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/. Introduction 

Over the past few years we have explored the use of 
differential geometry and minimal surfaces in chemis
try. We have applied it to describe inorganic or metal 
structures,1-3 non-Euclidean saddle polyhedra and nets, 
phase transitions such as the martensite transforma
tion,4 the absorption of gases in zeolites,5 the structures 
and transformations of lipid bilayers,6 and the structure 
of starch7 and also to derive a model membrane con
sisting of a lipid bilayer with a regular array of protein 
units.8 We have enjoyed an excellent collaboration with 
H. G. von Schnering and R. Nesper of MPI, Stuttgart, 

•Inorganic Chemistry 2, Chemical Center, University of Lund. 
1 Department of Applied Mathematics, Institute of Advanced Stud
ies, Australian National University. 
8 Department of Food Technology, Chemical Center, University of 
Lund. 

and their discovery9,10 that solids have periodic equi-
potential or zero-potential surfaces, which are identical, 
or nearly so, with periodic minimal surfaces, is of course 
very important. 

In order to perform these studies it was essential for 
us to comprehend the mathematics of periodic minimal 
surfaces. A first and important step was the numerical 
solution of the Weierstrass equations.2 Most important 
of all was the systematic derivation of complex analytic 
functions (R(o>)) for any minimal surface.11 A third step 
is the use of space group stereohedra derived by Bash
kirov as free boundaries in obtaining several new in
tersection-free periodic minimal surfaces.12 A fourth 
and equally important step must be the work by Fischer 
and Koch13 in describing a method to deduce all 
group-subgroup pairs of space groups compatible with 
five new beautiful periodic minimal surfaces without 
self-intersections. Two of these surfaces seem to be 
similar13 to two of those derived by Schnering and 
Nesper by Ewald calculations. This is not surprising 
considering that similar symmetry conditions are used 
by the two groups in their work in finding new surfaces 
useful in solid-state science. 

The basic idea behind this work is that the intrinsic 
properties of these surfaces in their representation of 
molecules or structures must provide us with informa
tion about the connection between curvature and 
bonding, or, in other words, how to describe the chem
ical bond with differential geometry. This will then 
help us to understand how atoms or ions move in solids 
and how porous solids such as zeolites, "barreP-like 
proteins, and helicoid-shaped molecules such as cellu
lose, collagen, and starch absorb and/or transform other 
molecules or catalyze reactions; a structure in its 
bonding and interaction with molecules follows the 
metric of its surface. 

I I . Short History 

Early last century the first periodic minimal surface 
(T) was derived by the French mathematician Ger-
gonne. In 1853 Riemann discovered the D surface, and 
Schwarz rediscovered these two surfaces and added 
three new ones, the H, CLP, and P, around 1880.14 

Neovius, a student of Schwarz, realized that the P and 
D surfaces are related by the Bonnet transformation 
and used this technique to derive his surface.15 In the 
1960s the American physicist Alan Schoen discovered 
many new periodic minimal surfaces using soap films 
with partially free boundaries16,17 Donnay, Nissen, and 
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Pawson recognized the morphology of single calcite 
crystals in platelets of sea urchins to be that of the P 
surface.18 Scriven19 was the first to suggest periodic 
minimal surfaces as a model for liquid crystal phases 
in 1976, and this was developed further by Larsson, 
Fontell, and Krogh20 in 1980. The similarity between 
surfaces and zeolite structures was recognized by 
Mackay in 1979.21 

/ / / . Why Minimal Surfaces 

In a search for unifying methods of describing com
plicated crystal solids, B. G. Hyde and one of us put 
forward a logical and axiomatic theory a few years 
ago.21-23 One finding was that complicated structures 
can be described as built of small units of simple 
structures or building blocks—the mathematical tool 
is then obviously matrix algebra.24 

The blocks are always repeated to build a structure 
via the classical operations: translation, rotation, and 
reflection. 

A good illustration of this is the giant structure of the 
zeolite paulingite, worked out by Samson and Gordon25 

and described by us as built up of blocks of the much 
simpler zeolite merlinoit.26 This is illustrated in Figure 
1. 

Another important and common way of forming a 
structure is the interpenetration of two structures, 
identical27 or different.23 When the giant structure of 
zeolite N28 was solved by letting parts of two simpler 
zeolites, sodalite and ZK5, interpenetrate (Figure 2), it 
was realized that the interface between these two could 
be described as a periodic non-self-intersecting minimal 
surface.29 It was also understood that all structures 
built via interpenetration can be described by the 
concept of minimal surfaces. 

Whereas the matrix algebra approach is Euclidean, 
the minimal surface approach is non-Euclidean. The 
mathematics of the latter is based on the calculus of 
variations as shown by Lagrange and differential ge
ometry. In terms of physics the matrix technique is 
static to its nature, while calculus and differential ge
ometry allow dynamic applications. A soap film span
ned between fixed boundaries is an optimal form that 
of course responds to a minimum of energy. A structure 
that can be fitted to a minimal surface can be described 
with calculus and is also the optimal form. 

Differential geometry and calculus of variations 
proceed in different directions; in differential geometry 
we study the vicinity of a point on a surface and derive 
the overall structure from this. In the calculus we de
duce local properties from the whole. 

IV. Mathematics 

For a complete understanding of the usefulness of 
periodic surfaces in describing solids and its properties, 
it is neccessary to review the differential geometry 
needed. Readers unfamiliar with this branch of math
ematics may want to consult a textbook on the subject. 
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Figure 1. Structure of paulingite. Figure 2. Structure of zeolite N. 

During our work we have found ref 70-72 commenda
ble. A charming and very readable introduction is given 
by Hildebrandt.73 

Classically, a surface's equation is written in Monge's 
form 

z = F(x,y) 

For many reasons it is better to use two independent 
parameters, ul and u2, in a vector equation for the 
surface (Figure 3): 

r = r(u\u2) 

By defining the basic tangent vectors T1 and r2 we have 

d r = T1 du1 + r2 dw2 

T1 = d r / d u 1 , r 2 = dr/du2 

/^r2 is the tangent plane to the surface at the point 
(U1JU2)- The basic vectors have components gy such that 

Su • "V'll&a " r2-r21|g12 = ^ r 2 

gij is called the metric tensor. 
We have then the formula for the element of arc ds, 

the first fundamental form. 

ds2 = dr-dr = gnidu1)2 + 2^12 du1 da 2 + £22(du2)2 

8 = 
Sn 812 
Su 822 

In the case of orthogonal parametric curves, ul and 
"2> 812 ~ 0» 8 = 811822, and 

ds2 = SuCdu1)2 + #22(du2)2 

We introduce the important notation 

by = Vij-n 

n is the normal vector to the surface r = r{ul,u2). K is 
the normal curvature, different in different directions, 
of a plane curve, formed by the section of the normal 
plane and the surface. 

We have the second fundamental equation: 

K ds2 = ftuCdw1)2 + 2612 du1 du2 + 622(du2)2 

Figure 3. Vector representation of a surface. 

In conclusion we say that the first fundamental 
equation is a measure of the metric of the surface, while 
the second is a measure of its flatness. 

When the normal plane rotates, we obtain maximum 
values of K; K1 and K2. They are then called principal 
curvatures, and the corresponding curves of intersection 
are called principal lines of curvature. 

The principal curvatures K1 and K2 have a product and 
an arithmetic mean known as the Gaussian curvature 
K and the mean curvature H 

K1 + K2 = 2H 

K1K2 = K 

It can be shown that 

6 _ 611^22 

*" 8 " 811822 

nTr hi &22 
2H = TT + TT" 8\\ 822 

and the general formula for K is 

K = -
82 

0 

1 dgn 
2 du2 

1 fe 
2 du1 

1 dg n 1 dg 22 

2 du2 

#21 

2 da1 

812 

822 

and 

1 £11^22 ~ 2gi26 i2 + g22bn 
H~~2 g 



224 Chemical Reviews, 1988, Vol. 88, No. 1 

Figure 4. Spherical image of a surface. 

Figure 5. Spherical image of a cross-product. 

An easier understanding of K is perhaps obtained by 
spherical or Gaussian mapping. A domain Q on a sur
face has a spherical image fi*. When those two domains 
approach a point P (P*), the limit of their ratios is K 
(Figure 4). 

Similarly the spherical image of tangent vector cross 
products (tangent vectors to a surface) equals the tan
gent vector cross product multiplied by K (Figure 5). 
A simple relationship also exists for H. 

It is of special interest to study how the intrinsic 
properties behave under mapping, or surface transfor
mations. The most restricted of all mappings is the 
isometric, when the image of an arc equals itself, going 
from one surface to another. Length and angles are 
preserved. This means one surface can be transformed 
into another without tearing or stretching; just bending 
occurs. During this procedure the Gaussian curvature 
K is not changed, and this is called a Bonnet trans
formation. 

The conformal mapping preserves angles (one exam
ple is the stereographic or Mercator projection), while 
the isoareal mapping preserves areas. 

Geodesic curvature is a measure of how much a line 
or curve deviates from being geodesic. Another way of 
stating this is that a geodesic line of a surface is a curve 
whose geodesic curvature is zero at every point. A ge
odesic AB is the shortest path from A to B on the 
surface. 

