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/. Introduction 

Over the past 10 years, there have been major ad­
vances in experimental methods for observing van der 
Waais complexes, mostly by spectroscopic means. The 
resulting spectra contain a great deal of detailed in­
formation on intermoiecular forces and have stimulated 
corresponding advances in the theoretical methods used 
for calculating intermoiecular potential energy surfaces 
and for handling the dynamics of the complexes them­
selves. The purpose of this review is to describe the 
theoretical advances that have been made in the study 
of van der Waais complexes and the resulting advances 
in our understanding of intermoiecular forces. 

Various aspects of van der Waais molecules have been 
the subject of earlier reviews. Le Roy and Carley1 de­
scribed the determination of potential energy surfaces 
from the spectra of van der Waais molecules in 1980. 
Ab initio methods for calculating potential energy 

surfaces have been reviewed by Van der Avoird et al.2 

and Van Lenthe et al.,3 and experimental studies of van 
der Waais spectra have been reviewed by Dyke4 and by 
Legon and Millen.5 Studies of predissociating states of 
van der Waais molecules have been reviewed by Be-
swick and Jortner,6 by Le Roy,7 by Gentry,8 by Janda,9 

and by Celii and Janda.10 A Faraday Discussion on van 
der Waais Molecules was held in Oxford in 1982,11 and 
a NATO Advanced Research Workshop was held in 
Maratea, Italy, in 1986.12 

For the purpose of the present review, we define a van 
der Waais molecule to be a complex formed in the gas 
phase (or in a molecular beam) between two stable 
neutral monomers. We thus exclude "chemically 
bound" floppy molecules such as N2O4 and species 
formed from ionic monomers such as KCN even though 
the dynamical methods used for such systems are in 
many ways similar to those used for van der Waais 
complexes. We also do not consider potentials for inert 
gas pairs in any detail, since these have recently been 
comprehensively reviewed by Aziz.13 

In terms of the type of experimental data available, 
van der Waais complexes fall into two basic classes. For 
the simplest systems, such as complexes between atoms 
and diatomic and linear triatomic molecules, the ex­
perimental data are very detailed and are sensitive to 
a large part of the potential energy surface; for such 
systems, theoretical work has aimed at calculating the 
entire potential energy surface or at determining it from 
the experimental data. In a few cases, spectroscopic 
data on van der Waais complexes have been combined 
with data from other experiments (such as bulk gas 
properties or molecular beam scattering). For more 
strongly bound complexes, formed between pairs of 
polar molecules, the experimental data are generally 
restricted to the ground vibrational state and contain 
information on a small region of the potential in the 
region of its absolute minimum. For such systems, 
theoretical work has concentrated on rationalizing the 
equilibrium structures and properties of the complexes. 
Since the questions addressed by theory are quite dif­
ferent for these two classes of complex, they will be 
dealt with separately in the present review; however, 
it should be appreciated that advances in both exper­
imental and theoretical methods are constantly ex­
tending the range of molecules for which complete po­
tential energy surfaces can be determined, so that the 
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boundary between the two classes changes with time. 
The intermolecular potential between a pair of non­

linear molecules treated as rigid rotors is a function of 
six coordinates (the intermolecular distance and five 
angles). This number is reduced somewhat if atoms or 
linear molecules are involved; an atom-linear molecule 
complex requires two coordinates, while a linear-mole­
cule dimer requires four. Conversely, if vibrational 
excitation (or relaxation) is important, then the number 
is increased by the number of vibrational coordinates 
included. The calculation or determination of a com­
plete potential energy surface for larger systems is thus 
clearly a formidable task. This is another reason why 
both experimental and theoretical studies of larger 
complexes have concentrated on establishing equilib­
rium configurations and properties. 
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/ / . Representation and Partitioning of 
Intermolecular Potentials 

As will be seen below, "brute force" ab initio methods 
of calculating intermolecular forces are both expensive 
and prone to underestimate some contributions (nota­
bly dispersion forces). However, the individual con­
tributions to the interaction potential can be calculated 
much more cheaply and provide much more insight into 
the origin of the potential. Even when a potential has 
been calculated, it is usually necessary to fit the cal­
culated points to a parametrized functional form, since 
it is not feasible to perform ab initio calculations at 
every intermolecular configuration required for dy­
namical calculations. Most recent theoretical work has 
thus concentrated on methods that partition the in­
termolecular potential V*nt into contributions: 

yint _ yshort + yelec + yind + ydisp ^ ) 

where the four terms are the short-range, electrostatic, 
induction, and dispersion contributions, respectively. 
The short-range term includes all "chemical" effects, 
including repulsive interactions, and decays exponen­
tially with intermolecular distance. The electrostatic 
term takes account of the interaction between the 
permanent multipole moments of the monomers (and 
is thus zero if one monomer is a spherical atom). The 
induction term describes the effect of the polarization 
of the charge cloud of each monomer by the electro­
static field due to the other, and the dispersion term 
describes the interaction due to correlations of the 
fluctuating instantaneous multipoles of the two mono­
mers; it is the only attractive interaction between 
closed-shell atoms. It should be noted that there can 
be additional terms contributing to the interaction en­
ergy for interactions involving excited atoms or mole-
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cules ("resonant dipole" interactions, etc.). 
The expansion of eq 1 has its roots in the exchange 

perturbation theory of intermolecular forces.14-19 At 
long range, where overlap between the molecular charge 
clouds is insignificant, the various terms can be defined 
unambiguously, but at shorter range any perturbative 
treatment gives a large number of terms and there is 
no unique partitioning; indeed, the very concept of the 
order of perturbation theory is not well defined when 
the full exchange symmetry of the problem is includ­
ed.16 The formulation of exchange perturbation theory 
proposed by Murrell and Shaw14 and Musher and 
Amos15 has been widely used, because it gives a con­
venient partitioning of the dispersion energy.19 

An alternative partitioning of the interaction poten­
tial is 

yint — ySCF _|_ yintra _|_ ydisp (2) 

where V507 is the interaction energy evaluated from a 
self-consistent-field supermolecule calculation (see be­
low), V1"*"*" is the intramolecular correlation energy of 
the monomers (which, like the other terms, may depend 
on the intermolecular coordinates), and Vdkp is again 
the dispersion energy arising from intermolecular 
electron correlation. From a purely operational point 
of view, it is necessary to arrive at prescriptions for 
estimating the various terms in eq 1 without performing 
detailed calculations in every case, and such prescrip­
tions are necessarily approximate. For example, it is 
common practice to associate V801" with the sum of 
yshor̂  yd.* J111(J ytad s o t n a t t h e totai interaction energy 
is given by 

ytet = ySCF + ydisp (3) 

The distance-independent part of the intramolecular 
correlation energy is absorbed in the supermolecule 
calculation, but eq 3 nevertheless neglects any depen­
dence of the intramolecular correlation energy on the 
intermolecular coordinates, as well as various cross 
terms. It thus neglects the effect of intramolecular 
correlation on the repulsive potential (via changes in 
monomer charge densities and sizes) and on the elec­
trostatic and induction potentials (via changes in mo­
nomer multipole moments and polarizabilities). Nev­
ertheless, this approximation is at the heart of most of 
the semiempirical methods of calculating intermolecular 
forces, such as those of Douketis et al.20 and Tang and 
Toennies.21 There is some evidence that the neglected 
terms are small, at least for the atomic systems on 
which the semiempirical work has concentrated so far. 

The remainder of this section will consider the work 
that has been done on representing the different con­
tributions to intermolecular potentials and the func­
tional forms that have been found appropriate for each 
type. 

A. Short-Range Interactions 

In an exchange perturbation formulation, the domi­
nant term in the short-range potential, V*01*, is the 
valence repulsion term, which arises from intermole­
cular Coulomb and exchange terms involving electrons 
on different monomers. The different formulations of 
exchange perturbation theory give slightly different 
definitions of this term, but to a first approximation it 
is proportional to the square of an overlap integral 

between orbitals on the two molecules.17 Since the 
electronic wave functions decay exponentially with 
distance at long range, the valence repulsion is also 
quite well represented by exponentials in the intermo­
lecular distance R, at least at long range. Such repre­
sentations can be generalized, either by using a sum of 
exponentials with different exponents or by multiplying 
by a power of R, but this is usually not necessary if the 
other terms in the potential are represented accurately. 
There are in any case ambiguities in the definitions of 
the electrostatic, induction, and dispersion potentials 
at short range, and it is common practice to absorb any 
errors caused by inadequate representations of these 
into Vs,hoit. The major problem in representing short-
range forces is the representation of the angle depen­
dence, and the remainder of this subsection will con­
centrate on this aspect. 

For weakly anisotropic systems, it is adequate to 
expand the potential directly in terms of an appropriate 
complete set of angular functions. Thus the short-range 
part of the rare gas-H2 potentials (with the H2 bond 
length frozen) can be written in the form 

V - W ) = ZAx 6XPhSxR)Px(COs 6) (4) 
X 

where the functions Px(cos 0) are Legendre polynomi­
als.22 A similar approach can be taken for the H2 di-
mer,23 but for larger molecules it breaks down. The 
difficulty can be seen most simply by considering the 
interaction between an atom and a hard ellipsoid 
(representing, for example, a CO2 molecule). In this 
case, the potential for a particular value of R will be zero 
(or at least small) for most angles but will rise to infinity 
(or a large value) for angles where the atom and the 
ellipsoid intersect. Such a discontinuous potential 
cannot be expanded in a finite number of angular terms. 
The problem persists for real molecules, where the re­
pulsive potential is of course softer; the expansion of 
yshortyj^ Jn t e r m s 0f angular functions is often very 
slowly convergent, and the problem becomes increas­
ingly serious for larger molecules. 

The most satisfactory solution to this problem is to 
expand the reference distance and the exponent, rather 
than the potential itself, in terms of angular functions. 
Thus, in the atom-C02 case, the potential is expanded 
as 

V * » W ) = A' exphS(0)(R " flrefW)] (5) 

where 

R1Jd) = LRn{>xPx(cos B) (6) 
x 

m = EAA(COs 6) (7) 
x 

Such expansions are generally much more quickly 
convergent than an angular expansion of the potential 
itself. For more complicated systems, involving more 
than one angular coordinate, the angular functions 
needed are more complicated, but the same idea can be 
applied.24 

Equations 5-7 can describe molecules of any shape 
and make no a priori assumptions about the potential 
(except for the single-exponential approximation). 
However, for approximate work (or in the absence of 
more detailed information) an atom-atom additive 
model of the repulsive potential may be useful. In such 
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a representation, the repulsive potential (or even the 
whole interaction potential) is written in the form 

yshort^) = £ y „ shorty..) (8) 

where the pair potential Vy^iRid between atoms i and 
j depends only on the distance «,y between them and 
(for short-range interactions) may be taken to be a 
single exponential. Atom-atom additive potentials are 
a fairly severe approximation but offer obvious advan­
tages; they are convenient, easy to evaluate for any 
particular intermolecular configuration, and offer some 
insight into the origin of the repulsive forces. Moreover, 
they can be used to estimate how the intermolecular 
potential varies as the monomers vibrate.25 However, 
it should be noted that, where detailed tests have been 
possible, atom-atom additive models have not proved 
particularly accurate; and some atoms, notably hydro­
gen, make very different contributions to the repulsive 
potential, depending on their chemical environment.26 

B. Electrostatic Interactions 

The electrostatic energy, Velec, of a pair of molecules 
is the energy of interaction between their permanent 
charge distributions. In the approximation that elec­
tron exchange between the subsystems is neglected, the 
electrostatic energy is the expectation value of the 
Coulomb interaction operator (the perturbation)27 

yelec = _L_ r* (0 ) . ^0 ) . Z A^(0)^0 ) ^ ^ ( 9 ) 

where ^j1
0 ' and ^j,0* are the unperturbed ground-state 

wave functions of molecules a and b and R^ is the 
distance between the ith charge e\&) in a and the y'th 
charge ejb) in b. The integration is over the space of 
each molecule. 

The interaction modifies the charge distribution of 
each monomer, but this contributes to the energy only 
at second and higher order. The electrostatic energy 
is first order in the Coulomb interaction and as such 
is pairwise additive. Given two wave functions, it is 
possible to evaluate the integral (9) directly. This is 
done in the methods that partition the SCF interaction 
energy.28,29 Meath and co-workers30 have used a par­
tial-wave expansion of the first-order energy (9) to ex­
plore the effect of charge overlap on the electrostatic 
interaction in the N2 dimer. However, it is not practical 
to perform such calculations for every possible separa­
tion and orientation, so that a functional form for the 
electrostatic energy is necessary. 

If the separation between the monomers is large 
compared with their dimensions, a multipole expansion 
of the interaction Hamiltonian may be made and the 
energy expressed in terms of the permanent multipole 
moments of each monomer.27 Classically, the multipole 
moments of an array of charges e,- are the Cartesian 
tensors 

| ( 0 ) = q = £ e (10) 

Ii" = na = Zefja (11) 

$J = Q«g = yj^epVje - r/5^) (12) 

&L, = H)nI>/"+1vav,...vJ £ J (13) 

where q is the total charge, y, the dipole, 9 the quad­
ruple, etc. In quantum mechanics these become op­
erator equations and the permanent moment is the 
expectation value of the corresponding operator. For 
some purposes a spherical tensor representation has 
advantages over the Cartesian forms.31'32 

From the definition, eq 13, it is clear that each tensor 
is symmetric under permutation of subscripts. The 
moments are traceless, vanishing on contraction of any 
pair of indices (e.g., Qxx + Qyy + 9„ = 0) and thus the 
moment of nth degree has up to 2n + 1 independent 
components. Elements of molecular symmetry tend to 
reduce this number; for a spherical neutral atom all 
moments are zero, while for a linear molecule with the 
origin on the figure axis each tensor has at most one 
independent component. Only the first nonvanishing 
moment is independent of the choice of origin for the 
rj. Thus, for a neutral polar molecule the dipole mo­
ment is independent of origin but the quadrupole mo­
ment is not.27 All odd multipoles (dipole, octopole,...) 
vanish for centrosymmetric molecules if the origin is 
chosen at the center. 

The multipole expansion for the electrostatic energy 
of interaction of two molecules a and b is 

yelec = TqWq0» + Ta(qW$> - <7(bV<?>) + 

(-1)"' 
— T „ _,« ,£(n>>£<'?2(b), (14) 

(In — l)"(2n'- i)irl"i3"-"1'?"y?"p™'w^"» y ' 
where the T tensors are successive derivatives33 

T = (47Tt0T
1R-1 (15) 

Ta = (47TeO)-1V1̂ r1 = -(47Te0)-1^-3 (16) 

Ta0 = (47TeQ)-1V0V^T1 = (Arre0)-H3RJis - i?25a/3)ir
5 

(17) 

?V., = (47TeQ)-1V0 V . V ^ - 1 (18) 

and R is the vector from an origin in molecule a to an 
origin in molecule b. Here and elsewhere, repeated 
Greek subscripts indicate summation over all three 
Cartesian components, and n\\ = l-3-5'...rc. The full 
energy is of course independent of choice of origin but 
truncation of the multipole series at some finite n leads 
to a spurious origin dependence. 

