Recent Organometallic Nitrosyl Chemistry ^t

GEORGE B. RICHTER-ADDO and PETER LEGZDINS*

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver. British Columbia, Canada V6T 1Y6

Received February 16, 1988 (Revised Manuscript Received May 9, 1988)

Contents

/. Introduction

Organometallic nitrosyl complexes are compounds that contain both nitric oxide and organic groups coordinated in some fashion to one or more transitionmetal centers. It has been 20 years since these complexes were first the subject of a review.¹ At the time of this first review, the great majority of the organometallic nitrosyls known were simple substitution derivatives of nitrosyl carbonyls such as $Co(NO)(CO)_{3}$ and $Fe(NO)₂(CO)₂$. Furthermore, the principal emphasis at that time was on the synthesis and characterization of new structural types of these compounds. The intervening years have seen the appearance of an ever increasing amount of information in the chemical literature concerning transition-metal nitrosyl complexes

George Richter-Addo (on the left) was born in Glasgow, Scotland, in 1957. He obtained his Honours B.Sc. degree and a Diploma in Education from the University of Cape Coast, Ghana, in 1982. After teaching for a year, he embarked on graduate studies at the University of British Columbia in 1984. He is currently completing his Ph.D. research work, which has been concerned with the determination and synthetic exploitation of the redox properties of a variety of organometallic nitrosyl complexes in nonaqueous media. Peter Legzdins (on the right) was born in Riga, Latvia, on September 24, 1942. His family emigrated to Germany in 1944 and then to Canada in 1949. Dr Legzdins received his Honours B.Sc. from Carleton University (1964) and his Ph.D. from M.I.T. (1968) with F. A. Cotton. After a postdoctoral year with G. Wilkinson at Imperial College in London, he joined the faculty at the University of British Columbia, where he is currently Professor of Chemistry. In 1986 Professor Legzdins was awarded a U.B.C. Izaak Walton Killam Memorial Senior Fellowship. His research interests are Killam Memorial Senior Fellowship. His research interests are centered on synthetic, structural, and bonding studies of organometallic compounds that can be utilized as specific reactants or selective catalysts in organic or organometallic syntheses.

in general,² and organometallic nitrosyls in particular. Consequently, a new summary and review of these latter species are both appropriate and somewhat overdue. In this connection it should be noted that the specific topic of organometallic nitrosyl clusters has been addressed in a recent review.³

The present article summarizes comprehensively the literature dealing with organometallic nitrosyl compounds (generally excluding clusters) that was published between early 1968 and mid 1987. As outlined in the table of contents, the pertinent information concerning the compounds themselves is first partitioned in terms of the ligands other than NO present in the complexes. In the interests of keeping the article to a manageable size, most of the routine preparative and characterization data for individual compounds are simply referenced rather than being presented and discussed in detail. The review concludes with two general sections that apply, in principle, to all classes of organometallic nitrosyls, namely the characteristic reactivities of bound NO groups and the synthetic ap-

^{&#}x27; Unless otherwise stated, the following abbreviations have been used: $Cp = \eta^5 - C_5H_5$, $Cp' = \eta^5 - C_5H_4(CH_3)$, $Cp^* = \eta^5 - C_5(CH_3)_5$, Ar = aryl, tol = tolyl, py = pyridine, Ph = phenyl, Et = ethyl, Me = methyl, Bu = butyl, and THF = tetrahydrofuran.

plications of the various types of complexes. The emphasis throughout is on the unique physical and chemical properties imparted to the compounds by the presence of the strongly electron-withdrawing nitrosyl ligands.

II. (Cyclopentadienyl)metal Nitrosyls and Hailde **Derivatives**

A. Vanadium and Titanium

The cyclopentadienyldinitrosylvanadium dimer (1) has been obtained by the treatment of Cp_2V with nitric oxide.⁴ The same reaction has also led to the isolation

of an insoluble, air-stable brown material of empirical composition $V_3(C_5H_5)_3NO_7.5$ Reactions of Cp_2V with NOX (X = Cl, Br) produce $Cp_2V(NO)X$ complexes,⁴ which are fluxional molecules in which linear and bent VNO groups interconvert.⁶ The analogous iodo complexes (X = I, Cp = η^5 -C₅H₅;⁵ X = I, Cp = η^5 -C₅Me₅⁷) are obtainable by the reaction of the vanadocene iodide with nitric oxide. Interestingly, $Cp_2V(NO)I$ decomposes in THF solution to diamagnetic $\{CpVI\}_2\{CpV(NO)\}_2(\mu O_{4}$, whose X-ray structure has been reported.^{5,6}

The cationic complex 2 has been obtained in good yields by the treatment of $CpV(NO)₂(CO)$ with NOP- F_6 ⁸ Photolysis of $CpV(NO)_2(CO)$ in methane and argon matrices generates $CpV(NO)(CO)(*NO)$, where *NO denotes "some type of coordinated nitrosyl, where electron transfer to the nitrosyl ligand has occurred".⁹ In a N_2 matrix, however, the primary photoproduct has been identified as $\text{CpV}(\text{NO})_2(\text{N}_2)$. Displacement of the carbonyl ligand in $\text{CpV}(N\tilde{\text{O}})_2(\text{CO})$ by various Lewis bases in solution has been studied by ${}^{51}V$, ${}^{13}C$, and ${}^{1}H$ NMR spectroscopies.¹⁰ The chemical shift $\delta^{(51)}$ varies over the range of ca. -1300 to -500 ppm, depending on the nature of L ($L = P$ -, S -, N -, and O -donor ligands), and the shielding of the ⁵¹V and ¹³C nuclei decreases as the electronegativity of the ligand atom bound to the metal increases in the order $P < S < N < 0$.

Complex 3 has been prepared from $Cp_{2}VBr_{2}$ and NO.⁷ The salt consists of a diamagnetic 18-electron cation and a paramagnetic 16-electron anion whose ESR spectrum is consistent with two unpaired electrons being localized on the vanadium atom.

$$
\begin{bmatrix} \text{Cp}_2^* \text{VBr}(\text{NO}) \end{bmatrix} \begin{bmatrix} \text{Cp}^* \text{VBr}_2(\text{NO}) \end{bmatrix}
$$

A polymeric hyponitrite-titanium compound of composition $[CpTi(NO)]_n$ is formed by treatment of Cp_2Ti with NO.¹¹

B. Chromium, Molybdenum, and Tungsten

The dicarbonylnitrosyl complexes 4^{12} are easily obtainable by a variety of synthetic routes.13-16 The fluorenyl complex 5^{17} results when excess fluorenyllithium is added to $CrCl(CO)_2NO\cdot xTHF$. Complexes

4 possessing functionalized cyclopentadienyl rings¹⁸ and a polymer (polystyrene)-supported cyclopentadienyl derivative of chromium¹⁹ have been prepared. Furthermore, the preparations and X-ray crystal structures of the pentamethylcyclopentadienyl (Cp*) analogues have also been reported.²⁰ The ⁹⁵Mo and ¹⁴N NMR spectra of $\text{CpMo}(\text{CO})_2(\text{NO})$ and $\text{Cp*Mo}(\text{CO})_2(\text{NO})$ have been recorded and 95 Mo⁻¹⁴N spin-spin coupling of \sim 45 Hz has been observed.²¹ However, no coupling between ¹⁷O and ¹⁴N was detected during this study.

The dicarbonylnitrosyl complexes 4 are prone to lose one or both carbonyl ligands during chemical transformations. Removal of one CO ligand has been achieved photolytically,^{9,22,23} and in the presence of phosphine^{24,25} to yield CpM(CO)(NO)(L) and CpM - $(NO)(L)₂ compounds (L = phosphate; M = Cr, Mo).$ One of these, complex 6, has a metal atom that is a stereogenic center.²⁶ The $R_{\rm Mo}$ and $S_{\rm Mo}$ complexes²⁷ are separable by preparative liquid chromatography.

Reactions of 4 with NOCl yield $CpM(NO)₂Cl$ complexes.^{12,16,28} These dinitrosyl chloro compounds are also obtainable from the treatment of the corresponding tricarbonyl dimers $(M = Mo, W)^{29}$ with NOCl or from exposure of the (cyclopentadienyl)metal dichloride to nitric oxide.¹⁹ Complex $4 \times C$ r) reacts photolytically with NO to afford $[CpCr(NO)₂]$ ₂ (7) and $CpCr(NO)₂$ - $(NO₂) (8).²³$

The dinitrosyl dimer, 7, is most readily synthesized in high yield by the zinc reduction of $CpCr(NO)₂Cl³⁰$ An X-ray crystal structure analysis confirms the dimeric nature of 7 as well as the existence of both terminal and bridging nitrosyl ligands.³¹ It can be electrochemically or chemically reduced to the bimetallic radical anion $[7]^{--,32}$ The nitrite complex, 8, is also formed when 7 is allowed to react with NO^{23} or by treatment of the sulfur-bridged dichromium reagent shown in eq 1 with NO.33,34 Its crystal structure reveals that the terminal nitrite group is O-bound. The Cp* analogue of 8 has also been reported.³⁵

The dinitrosyl cations, $[CDM(NO)_2]^+$ (M = Cr, Mo, W) (9), are preparable by halide abstraction from the

$$
\oint_{\text{per}} \text{Cr} \sum_{S} \text{Cr} \rightarrow \oint_{\text{per}} \text{CIV} \longrightarrow \text{OIV} \
$$

corresponding neutral chloride complexes,^{36,37} oxidative cleavage of the dinitrosyl dimer, $7₁$ ³² or protonation of the alkyl complexes $\text{CpCr(NO)}_2\text{R}^{.38}$ These 16-electron, cationic Lewis acids readily form adducts with Lewis bases such as acetonitrile^{32,38} or phosphine $(M = Cr).$ ³⁹ The $[CpCr(NO)₂L]^+$ (L = phosphine) species also result from addition of L to the bis(fluorosulfonyl)amido complex, $\text{CpCr(NO)}_2\text{N(SO}_2\text{F)}_2$.³⁹ A series of [CpM- $(NO)_2L$ ⁺ cations are readily preparable by NO⁺ attack on the neutral $CpM(NO)(CO)L$ complexes (M = Mo, W; $L = CO$, phosphine)⁴⁰ ($M = Cr$, Mo, W; $L =$ $\overline{\text{CNR}}$ _{.41,42}

Not surprisingly, treatment of the $[CpM(NO)_2L]^+$ cations with halide anions yields the neutral CpM- $(NO)_2X$ complexes.⁴⁰ However, treatment with alkoxide (for $\overline{M} = W$) and other reducing agents produces the 19-electron CpW(NO)2L (L *—* phosphine) neutral com p lexes.⁴³ The solid-state molecular structure of the complex when $L = P(OPh)$ ₃ shows the N-W-N angle (102.7°) to be substantially larger than for the 18 electron $\text{CpW}(\text{NO})_2\text{Cl}$ (92.0°). A concomitant increase of 0.05 A in the N-O bond lengths in the 19-electron complex is also consistent with the added electron being delocalized over the $W(NO)_2$ fragment.

An X-ray PES study⁴⁴ of the $CpM(NO)_2Cl$ (M = Cr, Mo, W) complexes reveals that in going from Cr to W, $M\rightarrow NO$ back-bonding increases as electron density is withdrawn from the Cl atoms. As for complexes 4, electron density is transferred equally to both the N and O atoms when $M = Cr$, but more to the oxygen atom when $M = Mo$ or W. This phenomenon may well account for the ready loss of oxygen from these nitrosyl ligands (vide infra).

Iodine reacts with $CpCr(CO)(NO)L$ (L = CO, PPh₃; $Cp = Cp$ or Cp^*) to give $[CpCr(NO)I]_2$ and $CpCr^*$ $(NO)₂I⁴⁵$ The paramagnetic mononitrosyl dimer is cleaved by phosphines to afford the 17-electron CpCr- $(NO)(L)I$ compounds $(L = PPh₃, P(OPh)₃, P(OEt)₃).$ Reactions of $CpCr(CO)(NO)L$ with $Cl₂$ and $Br₂$, on the other hand, only generate the dinitrosyl chloride and bromide complexes, respectively.⁴⁵ In contrast, when $M = Mo$ or W, the mononitrosyl dihalo complexes 9 (M) $=$ Mo)¹³ and 10 (M = W)⁴⁶ are obtained by treatment of 4 ($M = Mo$, W) with halogens (eq 2).

$$
CpM(CO)_{2}NO \xrightarrow{X_{2}} [CpM(NO)X_{2}]_{2}
$$
\n
$$
B M=MO; X=Cl, Br, I
$$
\n
$$
10 M=W: X=I
$$
\n(2)

Complexes 9 and 10 are usually formulated as halide-bridged dimers in the solid state, and they are cleaved readily by a variety of Lewis bases in solutions to form the corresponding $CpM(NO)X_2L$ adducts⁴⁷⁻⁴⁹ $(L =$ phosphines, arsines, isocyanides, or halides). When $M = Mo$, further reaction with L generates $[ChMo(NO)XL₂]+X⁻$ salts.⁴⁷ Displacement of Cp from $[ChMo(NO)I_{2]}₂$ by CNR $(R = alkyl)⁵⁰$ and trimethyl- $\frac{1}{2}$ phosphine⁵¹ has also been observed.

Replacement of halide in complexes 9 and 10 by Cp" is quite facile.46,52 Similar replacements by dithioacid ligands produce the mono- and disubstituted derivatives

SCHEME I

JCp2Mo(NO)I j.Ag ⁺ -^ * Cp2Mo(NO)I -^U - [Cp2Mo(NO)(CH3CN)] ⁺ Ag+ ' aq.acetone J[CpMo(NO)(OH)]3(A³ -O) J +

CpM(NO)I(S-S) and CpM(NO)(S-S)₂ (M = Mo, W).⁵³ Analogous hydroxide-⁵⁴ and alkoxide-substituted⁵⁵ derivatives are also known, and interactions of 9 with hydrazines form adducts and/or hydrazido complexes.' **54,56**

Reactions of $9 (X = I)$ with 1 or 2 equiv of NaSR (R) = alkyl, aryl) produce 11 and 12, respectively.⁴⁹ Com-

plex 11 is also obtainable by treatment of $(C_5H_5)_2Mo$ -(NO)I with RSH.⁵⁷ Reduction of 11 (X = Br, I) by zinc generates bimetallic $[CDMo(NO)(SR)]_2$ ⁵⁷ This dimeric complex can exist in either a *cis-* or *trans-nitrosyl* form, depending on the nature of R^{58} as determined by single-crystal X-ray crystallographic analysis. Heating 12 also generates $[Cho(NO)(SR)]_2$.⁴⁹

The formally 16-electron complex 12 $(R = Ph)$ has been crystallographically determined to be monomeric,⁵⁹ and its thermal stability has been attributed to the existence of $S\rightarrow Mo$ p $\pi-d\pi$ bonding interactions on the basis of Fenske-Hall MO calculations. This bonding interaction raises the LUMO energy and renders it less susceptible to nucleophilic attack. The related dithiolate complex, $\text{CpW}(\text{NO})(\text{SCH}_2\text{SiMe}_3)_2^{60}$ has been obtained by the sequential insertion of sulfur into the metal-carbon bonds of the unusual 16-electron complex $\rm CpW(NO)(CH_2SiMe_3)_2^{61}$ (eq 3).

$$
R \n\nR \n\nR \n\nR \n\nR \n\nR \n\nR \n\nR \n\nR \n\nS \n\nM \n\nSR \n\nM \n\nS \n\nS \n\n(3)
$$
\n
$$
\left[M = (\eta^{5} - C_{5}H_{5})W(NO); R = CH_{2}SiMe_{3} \right]
$$

Reduction of 9 and 10 $(X = I)$ in the presence of Lewis bases (L) produces the $CpM(NO)L_2$ (M = Mo, W) complexes,⁶² which are formally 18-electron compounds. The chromium congener is obtainable by employing $[CpCr(NO)I]_2$ analogously.