One of the most important—and simple—formulas 
in differential geometry in order to characterize a sur
face in the large is the Gauss-Bonnet formula (Figure 
6): 

m t hX J Kds+ f k i ds + £»•• = 27r 

a 
K is Gaussian curvature, and K„ is geodesic curvature. 

If the domain Q is bounded by a geodesic polygon, 
i.e., the contour lines are geodesic lines, then jk% ds = 
0, and 

J* f K ds + La1 = 2TT 

Andersson et al. 

Figure 6. Polygon on a surface with exterior angles a. 

Figure 7. Standard orientable topological surfaces: the sphere 
(genus = 0), the torus (g = 1) (with the topologically equivalent 
one-handled sphere), and the two-handled sphere, with the to
pologically equivalent "pretzel" surface (g = 2). 

Figure 8. A Mobius band. One-sided and nonorientable surface. 

In particular, for a geodesic triangle with interior angles 
a, P, and y we have 

a + 0 + y -ir = C § K ds 
a 

In connection with integral curvature it is useful to 
discuss other properties of a surface genus (g) and Eu-
ler-Poincare's characteristic (x). We have the rela
tionship 

X = V-e + f 

where in a domain, with boundaries being curvilinear 
polygons, v is the number of vertices, e is the number 
of edges, and / is the number of domains. Furthermore 

X = 2 - 2g; oriented surface 

X = 1 - g; nonoriented surface 

and 

J* C K ds = 2Xir 

For example, if the genus for a minimal surface is 3 per 
unit cell, x is -4 and the integral curvature per unit cell 
is 87T. Examples of oriented surfaces and their genus 
are given in Figure 7. The archetypal nonoriented 
surface ("one-sided" surface) is the Mobius strip (Figure 
8). 

Often in description of structures with minimal sur
faces, atoms sit outside the surface, on parallel surfaces. 
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If r = T[U1M2) is the equation for the surface, its parallel 
has the equation 

R = r{ul,u2) + am{ul,u2) 

a is the perpendicular distance between the surfaces. 
Then we have 
H (mean curvature for parallel surface) = 

H-aK 
l-2aH + a2K 

K (Gauss curvature for parallel surface) = 
K 

1 - 2aH + a2K 

In the case of a minimal surface, H = O 
aK 

H = 

K = 

1 + a2K 

K 
l + a2K 

and 
H/K = -a 

For a surface parallel to a minimal surface, the mean 
and Gaussian curvatures are proportional. It is also 
known that the area of the parallel surface is always the 
smaller. 

V. Minimal Surfaces 

Surfaces of zero mean curvature are called minimal 
surfaces: 

gnb22 ~ 2g12b12 + g22bn = 0 

With orthogonal parametric curves gi2 = 0 and for a 
minimal surface it is possible to choose u1 and u2 so that 
Su = S22 (isothermic coordinates) 

622 + 6ii = 0 or r n + r22 = 0 

which means that minimal surfaces always can be de
scribed with the Laplace equation. 

To our knowledge only a few minimal surfaces are 
simply parametrized and defined by analytic functions 
in Cartesian space. Some of these are the catenoid, the 
helicoid, and the two-dimensional periodic Scherk 
surface. The catenoid has the parametric equations 

u1 

x = a cosh — cos u2 

a 

y = a cosh — sin u2 

a 

and is a surface of revolution, resulting from rotation 
of the catenary. Its first fundamental form is 

ds2 = cosh2 —[(du1)2 - a2(du2)2] 

The helicoid is the only minimal surface that is a 
ruled surface—the surface is covered by straight lines 
perpendicular to the helical axis which are called rul-

Figure 9. The Bonnet transition linking the helicoid and the 
catenoid. Note the change in handedness of the helicoid. The 
curves in the catenoid are plane lines of curvature, which transform 
under the Bonnet transformation to the straight lines of the 
helicoid. 

ings. The helicoid has the property that its helix curves 
are asymptotes, and if the helix is circular, these lines 
are also geodesies. The helicoid is described with the 
following parametric equations 

X = U1 COS U2 

V = U1 sin u2 

z = au2 

and by its first fundamental form 

ds2 = du2 + (u2 + a2) dv2 

The two surfaces are shown in Figure 9, which also 
describes their Bonnet transformation (see below). 

Infinite minimal surfaces, periodic in three dimen
sions, cannot be defined by analytic functions in 
Cartesian space. In order to repeat a surface element 
periodically throughout space, it must be made finite 
and the surfaces are described by elliptic integrals, 
which must be solved numerically. On the other hand, 
minimal surfaces are the only surfaces other than the 
sphere whose spherical representation is conformal. 
This means every complex analytic function can be used 
to define a minimal surface. It is a fact that the de
scription of infinite periodic minimal surfaces in the 
complex plane is extremely simple. 

A point P(x,y,z) on the surface s is transformed by 
the normal mapping to a point P'(x',y'zO on the unit 
sphere given by 
P'(jc ',y ',Z) = 

IdFdFdA /((dF\2,(dF\2,(dF\2\/2 

\dx'dy'dz)/ VVd*/ V ^ / V d * / / 

which is transformed via the stereographic projection 
to the point P"(x",y"): 
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Figure 10. (a) An arbitrary surface, showing the normal vector 
n at a point P. (b) Procedure for mapping a minimal surface onto 
the complex plane used for the Weierstrass representation. The 
normal vector is used to map the original point P onto a point 
on the unit sphere, centered at P, to give the point P', which is 
then mapped by stereographic projection onto the complex plane. 

The surface s can in the complex plane be simply de
scribed by an analytic complex function, R(a)), where 

(J) = a + ir (i is the complex constant) 

The conformal mapping is shown in Figure 10. 
Karl Weierstrass found that the Cartesian dimensions 

of a point P(x,y,z) on a minimal surface are related to 
the coordinates of its mapped point P"(CT,T) by 

x = ReJ*(l-<o2)fl(co)da> 

y = - Im f ( l + <o2)i?(<o) da> 

z = Re f 2a>#(a>) dw 

where Re and Im denote the real and imaginary parts 
of the complex integral. The Weierstrass polynomial, 
R(a)), determines all intrinsic geometric parameters of 
the surface. At a point to, the metric is given by 

ds2 = (1 + a>2)|i?(o>)||da>| 

This is the first fundamental form and can also be de
scribed with the fundamental metric tensor g^: 

ds2 = gu d<r2 + (g12 + g21) da dr + g21 dr2 

which gives 

*n = S22 = (1 + M W M I 2 ; 812 = g2i = o 

and the Gaussian curvature becomes 

K = -4(1 + |a>|2)-4|fl(co)r2 

Similarly elements by of the second fundamental form 
can be obtained: 

bu = -2 Re [R(w)] = b22 

VI. Transformations of Surfaces 

1. The Bonnet Transformation 

Schwarz described the D, P, CLP, H, and T surfaces. 
Schoen discovered the body-centered cubic minimal 
surface called the gyroid, G. D, P, and G are related 
by a transformation named after Bonnet, who described 
it 1853. Surfaces related by a Bonnet mapping are 
called associate. A Bonnet-transformed minimal surface 
has real space coordinates 

x = R e J V ( I - co2)R(o>) dco 

y = - I m J e ^ ( I + o)2)R(a>) d« 

z = Re JV(2o>)fl(o>) da> 

where 6 is called the association parameter. If S(O) 
denotes an associate surface, it can be shown that 

gilS($) = g22S(6) = (1 + a>2)y#(a>)|2 = 

(1 + «*)2|fl(«)|2 = gn(S) = B32(S) 

Also 

buS(0) =-- - 2 Re Ie10R(U))] = - 2 cos 6 Re [£(«)] = 
cos Obn(S) 

AU associate surfaces have the same metrics. It is also 
easy to show that all associate surfaces to minimal 
surfaces are themselves minimal surfaces. 

Since all associate surfaces have the same metrics, all 
lengths are preserved during the transformation, which 
is isometric, and also conformal. The Bonnet trans
formation thus only bends the surface, without 
stretching. A good example of this is shown in Figure 
9, where the catenoid is Bonnet transformed via a 
number of associate surfaces (most of them would be 
self-intersecting) to the helicoid. 

At corresponding points on the family of associate 
surfaces, the Gaussian curvature is unchanged. 

Since 
eHe+*) - _eie 

(x,y,Z)(S6) = -(x,y,z)Se+ir 

which means that surfaces with association parameters 
differing by IT are related by center of symmetry. 

Similarly, since 

Re (e~iB) = Re (eie) 

and 

Im (e~ie) = - Im (eie) 

x(S_e) = X(S6) 

y(S_6) = -y(Se) 

z(S_6) = z(S6) 
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Surfaces with association parameters of opposite sign 
are related to each other by reflection in the x,z plane. 
Consequently, chiral minimal surfaces are related to 
their enantiomorph through the Bonnet transformation. 
This is shown in Figure 9, where the handedness of the 
helicoid is changed between association parameters of 
-TT/2 and +TT/2. 

Surfaces with association parameters differing by TT/2 
are known as adjoint surfaces, since they are described 
by adjoint (conjugate) complex functions. 