More seriously, the multipole expansion is not strictly 
convergent at any separation; it is an asymptotic series 
in R~l.3i Methods for the summation of such series 
exist35 and may be accurate at large separations where 
overlap of the unperturbed charge clouds is negligible. 
However, to give useful results at the distances char­
acteristic of van der Waals complexes, improved con­
vergence is necessary. One way to achieve this is by a 
distributed multipole analysis (DMA)36'37 of the mo­
lecular charge distribution. In Stone's DMA method 
an ab initio charge density is described by sets of 
charges, dipoles, quadrupoles, and so on located at a 
number of sites in the molecule, usually atoms and bond 
centers. The point multipoles are determined in a way 
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that can be regarded as an extension of Mulliken pop­
ulation analysis. The convergence properties of the 
distributed multipole expansion have been discussed 
in detail by Stone and Alderton.37 They conclude that 
DMA gives a description of electrostatic interactions 
that is accurate at all energetically accessible distances, 
including at the "surface" of a molecule as defined by 
the van der Waals radii. DMA also gives a detailed 
picture of qualitative features of the charge distribution; 
atomic dipoles and quadrupoles represent lone and 
bonding pairs, while ir bonds lead to quadrupoles at 
bond centers. The expression for the electrostatic en­
ergy (9) can be applied to arrays of multipoles by sum­
ming over all pairs of sites with one in molecule a and 
the other in b. 

Central multipoles of low order are available from 
experiment for many molecules; the dipole moment is 
measured by using the Stark effect38 and the quadru­
p l e moment (for nondipolar molecules) by measuring 
field-gradient-induced birefringence39 or (for dipolar 
molecules) through first- and second-order Zeeman 
splittings.40 For small molecules they may be calculated 
with useful accuracy by ab initio techniques. Typically 
an SCF calculation might be expected to overestimate 
a dipole moment by about 0.1 D.41 Atomic multipoles 
may be obtained by fitting to experimental total mul­
tipoles42 but for molecules that are not too large an ab 
initio DMA calculation is the method of choice; an op­
tion to do this is implemented in the CADPAC ab initio 
package.43 Other ab initio schemes for obtaining dis­
tributed multipoles have been put forward by McLean 
(unpublished work quoted in ref 37) and by Cooper and 
Stutchbury.44 Atomic multipoles can also be simulated 
by arrays of suitably placed point charges.45"47 

Inside the molecular charge cloud no multipole ex­
pansion can converge to the correct limit for V*lec. The 
effects of penetration of charge clouds may be calcu­
lated by comparing the exact integral expression (9) 
with its expanded form.48 It is usual to absorb these 
terms (which may be attractive) into the short-range 
"SCF repulsion". 

C. Induction Interactions 

The induction energy, V*1"1, results from the interac­
tion of the induced electric moments of each molecule 
with the permanent charge distribution of its partners.33 

Since it is caused essentially by a relaxation of charge 
clouds, it is always negative for molecules in their 
ground states and thus produces an attractive inter-
molecular force. The induction energy is rarely the 
predominant source of attraction between molecules 
and can often be neglected in comparison to the elec­
trostatic and dispersion energies. 

At second order of perturbation theory the induction 
energy for a pair of molecules a and b is33 

yind -

[ e(a)g(W 
r^(o)*^o)*E_L_L^(o)^i) d T a d T b + 

° ij Kij 

e(a)g(b) "I 

r^(o)*^o)*E-^^a)^o)dTadTb (19) 
u U Kij J 

where ^ x ) is the first-order change in the wave function 

of molecule a induced by the (nonuniform) electrostatic 
field of molecule b. Since the presence of further 
molecules would change this first-order wave function 
and add terms to the Coulomb interaction operator, the 
induction energy is not pairwise additive. 

The induction or "polarization" energy may be 
evaluated from ab initio wave functions for a pair of 
molecules with a given separation and mutual orienta­
tion.28'29 It is usual to replace ^(1) in the integrals (19) 
by sum-over-states expressions in these calculations. As 
with the electrostatic energy, however, it is necessary 
to represent the induction energy as a function of the 
monomer properties if progress is to be made. 

The induction energy results from the distortion of 
a molecule by the electric field due to the charge dis­
tributions of its neighbors. In the long-range limit a 
Taylor expansion of this field can be made, using the 
value of the field and its gradients at some convenient 
origin in the molecule. For the pair of molecules a and 
b the induction energy is33 

V™ = - | a < # W - IA^VF® -

\c%^F\t.. (20) 

where a(a), A(a), C(a)... are the dipole, dipole-quadrupole, 
and quadrupole polarizabilities, respectively, of mole­
cule a and F£\ F$... are the static field and field gra­
dient arising at an origin in b and caused by the charges 
in a. The higher polarizabilities A, C... depend on the 
choice of origin, and one must use the field and field 
gradient evaluated at that origin. This expression may 
be used directly49 if the polarizabilities are known from 
experiment or calculation. Alternatively the fields 
themselves may be written as expansions in the per­
manent multipole moments. Formulas for the electric 
fields of multipolar molecules are tabulated by Price 
et al.50 

Charge overlap effects may modify induction energies 
at short range. Knowles and Meath51-53 have used 
partial-wave expansions of the integrals (17) to evaluate 
damping functions for the induction energy in He-HF 
and Ne-HF; for separations in the region of the van der 
Waals minimum and beyond, rather small deviations 
from the long-range interaction energies were found. 

As might be expected from our discussion of the 
electrostatic energy, improved convergence for the fields 
and field gradients in the induction energy may be 
achieved by using distributed multipoles to represent 
the charge distribution that is the source of the field. 
It is also advantageous to distribute the response of a 
molecule to these fields, in other words to distribute the 
polarizability. A scheme for distributed polarizability 
analysis (DPA) of coupled Hartree-Fock wave functions 
has been proposed and implemented by Stone.54 In it 
a molecule is represented by an array of sites, each of 
which carries a set of polarizabilities calculated by a 
partition of the perturbed wave function. The method 
by which these are obtained is somewhat more com­
plicated than the multipole analysis and so far has been 
programmed only for linear arrays of sites. The method 
is of particular importance in modeling induced dipole 
moments in van der Waals complexes,55'56 where, as is 



968 Chemical Reviews, 1988, Vol. 88, No. 6 Buckingham et al. 

described later, it is very successful. 
The induction energy is not pairwise additive, because 

the energy of a single molecule is quadratic in the field 
of the rest of the system. Further nonadditivity comes 
from the higher order perturbation energies or "back-
induction" terms. Because the molecules are polariza-
ble, their induced moments depend on the field they 
experience, which in turn depends on the total (induced 
+ permanent) moments of their neighbors. To deter­
mine the total induction energy for N interacting 
molecules requires self-consistent solution of a set of 
N coupled equations.57-60 Similar considerations apply 
to the induced moments themselves.56 

D. Dispersion Interactions 

The theory of dispersion forces between pairs of 
molecules is less well understood than that of electro­
static and induction forces, particularly in the region 
of the van der Waals minimum, where overlap of the 
molecular charge clouds is important. However, since 
dispersion forces make an important contribution to the 
intermolecular potential for nearly all systems and are 
the dominant attractive forces between nonpolar mol­
ecules, it is essential to model them as accurately as 
possible. The following discussion will concentrate on 
atomic systems, since they have been most extensively 
studied, but many parts of it may be extended to mo­
lecular systems, albeit with a considerable increase in 
algebraic complexity. 

The dispersion energy between a pair of spherical 
atoms at long range may be written in the form 

ydisP= Y1CnR-" (21) 

For atomic interactions, there are no odd-order terms 
in the potential before CnR-11 if relativistic (retardation) 
effects are neglected. Equation 21 may be generalized 
to handle interactions between molecules of arbitrary 
symmetry.33'61,62 At short range, however, this behavior 
is modified, and the true dispersion energy (unlike eq 
21) does not become infinite at R = 0. The dispersion 
energy must therefore be represented as a damped 
dispersion series 

Vd^= LCnR-nDn(R) (22) 
n=6 

The dispersion coefficients Cn and the damping func­
tions Dn(R) are implicitly functions of the relative 
orientations and internal vibrational coordinates of the 
monomers. The damping functions are unity at long 
range but fall to zero at J? = 0. They take account of 
the effects of overlap and finite size of the charge dis­
tributions and also correct for various other short-range 
terms. Early damping functions63-65 simply removed 
the singularity in the dispersion potential at short range. 
However, if intermolecular electron exchange effects are 
neglected, it is possible to perform ab initio calculations 
of damping functions by evaluating the dispersion en­
ergy in a nonexpanded form.66 Several general func­
tional forms have been proposed20,21 to represent the 
results of these calculations. Much of the earlier work 
was reviewed in ref 21, although Knowles and Meath 
have since extended the ab initio calculations to larger 
systems containing Ne, Ar, and HF.51-53 Their calcu­
lations yield the dispersion energy in the form of a 

partial-wave expansion and can be used to determine 
damping functions by comparison with the asymptotic 
expressions. A similarly direct approach to the calcu­
lation of dispersion energies has been proposed by 
McWeeny,67 and calculations using this formalism have 
been published for He2 and the HF dimer.68 

The most widely used damping functions are the 
HFD (Hartree-Fock dispersion) damping functions of 
Douketis et al.20 and the incomplete T function damping 
functions of Tang and Toennies,21 both of which ensure 
that the dispersion energy remains finite at short range. 
The HFD damping functions are of the form 

Dn(R) = f(R)gn(R) (23) 

where 

f(R) = 1 - (pR)1-68 exp(-0.78p/t) 

gn(R) = [1 - exp(~2.1rc-1pi? - 0.109n-1/2p2i?2)]n 

The functions gn(R) were fitted to ab initio damping 
functions, and f(R) was added to take account of ad­
ditional damping due to exchange effects.20 The in­
complete T function damping functions are21 

n (pR)m 

Dn(R) = P(n + 1, W) = 1 - exp(-#?) Z r (24) 
m=o m\ 

where P(n + 1, /32?) is an incomplete T function as de­
fined by Abramowitz and Stegun.69 The length scaling 
factor p in the HFD damping function is generally taken 
from ratios of monomer ionization energies,20 whereas 
the analogous parameter /? in the Tang-Toennies 
functions is generally set equal to the exponent used 
for the repulsive potential (see section HA). However, 
when fitting to experimental data, these scaling factors 
are perhaps best viewed as disposable parameters. 

Most of the work on damping dispersion forces has 
been on atomic systems, and much less is known about 
molecular systems. As mentioned above, Knowles and 
Meath have recently performed ab initio calculations 
on systems containing HF, but there is not yet sufficient 
information to give reliable prescriptions for molecules 
in general. Various ad hoc schemes have been used, 
based on the atom-atom damping functions described 
above. Rodwell and Scoles70 used the HFD damping 
functions for rare gas-H2 systems, with separate values 
of p for each term in a Legendre expansion of the po­
tential, while Fuchs et al.71 allowed p to be an explicit 
function of the angle 6 for He-N2. Douketis et al.72 used 
a site-site representation of the dispersion energy for 
Ar-HCl and Ar-HF, with different values of p for the 
different sites. These are all sensible approaches, but 
none is definitive; much more work is needed to es­
tablish the best method of damping for molecular sys­
tems. 

Dispersion Coefficients 

The successful use of semiempirical methods requires 
reliable values of the dispersion coefficients Cn. These 
may be obtained in several ways, and each has its ad­
vantages and drawbacks. This section describes the 
sources available for dispersion coefficients, and at­
tempts to delineate their strengths and weaknesses. 

The long-range dispersion interaction between a pair 
of spherical atoms may be written (in atomic units) 
using second-order perturbation theory73 
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ydisp _ 

- - 9 2(2/, + 2L)! n 

ft f i x 4(2U!(2/b)! J "<• (W,a^ UW) ^ * 
(25) 

where ai*(io>) is the 2'»-pole dynamic polarizability of 
atom a, evaluated at imaginary frequency iw. The dy­
namic polarizabilities have poles on the real frequency 
axis but are smooth monotonically decreasing functions 
along the imaginary axis. Each Cn coefficient in the 
dispersion series may thus be written in terms of inte­
grals over imaginary frequency 

C6
ab = - CCCfOo)Ct1HiU) do) 

•K J 
(26) 

C8
ab = - ^ C [af(M)a2Hiu) + a2

a(ico)a1
b(ico)] da> (27) 

2TT«/ 

14 r 
C10

ab = — 1 [a1
a(iw)a3

b(ia>) + a3
a(fw)a1

b(ia))] dw + 
35 /• 
— ( a2

a(iw)a2
b(iw) dco (28) 

though it should be noted that there are additional 
contributions to C11 and higher order coefficients due 
to perturbation terms beyond second order. Most of 
the methods available for calculating dispersion coef­
ficients rely, at least implicitly, on evaluating eq 26-28 
using some approximate representation of the functions 
aiiioi) for the monomers concerned. 

The most general method for obtaining the ctiiw) is 
to evaluate them directly from ab initio calculations. 
It should be stressed that the calculations required are 
on the monomers involved; they are not supermolecule 
calculations and are thus relatively inexpensive. Once 
an SCF calculation of the monomer wave function has 
been performed, it is relatively straightforward to 
perform coupled Hartree-Fock (CHF) calculations to 
determine polarizabilities.74 The ability to do this is 
a standard option in the CADPAC ab initio package,43 and 
the calculations are feasible for moderately large mo­
nomers. The random phase approximation (RPA), 
which is also sometimes used, is equivalent to the CHF 
approach. Calculations of dynamic polarizabilities have 
been published for several monomers that form im­
portant van der Waals molecules.75 Quite large and 
flexible basis sets are required to give reliable results, 
but this presents no great difficulty. The usual practice 
is to evaluate a;(io)) on a grid of w values chosen to be 
the abscissas of an appropriate Gaussian quadrature,75 

so that evaluating the integrals over « for any pair of 
monomers is straightforward. 

It is at first sight surprising that monomer calcula­
tions at the SCF level are able to give useful values for 
dispersion coefficients, since the dispersion energy itself 
arises entirely from electron correlation. However, it 
is the intermolecular correlation that gives the dis­
persion energy, and dispersion coefficients obtained 
from coupled Hartree-Fock calculations are usually 
accurate to better than 10%. However, if it is necessary 
to go beyond this, the situation is at present less sat­
isfactory. Established methods exist for calculating 
static polarizabilities from wave functions incorporating 
configuration interaction (CI),76'77 but methods for dy­
namic polarizabilities are still under development.78 

Nevertheless, it is likely that the near future will see 

considerable advances in this area and that calculating 
dynamic polarizabilities and dispersion coefficients from 
correlated monomer wave functions will become rou­
tine. 

