Synthesis of Aza-Crown Ethers

KRZYSZTOF E. KRAKOWIAK^ JERALD S. BRADSHAW,* and DARIA J. ZAMECKA-KRAKOWIAK

Department of Chemistry, Brigham Young University, Provo, Utah 84602

Received September 8, 1988 (Revised Manuscript Received January 9, 1989)

Contents

/. Introduction

There is a continuing interest in the synthesis of aza-crown compounds. The aza-crowns have complexation properties that are intermediate between those of the all-oxygen crowns, which strongly complex alkali and alkaline earth metal ions, and those of the all-nitrogen cyclams, which strongly complex heavy-metal cations. These mixed complexation properties make the aza-crowns interesting to researchers in many areas. The aza-crowns have important uses as synthetic re- $\frac{1}{10}$ ceptors in molecular recognition processes¹ and, in some cases, anion complexation properties that are similar to those in certain biological systems. 2^{-4} They have an enhanced complexing ability for ammonium salts 5,6 and ϵ for transition-metal ions^{$6,7$} over the all-oxygen crown compounds. In addition, the aza-crowns are important intermediates for the synthesis of cryptands (from diaza-crowns), $8,9$ nitrogen-pivot lariat crown ethers, 10 and other species requiring one or two nitrogens in the other species requiring one or two introgens in the
macroring.^{11,12} There are a number of interesting uses of aza-crowns as catalysts in nucleophilic substitution or aza-crowns as catarysts in nucleopmine substitution
and oxidation reactions.^{13,14} in the design of chromogenic reagents that are sensitive to alkali and alkaline genic reagents that are sensitive to affinite and affiable.
earth metal cations,¹⁵ and in the chromatographic sep- ϵ aration of metal cations.¹⁵ Certain aza-crowns have been covalently attached to silica gel or other solid supports.^{16,17} The silica gel bound aza-crowns have found use for the selective separation of specific metal ions from mixtures of metal ions.¹⁶

An extensive number of aza-crowns have been synthesized. Several of these materials can be purchased. For example, Merck and Aldrich list a number of diaza-crowns, including l,4,10,13-tetraoxa-7,16-diazacyclooctadecane. These compounds are extremely expensive. A major problem is the design of new and inexpensive procedures to prepare these important ligands. A compilation of aza-crown compounds prepared prior to about 1980 is given by Gokel and Korzeniowski.¹⁷ A number of other reviews have appeared covering the literature up to about $1982.618-24$ More recent reviews concerning the aza-crowns^{25,26} do not cover the synthesis of these compounds in an organized manner. Other than the extensive compilation by Gokel μ and Korzeniowski¹⁷ covering the synthesis of aza-crowns to 1980 and the compilation of aza-crown complexation properties by Izatt and co-workers,⁶ there has been no other listing of the aza-crowns.

This review covers all aza-crown ethers synthesized from 1981 to 1987, aza-crowns synthesized before 1981 that were not included in ref 17, and some aza-crowns reported in 1988. We have concentrated on crowns containing at least 12-membered rings with at least one oxygen atom in the macroring. We have included the benzoaza-crowns, but crowns containing other aromatic or unsaturated or saturated subcyclic units are not included. A survey of general methods for the preparation of starting materials is also included. Specific methods for the preparation of monoaza-crowns, diaza-crowns, polyaza-crowns, and benzoaza-crowns are presented.

//. Preparation of Starting Materials

A. DIoIs

Most of the simple oligoethylene glycols and other diols used for the synthesis of macrocyclic compounds are commercially available. Methods for their preparation have been published.²⁷⁻³⁶ Diols with side chains are generally not available but are very desirable since crown ethers with active side groups (hydroxy or allyl, for example) or with long-chain lipophilic groups are often needed.

Cornforth made a lipophilic diol, 2,2-dioctadecylpropane-1,3-diol, from diethyl malonate. 31 Use of this

T Permanent address: Department of Chemical Technology, School of Medicine, 90145 Lodz, Poland.