Corresponding points on Bonnet-related surfaces 
trace out point trajectories (plane curves) in real space, 
which are ellipses centered on the origin of the corrd-
inate system chosen. 

Coordinates (x,y,z) of a surface S are related to the 
coordinates (x',y',zf) of the associated surface and the 
coordinates (x*,y*,z*) of the adjoint surface by 

(x'yM = {x,y,z) cos 6 + (x*,y*,z*) sin 0 

If the Bonnet transformation is applied to periodic 
minimal surfaces, associate surfaces need not be per
iodic, but if they are, certain symmetry properties need 
to be described. If a minimal surface is periodic, its 
adjoint is also periodic.30 All geodesies remain geodesic 
under the Bonnet transformation, while straight lines 
transform so that they become plane lines of curvature 
in the adjoint surface and vice versa. 

2. The Goursat Transformation 

A second, more general, minimal surface transfor
mation was explored by Goursat.31 A family of minimal 
surfaces is formed by varying a parameter k in the 
Weierstrass parametrization: 

x = Ref(k-u>2)j-R(a>)da> 

y = -Im J*(fc + «2)|fl(a>) da; 

z = Re f 2coi?(co) da> 

The metric for the derived surface is 

dsHSk) = Ik + j J|A(«>)||da)| 

Thus the Goursat transformation stretches the surface, 
as well as bending it. Nevertheless, the transformation 
is conformal, preserving angles. The Gaussian curva
ture for the derived surface is 

k(Sk) = - 4 U + j \ |fl(co)|-2 

In real space, the derived surface coordinates {x',y'jz) 
are related to the Bonnet-related surface coordinates 
on the original surface and its adjoint (x,y,z) by 

- - ( 1 SJ=MT) 

z'=z 
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Figure 11. A mold of brass for production of plastic units for 
the T surface. 

Besides that the transformation is conformal and 
angles are preserved, lines of curvature and asymptotic 
lines are also preserved on all derived surfaces. Planar 
lines of curvature remain planar lines of curvature (this 
does not imply that mirror planes are necessarily pre
served). Asymptotic lines (straight lines) lying on a 
minimal surface, which are axes of skew symmetry in 
the original surface, remain straight lines. Helicoids 
remain helicoids. 

VII. Weierstrass Polynomials and the 
Construction of Surfaces 

The Schwarz surfaces, P, D, T, H, and CLP, are easily 
built by using brass forms as molds to produce plastic 
units as shown in Figure 11. The brass forms were 
machined after wire models dipped into soap solutions. 
The wire models were for the P surface the six edges 
of an octahedron, for the D surface the four edges of 
a tetrahedron, and for the T surface eight edges of a 
cube. For the CLP surface, the boundaries form a part 
of a trigonal prism. For the H surface, a wire triangle, 
resting on a glass plate and in soap, was lifted up, so 
that the triangle surface was kept parallel with the 
plate. Using the symmetry property of minimal sur
faces of straight lines being a twofold axis, larger units 
of these surfaces were built and are shown in Figure 12. 
Periodic minimal surfaces are always composed of 
saddles, monkey saddles, and helicoids. A typical sad
dle is the tetrahedral unit, and six of these form a 
monkey saddle (Figure 13). The presence of monkey 
saddles makes the surface periodic. A helicoid is formed 
by tetrahedral units joined by edges. Notice that a 
helicoid from a periodic minimal surface is not circular 
and cannot be ruled like the analytical helicoid de
scribed in the beginning of this article. 

The family of associate surfaces related to the P and 
D surfaces is described by Schwarz in the complex plane 
by the function 

(1 - 14a>4 + a)8)1'2 

A simple "Flachenstuck" (surface element) of the D 
surface, the tetrahedral unit, may be represented in the 
complex plane by the "Kreisbogenviereck" (circular 
tetragon), shown in Figure 14. The singularities ((31/2 

- l)/21/2,0) etc. correspond to the singularities for R(w) 
as defined above. Corresponding coordinates for the 
adjoint P and D surfaces were determined numerically 
by computing the elliptic integrals by substituting 
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Figure 13. A monkey saddle consisting of six tetrahedral saddles, 
the D surface. 

Figure 14. Complex plane representation of the tetrahedral unit 
of the D surface, and associate surfaces (in particular, the gyroid 
and P surface). Each edge of the "Kreisbogenviereck" abed is 
an arc of a circle of radius 21/2 centered at ( i l /2 1 ' 2 , i i /21 '2). The 
points a, b, c, and d are singularities and have coordinates (±(31/2 

- D/21'2) ± i(31'2 - 1)/21A 

a 

Figure 12. P (a), D (b), T (c), H (d), and CLP (e) minimal 
surfaces. 

Schwarz's expression for fl(a>) into the Weierstrass 
equations.3 Graphic representations of selected parts 
of these surfaces are shown in Figure 15. 

Using Schoen's angle of association of 38.015° to 
obtain the Bonnet-related gyroid surface, boundary 
coordinates for a single gyroid "Flachenstiick" were 

Figure 15. Graphic representation of the P surface (a) and the 
D surface (b). 
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G vroid 

y 

0.4 

C.2 

0.1 

0.1 0.2 0.4 x 

Figure 16. The gyroid surface. - A 

Figure 17. The Bonnet transformation F - G . Figure 18. Boundaries for D, gyroid, and P surfaces, from top 
to bottom. 

calculated by using the data from D and P. A typical 
gyroid boundary coordinate, X1-, is given by 

xt = X1(D) cos (38.015°) + X1(P) sin (38.015°) 

where X1(D) and X1(P) are corresponding D and P sur
face boundary coordinates. A brass form was machined 
with these boundaries and used as a mold to produce 
plastic units to build the gyroid shown in Figure 16. 

The Bonnet transformation of D — G obtained just 
by bending is demonstrated in Figure 17, where the 
monkey saddles are compared. Note that each edge of 
the gyroid is a skew curve. The axes and surface 
boundaries for the three surfaces are shown in Figure 
18. 

VIII. Derivation of Weierstrass Polynomials for 
the Schwarz T, CLP, and H Surfaces 

The Weierstrass polynomial for the family of asso
ciate surfaces related to the P and D surfaces is 

« ( « ) = 
(1 - 14co4 + CO8)1/* 

This polynomial may be written as 

1 
R(<o) 

J=I 

where the II sign denotes the product of the eight 
component factors. R(w) can be considered as a mul-
tisheeted Riemann surface. The sheets are connected 

at branch points, which are analogous to the spherical 
images of the monkey saddles. 

The expression above indicates that the polynomial 
contains eight isolated singularities corresponding to 
eight monkey saddles in the spherical image. These 
eight singularities at o>( correspond to eight normal 
vectors at flat points and are the vertices of a cube in 
the Gauss map. 

A = |x /2 | 

The exponent bt is determined from the local topology 
of the minimal surface.118 

This suggests a natural generalization to other IPMS, 
as discussed below. Complex coordinates for flat points 
are determined via a Gauss map, and the product 
polynomial (a> - a>,) is then raised to the inverse degree 
of the Gauss map. 

The Gauss maps and complex coordinates were de
termined for the CLP and T surfaces.llb Their common 
Weierstrass function was found to be 

(co8 + * c o 4 + I ) ' 1 / 2 

where ^ is a parameter determining the nature of the 
surface: 0 < * < -2, the CLP surface; tf = 2, the 
Scherk surface or an associate; ^ < -2, the T surface, 
with ^ = -14 giving the D surface. The D surface is 
thus a special case of the tetragonal T surface. The 
Gauss maps for the CLP and T surface are shown in 
Figure 19. The complete surfaces are shown in Figure 
20, where also the relationships between T and F are 
clearly revealed. This technique was used to establish 
the Weierstrass polynomial for the H surface as well.69 
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Figure 19. Gauss maps for the CLP (a) and T (b) surfaces. 

Figure 20. Graphic representation of the D (a), CLP (b), and 
T (c) surfaces revealing their intimate relationships. 

Andersson et al. 

IX. Bashkirov Stereohedra and Minimal 
Surfaces 

The handful of classically known translationally or
dered minimal surfaces (IPMS) are formed by adjoining 
identical surface elements bounded by closed skew 
polygons consisting of straight edges. Smoothness of 
the surface across the edges is enforced by twofold ro
tational symmetry about each edge. 

The symmetry condition severely constrains the ge
ometry of suitable bounding polygons for IPMS. For 
example, all vertex angles of the polygon must be in
tegral factors of 360°. Polygonal edge lengths are 
likewise constrained. Characterization of suitable po
lygons is possible, based on edges of certain polyhedra 
known as "kaleidoscopic cells". Any closed circuit 
consisting of edges of kaleidoscopic cells which are 
twofold axes (or multiples thereof) of the space-filling 
arrangement of cells forms a suitable straight-line 
boundary. 

While this criterion guarantees translationally per
iodic minimal surfaces, most examples derived by this 
procedure are self-intersecting and nonorientable. More 
seriously, examples of IPMS without straight lines were 
discovered by Alan Schoen,16 so we cannot hope to find 
all IPMS using linear boundaries. The identification 
of new IPMS is considerably eased by using free 
boundaries, consisting of faces of closed cells, rather 
than fixed edge boundaries. 

