of 
circular dichroism. 

If the molecular distribution function is uniaxial in 
the laboratory frame (stretched films, orientation with 
electric and magnetic fields, nematics), we then have 
Sxx = SYY = ~(1/2)SZ2. This arises from the fact that 
Sxx + SYY + Szz = 0 for an orthogonal coordinate 
system and SXx ~ Syy for the uniaxial case. Equation 
79 then takes the form 

(DZzL ~ DXxL) = (D„M - DX™){SZZ) (81) 
The special case described by eq 74-81 is very impor­
tant and is used to interpret a large fraction of the work 
on systems oriented by flow, electric, and magnetic 
fields and by fiber formation. We now outline briefly 
a more general viewpoint, though without details or 
derivations, since these would be too specialized for this 
review. Four cases of orientational distributions will 
be described. 

The problem to be solved is set up in eq 72. The 
rotatory or dipole strength tensor, defined relative to 
molecular axes, is to be transformed to laboratory axes 
and averaged over a distribution of molecular orienta­
tions. By use of (72) and (73) the matrix multiplications 
lead to the formula 

TJK = zLOjjTjk OkK~ 

where Oj* = Ow~l = cos (Jk); J, K = X, Y, Z; and j , k 
= x, y, z. T is the dipole or rotatory strength. Only 
three angles, the Euler angles (25, 27, 68), are required 
to transform one Cartesian coordinate system into an­
other so all of the direction cosines in O are, in general, 
functions of these three angles. The angles are alter­

nately symbolized by <p, 8, and ip or a, /3, and 7, where 
ip and 0 are the angles describing the orientation of the 
z axis in the laboratory frame. 

A statistically distributed ensemble of molecules is 
describable in terms of a normalized distribution 
function f(4>,8,\p), which gives the probability that the 
molecular axes are related to the lab axes by <t>, 8, and 
\p. If the optical effects are linear and additive, then 

(TJK) = ZTjk CfCOs(Jj) cos(Kk) dfi 

= Z(COS(Jj) cos(Kk))Tjk 

jk 

where the angular brackets indicate an ensemble av­
erage. 

The formula above would be a cumbersome way to 
evaluate an averaged coordinate transformation. It was 
written out only to show that the transform is a quad­
ratic form in the direction cosines. The averaged 
products are called the second moments of the distri­
bution function. It follows from the above that the 
orientational properties of absorbance, linear dichroism, 
and circular dichroism (as well as optical rotation and 
birefringence) depend only on the second moments of 
the orientational distribution. 

Dichroic measurements usually take the form of 
spherical harmonics. Because only second moments are 
involved and D and R are symmetric, only the five 
second-order spherical harmonics arise. We wish to 
avoid the complex form of spherical harmonics (the 
YLM) and tabulate instead the real form (or d orbital 
form) of these five functions. 

symbol formula corresponding d orbital 

C20 ( 3 c o s 2 0 - l ) / 2 2z2-x2-y* 
C21 sine cos 6 cos 0 xz 
C22 sin2 e cos 20 x2 - y 2 

521 sin 8 cos 6 sin 0 yz 
5 2 2 sin2 e sin 20 2xy 

For light propagating in the Z direction LD and LD' 
have the angular dependence of C22 and S22, respectively 
(eq 48 and 53). For light propagating perpendicular to 
an uniaxial system, LD has the angular dependence of 
C2O (eq 81). For oriented systems, Rzz - Riso has the 
angular dependence of C2o (eq 80). If the molecule has 
real or effective cylindrical symmetry, then / is a 
function of the polar angles 8 and <p only and can be 
expanded as a series in the spherical harmonics75ab 

/ = -Aoo + H (AMJCMj + AMJSMV) 
J=i 

M<J 

where the AMj& are coefficients and the superscript 
indicates the presence of the sin or cosine of M<j>. If the 
quantity being averaged has the form of a single 
spherical harmonic, as in the examples above, then a 
single term of the expansion contributes to the average 
because of the orthogonality of the spherical harmonics. 

We can now proceed to the four cases of orientational 
distribution functions. 

Case 1. The molecule is effectively cylindrically 
symmetric, and the macroscopic system is uniaxial. 
Examples are long molecules in electric or magnetic 
fields, fibers, and certain crystal structures such as the 
cobalt complexes discussed in section IV.C. Because 
of the postulated conditions, Dxx = Dyy in the molecule 
and Sxx = Syy in the laboratory (refer to eq 79) 
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LAB 

LAB 

, „ / 3 c o s 2 a - l \ / 3 c o s 2 0 - l \ 

« . - * > - » ^ \ — T — ; „ ( — i — ; 
Ae _ AA = / 3 c o s 2 Q - l \ j3 cos2 6 - l \ 
eiso -^iso \ 2 / M O L \ ^ / 

Ae/^ 0 is called the relative linear dichroism. For cyl-
indrically symmetric molecules it is a product of a 
geometrical factor in the molecule, which gives the av­
erage orientation of the absorbing transition moments 
in the molecular frame times an average of the orien­
tation of the molecule in the laboratory frame. The 
latter is called the orientation function for the particular 
measurement, and it normally has the form of one of 
the spherical harmonics. The average in the molecule 
can be over internal orientations if the molecule is 
flexible and over different transitions if they overlap. 

Some steps have been skipped, but the jump from 
formulas in the elements of D to At and AA is possible 
because of the canceling of common proportionality 
constants. 

For this system there is no LD for light propagated 
along the axis of the uniaxial system but it can be shown 
that 

(CD) 
Aez ~ Afis, 

Aeia„ 
= / Rzz - flisoV 3 cos2 6 - l \ 

This is again the product of a molecular factor which 
is dependent on the geometrical arrangement of tran­
sition moments and an orientation function for the 
molecule in the laboratory. This type of measurement 
was performed by Holzwarth and his co-workers on 
helices of polypeptides and nucleic acids (see section 
IV.A, Figure 8). 

Case 2. The molecules are effectively cylindrical, but 
the medium is biaxial rather than uniaxial. A very 
important example of this case is flow birefringence and 
flow linear dichroism. If one assumes that the mole­
cules are stiff, the Peterlin distribution is applica-
ble.75a'76,?7'77a If the X axis is defined as the direction 
of laminar flow and the Y axis as the direction of the 
gradient, then for measurements with light propagating 
down the Z axis 

(LD) A , = ^ l = 

•"•iso 

/ 3 C Q S 2 A - 1 \ / \ 
< > < sin2 0 cos 2<p ) 
\ 2 / MOL \ / LAB 

(LD') Ae45 AA 45 

/3cos2fl-l\ / . 2 . \ 
< > < su r 8 sin 2<p > 
\ 2 / M O L \ / LAB 

The subscripts 0 and 45 are customary and refer to the 
angle to which the polarization modulator must be set 
to make the measurement. Again the results are a 
product of an internal optical factor for the molecule 
and an orientation function. In this case, however, the 
orientation functions are C22 and S22 rather than C20. 

Formulas for the linear dichroism and birefringence 
with light along the Y axis and for CD or optical rota­
tion have been derived.n'47'77a'b 

Case 3. The macroscopic system is uniaxial, but the 
molecule does not have effective cylindrical symmetry. 

Stretched films78 and nematic liquid crystals79'79" are 
important examples. This case is discussed in detail 
in section IV.B. The reduced linear dichroism is no 
longer a simple product of an optical geometrical factor 
and an orientation function but a sum of at least two 
such terms (see eq 101, which can be rewritten as the 
following): 

AA/A = y2(ex - ey)(Sxx - Syy) + ( , - ^ ) 

In this case there are two orientation functions that are 
spherical harmonics, (C22) and (C20). In practice other 
methods of analysis are used.3,78,79b 

Case 4. The molecule does not have effective cylin­
drical symmetry, and the macroscopic system is not 
uniaxial. We now have three molecular axes that are 
all different. In this case all three Euler angles enter 
the problem. A powerful general approach is to use the 
Wigner matrix elements and their simple transforma­
tion properties. In this case the distribution function 
is expanded in the Wigner functions.80 

oo +iV 

f= x s 
N=O M,M'=~ N 

1MM' flJUW.7) 

where the I)%M, (a,P,y) are the Wigner functions whose 
formulas and elegant transformation properties are 
tabulated in books on group theory and angular mo­
mentum.25'68'80 

Only five of the nine functions with N = 2 contribute 
to the optical properties, and it can be shown that these 
transform like the spherical harmonics. This method 
requires the formulation of the problem in terms of 
irreducible tensors, which are complex quantities, and 
has seldom been used for the orientational spectroscopy 
of electronic or infrared absorption bands. There is, 
however, a well-developed literature for the use of ir­
reducible tensors in the field of liquid crystals and in 
the theory of the NMR of oriented systems. 