An alternative approach to the problem of deter­
mining dispersion energies is to use experimental in­
formation on oscillator strength distributions. In 
practice, this gives accurate values only for C6 coeffi­
cients, since only the dipole oscillator strengths can be 
measured accurately. The dynamic polarizabilities may 
be written73 

«;(w) = E 
/»' 

EJ - J 
(29) 

where /„' is the oscillator strength for the 2'-pole tran­
sition from the ground state to state n, and En is the 
corresponding transition energy. The summation in eq 
29 implicitly includes integration over the ionization 
continuum. The oscillator strengths /„' necessarily obey 
certain sum rules. Defining 

sm = zfn
lEn

k (30) 

the Thomas-Reiche-Kuhn sum rule specifies that S1(O) 
must be equal to N, the number of electrons in the 
molecule, while S;(-2) is by definition the static mul-
tipole polarizability «;(0)- The form of eq 29 immedi­
ately suggests that «;(ico) might sensibly be approxi­
mated by a single-term Pade approximant 

CIi[I(X)) = 
m2 + u2 

(3D 

where rn is an effective excitation energy. Tang79 has 
shown that if r\\ is taken to be the lowest excitation 
energy for 2(-pole radiation, the approximate 5j(io>) is 
everywhere smaller than the true value at(iu); con­
versely, if 77; is chosen to be [S;(0)/a((0)]1/2, a^iu) is 
everywhere greater than a((w). Thus if a^iw) is rep­
resented by eq 31 with these choices for rn, integrating 
eq 26-28 yields lower and upper bounds to the dis­
persion coefficients Cn. The integrals obtained may 
actually be performed analytically for this form of afaui) 

C k 7rais
a(0Kb(0)7?i>b

b 

$aC(o«)~ahHi«) dco = ' ^ ^ ^ l (32) 

If additional oscillator strength sums are used as input 
data, tighter bonds may be obtained by extending eq 
31 to include two or three terms. Details of this ap­
proach have been given by Tang, Norbeck, and Cer­
tain,80 who used it to obtain upper and lower bounds 
to C6, C8, and C10 coefficients for rare gas and alkali 
metal atom pairs. More recently, Standard and Cer­
tain81 have presented updated values, using improved 
input data for the oscillator strength sums; there are 
some significant differences between the two sets of 
numbers, and it should be emphasized that the 
"bounds" obtained in this way are reliable only if the 
input data (static polarizabilities and oscillator strength 
sums) are accurate. 

A somewhat different approach has been developed 
by Meath and co-workers82-92 and has been applied to 
a wider range of atomic and molecular species. They 
use experimental values of oscillator strengths and 
electron inelastic scattering cross sections to evaluate 
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explicit dipole oscillator strength distributions 
(DOSDs), constraining the DOSDs to satisfy the 
Thomas-Reiche-Kuhn sum rule and to reproduce re-
fractivity and dispersion measurements for the relevant 
dilute gases.82 The DOSDs may then be used to eval­
uate dispersion coefficients.83 The complete DOSDs are 
very voluminous, and the quantities actually reported 
in the literature are sums S1(A) as defined by eq 30 and 
the additional sums L1(A) defined by 

Hk) = Zfn
1En" In En (33) 

Approximate values for C6
ab may be obtained by using 

eq 26 and 32 with Tj1 = exp(L 1(-2)/S 1(-2)) , and this 
usually gives results within 1% of the values obtained 
with the DOSDs directly.82 An alternative approach, 
adopted in some of the most recent work,89-92 is to 
represent the DOSDs by discrete "pseudo-DOSDs", 
which are_specified as m pairs of effective oscillator 
strengths fi and excitation excitation energies Et such 
tha t Si(k) is represented correctly for k = 2 , 1 , 0,..., 3 
- 2m. This provides a compact representation of the 
DOSDs and is effectively equivalent to writing OJ1(JW) 
as a sum of m terms of the type (31), so that once again 
the integrals required for the dispersion coefficients can 
be evaluated analytically. DOSDs have been deter­
mined for a wide range of atoms and molecules, in­
cluding the rare gases and hydrogen halides,92 H2 , N2 , 
O2, NO, N2O, N H 3 and H2O,82-83'89 CO and CO2,91 SO2, 
CS2 and OCS,84 CH4,85-89 and various alkanes,86-90 al-
kenes,87 and alcohols.88 The principal drawback of the 
method is tha t it is restricted to isotropic dipole prop­
erties and cannot provide information either on the 
anisotropy of dispersion forces or on higher order 
multipole properties such as C8 and C10. 

For mixed interactions, useful approximations to 
dispersion coefficients can often be obtained from 
combination rules. If only the like-like dispersion 
coefficients Cn"" and Cn

b b are known, the mixed dis­
persion coefficient C„ab is sometimes taken to be the 
geometric mean, (Cn

a aCn
b b)1 / 2 . However, if the static 

polarizabilities are also known, rather better approxi­
mations are possible. This is most straightforward for 
C6 coefficients: for each monomer, C6

88 and «^(0) may 
be used to define an effective excitation energy Jj1

8 from 
eq 26 and 32, and the resulting approximants for otfiiw) 
and aib(ia)) may then be used to calculate C6

ab. The 
resulting combination rule is79 

C«ab = 
2C 6

a a
a i

a (0)C 6
b b

a i
b (0) 

C6M[CX1HO)? + C6
hh[af(0)]2 

(34) 

Similar but more involved expressions can be obtained 
for higher order dispersion coefficients by approxi­
mating the higher order dynamic polarizabilities in the 
same way, and the corresponding expressions for 
atom-diatom systems have been given by Fuchs et al.71 

It is sometimes necessary to approximate dispersion 
coefficients without any information beyond the static 
polarizabilities of the monomers. Under these circum­
stances, London's formula or the Slater-Kirkwood ex­
pression may be used for C6; the latter corresponds to 
the identification Jj1 = [N/U1(O)]1'2. Although N is 
nominally the number of valence electrons, this choice 
tends to overestimate C6 by up to 20%; it is generality 
better to choose N to be an effective number of elec-

TABLE I. Slater-Kirkwood Parameters for Some Simple 
Atoms and Molecules 

H 
He 
Ne 
Ar 
Kr 
Xe 
H2 

N2 

O2 
NO 
N2O 
CO 
CO2 

CH4 

NH3 

H2O 
HF 
HCl 
HBr 

«i(0) 

4.500 
1.385 
2.669 

11.08 
16.79 
27.16 
5.428 

11.74 
10.59 
11.52 
19.70 
13.08 
17.51 
17.27 
14.56 
9.642 
5.601 

17.39 
23.74 

C6 

6.499 
1.458 
6.383 

64.3 
129.6 
285.9 

12.11 
73.39 
62.01 
69.78 

184.9 
81.4 

158.7 
129.6 
89.08 
45.37 
19.0 

130.4 
216.6 

I i 

0.428 
1.013 
1.195 
0.698 
0.613 
0.517 
0.548 
0.710 
0.737 
0.701 
0.635 
0.634 
0.690 
0.579 
0.560 
0.651 
0.808 
0.575 
0.512 

iVeff 

0.824 
1.422 
3.810 
5.404 
6.309 
7.253 
1.630 
5.918 
5.756 
5.662 
7.950 
5.264 
8.340 
5.797 
4.570 
4.082 
3.652 
5.748 
6.234 

trons taken from the known behavior of some chemi­
cally similar species; iVeff is given in terms of Ct1(O) and 
C6 by 

iVeff = 
16C6

2 

9Ia1(O)]3 (35) 

A list of values of W1(O), C6, Tj1, and Ne({ for some simple 
molecules is given in Table I. 

The methods described above can usually be used to 
obtain reasonable values of C6

ab and C8
ab for the in­

teraction of interest, but obtaining accurate values of 
the higher order coefficients is difficult, particularly for 
larger molecules. Even ab initio calculations present 
great difficulties for coefficients beyond C8, since basis 
functions with high orbital angular momenta are needed 
to model higher order multipole polarizabilities. Nev­
ertheless, values of C10, C12, etc. are needed when con­
structing semiempirical potentials; it is conventional to 
truncate the series a t C14 or C16, and omitting lower 
order terms can have significant effects. Thakkar and 
Smith9 3 have shown tha t the relationship 

"cT 
49 C8 

4 0 C 6 
(36) 

derived using a simple oscillator model, holds quite well 
for real systems. Douketis et al.20 extended this model 
to higher order coefficients, obtaining 

C12 = 17280/C10V 
C6 16807 \ C8 / 

818741/C1 ^3 

839808VC1, 
C14 

cR 

'12 

'10 ) • 

(37) 

(38) 

These expressions also work well for the H - H and 
H e - H e interactions. Tang and Toennies2 1 used the 
somewhat simpler form 

Any errors in the lower order coefficients are magnified 
in the higher order coefficients, though the overall effect 
on the potential may be small. 

Dispersion forces suffer from the same convergence 
problems at short range as electrostatic and induction 
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forces, and a single-center angular expression can be 
very poorly convergent for large molecules. However, 
no detailed formulation of a distributed model for 
dispersion forces is available, and there are formal 
problems with such a formulation because distributed 
polarizabilities need to be nonlocal. Nevertheless, it 
seems intuitively reasonable to suppose that dispersion 
forces can be approximated by atom-atom pairwise 
models, and there is evidence that polarizabilities (and 
DOSDs) can be represented as a sum of contributions 
from functional groups.94 In the absence of more de­
tailed information, partitioning the dispersion energy 
into atom-atom contributions, using coefficients ob­
tained from (for example) partitioned DOSDs,95 seems 
to be a reasonable way of estimating dispersion energies 
involving larger molecules. 

In summary, the method of choice for determining 
dispersion coefficients is to perform ab initio calcula­
tions. At present, possible exceptions to this are the 
inert gas pairs and isotropic C6 coefficients for systems 
where dipole oscillator strength distributions (DOSDs) 
are available. However, ab initio calculations are likely 
to become even more advantageous in the future; com­
puter time is becoming less expensive, and ab initio 
packages are becoming more powerful and more widely 
available. In addition, ab initio methods are the only 
ones capable of giving information on the dependence 
of dispersion coefficients on relative orientation and 
internal vibrational coordinates, and this information 
will become more important in the years to come. 

/ / / . Simple Systems: Complete Potential 
Energy Surfaces 

A. Ab Initio Calculations 

Most of the ab initio calculations that have been 
performed on van der Waals complexes have been so-
called supermolecule calculations; that is, separate ab 
initio calculations are performed on the complex and 
on the individual monomers, and the interaction energy 
is evaluated by simply subtracting the monomer ener­
gies from the supermolecule energy. Supermolecule 
calculations on van der Waals complexes may be di­
vided into two classes. Calculations at the self-con­
sistent field (SCF) level are straightforward and com­
putationally relatively inexpensive but fail to take ac­
count of correlation effects; since the dispersion energy, 
which dominates the attractive part of the potential for 
many simple systems, is itself a correlation effect, SCF 
calculations by themselves are inadequate for many 
purposes. However, as will be seen below, it is possible 
to make semiempirical corrections to account for the 
correlation energy. There are also various methods that 
calculate the correlation energy directly; examples of 
these are configuration interaction (CI) and perturba­
tion theory calculations in various guises. These are 
much more expensive than SCF calculations and, except 
for the very smallest systems, have difficulty in re­
covering the whole of the dispersion energy. It is also 
more difficult to correct for the missing part of the 
dispersion energy than for the whole dispersion energy, 
since it is more difficult to formulate exactly what 
contributions have been omitted. 

The most successful direct correlated calculations of 
an intermolecular potential are those of Meyer et al.96 

on He-H2; they performed very detailed CI calculations 
with a large basis set, separating the intersystem cor­
relation (dispersion) from the SCF and intrasystem 
correlation terms. Their potential has been shown by 
Schaefer and Kohler97 to give good agreement with a 
wide range of experimental data for He-H2 and He-HD 
mixtures. For larger systems, however, the situation is 
rather less satisfactory. Diercksen and co-workers98'99 

performed CI calculations on He-CO, including all 
single and double excitations explicitly and correcting 
for some quadruple excitations, while Billing et al.100 

performed many-body perturbation theory (MBPT) 
calculations on He-NH3. Banks et al.101 calculated the 
intermolecular potential for He-N2 using the correlated 
electron pair approximation (CEPA) but obtained a 
potential well that was substantially too shallow. Ap­
proaches based on valence bond (VB) theory have also 
been proposed: Raimondi102 has used a MO-VB me­
thod to calculate a potential energy surface for He-HF, 
and Gallup and Gerratt have proposed a variation-
perturbation method,103 which they have applied to 
Ne-HF. Unfortunately, in the cases where it has been 
possible to test these potentials against experimental 
data, they have invariably proved to be too shallow. In 
addition, there has been little work on systems con­
taining atoms heavier than He. While He systems are 
important for bulk properties and in astrophysical 
contexts, they are generally very weakly bound, and 
spectroscopic measurements of van der Waals com­
plexes containing He are sparse. 

Basis Set Superposition Error 

In the supermolecule method the interaction energy 
is calculated as a difference in total energy between the 
complex and the separated monomers. This has ob­
vious numerical disadvantages. Coulson compared it 
to weighing a ship's captain by weighing the ship with 
and without him on board (see Kutzelnigg's expanded 
version of this comparison in ref 104). However, the 
method is popular because it is seemingly straightfor­
ward and requires no extra programming. The super­
molecule approach also has several deeper advantages: 
it treats the whole potential surface uniformly, does not 
suffer from convergence problems (as in perturbation 
methods), and gives a proper treatment of intermole­
cular exchange effects (the Pauli principle). However, 
the method has a major drawback. At the end of the 
1960s, it was realized that interaction energies calcu­
lated in this way include a spurious attractive 
contribution—the basis set superposition error 
(BSSE)— which arises because the monomers are sta­
bilized in the complex, not for any physical reason, but 
simply because the basis functions on one monomer add 
flexibility to the basis set on the other. In the enlarged 
dimer basis set the monomers have lower energies. For 
weak complexes and small basis sets the BSSE can 
dominate the calculated interaction potential and, since 
it is easily mistaken for physical charge transfer,49'105 

can distort our picture of the nature of the forces be­
tween the monomers. 

It is usual to correct for BSSE by the counterpoise 
method of Boys and Bernardi,106 in which monomer 
energies are calculated in the full dimer basis. For each 
point on the potential surface the energy of a monomer 
is calculated in the presence of the basis functions (but 
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not the electrons and nuclei) of its partner in the same 
position and orientation as in the dimer. The result 
obtained is usually an improvement107 (in that it is 
closer to experiment) and the corrected energy is a 
smoother function of basis set size108,109 (but see ref 110 
for a counterexample). 