In order to generate periodic surfaces we choose cells 
that are asymmetric units of three-dimensional space 
groups. These cells are equivalent to Coxeter's plane-
faced kaleidoscopic cells for reflection groups40 which 
were used qualitatively by Schoen to derive IPMS.16,41 

Just as straight boundaries for minimal surfaces induce 
twofold rotational symmetry in the resulting IPMS, 
planar boundaries result in reflection symmetry in the 
boundary plane. This is why kaleidoscopic cells form 
suitable boundaries for surfaces exhibiting reflection 
symmetry: the requisite mirror symmetry about each 
face is ensured by using planar faces. 

Conventional asymmetric units of space groups 
("stereohedra") are always plane-faced. All minimal 
surfaces bounded by these cells contain mirror planes 
lying in cell faces, irrespective of whether the space 
group defined by the stereohedron contains reflection 
symmetry planes. In order to ensure that the symmetry 
of the resulting minimal surface is equivalent to that 
of the stereohedral honeycomb, all faces and edges must 
be arbitrarily curved, except where they define mirror 
planes and twofold rotational axes, respectively. These 
conditions are met by the stereohedra defined by 
Bashkirov,42 who claims that such cells exist for all 230 
three-dimensional space groups. In order to generate 
periodic minimal surfaces of arbitrary symmetry, we 
therefore derive minimal surfaces bounded by the 
Bashkirov stereohedron which characterizes the space 
group of requisite symmetry. 

In general, the boundary problem imposed by Bash
kirov stereohedra is difficult to solve—heuristics and 
soap films have had to suffice. A useful necessary 
condition on appropriate solutions was established by 
Smyth.43 The trace of the surface along the faces of the 
cell must be "balanced", so that the sum of the 
boundary tangent vectors around the cell faces vanishes. 
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This constraint is sufficient to determine approximate 
boundary traces for minimal surface solutions. The 
exact geometry of boundary traces can then be calcu
lated by using the Weierstrass equations. The surface 
normal vectors at flat points of the surface (a>;) fix the 
poles of the Weierstrass function, as for the P, gyroid, 
and F surfaces described earlier in this article. The 
winding number of the Gauss map of the surface around 
flat points is equal to the inverse of the exponent of the 
product polynomial (&,), giving a Weierstrass function 

R(a>) = £ft(a> - «a)-V*» 
£=i 

for the n distinct normal vectors in the IPMS. £ denotes 
a constant which when totally real determines the lat
tice parameter of the IPMS. If £ is imaginary, a family 
of associate minimal surfaces is generated as its argu
ment is varied. Although associate surfaces are invar
iably not translationally periodic, the Weierstrass 
functions constructed from surfaces bounded by Bash-
kirov stereohedra guarantee IPMS for totally real and 
totally imaginary values of £. It is trivial to ensure that 
IPMS formed from stereohedral boundaries are free of 
self-intersections. Since the cells form a tessellation of 
space, if the surface element bounded by a single 
stereohedron is free of self-intersections, so is the com
plete IPMS. 

Since all minimal surfaces bounded by a single 
Bashkirov stereohedron belong to the same space group, 
many IPMS exist for each space group. Different IPMS 
of the same symmetry are distinguished by their to
pology, which is related to the labyrinth net, which 
defines the tunnel networks on either side of the sur
face. 

The topology of IPMS is most conveniently charac
terized by the topology of a "compactified" unit cell of 
the surface, which is formed by "gluing" points on the 
surface which are related to each other by a lattice 
vector of the Bravais lattice which describes the 
translational symmetry of the surface. A unit cell is 
formed by clustering stereohedra to form a parallelo-
hedron, a procedure which is dependent only on the 
symmetry. 

The IPMS unit cell bounded by a parallelohedron 
contains tunnels directed toward vertices, edges, and 
faces of the parallelohedron. If t0, tlt and t2 denote the 
number of tunnels directed toward vertices, edges, and 
faces, respectively, and the dihedral angle of the edges 
containing tunnels is 2ir/a, while the dihedral angles 
of the three edges meeting at the vertices containing 
tunnels are 2TT//3, 2ir/y, and 2TT/5, the genus of the 
IPMS per unit cell is given by 

8 = 

h a-I 0-1 7 -1 8-1 Uk 
g' + l + — t l + — + — + — - l ) l 

where gc is the genus of the closed surface formed by 
capping all tunnels of a single unit cell. 

For example, the Bashkirov stereohedron for the 
space group PmSm is one of Coxeter's kaleidoscopic 
cells, the quadrirectangular tetrahedron. AU faces are 
planar, corresponding to mirror planes of the space 
group. A simple balanced boundary around the faces 
of this cell is tha t shown in Figure 21.40 The paral-
lellohedron for this space group consists of 48 ster-
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Figure 21. A balanced curve which bounds a minimal surface 
bounded by a quadrilateral tetrahedron (edges shown as dark 
lines). The surface normal vectors at boundary vertices (1, 2, 3, 
4, 5) are indicated by arrows. This boundary curve is a part of 
Schoen's 0,C-TO minimal surface of space group PmSm. 

Figure 22. A unit cell of the 0,C-TO surface, bounded by a cube. 

eohedra, combined to form a cube, giving a un i t cell of 
t he I P M S , as shown in Figure 22. Th is cell contains 
six face-directed and eight vertex-directed tunnels, with 
all dihedral angles equal to 7r/2. Capping all tunnels 
results in a closed cell free of handles, so that gc in the 
preceeding equation is equal to zero, the genus of a 
sphere. Hence the genus per unit cell of this IPMS 
(christened by Schoen the 0 ,C-TO surface) is 

„ 6 n <3 3 3 l ) 8 <r t 
5 = O + - + 0 + {- + - + - - - ) - = IO 6 2 (4 4 4 2)2 

The two labyrinth nets for the 0 ,C-TO surface are 
different, since the surface lacks straight lines (which 
would result in equivalent labyrinth nets by twofold 
rotational symmetry). An alternative description of the 
0 ,C-TO surface unit cell is shown in Figure 23 for 
which the second labyrinth net is centered within the 
parallelohedron. This net also gives a genus per unit 
cell of 10 for the 0 ,C-TO surface. 

This example illustrates an important property of 
IPMS. In many cases the two labyrinth nets, and in
deed the labyrinth volumes, need not be equivalent. 
However, the labyrinth nets on either side of the surface 
are necessarily topologically equivalent. In order to be 
able to separate a structure by a periodic minimal 
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Figure 23. An alternative unit cell of the 0,C-TO surface. 

surface, the two substructures occupying each labyrinth 
must be topologically equivalent. If they are not, an 
open connected partition between the substructures is 
impossible. This topological equivalence is most simply 
defined by the condition of "maximal interpenetration" 
between the two substructural networks (to borrow 
Wells' concept).44 In short, any loop of one substructure 
must enclose a link of the other. 

Periodic minimal surfaces are equally well described 
by "skeletal nets" lying on the surface. Two natural 
skeletal nets arise, asymptotic nets of vanishing normal 
curvature and nets of lines of curvature of maximal 
normal curvature. These nets both form orthogonal 
grids of arbitrary density everywhere on the IPMS (bar 
flat points); they are rotated by 45° with respect to each 
other. IPMS may be characterized by subsets of these 
nets, consisting of all straight lines on the surface (linear 
skeletal nets) and all plane lines of curvature (curved 
skeletal nets). The smallest circuits of linear skeletal 
nets consist of the linear boundaries derived from ka
leidoscopic edges and the infinite nets are generated by 
successive twofold rotations about each edge. Curved 
skeletal nets are formed from the boundary trace about 
plane-faced Bashkirov stereohedra by repeated reflec
tion in the faces of the stereohedral honeycomb. For 
IPMS lacking both straight lines and plane lines of 
curvature, curved skeletal nets are given by the 
boundary trace of the IPMS in the honeycomb of 
curved stereohedral faces. 

These skeletal nets furnish useful descriptions of 
crystal structures, where the atoms lie in the surface, 
as described below. This observation is at present 
largely phenomenological, although work by Greenspan 
suggests the significance of these surfaces. Arrays of 
charges, subject to Lennard-Jones type interactions, 
appear to be most stable when the array tessellates a 
minimal surface.45 If this result is indeed general, the 
apparent crystallization of many structures on IPMS 
is a necessary consequence of electrostatic interactions. 

Skeletal nets on IPMS can also be used to generate 
space-filling arrays of polyhedra whose faces are min
imal surfaces, denoted by Pearce "saddle polyhedra".46 

Any circuit in the net forms the framework for saddle 
polyhedra by doubly rotating the circuit about an edge, 
so that every second rotated circuit only forms edges 
of the polyhedron. By choosing different edges, dif
ferent saddle polyhedra are often formed, which to
gether fill space. For example, the smallest linear circuit 
of the P-surface linear skeletal net forms a pair of saddle 
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Figure 24. The pair of straight edged saddle polyhedra formed 
by doubly rotating a fundamental linear circuit of the P surface. 
Those saddle polyhedra together fill space. 

Figure 25. Open packings of the saddle polyhedra shown in 
Figure 24: (a) sharing of P faces results in an open packing 
bounded by the Neovius surface; (b) sharing of Neovius faces to 
form the P-surface space filling. 