Stoichiometric amounts of silver(I) triazenides react with 9 to give complexes 13, which are stereochemically rigid on the NMR time scale. It has been proposed that the electron-withdrawing nitrosyl ligand in 13 inhibits

its fluxionality.⁶³ Fluxional processes have, however, been observed for $(C_5H_5)_3MO(NO)$ by NMR spectros-

SCHEME II

copy. At room temperature, all three cyclopentadienyl rings are equivalent, but at lower temperatures (0 to -50 °C), one adopts an η^1 configuration, the other two being η^4 , a deduction confirmed by solid-state crystallographic analysis.⁶⁴ Other complexes that have η^5 -Cp and η^1 -Cp rings include $\text{Cp}_2\text{Mo}(\text{NO})(\text{S}_2\text{CNR}_2)$ (R = Me or n-Bu)⁶⁵ and $\text{Cp}_2\text{Cr}(\text{NO})_2^{23}$ In the case of $\text{Cp}_2\text{Mo}(\text{NO)}$, static structures such as $(\eta^5$ -Cp) $(\eta^3$ -Cp)Mo(NO)I, $(\eta^4$ - $\text{Cp}_2\text{Mo}(\text{NO})\text{I}$, and $(\eta^5\text{-Cp})(\eta^1\text{-Cp})\text{Mo}(\text{NO})\text{I}$ are possible. Interestingly, halide abstraction from this complex by Ag(I) salts gives a variety of products depending on the solvent used in the reaction (Scheme I).⁶⁶

C. Manganese and Rhenium

The tricarbonyl complexes $CpM(CO)$ ₃ are the logical precursors to $[\mathrm{CpM(CO)_{2}(NO)]^{+}$ derivatives for rheni- μ ⁶⁷ and manganese^{29,68,69} by nitrosonium substitution of carbonyl. The thiocarbonyl complex [CpMn(CO)- $(CS)(NO)⁺$ (Cp = Cp or Cp') is similarly obtained by treatment of $\text{CpMn}(\text{CO})_2(\text{CS})$ with nitronium or nitrosonium salts.⁷⁰ All these organometallic nitrosyl cations undergo facile carbonyl substitution reactions with various nitrogen- and phosphorus-donor ligands.^{70,74} An exception is the reaction of [CpMn- $(CO)₂(NO)¹$ with triethylamine, which only affords the dimer $[ChMn(CO)(NO)]_2$.⁷¹

The 16-electron, coordinatively unsaturated, pyramidal cation $[CpRe(NO)(PPh_3)]^+$ (14) is formed upon electrophilic cleavage by H⁺ of a Re-C bond as shown in Scheme II.⁷⁵ As expected, the cation 14 readily forms adducts with Lewis bases and reacts with halides to generate the neutral $\text{CpRe}(\text{NO})(\text{PPh}_3)X$ complexes. These product complexes are generated in enantiomerically pure form and have metal-centered chirality (Scheme II). The manganese-containing analogues of 14 are also well-known, and these also retain their configuration on adduct formation with donor ligands.⁷⁶

In passing, it may be noted that the "gauche effect" has been used to explain the conformation of the phosphide ligand in $CpRe(NO)(PPh_3)(PPh_2)$. Extended-Hückel MO calculations on $\text{CpRe}(\text{NO})(\text{PH}_3)$ - $(PH₂)$ showed it to possess a significant and nondegenerate 2-fold Re- PH_2 rotational barrier.⁷⁷

Iodide reacts with $[CDMn(CO)₂(NO)]⁺$ to give CpMn(CO)(NO)I, and this subsequently reacts with triphenylphosphine to generate $CpMn(PPh₃)(NO)I.⁷⁸$ The thiocarbonyl analogue, CpMn(CS)(NO)I, has been synthesized similarly.⁷³ Surprisingly, the carbonyl ligand in the analogous rhenium complex, CpRe(CO)- (NO)I, is inert to substitution by Lewis bases.⁷

The bimetallic complexes 15 are also obtainable by X^- attack on $[CpMn(CO)_2(NO)]^+$ under appropriate conditions, and they exist as a mixture of cis and trans

isomers.⁷⁹ Replacement of X^- in 15 by cyclopentadienyl anion can be effected, the η^1 -C₅H₅" being subsequently replaceable by Ph⁻⁸⁰

In aqueous solution, however, $[ChMn(CO)₂(NO)]^+$ reacts with $NO₂$ to give a material formulated as polymeric $[\text{CpMn}(\text{NO})_2]_n$ ($n > 1$).⁸¹ A monomeric analogue of this polymer, namely $LMn(NO)_2$ (L = an asymmetric tridentate ligand), 8^{2} has been prepared.

Finally, reactions of $[\mathrm{CpMn}(\mathrm{CO})(\mathrm{NO})\mathrm{L}]^+$ with transition-metal anions of cobalt and iron produce heterobimetallic complexes 16⁸³ and 17,⁸⁴ respectively (Scheme III). Similar reactions with dithiolate and dithiocarbamate reagents produce the neutral paramagnetic species 19. Monoanionic diamagnetic complexes 18 can be obtained by employing suitable dianionic reagents.⁸⁵ a particular example being shown schematically in Scheme III.

D. Iron and Ruthenium

The mononitrosyl dimers 20^{86} and 21^{87} result from treatment of their dicarbonyl dimer precursors with NO
at elevated temperatures. The X-ray molecular at elevated temperatures.

structure of 20a establishes that the entire $Fe(\mu\text{-}NO)_{2}Fe$ group is virtually coplanar and perpendicular to the Cp ligands.^{88a} The MO description of the bonding in 20a suggests that the metal-bridge bond consists "almost exclusively of metal orbitals interacting with bridge 2π orbitals".^{88b} Indeed, the current view of the bonding in complexes containing $M(\mu\text{-}NO)_2M$ bridges is that such π interactions involving the bridging nitrosyls are dominant, direct M-M σ interactions being minimal.⁸⁹ Complex **20a** undergoes a 1-electron reduction process to give $[CpFe(NO)]_2^{\circ}$.⁹⁰

Nitrosylation at room temperature of $[CpFe(CO)₂]$ in benzene solution yields a greenish-brown solid formulated as $[CpFe(NO)(CO)]_2$ ⁹¹ However, nitrosylation of $[CpFe(CO)_2(EPh_3)]^+$ (E² = P, As, Sb) reportedly produces the dinitrosyl cation $[CpFe(NO)_2(EPh_3)]^+,$ whose IR nitrosyl stretching frequencies (1724, 1638 cm^{-1}) are indicative of terminal nitrosyl ligands.⁹¹ The mode of attachment of the cyclopentadienyl ring to the Fe center is not clear, but if it remains η^5 -bonded, then the dinitrosyl cation must be considered to be a formal 20-electron complex.

The neutral 19-electron $CpFe(NO)_2$ has not yet been reported, but its pyrazolylgallate analogue $LFe(NO)₂$ $(L = a$ uninegative, 6-electron, tridentate pyrazolylgallate ligand) has been synthesized and its crystal structure determined.⁸²

Returning to complexes **20** and **21b,** it may be noted that they are also produced upon reductive elimination of R-R from $\text{CpM}(\text{NO})\text{R}_2$ derivatives.^{86,92} The corresponding dihalides, $\text{CpM(NO)}X_2$, are obtained (for M $=$ Fe, $X = I$) upon oxidative cleavage of the dimers 20 with iodine, $86,93$ by nitrosylation (for $M = Ru$) of $CpRu(CO)₂X$ (Cp = Cp or Cp^{*}) under UV irradiation,⁹⁴ or by NOCl reaction with $Cp*Ru(CO)₂Cl$ to give $Cp*Ru(NO)Cl₂.⁹⁵$

Monocarbonyl substitution of CpFe(CO)_2 I by treatment with NO to give CpFe(CO)(NO)I has also been reported.⁹¹ On the other hand, attempted nitrosylation of the phosphine-substituted cations $[CpRu(PPh₃)L]^+$ $(L = PPh₃, 2,2'-bipyridine)$ only results in the removal of the Cp ligand.96,97 However, incorporation of the nitrosonium cation does occur in the rather unusual reactions outlined in eq 4 and 5. The unusual feature

is that *reactions 49S and* 5 " *involve formal SPh' and Ct anion replacement by the NO⁺ cation.* The neutral $Cp*Ru(dmpe)NO$ (dmpe = 1,2-bis(dimethylphosphino)ethane) has been prepared by a different route and contains a bent NO ligand $[\nu_{\text{NO}}]$ 1386 cm⁻¹].⁹²

Diazomethane reacts with **20a** to give the methylene-bridged bimetallic complex in which the nitrosyl ligands are terminal.¹⁰⁰ Further studies with a variety of substituted diazoalkanes, $N_2=CR_2$, show that the initially bridging nitrosyls in **20a** either may remain so $(R = \text{bulk} \text{ groups})$ or may become terminal $(R = \text{a})$ sterically less demanding group).^{101,102} These CR_2 bridged nitrosyl complexes of ruthenium are also formed by using the respective hydrazone reagents in the presence of $MnO₂$.¹⁰³ Likewise, in place of the diazoalkanes, sulfur dioxide reacts with **21a** to give **22.** However, diazomethane reacts with monomeric CpRu- $(NO)X_2$ (Cp = Cp or Cp*; X = Cl, Br or I) to give

mono- and diinserted halomethyl products in high yields.¹⁰⁴

E. Cobalt and Rhodium

The bimetallic $[CDM(NO)]_2$ complexes are obtained by nitric oxide treatment of their carbonyl precursors for both cobalt¹⁰⁵ and rhodium.¹⁰⁶ In the case of rhodium, the reaction is catalyzed by air, and a second complex, 23, which contains both bridging nitrosyl and

nitrite groups, is also isolable. A discussion of the electronic structure of $[CpCo(NO)]_2$ has been made in relation to its solid-state molecular structure. The $Co(\mu\text{-}NO)_2Co$ core, which is planar in the solid phase (with no formal Co-Co bond),¹⁰⁸ is proposed to be bent in the vapor phase (with a $Co-Co$ bond).^{107,109} Its electrochemical reduction proceeds in a single twoelectron, irreversible step, generating monomeric $[CpCo(NO)]$ ⁻ in accord with the valence bond view, which predicts homolytic cleavage of the dimer upon reduction.⁸⁹ This reduction has been accomplished on a preparative scale with sodium amalgam, 110 and the crystal structure of the related Na⁺ [Cp'Co(NO)J" salt synthesized in this way has been reported.⁸³ In contrast, the rhodium dimer, $[CpRh(NO)]_2$, undergoes a reversible one-electron reduction in THF to give the corresponding bimetallic monoanion.¹¹¹

A wide variety of cationic mono- and bimetallic nitrosyl complexes have been obtained by NO⁺ treatment of $\text{CpM}(\text{CO})$ L (L = CO, phosphine) complexes, $^{111-116}$ among which are the $[CpM(NO)]_2^{2+}$ dications and the $[CPM(NO)]_2^+$ monocations.^{111,113,117,118} The molecular structure of $[CDCo(NO)]_2^+$ has been determined¹¹⁹ in the solid state, and the $Co(\mu\text{-}NO)_2Co$ core is found to be planar with only a very slight shortening of the Co-Co distance as compared to its neutral form (vide supra).¹⁰⁷ The neutral $[CpCo(NO)]_2$ dimer reacts with halogens to produce $\dot{\text{CpCo}}(\text{NO})\text{X}$ derivatives $(\text{X} = \text{I},^{93})$ $Br^{11\bar{9}}$, and the iodide complex inserts $M'I_2$ ($M' = Ge$, Sn) into its Co-I bond to generate $CpCo(NO)M'I_3$ type compounds.¹²⁰

Finally, in closing this section, we note that the unsaturated alkylidene complex 24 is obtained by diazoalkane attack on $[(Cp*Rh)₂(\mu-NO)(\mu-CO)]^{+}$ and subsequent decarbonylation of the intermediate so formed.¹¹⁶ Also, $CpCo(CO)_2$ abstracts NO from $[CpFe(NO)]_2$ to produce the unique tricobalt nitrosyl cluster, $\left[\text{Cp}\text{Co}\right]_3(\mu_3\text{-NO})_2$.¹²¹

/// . Nitrosyl Hydrides

Some 15 years ago, the only organometallic nitrosyl hydride known was CpRe(NO)(CO)H.¹²² (Its PPh₃

analogue is now also known.¹²³) The preparation of both monomeric and bimetallic nitrosyl hydrides has since received considerable attention. For instance, the gentle reducing agent sodium dihydridobis(2-methoxyethoxy)aluminate (also known as Red-Al or Vitride) has been found to be a suitable source of H⁻ for the syntheses of the monomeric hydrides 25^{124} and 26^{125} from their chloride and iodide precursors, respectively.

However, $CpCr(NO)_2Cl$ and $CpMn(CO)(NO)I$ react with Red-Al to give the known $[CPCr(NO)₂]$ ₂ and $[CpMn(CO)(NO)]_2$ dimers, respectively, presumably via initial formation of the thermally unstable $CpCr(NO)_2H$ and CpMn(CO)(NO)H species.

The bimetallic nitrosyl cations 27 are obtained by

reactions of 25 with 0.5 equiv of Ph_3C^+ , or adduct formation with the 16-electron $[CpM(NO)_2]^+$ cations.¹²⁶ The hydride ligands in the cations 27 undergo rapid exchange between the two metal sites, the minimum lifetime for each isomer having a terminal H ligand having been estimated to be \sim 1.2 ms.¹²⁷ Nevertheless, Lewis bases (L) cleave these bimetallic cations to the $\text{CpM}(\text{NO})_2\text{H}$ and $[\text{CpM}(\text{NO})_2\text{L}]^+$ monomers.

A diruthenium cationic complex containing a bridging H ligand has been generated by HX ($X = BF_4$, CF_3SO_3) addition to a bridging alkylidene complex (eq 6). When

 $R = H$ and $X = Br$ in eq 6, the bridging methylidenehydride complex rearranges to the neutral bromo- (methyl) product.¹⁰³ An unusual hydrogen atom transfer reaction has been found to occur in a rhenium-platinum heterobimetallic complex (Scheme IV).¹²⁸ Treatment of the secondary phosphine rhenium complex 28 with $(C_2H_4)_2Pt(PPh_3)_2$ gives 29, in which the " $Pt(PPh₃)₂$ " entity has formally inserted into the

SCHEME IV

SCHEME V

phosphorus-hydrogen bond. Hydrogen atom transfer from platinum to rhenium then occurs with the concomitant loss of CO to generate 30. This transfer *does not* occur under rigorous exclusion of moisture and air and is catalyzed by base. The final rearrangement of $30 \rightarrow 31$ is promoted by the addition of halide ions, and the relative rate of the process is in the order $Cl^{-} > Br^{-}$ $> I^{-} \gg F^{-}$, fluoride having no effect.