Although the counterpoise method is widely used, it 
has been the subject of some criticism. It is often ar­
gued that in the dimer calculation the occupied orbitals 
of one monomer are not available to the electrons of the 
other and that therefore the Boys-Bernardi prescription 
might overestimate the "true" BSSE.111 Corrected 
counterpoise schemes using only the virtual molecular 
orbitals of the partner have been proposed.110,112,113 

Although the concept of a true error is elusive, it should 
be noted that a corrected scheme is essential in certain 
cases, e.g., in calculating BSSE effects on the polariz-
ability of an anion in a lattice, where the presence of 
point charges leads to unrealistically large corrections 
with the conventional method.114 

Recent papers by Gutowski et al.115'116 and a review 
by Van Lenthe et al.3 argue that the most consistent 
results are obtained by using the full counterpoise 
correction for van der Waals dimers, both at SCF and 
correlated levels. They reject the "overestimation" 
criticisms of the full counterpoise correction, claiming 
that these rest on a misinterpretation of the role of the 
Pauli principle. They point out that, although the 
problem is not of great practical importance in SCF 
calculations on small systems where sufficiently large 
basis sets can be used, BSSE is still a significant 
problem in correlated calculations even on systems as 
small as He2. A similar conclusion is reached by 
Szczesniak and Scheiner in their Moller-Plesset calcu­
lations on the water dimer.109 This study also mentions 
a secondary cause of error. Quite apart from the effect 
of ghost orbitals on the monomer energy, basis set su­
perposition causes changes in the monomer electrical 
properties, such as dipole moment and polarizabili-
ty>49,117 pOI e x a m p l e ) j n Ne-HF the Ne atom has a 
spurious dipole if its wave function is calculated in the 
full dimer basis. The altered properties have a sec­
ondary effect on the computed total energy and thus 
on the apparent interaction energy. The spurious 
electrostatic and induction energies can be removed by 
using long-range expressions.49 This ignores penetration 
effects109 but for the separations characteristic of van 
der Waals complexes is likely to give a useful approx­
imation to this small contribution to BSSE. Some au­
thors117,118 take the view that this secondary form of 
BSSE is to be welcomed in calculations of dispersion 
energy, where it gives large multipole polarizabilities 
for relatively small basis sets. Latajka and Scheiner119 

have studied primary and secondary BSSE at the SCF 
and MP2 levels for the strong complexes Li+-NH3 and 
Li+-H2O. They reject the suggestion that secondary 
BSSE improves the interaction energy in general. 

A further sophistication of the counterpoise technique 
has been suggested for calculations involving polar 
monomers. Loushin et al.120 use a polarization coun­
terpoise correction (pec) (not to be confused with 
methods of the same name described in ref 110 and 113, 
which are essentially variants of the counterpoise 
scheme, omitting contributions from occupied orbitals 
and including those from ghost polarization functions) 

in which the energy of monomer A is evaluated both in 
the full dimer basis and in the presence of an array of 
point charges that simulate the electric field of mono­
mer B. This is claimed to give a more accurate repre­
sentation of the monomer in the complex, though the 
authors note that with a very large basis set the pres­
ence of point charges might lead to spuriously large 
corrections (cf. remarks in ref 114 on diffuse ions in 
point-charge lattices). If a more accurate representation 
of the electric field became desirable, a distributed 
multipole analysis36 of the partner's charge cloud could 
be used instead of the array of point charges. The new 
pec scheme120 can be seen within the long-range theory 
of intermolecular forces as an attempt to correct for 
BSSE in the electrostatic and induction energies. For 
the HF dimer in a range of bases from 4-31G up to a 
doubly polarized triple-zeta set, pec appears to give a 
good estimate of the BSSE in the hydrogen-bond en­
ergy, as measured against near-Hartree-Fock results.120 

To the nonspecialist, the continued debate about the 
best form of the counterpoise correction may seem 
rather arid and technical. Indeed, as computer re­
sources improve we can look forward to calculations 
with very large basis sets that are essentially free of 
BSSE and need no correction. For small systems at the 
SCF level this is already possible115 but at the correlated 
level even He2 is likely to require a counterpoise cor­
rection for some time to come. 

Many post-SCF supermolecule methods suffer from 
a further complication: lack of size consistency. In a 
truncated CI expansion, the limiting energy of a well-
separated supermolecule is not exactly equal to the sum 
of the monomer energies. This problem and its solution 
have been discussed in a review on weakly bound com­
plexes by Van Lenthe et al.3 

B. Empirical Potentials 

Ultimately, the test of a calculated potential energy 
surface or of a potential model is how well it reproduces 
experimental results for the complex (or collision sys­
tem) concerned. Purely ab initio potentials, by their 
very nature, have no adjustable parameters, so that they 
cannot be modified in any obvious way to fit experi­
mental data. Purely empirical potentials, on the other 
hand, have the required flexibility to fit experimental 
data but often fail to satisfy the necessary theoretical 
constraints on the true potential. One of the major 
advantages of the semiempirical ansatz is that poten­
tials constructed in this way can be constrained to have 
the theoretically correct behavior at long range and at 
short range, yet still have adjustable parameters that 
can be determined from experimental data in order to 
give the correct behavior in the theoretically intractable 
"intermediate region" around the potential minimum; 
the higher order dispersion coefficients and the length 
scaling factors in the dispersion damping functions are 
obvious candidates for treating in this way. 

Types of Experimental Data 

There are a wide variety of experiments that contain 
information on intermolecular potentials and that can 
be used to determine them. However, it is compara­
tively rare for any one experiment to contain enough 
information to determine the potential over the whole 
region of configuration space of interest, and simulta-
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neous analysis of several properties is usually necessary. 
Microwave spectra of van der Waals molecules pro­

vide a very valuable starting point for a potential sur­
face determination and are available for a large number 
of complexes. They may be measured either in mo­
lecular beams or (for more strongly bound complexes) 
in bulk gas mixtures; molecular beam spectra usually 
involve only the lowest vibrational state of the complex 
(because of the very low effective temperatures in a 
molecular beam) whereas bulk gas spectra may contain 
"hot bands" corresponding to vibrationally excited 
states of van der Waals stretching or bending modes. 
This work has been reviewed quite recently5 and will 
not be repeated here. 

The nature of the information contained in micro­
wave spectra depends to some extent on the type of 
complex being studied. The primary observables are 
of course the rotational constants, which contain in­
formation on the equilibrium structure; however, it 
should be remembered that a molecule has at most 
three rotational constants (only two of which are in­
dependent for a planar molecule) so that a single iso-
topic species does not give enough information to de­
termine the complete molecular structure even for the 
simplest complexes. The approximation usually made 
is that the monomer structures are unchanged on com­
plex formation, so that only the intermolecular dis­
tances and angles have to be determined from the 
spectra. Information on average bond angles may also 
be available from properties such as dipole moments 
and nuclear quadrupole coupling constants; for near-
rigid complexes, these average angles are similar to the 
equilibrium angles. If microwave spectra for several 
different isotopic species can be measured, it is often 
possible to determine the "structure" uniquely; however, 
such an approach is valid only for near-rigid complexes 
and should be regarded with some suspicion for very 
weakly bound complexes (such as those containing rare 
gas atoms) since such species exhibit wide-amplitude 
bending and stretching motions that are likely to 
change quite significantly on isotopic substitution. 

The microwave spectra do not contain any less in­
formation for highly nonrigid molecules, but a naive 
interpretation in terms of a single structure should be 
avoided. For such systems, indeed, additional spec­
troscopic constants may contain valuable information 
on the intermolecular potential. For atom-molecule 
complexes, for example, the dipole moment of the 
complex is usually dominated by the projection of the 
dipole of the monomer onto the inertial axes of the 
complex, and the measured dipole contains information 
on the expectation values of the intermolecular angles 
involved. Similarly, for complexes containing quadru-
polar nuclei, nuclear quadrupole coupling constants 
contain information on different expectation values of 
the angles (since the quadrupole moment is a second-
rank tensor, whereas the dipole moment is a first-rank 
tensor). It should be noted, however, that the angular 
information is essentially concerned with expectation 
values, and its interpretation requires a detailed dy­
namical calculation using the complete potential energy 
surface; it should not be interpreted in terms of an 
equilibrium structure except for near-rigid complexes. 

Infrared spectra of van der Waals complexes are also 
extremely valuable; indeed, McKellar and Welsh's in­

frared spectra of Ar-H2 in the region of the H2 
stretching fundamental121 allowed the determination of 
the first reasonably accurate atom-molecule potential 
energy surfaces more than a decade ago.122 However, 
complexes containing H2 are rather special, since the 
lines are widely spaced (and therefore easily resolved) 
and the monomer spectrum is very weak. It is only in 
the past 5 years that it has become possible to obtain 
rotationally resolved vibrational spectra of more typical 
complexes such as Ar-HCl and (HF)2. Methods now 
exist for measuring near-infrared spectra of van der 
Waals molecules both in molecular beams123,124 and in 
bulk gases.125 Such spectra are particularly valuable 
when they include combination bands in which a van 
der Waals bending or stretching mode is excited at the 
same time as a monomer fundamental vibration, since 
the frequencies of the van der Waals modes contain 
particularly unambiguous information on the potential 
surface; this information is generally complementary 
to that provided by microwave spectra and relates to 
regions of the potential away from the equilibrium ge­
ometry. 

Similar information can be obtained from far-infrared 
spectra, in which the van der Waals modes are excited 
directly, rather than in combination with monomer 
fundamental modes. Indeed, far-infrared spectra are 
easier to interpret, since they relate to the potential 
surface for interaction of monomers in their ground 
vibrational states, whereas near-infrared spectra give 
information mostly on interactions involving vibra­
tionally excited monomers. However, techniques for 
obtaining far-infrared spectra of complexes are in their 
infancy; Marshall et al.126 and Saykally and co-work­
ers127"130 have recently obtained spectra of several bands 
of Ar-HCl using laser Stark resonance spectroscopy in 
a molecular beam, with fixed-frequency far-infrared 
lasers; such spectra can provide the most detailed in­
formation available so far on intermolecular potentials 
in the well region, but the experimental search and 
assignment problems are still considerable. The de­
velopment of techniques using tunable far-infrared la­
sers will make this approach much more generally ap­
plicable. 

Of course, spectroscopic methods are not the only 
ones that can provide information on intermolecular 
forces; indeed, they played a relatively minor role in the 
development of accurate potential curves for inert gas 
pairs.13 All the classical bulk gas properties, such as 
second virial coefficients and viscosity and diffusion 
coefficients,131 can be brought to bear on molecular 
systems. Mixed second virial coefficients are more 
difficult to measure than those of pure gases but are 
available for a fairly wide range of systems;132 they may 
readily be calculated from a trial intermolecular po­
tential, although quantum corrections may be required 
for light monomers at low temperatures.131'133 In 
qualitative terms, second virial coefficients at low tem­
peratures contain information on the volume of the 
potential well, whereas those at high temperatures 
contain information on the repulsive wall of the po­
tential. It is possible to invert second virial coefficients 
directly134,135 to obtain an effective one-dimensional 
potential curve, even for molecule-molecule systems.136 

There has been a considerable amount of work on how 
such effective potentials should be interpreted;137"139 
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they are certainly not in general the same as the 
spherical average of the full potential. 

Transport properties may also be measured for gas 
mixtures, and they too can be inverted to obtain an 
effective one-dimensional potential curve.140'141 For 
weakly anisotropic systems, the effective potential ob­
tained is very similar to that obtained by inverting virial 
coefficients,137 but this is not true for strongly aniso­
tropic systems.138 However, the calculation of transport 
properties from a full potential energy surface is much 
less straightforward than for second virial coefficients. 
An exact calculation requires full quantum-mechanical 
(close-coupling) scattering calculations142'143 for a wide 
range of collision energies, followed by averaging over 
the Maxwell-Boltzmann velocity distribution and the 
molecular rotational states. Such calculations are very 
expensive and have only been performed for a few 
simple systems.97,144-149 Even for systems as simple as 
He-N2, close-coupling calculations are only just com­
putationally feasible,149 and it is necessary to resort to 
approximation schemes. Decoupling methods such as 
the coupled states (CS) and infinite order sudden (IOS) 
approximations142'143,150'151 have been widely used, as 
have classical schemes such as the Mason-Monchick 
approximation152 or full classical trajectory calcula­
tions.153"154 Semiclassical methods have also been de­
veloped.155 The circumstances under which these ap­
proximations are or are not adequate are now beginning 
to be understood. 

In addition to transport properties, there are a wide 
range of relaxation processes that can occur in molec­
ular systems but not in atomic systems. These contain 
information on the anisotropy of the intermolecular 
potential, particularly in the repulsive region. Impor­
tant relaxation properties156 include sound absorption, 
the pressure broadening of spectroscopic lines, nuclear 
magnetic relaxation, and depolarized Rayleigh light 
scattering. Each of these properties can be character­
ized by a (temperature-dependent) effective cross sec­
tion. Methods for calculating these cross sections from 
intermolecular potentials have been developed;156 they 
involve the same scattering calculations as are required 
for the calculation of transport properties, and the same 
approximation schemes can be applied,142,143 although 
with varying degrees of success for the different prop­
erties. 

An additional potential source of information on an­
isotropic interactions is provided by the Senftleben-
Beenakker effects (SBE), which are the effects of 
electric and magnetic fields on transport properties. 
These effects are very small but can be measured by 
differential techniques.157 They depend on the orien­
tation of molecules by the applied field and are non­
existent for spherical interactions; in principle, they too 
contain information on the anisotropy of the interac­
tion. The SBE are each characterized by two cross 
sections, a "production" cross section, which determines 
the magnitude of the effect, and a relaxation cross 
section, which determines the field strength needed to 
saturate it. Methods for calculating SBE cross sections 
fall into the same theoretical framework as those for 
calculating transport and relaxation cross sections and 
involve scattering calculations;142 however, in practice, 
it has been found that the approximate methods that 
work reasonably well for transport and relaxation cross 

sections fail completely for production cross sections,151 

so that extracting their information content has proved 
difficult. 

Molecular beam scattering data can also yield valu­
able information on intermolecular potentials. The 
classical techniques used for atomic collisions158 can be 
applied to molecular systems and provide total cross 
sections, summed over the initial and final internal 
states of the molecules. Techniques are also available 
for measuring state-to-state inelastic cross sections, 
either by time-of-flight techniques159 or by using 
state-selective detection methods.160 Under favorable 
circumstances, elastic and inelastic differential cross 
sections can be inverted directly to obtain an aniso­
tropic potential.161 However, this procedure requires 
very high quality experimental data and has not yet 
been widely applied. In general, total cross sections 
provide information mostly on the spherical part of the 
interaction potential, whereas inelastic cross sections 
provide information on the anisotropy. Nevertheless, 
some information on the anisotropy can be obtained 
from the damping of quantum oscillations in either 
differential or integral cross sections. For collisions with 
small reduced mass (such as those involving He atoms), 
the differential cross sections are dominated by dif­
fraction oscillations, and the damping of these is prin­
cipally sensitive to anisotropy in the repulsive wall of 
the potential; for larger reduced masses, diffraction 
oscillations are difficult to resolve, and rainbow oscil­
lations are important; these too are damped by an­
isotropy, but in this case the damping is most sensitive 
to anisotropy in the well depth.162 

The areas of applicability of the different types of 
measurement are to a large extent complementary. 
Molecular beam scattering measurements are at their 
best for systems containing He (or H2) but are more 
difficult when both collision partners are heavy. Con­
versely, spectroscopic studies of van der Waals mole­
cules are generally possible only for species which do 
not contain He, since He complexes are very weakly 
bound. Measurements of virial coefficients are possible 
for most systems, but the potential information con­
tained in them is highly averaged. Transport and re­
laxation properties can also be measured for many 
systems, but extracting their information content is 
often expensive, especially for heavier molecules. 