2. Molecular Cylindrical Averaging 

Many of the most important applications to oriented 
systems permit averaging about a long axis or symmetry 
axis of the molecule, and we shall now discuss the sim­
plifications that arise for this case. Note that the av­
eraging is done in the molecular frame so that biaxial 
systems in the laboratory frame are not excluded, e.g., 
flow fields (case 2 above). The tensors for absorption 
and circular dichroism may be most easily averaged over 
all orientations by introducing the vector transforma­
tion for a rotation about the z axis by an angle a 

x' = ex - sy y' = sx + cy 

where s and c are the sine and cosine of a. This sub­
stitution is made for the x and y components of all the 
components of D and if, and the result is averaged 
uniformly over all values of a. As a result, all of the 
off-diagonal elements of both tensors vanish; the xx and 
yy components of the averaged tensor are the means 
of the xx and yy components of the unaveraged tensor, 
and the zz components are not changed. 

The results of cylindrical averaging are given in Table 
VIII for both the dipole strength and the rotatory 
strength tensors. Cylindrical averaging converts the 
system to a uniaxial symmetry so that the optical ten-
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Figure 6. Structure of optical tensors. Symmetry considerations predict that certain tensor elements must vanish, must be equal 
to other tensor elements, or must be opposite in sign and equal in magnitude to other tensor elements. These relationships are depicted 
in A for the gyration tensor (CD and CB) and in B for the linear dichroism-linear birefringence tensor. The figures are adapted after 
Nye.83 

TABLE VIII. Cylindrically Averaged D and R Tensors 
= Dv 

1At(Mx)(Mx) + Uy)Uj,)]om ,mO 

A = D11 = [(Mz)(M2)IOm11nO 
Rx = Rxx = Ryy = (3e/4mc) Im [Uz)(Py*) - (ix^ip^) + 

Ux)(P«y) - Uy)(P,*)]0m 
= 3/2 Im [U*) W V m o + (3e/4mc) Im [U„)(p,y) - Uy)(Pz*)]om,mo 
R1 = R11 = (3e/2mc Im [Uy)(P,*) - U«)(Py«)]om,mo 

sors have the same form as for uniaxial crystals, as may 
be seen by referring to Figure 6, which gives the form 
of the optical tensors as a function of symmetry. After 
the averaging, the only distinction that remains is be­
tween parallel and perpendicular elements of the ten­
sors, Dp D±, Rp and Rx. It must always be remem­
bered that this notation refers to the direction of the 
electric field of the radiation for D and the direction 
of propagation for R. The formulas are applicable for 
any coordinate system with 2 along the long axis, though 
it will often be useful to take advantage of symmetry 
or other considerations that will further simplify the 
formulas. For example, for any given transition it is 
possible to make either nx or ny equal to zero. It is also 
seen that the formulas for the components of J? are not 
invariant with respect to an interchange of x and y. 
This is because of the chiral nature of B and its de­
pendence on the handedness of the coordinate system, 
which is changed when x and y are interchanged. Fi­
nally we note that a term of the xx and yy components 
of R contains the 2 component of magnetic moment. 
This is the result of averaging about the 2 axis. It 
should be recalled that complete averaging of the ro­
tatory strength over all orientations reduces all of the 
pr components to components of the magnetic moment 
in the form of /LI-M. 

We close with a summary of the types of cylindrical 
symmetry that may arise with partially oriented sys­
tems. Electric and magnetic field orientation is fre­
quently applied to long molecules that assume effective 
cylindrical symmetry in the molecular coordinate sys­
tem by averaging about the long axis. The system is 
also symmetric about the direction of the field. Thus 
the optical properties are "uniaxial" in both the labo­
ratory and (averaged) molecular frames. One order 
parameter, that connecting the Z axis of the laboratory 
with the 2 axis of the molecule, enters the equations for 
absorptive and refractive optical properties. These 
remarks also apply to molecules with a high-order 
symmetry axis (n > 2) in stretched films (see section 
IV.B). 

For long rigid molecules in flow, such as biopolymer 
helices, the optical properties are cylindrically sym­
metric in the molecular framework, but the system is 
biaxial in the laboratory frame. The order parameters 
deal with the orientation of the 2 axis of the molecule 
with the three laboratory axes and have capital letters 
as subscripts, e.g., Szz. 

With stretched films the system is uniaxial in the 
laboratory frame but not necessarily symmetric in the 
molecular frame. The order parameters describe the 
orientation of the three molecular axes relative to the 
direction of stretch (Z axis) and have lower case letters 
as subscripts, e.g., S„. 

3. Determination of Spectroscopic Matrix Elements 

It would be desirable if all the matrix elements ap­
pearing in D and R could be evaluated directly from 
experiment. This is not possible for the general case, 
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though it can often be done if there are symmetry ele­
ments present. We assume that a distribution function 
is known so that optical elements determined in the 
laboratory frame can be converted to the molecular 
frame. For a given nondegenerate transition it is always 
possible to choose a coordinate system such that ny 
equals zero. nx then becomes fi±, the component of /J, 
that is perpendicular to the axis. H1 and Mj can be 
determined by dichroic experiments. For this case R,t 
equals -{nx)om(Pyz)mo> so that (pyz)m0 can be obtained. 
On the other hand, R1 equals [(nz)(Mz) + 
(M*)(p*y)]om,mo> which contains the two unknown quan­
tities (Mz)m0 and (pzy)mo, which cannot be resolved. 

If the system has helical symmetry, a rotation axis, 
or a transverse mirror plane, so that transition electric 
dipoles can be classified as parallel or perpendicular, 
then the system becomes determinate. For a parallel 
band we have D1 = R^ = 0. There are only two non-
vanishing matrix elements: nz, which can be determined 
from Dp and Mz, which may be determined from R1. 
For a perpendicular band, which will be degenerate for 
rotation or screw axes of higher order than two, nx is 
determined by D1, (pyz)m0 from R11, and (P^y)nO from 
R1. Because of symmetry these values would also apply 
to (/uy), (pzx), and (pxz), though with sign changes. 

In practice the completely empirical approach to the 
determination of matrix elements outlined above is 
rarely adopted. Instead a model is set up for the system 
(for example, helical excitons for a helical polymer), the 
elements of D and R axe calculated, and these values 
are then compared with experiment. 

4. Crystals: The Case of D3 Complexes 

We now proceed to a discussion of crystals. General 
group theoretical arguments were given by Jahn, Bha-
gavantam, and others many years ago, which permit the 
evaluation of the number and kind of nonvanishing 
elements of tensor properties of crystals.81"83 This type 
of result has been presented by Nye83 in an especially 
perspicuous way as tensor diagrams. Diagrams for 
linear dichroism (or birefringence) and circular di-
chroism (or optical rotation), adapted from Nye, are 
shown in Figure 6. The elements of these tensors are 
the macroscopic counterparts of the elements of the 
rotatory strength tensor of the unit cell. We note that 
the gyration tensor is symmetric, while the rotatory 
strength tensor derived from quantum mechanics is not, 
but remind the reader that it is only the symmetric part 
of a tensor R which contributes to the product k-R-k, 
since k-A -k vanishes when A is antisymmetric. As we 
shall see shortly, the rotatory strength tensor is sim­
plified even further when the symmetry properties of 
a given excitation are also imposed on its matrix ele­
ments. 

Because so much experimental work has been done, 
we will use as our example a series of uniaxial crystals 
of cobalt tridentate complexes with D3 symmetry. In 
so doing we are following the steps of Saito and co­
workers, who have not only discussed the theory but 
established many of the experimental results.84 These 
systems also satisfy the requirement, discussed in the 
previous section, of being very weak transitions. The 
essentially negligible coupling between these very weak 
d-d transitions and other transitions makes it possible 
to consider the transitions as localized and not coupled 

Jg A| Ground 
State 

Free Octahedral Tridentate 

, o n Complex Complex 

R 1 U) 0 h D5 

Figure 7. Correlation diagram for the singlet states of [Co(en)3]
3+. 

to the stronger, delocalized transitions of the system. 
Our discussion will differ from that of Kuroda and 
Saito85 in two respects. First, they accounted for the 
variable polarization direction of circularly polarized 
light by averaging the field vectors over the transverse 
plane. This appears to give the correct answer for the 
transitions and symmetry they discuss, but it is simpler 
and more correct to use eq 55, which is based on the 
direction of propagation. Second, their formalism is 
based on a tensor that contains products of the com­
ponents of the electric and magnetic moments rather 
than electric moments and the nine components of pr. 
This is, in fact, an allowable procedure for the transi­
tions they discuss, which have small or negligible 
quadrupole components. We prefer to treat the general 
case that includes all types of transitions with no real 
increase in complexity. 