Neutral bimetallic hydrides of tungsten are obtainable by Red-Al treatment of $[CDW(NO)I₂]₂$ in the sequence outlined in Scheme V (L = phosphines, or phosphites).¹²⁹ A new bonding formulation has been proposed for the bimetallic hydrides 32 consistent with

the $W(\mu-H)_2W$ core being considered as a single four*center bonding unit.121,130* Finally, thermally stable alkyl hydrides of compositions CpW(NO)(H)(R)L (R $= CH₂SiMe₃; L = phosphate)$ have been synthesized by hydrogenation of the 16-electron $\text{CpW}(\text{NO})(\text{CH}_2\text{SiMe}_3)_2$ complex in the presence of L. These complexes have been used to effect intra- and intermolecular C-H bond activation.¹³⁰

IV. Complexes Containing Only σ-AlkyIs and a-Aryls

Notable isolable members of this class of compounds include $\text{RFe}(\text{CO})_3(\text{NO})^{131}$ $(\text{R} = \text{alkyl})$ and the benzylnitrosylmanganese complex having the composition PhCH₂Mn(NO).¹³² The manganese complex is prepared from dibenzylmanganese (as the dioxane solvate) and nitric oxide, and contains manganese in the formal zero oxidation state. The arylnickel compound 33¹³³ is made by reacting PhLi with the appropriate bromide precursor (eq 7).

$$
(PPh_3)_2NI_{Br}^{NO} + Phil \longrightarrow (PPh_3)_2NI_{Ph}^{NO} + LiBr
$$
 (7)
33

V. Carbene Complexes

Group 6 carbene complexes 35 can be made the usual nucleophilic addition of a carbanion to the carbonyl precursor 4 and subsequent methylation of the resulting acylcarbonyl metalate 34 (eq 8).¹³⁴ Only one carbonyl

ligand in 4 reacts with PhLi to form the methoxyphenyl carbene complex, and this is believed to be a manifestation of the greater positive charge on the C(carbonyl) atom relative to the N(nitrosyl) atom.¹³⁴ The molybdenum carbene complexes 36 have been obtained by the thermal interaction of the dicarbonyl nitrosyl with electron-rich olefins (eq 9).¹³⁵ The second carbonyl in

36 cannot be substituted to obtain a bis(carbene) complex, however. The stable chromium complex 37 has

been synthesized from CpCr(CO)(NO)(THF) and diphenyldiazomethane.²² Its solid-state molecular structure shows the carbene ligand plane to be almost coplanar with the $N-Cr=C$ plane and nearly perpendicular to the C(carbonyl)-Cr=C plane. NMR studies of this complex have shown the Cr=C conformation to be locked in this form (i.e., there is no rotation of the carbene ligand). This behavior contrasts with that exhibited by the isoelectronic analogue CpMn- $(CO)₂CPh₂$, in which fast rotation of the CPh₂ group about the $Mn=C$ bond occurs.²² Again, the nitrosylcontaining compound is the more stereochemically rigid of the two.

Other molybdenum mononitrosyl carbene complexes 38^{50} have resulted from primary amine $\rm (NH_{2}R^{\prime})$ addition to bound isocyanide ligands in the $[M_0(CNR)_5]$ -(NO)]I complexes. Curiously, only one example of a

 $\mathcal{C}(\mathcal{G})$ are all $\mathcal{C}(\mathcal{G})$

group 6 metal dinitrosyl complex possessing carbene-

type ligands has been described in the literature to date.¹³⁶ This complex results from the sequential reaction of the isocyanide ligand in $[CPCr(NO)₂-]$ (CH_3NC) ⁺ with alkoxide and then acid (eq 10).³⁸

$$
[Cpcr(NO)_2(CH_3NC)]^+ \xrightarrow[R=Me,Et]{OR^-} Cpcr(NO)_2 - C\begin{cases} OR & H^+\\ NMe & \end{cases}
$$

$$
Cpcr(NO)_2 = C\begin{cases} OR & H^+\\ NHMe & \end{cases}
$$
 (10)

The trityl cation, Ph_3C^+ , has been employed to abstract hydride from a number of rhenium alkyl complexes of the type $CpRe(NO)(PPh_3)CH_2R$ ($R = alkyl$, aryl). Both η^1 -alkylidene and η^2 -alkene complexes may be formed, depending on the nature of R.¹³⁷ With the aim of gaining mechanistic insight into the nature of the hydride abstraction, a detailed study of the electrochemistry of the rhenium alkyl complexes was carried out. The relatively easy, and somewhat reversible, oxidations observed in these systems provide evidence for the occurrence of an initial electron transfer from the rhenium alkyl complex to the trityl cation (eq 11).¹³⁸

$$
RCH_2-[Re] + Ph_3C^+ \implies RCH_2-[Re]^+ + Ph_3C \cdot (11)
$$

[Re] = Cpr_e(NO)PPh₃

However, no correlation exists between the potentials at which these rhenium alkyls oxidize and the selectivity that they exhibit for the formation of alkylidene or alkene complexes.¹³⁷ Chemical isolation of the radical cation depicted in eq 11 has not yet been successful, but electrochemical and mechanistic studies support its formulation.¹³⁸

Of great interest, however, are the stereospecific interconversions that these alkyl or carbene complexes undergo. For example, hydride abstraction from the benzyl complexes occurs with complete stereochemical control (eq 12). The kinetic product is the benzylidene

cation, which is initially stereospecifically generated. It is converted thermally to the thermodynamic isomer 40 and back to the kinetic form by UV irradiation.¹³⁹

Furthermore, these benzylidene cations stereospecifically add nucleophiles such as methoxide and hydride anions to the alkylidene carbon atom.¹⁴⁰

Stable methylene complexes of the type [Cp*Re- $(NO)(L)(=CH₂)$ ⁺ have been obtained similarly, and their crystal structures have been determined $(L =$

 PPh_3 , $P(OPh_3)$.¹⁴¹ The = CH_2 plane in the triphenyl phosphite derivative is essentially parallel to the Re-NO bond (compare with complex 37; vide supra) and the bands due to $CH₂$ antisymmetric stretches observable in the compound's IR spectrum provided the "first definitive determination of the stretching $v_{\text{C-H}}$ for a methylidene complex".¹⁴¹ The methylidene ligand in the cyclopentadienyl triphenylphosphine complex, however, couples to generate an ethylene complex (eq 13).¹⁴² The ethylene complex is formed in about 50%

yield with retention of configuration at rhenium. The rate of coupling is second order in the methylidene complex, and crossover experiments disfavor phosphine dissociation or methylidene scrambling prior to coupling. Consequently, the formation of a dimeric form of the $[Re=CH₂]⁺$ complex is proposed to be the rate-determining step in this coupling reaction.¹⁴²

Dimethyl sulfide ($Me₂S$) forms a 1:1 adduct with the methylidene complex, generating the sulfonium salt 41.

Displacement of coordinated $Me₂S$ from 41 occurs readily upon treatment with triphenylphosphine, pyridine, or even $SR^{-}(R = Me, Ph, CH_2Ph)$. For $L =$ SMe", the resulting complex 42 then becomes formally $R'SMe$ $(R' = CpRe(NO)(PPh₃)CH₂)$, and this compound reacts in a similar fashion with another molecule of the starting methylidene complex to produce the bimetallic sulfonium salt 43 (eq 14). A single-crystal,

X-ray crystallographic analysis of 43 confirms the atom connectivity shown.¹⁴³ Warming of this bimetallic complex results in hydride transer to form CpRe- $(NO)(PPh₃)CH₃$ and $[CpRe(NO)(PPh₃) (=C(H)SMe)]⁺$.

The manganese carbene complexes 44 have been ob-

tained by aziridine or oxirane addition to one of the

carbonyl groups in $[ChMn(CO)₂(NO)]⁺$, as exemplified by the overall reaction depicted schematically in eq 15.¹⁴⁴ The reaction proceeds in the presence of a halide

$$
[M-C\equiv 0]^+ + \times \bigwedge_{(X=NH,0)} \longrightarrow \left[M = \bigwedge_{X}^{0} \right]^+
$$
 (15)

salt. The cyclic aminooxycarbene (44a) and the dioxycarbene (44b) complexes are isolable as thermally stable, crystalline compounds. In the case of 44b, the unchanged carbonyl ligand can be further converted to the analogous bis(carbene) complex, which can also be isolated in a crystalline state.

Electron-rich olefins can be used to displace triphenylphosphine (in a manner identical with that shown in eq 9) to form various mono- and oligocarbene complexes of ruthenium, osmium, and nickel¹⁴⁵ that contain one or two nitrosyl ligands. A logical extension of this chemistry involves nitrosylation of the bis- (carbene) complex of iron 45 to give both the cationic and neutral dinitrosyl bis(carbene) complexes 46 (eq 16).¹⁴⁶ Complex $[46]^+$ is also obtainable by the Ag⁺

oxidation of 46. Surprisingly, replacement of one of the carbene ligands in 45 with PPh_3 results in only one of the carbonyl ligands being expelled in the above reaction to yield a mononitrosyl monocarbene complex. Finally, the carbonyldinitrosyliron carbene complex 47 has been made in the conventional manner by initial nucleophilic addition of a silyl group onto the coordinated carbonyl of $Fe(CO)_2(NO)_2$ (eq 17).¹⁴⁷

$$
Fe(CO)_{2}(NO)_{2} \quad \frac{(i) \ P h_{3}Si^{-}}{(i) \ E t_{3}O^{+}} \quad (ON)_{2}F_{e} \n\begin{matrix} 100 \ 100 \ 100 \ 0 \ 0 \end{matrix} \n\begin{matrix} 17 \ 17 \ 18 \ 19 \ 10 \ 10 \ 10 \ 10 \end{matrix} \n\begin{matrix} 17 \ 17 \ 18 \ 19 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \end{matrix} \n\begin{matrix} (17) \ R_{2} & (19) \ R_{3} & (11) \ R_{4} & (11) \ R_{5} & (11) \ R_{6} & (11) \ R_{7} & (12) \ R_{8} & (13) \ R_{9} & (14) \ R_{10} & (15) \ R_{11} & (16) \ R_{12} & (17) \ R_{13} & (18) \ R_{14} & (19) \ R_{15} & (19) \ R_{16} & (19) \ R_{17} & (11) \ R_{18} & (11) \ R_{19} & (11) \ R_{10} & (12) \ R_{11} & (13) \ R_{12} & (15) \ R_{13} & (17) \ R_{14} & (19) \ R_{15} & (19) \ R_{16} & (11) \ R_{17} & (11) \ R_{18} & (11) \ R_{19} & (12) \ R_{10} & (13) \ R_{11} & (15) \ R_{12} & (17) \ R_{13} & (19) \ R_{14} & (19) \ R_{15} & (11) \ R_{16} & (11) \ R_{17} & (12) \ R_{18} & (13) \ R_{19} & (15) \ R_{10} & (17) \ R_{11} & (19) \ R_{12} & (11) \ R_{13} & (12) \ R_{14} & (13) \ R_{15} & (15) \ R_{16} & (17) \ R_{17} & (19) \ R_{18} & (19) \ R_{19} & (10) \ R_{10} & (10) \ R_{11} & (10) \ R_{12} & (11) \ R_{13} & (
$$

It is worth noting that the chemistry of organometallic nitrosyl carbene complexes remains largely unexplored. The presence of the nitrosyl ligand (and its pronounced electron-withdrawing effect) in these complexes may well be responsible for the hindered rotation about the metal-carbene bond. The exploitation of this phenomenon for specific organic applications such as olefin metathesis and cyclopropanation may lead to transformations that are not feasible with the more fluxional carbonyl carbene analogues.

VI. Complexes with Acyl, Acetate, and Related Heteroatomlc Ligands

Acetate complexes of molybdenum of the type $\text{CpMo}(\text{NO})(\eta^2 \cdot \text{O}_2 \text{CR}) \text{X}$ (X = Br or I) have been obtained either by removal of a η^1 -cyclopentadienyl ligand from $(C_5H_5)_2Mo(NO)I$ by carboxylic acids RCO_2H (R = alkyl or aryl) or by metathesis of halide in complex $9 (X = I).⁵⁵$ The acetate ligands are formulated as being η^2 -bound on the basis of their IR spectra. Similar reaction of $\text{Cp}_2\text{Mo}(\text{NO})(\eta^2-\text{S}_2\text{CNMe}_2)$ with trifluoroacetic

SCHEME VII

acid affords the mixed $\text{CpMo}(\text{NO})(\text{O}_2\text{CCF}_3)(\eta^2 S₂CNMe₂$) species, which contains a monodentate trifluoroacetate group.⁵⁶

Reactions of nitrosyl chloride with the carbonyl complexes 48 generate mono- or dinitrosyl complexes of tungsten containing a bidentate or monodentate alkenyl ketone ligand, respectively, depending upon the cyclopentadienyl ligand employed (Scheme VI).¹⁴⁸ The related complex 49 has been obtained from a diacetate carbonyl anion (as its trimethylphosphonium salt) by treatment with excess $NOBF₄$ (eq 18).¹⁴⁹ A heterobi-

metallic compound containing a rare π -bound acyl group has been isolated and fully characterized by spectroscopic and X-ray data.¹⁵⁰ This compound (Scheme VII) results from the reaction of the molybdenum carbene complex 50 with the Lewis acid $[CpFe(CO)₂(THF)]⁺$, which generates the bimetallic intermediate 51. This in turn rearranges with carbonyl loss from molybdenum to give the isolable complex 52. A rare feature of this reaction is the acyl group migration from molybdenum to iron (Scheme VII). The carbamoyl complex $CpCr(NO)₂[C(O)NHMe]$ has been generated by hydroxide ion attack on a coordinated isocyanide ligand.³⁸

SCHEME VII SCHEME VIII

Nucleophilic attack of hydride on the cationic complex $[Cp\text{Re}(\text{NO})(\text{CO})_2]^+$ produces the neutral formyl complex CpRe(NO)(CO)(CHO) (53). Its subsequent reduction and decomposition reactions¹²³ have been extensively studied and are the principal subject of an enlightening review article.¹⁵¹ Hydride reduction of the second carbonyl group in 53 has been achieved to produce a diformyl complex 54 (eq 19). This diacyl com-

plex cannot be isolated, but it has been fully characterized by IR and ¹H NMR spectroscopies. A manganese analogue of the diformyl complex 54, i.e. 54b, has been prepared as an air-stable, crystalline solid by an entirely different route (eq 19b).¹⁵³

The mechanism of hydride attack on the triphenylphosphine complex cation $[CpRe(NO)(CO)(PPh₃)]⁺ has$ been the subject of Fenske-Hall MO calculations.¹⁵⁴ The results of these calculations indicate that the coordinated nitrosyl ligand in the cationic complex is the preferred site of H^- attack, leading to the generation of an HNO ligand in complex 55 (Scheme VIII). This kinetic product then rearranges to the final isolable formyl complex 53.