Krzysztof E. Krakowiak was born in Lodz, Poland, and received B.S. and M.S. degrees in Synthetic Fiber Chemistry from the Technical University in Lodz. He also has B.S. and M.S. degrees in Medicinal Chemistry from the School of Medicine at Lodz. He received his Ph.D. with Professor B. Kotelko on the synthesis of new 8-10 membered saturated heterocyclic compounds containing nitrogen and oxygen atoms in 1982. Since November 1986 he has held a postdoctoral position with Professor Bradshaw in the Department of Chemistry, Brigham Young University. He has published more than 40 scientific papers on new and convenient methods for the preparation of saturated heterocyclic systems, including crown ethers and cyclams. He is married and has three daughters.

Jerald S. Bradshaw was born in Cedar City, UT, and received a B.A. degree in chemistry at the University of Utah in 1955. After 4 years as an officer in the U.S. Navy, he enrolled in a Ph.D. program at UCLA. He received the Ph.D. in 1963 with Professor Donald J. Cram on electrophilic substitution at saturated carbon. He received an NSF postdoctoral fellowship for the 1962-1963 academic year to work with Professor George S. Hammond at CaI Tech. After 3 years as a research chemist at Chevron Research in Richmond, CA, he joined the faculty at Brigham Young University at Provo, UT, in 1966. He was named Professor of the Year at BYU in 1975. He was U.S. National Academy of Sciences Exchange Professor for the academic year of 1972-1973 and the Summer of 1982, working with Professor Miha Tisler at the University of Ljubljana, Yugoslavia. He also was a visiting professor with Dr. J. F. Stoddart at the University of Sheffield, England, in with Dr. J. F. Stoudart at the University of Shemedi, England, in
1978, and a National Science Foundation Cooperative Research Fellow with Dr. L. F. Lindoy at James Cook University, Townsville, Fellow with Dr. L. F. Lindoy at James Cook University, Townsville, Australia, in 1988. He is a member of the American Chemical Society. His research interests are the synthesis and cation complexation properties of macrocyclic multidentate compounds. the photochemical reactions of heterocyclic compounds, and the preparation of new polysiloxanes for chromatography uses.

1,3-propanediol derivative gave crowns with a propylene bridge between the heteroatoms. Crowns with ethylene bridges form more stable complexes with metal cations than those with propylene bridges. Okahara and coworkers37,38 developed a method to prepare substituted oligoethylene glycols using substituted ethylene oxides. The glycol containing two substituents on the first carbon was the major product of this reaction. Gandour

Daria J. Zamecka-Krakowiak was born in Oborniki Wlkp., Poland, and graduated in Pharmacy from the School of Medicine at Lodz, Poland. She received an M.S. degree in Pharmaceutical Analytical Chemistry from the same school. She also has a special degree in the Analytical Chemistry of Foods. She is married and has three daughters.

and co-workers used a similar reaction to prepare hydroxymethyl-substituted oligoethylene glycols.³⁹

Czech first reported the synthesis of oligoethylene glycols with a (benzyloxy)methyl substituent in the middle of the molecule using (benzyloxy)methyl-substituted ethylene glycol, prepared from the 1,2-isopropylidene-blocked glycerol as shown or from epichlorohydrin.40-43 The substituted ethylene glycol was

reacted with THP-blocked oligoethylene glycol monochloride followed by hydrolysis to remove the THP blocking group to form the (benzyloxy)methyl-substituted oligoethylene glycol with a greater number of ethyleneoxy units.^{44,45} The benzyl portion of the (benzyloxy)methyl substituent can be readily removed by reduction to the hydroxymethyl substituent.^{40-43,45,46} This process is usually done after the (benzyloxy) methyl-substituted oligoethylene glycol has been cyclized into a crown. Thus, the (benzyloxy)methyl-substituted glycols are important intermediates for the preparation of the hydroxymethyl functionalized crowns.