Figure 26. The L saddle polyhedron formed by doubly rotating 
a linear circuit of the P surface. 

polyhedra, which together fill space (Figure 24). The 
polyhedra contain skew octagonal faces, which belong 
to the celebrated Neovius surface15 in addition to the 
faces belonging to the P surface. Open packings of 
these saddle polyhedra form the P and Neovius sur
faces, by face sharing of the Neovius and P-surface 
faces, respectively (Figure 25). These surfaces share 
the same linear skeletal net and both exhibit ImSm 
symmetry. 

A larger circuit excised from the P-surface linear 
skeletal net consists of a skew equilateral hexagon, 
which forms a closed circuit of edges about a regular 
octahedron. Double rotation of this circuit forms the 
skeleton of a single-saddle polyhedron, which is space 
filling (Figure 26). The second face in this cell belongs 
to the D surface, illustrating the group-subgroup rela
tion between the two surfaces. 

Classes of space-filling saddle polyhedra can be 
formed by doubly rotating successively larger closed 
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circuits belonging to linear skeletal nets. Resulting faces 
belong to IPMS whose symmetry is subgroups of the 
space group of the surface defined by the linear skeletal 
net, since they contain common symmetry axes. 

X. Curvature and Absorption Forces 

We proposed early in this project that solids have 
intrinsic curvature and that it should be possible to 
describe the chemical bond with differential geometry.1 

For a long time it has been well-known that the porous 
zeolites absorb gases according to the diameter of the 
opening of the pores, or the ring size. Typical ring 
structures contain 6, 8,10, or 12 SiO4 tetrahedra. Re
cently, we managed to relate absorption force and 
Gaussian curvature for two hydrophobic zeolites, the 
faujasite structure with 12 rings and the silicalite 
structure with 10 rings.32 This was done by using the 
equation for motion of a particle on a space curve: 

a = ^ T + U2KN 
at 

where a is the acceleration vector, v is the speed, T and 
N are the tangent and normal vectors, and K is the 
curvature. If the particle moves on a minimal surface 
along a principal line of curvature, the total van der 
Waals force lines are orthogonal to the motion, which 
is curvilinear. This means speed is constant: 

\a\ = V2K 

K is now = -K1I2, where K is the Gaussian curvature. 
For organic molecules such as the olefins, it is well-
known that van der Waals forces are proportional to the 
number of CH2 groups; the organization of atoms on a 
surface gives rise to an electrostatic field that interacts 
with neighboring molecules. The intrinsic force a 
molecule feels is set to be proportional to the number 
of bonding electrons per molecule, N. 

F = V2Ni-K1'*) 

However, molecules feel forces from surface elements, 
and to describe this we simply use average Gaussian 
curvature, which we define 

Km = J I K ds per surface unit 

where ds is a surface element. The integral curvature 
measures the intrinsic difference between a region of 
the surface and a region of the plane, or in simpler 
terms how much curvature a region of a surface contains 
(based on the convention that a plane has zero curva
ture). 

(J 9 •') 

F = const X NK 
av 

As shown above SSK ds is extremely simple to calcu
late. For a tetrahedral saddle it is -2/Sir, and if the 
surface area is calculated for such a saddle by numerical 
integration of the Weierstrass equations, for a hydro
phobic faujasite structure of a = 24.30, its Kav is equal 
to -0.0444 A-2. The equation was now tested by using 
accurate absorption heats of hydrocarbons,33 and its 
constant was determined. We have no minimal surface 
yet for the silicalite structure, but again using accurate 
heats of absorption,33 its Xav was determinedto -0.072 
A-2. The final relationship between heats of absorption, 
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Figure 27. Relationship between heats of absorption for various 
hydrcarbons, number of bonding electrons (N), and curvature for 
silicalite and faujasite. 

Figure 28. Catenoid description of an a//3 "barrel" with its eight 
strands. 

number of bonding electrons, and curvature for these 
two structures is shown in Figure 27.32 

It is now interesting to apply these results on other 
structures which have curvature. Many protein struc
tures are characterized by a so-called "barrel" ar
rangement; in this arrangement, smaller molecules can 
enter and undergo catalytic reactions. The "barrel" is 
formed by eight so-called /3 strands,34 which in fact are 
organized in a catenoid ("bottleneck") arrangement. 
This is indicated in Figure 28. With the results ob
tained above we can now estimate the forces that pull 
smaller molecules through the giant "barrel" molecule 
and make them pick up heat to react or transform.33b 

Four tetrahedral saddles forming a helicoid in the D 
surface transform via a Bonnet transformation into a 
catenoid arrangement of the P surface. The integral 
curvature of this unit is -8/3TT. If a tetrahedral edge 
is estimated to be 15-20 A, Kav for a "barrel" is ~0.01 
A-2. This is naturally much lower than the Xav derived 
for the zeolites, but on the other hand the nature of the 
forces of interaction is different and intrinsic heats high 
enough to be responsible for reactions are easily de
veloped according to the equation above. 

Such /3 strands also organize themselves into "twisted 
sheets", which in fact are helicoids, in another group of 
proteins or enzymes. Again reactions are explained by 
curvature and absorption.33b 

Cellulose, collagen, and starch have all-helicoid 
structures which explain their behavior as adsorbents. 
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Figure 29. Linde A zeolite structure and the P surface. 

Figure 30. Faujasite zeolite structure and the F surface. 

XI. Periodic Minimal Surfaces and Crystal 
Structures 

In Figures 29 and 30 it is shown how the well-known 
Linde A and faujasite structures fit to one side of the 
P and D surfaces. Similarly, we have shown how the 
diamond, cristobalite, cubic ice, and ice VII fit to the 
D surface (Figure 31). We also described the cubic 
NaxWO3 (a metal conductor) with the P surface, with 
Na atoms on one side of the surface and WO6 octahedra 
on the other. The conducting electrons were suggested 
to move on geodesies of the surface.1 This now has 
support from a recent accurate calculation of the 
structure of Si.35 Christensen's charge density plot on 
the (110) section reveals on equielectron density surface, 
which, as pointed out to us by von Schnering and 
Nesper of MPI, Stuttgart, follows the geometry of the 
D surface. The sodalite structure is noninterpenetrating 
and its atoms sit on the P or D surfaces (adjoint) 
(Figure 32a). The analcime structure is also nonin-
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a 

Figure 31. (a) Cubic ice and the F surface, (b) Ice VII and the 
F surface. 

Figure 32. (a) Sodalite structure and the F surface, (b) Analcime 
structure and the gyroid. 
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Figure 33. The ionic conductor AgI and the P surface. 

Figure 34. The quartz structure and its surface. 

terpenetrating and fits on the gyroid surface (Figure 
32b). Thus it is easy to imagine a simple translation 
between the two structures—the surfaces are related by 
a Bonnet transformation.2 Another zeolite structure 
which is noninterpenetrating is hexagonal gmelinite, 
and a suitable surface is the H surface.36 

Nesper and von Schnering have investigated PEPS 
(periodic equipotential surfaces) of Coulombic fields of 
simple field charges in various space group symme
tries.9,10 They have established that the periodic zero-
potential surfaces (POPS) are very similar to the re
spective periodic minimal surfaces of the same sym
metry. They claim that it does not hold that in the case 
of POPS that the mean curvature is zero; from the 
interchangeability of (+) and (-) it follows that the 
overall mean curvature disappears (H = 0). With von 
Schnering and Nesper's work we have immediate ex-
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Figure 35. The quartz surface. 

Figure 36. The garnet structure and the gyroid. 

amples of the physical applications of periodic minimal 
surfaces. An elegant example of this is the P E P S for 
CsCl obtained for the charge distribution (+) on the 
Wyckoff position la and (-) on lb in PmSm, respec
tively, that is the Schwartz P surface characterized by 
P[J2)AP[ii) with the space group ImSm. In the same 
way the Schwartz D surface is obtained from the com
bination D{sa)AD[i&) in FdSm. The surface then belongs 
to the space group PnSm, since the generating point 
configurations already have FdSm symmetry. Analo
gously, using the P622 symmetry, a POPS was calcu
lated which is useful for the quartz and starch (see 
below) structures. Nesper and Schnering have also 
calculated with this Ewald procedure the gyroid surface 
and have shown how the garnet structure beautifully 
follows this IaSd geometry. They have also computed 
several new surfaces. Figures 33-36 are from their work. 
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XII. Diffusion In Crystals 

The link between electrostatics of a charged lattice 
and periodic minimal surfaces has been established by 
the equipotential calculations of Nesper and von 
Schnering described elsewhere in this article. Two to-
pologically equivalent, (maximally) interpenetrating 
oppositely charged lattices are conjectured to be sepa
rated by a zero equipotential surface which is a periodic 
minimal surface. 

If an ion diffusing within a crystal lattice is assumed 
to move under the influence of the electrostatic field 
set up by the lattice, a simple constraint on the tra
jectory of the diffusing ion is that it follow electrostatic 
field lines of the lattice. Invariably these field lines form 
closed orbits about lattice ions; however, under certain 
conditions, loci of field lines exist which traverse 
throughout the lattice, forming open orbits. We call the 
surface supporting these open orbits a "tangential field 
surface". If an external electric field is applied to a 
lattice, the existence of an open tangential field surface 
may result in a net conductivity in the crystal, as in a 
solid-state electrolyte. 