The differing configurations of the metalloester complexes $\text{CpM}(\text{NO})(\text{PPh}_3)(\text{COOR})$ of rhenium¹⁵⁵ and manganese^{156,157} (obtained from OR⁻attack on coordinated carbonyl ligands) have been established, and comparisons with isostructural chiral organometallic compounds have been made.¹⁵⁵ Following the patterns outlined above, the phosphorus-containing nucleophiles $PR(SiMe₃)$ ⁻ ($R = SiMe₃$, *t*-Bu, Ph) add to [Cp*Re- $(NO)(CO)_2$ ⁺ to produce the phosphaalkenyl complexes 56 (eq 20).¹⁵⁸

The reactions of other organorhenium nitrosyls have been used to model the binding of $CO₂$ between two metal centers. For instance, bimetallic μ -carboxylate,

57, and μ -formaldehyde, 58, complexes have been made as shown in Scheme IX.¹⁵⁹

Complexes of manganese belonging in this section are preparable in a variety of ways. Thioacyl complexes have been proposed⁷³ as products of insertion of bound CS into the manganese-alkyl bond of Cp'Mn(NO)- $(CS)(C(CF_3) = C(F)CF_3)$. Ring addition products 59 and acyl products 60 result from carbanion addition to $[Cp\hat{M}n(NO)(PPh_3)(CO)]^+$ (eq 21). In complexes 59a

the carbanion adds exo to the ring, but the origin of the acetyl group in 60b is not clear.¹⁸⁰ The Wittig reagent $Me_3P=CH_2$ reacts with $[Cp'Mn(NO)(CO)_2]^+$ to yield 61, which further reacts with MeX $(X = I, SO_3F)$ to yield exclusively 62 (eq 22).¹⁶¹ The related complex 63 ,

which contains an arylglyoxyl ligand, results from nitrite addition to the carbyne complex $Cp'Mn(CO)₂(=CR)$ $[R = Ph, tol]$.¹⁶² The formation of the arylglyoxyl

ligand from the oxidized carbyne coupling with CO is unprecedented. In the case of rhenium, only the acyl complex is produced in this reaction.

Liquid ammonia reacts as a nucleophile toward $[Cp\overline{M}n(CO)₂(NO)]$ ⁺ to give the carbamoyl complex $\text{CpMn}(\text{CO})(\text{NO})[\text{C}(\text{O})\text{NH}_2]^{\text{163}}$ whose solid-state structure reveals dimerization via hydrogen bonding involving the carbamoyl ligands of two molecules. The carbamoyl ligand formation (from amines) is reversible

if the manganese cation bears a phosphine ligand,¹⁶⁴ and a similar reaction has been used to synthesize a carbamoyl nitrosyl complex of osmium.¹⁶⁵

Acyl nitrosyl complexes of cobalt¹⁶⁶ and iron¹⁶⁷ have been obtained by carbanion and carbocation attack on their carbonyl nitrosyl precursors, respectively. Furthermore, the iron complex 64 reacts with dienes *without substitution of CO* to give the allyl complexes 65 (eq 23) ($R = Me$, $PhCH₂$).

$$
(OC)_2(ON)Fe\begin{array}{ccc}\n & & & & \text{or} \\
 & & + & \text{or} & \\
 & & & \text{r}_{e(CO)_2(NO)} & \\
64 & & & & \text{(R=Me, PhCH_2)} & \\
 & & & & 65 & \\
 & & & & & \\
\end{array}
$$
\n(23)

A series of ruthenium acyl and acyl acetate complexes has been made by the oxidative addition of acyl chlorides and activated carboxylic acid anhydrides to $RuCl(NO)(PPh_3)_2$ under mild conditions.^{168,169}

VII. Olefin and Alkyne Complexes

A fair number of organometallic nitrosyl olefin complexes results from simple 1:1 adduct formation between the olefin and the metal-nitrosyl complex. Specific examples include activated-olefin addition to $RuCl(NO)L₂$ (L = phosphine),^{169,170} ethylene addition to $[Os(CO)(NO)L_2]^+$ (L = PPh₃),¹⁷¹ cyclooctene addition to $[CPW(NO)_2]^+$ ³⁷ and ethylene addition to $[CPRe (NO)(\text{PPh}_3)$ ⁺.⁷⁵ These ruthenium and osmium¹⁷² precursor complexes also form 1:1 adducts with a number of alkynes without ligand displacement. In contrast, the η^2 -arene complex of rhenium 66 is generated in the metal's coordination sphere by protonation of a σ -aryl complex (eq 24) $(R = H, Me, CF_3).¹⁷³$ Deprotonation studies provide evidence that the n^2 -arene complex 66 is in equilibrium with small amounts of an η^1 -arenium species.

The activated alkyne $CF_3C=CCF_3$ forms a 1:1 adduct with $(C_5H_5)_2Mo(NO)I$ by addition across one of the cyclopentadienyl rings (eq 25), 174 and similar reactivity of the organometallic nitrosyl reactant is observed with tetracyanoethylene (TCNE).

$$
(C_5H_5)_2Mo\begin{matrix}NO+F_3C-\equiv -CF_3 & \longrightarrow & CpMo(NO)I \\ I & & & \downarrow \end{matrix}
$$
 (25)

Complex formation with concomitant ligand displacement is more common, however. The iridium complex $Ir(NO)(PPh₃)₃$ (like its cobalt and rhodium analogues) loses phosphine during adduct formation with $CF_2=CF_2$ ¹⁷⁵ Its reaction with hexafluorobut-2-yne is more complex; the product contains two ethylene bridges and each Ir environment is essentially squareplanar (eq 26) as determined by a single-crystal X -ray crystallographic analysis.¹⁷⁰ Dimerization of the acet y lene occurs, possibly via an initial η^2 -acetylene com-

 P Ph₃ I ⁻³ Ir(NO)(PPh₃)₃ $\frac{136-246.73}{100}$ $\frac{1}{10}$ $\frac{1}{10}$ NO **CF³** (26) \searrow PPh₃

plex, when diphenylacetylene is reacted with HRu- $(NO)(PPh_3)_{3}.^{176}$

Cyclooctene replaces carbonyl in $[Re(CO)₂(NO)Cl₂]$ ₂ in the presence of L ($L = P$ -, N-, and As-donor ligands) to give monomeric, olefin-substituted complexes LRe- $(CO)(NO)Cl₂(cyclooctene)$, which readily lose the cyclooctene in the presence of excess L.¹⁷⁷ Carbonyl replacement by TCNE occurs in $(RNC)_2Co(CO)(NO)$ (R = aryl) to give a complex in which the magnetic equivalence of the isocyanide ligands has been attributed to the free rotation of the TCNE ligand in solution rather than to the dissociative exchange of ligands.¹⁷⁸ Numerous olefins and acetylenes coordinate to the chromium center in the reaction summarized by eq 27 $(L = \text{defin, acetylene.}^{179}$ If $L = \text{cyclooctene, then the$

bound olefin is readily displaceable by other nitrogendonor ligands.¹⁸⁰ A related tungsten acetylene complex has been obtained by an entirely different route.¹⁴⁸ The complex containing 1,5-cyclooctadiene, i.e. CpCr- $(CO)(NO)(\eta^2-C_8H_{12})$, can be thermally converted to the bimetallic product 67 containing a bridging diolefin ligand.¹⁷⁹ Similar transformations occur with the η^5 fluorenyl complex, $(\eta^5-C_{13}H_9)Cr(CO)_2(NO)$ (5), to eventually produce an analogue of 67.¹

Photolytic displacement of carbonyl by olefins in $Co(CO)₃(NO)$ and $Fe(CO)₂(NO)₂$ in liquid xenon solution has resulted in the generation of the monosubstituted η^2 -olefin species (olefin = 1-butene).¹⁸¹ In the case of iron, displacement of two CO ligands is observed to produce a compound identified spectroscopically as $Fe(NO)_2(\eta^2-1-butene)_2$. This compound is thermally unstable at -55 °C, however, losing olefin and reacquiring the carbonyl ligands. When 1,3-butadiene is employed, both η^2 - and η^4 -diene complexes result.¹⁸² The resulting iron complex $Fe(NO)₂(\eta^4$ -diene) is also thermally unstable, decomposing in solution at temperatures above -50 °C. The related n^2 -diene complex $\text{Cp*Ru}(NO)(n^2\text{-diene})$ is formed by the reaction of $\rm Cp*Ru(NO)Cl₂$ with 2 equiv of $\rm CH₂=CHMgBr, ⁹² pu$ tatively via an unstable divinyl complex.

cis- and trans-diene complexes of molybdenum of the $\tt type \ CpMo(NO)(\eta^4\text{-diene}) \ result from the \ Na/Hg \ re$ duction of the diiodides $9(X = I)$ in the presence of the appropriate diene.183,184 MO calculations on the model $CpMo(NO)(\eta^4{\text -}butadiene)$ complex show the *trans*-diene isomer to be more thermodynamically stable than the corresponding cis form. This result is in accord with

the experimental observation that the isolable cis-diene isomers are indeed the kinetic products and isomerize irreversibly to the favored trans isomers upon standing in solution under ambient conditions.

Diene complexes of manganese can be generated by nucleophilic exo attack of the η^5 -bonded ring in complexes 68 by nucleophiles such as phosphines and hydride. Triphenyl phosphite, on the other hand, sub-

stitutes a carbonyl ligand instead of adding onto the organic ring.¹⁸⁵ Finally, reversible ethylene addition resulting in the fragmentation of a binuclear complex has been observed for 69 ($M = Co$, Rh) and their Cp^* analogues (eq 28).¹¹³

VIII. AIIyI Complexes

The allyl ligand can adopt either static η^1 (σ -bound) or η^3 ($\sigma + \pi$ or π only) type linkages to metal centers, or it may rapidly interconvert between the two, thereby exhibiting fluxionality. One of the most studied nitrosyl allyl complexes known is the cationic molybdenum allyl 70 (and its substituted analogues), which is preparable by the reaction of allyl bromide and $AgPF_6$ with $\text{CpMo}(\text{CO})_2(\text{NO})$ (8).^{186,187} Its characteristic reactions with representative anionic and neutral nucleophiles are summarized in Scheme X. Attack of halides (for example, iodide) on 70 displaces the carbonyl ligand to

give the neutral allyl iodo complex 71.186a A detailed study of this reaction using the neomenthylcyclopentadienyl analogue revealed that carbonyl displacement occurs with *retention of configuration* at the metal center.^{188,189} An analysis of the conformational isomers of the type 70 and 71 has been performed by 95 Mo NMR spectroscopy.¹⁹⁰ These complexes exhibit 95 Mo NMR resonances in the ranges -1326 to -1576 ppm and -790 to -1100 ppm, respectively. Hence, the molybdenum center becomes more deshielded upon iodide replacement of the carbonyl. Furthermore, this study also established that for a given allyl ligand in complexes of the type 70 and 71, the exo $\frac{1}{2}$ isomers exhibit $\frac{95}{10}$ Mo NMR signals upfield of those somers exhibit the intervel signals uphered of those
displayed by their corresponding endo isomers.¹⁹⁰ The tungsten congener of 71 can be synthesized from tetraallyltin and the diiodide dimer 10 and is found to raanyfull and the dhoulde dillier to and is found to
contain a very asymmetric allyl ligand.¹⁹¹ Iodide can $\frac{1}{2}$ contain a very asymmetric any ingand. Todice can
he removed from 71 by Ag⁺ in the presence of nitriles to generate analogues of 70. More interesting is the iodide replacement in 71 by dithiocarbamate ligands to follow the placement in ℓ i by dithrocarballiate ligation to σ ive 72 in which the allylic group is n^1 -bound and the dithiocarbamate is bidentate. This latter complex is stereochemically rigid over the temperature range -60 stereocnemically rigid over the temperature range -60
to $+110$ °C 187 A similar reaction of a dithiocarbamate ligand with the cation 70 gives the product complex 73. The formation of this product is most consistent with the occurrence of nucleophilic attack at the coordinated the occurrence of nucleophilic attack at the coordinated
allyl group.¹⁸⁶ Such attacks, demonstrated during the ally group. Such attacks, demonstrated during the
reactions of 70 with $[M(C_0)]^T (M = M_n, Ra)$ nucleoreactions
nhiles,186b of the with $\left[\text{W}(\text{CO})_5\right]$ ($\text{W} = \text{W}$ fill, Ne) function of primes, was proposibly occur during the formation of
74 and 75. Very high regioselectivity has been observed. 74 and 75. Very high regioselectivity has been observed when the allyl is cyclooctenyl, the formation of the nucleophile-carbon bond occurring cis to NO in both the exo and endo isomers.^{192,193} On the other hand, only the endo conformer 76b (formed as the kinetic product

from nitrosonium for carbonyl replacement in its precursor) reacts with nucleophiles via attack at the methylene carbon to form an η^2 -lactone complex analogous to 75. The isolation of only one diastereoisomeric product also confirmed the stereospecificity of the reaction.¹⁹⁴ The thermodynamicaUy more stable **76a** exo conformer does not react similarly. Electrophiles have been found to insert into the Mo-allyl σ bond in 72 (electrophile = SO_2 , $CF_3C=CCF_3$) or to form *addition products at the allyl ligand* resulting in cyclization (electrophile = $TCNE$, $(CF_3)_2C=0$).¹⁹⁵

Other allyl complexes of Mo, W, and Mn are obtainable by the reaction of allyl halides with nitrosyl anion precursors (eq 29) $(R = Me, Et; X = halide).$ ⁸⁶

Reactions of the allyl complexes $(\eta^3$ -allyl)Fe(L)(CO)-(NO) ($L = CO$ or phosphine) with phosphines, $PR₃$, may result in either (i) substitution of a carbonyl ligand or (ii) attack on the coordinated allyl to form a zwitterionic olefin complex of the type $Fe^-(CH_2=$ $CHCH₂⁺PR₃$).¹⁹⁷ If CO substitution occurs, the fivecoordinate addition complex formed by phosphine attack at Fe has been detected as an intermediate in some cases.198,199 Alternatively, when a chelating phosphine is used, insertion of CO into the Fe^allyl bond is known to occur on occasion.¹⁹⁸ Hydride attack on $(n^3$ -allyl)-Fe(L)(CO)(NO) results in displacement of the coordinated allyl group.²⁰⁰ Nitrosonium ion substitution for carbonyl in a series of such Fe-allyl complexes results in the generation of the fluxional $[(n^3$ -allyl)Fe(L)(NO)₂] $\frac{1}{2}$ cations, which undergo facile allyl displacement upon α treatment with nucleophiles.²⁰¹ The fluxionality of these cations involves slow allyl group rotation, as established by spin saturation transfer ¹H NMR spectroscopy.²⁰² Replacement of allyl for nitrosyl (both formally three-electron donors) in a related diallyl iron complex has also been achieved.²⁰³

The complexes **77a** and **77b** are obtained by the reaction of tetrallyltin with $[Fe(NO)_2Cl]_2$ and RuCl- $(NO)(PPh₃)₂$, respectively. Allylmagnesium bromide

$$
[(n3 - allyl)Fe(NO)2]2SnCl2 \t (n3 - allyl)Ru(NO)(PPh3)2
$$

77 **a** 77 **b**

reacts with **77a,** but the exact nature of the product is still uncertain.²⁰⁴ Addition of carbon monoxide to **77b** does not convert the η^3 -allyl ligand to an η^1 configuration, but rather causes the nitrosyl ligand to bend.²⁰⁵ Cationic rhodium and iridium allyl complexes $[(\eta^3$ -al- 1 yl) $M(NO)L_2$ ⁺ ($M = Rh$, Ir) have been similarly prepared, and the iridium complex has been a model for the linear \rightleftharpoons bent equilibrium of a terminal nitrosyl ligand.²⁰⁶ Both complexes react with CO to give acrolein oxime (vide infra).