Reaction of ((benzyloxy)methyl)ethylene glycol with chloroacetic acid followed by reduction gave the substituted triethylene glycol. This latter reaction sequence, first used by Cinquini⁴⁷ to prepare didodecyltriglycolic acid, was also used with some modifications

by Bradshaw and co-workers^{48,49} and Bartsch and coworkers^{42,43,50} to prepare glycols containing lipophilic or (allyloxy)methyl substituents. Montanari and Tundo also used this procedure to prepare the corresponding tert-butoxymethyl-substituted triethylene glycol, which was used to prepare hydroxymethyl-substituted crowns and cryptands.⁵¹ Similar glycols with a propylene bridge containing the substituent were prepared by reacting ethyl diazoacetate rather than chloroacetic acid with the starting glycol.⁵²

Symmetrically substituted oligoethylene glycols with terminal alkyl substituents have been prepared by the sodium metal catalyzed reaction of a lower oligoethylene glycol with 2 equiv of a substituted epoxide.^{53,54} The

$$
\sum_{n=0, 1, 2}^{n} \sum_{O_{H}}^{n} + \sum_{\substack{2 \text{ N} \\ R \text{ = } M_{P_{H}}}}^{R} \sum_{E1, O2t,}^{R} + \sum_{H0}^{R} \sum_{O}^{H} \sum_{O}^{H} \sum_{O}^{H} \sum_{O}^{H}
$$

reactions generally gave good yields (30-60%) of the disubstituted oligoethylene glycols, which often could be purified by distillation. One problem with this reaction is the formation of varying amounts of 2-substituted isomer formed by attack of the alkoxide on the substituted carbon of the epoxide. The isomers can best be characterized from the NMR spectrum of their corresponding ester or tosylate derivatives. Chiral disubstituted oligoethylene glycols have been prepared by another method that requires more steps but does not give positional isomers.⁵⁵' 56 Oligomerization of 1,2-propanediol also gave oligoethylene glycols where every other carbon atom contained a methyl substitu $ent.⁵⁷$

B. Diamlno Aliphatic Ethers

It is important to have simple and inexpensive methods to prepare the diamine starting materials for the cyclization portion of the sequence to form diazacrown compounds. The oligoethylene (or oligopropylene) polyamines and their N -methyl and N -ethyl analogues can be purchased. We present here some of the methods that have been used to prepare the diamino aliphatic ethers that are less available.

First, we report methods to prepare the primary diamino aliphatic ethers. A modified Gabriel synthesis using the reaction of potassium phthalimide with a dihalide followed by hydrolysis using hydrazine was one of the first methods to prepare the diamino ethers.⁸ Krakowiak and Kotelko used this method to prepare a variety of diamino ethers containing both ethylene and propylene connecting groups.58,59

King and Krespan prepared l,8-diamino-3,6-dioxaoctane by reacting the dichloride derivative of triethylene glycol with ethanolic ammonia followed by

$$
\begin{array}{ccc}\n\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}\n\bullet & \bullet & \bullet & \
$$

sodium carbonate.⁶⁰ Earlier, bis(3-aminopropyl) ether was prepared by a similar reaction.⁶¹ The bis(3aminopropyl) ether was also prepared by reducing a bisnitrile as shown.61-64

$$
\begin{array}{c}\n\cdots \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\cdots \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\frac{H_2, \text{ cal}}{H_2} \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\cdots \\
\hline\n\end
$$

Some mixed oligo(ethyleneoxy)dipropylamines, $NH₂(CH₂)₃(OCH₂CH₂)_nO(CH₂)₃NH₂$, can be purchased from Tokyo Kassei. These materials are inexpensive and can be used to prepare similar poly(propyleneoxy)aza-crowns as shown in method AR, section IV.D.