Typical solid electrolytes consist of a crystalline 
skeletal lattice which is relatively immobile and a dis
ordered array of highly mobile ions, which are respon
sible for the conductivity of the crystal. Neglecting 
thermal vibrations of the skeletal lattice, as well as 
interactions between mobile ions, the conductive paths 
are expected to lie on tangential field surfaces defined 
by the skeletal lattice. 

It turns out that the tangential field surfaces for 
lattices are identical with the zero equipotential surfaces 
for closely related charge arrays, if and only if the 
equipotential surface is a minimal surface. Rigorously 
stated, the zero equipotential surface for a charge array 
of two maximally interpenetrating oppositely charged 
sublattices is identical with the tangential field surface 
for the geometrically identical array, with all charges 
of identical sign. For example, the zero equipotential 
surface for the cesium chloride structure (the P surface) 
is a tangential field surface for a body-centered cubic 
array of like charges. Thus, the problem of determining 
ionic trajectories in solid electrolytes reduces to deter
mining maximally interpenetrating pairs of sublattices 
which are equivalent to the skeletal lattice. 

We take two examples of this procedure: body-cen
tered and face-centered cubic skeletal lattices. As 
mentioned above, the P surface is a suitable tangential 
field surface for the bcc lattice. This lattice can also 
be decomposed into two maximally interpenetrating 
diamond sublattices.44 The zero equipotential for two 
oppositely charged diamond lattices has been found to 
be the F surface.9 Thus, the D surface represents a 
further tangential field surface for the bcc skeletal 
lattice. The body-centered symmetry is achieved by 
interpenetrating two (face-centered) D surfaces, corre
sponding to the two possible diamond decompositions. 
This construction yields equivalent saddle polyhedra 
about each skeletal ion, formed from a skew hexagonal 
circuit in the D-surface linear skeletal net. 

Since a face-centered cubic array corresponds to a 
body-centered tetragonal array with a c/a ratio of 2XI2:\, 
tangential field surfaces for this lattice are generated 
by tetragonal distortions of the bcc tangential field 
surfaces. Distortion of the D surface yields the T 

surface. In order to form a tangential field surface of 
cubic symmetry, three mutually orthogonal T surfaces 
must be interpenetrated. A tetragonally distorted P 
surface of the required axial ratio is not known. 

The classical example of a solid electrolyte is a-AgI, 
in which the iodine ions form a relatively immobile bcc 
array and the silver ions are "disordered".47 Under the 
simplifying assumptions outlined above, the silver ions 
are expected to traverse one of the tangential field 
surfaces derived for the bcc array. Similarly, /3-PbF2,

48 

and the partially stabilized phase of zirconia, ZrO2, 
contain fee skeletal lattices. Thus the fluorine and 
oxygen anions respectively are expected to follow paths 
on the T surface. 

The validity of this construction is difficult to assess, 
since little is known experimentally about mobile ion 
conduction paths. However, available data suggest that 
the conducting ions do indeed move along periodic 
minimal surfaces.49 It is significant that for a-Agl, 
/J-PbF2, and partially stabilized zirconia the measured 
average positions of the mobile ions lie on tangential 
field surfaces. A serious shortcoming of the analysis is 
the neglect of interactions between mobile ions. In
clusion of these interactions could well further support 
the minimal surface model, given Greenspan's findings 
discussed elsewhere in this article. 

Since the force accelerating mobile ions along the 
tangential field surface is entirely tangential to the 
surface (under our assumptions), the curvature com
ponent normal to the surface of the ionic trajectories 
should be zero. In the jargon of differential geometry, 
we require paths on these surfaces with vanishingnor-
mal curvature, so that mobile ions follow asymptotic 
paths on the tangential field surfaces. The tangential 
component of the curvature—the geodesic curvature—is 
expected to be proportional to the magnitude of the 
field. 

This link between forces acting upon a charge and the 
curvature of the surface confining the charge is widely 
applicable. For example, an interstitial ion tunneling 
through a CsCl lattice along the (sterically favored) zero 
equipotential would be subject everywhere to a force 
normal to the surface. Consequently, the geodesic 
curvature of the path of the interstitial must vanish, and 
it follows lines of curvature on the P surface. For 
further discussion of these links between curvature and 
forces, see above. 

XIII. The Bonnet Transformation and the 
Martensite Transition 

If austenite (fee array of iron atoms, with carbon 
occupying interstitial positions) is cooled slowly, perlite, 
a mixture of pure iron (a-Fe) and Fe3C, is formed. If 
cooled very quickly, austenite transforms at relatively 
low temperature to martensite, which is a tetragonal 
distortion of the bcc ferrite structure, due to interstitial 
carbon of the same composition as the parent austenite 
phase. The bcc structure is sterically unsuitable to 
contain carbon—martensite is metastable. 

Crystallographically the transformation is from fee 
to bcc, or bet, in the Fe-C system and is very common 
among alloys. It can be characterized in the following 
ways. 

1. A structural change involving drastic rearrange
ments of atoms with no diffusion takes place. 
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Figure 37. Monkey saddles of the gyroid (left) and the D surface 
(right). The three cubic lattice vectors of the bcc lattice are shown 
for the gyroid, and two lattice vectors defining a cube face of the 
fee cell are shown for the D surface. All visible flat points are 
ringed for both saddles. 

2. The material undergoes a macroscopic shape 
change, with sheared blocks in the transformed region. 
Straight lines inscribed in the surface of the original 
phase are transformed into connected straight lines in 
the product, while the characteristic habit plane is es
sentially undistorted. 

3. There exists a precise orientational relationship 
between the parent and the product phases, with an 
irrational plane of coexistence of the two phases (the 
habit plane). The transformed regions are thin plates. 

4. The transformation occurs with extremely high 
velocity, with transformation kinetics independent of 
temperature over a wide range of temperatures. 

5. There is no, or a very small, energy exchange. 
The conventionally accepted theories37,38 utilize ma

trix algebra in a so-called lattice correspondence theory, 
derived from the Bain model, which provides a simple 
topological transformation between the fee and bcc unit 
cell. The Bain mechanism involves a compression along 
one of the cube axes of ~17% and an expansion of 
~12% along the other two axes. 

These matrix algebra theories require a delicate 
balance of lattice deformation matrix, shear, and rota
tion operations to produce the desired results. The 
theory is essentially a metallurgist's black box, its 
physical significance being of little importance. The 
three matrix operations have been developed purely as 
a mechanism to form physically observed orientations. 

A recent comment on the matrix algebraic theories 
of martensitic transformations indicates the internal 
lack of physical insight in these theories: "These the
ories were widely acknowledged due to the excellent 
agreement between their predictions and the observed 
features. However, they are unable to describe the 
physical paths of the atoms during the transformation.... 
Another difficulty arises for the crystallographic ori
entation relationships, which are currently deduced 
from the theory, but without any clear understanding 
of the physical origin".39 

We propose here that by using differential geometry, 
these three algebraic operations can be substituted for 
one, viz., the bending of a surface to explain the mar-
tensite transition. It corresponds to the most restrictive 
surface transformations of all, viz., the Bonnet trans
formation, which leaves the Gaussian curvature of the 
surface at all corresponding points unchanged (see 
above). 

The flat points of the D surface form an fee lattice, 
while the flat points of the gyroid form a bcc lattice. 
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(e) 

Figure 38. A saddle of the D surface bends to the gyroid via 
association parameters 0° (a), 10° (b), 20° (c), 30° (d), and 38.015° 
(e). The flat points of the F surface (a regular tetrahedron) form 
a fee lattice, and the corresponding flat points of the gyroid form 
a bcc lattice. 

These lattices are related to each other isometrically by 
the Bonnet transformation (Figure 37). We propose 
that the martensite transformation which relates these 
two phases follows the Bonnet transformation, with all 
atoms fixed on the transforming surface at flat points, 
so that all intermediate structures are themselves 
minimal surfaces. 

The isometric nature of the Bonnet transformation 
fixes the relative dimensions of all associate surfaces. 
The relative lattice parameters of the martensite phases 
of iron are uniquely determined by the Bonnet trans
formation. From the relative dimensions of the tet-
rahedra in the D surface and the gyroid, the ratio of the 
lattice parameters for austenite and martensite was 
determined to be 1.269. Typical data for the two phases 
are as follows: austenite, 3.591 A; martensite, 2.875 A. 
These parameters give a ratio of 1.249, differing by less 
than 1% from the value expected from the Bonnet 
transformation, well within the tetragonal distortion. 

Figure 38 shows how a saddle bends from the D 
surface to the gyroid. The transformation of this simple 
saddle bends the rectilinear edges into skew curves, with 
the flat points (iron atoms) tracing out ellipses centered 
on the midpoint of the saddle (which marks the origin 
of the transformation), so that the ellipses are in
creasingly large as we move outward from the origin. 