The procedures generally used for extracting poten­
tial information from the various experiments are also 
rather different. The spectra of van der Waals mole­
cules are relatively inexpensive to calculate from a trial 
potential energy surface, so that with spectroscopic data 
it is often possible to carry out an automated least-
squares fit to the experiment, including a statistical 
analysis of the residual errors. Potentials based on 
spectroscopic data can thus have well-defined uncer­
tainties and confidence limits associated with them. 
Unfortunately, such a treatment has not yet been 
possible with scattering data; the procedure that has 
been followed is simply to vary potential parameters by 
hand, using physical intuition, until a potential that 
gives reasonable agreement with experiment is obtained. 
The problem with this approach, of course, is that it 
does not address the question of whether the potential 
thus obtained is uniquely determined by the experi­
mental data or whether it is simply one of a large family 
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of potentials capable of fitting the data. Transport 
properties are even more expensive to calculate than 
scattering data, so that the same problem applies a 
fortiori to them. 

Specific Systems 

There is now a fairly wide range of simple systems 
for which complete potential energy surfaces have been 
determined, with varying degrees of reliability. These 
include the interactions of inert gases with H2, HCl, HF, 
N2, O2, CO2, CH4, and SF6. There has also been some 
work on molecule-molecule systems such as the HF 
dimer, the C2H4 dimer, and the N2 dimer. 

The inert gas-H2 systems have for a long time been 
the preeminent prototype systems for atom-molecule 
intermolecular forces, and this remains true. As men­
tioned above, the He-H2 system is the only atom-
molecule system for which a satisfactory pure ab initio 
potential exists. For the heavier inert gas-H2 com­
plexes, however, the spectroscopic and scattering data 
are of sufficient quality to allow the determination of 
uniquely detailed potential energy surfaces, including 
the dependence on the H2 vibrational coordinate (bond 
length). The Ar-H2 potential, in particular, has gone 
through several cycles of refinement as more and better 
experimental data became available. The potential was 
originally determined by Le Roy and van Kranen-
donk122 and by Dunker and Gordon163 on the basis of 
partially resolved near-infrared spectra obtained by 
McKellar and Welsh.121 Subsequently, Le Roy and 
Carley1 obtained improved potential energy surfaces 
based on the same experimental data by constraining 
the potentials to satisfy theoretical constraints based 
on calculations of the C6 dispersion coefficient and the 
(independently known) He-Ar potential. The preferred 
potential of ref 1, the BC3(6,8) potential, was shown to 
give quite good results for the scattering of a beam of 
oriented H2 molecules from Ar164 and for various 
transport properties of Ar-H2 mixtures.147 However, 
it was subsequently shown that it did not reproduce 
either the nuclear hyperfine spectrum of the van der 
Waals complex165-167 or the rotationally inelastic scat­
tering of D2 from Ar.168'169 In addition, McKellar re-
measured the near-infrared spectra of Ar-H2 and Kr-H2 
in low-temperature gas mixtures at much higher reso­
lution.170 Le Roy and Hutson171 therefore performed 
a combined least-squares fit to all these data, using a 
more recent form of the dispersion damping function, 
to determine new three-dimensional potential energy 
surfaces. The resulting surfaces (designated TT3(6,8) 
surfaces) are fairly similar to the older potentials of Le 
Roy and Carley,1 but with smaller uncertainties, al­
though the dependence of the potential anisotropy on 
the H2 vibrational coordinate \ = (r - r0)/r0 is signifi­
cantly weaker than for the older potentials. The new 
Ar-H2 potential also gives a satisfactory account of the 
total differential cross sections168 and the mixed second 
virial coefficients172,173 and has been used to calculate 
various transport and relaxation cross sections for Ar 
+ H2 mixtures.148,174 TT3(6,8) potentials have also been 
determined for Kr-H2 and X-H2,

171 although for these 
systems molecular beam scattering data are not avail­
able. 

The inert gas-H2 potentials are actually very nearly 
isotropic and so do not make good prototypes for in­

termolecular forces in general. The inert gas-HCl po­
tentials are more anisotropic and have also been the 
subject of a great deal of work; once again the Ar system 
is the best understood, but fairly good potentials are 
also available for Ne-HCl, Kr-HCl, and Xe-HCl. The 
first realistic potential to be determined for Ar-HCl was 
obtained by Holmgren et al.175 (HWK potential) on the 
basis of the microwave and radiofrequency spectra of 
the van der Waals complex.176'177 The quantities fitted 
were the rotational and centrifugal distortion constants 
of Ar-HCl and Ar-DCl and angular expectation values 
(P1(COs 8)) and (P2(cos 0)) obtained from the dipole 
moment and nuclear quadrupole coupling constants, 
respectively. The resulting potential was quite well 
determined in the region of the absolute minimum, 
which is at a linear Ar-H-Cl geometry. However, the 
HWK potential was very different from potentials de­
termined from the pressure broadening of HCl rota­
tional spectra,178'179 and itself failed to reproduce the 
observed line-broadening data.179 Accordingly, Hutson 
and Howard180 performed a simultaneous least-squares 
fit to the microwave spectra, the line-broadening data, 
and the mixed second virial coefficients181 and obtained 
the M3 potential; this was quite similar to the HWK 
potential near the minimum but had a considerably 
more anisotropic repulsive wall, allowing it to model the 
line-broadening data. The experimental data were not 
adequate to determine the potential around the linear 
Ar-Cl-H geometry, and the M3 potential was con­
strained to be featureless (without a secondary mini­
mum) in that region. 

Subsequently, Hutson and Howard182 carried out 
similar work on the Ne-HCl potential, for which the 
microwave spectra were sufficient to determine the 
potential over the complete angular range, and found 
that in this case there was a secondary minimum near 
the linear Ne-Cl-H geometry. They therefore proposed 
similar potentials (designated M5 potentials)182 for 
Ar-HCl, Kr-HCl, and Xe-HCl, constrained to have 
secondary minima at the linear inert gas-Cl-H geome­
try. Various semiempirical and ab initio calculations 
also found a secondary minimum at this geometry for 
Ar-HCl.72'183'184 Buck and Schleusener185 found that the 
Ar-HCl M5 potential was superior to the M3 potential 
in reproducing their measured total differential cross 
sections for Ar-HCl.186 Measurements of the near-in­
frared spectrum in the region of the HCl stretching 
fundamental187 also gave results in reasonably good 
agreement with the M5 potential. However, a definitive 
answer to the question of the presence or absence of the 
secondary minimum had to await the measurement of 
far-infrared spectra. This has recently become possible: 
Marshall et al.126 have measured the spectrum of the 
II bending state of Ar-HCl, and Saykally and co­
workers have measured the II bending127,128 as well as 
the S bending129 and stretching130 modes. Comparison 
of these results with calculations of the M3 and M5 
potentials188 shows conclusively that there is a second­
ary minimum at the linear Ar-Cl-H geometry. The new 
spectra have now been used to determine an improved 
potential for Ar-HCl.189 

Similar work has been carried out on Ar-HF, Kr-HF, 
and Xe-HF, although the experimental data are not as 
extensive as for the inert gas-HCl systems. Experi­
mental microwave spectra of the complexes190,191 were 
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fitted to obtain anisotropic potentials26 whose shape 
should be accurate near the equilibrium geometry, 
which is again linear inert gas-H-F. However, in this 
case, there were no data sensitive either to the absolute 
well depths of the potentials or to the potentials near 
the linear inert gas-F-H geometry. Subsequent mea­
surements of the near-infrared spectra of these com­
plexes by Fraser and Pine192 suggest that the true well 
depths are 10-20 cm-1 deeper than those of ref 26. 
Fraser and Pine also demonstrated that the well depth 
is considerably greater for HF in its v = 1 state than 
for the vibrational ground state and have measured 
spectra involving the van der Waals bending vibration 
of Ar-HF in its v = 1 state. In addition, Lovejoy et al.124 

have measured infrared spectra corresponding to ex­
citation of the overtone of the van der Waals stretching 
vibration in v = 1, which borrows intensity from the 
bending vibration by a Coriolis coupling mechanism. 
These new data should allow the determination of 
considerably improved potential energy surfaces for the 
inert gas-HF systems, especially if far-infrared spectra 
can also be measured. The inert gas-HF systems pro­
vide a particularly favorable case for investigating the 
dependence of intermolecular forces on the monomer 
vibrational coordinate. 

The HF-HF system has also been extensively stud­
ied. Microwave and radiofrequency spectra have been 
measured193'194 and have been used195 to determine an 
intermolecular potential that should be accurate in the 
vicinity of the potential minimum. Very detailed 
high-resolution near-infrared spectra have also been 
observed,125,196 and there have been several high-level 
ab initio calculations of the potential energy surface.197 

The He-N2 potential has also been extensively stud­
ied, using a wide variety of beam scattering, virial 
coefficient, and transport data. Keil, Slankas, and 
Kupperman198 (KSK) proposed a potential based on 
total differential cross section measurements; this was 
found to be too weakly anisotropic to reproduce the 
rotational relaxation cross sections determined from 
SBE effects, and a modified version (KKM3) with an 
increased anisotropy was proposed.199 Subsequently, 
Habitz, Tang, and Toennies200 (HTT) proposed a 
semiempirical potential, while Fuchs et al.71 developed 
two semiempirical potentials (HFDl and HFD2); Fau-
bel et al.201 and McCourt et al.202 tested all these po­
tentials against measurements of total and state-to-state 
inelastic cross sections, virial coefficients, transport 
properties, and SBE cross sections and found that none 
of them was capable of reproducing all the experimental 
data. Banks et al.101 performed CEPA calculations on 
He-N2 and used the resulting potential for calculations 
of vibrational relaxation rates; their potential is con­
siderably too shallow in the well region but is likely to 
be quite accurate at short range. Most recently, Can-
dori et al.203 have redetermined the isotropic part of the 
potential, and Gianturco et al.204 have developed a full 
anisotropic potential (M3SV) that is considerably better 
than the earlier potentials, although significant dis­
crepancies between experiment and theory remain. 

The He-O2 interaction has also been studied. Keil 
et al.198 proposed a potential based on total differential 
cross section measurements, and Battaglia et al.205 de­
termined an isotropic potential from these measure­
ments and from absolute and relative integral cross 

sections in the glory scattering regime. Faubel et al.206 

extended the latter study to include the anisotropy, on 
the basis of elastic and inelastic differential cross sec­
tions. The fine-structure spectrum of the He-O2 van 
der Waals molecule has been predicted207 but not 
measured. 

There has also been a considerable amount of work 
on the interaction of heavier inert gases with N2 and 
O2. Pirani and Vecchiocattivi208 have determined a 
potential for Ar-O2 from a range of data, including 
high-energy integral cross sections, glory scattering, and 
(low-resolution) infrared spectroscopy. This potential, 
together with an earlier one due to Mingelgrin and 
Gordon,209 has been used to predict the fine structure 
and radiofrequency Zeeman spectrum of the Ar-O2 van 
der Waals molecule.210 Candori et al.211 subsequently 
modified the Ar-O2 potential in the light of new dif­
ferential cross section measurements and also deter­
mined an analogous potential for Ar-N2. Mettes et al.212 

measured the Zeeman spectrum of Ar-O2 and found 
that it was in somewhat better agreement with the 
modified potential of ref 211 than with the original one. 
McCourt et al.213 have extended the semiempirical 
models71 for He-N2 to obtain potentials for Ne-N2 and 
Ar-N2 and have tested the resulting potentials against 
experimental second virial coefficients; all their poten­
tials have substantially more anisotropy in the position 
of the repulsive wall than the empirical potentials. Ling 
et al.214 have also developed semiempirical potentials 
for Ne-N2 and have compared calculated second virial 
coefficients, viscosities, and diffusion coefficients with 
experimental values. They also investigated the effect 
of modifying the repulsive wall of the potential. 

It may be noted that the He-N2 and He-O2 van der 
Waals complexes are dynamically quite different from 
those involving heavier inert gas atoms.207 In the for­
mer, the anisotropy in the region of the potential min­
imum is comparable to or smaller than the monomer 
rotational spacings, so that the diatomic molecule ex­
ecutes nearly free rotation in the complex. For the 
heavier inert gases, the anisotropy is considerably larger, 
so that the monomer rotation is quite strongly hindered. 

Interactions involving linear polyatomic molecules 
have also been investigated. Parker et al.215 measured 
total differential cross sections (DCS) for He-CO2, 
He-N2O, and He-C2N2 and proposed anisotropic po­
tential energy surfaces for these systems; the anisotropy 
of the potentials was determined from the damping of 
the diffraction oscillations in the DCS. For He-CO2, 
they obtained additional information on the short-range 
part of the potential from second virial coefficients, 
viscosity and diffusion coefficients, and integral cross 
sections. Keil and Parker216 subsequently extended the 
He-CO2 study to include pressure-broadening cross 
sections and other transport properties. However, the 
resulting potential did not reproduce the differential 
energy loss spectra for rotationally inelastic He-CO2 
collisions measured by Buck et al.;217 these authors 
suggested a modification of the repulsive anisotropy to 
bring the potential into agreement with their data. 
Danielson et al.218 have recently remeasured the total 
DCS for He-CO2 and obtained results consistent with 
the modified potential; they also made similar mea­
surements for He-C2H2 and He-OCS and proposed 
potential energy surfaces for them. 
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The He-CO2 van der Waals complex is insufficiently 
strongly bound to have been observed experimentally, 
but complexes of CO2 with heavier inert gases have been 
observed.219 Hough and Howard220 have determined 
potential energy surfaces for Ar-CO2 by least-squares 
fits to the microwave spectra; they also considered 
second virial coefficients and mean-square torque 
measurements. They obtained potentials that are quite 
well determined in the region of the equilibrium geom­
etry (which is T-shaped), but rather uncertain else­
where. The spectroscopic data appear to require a 
strongly anisotropic potential well, in order to reproduce 
the small zero-point bending amplitude in the ground 
vibrational state. However, this is in disagreement with 
the results of Rotzoll and Liibbert,221 who concluded 
that Ar-CO2 has a small well anisotropy on the basis 
of a lack of damping in the total DCS. By contrast, 
Buck et al.222 interpreted their molecular beam differ­
ential energy loss spectra for Xe-CO2 using a potential 
with a relatively large well depth anisotropy. 

Pack et al. have determined anisotropic potentials for 
Ar-SF6 and Kr-SF6

223 and for He-SF6 and Ne-SF6
224 

from multiproperty analyses considering second virial 
coefficients, viscosities, diffusion coefficients, and total 
DCS. Information on the aniostropy came mostly from 
the damping of oscillations in the DCS but is of rather 
different types for the different systems. For He-SF6 
it is the diffraction oscillations that dominate the DCS, 
and the damping of these contains information on the 
anisotropy in the position of the repulsive wall; con­
versely, for the heavier inert gases, the DCS are dom­
inated by rainbow oscillations, and the damping of these 
contains information on the well depth anisotropy. For 
all the inert gas-SF6 systems, the attractive potential 
is nearly isotropic, but the repulsive potential is weakest 
for approach of an inert gas atom along a threefold axis 
(between three F atoms), so that this is the equilibrium 
geometry. 

Buck et al.225 have determined an intermolecular 
potential for Ar-CH4 from total DCS, and O'Loughlin 
et al.226 have determined isotropic potentials for Ne-
CH4 and Ar-CH4 from a combination of total DCS, 
viscosities, and second virial coefficients. Buck et 
gj 227,228 have m e a s u r e c i differential energy loss spectra 
for Ar-CH4 collisions and have used the results to de­
termine semiempirical potentials for these systems. 
Once again, the equilibrium geometry is for approach 
of an inert gas atom over a threefold site. 