A reduction process has been used to prepare aromatic diamines from nitro- and azide-containing ethers. The preparation of an aromatic diamine using known methods was reported by Glinka, who treated an aromatic nitro halide with hexamethylenetetraamine followed by hydrolysis to give an aromatic nitro amine. The nitro amine was reduced to the diamine after tosylation to block the original amine group.⁶⁵ A palla-

dium-catalyzed hydrazine or amalgamated aluminum reduction of some bis nitro aromatic compounds appears to be a good method for the preparation of dianiline-substituted ether compounds.⁶⁶⁻⁶⁸

The reduction of diazido-substituted ethers to form the diamino ethers has been reported by a number of workers.69-71 The starting diazido ethers were prepared by treating either the ditosyl or dichloro derivatives of the oligoethylene glycols with sodium azide. The re-

duction of the diazide can be done with lithium aluminum hydride or hydrogen sulfide in ethanol as shown. These reactions gave an overall yield of 65-85%; however, care must be taken because the diazide can be explosive.

Bohmer and co-workers found that 2-aminoethanol reacted with a ditosylate using potassium tert-butoxide as base to form a diamino ether in a 30% yield.⁷² They also prepared the N . N' -dimethyl derivative.

$$
T_{S}\overbrace{\hspace{1cm}}^{3}\overbrace{\hspace{1cm}}^{3}\overbrace{\hspace{1cm}}^{1}_{OTS} + 2 \overbrace{\hspace{1cm}}^{RNH} \overbrace{\hspace{1cm}}^{OH} + \overbrace{\hspace{1cm}}^{1-BUOK} \overbrace{\hspace{1cm}}^{RHPE} \overbrace{\hspace{1cm}}^{HNH} \overbrace{\hspace{1cm}}^{3}\overbrace{\hspace{1cm}}^{1}
$$

Sutherland and co-workers used this same technique to prepare a chiral diamino ether with higher yields.⁷³

$$
\begin{array}{c}\nR_2N \\
2 & R_1 \xrightarrow{R_2} 0H^+ \text{tso} \\
\end{array}
$$

Secondary amines were prepared in much the same fashion. Boon prepared the l,5-bis(methyl(or ethyl) amino)-3-oxapentanes by two methods as shown.⁷⁴ The

initial diamino ether contained a phenyl blocking group that required a two-step method for removal. Boon also isolated N -phenylmorpholine as a byproduct when the dichloride was reacted with aniline $(R = H)$. The second method allows the preparation of unsymmetrical derivatives where the R groups substituted on each of the two nitrogen atoms are different.⁷⁴

 N -Tosyl-substituted amines have also been used to prepare secondary diamino ethers. Petranek and Ryba reacted N -tosylbenzylamine or the aniline analogue with the dibromo derivative of diethylene glycol to form the bis(N-tosylamino) derivatives.⁷⁵ The tosyl blocking groups were removed by using sodium in isopropyl alcohol. Other N , N' -dialkyldiamino ethers were pre-

$$
Br
$$
 or
$$
Br + RNHTs
$$

pared by Krakowiak and Kotelko by tosylating bis $(2$ aminoethyl) ether, subsequently alkylating the *N,N'* ditosyl derivative in base, and removing the tosyl group by a reduction process.⁷⁶

An excellent method to prepare the N,N' -dialkyl derivatives of l,5-diamino-3-oxapentane involves the formation of a bisamide followed by reduction with lithium aluminum hydride.⁷⁶ Diamines with a wide

$$
\begin{matrix}0\\0\\0\end{matrix}
$$

variety of alkyl substituents from methyl to *3-{N,N'* diethylamino)propyl were prepared in moderate yields. Pietraszkiewicz⁷⁸ and Gokel and co-workers^{71,77} used this procedure except borane was used as the reducing agent. Gokel also prepared the N , N' -dialkyldiamino ether by treating the diamine with an acid chloride followed by reduction of the resulting bisamide.⁷¹ This

is a reasonably good method to prepare these diamines, but the starting 2,2'-bis(aminoethyl) ether is several times more expensive than diglycolyl dichloride.

rA/~ A H2N O NH² O Il R-CCI H r\r \ M RC-N H O HN-C R LiAIH⁴ **O HN-CH2R**

A superior method to prepare the N . N '-dialkyl derivatives of the oligoethylene oxide containing diamines uses the reaction of the readily available dichloro derivative of the oligoethylene glycols with an excess of alkylamine. $71,79,80$ This process is not possible for the