Kuroda and Saito have assembled data for a number 
of Co3+ compounds, all of which may be assumed to 
possess D3 symmetry in isolation. At the moment we 
are only interested in the manner in which symmetry 
affects the components of the rotatory strength tensor 
and will omit all structural details. In some crystals the 
D3 axis of the complex is parallel to the optic axis of the 
crystal. In others the JD3 axis makes an angle a with the 
axis of the crystal, but the complexes are part of a 
higher order screw axis of the lattice. We shall first take 
up the form of the tensor in the coordinate system of 
the complex with the Z axis parallel to the D3 axis of 
the complex. Matters are considerably simplified by 
considering the parentage of the electronic states in 
higher symmetry. In the octahedral symmetry of a 
hexammine complex, the 5-fold degeneracy of the d 
orbitals is removed and the six electrons reside in the 
degenerate dxy, dyz, and d„ orbitals in the configuration 
t6 (species Alg). The excitations we shall be considering 
promote one of the electrons from a t orbital to an e 
orbital to give the configuration t5e. In group Oh the 
six states that are produced from the products of the 
t and e orbitals are divided into two degenerate levels 
Tlg and T^. A correlation diagram adapted from Saito's 
book is given as Figure 7. T lg is connected to the 
ground state by magnetic moment selection rules and 
T2g by quadrupole moments. There are no allowed 
electric dipole transitions. This splitting is rather large 
and of the order of 10000 cm-1. In D3 symmetry the 
T states split as follows: T1. —• A2 + E and T2g -» A1 
+ E. This splitting is small, and the bands are not 
resolved with ordinary absorption spectroscopy. Elec­
tric dipole transitions are allowed to the A2 and E states 
of D3 but are very weak because they are mildly per­
turbed d-d transitions. Following previous authors we 
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shall concentrate on the nearly degenerate A2 and E 
states. The A1 -* A2 transition is magnetically allowed, 
quadrupole forbidden. Transitions to E are in principle 
both magnetically and quadrupole allowed; but because 
of their parentage via a small perturbation on the oc­
tahedral T1, the states we are considering should be 
magnetically allowed and almost quadrupole forbidden. 

In D3 the rotatory strength tensor is diagonal. An 
n-fold axis with n > 2 is equivalent to cylindrical av­
eraging. Since for the A2 transition both (/ux) and (ny) 
are zero and since cylindrical averaging also averages 
the xx and yy components, the rotatory strength tensor 
for this transition may be obtained immediately from 
Table VIII. 

H A 1 - A 2 

3U Im 
[Hz)(Mz) 

^z)(Mz) 
\J / ^* ] **2 ' ^*12 ̂ * 1 

(82) 

To consider the A1 -»• E transition we divide the E 
state into its partner states. One of these may be taken 
to have nx allowed, presumably arising largely in the 
ligands. For this state we have iny) = (X) = (pzx) = 
(pxz) = (pyx) = (pxy) - 0. These relations may be 
established by considering the components of p as polar 
vector components and working out the symmetry of 
the products or by using carefully constructed group 
tables such as those in Wilson et al.,86 where partner 
relationships between various bases are indicated by 
their order. Similarly for the y-polarized transition we 
have (nx) = (ny) = (pyz) = (p,y) = (pyx) = (p^y) = 0. 
The rotatory strength matrices for the separate partners 
of the E transition are given by (eq 59) 

H A 1 ^ E 1 . -
3e 

2mc Im 

lA-*Ev 

3e 
2mc 

Im 

(nx)(Pzy) 

-(My)(P2*) 

- (Mx)(Py*) / A1E1-IExA 

(MyXPa^/A.EyiEyA, 

(83) 

It is preferable to combine these transitions by adding 
their matrices, since they must be equivalent because 
of the equivalence of any pair of orthogonal axes in the 
plane perpendicular to the 3-fold axis. One may choose 
any orientation of the x and y axis system that one 
wishes, but the radiation will select the proper linear 
combination to give one polarization in a direction that 
is transverse to the direction of propagation of the ra­
diation (the ordinary ray) and another, not necessarily 
transverse, but perpendicular to the first (the extraor­
dinary ray). The result is that the xx and yy elements 
of R have the same numerical value and may be cal­
culated from either of the degenerate transitions. This 
gives, as the rotatory strength of the E transition 

3e 

7 . -(My)(Pz*) 
(»x)(Pzy) 

(My)(PxZ) - (MxHPyZVA1EiEA1 

(84) 

Table VIII could have been used directly to obtain eq 
84 by applying it to each of the degenerate transitions 

and adding the result. In taking the longer route of 
evaluating the matrix elements for the x and y polari­
zations separately and then summing, we have gained 
some insights into the selection rules and the manner 
in which electric dipoles are coupled with elements of 
pr. AU the matrix elements are experimentally deter­
minate in the above formula, just as in the cylindrically 
averaged case. Because x and y are related by sym­
metry in this representation, there are only three in­
dependent matrix elements. For example we could 
choose Gtx), (Pzy), and (pyz). 

A further approximate step can be taken. Elements 
like pzy can be expanded by the identity 

yPz + ZPy yPz - ZPy 
Pzy = — j — + — J — (85) 

Note that all of the operators commute. The rightmost 
term is clearly the x component of the angular mo­
mentum and leads to magnetic moment matrix ele­
ments. The first term is related to the yz quadrupole 
moment by the formula 

imum0 

(yPz)mO + (zPy)mO = — ~ Qyz (86) 

The theory of the circular dichroism of these D3 com­
plexes has shown that the rotatory strength is developed 
by combining the large magnetic moments of the d-d 
transitions of the central ion with small electric mo­
ments developed either by coupling with transitions in 
the ligands or by perturbation by the static ligand field. 
Because these borrowed electric moments are so small, 
a large magnetic moment is required. Since we are 
interested in oriented complexes, we must replace this 
statement by requiring that the transition must be 
associated with either a large magnetic moment or a 
large quadrupole moment. In the case we are consid­
ering we know that the transition had no quadrupole 
moment in octahedral symmetry and that the pertur­
bation in going to D3 is small. (This is not necessarily 
true for all D3 complexes.) Consequently we may ap­
proximate the pr matrix elements by their angular 
momentum parts. When this is done the rotatory 
strength takes the form 

RA. -+E = 

'(My)(My) 
3I2ImI (Vx)(Mx) 

(Vx)(Mx)+ (My)(My) / A | E ; E A i 

(87) 

This is the result of Kuroda and Saito85 written in a 
somewhat different form. As can be seen, the approx­
imation of dropping the quadrupole contributions is 
equivalent to assuming that (p2x) = -(pxz) and (p^) = 
-(pyz). Since these matrix elements are both in prin­
ciple determinable by experiment, this equality can be 
checked. One problem is that the E and A2 transitions 
overlap so that a clear-cut experimental test may not 
be feasible. 

The R tensors given in eq 82 and 84 (or 87) may be 
used directly for complexes in which the 3-fold axis of 
the complex is parallel to the axis of the uniaxial crystal. 
For those crystals in which the complex axis makes an 
angle a with the crystal axis, it is necessary to bring the 
R tensor into the crystal frame. Switching now to a 
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phenomenological representation, the R tensors may be 
written as 

Rt C • ,),'«*-(b») (88) 

where a and b are the quantities that one tries to obtain 
by experiment and which are related to quantum theory 
by a = (M2)(M2) (eq 82) and b = (nx)(Mx) = (^y)(My) (eq 
87). We are here making the approximation that 
quadrupole effects are negligible, which is probably 
quite accurate for these transitions of cobaltammine 
complexes. If this is not true, then the equation on the 
right above would have to be replaced by 

Rf *E -

with elements correlating with eq 84. One could then 
demonstrate the presence of quadrupole effects by 
showing experimentally that the circular dichroism 
observed axially is not twice that observed perpendi­
cularly. One has, of course, the experimental problem 
of band resolution mentioned above. 

To return to the problem of nonparallel axes, if the 
axis of the complex is oriented at the polar angles a and 
/3 (latitude and longitude, respectively), then we can find 
its form in the crystal axis system by transforming by 
a rotation of a about the y axis and a rotation of /3 about 
the z axis.68 After this, since the crystal is uniaxial, we 
may average about the angle /3. We shall not go through 
these steps, which are standard in the literature, but 
only present the result. Given a diagonal matrix of the 
form 

B 
molecular axes 

this transformation, followed by averaging over /3, leads 
to 

/(A + B) + (A- B)C 

(A + B) + (A - B)C 
2 

A-(A- B)C) 

crystal axes (89) 

where C = cos a and a is the angle between the D3 axis 
and the optic axis of the crystal. For the A2 transition 
A = a and B = 0 (eq 88), so that 

For the E transition A = b and B = 26, giving the result 

6(3 - c2) 

R A,->E 6(3 - c2) (91) 

6(1 + c2)/ 

Values for cos a may be obtained from crystal struc­

tures;84 theoretical expressions for a and b are given in 
eq 82 and 87 (or 84). Also, since we have transformed 
to crystal axes, the Rzz component refers to propagation 
down the optic axis and the other two components to 
perpendicular propagation. Equations 89-91 contain 
the phenomenological relations derived by Kuroda and 
Saito85 but are more general. The application of these 
formulas will be given in the section on experimental 
examples. 