In summary, complete potential energy surfaces have 
now been obtained for a variety of prototype systems, 
based both on spectra of van der Waals complexes and 
on scattering and bulk gas measurements. Most of the 
experimental observables are now well understood, and 
great advances have been made both in experimental 
techniques and in computational methods. We can now 
begin to understand the underlying trends that deter­
mine the potential energy surfaces and develop reliable 
methods for predicting intermolecular forces in systems 
that are not amenable to experiment. 

IV. Hydrogen-Bonded Complexes 

This section describes recent developments in the 
theory and calculation of the geometry, electrical 
properties, and potential energy surfaces of complexes 
in which hydrogen bonding is a possibility. Since 1983 

there has been an explosion in the number of observa­
tions of these species and the ab initio literature has 
kept pace. It would be a thankless task to attempt a 
comprehensive list of all calculations, and our aim is 
rather a survey of the types of work being done, where 
possible pointing out a consensus on its physical in­
terpretation. Some specific areas of controversy are also 
identified. 

Experimental information on the structures and 
properties of hydrogen-bonded complexes is mainly 
obtained by microwave spectroscopy. Two methods 
have been used with great success for dimers in the 
ground vibrational state: Pulsed-nozzle, Fourier 
transform microwave spectroscopy5'229 and molecular 
beam electric resonance spectroscopy (MBERS).230,231 

Both employ a collisionless molecular beam formed by 
expansion of the gas mixture and have consequent high 
sensitivity and resolution, allowing the detection of very 
weakly bound complexes. Both give spectra with de­
tailed nuclear-quadrupole and nuclear spin-spin fine 
structure; MBERS can also measure components of the 
total dipole moment. These are valuable sources of 
information on electrical rearrangement and vibrational 
motion in the ground vibrational state of the complex. 
Conventional spectrometers can give complementary 
data on excited vibrational states of the more strongly 
bound complexes, though with poorer resolution.5 

In this, as in any branch of science, experiment and 
theory are intimately connected. Sophisticated as the 
methods of measurement are, models and assumptions 
are still needed to extract average and equilibrium ge­
ometries, intermolecular stretching and bending force 
constants, and bond length and dipole moment changes 
from the raw spectra.5 While the models can be tested 
for internal consistency, one task for theory is to check 
them against accurate calculation. Ab initio calculations 
can explore features of a complex and its potential 
surface with a detail inaccessible to experiment and, on 
occasion, have predicted results in advance of experi­
ment. For example,232 SCF calculations showed that 
(HF)2 is bent and planar233-235 with a nonlinear hydro­
gen bond236 before the experimental determination of 
these features237,238 and predicted the conformations of 
H2O-HF and H3N-HF239 before they were ob­
served.240'241 

Perhaps more important than prediction is the ex­
planatory role of theory. Many features of van der 
Waals complexes can be qualitatively and even semi-
quantitatively understood by using the theory of long-
range intermolecular forces, where the properties of the 
complex are deduced from those of the isolated mono­
mers. In particular, electrostatic models have been 
applied with some success to angular geometries,242,243 

induced dipole moments,55,56 and bond length, vibra­
tional frequency,244 and polarizabiHty changes245 of 
hydrogen-bonded dimers. More rigorous approaches 
based on a long-range partition of the ab initio inter­
action energy include Morokuma analysis28,45,246 and 
Stone's intermolecular perturbation theory (IMPT).29,247 

In these methods the total energy is partitioned into 
electrostatic, induction, dispersion, charge-transfer, and 
exchange-repulsion contributions. Doubts have been 
expressed about the validity of a long-range description 
in a region where overlap of monomer wave functions 
is nonnegligible,248,249 but evidence is accumulating that 
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long-range models mimic more accurate treatments of 
the interaction energy at separations from infinity down 
to the region of the van der Waals mini­
mum.45'49'48,118'250'251 These models are treated in section 
IVC. 

Before giving a survey of calculations on specific 
complexes, we discuss some features of relevance to all 
such calculations. Most calculations on complexes use 
the supermolecule method in which the interaction 
energy is found by treating the whole complex as a 
single molecule, calculating its energy, and subtracting 
the energies of the monomers. 

A. Structural Studies 

A large number of weakly bound dimers have been 
studied by rotational spectroscopy; about 70 are listed 
in a recent review,5 but the total is probably over 100. 
A useful bibliography of experimental structural studies 
is given by Novick in ref 252. Many of these have been 
studied in ab initio calculations of one kind or another. 

One straightforward use of supermolecule calculations 
is to find the theoretical equilibrium geometry, either 
as a prediction or for comparison with experiment, and 
to calculate the corresponding dimerization energy. In 
a state-of-the-art calculation of this type the global 
minimum is found by optimizing the energy with re­
spect to all geometric parameters, both inter- and in­
tramolecular. Once a stationary point is found, it 
should be characterized as a minimum by examination 
of the eigenvalues of the second-derivative matrix. This 
is done most simply by analytic calculation of the vi­
brational frequencies: only points with 3iV-6 real fre­
quencies (or 3N-5 for a linear complex) are true min­
ima. 

Recent studies to this standard include work by 
Frisch, Pople, and Del Bene using the GAUSSIAN system 
of programs253 to perform SCF and MP calculations on 
the dimers (AHJ2 formed from NH3, H2O, HF, PH3, 
H2S, and HCl254 and the protonated species 
(AH„)2H

+.255 The computed frequencies are useful in 
determining zero-point corrections to the dimerization 
energy. Strictly, the interaction energy should also be 
checked for BSSE by a counterpoise correction as in the 
SCF study of H3N-HCN, (HCN)2, HCN-HF, and 
H2O-HF by Somasundram, Amos, and Handy.256 

Using constrained geometry optimizations Sapse and 
Jain have found approximate equilibrium geometries 
by SCF or SCF/MP calculations for a series of heter-
odimers involving hydrocarbons C2H2, C2H4, C2H6, and 
C6H6 with HF257 and with NH3,

258 in broad agreement 
with experimental geometries where these are known. 
Ammonia is a strong proton acceptor but a weak proton 
donor; it is found to behave as a base even in forming 
hydrogen bonds to carbon in systems such as CF3H-
NH3 (experiment,259 predicted in early supermolecule 
work by Kollman et al.260). The strength of the inter­
action in these complexes was found to correlate with 
the charge on the hydrogen atom in the proton donor. 
Morokuma analysis of contributions to the interaction 
energy in C2H2/HF and C2H2/NH3

261 showed that 
electrostatic forces determine the geometries of these 
complexes, a conclusion in agreement with the predic­
tions of a simple model243 described in the present pa­
per. 

Though it is sometimes safe to use chemical intuition 

to limit the range or symmetry of geometries searched, 
this can lead to incorrect results. Global minima may 
not in fact be the "likely" structures, as for the ammonia 
dimer (see later), or fine details such as the slight 
nonlinearity of a hydrogen bond may be missed. For 
some systems it would be difficult to guess the structure 
in advance, for example the "hydrogen-bonded" struc­
ture of B2H6-HF found by full optimization in a DZP 
basis by Rowlands and Somasundram262 which has a 
lower symmetry than the average experimental struc­
ture263 but is in qualitative agreement with it. 

Ideally, though this is not always done, the results of 
a supermolecule calculation should be checked for 
convergence with respect to basis size. Calibration of 
basis sets as described in ref 264 is by no means an exact 
science, but some generalizations can be made. The 
basis must give an adequate description of the unper­
turbed electronic structure of the monomers and of 
properties that influence the interaction energy—the 
electrical moments and polarizabilities. Thus at least 
a doubly polarized double-f basis is required, with one 
(less diffuse) polarization set to describe nonspherical 
atomic densities (e.g., lone pairs) and a more diffuse set 
to describe monomer polarizability. Doubly polarized 
triple-f sets are routinely used for correlated calcula­
tions. Davidson and Feller264 and Huzinaga265 have 
reviewed the terminology and listed the various com­
pilations of basis sets that are available. The accuracy 
of computed properties is thoroughly discussed by the 
van Duijneveldts266 and Werner and Meyer.76 

Some hydrogen-bonded systems for which variation 
of the calculated dimerization energy with basis set has 
been studied are (H2O)2,

109 (NHJ2,
267 (HF)2,

110 and 
H3N-HCl.268 Use of very small basis sets can produce 
qualitatively incorrect results. For example,268 minimal 
and split-valence sets predict that the ammonia-hy­
drogen chloride complex is an ion pair (H4N

+-Cl"), but 
addition of polarization functions to each basis gives a 
hydrogen-bonded structure (H3N-HCl), in agreement 
with the latest experimental evidence.269 Small basis 
sets were found to overestimate the interaction ener­
gy,268 presumably because they give overlarge dipole and 
quadrupole moments. 

Calculations that include electron correlation are of 
course more expensive than those using only SCF the­
ory. Determinations of fully correlated potential sur­
faces for hydrogen-bonded complexes are correspond­
ingly rare. One example is a calculation of the (HF)2 
surface by Michael, Dykstra, and Lisy.270 Coupled 
cluster methods were used to find the optimum geom­
etry in a triple-f singly polarized basis. Agreement with 
experiment at the 0.1% level was found for rotational 
constants, and HF stretching frequencies were predicted 
to within 1%.270 A dipole moment surface was also 
calculated. For another complex, HCN-HF, Bot-
schwina271 has calculated harmonic and anharmonic 
stretching frequencies and frequency shifts including 
electron correlation by the CEPA (coupled electron pair 
approximation) method. His results are in good 
agreement with experimental data, though Amos et 
al.272 suggest that the anharmonic stretch-bend inter­
action constants are nonnegligible. 

A popular expedient for including some correlation 
is the use of Moller-Plesset (MP) perturbation theo­
ry,273 also known as many-body perturbation theory 
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(MBPT). This technique takes the difference between 
the instantaneous interelectron repulsion and its Har-
tree-Fock average as the perturbation and can be car­
ried to second, third, and higher order (MP2, MP3,...) 
by a coupled Hartree-Fock approach. It is available 
as an option in several standard packages.43,263 Some 
potential surfaces have been fully optimized at an MP 
level,256'274-277 although often an equilibrium geometry 
is determined at the SCF level and correlation energy 
added for that single geometry.254,255 

In the long-range description of intermolecular forces, 
intersystem correlation is the cause of the attractive 
dispersion force. Intersystem correlation, or dispersion, 
was found to have a significant effect on calculated 
bond lengths in FH-NH3,

274 FH-PH3,275 FH-OH2,
276 

FH-SH2,
277 and the corresponding HCl complexes. For 

example, MP2 correlation reduces the equilibrium in­
termolecular separation by 0.16 A in FH-PH3, 0.36 A 
in ClH-PH3,

275 and 0.15 A in ClH-NH3.
274 Another 

trend is found for the lengthening of the HX bond upon 
complex formation, Ar(HX). In the doubly polarized 
basis sets used by Scheiner and co-workers the values 
of Ar(HX) at the MP2 level are about double the SCF 
values. Thus on complexing to PH3, the bond length 
of HF is predicted to increase by 0.0006 A (SCF) or 
0.012 A (MP2). These results contradict those of van 
Duijneveldt et al.278 in a smaller (split-valence) basis, 
from which it appeared that correlation had a minor 
effect on Ar(HX). MP2 treatments can overestimate 
correlation effects in dipole moments by factors of up 
to two37 and for similar reasons may exaggerate the 
influence of correlation on geometry. 

An even less expensive way to include correlation 
effects in a potential surface is by adding dispersion 
terms, calculated as a multipole series, to the SCF 
surface. As discussed in section HD, the dispersion 
coefficients between monomers can be related to mul­
tipole polarizabilities at imaginary frequency for each 
monomer. Amos et al.75 have calculated dispersion 
coefficients for the interaction of CO2 and NH3 by this 
method. They found the optimum geometry at the SCF 
level to be T-shaped with N coordinated to C, as in the 
experimental structure. The equilibrium orientation 
of the monomers is predominantly controlled by elec­
trostatics75 and is reproducible by the Buckingham-
Fowler model;242,243 taken with the agreement of SCF 
and experimental geometries, this suggests that the 
dispersion energy of this complex is a rather insensitive 
function of geometry. Although the SCF + dispersion 
treatment includes the effects of intermolecular corre­
lation, it neglects the intramolecular component, which 
can modify the electrostatic and induction energies 
(through changes in moments and polarizabilities) and 
the short-range potential. In some calculations on a 
linear (i.e., nonequilibrium) structure of (HF)2, Lisch-
ka279 found a near-cancellation between inter- and in­
tramolecular effects on the dissociation energy, length, 
and vibrational frequency of the van der Waals bond. 

Some much larger hydrogen-bonded systems have 
been treated at a high level of theory. Examples that 
show what is possible are correlated calculations on the 
nitromethane dimer280,281 and complexes of water and 
methanol with formamide.282 The nitromethane dimer 
is of interest as a prototypical explosive system and in 
fourth-order MP calculations was found to have a cyclic 

,H , H 

i* \ / -l 

! ? ? 
Figure 1. 

C2J1 equilibrium structure with two weak hydrogen 
bonds.281 Only a very limited geometry optimization 
was possible for reasons of expense. Correlation con­
tributes significantly to the interaction energy, changing 
the SCF value of -3.57 to -5.04 kcal mol"1.282 Form-
amide complexes are of obvious biological significance, 
and both water and methanol were found to form cyclic 
double-hydrogen-bonded structures in optimized CISD 
calculations282 where the Is cores on heavy atoms were 
replaced by pseudopotentials. Interaction energies of 
9.5 and 8 kcal mol""1 were predicted for water and 
methanol complexes, respectively. 

At the opposite end of the scale of computer re­
sources, Colwell et al.283 have demonstrated the possi­
bility of using microcomputers to make quantum 
chemical calculations. They calculated the equilibrium 
geometry for H2S-HF in the 4-31G** basis using Ml-
CROMOL284 (a smaller version of the CADPAC43 program) 
running on a personal computer. With the wide 
availability of inexpensive computer power and the 
distribution of black-box program packages the trend 
toward "do-it-yourself" quantum chemistry is likely to 
continue. 

Matrix Isolation Studies 

We have discussed only complexes in the gas phase. 
A number of complexes have been studied in inert gas 
matrices by Fourier transform infrared spectroscopy 
(FTIR), notably by Andrews and co-workers.285 These 
measurements complement those from gas-phase rota­
tional spectroscopy in two ways. First, FTIR measures 
shifts in vibrational frequency induced by complex 
formation, though these are subject to large matrix-
dependent effects. Second, by varying the conditions 
it is possible to observe secondary, less stable structures 
in addition to the thermodynamically favored prod­
uct;285 for example, both HCN-HF and the less stable 
HF-HCN are formed in solid Ar. 