^A/A , /-*A/A/-\ Na2CO³

preparation of the diamine derivatives of diethylene glycol since the reaction of an amine with the dihalide yields only N -alkylmorpholine as mentioned above.^{71,74} Gokel and co-workers used the more reactive diiodide in this reaction to prepare some N , N' -dialkylamines in 70-85% yields.^{71,77} Bradshaw and Krakowiak have optimized the reaction with the dichloride using only a 4-fold excess of the amine in the presence of sodium carbonate and using a Dean-Stark apparatus to remove water formed in the reaction to obtain an 82% yield of the N , N -dibenzyl derivatives.⁸⁰

In addition to the diamino ethers already mentioned in this section, we present here one new synthetic procedure to prepare polyamino ethers containing terminal $NHC₂H₅$ functions.^{81,82} This procedure uses the reaction of N -[2-(chloroethoxy)ethyllacetamide with an amine, diamine, or polyamine and the subsequent reduction of the amide functions as shown in the following two schemes. When the reaction to form the tetraamine (excluding any amino groups in A) was run with an excess of $N-[2-(\text{chloroethoxy})\text{ethyl}]\text{acetamide in toluene}$ or DMF, mostly the diadduct was formed. A greater amount of the monoadduct was formed when the acetamide derivative was the limiting starting material. It is possible to prepare higher order polyoxa amines if the polyamino products shown in the schemes are further reacted with A^r -[2-(chloroethoxy)ethyl]acetamide or N -ethylchloroacetamide followed by reduction.⁸²

Triamines

Tetraamines and Polvamines

C. Amino Diols

An alternate method to the use of diamino aliphatic ethers in the cyclization reaction for the aza-crowns is to cyclize amino diols. Some of the methods to prepare the amino diols are now presented.

Krespan found that when 2-(2-chloroethoxy)ethanol was heated with ammonia in ethanol, a nearly equimolar mixture of 2-(2-aminoethoxy)ethanol and 6-aza-3,9-dioxaundecane-1,11-diol was isolated.⁸³ In addition

$$
C_{1} \cup C_{0} \cup C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5} \cup C_{6} \cup C_{7} \cup C_{8} \cup C_{9} \cup C_{1} \cup C_{1
$$

to these amino diols, King and Krespan prepared other types of amino diols starting with 2-aminoethanol or N-tosyl-2-aminoethanol and 1,8-dichloro-3,6-dioxaoctane or 1,5-dichloro-3-oxapentane.⁶⁰ Gokel and coworkers prepared the \dot{N} -alkyl derivatives of diethanolamine in good yields by treating the amine with an alkyl halide using sodium carbonate as the base.¹⁰ This reaction worked well when methyl 2-(2-chloroethoxy)ethyl ether was used as the alkylating agent but

$$
RX + H0 N H
$$

the products from the reaction of longer chloromethoxy derivatives could not be separated from the salts so that distillation was not practical. N -Phenyl-substituted diethanolamines were prepared by reacting various anilines with ethyl bromoacetate followed by reduction.¹⁰

Okahara and co-workers prepared a number of *N*alkylamino diols that were not symmetrical. They first prepared the monochloride derivative of the oligoethylene glycol by reacting ethylene oxide with 2 chloroethanol in an acidic medium.⁸⁴ The oligomers

were separated by distillation. The isolated monochloro derivative was then reacted with N -alkylethanolamine with sodium carbonate as the base. Other alkyl-substituted compounds were prepared by first reacting the amine with an excess of monochloroethylene glycol oligomer to form an amino alcohol that was further reacted with the same or another monochloro oligomer.

A series of diaza or triaza diols were prepared by these same workers by three different types of reactions.⁸⁵ With sodium carbonate as the base, ethanolamine compounds were reacted with the dichloro derivatives of the oligoethylene glycols.