Numerous studies have shown that there is a well-
defined orientational relationship between the phases, 
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Figure 39. Schematic view of the effect of the Bonnet trans
formation on a crystal. The elliptical trajectories of all atoms result 
in a bulk region abed being transformed into the related sheared 
and rotated regions aflyb and cSfj'y'b' for increasing and decreasing 
association parameter, respectively. 

known as the Kurdjomov-Sachs relationship. The 
plane correspondence is (111) austenite || (Oil) mar-
tensite, and an invariant line has also been repeatedly 
detected: [Oil] || [111]. The relative orientations of 
associate surfaces are fixed by the Bonnet constraint 
that the normal vectors of the surfaces at correponding 
positions be parallel. There are four possible paths for 
the Bonnet transformation to proceed: 0° -* 38.015°, 
0° — -38.015°, 180° — 141.985°, and 180° — 218.015°. 
The equivalence of all four orientations for the gyroid 
implies the unique orientational relationship experi
mentally observed. 

The experimentally determined line correspondence 
is also in agreement with that formed by the Bonnet 
transformation. 

We conclude that the Bain model is a lattice unit cell 
correspondence for the two phases. The Bonnet model 
involves correspondence of the largest possible equiv
alent unit cells in parent and product phases—the en
tire crystal. All atoms move simultaneously—this 
crystal correspondence is indeed diffusionless and does 
not require the large distortions formed in each Bain 
unit cell according to conventional lattice correspond
ence matrices. The elliptical orbits of the constituent 
atoms result in a transformation which may be con
sidered as a shear as well as a rotation as illustrated in 
Figure 39. 

XIV. Biological Significance of Minimal Surfaces 

1. Lipid-Water Phases 

Due to their amphiphilic character, lipid molecules 
associate in water into liquid-crystalline phases. The 
most common is the lamellar liquid-crystalline phase, 
where lipid bilayers alternate with water layers. A 
unique feature in the lipid-water structures is the 
short-range disorder combined with long-range order 
in one, two, or three dimensions. Thus, on atomic 
distances, the water molecules and the methylene 
groups of the hydrocarbon regions are as disordered as 
in the liquid state. Still there is perfect repetition over 
long distances. In the lamellar phase, for example, the 
unit period is equal to the thickness of the lipid bilayer 
and one adjacent water layer. 

Andersson et al. 

The most complex of the lipid-water phases exhibit 
cubic symmetry. It was recently found that cubic lip
id-water phases consist of an infinite lipid bilayer, 
which in fact is an infinite periodic minimal surface. 
The existence of these phases has improved our un
derstanding of lipid-water phases in general. The la
mellar liquid-crystalline phase can also be described as 
a minimal surface structure, the extreme case with in
finite curvature everywhere. The cubic phases will first 
be discussed, and then the mechanisms of phase tran
sitions will be described. 

The minimal surface structures of lipid-water phases 
were first revealed in monoglycerides.51-54 All three 
basic cubic minimal surfaces, the primitive P, the dia
mond surface D, and the gyroid G, have now been 
found, and the structure of one such phase can be seen 
in Figure 12b. The lipid bilayer center, which is the 
methyl end group gap, constitutes the minimal surface, 
with non-Euclidean mirror symmetry relating the two 
lipid monolayers on each side. The infinite intersec
tion-free lipid bilayer separates the two water channel 
systems on each side of the lipid bilayer. Conclusive 
proof of this type of structure was obtained from the 
existence of two cubic phases within one region of the 
binary monooleylglycerol-water system. Thus the 
X-ray dimensions at the transition from the D surface 
to the diamond surface were in agreement with the 
theoretical transformation between these two surfaces, 
the Bonnet transformation.6 The fact that we could not 
detect an enthalpy of transition is also consistent with 
such a mechanism of phase transition. 

We have analyzed the phase transitions further in 
terms of changes in the molecular geometry. It is now 
generally accepted that changes in molecular wedge 
shape by temperature or by water-polar head group 
interaction, as demonstrated by Israelachvili et al.,50 can 
fully explain phase transitions in lipid-water systems. 
Thus a tendency of an increased wedge shape from the 
polar head toward the methyl end of a lipid molecule 
is always a result of heating. This provides a driving 
force toward a phase transition, and one example of 
such a transition observed experimentally gives the 
gyroid phase from the lamellar liquid-crystalline 
phase.54 The polar head groups are assumed to be lo
cated on parallel surfaces on each side of the minimal 
surface (distance from minimal surface to parallel 
surface equals the molecular length). 

An analysis of the transition in the monoolein-water 
system from the gyroid surface structure to the D 
surface with increasing water content (at room tem
perature and 35.2% (w/w) water) shows that there is 
an increase in molecular wedge shape from 1.27 to 1.31. 
If the wedge shape of the molecule is characterized by 
the molecular volume (V), head group area (a), and tail 
length (0, the parallel surface construction yields the 
packing equation 

V 1 
— 1 + HI + -K12 

al 3 

where H and K denote the average and Gaussian cur
vatures of the interface traced out by the head groups. 
For a bilayer with equivalent lipid composition on both 
sides of the bilayer, the packing parameter on the 
left-hand side of the packing equation is equal for ±1, 
so that the linear term in / on the right-hand side must 
vanish. Thus, such a bilayer must be a minimal surface. 
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While the average curvature is everywhere zero on 
such a bilayer, the Gaussian curvature varies from point 
to point along the surface. In order to effectively use 
the packing equation an average value of the Gaussian 
curvature is required, in order to give an average mo
lecular shape. This is related to the surface area and 
topology by 

al 3A* 

where A denotes the surface area per unit cell of the 
minimal surface and x is the Euler characteristic per 
unit cell. 

The transitions lamellar to cubic phases and finally 
to hexagonal ones can all be understood from changes 
in wedge shape, either by increased thermal mobility 
along the hydrocarbon chain or a similar disorder in
duced by increased water content. Within a cubic phase 
region of the phase diagram, however, the increased 
water swelling must result in an increase in unit cell size 
and thus a decreased curvature of the lipid bilayer. 
This means that the wedge shape is reduced by water 
swelling, and a strain is therefore built up in the 
structure which ultimately results in a phase transition. 
The transition from the gyroid structure to the D sur
face curved lipid bilayer discussed above is an illus
trative example. 

Heating without change in composition has been 
followed by diffraction pattern versus temperature re
cordings in the monoglyceride of linoleic acid. There 
is a lattice shrinkage of about 1% per 2 0C. This means 
that the bilayer gets thinner and the ratio between the 
minimal surface and the parallel surface corresponds 
to an increased molecular wedge shape. 

The cubic lipid-water structures described above can 
accommodate proteins into their structure in two ways. 
Globular proteins with molecular masses up to 150 000 
daltons can be incorporated into the aqueous channel 
systems,52 and a considerable increase in lattice di
mensions can be obtained in this way. Thus a unit cell 
axis of 235 A was observed in a sample of monoo-
lein/lysozyme/water in the weight ratio 31.6:34.2:34.2, 
and thermal analysis showed a lysozyme transition en
thalpy corresponding to water environment.52 

Strongly amphiphilic proteins exhibiting self-asso
ciation, however, form minimal surface phases with the 
proteins partly embedded in the lipid bilayer. Such a 
phase formed by caseins has been examined by electron 
microscopy, and the lattice dimensions appear to be 
extremely large.53 

In lipid-water systems,54 as well as in lipid-protein-
water systems,52 cubic phases of all three types of fun
damental minimal surfaces have been observed. These 
cubic phases—P, D, and G—have space groups ImSm, 
PnSm, and IaSd, respectively.54 The reversed type of 
structure, formed by an anhydrous lipid, has also been 
observed54 (i.e., the center of the polar sheet of the 
bilayer forms the minimal surface, with hydrocarbon 
chains filling the channel networks on both sides). Thus 
there are six alternative cubic structures in which the 
lipid bilayer is curved according to a fundamental 
minimal surfaces: P, D, and G, with the lipid bilayer 
center forming the minimal surface in lipid-water 
systems, and Pr, Dr, and Gr in anhydrous lipids, where 
the polar sheet of adjacent bilayers forms the minimal 
surface. 

Figure 40. Proposed minimal surface curved lipid bilayer model 
of membranes. 

Besides the lamellar phase, hexagonal phases are 
most common in lipid-water systems. We have recently 
analyzed transitions from cubic to hexagonal phases in 
monoacyl-glycerol-water systems and found evidence 
indicating that also hexagonal phases are minimal 
surface structures. 

2. Periodic Minimal Surface Curvature of the 
Lipid Bilayer In Cell Membranes 

The present picture of biological membranes involves 
a lipid bilayer with a structure corresponding to that 
of the lamellar liquid-crystalline phase. In this tradi
tional model the lipid bilayer has a rather passive role 
in the different membrane functions. In the earlier 
paragraph we discussed the unique structural property 
of lipids in exhibiting long-range order combined with 
short-range disorder. It would be remarkable if cell 
membranes did not utilize this feature as well as the 
ability to undergo phase transitions to switch from one 
structure to another when there are environmental 
changes (i.e., a change in pH). The cubic infinite per
iodic minimal surface structure of the lipid bilayer 
provides a basis for a new structure model of biomem-
branes, involving phase transitions between planar and 
periodically curved bilayers. Evidence supporting this 
type of membrane structure will be presented below. 