A. Cyclopropenyl Complexes

Cyclopropenyl cations react with $[Fe(CO)₃(NO)]$ ⁻ to afford the n^3 -cyclopropenyl (78) and/or n^3 -oxocyclobutenyl (79) complexes (R = Ph, H, Me, t -Bu).²⁰⁷

However, when $R = t$ -Bu, only 78 is formed. Phosphines add to 78 with concomitant insertion (migration) of CO into the cyclopropenyl ring to give oxocyclobutenyl complexes analogous to 79. Again, the complex having $R = t$ -Bu is an exception, only undergoing CO

substitution when treated with phosphines.²⁰⁸

IX. Cyclobutadlene Complexes

Only cyclobutadiene nitrosyl complexes of iron and manganese have been reported in the literature. The iron complex 80 is generated by NO^+ or NO_2^+ attack on the neutral tricarbonyl precursor. Phosphines and arsines, ER_3 (E = P, As), react with 80 to give the addition-substitution product 81,²⁰⁹ in which one molecule

of $ER₃$ has effected nucleophilic exo addition to the benzocyclobutadiene ring, and the other $ER₃$ has effected simple CO substitution. An alternative molecular structure of 81 in which " ER_3 " is positioned at a tertiary ring carbon is not ruled out by the presently available data. Other cyclobutadiene ring substituted analogues of 80 have been prepared, and their carbonyl substitution reactions with various σ -donor ligands have been reported.²¹⁰ The reactions of anionic nucleophiles X" $(X = Cl, NCO, NO₂, N₃, or NCS)$ with $[(\eta^4-C_4Ph_4)Fe (CO)₂(NO)⁺$ result in the loss of CO and the formation of a series of the neutral dimers $((\eta^4 \text{-} C_4 \text{Ph}_4) \text{Fe(NO)})$ X_{2}^{211}

The manganese complex $(\eta^4$ -C₄Ph₄)Mn(CO)₂(NO) can be formed (albeit in only 5% yield) by the reaction of $Mn(CO)₄(NO)$ and diphenylacetylene in refluxing toluene. It has been characterized fully by IR and mass spectroscopies and single-crystal X-ray crystallography.²¹²

X. Arene Complexes

Nitrosylation of $(\eta^6\text{-}$ arene)Cr(CO)₃ or its derivatives may or may not yield cationic arene-metal nitrosyl complexes depending on (i) the reaction conditions, (ii) the solvents employed, and (iii) the nature of the substituents on the arene ring. Although accompanying arene displacement is a common feature of such nitrosylation attempts, $69,213,214$ the conversions summarized in eq 30 can be effected under appropriate experimental

$$
(n6-arene)Cr(CO)2L \xrightarrow{NO'} \qquad [(n6-arene)Cr(CO)(NO)L]+ +
$$

\n
$$
[(n6-arene)Cr(CO)2NO]+ (3O)
$$

conditions²¹⁵ and the cationic arene nitrosyl product complexes can be isolated. Nucleophiles add to the arene ring of the cationic products to form neutral η^5 -pentadienyl complexes.^{216,217} Attempts to form a mixed nitrosyl-alkyne-arene complex, by treating $(\eta^6\text{-}$ arene)Cr(CO)₂(PhC=CPh) with NO⁺ (as in eq 30) only resulted instead in protonation of the chromium center due to the solvent used (methanol) and the increased basicity of the chromium center in the starting acetylene complex.²¹⁷

Condensation of chromium vapor with nitric oxide, benzene, and boron trifluoride results only a violent

explosion of the condensate at \sim -30 °C.²¹⁸ Hence, the long-sought arene nitrosyl complex $(\eta^6\text{-benzene})\text{Cr}(\text{NO})_2$ remains unknown.

XI. Reactivity of Bound NO

Nitric oxide is a well-known atmospheric pollutant, and new ways to convert it into useful chemical compounds such as amines have been the subjects of considerable investigative attention. The existence of a wide variety of transition-metal organometallic nitrosyl complexes has provided the impetus for the study of a series of reactions involving the NO ligands. These reactions range from simple adduct-type interactions with incoming substrates to complete expulsion of the NO ligand from the metal's coordination sphere. These reactions will now be considered in turn.

A. Interaction with Lewis Acids

The Lewis basicity of the NO ligand is exemplified in the reactions of $CpCr(NO)_2Cl$ and $CpM(CO)_2(NO)$ (4) $(M = Cr, Mo, W)$ with the cyclopentadienyl-lanthanide complexes, R_3Ln ($R = Cp$, Cp' ; $Ln = Sm$, Er , Yb, Ho, Dy). The ¹H NMR and IR spectral changes that occur upon combination of the reagents are indicative of R_3 Ln complexation to the terminal oxygen atoms of the nitrosyl ligands. Specifically, the lowering of the NO stretching frequency by about 30 cm^{-1} evident in the IR spectra is indicative of the weakening of the N-O bond as electrons are donated from the nitrosyl oxygen atom to the lanthanide and the concomitant increase in back-donation of electrons by the group 6 metal into the antibonding π^* orbitals of the group o metal model and complexed NO ligand.^{219,220} Other Lewis acids such as FeCl₃ form 1:1 adducts with $CpCr(NO)_2Cl$ via the recis form 1.1 adducts while open (100, 201 via the
chlorine atom.²²² This feature is not unexpected, since in the chromium complex the chromium-chlorine In the chromium complex the chromium-chrome
linkage is best viewed as being highly polar, i.e. $Cr^{\delta+}$ - $Cl^{\delta-44}$

The hard Lewis acid tricyclopentadienylsamarium, Cp3Sm, has been used to investigate the Lewis basicity of bound NO in three kinds of ligation modes, namely, (i) terminal, (ii) two-metal bridging, and (iii) three-metal bridging.²²³ The specific complexes used were CpCr- $(CO)₂(NO)$, 4 (M = Cr) for terminal NO, $[CpFe(NO)]₂$, 20a for two-metal bridging NO, and $Cp'_3Mn_3(NO)_4$ for three-metal bridging NO. The results of the study of the IR spectral changes accompanying adduct formation showed that the order of the Lewis basicity of bound NO (toward Cp₃Sm) is terminal NO > μ_2 -NO \sim μ_3 -NO. In all cases, addition of diethylamine is sufficient to cleave the isonitrosyl linkages, $-NO \rightarrow SmCp_3$.

B. Interaction with Protic Acids

Protonation of an asymmetrically bridging nitrosyl ligand occurs in the complex 82 to generate 83 (eq 31),

SCHEME XI

SCHEME XII

which contains a μ_3 -NOH group and exhibits a corresponding broad resonance in its¹H NMR spectrum at δ 10.80 assigned to the hydroxyl proton.²²⁴ The unprecedented sequential transformations in Scheme XI involve the overall formal reduction of a triply bridging nitrosyl ligand.²²⁵ These stepwise proton-induced transformations represent the possible first steps of a process for the reduction of NO to NH₃. The manganese dimer $[Cp'Mn(CO)(NO)]_2$ also undergoes protonation to give $[CP'_2Mn_2(NO)_2(CO)(NH_2)]^+$ and 86.²²⁶

C. Carbanion Reductions

The dinitrosyl dimer $[CpCr(NO)_2]_2$ (87) has been used as a model compound with which different kinds of nitrosyl ligand conversions have been effected (see Scheme XII). The known bimetallic compound 88 can be obtained in 15% yield by reflux of 87 in toluene for 24 h.²²⁷ An unusual reactivity pattern of the hydride source, $LiEt₃BH$, is exemplified by its reaction with 87 (in THF solution) as shown in Scheme XII.²²⁸ Compound 89 is isolable in low yield (6%), and its solid-state molecular structure has been determined by X-ray crystallography. Also isolable are the bimetallic complexes 88, 90, and 91, which are the products formed when other hydride sources such as Red-Al or $BH₃$ react when once hydride concess such as $\frac{1}{2}$ and $\frac{1}{2}$ cases with 87.¹²⁵ Organolithium reagents such as t -BuLi, n-BuLi, or MeLi react with only one bridging nitrosyl group of 87 to afford, after hydrolysis, either complexes 92 or 93, depending on whether or not the organolithium reagent contains an α -hydrogen atom.²²⁹

The carbanion sources RLi (R = Ph, *t-Bu)* also react with $[CpCo(NO)]_2$ at low temperature to yield $\text{Cp}_2\text{Co}_2(\mu_2\text{-NO})(\mu_2\text{-NHR})$ in a similar manner. More interesting is the fact that the catalytic hydrogenation of the cobalt nitrosyl dimer in the presence of nickel leads first to $\text{Cp}_2\text{Co}_2(\mu_2\text{-NO})(\mu_2\text{-NH}_2)$, which upon further treatment with H_2 liberates \overline{NH}_3 ²³⁰ Similar reactions of RLi with $CpNi(NO)$ at low temperatures²³¹

SCHEME XIU

lead to the cluster complexes $(CpNi)_{3}(\mu_{3}-NR)$ possibly via carbanion (R") attack at the coordinated nitrosyl ligand (a feature gaining widespread recognition).^{154,232}

D. Migration of Bound Nitrosyl Ligands

The ability of nitrosyl ligands to adopt different bonding modes toward metals and to react with both electrophiles (such as acids) and nucleophiles (such as carbanions) suggests that under the right experimental conditions it should be possible to effect such reactivity patterns *intramolecularly.* Indeed, migratory insertion reactions of bound NO into metal-carbon bonds are well-known and are fairly well understood processes.²³³ For instance, the cobalt complex $Co(Me)_{2}(PMe_{3})_{3}$ reacts with NO to form diamagnetic $Co(Me)_{2}(PMe_{3})_{2}(NO)$, which subsequently rearranges with concomitant NO insertion into a Co-Me bond to give the isolable dimer $[CoMe(MeNO)(PMe₃)₂]$ ². This dimeric complex is proposed to be bridged by the nitrosomethane ligands on the basis of its NMR $^{(31)}P$ and ^{1}H) and IR spectra.²³⁴ Furthermore, the allyl complexes $[(n^3$ -allyl)Ir(NO) $L_2]$ ⁺ $(L = PPh₃)$ and their isoelectronic rhodium analogues react rapidly with CO to give acrolein oxime via intramolecular coupling of the nitrosyl and allyl ligands.²⁰⁶

The first detailed mechanistic study of the NO insertion reaction was carried out for the processes outlined in Scheme XIII ($R = \text{alkyl}$, $L = \overline{P}Ph_3$, $\overline{PE}t_3$).¹¹⁰ The η^1 -nitrosoalkane bonding mode in the final product complex was established by X-ray crystallography for the case where $R = Et$ and $L = PPh_3$. Kinetic studies of the conversion of the nitrosyl alkyl complex to the nitrosoalkane compound (i.e., the last step in Scheme XIII) showed that it followed pseudo-first-order kinetics, a feature consistent with initial NO insertion into the Co-R bond followed by trapping of the resulting 16-electron complex by L. When the nitrosyl alkyl complex CpCo(NO)Me is synthesized in the presence of $L = PEt_3$, the adduct $CpCo(NO)(L)Me$, which has bent NO geometry, is formed. Phosphine dissociation from this complex precedes any migratory insertion process subsequently observed. The iron dialkyl complexes 97 undergo similar insertion of NO when $R = Me$

$$
\begin{array}{c}\n\text{PME3} \\
R \downarrow \text{PME3} \\
\text{PME4} \\
\text{PME5} \\
\text{PME6} \\
\text{PME3} \\
\text{PME3} \\
\text{PME4} \\
\text{PME5} \\
\text{PME3} \\
\text{PME3} \\
\text{PME4} \\
\text{PME5} \\
\text{PME5} \\
\text{PME6} \\
\text{PME6} \\
\text{PME8} \\
\text{PME9} \\
\text{P
$$

and $Cp = Cp^{90}$ or Cp^{86} (eq 32). However, when R = $CH_2S\ddot{P}h$ or CH_2Ph and $Cp = Cp^*$, reductive coupling of the alkyl ligands, instead of NO insertion, is observed $(eq 33).⁸⁶$ An identical reductive coupling of aryl lig-

$$
Cp^{[Fe(NO)R_2]}\longrightarrow [Cp^{[Fe(NO)]_2} + R = R \qquad (33)
$$

ands occurs in the thermal decomposition of Cp*Ru-

 $(NO)Ph_2$ to give $[Cp*Ru(NO)]_2$ and biphenyl.⁹² The alkyl analogues, however, upon treatment with PMe₃ produce isolable organometallic complexes, which are believed to arise from initial migratory insertion of NO into one of the metal-alkyl bonds $(eq\ 34).^{95}$ The cyano complex arises when $R = H$, and the amide complex is formed when $R = Me$.

$$
C_{P}^{T}Ru(NO)(CH_{2}R)_{2} \xrightarrow{PMeg} [Ru] \xrightarrow{O} N_{1} + [Ru] - N_{C}Me + [Ru] - CN
$$
\n
$$
R \xrightarrow{O} R_{1} + [Ru] - N_{C}Me + [Ru] - CN
$$
\n
$$
(Ru) = C_{P}^{T}Ru(PMeg)_{2}
$$
\n
$$
(R=HMe)
$$
\n
$$
(R=HMe)
$$
\n
$$
(R=HMe)
$$
\n
$$
(R=HMe)
$$

Obviously, the migratory insertion reactions considered here represent new synthetic routes for the formation of carbon-nitrogen bonds. Two other routes, one a nitrosyl-olefin coupling reaction involving cobalt, and the other insertion of NO⁺ into a chromium-carbon bond, will be considered in a later section (vide infra).

In closing this section, we present in eq 35 and 36 two unusual deinsertion and insertion reactions of bound NO.²³⁵ As shown in eq 35, complex 94 [resulting from

the first observed NO⁺ insertion into the metal cluster-carbon bond of the precursor $(CpCo)_{3}(\mu_{3}-CR_{2})$] reacts with deprotonating reagents to give the unexpected product 95, in which carbyne coupling has occurred *with simultaneous deinsertion* of *NO.²³⁶* In the chemical transformation summarized in eq 36, an unprece-

dented insertion of an alkyne into a metal-nitrosyl bond occurs.¹¹¹ Attempts to obtain crystals of 96 suitable for X-ray diffraction failed, but its formulation is adequately supported by conventional characterization data. Moreover, precedents for similar insertions of an alkyne into M-CO links do exist.

E. Displacement of Bound Nitrosyl Ligands

The chromium complex $CpCr(NO)_2Cl$ reacts with a wide range of strong donor ligands (L) such as pyridine, PPh3, and NCR (R *—* cyclohexyl) to effect substitution of a nitrosyl group by L, 17-electron CpCr(NO)(L)Cl complexes being the final products.²³⁷ During a recent study of the photolytic behavior of the coordination compounds $Rh(NO)(CO)(PPh_3)$ and $Ir(NO)(CO)Cl$ - $(PPh_3)_2$ in the presence of PPh_3 ,²³⁸ it was demonstrated that the nitrosyl ligand (rather than carbonyl!) is preferentially expelled from the metal's coordination sphere. Such a process of selective nitrosyl ligand displacement has not, to the best of our knowledge,

SCHEME XIV

$$
C_{P_2}^{*}M_{O_2}(CO)_4 + C_{P_2}^{*}M_{O}(CO)(NO)
$$
\n
$$
h\nu
$$
\n
$$
C_{P_3}^{*}M_{O_3}(\mu_3-N)(CO)_4(O)
$$
\n
$$
CO
$$
\n
$$
M_3(\mu_2-NCO) + M_3(\mu_2-CNO)
$$
\n
$$
[M_3 = C_{P_3}^{*}M_{O_3}(\mu_3-O)(CO)_4]
$$

been detected during the photolysis of organometallic nitrosyl complexes.