We will now go on to a brief discussion of the tran­
sition that is derived from the octahedral A lg —• T2g 

transition. This is quadrupole allowed but magnetically 
forbidden. In this case we expect the rotatory strength 
to develop from the combination of small electric mo­
ments of the ligands and large quadrupole components 
of the d-d transitions of the cobalt ion. The A1 —- A1 

transition is electric dipole forbidden in D3 symmetry 
and should have no dipole or rotatory strength unless 
the D3 symmetry is removed in the crystal. The rota­
tory strength tensor for the A1 —- E transition is again 
given by eq 84, since this applies to any E excited state 
in D3 symmetry. The difference is that we now expect 
the components of p r to be highly quadrupolar with 
only a small, and perhaps negligible, magnetic part. 
Making this approximation and using eq 86, we obtain 

-BA1 -*E Ae 

Re '-(Hy)(Qzx) 
(VxKQzy) 

(My)(©*z) - (M*)(Qyz)/A,E; EA1 

(92) 

In this instance we can partially check our approxi­
mation. If the A1 -* E transition has no magnetic 
moment, then the rotatory strength of this transition 
should disappear in solution, since quadrupole contri­
butions vanish on averaging over all orientations. 
Phenomenologically, quadrupole and magnetic dipole 
rotatory strength tensors differ in that the trace of the 
former vanishes. This is possible for the magnetic di­
pole rotatory strength, but does not occur for asym­
metric molecules. The phenomenological form of the 
quadrupole tensor for D3 symmetry is 

- 2 6 

with b = Uix)(Qy*) = -(My)(Q„). 
Quadrupole contributions have largely been ignored 

in the literature, but they have been discussed by 
Barron87 and have actually been calculated by Kru-
chek,88 using a model that couples the central quadru­
pole with the anisotropic bond polarizabilities of the 
ligands. 

We close this section with the comment that it is not 
really necessary to divide transitions into magnetic and 
quadrupole categories, though this may be convenient 
(as in A1 -»• A2) when high symmetry produces a clear 
subdivision. The matrix elements actually involved in 
the development of circular dichroism are the elements 
of p r such as pxz. These are just as easy to calculate 
as magnetic and quadrupole moments, and it has been 
the practice of our laboratory to evaluate all the sig­
nificant components of p r and then to combine these 
later to form magnetic and quadrupole moments. The 
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point is that the elements of pr are directly related to 
the manner in which radiation interacts with molecules 
to produce circular dichroism. This is not true in gen­
eral of either the magnetic or quadrupole moments. 

IV. Applications and Examples 

In this section we review briefly a wide variety of 
examples of polarization spectroscopy in the fields of 
biological, inorganic, and organic chemistry. The pur­
pose is to demonstrate the diversity of the method and 
its widespread use in structural chemistry as well as in 
the theory and interpretation of excited states. These 
examples were selected on the basis of our own famil­
iarity and should not be construed as evaluations of the 
status of polarization spectroscopy in these various 
fields. We had the choice of restricting ourselves to the 
relatively narrow regions of our own expertise or pro­
viding a less professional but more general coverage. 
We chose the latter in the hope of stimulating more 
transfer of information among the three major areas of 
application, which have so far developed in mutual 
isolation. 

A. Bfopolymers 

The natural state of many biological systems often 
consists of ordered arrays of molecules. Moreover, 
proteins, nucleic acids, polysaccharides, viruses, and 
other biological molecules or aggregates are large and 
can be readily oriented in electromagnetic, flow, or 
stress fields. As a consequence, studies of LD and CD 
on ordered arrays of biopolymer systems are numerous 
and varied. 

The aim of most of these investigations has been to 
obtain structural information on the biological systems, 
though there has been very productive work in the areas 
of helical excitons, energy transfer, and other specialized 
electronic properties of large aggregates of chromo-
phores. In the main, however, the approach is to com­
bine experimental information on the LD and CD of 
biopolymers in solution and in oriented systems with 
theories of interacting chromophores to obtain struc­
tural information. This requires detailed knowledge of 
the spectroscopic properties of the monomeric chro­
mophores (quantum states, energies, transition mo­
ments, wave functions), but because of the high im­
portance placed on biological structural problems, there 
is a great deal of such information available.89-91 The 
following is a sampling of the kind of questions asked. 
Are bases tilted in DNA?92,93 How are a-helices or­
iented in membrane proteins?94 How are nucleic acid 
helices oriented in phages?95'96 What is the orientation 
of DNA in chromatin?97-100 What is the orientation of 
absorbing units in chlorophyll proteins and retinal 
membranes?101'102 

1. Methods of Orientation 

Electric Fields. This has been one of the favored 
orientational techniques. The orientational distribution 
function is of the Langevin type with polarizability and 
permanent dipole contributions. The method has been 
thoroughly discussed in the monograph of Fredericq 
and Houssier103 and in a recent symposium.104 

Magnetic Fields. This procedure is useful only for 
very large systems or for very high magnetic fields.105,106 

It has the advantage of producing negligible perturba­
tions of structure even for flexible molecules. 

Flow Fields. Flow fields can be generated in Couette 
devices (rotating, concentric cylinders) or by pumping 
through capillaries or narrow gaps (Poiseille or related 
flow). Distribution functions as a function of gradient 
have been developed for rigid molecules modeled as 
ellipsoids758'76'77'778 and for long flexible chains.77b'107 

Film Stroking or Stretching. Thin fluid films of 
macromolecular solutions may be oriented by repeated 
stroking in a fixed direction. The orientational dis­
tribution is not known, but parallel and perpendicular 
bands can be identified.109 They may also be oriented 
in stretched solid films110 as discussed in the next sec­
tion. 

Transport through Gels. Very long polymers that 
are being transported through gels by electric fields 
must find channels parallel to the direction of flow. 
This provides a kinetic mechanism of orientation, which 
is at present being investigated.111-115 The strong ori­
entation associated with the electrophoretic migration 
of DNA in gels has subsequently been demonstrated by 
polarization spectroscopy.1153-0 

Natural Orientation. Many biological systems are 
naturally anisotropic and can be studied directly. 
Microspectroscopic techniques are often required be­
cause of the smallness of specimens. Examples are 
molecules in fibers, proteins in membranes, muscle 
tissue, chloroplasts, etc. The aim is usually the ex­
perimental determination of order parameters (section 
III.B) that may be compared with structural models. 

2. Specific Examples 

From the large amount of literature in this field we 
shall choose only a couple of examples. The first is the 
classical work of Holzwarth and his associates on the 
optical properties of oriented helices. The idea was to 
synthesize the results of careful measurements of ab­
sorption, linear dichroism, and circular dichroism. For 
polypeptides the interpretation was based on the as­
sumption that the absorption bands near 200 nm have 
the following components: an mr* band toward the red 
side of the absorption maximum; two strong bands 
polarized parallel and perpendicular to the helix that 
stem from helical excitons; and a helical "couplet", 
detectable only with CD, which is strongly predicted 
by helical exciton theory.67'69-70'116'117'1178 

Orientation was achieved in nonaqueous solvents by 
an electric field and in aqueous solution by streaming 
through a packed array of capillaries. The optical path 
was parallel to the electric field or flow, which is 
equivalent to the axis of a uniaxial system. As a result 
only DXx (or Dyy) and Rzz could be determined. The 
order parameter for these experiments was not known 
but was determined from the intensities of the parallel 
and perpendicular bands, which were of known polar­
ization. Quantitative curve fitting was applied to all 
three spectral properties: A, LD, and CD. Figure 8 
shows the results for the a-helix.118 The data used in 
the analysis included the vacuum circular dichroism 
data of Johnson and Tinoco,117a the isotropic absorption, 
and electric-field-induced linear and circular di­
chroism.118 Other helical systems were also studied in 
this way.119,120 These studies remain the most definitive 
investigation of the optical properties of helical systems. 
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Figure 8. Circular dichroism spectrum of a-helical poly(7-
methyl-L-glutamate). Reprinted with permission from the work 
of Mandel and Holzwarth118 (Copyright 1972 American Institute 
of Physics) and Johnson and Tinoco.117" (Copyright 1972 Am­
erican Chemical Society.) The upper panel contains the exper­
imental and fitted curves. The filled squares represent the vacuum 
circular dichroism data of Johnson and Tinoco. Below are the 
resolutions of the four components described in the text. Ab­
sorption and linear dichroism were also fitted to give a concordant 
set of parameters. The units of CD are deg-cmMmor1 on a residue 
basis. 