The large matrix effects make comparison with ab 
initio calculation tantalizingly inconclusive.286,287 As ab 
initio treatment of a complex embedded in a large 
number of inert gas atoms is not feasible, a reliable 
model of the steric and electronic effects of the matrix 
would be very useful. Barnes has reviewed some simple 
models for matrix shifts.288 

B. The Strange Case of the Ammonia Dimer 

Perhaps the most interesting of the hydride dimers 
is (NH3)2. It is well established, both theoretically110,289 

and experimentally,237,238 that in (HF)2 and (H2O)2 the 
monomers are linked by a nearly linear hydrogen bond; 
a number of calculations have dealt with a similar 
structure 1 (Figure 1) for (NH3)2 (e.g., ref 267 and 
290-293). Although 1 is generally predicted to be the 
global minimum, a local minimum has been found for 
a cyclic structure 2 of C2,, symmetry in some calcula­
tions.294,295 
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Recent experimental work by Klemperer and co­
workers at Harvard296,297 casts severe doubt on the va­
lidity of 1 as a structure for the gas-phase ammonia 
dimer. A nearly linear hydrogen-bonded structure is 
inconsistent with the measured spectroscopic constants 
for two vibrational states of (NH3)2 and one of (ND3J2. 
Most dramatically, the measured dipole moment of 0.75 
D (component along the a inertial axis for (NH3J2) in­
dicates substantial cancellation of the monomer dipole 
moments (each is 1.47 D). Though the experimental 
measurements cannot give unambiguous values for all 
the torsional angles, they are consistent with an average 
structure like 3.297 In the absence of evidence for 
nonrigidity in the ground vibrational state of the com­
plex,297 it would appear therefore that the equilibrium 
structure is not 1. Furthermore, the fact that the com­
plex has a nonzero dipole rules out the nonpolar 2. 
Klemperer et al. point out that even in the solid phase 
the hydrogen bonds between neighboring ammonia 
molecules are quite nonlinear (N-H-N angle of 164°) 
and argue that ammonia does not act as a proton donor 
in any known hydrogen-bonding interaction.298 

How has ab initio calculation responded to the 
challenge posed by this new evidence? Much of the 
earlier work assumed a structure of the type 1 rather 
than performing a completely free optimization. Frisch, 
Pople, and Del Bene have studied the homodimers 
formed from a number of first- and second-row hy­
drides, including NH3.254 They optimized the geome­
tries using 6-31G* and 6-31G+* (doubly polarized) basis 
sets. At the stationary points the SCF energies were 
improved by adding p polarization functions on the 
hydrogens, and correlation energies were calculated by 
a variant of fourth-order MP perturbation theory. The 
SCF results show that (NH3)2 is indeed a difficult 
problem: in the smaller basis sets the cyclic structure 
2 is the global minimum and 1 is only a transition state, 
while in the slightly larger basis 2 becomes a transition 
state and the C8 structure 1 becomes the global mini­
mum! (NH3J2 is the only dimer studied in ref 254 for 
which such a switch of minima occurs. 

When correlation and zero-point energies are taken 
into account, the best prediction of Frisch et al. is that 
the open C8 structure has a dimerization energy of 2.2 
kcal mol"1 and that the C2/, structure lies only 0.2 kcal 
mol-1 above it (about 20% of the calculated barrier to 
conversion between equivalent minima in (H2O)2 and 
(HF)2).

254 This remains true when the geometry is fully 
optimized at the MP2 level.299 An experimental upper 
bound for the dissociation energy of (NH3)2 is 2.8 kcal 
mol"1.296 

Latajka and Scheiner300 performed a detailed study 
of the potential energy surface for (NH3)2 using a small 
4-31G* basis and, at selected points, a 6-31G** (lp,2d) 
basis (two sets of polarization functions on N and one 
on H) similar to the largest set used by Frisch et al. 
They found a global minimum in the SCF surface at 
the cyclic geometry and a transition state with near-
linear hydrogen bonds 0.2 kcal mol-1 higher. BSSE was 
calculated bur did not change this conclusion. Latajka 
and Scheiner find that the NH3 dimer is extremely 
flexible, with a low-energy conversion path between 
linear and cyclic structures. The difference in stability 
between 1 and 2 is ascribed in their calculation to the 
difference in correlation energy. At the C2h minimum 

the complex is nonpolar, in conflict with the observed 
dipole moment of 0.75 D. It is suggested in ref 300 that 
differences in zero-point energy along the cyclic-linear 
pathway lead to an average structure with the lower C8 

symmetry, displaced by perhaps 10-15° from the cyclic 
equilibrium geometry. The same suggestion is made 
by Carnovale et al. in their study of the photoelectron 
spectroscopy of ammonia dimer.301 Such a structure 
would have a dipole moment of about the right value. 
This might explain why isotopic substitution lowers the 
dipole moment,297 but the explanation does not seem 
satisfactory; it is difficult to see how zero-point motion 
about a minimum can lower the average point group 
symmetry. 

In summary, it is clear that the basis set limit for 
(NH3)2 has not yet been established, since small changes 
in basis can change the relative orientations and even 
the number of minima. A large-basis SCF + CI treat­
ment of this complex would be of great interest, as 
would a detailed analysis of the electrostatic, induction, 
and dispersion contributions to the binding. Morokuma 
partition of a 4-31G calculation indicates that (NH3)2 

is an "electrostatic" complex,302 but results in this un-
polarized basis may not be reliable. A study of the 
vibrational motion on the potential energy surface and 
its effect on the dipole moment would also be useful. 
On the experimental side, it would be interesting to 
know why there is no evidence of nonrigidity in the 
spectrum, when all the calculations point to a very flat 
surface in the region of interest—the flatness is of 
course the reason why it is so hard to pin down the 
minimum. 

Liu et al.303 suggest that large-amplitude motions do 
take place on the multiwell potential surface, but be­
cause of complicated torsional couplings do not give rise 
to vibrational splittings; they would therefore be 
"invisible" in the spectra measured by Klemperer and 
co-workers.296,297 Liu et al. also find the dimer dipole 
moment, na, to be a sensitive function of angle and, 
using an electrostatic model, find good agreement with 
the experimental dipole by reassigning one of the tor­
sional angles from 60°296,297 to 0°. Nelson and Klem­
perer304 have made a detailed analysis of the tunnel-
ing-rotation levels of the dimer in the group of feasible 
permutation-inversion operations. They find that, even 
when tunneling is included as a feasible motion in the 
symmetry group, it is possible for the microwave 
spectrum to show no tunneling splitting. 

Sagarik, Ahlrichs, and Brode305 have obtained results 
that shed some light on the probable effect of electron 
correlation on the potential energy surface. They 
performed a partial optimization with polarized basis 
sets at the SCF level and introduced correlation by the 
CPF (coupled pair functional) method. The monomer 
geometries were frozen, and full characterization of the 
stationary points by calculation of the Hessian was not 
attempted. In their basis sets ([6s4p2d/3slp] and 
[6s4p2d]) the SCF potential energy surface has a 
"linear" H-bonded minimum and the CPF surface has 
a minimum in a cyclic unsymmetric structure of the 
general type 3. Again the surface is very flat and the 
dipole very sensitive to geometry in the region of the 
minima. If the CPF minimum survives a full optimi­
zation, theoretical and experimental results may yet be 
in agreement for this troublesome case. 
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Ammonia dimer is clearly different in character from 
other dimers of fast-row hydrides. It also appears to 
differ from its second-row analogue (PH3)2. According 
to ref 254, (PH3)2 is bound by a tiny 0.3 kcal mol"1 

arising from dispersion forces. With BSSE corrections 
the binding might well disappear altogether. In general, 
the second-row hydrides studied in ref 254 form only 
weak hydrogen bonds and have shallow, flat potential 
surfaces. For (H2S)2 this is confirmed by another 
study.306 The second-row hydrides have smaller dipole 
moments than their first-row counterparts and sepa­
rations are generally larger (because of larger van der 
Waals radii) so that on electrostatic grounds the weaker 
bonding is understandable. For example, in these 
calculations,254 (HF)2 is bound by 2.1 kcal mol"1, 
whereas for (HCl)2 the binding is only 0.9 kcal mol"1. 
Protonated homodimers are also more strongly bound 
for first than second-row hydrides.255 

C. Models for Structure and Properties 

In a sense, a supermolecule calculation on a specific 
hydrogen-bonded complex is a model of that system, 
but as a picture of "the hydrogen bond" it is virtually 
useless without an interpretation in terms of broader 
chemical and physical concepts. In weakly bound 
complexes, the monomers retain to a large extent their 
separate identities; it is natural therefore to use the 
long-range theory of intermolecular forces to model the 
properties of the complex in terms of those of the iso­
lated monomers. 

Recent models for weakly bound complexes empha­
size the importance of electrostatic forces and might be 
seen as a return to the early ideas of Pauling, Coulson, 
and others307,308 on the hydrogen bond. The alternative 
charge-transfer viewpoint of Mulliken (see for example 
ref 309) is still used to rationalize known structures of 
complexes249 but does not lead to a simple predictive 
scheme. The directional character, strength, and nature 
of the hydrogen bond in gas-phase dimers has been 
reviewed by Legon and Millen.310 

Geometries 

At the lowest level, a model for hydrogen-bonded 
complexes has to predict their overall shapes: which 
atoms are involved in the weak bond and what is the 
orientation of the monomer units. Morokuma-type 
decomposition of the SCF energy for a variety of hy­
drogen-bonded dimers,45'48-250-262'302 has shown that the 
electrostatic contribution is a large fraction of the 
binding energy and, more importantly, dominates the 
angular variation of the total energy. The dispersion 
energy may contribute significantly to the binding en­
ergy but is usually a much slower function of the an­
gular coordinates. 

A basic model for geometries must therefore contain 
two ingredients: a representation of the electrostatic 
interaction to provide an angular minimum and a re­
pulsive potential to hold the monomers apart. One such 
model is that of Buckingham and Fowler.242,243 In it, 
the electrostatic interaction between monomers is cal­
culated by using point multipoles on atoms and bond 
centers, and the repulsion is crudely modeled by hard 
spheres on heavy atoms. The multipoles are obtained 
from large SCF or SCF/MP calculations on the indi­
vidual molecules, and the hard-sphere radii are taken 

from Pauling.311 The geometry of a complex is pre­
dicted by finding a minimum in the electrostatic energy 
subject to the hard-sphere constraints. 

Results of the model have been described242 and 
many are tabulated in ref 243, so a correspondingly brief 
summary will be given here. For 30 or so hydrogen-
bonded complexes the model gives structures in 
agreement with experiment; for example, it reproduces 
the linear H bonds in H3N-HF, N2-HF, and H3P-HF, 
the nonlinear H bonds in (HF)2, (HCl)2, and H2S-HF, 
and the H bonds to -K systems in acetylene-HF and 
ethylene-HCl. Results for bond angles are often sur­
prisingly accurate; for example, in H2CO-HF, zCOF is 
predicted to be HO0,242 within 0.5° of the experimental 
angle.312 The model has also been used to find likely 
starting points for ab initio optimizations: it finds the 
unusual B2H6/FH structure262 and the T-shape for 
NH3-CO2.

75 

As noted earlier, the distributed multipoles are 
readily interpreted in terms of electronic-structure 
concepts such as lone and bonding pairs. This physical 
model is qualitatively compatible with an apparently 
"chemical" description such as that given by Legon and 
Millen.313 Their empirical rule for hydrogen-bonded 
geometries states that HX attaches along the line of a 
nonbonded pair or, in the absence of a lone pair, per­
pendicular to the IT cloud in a Tr-bonded system. The 
electrostatic model accounts for these observations but 
has the additional flexibility to allow for deviations from 
linearity and from idealized valence angles.55 

The model is also economical. Departure from local 
spherical symmetry of the electron cloud around atoms 
is described by atomic dipoles and quadrupoles, where 
a single-site model would require central multipoles of 
high order. For example, the model used by Liu and 
Dykstra59,244 for electrostatic and induction interactions 
in weakly bound complexes uses central octopole mo­
ments. The central multipoles of lowest order are often 
inadequate to explain the observed structures. For 
example, the dipole-dipole energy favors a linear ge­
ometry for HF-HF but the higher order central mul­
tipoles (implicit in the DMA description) produce the 
observed bent structure.59 A bent geometry can also 
be predicted by point charges alone, if they are placed 
so as to simulate off-axis nonbonding pairs45 or are 
fitted to reproduce central dipoles, quadrupoles, octo-
poles, and hexadecapoles.47 Without attention to these 
features, point-charge models can give quite misleading 
electrostatic energies.314'315 

Cases where a simple model fails are often as illu­
minating as those where it succeeds. The hard-sphere 
model tends to overemphasize the importance of hy­
drogen-bonded structures. For example, in C1F/HF 
with Pauling radii for Cl and F, the model predicts the 
hydrogen-bonded ClF-HF243 rather than the experi­
mentally observed "anti-hydrogen-bonded" HF-ClF.316 

A similar problem is found for HF-Cl2. These diffi­
culties can be traced to the crude form of the repulsive 
potential used in the model—the heavy-atom contact 
distances are too large for non-hydrogen-bonded geom­
etries and so the electrostatic energy is underestimated. 
When the experimental separation is used, the model 
finds the correct angular geometry for both HF-ClF and 
HF-Cl2.

243 Energy decomposition studies48,250 of these 
and other "difficult" cases confirm that the angular 
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geometry of the anti-hydrogen-bonded complexes is still 
controlled by electrostatics. 

A further illustration is provided by the recently 
determined geometry of the S02/HCN complex.317 

Contrary to expectation, this molecule is "anti-hydro­
gen-bonded", HCN-SO2. When Pauling radii are used, 
the model predicts a global minimum for a hydrogen-
bonded structure SO2-HCN and a shallower minimum 
for a S-N bonded structure. However, if the S-N 
separation used in the model is reduced, the secondary 
minimum deepens and eventually takes over as the 
global minimum for /J(S-N) less than about 3 A; the 
experimental value of this distance is 3 A.318 With this 
separation the angle between the figure axes of SO2 and 
HCN predicted by the model is 80°, in excellent 
agreement with the measured value of 86°.317>318 

Other treatments of the repulsive potential have been 
tried: Liu and Dykstra59 use average radii estimated 
from known hydrogen-bonded complexes and include 
hard spheres for the H atoms: Price and Stone315 use 
a smoothed penalty function to approximate hard 
spheres with radii taken from Pauling,311 Brobjer and 
Murrell use the experimental center-of-mass to cen-
ter-of-mass separation for calculations on (HF)2,

47 and 
Amos et al.319 use Lennard-Jones repulsion parameters. 
It may be possible to find two sets of heavy-atom radii, 
one appropriate to contacts X-H-Y and another to 
X-Y, to counter the tendency of the model to empha­
size hydrogen-bonded structures. 

Dykstra and co-workers59,60'303 have used an electro­
statics + induction model (with central multipoles and 
polarizabilities) to look at various complexes and clus­
ters. They suggest that the complicated coupling of 
angular coordinates may introduce uncertainties into 
the analysis of the experimental structure for the am­
monia dimer303 and find that electrostatic predictions 
are in agreement with ab initio structures for the cyclic 
(HF)3

59 and the T-shaped H2-HF.60 

Induced Dipole Moments 

Large enhancements of dipole moment on formation 
of van der Waals complexes have been measured in 
some cases; for example, A^ = 0.60 D for H3P-HCN,320 

0.60 D for OCO-HF,321 and 0.49 D for OC-BF3.
322 After 

allowing for zero-point effects the change in dipole is 
attributable to distortion of the monomer charge den­
sities by induction, dispersion, and short-range forces. 
For complexes of polar monomers, where the electro­
static model of shape is useful, induction is likely to 
dominate the dipole. 