A diamino alcohol was reacted with 2-chloroethanol under the same conditions to form a diamino diol.

$$
H_{2M} \longrightarrow H_{2
$$

Cyclohexene oxide was heated with diaminoethane or 1,4,7-triazaheptane to form oligoaza diols containing two 2-hydroxycyclohexyl units.⁸⁵ All of these diols ring

$$
H_{2N} + \sum_{n=0,1}^{N} H_{n+2} + \sum_{n=0}^{N} \sum_{n=0}^{N} \sum_{n=0}^{N} \sum_{n=0,1}^{N} H_{n} + \sum_{n=0,1}^{N} \sum_{n=0,1}^{
$$

closed to form aza-crowns when tosyl chloride was used (the Okahara procedure) as will be discussed later. Okahara and co-workers used a similar epoxide ringopening reaction to prepare some interesting diamino diol ethers that are capable of ring closure either through the diamines or the diols.⁸⁶ A bis epoxy polyether was reacted with an excess of alkylamine to form the diamino diol material.

$$
\sum_{n=0,1,2} 1,2
$$

Bradshaw and Krakowiak have modified the reaction of a dihalide with N -ethyl- or N -benzyl-substituted ethanolamine in the presence of a carbonate base in toluene solvent to prepare *N,N* -diethyl- and *N,N'-di*benzyldiazapentaethylene glycol in high overall yields.⁸¹

These diols were reacted with (allyloxy)methyl-substituted ethylene oxide to form the diazahexaethylene glycol containing an (allyloxy)methyl substituent. This latter diol was ring closed with tosyl chloride to form a diaza-18-crown-6, which can be attached to silica $\rm gel.^{49,87}$

The N -tosylamino glycols are popular intermediates for the preparation of aza-crowns with secondary amine groups. Dale and Calverley used the reaction of ptoluenesulfonamide and the monochloro derivative of THP-blocked diethylene glycol to prepare the symmetrical N-tosylazatetraethylene glycol as shown.⁸⁸ Diols containing three N-tosyl nitrogens have also been prepared.⁸⁹ Lehn and co-workers prepared a number of N-tosylamino glycols as shown in section IV.C.

Sutherland and co-workers recently prepared diols with propylene bridges between the oxygen and nitrogen atoms using two methods shown below.⁹⁰ The second method gave the best overall yields.

Marecek and Burrows prepared a diamino diol using N,N' -ditosyl-1,4-butanediamine and 3-chloro-1propanol.⁹¹ This diaza diol was used as a starting material to prepare a spermine macrocycle.

$$
\begin{array}{cccc}\n\hline\n\text{TSNH} & \text{HNTs} & + & \text{CH} & \text{M}_{2}CO_3 \\
\hline\n\text{I} & \text{O} & \text{I} & \text{I} & \text{O} & \text{M}_{1} & \text{M}_{2} \\
\hline\n\text{I} & \text{O} & \text{I} & \text{I}_{3} & \text{I}_{5} & \text{H}_{6}\n\end{array}
$$

The tosyl groups are often difficult to remove from the final products. The yields for the reductive removal of the tosyl groups are often only moderate.⁹⁰ N-Tosyl groups also change the complexation properties of the aza-crowns if they are not removed. More convenient methods for preparing N-unsubstituted aza-crowns without the need to remove a blocking group are now being developed.⁸²

A tetraaza diol was recently prepared by first reacting chloroacetyl chloride with N -ethylethanolamine to form a chloro hydroxy amide.^{73,82} This latter compound was reacted with N , N' -dimethyl- or N , N' -diethylethylenediamine with subsequent reduction to give the tetraaza diol.⁸²

/// . General Synthetic Methods Used To Prepare Aza-Crowns

A. Template Syntheses

Greene observed that the formation of 18-crown-6 from a ditosylate and a diol in the presence of *tert*butoxide salts was enhanced when a potassium cation was used.⁹² This template effect was operative for the synthesis of other polyether crown compounds using alkali or alkaline earth metal cations. Template effects have also been observed for the preparation of azacrown ethers, although the effect is less pronounced because the softer N-donor atoms form weaker complexes with the alkali metal cations.⁹³ Richman and Atkins reported that high-dilution techniques were not required for the cyclization reaction of a disodium salt of a pertosylated oligoamine with sulfonated diols to form medium and large polyaza-crown compounds.^{94,95} When a dihalide was used in this reaction, only moderate yields of cycloaddition products were observed.^{95,96} Yields were increased when cesium carbonate was used as the base. Since this effect was observed for the formation of all ring sizes, Kellogg explained this effect as a "cesium effect", not a template effect. $97,98$