A second example is more qualitative and shows the 
type of information that is available from the study of 
linear dichroism of a complex biological system. Figure 
9 is a plot of the LD spectrum of tobacco mosaic virus 
(TMV) that has been oriented by flow.47 The virus 
consists of single-stranded RNA bound to protein to 
form a long, stiff rod that is easily oriented. There are 
three nucleic acid bases per protein molecule. An in­
teresting feature that immediately strikes the eye is in 
the region of 280-290 nm. The sharp reversals in LD 
arise from the interplay of the La and Lb of tryptophan, 
which have almost orthogonal transition moments. It 
is possible to estimate the order parameter of the 
tryptophan residues from these curves. With TMV it 
is possible to obtain rods of protein in the absence of 
nucleic acids. The LD of these rods may be used to 
approximate the LD of the protein in the full nucleo-
protein complex. Subtraction then leads to an estimate 
of the LD of the nucleic acid moiety. This provides a 
value for the order parameter of the nucleic acid bases 
in the complex. The spectrum is dominated by the 
peptide bond in the neighborhood of 200 nm, which 
leads to information on the orientation of peptide 
groups and helices. The minimum-maximum combi­
nation, which is seen at 210-190 nm, arises from an 
array of helices with axes perpendicular to the phage 
axis. Thus the usual pair of LD bands is inverted 
relative to the spectrum of axially oriented a-helices. 
Our current knowledge of the structure of this virus is 
based mainly on diffraction techniques,121 but linear 
dichroism remains an excellent technique for observing 
changes in structure that occur in solution. For com-

30 

20 

10 

" 3 0 35 40 Li 50 

v(kK) 
Figure 9. LD spectrum of TMV. Reprinted with permission from 
ref 47. Copyright 1973 Israel Academy of Sciences and Hu­
manities. The variations in the curves arise from two different 
preparations and varying gradient and buffer concentration. The 
symbol S" is equivalent to LD/2. 

plete spectra, including protein and difference spectra, 
see ref 47 and 11. 

B. Linear Dichroism of Stretched Films 

A method for which there is very extensive experi­
mental and theoretical literature employs stretched 
films as an orienting medium.3'78,79b'123'125"127 The films 
are usually sheets of polyvinyl alcohol), polyethylene, 
or other suitable material stretched in one direction to 
several times their normal length. It is assumed that 
the stretching is uniaxial and produces a uniaxial optical 
system.78 With Z the direction of stretch and X the 
thin dimension of the film, we then have Ax - AY, 
where A1 indicates the absorbance for light propagated 
perpendicular to the film and polarized in the I direc­
tion. AY and A2 are the measurable polarized absorp­
tion. The substance under investigation is dissolved in 
the film. Essentially identical results are obtained by 
dissolving the absorbing molecule either before or after 
the stretching, indicating that it is the stretched state 
rather than the process of stretching that determines 
the anisotropic properties. Experimental procedures 
are discussed in ref 78, 123, 125-127, 3, and 79b. 

Work in this field differs from other areas of polarized 
absorbance in that the common practice is to measure 
A2 and Ay as conventional polarized spectra, rather 
than measuring AA or LD directly as discussed in 
previous sections. The results are, however, so closely 
related to the theme of this review that we include a 
summary, even though polarization modulation spec­
troscopy is infrequently used (see, however, ref 3). 
Relatively large differences in A2 and AY are required 
for this procedure to be accurate, but this can normally 
be attained. 

One aspect of comparing polarized absorbances rather 
than AA or LD is that the order parameters of eq 78, 
79, and 81 are no longer uniquely convenient measures 
of anisotropy. Instead it is a common practice to use 
the elements of an orientational tensor 

/ Kxx Kxy Kxz \ 
K(Z)=I Kyx Kyy Ky2 1 (93) 

\ Kzx Kzy Kzz ' 
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where, for example, Kxy = (cos [xZ] cos \yZ\) and lower 
case letters designate molecular axes. A specific set of 
axes will be selected below. Thus the Kag are averages 
of the products of the direction cosines of the three 
molecular axes with the direction of stretch. Matrices 
K (Y) and K(X) can be defined, which are formed from 
products of direction cosines of the molecular coordi­
nates with the film Y and X axes but these need not 
be used explicitly. We have in general 

K(X) + K(Y) + K(Z) = J (94) 

where I is the unit matrix. Also for a uniaxial medium 
K(Y) = K(X) and Jf(X) and K(Y) can be eliminated 
from the formulas via the relation 

K(Y)=K(X) = Y2(I-K(Z)) (95) 

For this reason the identifier Z will be dropped, and K 
is understood to refer to the direction of stretch. 

We may now use eq 72 to analyze the linear dichroic 
properties of films with TL and TM representing the 
absorbance tensor in the film and molecular frames, 
respectively, and O the matrix relating the two sets of 
coordinates. 

Av = vOAM(Tlv (96) 

For polarization in the Z direction, v = (0,0,1) and 

Azz = HOZaAapgz-
1 = T,Ka0Aa$ a,/3 = x,y,z 

a,g a,0 

= Tr [KA) 
(97) 

Since O is orthogonal, we have put Op2'
1 = OZ0 and 

replaced 0ZaOz$ with Kag in accordance with eq 93. It 
is recognized that A is a function of wavelength and 
may be the sum over several bands in the case of 
overlapping bands. Also in replacing 0ZaOz$ with Ka$, 
averaging over the orientational distribution of the 
absorbing molecule . has been performed, Kag = 

if is a symmetric matrix and can be diagonalized. 
The axes of the coordinate system for which K is di­
agonal have been called the orientational axes.78 By 
convention the z orientational axis is the one that has 
the greatest average component along the direction of 
stretch, the x axis the least, and the y axis the inter­
mediate component. From here on it is assumed that 
the orientation axes have been selected as the molecular 
coordinate system. In this system the off-diagonal el­
ements of eq 97 vanish and we have 

Az = 2- KaaAaa = 2_, K0A01 (98) 
a-x,y,z a=x,y,z 

In the above the diagonal elements of the orientational 
tensor K and the molecular absorbance tensor A have 
been shortened to one index, as is customary. In this 
coordinate system the other experimental quantity, Ay, 
is given by 

Ay = EK(Y)aaAaa = V2E(I - KJAa (99) 

Here K(Y) has been eliminated by the relations 
(cos2 (Xa)) + (cos2 (Ya)) + (cos2 (Za)) = 

K0(X) + Ka(Y) + Ka(Z) = 1 
the laws of direction cosines, and 

Ka(X)=Ka(Y) = [l-Ka(Z)]/2 

from eq 95. 

We now distinguish two cases. If there is sufficiently 
high symmetry (C2v, D2h, or higher), the use of coordi­
nates based on molecular symmetry axes will diago-
nalize both the orientation tensor K and the molecular 
absorbance tensor AM. A nondegenerate transition 
moment will contribute to one of the three diagonal 
elements, Aa. A 2-fold degenerate transition will con­
tribute equally to two of the elements Aa. The problem 
with this type of molecule is not to determine the angle 
of the transition moment in the molecular frame but 
to decide in which of the three possible directions it lies. 
This is often not a very difficult problem. One may 
have additional information, e.g., 71—71-* transitions lie 
in the nodal plane of the ir system. The TEM method 
(Thulstrup, Eggers, Michl) takes advantage of this 
feature. It also makes use of spectral superpositions to 
resolve the Az and AY into the three spectra Ax, Ay, and 
A2 and to determine the orientation factor. In addition, 
the use of polarized IR spectra on the same specimens 
can provide information on K1 and Ky if the directions 
of the IR transition moments are known. The details 
of these resolution techniques would take us too far 
afield, so the reader is referred to papers where they are 
described in detail.3-79b>125-127 

For molecules of lower symmetry, the transition 
moment directions do not coincide with the directions 
of the orientation axes. Assume that a transition, i, has 
direction cosines cos <j>x, cos <t>y> and cos 4>2 with the 
orientation axes. The absorbance tensor in the orien­
tation axis coordinate system may be regarded as being 
transformed from a molecular coordinate system in 
which the transition moment i is aligned along the z axis 

Afyz=0'( 0 \o"1 

where O' is the matrix that effects the transformation. 
Ai is the absorbance of transition i with the polarization 
of light aligned along its transition moment, and Af2 

is the absorbance tensor in the coordinate system at the 
orientation axes. Because of the form of eq 98, only the 
diagonal elements of O' in the orientation axis coor­
dinates are required. We have already seen that the 
squares of direction cosines appear on the diagonal for 
this type of transformation. Hence the absorbances for 
Z- and Y-polarized light are 

AiZ = T.Ka cos2 (J)1xA1= K1Ai 
a 

AiY = Ey2(I - Ka) cos2 <j>a A1 = y2(l - Ki)A1 
a 

and summing over transitions for the general case of 
overlapping bands 

AA) = ZK1A1(X) 

Ay(X) = (1/2)L(1 - K1)A1(X) (100) 

The problem of solving such spectra is considerably 
more difficult than the high-symmetry case: methods 
of procedure have been outlined in a number of pa­
pers. 3'78-79b.123 Tactics include superpositions of spectra 
which null absorption bands, use of symmetry, shape, 
or other known characteristics of the molecules in 
question, and the use of ancillary spectral properties 
such as infrared dichroism, polarized fluorescence, etc. 
Successful studies are quite numerous, and again we 
refer the reader to the literature for more details. 