A model for the induced dipole moment has been 
proposed.55 It combines distributed multipoles de­
scribing the permanent charge cloud with distributed 
polarizabilities describing its response to an external 
field. Both are calculated ab initio using Stone's DMA36 

and DPA54 methods. Predictions for several linear 
complexes are in spectacular agreement with experi­
ment: e.g., for N2-HCl, A^ = 0.265 D (0.25 D);323 for 
OC-HCl, Au = 0.381 D (0.39 D);324 for OCO-HCl, Au 
= 0.441 D (0.45 D);325 and for OCO-HF, A^ = 0.617 D 
(0.60 D),321 where the experimental values are given in 
parentheses. In these complexes there can be a sub­
stantial induced dipole on each partner; e.g., in OC-HCl 
the dipole enhancement consists of 0.245 D on OC and 
0.136 D on HCl. Neglect of the latter contribution can 

give the false impression that large noninductive con­
tributions are needed to explain the dipole.324 

Dipole moments are also known for a number of other 
complexes,312,322'326'327 including several involving BF3. 
Novick328 used a single-site inductive model for the 
dipole moments of Ar-BF3, OC-BF3, and N2-BF3 to 
estimate the quadrupole moment and polarizability of 
BF3. Direct ab initio calculation shows these estimates 
to be rather poor56 but this is a consequence of the 
inadequacy of a truncated single-site treatment. Fowler 
and Stone56 used the DMA/DPA model to predict the 
dipole enhancements of these complexes, in excellent 
agreement with experiment, and concluded that they 
are indeed inductive in origin. A DMA/DPA treatment 
of the N2O-HF complex gives indirect evidence that the 
permanent dipole moment of N2O (of 0.16088 D)329 is 
in the sense +NNO-. This sign is confirmed by a more 
recent experimental determination.330 

Liu et al.303 used a single-site model with high-order 
central moments and polarizabilities to predict a dipole 
moment surface for (NH3) 2 in the region of the mini­
mum. 

An inductive model can also be constructed for the 
changes in polarizability caused by formation of a 
complex.245 Dykstra, Liu, and Malik compared the 
predictions of their model for polarizability and hy-
perpolarizability with direct ab initio calculation for a 
range of geometries of the HF dimer and found agree­
ment to within a few percent even at the equilibrium 
separation.245 The coupled Hartree-Fock approach 
used necessarily excludes dispersion contributions to 
the polarizability properties, but the results are en­
couraging. 

Changes in the nuclear quadrupole coupling constants 
have also been investigated.331 

Bond Length Changes and Frequency Shifts 

Although to a good approximation the monomer 
subunits in a complex B-HA retain their structures, 
they suffer small changes in geometry and shifts in 
vibrational frequencies. Legon and Millen332 analyzed 
hyperfine coupling constants for a series of hetero-
dimers B-HF and extracted values of Ar, the length­
ening of the HF bond on complex formation, ranging 
from 0 to 0.016 A (in CH3CN-HF). The size of the 
effect correlates with the strength of the hydrogen 
bond.332 Shifts in the HF stretching frequency have 
been measured for complexes in inert gas matrices333,334 

and in the gas phase.335,336 

Such shifts are automatically included in the results 
from a full ab initio geometry optimization of the com­
plex, as discussed in section IVA. However, it is clearly 
of interest to find a general model for geometric and 
vibrational shifts in terms of intermolecular forces. 
Experience with models for the geometry and dipole 
moment indicates that electrostatic and induction forces 
will account for much of the effect. The changes in 
structure and vibrational frequencies induced in a 
molecule by an external field are well-known.337 The 
electrostatic energy of a molecule in a static field is 

V^ = -n„Fa - V3ea8Far ... (40) 

and each permanent moment is a function of the ge­
ometry of the molecule (i.e., a property surface), so that 
yeiec constitutes a field-dependent addition to the vi-
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brational potential energy surface. For simplicity, 
consider a diatomic molecule. The field-free potential 
energy is 

U(r) = WrMr)2 + l/sfrrr(8r)3 + ... (41) 

and the moments are 

M,(r) = n,e + M , W + 1ZW(Sr)2 + ... (42) 

6„(r) = 9«e + 6„'(5r) + VA^(Sr)2 + (43) 

where 8r is the departure from the equilibrium bond 
length and nz

e and 0zz
e are the dipole and quadrupole 

moments for the equilibrium geometry. In the field, the 
molecule relaxes to a new bond length and the shift is 
found by differentiating U(r) + Velec. It is 

Ar = (nz'/frr)Fz + 1MB1ZZfn)F11 + ... (44) 

and the force constant changes by 

\F„ + 

(45) 

Higher terms arise from the induction energy and from 
higher derivatives of the field. These equations also 
neglect the effect of short-range forces, and this may 
not be warranted. 

Liu and Dykstra244 have applied this theory to van 
der Waals complexes of HF, where the fields FaJFaff,... 
arise from the permanent and induced moments of the 
neighboring molecule. They use central multipoles (up 
to hexadecapole), polarizabilities, and hyperpolariza-
bilities. Vibrational frequency shifts are calculated very 
well by a model that includes induced moments 
(agreeing with experiment to within a few percent in 
all but one case), but not so well by the electrostatic 
model alone. Comparison of the results for bond length 
shifts244 with those derived from experimental quan­
tities332 shows the same quality of agreement, with a 
suggestion that the model tends slightly to overestimate 
the effect. 

In other applications, we have seen that a distributed 
model improves predictive power. A simple distributed 
model can be constructed for bond length and fre­
quency shifts as follows. The total molecular multipole 
moments can be recovered from a DMA36'37 as sums of 
site contributions 

qA = E q& = Zq* 
aGA a£A 

(46) 

M0
A = L W + qaRa

&] = E K& (47) 
a£A a£A 

Hy*Ry*8a8J + i<7a(3i?„aV- (R/) 2 ^)] = Z$af 

"eA(48) 

where q*, na, and 9a are point multipoles on site a at 
position Ra in molecule A, and the tilde denotes the 
total contribution from all point multipoles on site a 
to the molecular multipole of molecule A. The total 

electrostatic energy of molecule A in the field of mol­
ecule B is 

a£A 

(49) 
where $ is the electrostatic potential and the super­
script (a,B) denotes a potential or field at site a arising 
from the charge distribution of molecule B. In calcu­
lating the derivative of Velec with respect to bond length 
for a diatomic molecule, one must remember that both 
the moments and the electrostatic potentials are func­
tions of 5r. As the diatomic molecule stretches, the site 
multipoles change, but the site is also moving to a 
different position in the field. The result is 

(50) 

Ar= L 
aGA (?) $(a,B) / / r r _ #«* 

Wa^/frr-

ae, <# 
Br V8V/,, (51) 

and for the force constant shift 

The potential and field of molecule B can be evaluated 
from the permanent site multipoles in B, and deriva­
tives of the site multipoles can be calculated by a cou­
pled Hartree-Fock scheme or by finite differences. If 
necessary, the effects of induction could be included by 
using DPA site polarizabilities. Calculations using this 
model will be reported in a later publication. 

Other properties that may be amenable to modeling 
are the electric field gradients at nuclei (accessible from 
experiment via nuclear quadrupole splittings) and the 
dipole and polarizability derivatives (governing inten­
sities of infrared and Raman transitions). 

Some ab initio studies on electric field gradients in 
the N2-HF complex have been performed by Cummins 
et al.338 and Benzel and Dykstra.339 The calculations 
successfully predict the trend in going from free N2 to 
the complex, but a quantitative comparison is made 
difficult by the need for vibrational averaging, for which 
harmonic wave functions may be inadequate.338 In 
calculations on clusters (H2O)n (n = 2-5)340 and (NH3), 
(n = 2-7) (

251 it is found that most of the change in 
electric field gradient between the gas phase and the 
condensed phase (simulated by a cluster) can be ac­
counted for by an electrostatic model.251 

Accuracy of calculated dipole derivatives is crucially 
dependent on the quality of the basis set,341 and it is 
notoriously difficult to extract these derivatives reliably 
from experiment. These remarks apply with added 
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force to the polarizability derivatives. In addition, it 
appears that intramolecular polarizability derivatives 
are subject to large secondary BSSE effects,342 much 
more so than the corresponding dipole derivatives. 
Some attempts to construct long-range models of these 
quantities have been made251,343 but it seems that such 
models fail because they are unable to describe the 
changes caused by an atom moving in a bonding en­
vironment.251 

D. Complexes of Aromatic Molecules 

Electrostatic models are not expected to be adequate 
for all complexes of polar and quadrupolar molecules. 
In some cases, such as OCO-HF, the experimental 
structure is the outcome of a delicate balance of con­
tributions.48 In others, the dispersion energy may be 
significantly anisotropic. One interesting class of com­
plexes where this may be true is the homo- and heter-
odimers of aromatic molecules, for which the interpre­
tation of the experimental evidence is not totally clear 
and different models can give conflicting results. 

The Buckingham-Fowler model242,243 has been used 
by Price and Stone344 to predict geometries for com­
plexes of s-tetrazine with HCl, H2O, C2H2, benzene, and 
s-tetrazine, and of benzene with C2H2, benzene, an­
thracene, and perylene. For the larger complexes, the 
model predicts a number of distinct local minima, 
closely spaced in energy. There is some experimental 
evidence of geometrical isomerism in aromatic com­
plexes; for example, Haynam et al.345 assign laser-in­
duced-fluorescence spectra of s-tetrazine dimer to two 
isomers, one with parallel rings and one T-shaped. In 
the cases where the structure of a complex is experi­
mentally well determined, it usually corresponds 
qualitatively to one of the minima predicted by the 
model.344 Price and Stone conclude that the electro­
static energy plays a major role in determining these 
structures, though it is less dominant for aromatic 
complexes than for those of small polar and quadru­
polar molecules, because the dispersion energy is much 
more anisotropic. Even in a model that includes dis­
persion it is important to have a good representation 
of the electrostatic effects of the n clouds, such as that 
provided by a DMA. Price and Stone demonstrate the 
inadequacy of previous point-charge models in this re­
spect. 

To realize, however, that we have much to learn about 
aromatic dimers, consider the simplest case of all, the 
benzene dimer. In molecular beam electric deflection 
experiments, it was found that (C6H6)2 is polar346 and 
an asymmetric rotor.347 A T-shaped structure was 
proposed, in agreement with the nearest-neighbor ori­
entation in the solid and with the long-range quadru-
pole-quadrupole interaction. However, recent spec­
troscopic data appear to require that the two monomers 
be equivalent; a slipped-parallel C2/, structure348 and a 
C2u V-shape349 structure have been proposed by dif­
ferent groups. The electrostatic energy does not decide 
between the various minima,344 and it is not obvious 
which one of them will be favored by the dispersion 
interaction. 

Some ab initio supermolecule calculations on aro-
matics have been performed by Pawliszyn et al.350 on 
the homo- and heterodimers of benzene and s-tetrazine. 
SCF energies were found for various coplanar and 

perpendicular geometries, using the minimal ST0-3G 
basis. Dispersion effects were added as an atom-atom 
i?"6 potential, parameterized from ab initio calculations 
on azabenzenes.351 The T-shaped benzene dimer was 
the most stable of the arrangements considered, though 
since these did not include any V-shaped or slipped-
parallel configurations, the results are not conclusive. 
Since minimal basis sets also tend to give poor multi-
pole moments, it is probable that the modeling ap­
proach using a DMA from a high-quality monomer 
wave function is more reliable than the rather limited 
supermolecule results. Modeling is certainly less ex­
pansive and allows a more extensive search of the po­
tential energy surface for "unexpected" structures. 

Amos et al.319 use a simple (repulsion + electrostatics 
+ dispersion) model to find equilibrium structures for 
various perylene complexes, in order to interpret solvent 
shifts in the laser-induced fluorescence of perylene. For 
1:1 complexes the solvent molecule (e.g., benzene) is 
predicted to lie over the central perylene ring. Stone 
and Price344 show that a point-charge model of the 
electrostatic energy, as used in ref 319 and 352, can lead 
to a spurious minimum for central binding. A more 
complete treatment of the electrostatics suggests 
binding of the benzene to the periphery of the perylene 
molecule. It is not clear whether such geometries would 
be compatible with the observed red shifts. The Not­
tingham group353 is now investigating the effects of 
changes in the electrostatic component of their model 
on the predicted results. 

In summary, the complexes of aromatic molecules are 
not yet fully understood from either an experimental 
or a theoretical viewpoint. These complexes are severe 
tests of simple models and ab initio computation alike 
and are likely to remain a challenge for theoreticians 
for some time to come. When a scheme for calculating 
distributed dispersion coefficients from ab initio wave 
functions becomes available, aromatic complexes will 
be among the first targets for modeling. 

V. Conclusions 

Much progress has been made toward an under­
standing of the structure and properties of van der 
Waals molecules. The basic theory of intermolecular 
forces is well developed, and much is known about the 
best way to parameterize intermolecular potentials. 
Direct ab initio calculations are not yet capable of 
calculating intermolecular potentials except for the 
smallest systems, but methods that partition the in­
termolecular potential into contributions from repulsive, 
electrostatic, induction, and dispersion forces are very 
promising. For larger molecules, single-center expan­
sions of the attractive forces are not adequate, and 
distributed models for multipole moments and polar-
izabilities are important. Complete potential energy 
surfaces have been developed for a range of prototype 
atom-diatom and diatom-diatom systems, using a 
combination of theoretical calculations and high-quality 
experimental data. 

For complexes involving larger monomers, the in­
formation available is less complete. The geometries 
of strongly bound complexes are now well understood, 
in that they can be reproduced satisfactorily by accurate 
calculations and explained by simple physical models. 
However, the dynamics of the motion on the potential 
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energy surface remain to be elucidated; simple harmonic 
models are not entirely adequate. For weaker com­
plexes where dispersion is more important, such as 
those of aromatic molecules, theory and experiment 
have yet to produce satisfactory accounts of the equi­
librium geometry, although some of the factors involved 
have been identified. 

The weakness of the bonding and the large-amplitude 
vibrational motion mean that some of the accepted 
concepts that we apply to "chemically bound" molecules 
need to be modified; for example, properties may vary 
substantially on siotopic substitution and on vibrational, 
or even rotational, excitation. However, the weakness 
of the interaction also allows us to consider a van der 
Waals molecule A-B as a pair of molecules A and B: 
our knowledge of the properties of the free molecules 
A and B then gives us the basis for a description of the 
complex. 

From a detailed understanding of the interactions in 
van der Waals molecules, we can proceed to more com­
plicated systems that are of interest in physics, chem­
istry, and biology; these include surface interactions, 
condensed phases (including solutions, liquids and 
solids), micelles, polymers, biomacromolecules, and 
membranes. In particular, the distributed models of 
attractive forces developed from studies of van der 
Waals molecules will make it possible to go beyond the 
site-site potentials and point-charge models that are 
commonly used in modeling molecular interactions in 
biological systems.354 
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