It is interesting to note that replacement of the sodium cations by tetramethylammonium ion in the Richman-Atkins procedure did not inhibit the reaction as one might expect in a template reaction but only decreased the yield of the tetraaza-crown to about 50%. Gokel and co-workers suggested that the increase in the yield from 50% to 80% when sodium is used does indicate a small template effect by the sodium.²¹ Bogatsky and co-workers used phase-transfer conditions⁹⁹ to obtain macrocyclic poly- N -tosylaza-crown compounds.¹⁰⁰ They reported that the yield of the cycli-

zation step did depend on the nature of the cation. The 12-crown-4 compound formed best with lithium hydroxide while the larger crowns formed best when sodium hydroxide was used.

Biernat and Luboch have shown a definite template effect in the synthesis of tetra- N -tosylaza-18-crown-6.¹⁰¹ The yields of the 18-crown-6 product were 40% with potassium carbonate but only 10% when sodium carbonate was used. The amount of 9-crown-3 byproduct was greater when sodium carbonate was used.

The diminished template effect in the formation of the poly- N -tosylaza-crowns with tosylate starting materials has been explained by Shaw to be a result of restricted rotational freedom in the molecules caused by the large tosyl groups. 102 As a result of the restricted rotation, there is a relatively small loss in entropy on cyclization, allowing ring closure to occur in relatively high yields without a need for preorganization of the starting materials. Rasshofer and Vögtle also explained the cyclization reactions in terms of template, steric, and entropy effects.¹⁰³

Kulstad and Malmsten reported a remarkable synthesis of cryptand[2.2.2] and l,10-diaza-18-crown-6 from

the reaction of either l-iodo-8-chloro-3,6-dioxaoctane or l,8-diiodo-3,6-dioxaoctane and l,8-diamino-3,6-dioxaoctane.70,104 The starting material gave the cryptand while the diiodo starting material gave the diaza-18 crown-6 (see method T, section IV.B). In the former case, the iodide reacted much faster than the chloride, allowing for the formation of an intermediate amine with three branches. This product then cyclized into the cryptand as shown. When the diiodo starting the cryptand as shown.

material was used, the diaza-crown resulted from a simultaneous reaction with both iodides in the presence of a template cation. The formation of the cryptand was also controlled by template and solvent effects. The best solvent was found to be acetonitrile. Sodium carbonate was the best catalyst because sodium ion fits best into cryptand[2.2.2]. No significant amount of cryptand was observed when potassium carbonate was used. These authors found that variations in the combination of metal carbonate and solvent could significantly affect the yield of diaza-18-crown-6. In acetonitrile, sodium carbonate was the best catalyst followed by potassium, cesium, and lithium carbonates, which gave decreasing yields of the cyclic product. It is instructive to note that diaza-18-crown-6 yields fell to only 4% when an equimolar amount of dicyclohexano-18 crown-6 was present in the reaction mixture. Presumably the crown complexes the metal cation so that it was less available to act as a template.

Gokel and co-workers prepared a series of nitrogenpivot lariat crown ethers (see method A, section IV.A).¹⁰ These compounds all have side arms connected to a macroring nitrogen atom. Where a side arm was incapable of coordinating a metal ion, the ring-closure reaction occurred to give a yield of about 30% or less. Where the side arm was composed of relatively rigid aryl groups containing an ether donor oxygen atom, the ring-closure reaction occurred in about 40% yield. Cyclization yields of 50% and higher were obtained where the donor atoms were attached to a flexible side arm. In the latter case, the flexible side arm allowed the donor atom to interact with the cation in the forming macroring cavity, resulting in a more stable complex and thus a higher macroring yield.