1392 Chemical Reviews, 1987, Vol. 87, No. 6 Schellman and Jensen 

0 5 

I r 

Figure 10. Orientation triangle. Reprinted with permission from 
ref 125. Copyright 1980 American Chemical Society. The vertical 
distance from the line Ky = 1 - Kz gives Kx. Typical shapes 
corresponding to various points on the perimeter of the triangle 
are shown. 

Because Kx + Ky + K2 = 1 there are only two inde­
pendent orientation functions (normally K2 and KX As 
a result, the orientational properties of a molecule can 
be represented on a planar diagram. Because we also 
have K2^ Ky^ Kx by convention, all molecules and all 
degrees of orientation must occupy a limited area of the 
K2yKy plane. A totally random distribution (isotropic 
film) is represented by the point C/a^/a). A totally 
oriented molecule (z parallel to Z) is represented by the 
point (1,0). If the x axis is perpendicular to Z but the 
orientation is otherwise random, then Ky = K2 and the 
point C/2,1A) is occupied. All other orientations must 
occupy the triangle formed by these three points as 
shown in Figure 10. In section III.B we discussed the 
special case of molecules that are effectively cylindri-
cally symmetric either by possession of a f-fold axis with 
v > 2 or by virtue of rotational averaging. These sys­
tems occupy a special place in the K2,Ky diagram. If 
the symmetry axis tends to align with Z, then Kx = Ky 

and the systems fall on the line K2 + 2Ky = 1, between 
the points ( 1 A J 1 A ) and (1,0). Rod-shaped molecules 
tend to have this orientation in stretched films as well 
as in electric, magnetic, and hydrodynamic fields. If 
the symmetry axis tends to antialign with the direction 
of stretch (symmetry axis is x axis), then K2 = Ky. 
These systems fall on the line between ( 1 A J 1 A ) and 
( 1 A J 1 A ) - This is characteristic of the orientation of 
disks. Finally, all systems with the x axis totally aligned 
perpendicular to the Z axis have Kx = 0 and K2 + Ky 

= 1. These points fall between (1Z2,
1/2) and (1,0). These 

features are illustrated generally in Figure 10 and with 
many examples in Figure 11. The construction is called 
the orientation triangle. 

The K parameters are trivially connected with the S 
parameters (S i ; =

 1Z2(SKiJ - Sy)), so the entire analysis, 
including the orientation triangle, can be formulated 
in terms of S22 and Syy.

3,121 Polarization modulation 
measurements give A2 - AY directly. Then from eq 100 
the reduced linear dichroism is3 

AA ^ AZ-AY _ ZK1A1 - 1Z2E(I - K1)AJ ^ 

A A A 
„ (%Ki - 1Z2)A1 SXXAX + SyyAy + S22A2 

SXxex + Syyey + S22ez 
(101) 

K, 

Ax and ex, etc., refer to absorbances and extinction 
coefficients for light polarized along the molecular x 

Figure 11. Orientation factors for aromatic molecules in stretched 
polyethylene films. Reprinted with permission from ref 126. 
Copyright 1982 American Chemical Society. Note permutation 
of coordinate labels from Figure 10. "There is a mistake in the 
original figure (ref 126) in that the formulas for phenazine (37) 
and acridine (25) are interchanged, and the point 66 is misplaced 
(it should overlap the point 67)" (personal communication from 
the authors). 

axis, etc. Note that if deviations from Beer's law can 
be ignored, ratios of absorbances can be converted to 
ratios of extinction coefficients, since path length and 
concentration cancel out. Measuring LD directly by 
polarization modulation techniques is much more ac­
curate and sensitive than measuring absorption spectra 
and subtracting them. Equation 101 provides a for­
malism for analyzing LD data. 

The two main problems of polarization spectroscopy 
are the unscrambling of optical effects as outlined in 
the phenomenology section and the evaluation of the 
distribution function. We have discussed the stretched 
film case at some length because work in this area has 
shown what can be done without a theoretical distri­
bution function. For the optical properties which are 
the concern in this article (LD, LB, CD, CB), it is not 
necessary to know the distribution function itself but 
only its second moments as exemplified by the Ka or 
Sap. Though many of the film procedures are special­
ized for uniaxial samples, they should prove useful in 
the analysis of data when other means of orientation 
are employed. 

The alignment of solute molecules in stretched films 
depends on specific molecular interactions with the 
oriented solute environment and cannot easily be 
modeled in terms of generalized orientation functions. 
The same situation prevails in crystals and liquid 
crystals, though in the former case X-ray diffraction 
studies can provide precise orientational distribution 
functions, usually one or more 5 functions in angular 
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space. In contrast, the orientation by electric, magnetic, 
and flow fields is adaptable to treatment by general 
physical forces (orientation via permanent electric di-
poles and electric polarizability,103,104 magnetic suscep­
tibility,105,106 equivalent ellipsoids in flow fields,76 etc.). 

Most workers in the field of stretched films treat the 
orientation functions as an empirical quantity and 
perform ancillary experiments and data analysis to 
obtain the second moments of the distribution, which 
is sufficient to relate laboratory measurements of LD 
or CD to the molecular tensors. This is the approach 
outlined in this section. There have, however, been a 
number of theoretical discussions of the mechanism of 
orientation of both solutes and solvent matrices in 
stretched films and liquid crystals. These will not be 
discussed here because they have just been extensively 
reviewed and discussed in ref 79b. 

C. Single-Crystal Circular Dichroism Spectra of 
Coordination Compounds 

There have been a large number of experimental and 
theoretical studies of the electronic origin of optical 
activity in coordination compounds84,128-134 but, despite 
a wealth of information, the mechanisms are not yet 
fully understood. As pointed out by Geiser and 
Giidel,135 this situation arises partly from a communi­
cation problem. On the one hand, the experimentalists 
find the theory intractable,84'132,134'136"138 while, on the 
other hand, the theorists are usually trying to interpret 
the solution CD spectra, which do not offer an adequate 
basis for theoretical analysis. An initial attempt to 
overcome this difficulty was made as early as 1963 by 
McCaffrey and Mason,128 who presented the first ex­
ample of single-crystal circular dichroism spectroscopy 
by propagating the probing light beam along the axis 
of hexagonal crystals of A-(+)D-2[Co(en)3]Cl3vNaCl-
6H2O (en = 1,2-ethanediamine). In this instance the 
light beam is parallel to the D3 axis of the complex, 
permitting the direct observation of the rotatory 
strength of the A1 —+ E transition of this complex. See 
section III.B.4 for a discussion of the electronic states 
of D3 systems and of their polarization properties. 

There have been many subsequent studies, especially 
of [Co(diamine)3]

3+ ions. The technique usually is to 
combine observation along the axis of a uniaxial crystal 
with CD measurements on samples of randomly or­
iented microcrystals.84'85'128 The form of the CD tensor 
for uniaxial systems is 

V (1O3Cm"1) 

( ' * . ) 
Measuring along the axis provides a measurement of 
B. Measurements of randomly oriented crystals de­
termines one-third the trace, (2A + B)/3. It is thus 
possible to combine these measurements to get an in­
direct determination of A and eventually the rotatory 
strength of the A1 —»• A2 transition, which cannot be 
observed with light propagating along the axis. The 
purpose of this strategem is to avoid making off-axis 
measurements on the crystal, because of the potential 
interference of LD artifacts (see section ILH). We now 
outline this method. 