F. Nitrosyl Group as an Oxygen Atom Source

The thermal decomposition of dinitrosyl complexes to produce N_2 , NO, and N_2O and the closely related catalytic disproportionation of nitric oxide into N_2 and O_2 have been detailed.²³⁹ In addition, triphenylphosphine has been oxidized by bound nitric oxide (with rigorous exclusion of oxygen) as outlined in eq 37.240 The indicated products are obtained in low The indicated products are obtained in low

$$
[M(NO)Cl3]n + excess PPh3 \longrightarrow M(NO)Cl3(OPPh3)2
$$
 (37)
(M=Mo₃W)

yields, and in air the molybdenum complex rapidly decomposes to the oxo complex, $MoOCl₃(PPh₃O)₂$.

The photochemical reaction of $\text{ChMo}(\text{CO})_2(\text{NO})$ and $PPh₃$ in benzene solution results both in simple substitution of the carbonyl ligands (vide supra) and in the novel combination of NO and CO to form the isocyanate ligand as shown in eq 38.²⁵ Control reactions

$$
\underbrace{100}_{0N \text{ G}} + \text{PPh}_3 \xrightarrow{h\nu} \underbrace{100}_{0C \text{ G}} + \text{OPPh}_3 \tag{38}
$$

are consistent with the initial formation of organometallic nitrene species that capture CO to form the NCO group. The isocyanate complex shown in eq 38 has been structurally characterized by X-ray diffraction. Matrix isolation studies of the reaction of the tungsten congener, $\text{CpW(CO)}_2(\text{NO})$, with PPh_3 provided definitive evidence for such CO capture by a nitrene group. Isotopic labeling studies established that the CO component of the isocyanate ligand does indeed originate from the CO ligand.²⁴¹ Isocyanate ligand formation has also been observed in the photolytic condensation reaction outlined in Scheme XIV.²⁴² The isostructural isocyanate (NCO) and fulminate (CNO) clusters were cocrystallized from the product mixtue. The reaction sequence in the scheme parallels that proposed for the formation of the NCO ligand in eq 38. In this case, however, the nitrosyl ligand splits into N and O atoms which are *held together in the same complex molecule* to give an oxo nitride complex which then adds CO.

Other examples of oxo complex formation from nitrosyl compounds include the thermal decomposition reaction of Cp₂V(NO)I to give $[Cp_2VI]_2[CpV(NO)]_2(\mu$ -O)4, whose solid-state molecular structure has been σ_{4} , whose song state indication states the second determined.⁵ Disproportionation reactions involving nitric oxide have also been observed in its reactions with Cp_2VCl to give N₂O and $Cp_3V_2O_2Cl_2$ and with Cp_2Cr to give $CpCr(NO)₂(NO₂)$. The oxo ligand in 104 derives

from the nitrosyl oxygen of NO during its reaction with the carbonyl precursor 48.¹⁴⁸

The ability of bound NO to lose oxygen is perhaps best exemplified by the electrochemical reduction of the $CpM(CO)_{2}(NO)$ (M = Mo, W) complexes (4). Oneelectron reductions afford the $[ChM(CO)_2NO]^T$ radicals, which on the basis of their ESR spectra are formulated as having the extra electron localized on the M-NO fragment, a localization that causes bending of the nitrosyl ligand.²⁴³ This observation, together with the X-ray and PES studies of the related $CDM(NO)_{2}Cl$ complexes, which indicate significant electron density transfer to the oxygen atoms of the nitrosyl ligands (vide supra), may well account for the ability of the NO ligands in these species to function as sources of atomic oxygen.

XII. Applications

The application and transition-metal nitrosyl coordination complexes in organic synthesis and in pollution control has been reviewed.²⁴⁴ This section highlights some applications of organometallic nitrosyl complexes that have been developed primarily from the organometallic point of view. For clarity, this last section is subdivided into applications involving the metal center, the nitrosyl ligand, or π -bound organic ligands.

A. Involving the Metal Center

The cationic complex $[CpW(NO)_2]^+$ rapidly isomerizes 2,3-dimethyl-l-butene to 2,3-dimethyl-2-butene and dimerizes 1,1-diphenylethylene to the head-to-tail cyclic dimer, 1,1,3-triphenyl-3-methylindan.³⁷ Some olefins such as allylbenzene do not, however, react with this electrophilic cation. This is somewhat surprising since $[{\rm CpW}({\rm NO})_2]^+$ is sufficiently electrophilic to abstract ${\rm Ph}^$ from $NaBPh_4$. It has been proposed that incipient carbocations are generated during its reactions with olefins. Similar results have been obtained with [M- $(NO)_2(CH_3CN)_4]^{2+}$ (M = Mo, W), [Rh(NO)- $(\text{CH}_3\text{CN})_4]^2$ ⁺, and $[\text{Fe}(\text{NO})_2(\text{solv})_n]^2$ ⁺.²⁴⁵

The 18-electron carbene complex $35 (M = Mo)$ has been shown²⁴⁶ to be a good carbene-transfer agent to both $Fe(CO)_5$ (eq 39) and to $Ni(CO)_4$. In the latter case, $[(OC)Ni=C(OMe)Ph]_3$ is the putative product.¹³⁴

$$
0^{N} \int_{S}^{M_0} P_{ph}^{0Me} + Fe(CO)_5 \xrightarrow{h\nu} (OC)_4 Fe \preceq^{0Me}_{Ph} + {}_{0}^N {}_{S}^{M_0} C_0
$$
 (39)

The cobalt acylate complexes $98 (R = alkyl, aryl)$ are generated by R^- attack on $Co(NO)(CO)_2(PPh_3)$. These

thermally unstable complexes readily transfer the acyl functionality to allylic halides, conjugated ketones, and quinones to form β , γ -unsaturated ketones, 1,4-dicarbonyl compounds, and 4-acylcyclohexadienones, respectively.¹⁶⁶

The dinitrosyl dimer $[CpCr(NO)₂]$ ₂ (7) selectively abstracts halogens from vic-dihaloalkanes to produce the corresponding alkenes.²⁴⁷ Furthermore, the dinitrosyl compound 99 inserts NO⁺ as shown in eq 40

NO⁺ O N'NO"^C 99 .Cr — N 100 -CH ⁴ .Cr —N ' ON'" I I' ON CH I ''NO ON (40) 101

to give the noval formaldoxime complex **100,** in which the intramolecular dimensions of the formaldoxime ligand resemble those of free formaldoxime.²⁴⁸ Complex **100** reacts in the presence of excess 99 to give the bimetallic oximato dimer 101.²⁴⁹ The initial NO⁺ insertion reaction shown in eq 40 is without precedent and should provide new ways of carbon-nitrogen bond formation (vide supra).

B. Involving Nitrosyl Ligands

The ability of nitrosyl ligands in metal complexes to catalyze the air oxidation of organic substrates is probably due to the occurrence of their reaction with oxygen as summarized in eq 41.²⁵⁰ The latter step

$$
M - NO + 1/2O_2 \longrightarrow M - NO_2 \xrightarrow{S} M - NO + SO
$$
 (41)
\n
$$
M = metal \text{ complex}
$$

\nS = organic substrate

involving O-atom transfer²⁵¹ has been extensively studied for a bimetallic Co-Pd system in which concomitant NO exchange between the metals also occurs.²⁵² In a similar manner, $(P_2)Fe(NO)_2 (P_2 = che$ lating phosphine) catalyzes the air oxidation of chelating phosphines probably via a nitro intermediate.²⁵³ In general, however, reactions of type 41 are not wellknown for organometallic nitrosyl compounds.

C. Involving Nitrosyl and Other Ligands

A well-studied transformation of the condensation of a nitrosyl compound with an olefin involves the cobalt dimer $[CpCo(NO)]_2$. When this dimer is reacted with NO and olefin, complexes of the type **102** result. The

initial studies 254 employed norbornene as the olefin, but this chemistry has been subsequently extended to encompass a range of simple olefins.²⁵⁵ Hydride reduction of complexes **102** yields diamine complexes **103** from which the diamines can be liberated. These sequential reactions represent the first general method for the direct transformation of various olefins to their primary 1,2-diamines. Complexes **102** also undergo exchange reactions, a particular example being illustrated in eq

43 256 Kinetic and mechanistic studies of these ex-

$$
C_{P}C_{0}\sqrt{\frac{1}{N}}\mathbf{I} + \mathbf{I} \mathbf{X}_{R}^{R} \longrightarrow C_{P}C_{0}\sqrt{\frac{1}{N}}\mathbf{X}_{R}^{R} + \mathbf{X}
$$
 (43)

change reactions show that they occur by initial dissociation of olefin from complexes 102. The initial condensation reaction to form 102 is believed to involve $CpCo(NO)$, formation, though this has not yet been confirmed.

D. Involving π **-Bound Organic Ligands**

A bound η^5 -cyclopentadienyl ring has been derivatized in the stepwise fashion shown in eq 44.²²¹

Various ring-substituted cyclopentadienyl nitrosyl complexes are obtainable by this method. This fact is of fundamental importance since many of these complexes are not accessible by conventional synthetic routes.

Nucleophilic addition to the organic ring in $[(\eta^5$ h exadienyl) $Mn({\rm CO})_2({\rm NO})$ ⁺ cations to form the neutral η^4 -diene derivatives has been the subject of several studies.^{185,257,258}

Finally, the "selective binding and activation of one aldehyde enantioface" has been achieved recently by employing the chiral cation $[CpRe(NO)(PPh_3)]^+$ (14).²⁵⁹

It is likely that future research efforts will focus even more on developing new synthetic and material applications of organometallic nitrosyl complexes.

XIII. Acknowledgment.

We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support of our work in this fascinating area of chemistry, and we thank Lani Collins, Nancy Christensen, Bev Gray, and Pat Parsons for their assistance during the preparation of the manuscript.

References

- (1) Griffith, W. P. *Adv. Organomet. Chem.* **1968,** *7,* 211.
- (2) For a listing of reviews dealing with transition-metal nitrosyls up to 1981, see: Feltham, R. D.; Enemark, J. H. In Topics in Inorganic and Organometallic Stereochemistry; Geoffroy, G. L., Ed.; Wiley-Interscience: New
- (3) Gladfelter, W. L. *Adv. Organomet. Chem.* **1985,** *24,* **41.**
-
- (4) Moran, M.; Gayoso, M. Z. Naturforsch., B: Anorg. Chem.,

Org. Chem. 1981, 36, 434.

(5) Bottomley, F.; Darkwa, J.; White, P. S. J. Chem. Soc., Dalton

Trans. 1985, 1435.