We can select planes in the cubic structures P and 
D discussed above, which give a two-dimensional min
imal surface with zero average curvature at all points. 
We have to cut out such a surface from the adjacent 
two-dimensional surfaces, giving "holes" upward and 
downward. Provided that protein molecules can plug 
these holes, the membrane lipid bilayer can form such 
an infinite periodic minimal surface. The two simplest 
surfaces follow the (100) plane of the P phase and the 
(111) plane of the D phase described above. The P type 
of structure is shown in Figure 40. These two-dimen
sional surfaces give a tetragonal or hexagonal arrange
ment, respectively, of the membrane proteins, provided 
that proteins plug the "holes" in the surface. Such 
ordered arrays of proteins have in fact often been ob
served in membranes. 

The possibility of phase transitions involving periodic 
minimal surface curvature occurring in membranes was 
recently proposed, and cooperative membrane phe
nomena were discussed in relation to such transitions.8* 
The differential geometry of such a membrane has been 
analyzed, including transformations corresponding to 
continuous variations of the bilayer curvature toward 
the planar bilayer as an extreme.8b 
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Figure 41. Proposed mechanism of action of general anesthetics. 
The induced transition planar -• curved bilayer results in a 
blocking of the sodium channel. 

General anesthetics are known to act on the lipid 
bilayer of the neuronal membrane so that the sodium 
channels are closed, blocking the transmission of the 
signal propagation. The mechanism behind this effect, 
however, is not known. There is strong evidence to 
suggest that the phase transition model presented here 
can explain the anesthetic effect.55 

The addition of very low concentrations of inhalation 
anesthetics such as chloroform, halotane, or ethyl ether 
was found to result in a phase transition in aqueous 
liposomal dispersions of phosphatidylcholines (from egg 
yolk and soybeans) from the lamellar liquid-crystalline 
structure into the cubic phase, with minimal surface 
curved bilayers. It is probable that such a change in 
curvature of the lipid bilayer of the axon membrane will 
induce a conformational change in the sodium channels. 
The proposed mechanism is shown in Figure 41. The 
pressure antagonism of the anesthetic effect can be 
directly explained by this model. An increase in pres
sure will always give a phase transition opposite to the 
one induced by anesthetics, provided the pressure of 
transition is reached. 

Formation of so-called lipidic particles in model 
membranes is considered to play a role in membrane 
fusion.66'57 It is quite obvious that the three-dimen-
sionally arranged lipid bilayers of the minimal surface 
cubic structures are ideal in providing the functions 
postulated for lipidic particles, such as fusion and 
trans-bilayer transport properties. Freeze-fracture 
electron micrographs of the lipidic particles56 often show 
similar textures as those of the cubic minimal surface 
structure.58 Also in a paper on the structural role of 
lipids in the photosynthetic membrane, which is based 
on electron microscopy studies of corresponding lipid 
dispersions,59 electron micrographs with the same ap
pearance as the cubic phase are shown (assumed to be 
close-packed arrays of inverted micelles in lipid bilay
ers). 

Luzzati and co-workers have recently studied the 
phase properties of lipids from S. solfataricus mem
branes, and on this basis a membrane model has been 
proposed60 which is equivalent a periodically curved 
bilayer with protein "plugs". 

The prolamellar body, which is a three-dimensional 
storage form of thylakoid membranes, shows mor
phologies in electron microscopy like a cubic minimal 
surface structure. The ultrastructure has been derived 
by Gunning,61 and it is in fact consistent with a minimal 
surface with space group ImZm. Helfrich and co
workers62 have observed "passages" between egg lecithin 
bilayers with a primitive cubic symmetry (PmSm). The 

same type of structure has been described at the regions 
of fusion of liposomes by Glad et al.63 A double-mem
brane system has been observed in the luminal surface 
of the intestinal wall from an insect.64 The ultra-
structure corresponds to two fused bilayers of a cubic 
minimal surface structure. 

The exchange of the plasma membrane bilayer by 
endocystosis has been quantified in numerous studies, 
showing that the average residence time for membrane 
material on the cell surface is about half an hour. 
Furthermore, the cell surface area excess is about 
threefold in relation to the area of the corresponding 
smooth sphere. The periodically curved bilayer model 
presented here provides possibilities for direct control 
mechanisms of membrane bilayer dynamics. Thus the 
curved bilayer is able to accommodate varying amounts 
of lipid bilayer per unit front of membrane.8* An en
docystosis model based on such a lipid bilayer phase 
transition, controlled by specific structural parameters, 
is discussed below. 

On the basis of our knowledge of lipid bilayer phase 
transitions, we postulate that the average molecular 
wedge shape and the hydrostatic pressure gradient over 
the membrane determine the average curvature and 
periodicity of homogeneous membrane regions. The 
relation between average curvature and the pressure 
gradient over the membrane is given by the Laplace-
Young equation. It should be pointed out that a con
stant average curvature different from zero must be 
common in order to account for pressure gradients. The 
successive change of the curvature of the ER system 
(planar rough ER region to curved smooth ER) toward 
formation of spherical vesicles furthest out might be 
controlled in this way. The endocystosis process can 
in fact also be "curvature controlled", once the actual 
particle has reached the receptor. Applying the rela
tions between adsorption and Gaussian curvature dem
onstrated above, it is obvious that the increase in in
teraction between particle and membrane can be the 
driving force for the budding out process to the final 
cutoff of a vesicle. An alternative to clathrin monitoring 
the endocystosis process which should be considered is 
a bilayer curvature control, with the clathrin network 
acting as a skeleton quantizing the curvature. 

The beauty of the periodically curved lipid bilayer 
model is that it provides organization and control of 
membrane phenomena that otherwise seem to occur 
rather arbitrarily in time and space, for example, the 
requirement of rapid mass fusion of synaptic vesicles 
with the presynaptic membrane in connection with 
transmission of the nerve impulse. A phase transition 
of this membrane involving a periodically curved bilayer 
would give the cooperativity needed in this process (and 
the opposite transition can account for recycling of the 
bilayer material). 

3. Blopolymers 

The double-helix structure, which can be described 
as a minimal surface, is a common feature in many 
biopolymers, for example, the actin/myosin complex 
and DNA. We will discuss another such structure here, 
that of native starch. Minimal surface concepts make 
a complete description of the molecular organization in 
starch granules possible.7 
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Figure 42. Molecular model of the a , l -6 linkage between double 
helices. The distance between helical axes (the a axis) is about 
20 A, and the pitch is also about 20 A. 

The branched polyglucan amylopectin, constituting 
about three-fourths of the starch granule, is mainly 
crystalline,65 whereas the linear polymer amylose is 
amorphous, acting as a space filler. The amylopectin 
molecule is one of the largest known in nature, and its 
branching organization has recently been determined.66 

The branches form clusters, with chains radially dis
tributed from the reducing end of the molecule and the 
clusters according to EM studies67 packed in concentric 
crystalline layers in the granule. The diameter of the 
cluster is about 100-150 A and the thickness is about 
50 A. 

From the X-ray diffraction pattern the close-packing 
arrangement of glucan chains in the crystalline regions 
has been determined.68 The chains form double helices, 
which are hexagonally packed. In tuber starch com
pared to cereal starch every sixth double helix is re
placed by water, and in the continuing discussion we 
will consider the cereal starch structure. 

By molecular modeling it was shown that the geom
etry of branching, the a, 1-6 glucoside linkage, fits into 
the van der Waals packing of double helices, as shown 
in Figure 42. This is one of the most remarkable 
properties of the starch structure and explains how 
branching points on polyglucan can phase separate into 
crystalline units. 

A striking agreement between the structure of quartz 
and that of starch was detected. Quartz (high quartz 
with right-handed SiO4 helices) can be described by a 
self-intersecting minimal surface with space group P6422 
(the unit cell of starch is slightly deformed). Common 
features are the arrangement of six SiO4 tetrahedra or 
glucose units, respectively, as structural units and the 

Figure 43. Par t of the quartz surface, intersecting along the c 
axis, with the polyglucan double helix superimposed. 

Crystalline 
,cluster 
boundary 

Figure 44. Packing of the double helices (seen along their axes) 
in a crystalline amylopectin cluster. Arrows indicate branching 
points. B chains are polyglucan chains which in turn are branched, 
whereas A chains are final branches. A long B chain, IB, comes 
from the cluster below. 

Figure 45. Cluster arrangement in the concentric layers of the 
starch granule. 
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distance between adjacent double helices, corresponding 
to the branching geometry (reflected in the similarity 
in the a/c ratio). A description of the amylopectin 
crystalline packing and the relation to the minimal 
surface of quartz are given in Figure 43. 

The branching pattern of a crystalline cluster was also 
analyzed, and only one system of branching was found 
to be consistent with the configurations of a,l,6 linkages 
derived from enzymatic degradation. A cross section 
of a cluster is shown in Figure 44. 

The overall structure of the crystalline units of the 
starch granule is illustrated in Figure 45. Between each 
cluster (with cross section shown in Figure 44) amylose 
in amorphous form fills the empty space. This structure 
gives a deeper understanding of many properties of 
starch, such as gelatinization and retrogradation.7 
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