Because of the strong overlap of the visible A2 and 
E bands of cobaltammine complexes, it is not possible 
to measure the circular dichroism of either band sepa-

iog £ 

400 450 500 550 
X (m/j) 

Figure 12. Circular dichroism and absorbance of [Co(en)3]3+:138a 

(—) (+)D-Co(en3)(C104)3 in a KBr disk; (—) (+)D-Co(en3)Cl3-3H20 
in aqueous solution; (• • •) same compound in KBr disks. 

rately. Instead, CD measurements are sums of the 
contributions of both bands. From eq 55 this means 
that the CD tensor will be of the form 

Ae = (4\/K)[ak2R(A2) + aER(E)] (102) 

where aA and <7E are shape factors for the A2 and E 
bands and JJ(A2) and R(E) are their respective rotatory 
strengths. K is a constant factor (eq 45). This is the 
tensor equivalent of the standard solution equation 

A€ = (4\/K)(aA2RA2 + ffERE) 

where .R(A2) and R(E) are the usual rotatory strengths 
given by one-third the trace of R (A2) and R (E). (The 
band shapes, a, may vary with the direction of propa­
gation, but this complication is usually neglected.) The 
rotatory strengths of the A2 and E bands largely cancel 
in isotropic systems, producing typical "couplet" spectra 
as outlined in Figure 12. The forms for R(A2) and 
JR (E) for crystals in which the D3 axis of the complex 
is parallel to the crystal axis are given in eq 82 and 87. 
Using these, we rewrite eq 102 in the form 

Ae = 
a + 

a + b 
26 

(103) 

where a and b contain not only the matrix elements for 
the rotatory strength but the shape and constant factors 
as well. 

a = (6\/K)*A2 Im ((^)0A2(AQA20) 

b = (6X/K)ofe Im ((M,)OE(MX)EO) 

It is clear from eq 103 that the relative contributions 
of the a and b terms vary as a function of light path, 
and this allows the resolution of the a and b compo­
nents. The method outlined above makes use of mea­
surements along the optic axis for which A«n = Ib and 
measurements of a polycrystalline sample that provides 
an average over all crystal orientations 

Aeav = V3Tr(Ae) = %(2a + 46) (104) 
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Figure 13. Polarized and resolved spectra of the [Co(en)3]
3+ 

chromophore in a hexagonal crystal.139 On the left the solid curve 
represents data taken with the light beam parallel to the C3 axis 
at the complex, and the dotted curve perpendicular to this axis. 

Combination of the two experimental results (Aeav -
2/3Ae|| = 2Z3Ci) permits the indirect determination of the 
A2 spectrum. 

Solution spectra are also given by eq 104, but the 
shape factors and rotatory strength components may 
be different because of the different molecular envi­
ronment of the chromophore. 

The method just outlined avoids LD and LB artifacts 
by using isotropic samples and optic axes. As discussed 
in section III.A.4, the weak transitions of coordination 
compounds are favorable to crystal studies, and it 
should be possible to measure circular dichroism per­
pendicular to optic axes when the birefringence is small. 
Because LD and LB have parallel axes in uniaxial 
crystals, the W artifact of M02 (Table V or VI) vanishes 
in the crystal itself, and one only has the usual worry 
of minimizing the interaction of these elements with 
linear anisotropics of the measuring apparatus (strain, 
effective LD of the photomultiplier, etc.). With small 
birefringence, the V artifact will also be small (Figure 
IB). For this case the parallel and perpendicular 
measurements yield the results 

Ac,, = 26 Aex = a + b = (Aex - Ae„)/2 

Such parallel and perpendicular observations were 
made on uniaxial crystals of the A-(+)D-[Co(en)3]3+ 

chromophore139 (see Figure 13A). Taking, for example 
X = 500 nm, the numerical data are (in units of dm3 / 
Mem) 

At I, = 18.3 Aex = -4.0 

b = 18.3/2 a = -4.0 - (18.3/2) = -13.2 

If we wish to convert to equivalent averaged circular 
dichroisms, we have 

Ae(E) = % Tr (Ae(E)) = 46 /3 = 12.2 

Ae(A2) = 1Z3 Tr (Ae(A2)) = 2 a / 3 = -8.8 

In this way one obtains the resolved curves of Figure 
13B. The crystal spectra should be contrasted with the 
solution spectrum of the complex shown in Figure 12. 

Next we consider a case in which the direction of light 
propagating through the crystal does not coincide with 
the symmetry axes of the molecular unit; i.e., it is not 
parallel or perpendicular to the C3 axis. We assume that 
there is only one complex ion per unit cell or, if more 
than one, that they have parallel C3 axes. For this case 
it is most convenient to use eq 55 directly in the mo­
lecular coordinate system. Since k is usually perpen­
dicular to a crystal face, it corresponds to an indexed 
crystal axis. Once the crystal structure is known, it is 
an easy task to calculate the three direction cosines of 
k in the molecular coordinate system. We label the 
direction cosines a, 0, and y, referring to the x, y, and 
2 molecular axes. 

For the A2 band 

Ae (A2)=(a,H,y) ( a )( /3 

= a(a7 + (32) = a ( l - 72) (105) 

For definitions of a and b, see eq 103 and following text. 
For the E band 

Ae(E) = (a,0,y) 
2b/ V7 

= b(a2 + (32 + 2 7
2 ) = 6(1 + 72) (106) 

In both cases only y, the z direction cosine of the 
propagation vector, enters into the final equation. 

We consider now a real example, the CD spectrum 
of (+)D-[Co(tn)3]Br3 (tn = 1,2-propanediamine) in its 
monoclinic crystal with light propagating along the 
crystallographic b axis.140 AU the direction cosines are 
listed in ref 140. We note only that y2 = 0.80. Thus 
Ae(A2) = (1 - 0.80)a = 0.20a and Ae(E)= (1 + 0.80)6 = 
1.806. We recall that for light parallel to molecular axis 
z the CD is 26, therefore 90% of the maximum CD 
signal of the E band is developed along the 6 axis and 
20% of the maximum A2 signal. 

Thus 

A«b-axis(A2 + E) = 0.20a + 1.806 (107) 

as reported.140 There are two unknowns in eq 107, so 
an independent measurement must be made, either on 
a polycrystalline sample or in another direction in the 
crystal. This may not always be practicable for 
monoclinic crystals. As discussed in section ILH, the 
W artifact in M02 (Table V) cannot be eliminated in 
crystals of low symmetry except in special directions 
or by studying optical effects as a function of crystal 
thickness. 

Another important class of crystals has been dis­
cussed and analyzed by Saito and his co-workers.84'85 

These are uniaxial crystals in which the D3 axes of the 
complex are not parallel to the unique axes of the 
crystals. This case was discussed in eq 89-91. It 
presents no new problems. Since the angle of the C3 

axis with the optic axis is known, there are still only two 
unknowns, a and 6. The equations are a bit more 
complicated, but the method of solution is the same as 
outlined for the simple uniaxial case discussed above. 
See eq 90 and 91. 

Measuring the polarized spectroscopy of oriented 
systems almost invariably provides more information 
than standard liquid- or gas-phase spectroscopy. This 
is especially true of systems with low symmetry but 



Optical Spectroscopy of Oriented Molecules Chemical Reviews, 1987, Vol. 87, No. 6 1395 

applies as well to systems of high symmetry, as the 
examples in this section show. Chiral coordination 
complexes are often very weakly perturbed from a 
parent Oh symmetry. The result is a strong overlapping 
of bands that, to a first approximation, tend to have 
equal and opposite rotatory strengths. Because of this 
cancellation, one does not know even the order of 
magnitude of the rotatory strengths of the individual 
bands and therefore cannot determine the values of the 
spectroscopic matrix elements. This type of circular 
dichroism band is called a couplet, and it is known that 
the amplitudes of the peak and trough depend not only 
on the values of the rotatory strengths but also on the 
splitting between the positive and negative bands. The 
latter is unknown because it is usually too small to be 
detected by conventional spectroscopy if, as is fre­
quently the case, the band separation is less than the 
bandwidth. It is also known for this case that the band 
splitting is not equal to the wavelength separation be­
tween the peak and trough of the solution CD curve. 
For small splittings this is a measure of bandwidth and 
not of the splitting itself. These problems are elimi­
nated in principle by studies on crystals or other sys­
tems of known orientation. Separation of the spectra 
into two component spectra not only provides values 
for dipole and rotatory strengths but a measure of the 
band splitting, which is clearly an important component 
in understanding the interactions of complex ions. If 
circular dichroism studies are supplemented by crystal 
linear dichroism studies, it is possible to obtain values 
for the three components of both the electric and 
magnetic transition moments for the A1 —»• A2 and A1 
-»• E transitions. This presupposes negligible quadru-
pole effects as outlined in section III.B.4. The theory 
of the circular dichroism of complex ions is not as yet 
in a complete state, and detailed experimental results 
on the rotatory and dipole strength tensors are espe­
cially useful. See ref 132 and 134 for an account of the 
theory, including complex ions of more general sym­
metry types than the D3 systems discussed above. 