(6) Bottomley, F.; Darkwa, J.; White, P. S. J.
- (7) Bottomley, F.; Darkwa, J.; White, P. S. *Organometallics* **1985,**
- *4,* 961. (8) Herberhold, M.; Klein, R.; Smith, P. D. *Angew. Chem., Int.*
- *Ed. Engl.* **1979,** *18,* 220. (9) Herberhold, M.; Kremnitz, W.; Trampisch, H.; Hitam, R.; Rest, A. J.; Taylor, D. J. *J. Chem. Soc, Dalton Trans.* **1982,** 1261.
- (10) Herberhold, M.; Trampisch, H. *Z. Naturforsch., B: Anorg. Chem., Org. Chem.* **1982,** *37B,* 614.
- (11) Salzmann, J.-J. *HeIv. Chim. Acta* **1968,** 52, 903.
- (12) Hoyano, J. K.; Legzdins, P:;-Malito, J. T. *Inorg. Synth.* **1978,** *18,*126.
- (13) Seddon, D.; Kita, W. G.; Bray, J.; McCleverty, J. A. *Inorg. Synth.* **1976,** *16,* 24.
- (14) Greenhough, T. J.; Kolthammer, B. W. S.; Legzdins, P.; Trotter, J. *Inorg. Chem.* **1979,***18,* 3543. (15) Rosan, A. M.; Faller, J. W. *Synth. React. Inorg. Met.-Org.*
- *Chem.* **1976,** *6(5-6),* 357.
-
- (16) Legzdins, P.; Malito, J. T. *Inorg. Chem.* 1975, *14,* 1875. (17) Atwood, J. L.; Shakir, R.; Malito, J. T.; Herberhold, M.; Kremnitz, W.; Bernhagen, W. P. E.; Alt, H. G. *J. Organomet. Chem.* **1979,***165,* 65.
- (18) Macomber, D. W.; Rausch, M. D. *Organometallics* **1983,** *2,* 1523.
- (19) Gubitosa, G.; Brintzinger, H. H. *J. Organomet. Chem.* **1977,** *140,*187.
- (20) Malito, J. T.; Shakir, R.; Atwood, J. L. *J. Chem. Soc, Dalton Trans.* **1980,** 1253.
- (21) Minelli, M.; Hubbard, J. L.; Christensen, K. A.; Enemark, J. **H.** *Inorg. Chem.* **1983,** *22,* 2652.
- (22) Herrmann, W. A.; Hubbard, J. L.; Bernal, I.; Korp, J. D.; Haymore, B. L.; Hillhouse, G. L. *Inorg. Chem.* **1984,***23,*2978.
- (23) Hames, B. W.; Legzdins, P.; Martin, D. T. *Inorg. Chem.* **1978,** *17,* 3644.
- (24) Brunner, H. *J. Organomet. Chem.* 1969,*16,* 119.
- (25) McPhail, A. T.; Knox, G. R.; Robertson, C. G.; Sim, G. A. *J. Chem. Soc. A* **1971,** 205.
- (26) Reisner, M. G.; Bernal, I.; Brunner, H.; Doppelberger, J. *J. Chem. Soc, Dalton Trans.* **1978,** 1664.
- (27) Brunner, H.; Muschiol, M. *Organomet. Synth.* **1986,** *3,* 69. (28) For the synthesis of the mixed nitrosyl-aryldiazonium com-plex CpMo(NO)(N2Ph)Cl, see: Deane, M.; Lalor, F. J. *J. Organomet. Chem.* **1973,** *57,* C61.
- (29) Kolthammer, B. W. S.; Legzdins, P.; Malito, J. T. *Inorg. Chem.* 1977, *16,* 3173.
- (30) Hoyano, J. K.; Legzdins, P.; Malito, J. T. *J. Chem. Soc, Dalton Trans.* **1975,** 1022. (31) Calderon, J. L.; Fontana, S.; Frauendorfer, E.; Day, V. W. *J.*
- *Organomet. Chem.* **1974,** *64,* ClO.
-
- (32) Legzdins, P.; Wassink, B. *Organometallics* 1984, *3,* 1811. (33) Eremenko, I. L.; Pasynskii, A. A.; Kalinnikov, V. T.; Struchkov, Y. T.; Aleksandrov, G. G. *Inorg. Chim. Acta* 1981, *52,* 107.
- (34) Rott, J.; Guggolz, E.; Rettenmeier, A.; Ziegler, M. L. *Z. Naturforsch., B: Anorg. Chem., Org. Chem.* **1982,** *37B,* 13.
- (35) Alt, H. G.; Hayen, H. I. *J. Organomet. Chem.* **1986,** *315,* 337.
- (36) Richter-Addo, G. B.; Legzdins, P., unpublished observations. (37) Legzdins, P.; Martin, D. T. *Organometallics* **1983,** *2,* 1785.
-
-
- (38) Regina, F. J.; Wojcicki, A. *Inorg. Chem.* **1980,***19,* 3803. (39) Froboese, R.; Mews, R.; Glemser, O. *Z. Naturforsch., B: Anorg. Chem., Org. Chem.* **1976,** *31B,* 1497.
- (40) Stewart, R. P., Jr.; Moore, G. T. *Inorg. Chem.* **1975,***14,* 2699. (41) Behrens, H.; Landgraf, G.; Merbach, P.; Moll, M.; Trammer, **K. H.** *J. Organomet. Chem.* **1983,** *253,* 217.
- (42) The complex $[CDCr(NO)(NS)(CO)]PF_6$ has been prepared by reacting $CpCr(CO)_2(NS)$ with $NQPF_6$: Greenhough, T. J.; Kolthammer, B. W. S.; Legzdins, P.; Trotter, J. *Inorg. Chem.*
- **1979,** *18,* 3548. (43) Yu, Y. S.; Jacobson, *K* A.; Angelici, R. J. *Inorg. Chem.* 1982, *21,* 3106.
- (44) Chen, H. W.; Jolly, W. L.; Xiang, S. F.; Legzdins, P. *Inorg. Chem.* 1981, *20,* 1779.
- (45) Legzdins, P.; Nurse, C. R. *Inorg. Chem.* 1985, *24,* 327.
- (46) Legzdins, P.; Martin, D. T.; Nurse, C. R. *Inorg. Chem.* **1980,** *19,*1560.
- (47) McCleverty, J. A.; Seddon, D. *J. Chem. Soc, Dalton Trans.* 1972, 2526.
- (48) McCleverty, J. A.; James, T. A. *J. Chem. Soc. A* 1971,1596.
- (49) McCleverty, J. A.; James, T. *AJ. Chem. Soc. A* 1971,1068.
- (50) McCleverty, J. A.; Williams, J. *Transition Met. Chem. (Weinheim)* 1976,*1,* 288. (51) Christensen, N. J.; Hunter, A. D.; Legzdins, P.; Sanchez, L.
- *Inorg. Chem.* **1987,** *26,* 3344.
- (52) King, R. B. *Inorg. Chem.* 1968, 7, 90.
-
- (53) De Oliveira, W.; Migot, J. L.; Gomes de Lima, M. B.; Sala-Pala, J.; Guerchais, J. E.; Le Gall, J. Y. J. Organomet. Chem.
1985, 284, 313.
1985, 284, 313.
Frisch, P. D.; Hunt, M. M.; Kita, W. G.; McCleverty, J. A.; Rae
- (55) Hunt, M. M.; Kita, W. G.; McCleverty, J. A. *J. Chem. Soc,*
- *Dalton Trans.* **1978,** 474. (56) Kita, W. G.; McCleverty, J. A.; Mann, B. E.; Seddon, D.; Sim, G. A.; Wcodhouse, D. I. *J. Chem. Soc, Chem. Commun.* **1974,** 132.
- (57) McCleverty, J. A.; Seddon, D. *J. Chem. Soc, Dalton Trans.* 1972, 2588.
- (58) Clark, G. R.; Hall, D.; Marsden, K. *J. Organomet. Chem.* **1979,** 777,411. Ashby, M. T.; Enemark, J. H. *J. Am. Chem. Soc.* **1986,***108,* (59:
- 730.
- Legzdins, P.; Sanchez, L. *J. Am. Chem. Soc.* **1985,***107,* 5525. Legzdins, P.; Rettig, S. J.; Sanchez, L. *J. Am. Chem. Soc.* (60 1985, *107,* 1411. (61
- Hunter, A. D.; Legzdins, P. *Organometallics* **1986,** 5, 1001. Pfeiffer, E.; Vrieze, K.; McCleverty, J. A. *J. Organomet. Chem.* **1979,** *174,* 183. (62 (63
- Calderon, J. L.; Cotton, F. A.; Legzdins, P. *J. Am. Chem. Soc.* (64)
- **1969** *91* 2528 Hunt, M. M.; Kita, W. G.; Mann, B. E.; McCleverty, J. A. *J.* (65)
- *Chem. Soc, Dalton Trans.* **1978,** 467.
- (66) Legzdins, P.; Nurse, C. R. *Inorg. Chem.* 1982, 21, 3110.
(67) Fischer, E. O.; Strametz, H. Z. Naturforsch., *B: Anorg.*
- *Chem., Org. Chem., Biochem., Biophys., Biol.* **1968,** *23,* 278. Connelly, N. G. *Inorg. Synth.* **1974,** *15,* 91. Connelly, N. G.; Dahl, L. F. *J. Chem. Soc. D* **1970,** 880. (68)
- (69)
- Efraty, A.; Arneri, R.; Sikora, J. *J. Organomet. Chem.* **1975, (7o:**
- *91,* 65.
- James, T. A.; McCleverty, J. A. *J. Chem. Soc. A* **1970,** 850. (71
- Brunner, H. *Z. Anorg. AlIg. Chem.* **1969,** *368(3-4),* 120. Efraty, A.; Arneri, R.; Ruda, W. A. *Inorg. Chem.* **1977,** *16,* (72 (73
- 3124. Efraty, A.; Arneri, R.; Huang, M. H. A. *J. Am. Chem. Soc.* (74
- 1976, *98,* 639. Fernandez, J. M.; Gladysz, J. A. *Inorg. Chem.* **1986,***25,* 2672. (75 (76
- Brunner, H. *Adv. Organomet. Chem.* **1980,***18,* 51. Buhro, W. E.; Georgiou, S.; Hutchinson, J. P.; Gladysz, J. A.
- *J. Am. Chem. Soc.* **1985,***107,* 3346. (77
- Kolthammer, B. W. S.; Legzdins, P. *Inorg. Chem.* **1979,** *18,* (78 889.
- Hames, B. W.; Kolthammer, B. W. S.; Legzdins, P. *Inorg.* (79 *Chem.* **1981,** *20,* 650.
- Mueller, J.; Schmitt, S. *Z. Anorg. AlIg. Chem.* **1976,** *426(1),* 77. (80
- King, R. B. *Inorg. Chem.* **1967,** *6,* 30. (81
- Chong, K. S.; Rettig, S. J.; Storr, A.; Trotter, J. *Can. J. Chem.* (82 **1979** *57* 3113
- Weiner/W. P.; Hollander, F. J.; Bergman, R. G. *J. Am.* (83 *Chem. Soc.* **1984,** *106,* 7462.
- (84) Busetto, L.; Monari, M.; Palazzi, A.; Albano, V.; Demartin, F. *J. Chem. Soc, Dalton Trans.* **1983,** 1849. McCleverty, J. A.; James, T. A.; Whaton, W. J.; Winscom, C. (85:
-
- (86)
(87)
- J. J. Chem. Soc., Chem. Commun. 1968, 933.
Diel, B. N. J. Organomet. Chem. 1985, 284, 257.
Herrmann, W. A.; Hubbard, J. L.; Floel, M. Organomet.
Synth. 1986, 3, 45.
- (a) Calderon, J. L.; Fontana, S.; Frauendorfer, E.; Day, V. W.; Iske, S. D. A. *J. Organomet. Chem.* **1974,** *64,* C16. (b) Schugart, K. A.; Fenske, R. F. *J. Am. Chem. Soc* **1986,***108,* 5094-5104. (88)
- (a) Kubat-Martin, K. A.; Barr, M. E.; Spencer, B.; Dahl, L. F. *Organometallics* **1987,** *6,* 2570. (b) Schugart, K. A.; Fenske, R. F. *J. Am. Chem. Soc.* **1986,** 708, 5100. (c) Bottomley, F. *Inorg. Chem.* **1983,** *22,* 2656. (d) Cirjak, L. M.; Ginsburg, R. E.; Dahl, L. F. *Inorg. Chem.* **1982,** *21,* 940. (e) Pinhas, A. R.; Hoffmann, R. *Inorg. Chem.* **1979,** 78, 654. (89)
- (90) Seidler, M. D.; Bergman, R. G. *Organometallics* **1983,***2,*1897. (91) Pandey, V. N. *Transition Met. Chem. (Weinheim)* **1977,**
- *2(2-3),* 48. (92) Chang, J.; Bergman, R. G. *J. Am. Chem. Soc.* **1987,** 709,4298.
- (93) Brunner, H.; Wachsmann, H. *J. Organomet. Chem.* **1968,***15,* 409.
- (94) Efraty, A.; Elbaze, G. *J. Organomet. Chem.* **1984,** *260,* 331. (95) Seidler, M. D.; Bergman, R. G. *J. Am. Chem. Soc.* **1984,** 706,
- 6110. (96) Ashok, R. F. N.; Gupta, M.; Arulsamy, K. S.; Agarwala, U. C.
- *Inorg. Chim. Acta* **1985,** *98,* 169. (97) Ashok, R. F. N.; Gupta, M.; Arulsamy, K. S.; Agarwala, U. C.
- *Can. J. Chem.* **1985,** *63,* 963.
- (98) Treichel, P. M.; Molzahn, D. C; Wagner, K. P. *J. Organomet. Chem.* **1979,** 774, 191.
- (99) Conroy-Lewis, F. M.; Simpson, S. J. *J. Organomet. Chem.* 1987 *322* 221. (100) Herrmann, W. A.; Bauer, C. *J. Organomet. Chem.* **1981,** *204,*
- C21.
- (101) Herrmann, W. A.; Bauer, C. *Chem. Ber.* **1982,** 775, 14. (102) Kalcher, W.; Herrmann, W. A.; Pahl, C; Zeigler, M. L. *Chem.*
-
- *Ber.* 1984, 117, 69.
(103) Herrmann, W. A.; Floel, M.; Weber, C.; Hubbard, J. L.;
Schaefer, A. J. Organomet. Chem. 1985, 286, 369.
(104) Hubbard, J. L.; Nadeau, O. W. Abstracts of Papers, 194th
- National Meeting of the American Chemical Society, New Orleans, LA; American Chemical Society: Washington, DC, 1987; INOR 251.
-
- (105) Brunner, H. *J. Organomet. Chem.* **1968,** *12,* 517. (106) Dimas, P. A.; Lawson, R. J.; Shapley, J. R. *Inorg. Chem.* 1981, *20,* 281.
- 107 Bernal, I.; Korp, J. D.; Reisner, G. M.; Herrmann, W. A. *J. Organomet. Chem.* **1977,** 739, 321.
- 108) For a discussion of the electronic structure of several bimetallic complexes containing a bridging nitrosyl group, see ref 89.
- 109 Pilloni, G.; Zecchin, S.; Casarin, M.; Granozzi, G. *Organometallics* **1987,** 6, 597.
- 110 Weiner, W. P.; Bergman, R. G. *J. Am. Chem. Soc.* **1983,** 705, 3922.
- 111 Clamp, S.; Connelly, N. G.; **Howard,** J. A. K.; Manners, **I.;** Payne, J. D.; Geiger, W. E. *J. Chem. Soc, Dalton Trans.* **1984,** 1659.
- 112 Connelly, N. G.; Lucy, A. R.; Galas, A. M. R. *J. Chem. Soc, Chem. Commun.* **1981,** 43.
- 113 Clamp, S.; Connelly, N. G.; Payne, J. D. *J. Chem. Soc, Chem. Commun.* **1981,** 897.
- 114 Connelly, N. G.; Davies, J. D. *J. Organomet. Chem.* **1972,** *38,* 385.
- 115 Faraone, F.; Peitropaolo, R.; Troilo, G. G.; Piraino, P. *Inorg. Chim. Acta* **1973,** 7, 729.
- 116 Dimas, P. A.; Shapley, J. R. *J. Organomet. Chem.* **1982,** *228,* C12.
- 117 Connelly, N. G.; Payne, J. D.; Geiger, W. E. *J. Chem. Soc, Dalton Trans.* **1983,** 295.
- 118 Faraone, F.; Bruno, G.; Tresoldi, G.; Faraone, G.; Bombieri, G. *J. Chem. Soc, Dalton Trans.* **1981,** 1651.
- 119 Wochner, F.; Keller, E.; Brintzinger, H. H. *J. Organomet. Chem.* **1982,** *236,* 267.
- 120 121 Kubat-Martin, K. A.; Rae, A. D.; Dahl, L. F. *Organometallics* Brunner, **H.;** Loskot, S. *Z. Naturforsch., B* **1973,***28(5-6),* 314. **1985,** *4,* 2221.
- 122) Stewart, R. P.; Okamoto, N.; Graham, W. A. G. *J. Organomet. Chem.* 1972, *42,* C32.
- 123) Tam, W.; Lin, G. Y.; Wong, W. K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. *J. Am. Chem. Soc* **1982,** 704, 141. Legzdins, P.; Martin, D. T. *Inorg. Chem.* **1979,** 78, 1250.
- 124
- 125: Hames, B. W.; Legzdins, P.; Oxley, J. C. *Inorg. Chem.* **1980,** *19,* 1565.
- 126 Hames, B. W.; Legzdins, P. *Organometallics* 1982, *1*, 116.
Legzdins, P.; Martin, J. T.; Einstein, F. W. B.; Willis, A. C.
J. Am. Chem. Soc. 1986, *108*, 7971.
Powell, J.; Sawyer, J. F.; Stainer, M. V. R. *J. Chem. Soc.*
-
- 128: 129: *Chem. Commun.* **1985,** 1314. Legzdins, P.; Martin, J. T.; Oxley, J. C. *Organometallics* **1985,** 4, 1263.
- i3o: Legzdins, P.; Martin, J. T.; Einstein, F. W. B.; Jones, R. H. *Organometallics* **1987,** *6,* 1826.
- 131 Chaudhari, F. M.; Knox, G. R.; Pauson, P. L. *J. Chem. Soc. C* **1967** 2255.
- 132
- 133
- 134
- 135) Jacob, K.; Thiele, K. H*. Z. Anorg. Allg. Chem.* 1981, 479, 143.
Seidel, W.; Geinitz, D*. Z. Chem.* 1975, *15(2), 71.*
Fischer, E. O. *Pure Appl. Chem.* 1970, 24, 407.
Lappert, M. F.; Pye, P. L.; McLaughlin, G. M. J. C*hem*
- 136) Attempts at generating and trapping the related methylidene
complex [CpCr(NO)₂(=CH₂)][†] resulted in the migration of
the methylidene unit into a C-H bond of the Cp ligand:
Hubbard, J. L.; McVicar, W. K. J. Am. C 6422.
- 137) Asaro, M. F.; Bodner, G. S.; Gladysz, J. A.; Cooper, S. R.; Cooper, N. J. *Organometallics* **1985,** 4, 1020.
- 138) Bodner, G. S.; Gladysz, J. A.; Nielsen, M. F.; Parker, V. D. *J. Am. Chem. Soc.* **1987,** 709, 1757.
- 139) McCormick, F. B.; Kiel, W. A.; Gladysz, J. A. *Organometallics* **1982,** 7, 405.
- i4o: Kiel, W. A.; Lin, G. Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. *J. Am. Chem. Soc* **1982,** 704, 4865.
- 141 Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. *J. Am. Chem. Soc.* **1983,** 705, 5804. Merrifield, J. H.; Lin, G. Y.; Kiel, W. A.; Gladysz, J. A. *J. Am.*
- 142) *Chem. Soc* **1983,** 705, 5811.
- 143) McCormick, F. B.; Gleason, W. B.; Zhao, X.; Heah, P. C.; Gladysz, J. A. *Organometallics* **1986,** 5, 1778.
- 144 Singh, M. M.; Angelici, R. J. *Inorg. Chem.* **1984,** *23,* 2691. Lappert, M. F.; Pye, P. L. *J. Chem. Soc, Dalton Trans.* 1978,
- 145: 837.
- 146 Lappert, M. F.; MacQuitty, J. J.; Pye, P. L. J. Chem. Soc.,
Dalton Trans. 1981, 1583.
Fischer, E. O.; Stadler, P. Z. Naturforsch., B: Anorg. Chem.,
Org. Chem. 1981, 36B, 781.
Alt, H. G.; Hayen, H. I. J. Organomet. Chem. 19
- 147:
- 149)
- 150) Alt, H. G.; Hayen, H. I. J. Organomet. Chem. 1986, 316, 301.
Bonnesen, P. V.; Baker, A. T.; Hersh, W. H. J. Am. Chem.
Soc. 1986, 108, 8304.
Casey, C. P.; Andrews, M. A.; McAlister, D. R.; Jones, W. D.;
Casey, C. P.; Andrew
- 151)
- 152)
- (153) Treichel, P. M.; Stenson, J. P.; Benedict, J. J. *Inorg. Chem.* (199) **1971** *10* 1183
- (154) Fens'ke, R. F.; Milletti, M. C. *Organometallics* **1986,**5,1243. (200) (155) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. *Organo-* (201) *metallics* **1982,***1,*1204.
- (156) Brunner, H.; Schindler, H. D. J. Organomet. Chem. 1970, 24,
- C7. (157) Brunner, **H.** *Angew. Chem., Int. Ed. Engl.* **1969,** 8, 382. (203)
- (158) Weber, L.; Reizig, K.; Boese, R.; Polk, M. *Organometallics*
-
-
- 1986, 5, 1098. (204)
(159) Tso, C. T.; Cutler, A. R. J. Am. Chem. Soc. 1986, 108, 6069. (205)
(160) Brunner, H.; Langer, M. J. Organomet. Chem. 1973, 54, 221. (161) Blau, H.; Malisch, W.; Weickert, P. Chem. Ber. 1982, 115,
- 1488. (162) (a) Sheridan, J. B.; Geoffroy, G. L.; Rheingold, A. L. J. Am. *Chem. Soc.* **1987,***109,*1584. (b) Complex **63** and its isoelectronic iron analogue have been recently synthesized by a novel oxidation/NO addition reaction sequence. See: Sheridan, J. B.; Han, S-H.; Geoffroy, G. L. *J. Am. Chem. Soc.* **1987,** *109,* 8097. (209)
- (163) Messer, D.; Landgraf, G.; Behrens, H. *J. Organomet. Chem.*
- **1979,** *172,* 349. (210) (164) Busetto, L.; Palazzi, A.; Pietropaolo, D.; Dolcetti, G. *J. Or-ganomet. Chem.* **1974,** *66,* 453. (211)
- (165) Jungbauer, A.; Behrens, H. *Z. Naturforsch., B: Anorg. Chem., Org. Chem.* **1979,** *34B,* 1641. (212)
- (166) Hegedus, L. S.; Perry, R. J. *J. Org. Chem.* **1985,** *50,* 4955. (167) Chaudhari, F. M.; Knox, G. R.; Pauson, P. L. *J. Chem. Soc.* (213)
- C 1967, 2255. (214)
- (168) Giovannitti, B.; Gandolfi, O.; Ghedini, M.; Dolcetti, G. *J. Organomet. Chem.* **1977,***129,* 207. (215) (169) Gandolfi, 0.; Giovannitti, B.; Ghedini, M.; Dolcetti, G. *J.*
- *Organomet. Chem.* 1976, 104, C41. (170) Clemens, J.; Green, M.; Stone, F. G. A. *J. Chem. Soc, Dalton*
- *Trans.* **1973,** 375. (217) (171) Segal, J. A.; Johnson, B. F. G. *J. Chem. Soc, Dalton Trans.*
- $1975, 677.$ (218) (172) Segal, J. A.; Johnson, B. F. G. *J. Chem. Soc, Dalton Trans.*
- **1975** 1990. (219) (173) Sweet, J. R.; Graham, W. A. G. *J. Am. Chem. Soc.* **1983,***105,* $305.$ For an η^2 -triphenylmethane analogue of 66, see: Sweet, (220) J. R.; Graham, W. A. G. *Organometallics* **1983,** *2,* 135.
- (174) Hunt, M. M.; McCleverty, J. A. *J. Chem. Soc, Dalton Trans.* 1978, 480.
- (175) La Monica, G.; Navazio, G.; Sandrini, P.; Cenini, S. *J. Organomet. Chem.* **1971,** *31,* 89. (222)
- (176) Sanchez-Delgado, R. A.; Wilkinson, G. *J. Chem. Soc, Dalton Trans.* **1977,** 804. (223) (177) Uguagliati, P.; Trovati, A.; Zingales, F. *Inorg. Chem.* **1971,***10,* (224)
- 851. (178) Kawakami, K.; Ishii, K.; Tanaka, T. Bull. Chem. Soc. Jpn.
- **1975,** *48,* 1051. (179) Herberhold, M.; Alt, H.; Kreiter, C. G. Justus Liebigs Ann.
- *Chem.* **1976,** 300. (180) Herberhold, M.; Alt, H. Justus Liebigs Ann. Chem. 1976, 292.
- (181) Gadd, G. E.; Poliakoff, M.; Turner, J. J. *Inorg. Chem.* **1986,** *25,* 3604. (228) (182) Gadd, G. E.; Poliakoff, M.; Turner, J. J. *Organometallics*
- 1987, *6,* 391. (229)
- (183) Hunter, A. D.; Legzdins, P.; Einstein, F. W. B.; Willis, A. C.; Bursten, B. E.; Gatter, M. G. *J. Am. Chem. Soc.* **1986,***108,*
- 3843. (184) Hunter, A. D.; Legzdins, P.; Nurse, C. R.; Einstein, F. W. B.; (231)
Willis, A. C. J. Am. Chem. Soc. 1985, 107, 1791. (232)
(185) Ghung, Y. K.; Choi, H. S.; Sweigart, D. A.; Connelly, N. G. J. Am. Chem. Soc. 19
-
-
- W. *Organometallics* **1987**, 6, 193.