D. Liquid Crystals 

A very effective way of achieving the partial ordering 
of solute chromophores is by dissolving them in liquid 
crystals. Linear dichroism in a uniaxial optical system 
can be established by forming solutions in nematic 
liquid crystal phases,79'79a'140a'b'141'142 a technique that has 
been called LCLD (liquid crystal linear dichroism). It 
is also possible to study the CD or ORD of molecules 
that have been ordered in this way, and we refer the 
reader to the papers of Kuball and Altschuh and their 
collaborators whose studies have been exceptionally 
thorough on both the experimental and theoretical 
side.79'79a,140a'b'143 

In addition to these uniaxial systems, which are es­
pecially convenient for observing the linear and circu­
larly dichroic tensors of oriented molecules, there is also 
the possibility of using cholesteric liquid crystals as 
solvents. Here the macroscopic helical structure of the 
cholesteric liquid phase can induce a circular dichroism 
in dissolved guest chromophores.144-146 This has been 
called the LCICD effect (liquid-crystal-induced circular 
dichroism). Conversely, the dissolution of chiral mol­
ecules into an achiral nematic phase can induce a 
transformation to a cholesteric system. Theoretically 

nm 

Figure 14. Linear dichroic spectrum of 9,10-diazaphenanthrene 
showing three axes of polarization in the molecule. Axis c is 
assumed parallel to the nematic axis. The a and 6 axes are in 
plane and out of plane, respectively. Figure adapted from Sa-
mori.141 

one would predict two mechanisms for the generation 
of CD in a cholesteric phase with either or both being 
operative, depending on the geometry and interactions 
of the particular system. The first is via local chro-
mophore-solvent interactions with the chiral phase. 
This is a well-known phenomenon with solutions of 
achiral molecules in chiral solvents that are ordinary 
liquids, but the effect should be accentuated with 
partially ordered solutes. The second is by the forma­
tion of long-range helical arrays of the dissolved chro-
mophore in the helical matrix of the cholesteric phase. 
A recent analysis65 has indicated that instrumental 
anisotropies may have contributed to some measure­
ments of LCICD, and for this reason we shall confine 
our examples to a discussion of nematic systems with 
the emphasis on LCLD. 

Figure 14 is a demonstration figure presented by 
Samori141 to show the linear dichroism expected for 
9,10-diazaphenanthrene, which has three mutually or­
thogonal transitions in the near ultraviolet when the 
long axis of the molecule is preferentially oriented along 
the axis of a nematic liquid crystal. The orientation 
function for a guest molecule in a nematic liquid crystal 
depends in a delicate way on the interactions of the 
molecule with its environment and on the perturbations 
of the nematic structure caused by the inclusion of the 
guest molecule. There is therefore no universal orien­
tation function, and the orientation parameters must 
be obtained by methods like those described in the 
stretched-film section above (see especially the refer­
ences to Thulstrup, Michl, Eggers, and Norden). In 
cases where the directions of the transition moments 
are already known, the orientation parameters can be 
determined fairly readily. This is very important in­
formation for the theory of liquid crystals. The orien­
tation parameters are correlated with the anisotropy of 
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molecular forces in the liquid crystal, and quantitative 
orientational distributions are required for testing 
models for the forces between nonspherical molecules 
(see ref 75, 147, and papers by Stone, Zannoni, Luck-
hurst, van der Meer, and Vertogen and by Cotter in ref 
148). 

As a second example we mention the study of the LD 
and ORD of the mr* transition of the C = C — C = O 
chromophore of testosterone propionate dissolved in the 
compensated nematic phase of mixtures of cholesteryl 
chloride and cholesteryl laurate.79'140b The data are 
accompanied by an extensive interpretation and theo­
retical discussion. This is an especially interesting 
spectroscopic problem because of the comparative 
richness of the vibronic structure of this absorption 
band. There is considerable theoretical interest in the 
resolution of the polarization and CD properties of 
vibronic progressions that arise from vibrations of 
different symmetry. 

Finally an applied interest in the linear dichroism of 
liquid crystals has been generated in connection with 
the development of liquid crystal display devices, and 
an extensive technical literature has developed.142'149-151 

V, Conclusions 

Until about 20 years ago, electronic transitions were 
rarely studied by using polarized light. After the pio­
neering investigations of Cotton152 and Kuhn,153 circular 
dichroism studies were limited to a few scattered 
measurements. Linear dichroism studies on crystals 
and other oriented systems were limited mainly to the 
papers of Simpson and his students,154 who had de­
termined the directions of the transition moments of 
a few important chromophores. The field, however, 
remained in the hands of experts in spectroscopy. 

This has all been changed in the past two decades. 
Circular dichrometers now exist in virtually every re­
search department of chemistry, biochemistry, and 
biophysics, and linear dichroism measurements are now 
routinely made by biophysical, organic, polymer, and 
inorganic chemists as well as by electronic spectros-
copists. This progress stems mainly from important 
instrumental advances with respect to the accuracy, 
sensitivity, and convenience of making measurements. 
The central feature of these instrumental advances is 
the use of polarization modulation, which (1) permitted 
the direct observation of LD, LB, CD, and CB and (2) 
replaced DC circuitry with lock-in amplifier technology, 
thereby vastly increasing the signal-to-noise ratio. It 
was evidently the seminal papers of Grosjean and 
Legrand438 that guided both research laboratories and 
instrument manufacturers into a wave of new develop­
ments. 

Certain types of measurements are now standard and 
direct. CD and CB can be easily measured in isotropic 
samples. LD and LB are easily measured in achiral 
samples and usually in chiral samples as well if the 
linear polarization effects are very much stronger than 
the circular polarization effects, which is usually the 
case. Difficulties arise in attempting to measure circular 
anisotropics in the presence of strong linear anisotropics 
or whenever circular and linear anisotropics are of the 
same order of magnitude. 

There are, in general, three stages in the development 
of polarization spectra. The first is the measurement 

itself. In terms of the methods discussed in this review, 
this means the evaluation of one or more of the transfer 
functions of the sample, Le., one or more of the Mueller 
matrix elements. It is now generally realized that the 
important barrier to good measurements is the inter­
action of the optical anisotropics of the sample with 
those of the instrument to produce spurious effects. 
These artifacts were discussed in the section on ex­
perimental apparatus in section II. 

The next stage is the unscrambling of the Mueller 
matrix element when this is necessary. Some proce­
dures for handling this problem were discussed in the 
phenomenology section (section II). Measurements of 
the chiral properties of nonuniaxial samples is difficult, 
and sometimes impossible, except for certain directions 
of propagation of light. The linear birefringence should 
always be known when attempts are made to interpret 
the chiral properties of a sample that is linearly aniso­
tropic. Studies in which the path length is varied can 
often detect and eliminate artifacts, etc. 

The third stage is the interpretation of the basic op­
tical properties (LD, LB, CD, CB). Usually this means 
making use of standard formulas relating these quan­
tities with quantum mechanical matrix elements of the 
operators for the electric dipole, magnetic dipole, and 
electric quadrupole. These formulas can only be used 
if the lattice gas approximation is applicable. If there 
is extensive interaction between chromophores on dif­
ferent molecules, the lattice gas model can lead to re­
sults that are seriously in error. This aspect of the 
problem was discussed in section III. 

Once these hurdles have been overcome, the results 
are usually applied in either of two ways. In the first 
the orientation and structure of the molecules under 
investigation are known. This permits the evaluation 
of the matrix elements for the electronic excitation and 
leads to information on the electronic structure of the 
excited state. Evaluation of a number of matrix ele­
ments leads to much more stringent tests of wave 
functions than a simple measurement of the position 
and intensity of the absorption band. In the second 
type of application it is assumed that the electronic 
state of the chromophore is understood, and the aim 
of the study is to determine either the orientation of 
the molecules or their structure. This type of study is 
especially important for biological systems and in the 
study of high polymers. 

Many workers who decide to perform polarization 
studies are not aware of the pitfalls. With a good in­
strument and a favorable cleavage, it is just as easy to 
get a reading from a circular dichrometer on a triclinic 
crystal as on an ordinary solution, and the uninitiated 
may make the naive assumption that only circular di­
chroism is being measured. In many cases such a sim­
plistic interpretation is perfectly applicable, but caution 
is absolutely essential when CD or CB is being mea­
sured in the presence of linear anisotropics. The pur­
pose of this review has been to look at the general case, 
with all its difficulties, and to use this more general 
vantage point to establish what experimental situations 
are likely to cause problems and, to the extent that we 
are able, to suggest methods for overcoming them. 
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