(187) Bailey, N. A.; Kita, W. G.; McCleverty, J. A.; Murray, A. J.; (235)

Mann, B. E.; Walker, N. W. J. *J. Chem. Soc., Chem. Commun.* **1974,** 592.
-
- (188) Faller, J. W.; Shvo, Y. *J. Am. Chem. Soc.* **1980,***102,* 5396. (189) Faller, J. W.; Shvo, Y.; Chao, K.; Murray, H. H. *J. Organo-met. Chem.* **1982,** *226,* 251. (236)
- (190) Faller, J. W.; Whitmore, B. C. Organometallics 1986, 5, 752.
(191) Greenhough, T. J.; Legzdins, P.; Martin, D. T.; Trotter, J. (237)
Inorg. Chem. 1979, 18, 3268.
(192) Faller, J. W.; Chao, K. H.; Murray, H. H. Orga
-
- **1984** *3* 1231 (193) Faller, J. W.; Chao, K. H. *J. Am. Chem. Soc* **1983,***105,* 3893. (239) (194) Benamou, C; Benaim, J. *J. Organomet. Chem.* **1985,** 280,
-
- 377. (240) (195) McCleverty, J. A.; Murray, A. J. *J. Chem. Soc, Dalton Trans.*
- 1979, 1424. (241) (196) Carre, F.; Colomer, E.; Corriu, R. J. P.; Vioux, A. *Organo-metallics* 1984, 3, 970. (242) (197) Cardaci, G. *J. Chem. Soc, Dalton Trans.* **1984,** 815. (243)
-
- (198) Cardaci, G.; Foffani, A. *J. Chem. Soc, Dalton Trans.* **1974,** $1808.$ (244)
- Cardaci, G.; Murgia, S. M.; Foffani, A. *J. Organomet. Chem.*
- **1972,** *37,* **ClI.** Cardaci, G. *J. Organomet. Chem.* **1983,** *244,* 153.
- Baker, P. K.; Connelly, N. G. *J. Organomet. Chem.* **1979,***178,* C33.
- Baker, P. K.; Clamp, S.; Connelly, N. G.; Murray, M.; Sher-idan, J. **B.** *J. Chem. Soc, Dalton Trans.* **1986,** 459. Grosselin, J.; Dixneuf, P. H. *J. Organomet. Chem.* **1986,***314,*
- C76.
- Maxfield, P. L. *Inorg. Nucl. Chem. Lett.* **1970,** *6(8),* 707. Schoonover, M. W.; Eisenberg, R. *J. Am. Chem. Soc.* **1977,** *99,* 8371.
- Schoonover, M. W.; Baker, E. C; Eisenberg, R. *J. Am. Chem. Soc.* **1979,** *101,* 1880.
- Hughes, R. P.; Lambert, J. M. J.; Whitman, D. W.; Hubbard, J. L.; Henry, W. P.; Rheingold, A. L. *Organometallics* **1986,** 5, 789.
- Hughes, R. P.; Lambert, J. M. L.; Hubbard, J. L. *Organometallics* **1986,** *5,* 797.
- Efraty, A.; Liebman, D.; Sikora, J.; Denney, D. Z. *Inorg. Chem.* 1976, *15,* 886.
- Efraty, A.; Bystrek, R.; Geaman, J. A.; Sandhu, S. S., Jr.; Huang, M. H. A.; Herber, R. H. *Inorg. Chem.* **1974,***13,*1269.
- Lalor, F. J.; Brookes, L. H.; Ferguson, G.; Parvez, M. *J. Chem. Soc, Dalton Trans.* **1984,** 245.
- Rausch, M. D.; Edwards, B. H.; Atwood, J. L.; Rogers, R. D. *Organometallics* **1982,** *1,* 1567.
- Herberhold, M.; Haumaier, L. *Chem. Ber.* **1982,** *115,* 1399. Herberhold, M.; Haumaier, L. *J. Organomet. Chem.* 1978, *160,* 101.
- Connelly, N. G.; Demidowicz, Z.; Kelly, R. L. *J. Chem. Soc, Dalton Trans.* **1975,** 2335.
- Connelly, N. G.; Kelly, R. L. *J. Chem. Soc, Dalton Trans.* **1974,** 2334.
- Ball, D. E.; Connelly, N. G. *J. Organomet. Chem.* 1973, *55,* C₂₄
- Middleton, R.; Hull, J. R.; Simpson, S. R.; Tomlinson, C. H.; Timms, P. L. *J. Chem. Soc, Dalton Trans.* **1973,** 120.
- Crease, A. E.; Legzdins, P. *J. Chem. Soc, Dalton Trans.* **1973,** 1501.
- Aluminum trichloride similarly forms adducts with these $CpM(CO)_2(NO)$ complexes via both the CO and NO ligands.²²¹
- Rausch, M. D.; Mintz, E. A.; Macomber, D. W. *J. Org. Chem.* **1980,** *45,* 689 and references therein.
- Pankowski, M.; Bigorgne, M.; Chauvin, Y. *J. Organomet. Chem.* 1976, *UO,* 331.
- Onaka, S. *Inorg. Chem.* **1980,** *19,* 2132.
- Delgado, E.; Jeffery, J. C; Simmons, N. D.; Stone, F. G. A. *J. Chem. Soc, Dalton Trans.* **1986,** 869. Legzdins, P.; Nurse, C. R.; Rettig, S. J. *J. Am. Chem. Soc*
- **1983,** *105,* 3727.
- Legzdins, P.; Martin, D. T.; Nurse, C. R.; Wassink, B. *Or-ganometallics* **1983,** *2,* 1238.
- Kolthammer, B. W. S.; Legzdins, P. *J. Chem. Soc, Dalton Trans.* 1978, 31.
- Ball, R. G.; Hames, B. W.; Legzdins, P.; Trotter, J. *Inorg. Chem.* **1980,** *19,* 3626.
- Muller, J.; Schmitt, S. *J. Organomet. Chem.* 1978,*160,*109.
- Muller, J.; de Oliveira, G. M.; Pickardt, J. *J. Organomet. Chem.* 1987, *329,* 241.
- Muller, J.; Dorner, H.; Kohler, F. H. *Chem. Ber.* **1973,** *106,* 1122.
-
- Butler, A. R.; Glidewell, C.; Chaipanich, V.; McGinnis, J. J.
Chem. Soc., Perkin Trans. 2 1986, 7.
Examples of insertions of NO gas into metal-carbon bonds
are known: Middleton, A. R.; Wilkinson, G. J. Chem. Soc.,
Dalton T
-
- In passing, it may be noted that oxidatively induced con-version of a terminal bent nitrosyl group to a bridging nitrosyl ligand has been accomplished in the case of a bimetallic iridium complex: Fjeldsted, D. O. K.; Stobart, S. R.; Zaw-
- orotko, M. J. J. Am. Chem. Soc. 1985, 107, 8258.
Goldhaber, A.; Vollhardt, K. P. C.; Walborsky, E. C.; Wolf-gruber, M. J. Am. Chem. Soc. 1986, 108, 516.
Fischer, E. O.; Strametz, H. J. Organomet. Chem. 1967, 10,
323.
-
- Kubota, M.; Chan, M. K.; Boyd, D. C; Mann, K. R. *Inorg. Chem.* **1987,** *26,* 3261. Moser, W. R. *The Catalytic Chemistry of Nitric Oxides;*
- Plenum: New York, 1975; p 33. Davis, R.; Johnson, B. F. G.; Al-Obaidi, K. H. *J. Chem. Soc,*
- *Dalton Trans.* **1972,** 508.
-
- Hitam, R. B.; Rest, A. J.; Herberhold, M.; Kremnitz, W. J.
Chem. Soc., Chem. Commun. 1984, 471.
Gibson, C. P. Diss. Abstr. Int. B 1986, 47, 194.
Geiger, W. E.; Rieger, P. H.; Tulyathan, B.; Rausch, M. D. J.
Am. Chem. Soc.
-
- (245) Sen, A.; Thomas, R. R. *Organometallics* **1982,** *1,* 1251.
- (246) Fischer, E. 0.; Beck, H. J. *Angew. Chem., Int. Ed. Engl.* 1970, *9* 72.
- (247) Kolthammer, B. W. S.; Legzdins, P.; Martin, D. T. *Tetrahedron Lett.* **1978,** 323.
- (248) Legzdins, P.; Wassink, B.; Einstein, F. W. B.; Willis, A. C. *J. Am. Chem. Soc.* **1986,***108,* 317.
- (249) Legzdins, P.; Richter-Addo, G. B.; Einstein, F. W. B.; Jones, R. H. *Organometallics* **1987,** *6,* 1807.
- (250) Johnson, B. F. G.; Twigg, M. V. *Transition Met. Chem. (Weinheim)* **1985,***10,* 439.
- (251) Backvall, J.; Heumann, A. *J. Am. Chem. Soc.* **1986,***108,* 7107 and references therein.
- (252) Andrews, M. A.; Chang, T. C. T.; Cheng, C. W. F. *Organometallics* 1985, *4,* 268. (253) Wirth, R. P. *Diss. Abstr. Int. B* **1984,** *45,* 1476.
-
-
- (254) Brunner, H.; Loskot, S. J. Organomet. Chem. 1973, 61, 401.
(255) Becker, P. N.; Bergman, R. G. Organometallics 1983, 2, 787.
(256) Becker, P. N.; Bergman, R. G. J. Am. Chem. Soc. 1983, 105, 2985
- (257) Chung, Y. K.; Sweigart, D. A.; Connelly, N. G.; Sheridan, J. **B.** *J. Am. Chem. Soc.* **1985,***107,* 2388.
- (258) Pearson, A. J.; Bruhn, P. R.; Richards, I. C. *Isr. J. Chem.* **1984,** *24(2),* 93.
- (259) Fernandez, J. M.; Emerson, K.; Larsen, R. H.; Gladysz, J. A. *J. Am. Chem. Soc.* **1986,** *108,* 8268.