Yamawaki and Ando have shown that crown compound synthesis can occur when a potassium fluoride coated alumina catalyst is used.^{105,106} Pietraszkiewicz has found this technique useful for the preparation of diaza-crowns.^{78,107} He found that the yields increased

when the metal ion was changed from lithium to sodium to potassium. He explained the increase in yields as a result of greater basicity of the potassium fluoridealumina catalyst rather than a template effect.

Okahara and co-workers prepared two macrocyclic monoamide compounds by heating the salt of an *w*amino acid (see method G, section IV.A).¹⁰⁸ No significant change in the cyclization yields was observed upon the addition of template salts such as sodium or potassium tetrafluoroborate.

Okahara and co-workers found that the oligoethylene glycols cyclized into crown ethers upon treatment with 1 mol of tosyl chloride. This method has been used to prepare many aza-crowns.^{45,84,85,109-112} They determined that the best yields were obtained in either dioxane or a tert-butyl alcohol-dioxane mixture with an appropriate template metal hydroxide (see method F, section IV.A). Bradshaw and Krakowiak found that, in addition to tosyl chloride, ethylene glycol ditosylated or (allyloxy)methyl-substituted ethylene glycol ditosylate reacted with a diaza diol to close the ring, forming the diaza-crown. Surprisingly, the ethylene glycol ditosylate did not react to form a larger crown but reacted to give the Okahara closure type product (see method AA, 80 section IV.B).⁴⁹' Unsubstituted aza-crowns have been prepared by the Okahara method, but with only moderate yields because of side reactions of the secondary amines (see method Z, section IV.B).⁸⁵

Schwartz and Shanzer have developed a new method for the preparation of cyclic tetraamides under normal reaction conditions.^{113,114} First, the method involved a 1,3,2-diazasilolidine intermediate formed by the reaction of a diamine with dimethylbis(diethylamino)silane. The diazosilolidine intermediate was reacted with a diacid chloride to form the macrocyclic tetraamide.

This procedure was used by other authors to prepare macrocyclic di- and tetraamides containing both nitrogen and oxygen atoms.¹¹⁵

Shanzer and co-workers have studied a similar reaction using a dibutyltin derivative as an intermediate.^{114,116-119} The tin intermediate acts like a template to direct the diacid chloride and diol to form a macrocyclic tetraester as the sole cyclic product. Ninagawa and co-workers used the Shanzer approach to prepare a macroring containing both oxygen and nitrogen atoms. 120

This type of reaction has also been used to prepare a series of macrocyclic lactones and lactams.^{121,122} The method can be used for the synthesis of a macrocyclic bisurethane using an activated tin derivative.^{119,123}

Tisnes and co-workers reacted a diacid fluoride with a tin derivative of 2,6-pyridinedimethanol (or other diols) to prepare a macrocyclic di- and tetraesters containing the pyridine unit as the aza portion of the macro r ing. $^{124-126}$

The case for template assistance in the cyclization step in the formation of polyaza-crown compounds has not been proved in many cyclization reactions. Certainly other factors such as base strength and intramolecular hydrogen bonding need to be considered.

B. Reactions of Activated Dlacids with Diamines

The reaction of a diacid chloride with a diamine to effect ring closure followed by reduction of the resulting diamide was the first method used to prepare the diaza-crown compounds. Stetter and co-workers were the first to make cyclic diamides by this procedure.¹²⁷ Lehn and co-workers prepared diaza-18-crown-6 by this method (see method P, section IV.B).8,128,129 The process requires a simultaneous addition of the diamine and diacid chloride into a large volume of solvent over an extended period of time to maintain high dilution.⁸ ' 75,129-132 The intermediate macrocyclic diamides were isolated in moderate to good yields. The diamides were reduced usually by lithium aluminum hydride in THF to give high yields of diaza-crown compounds.

A number of researchers have found that if the reaction were carried out at 0 $^{\circ}$ C, a slower reaction time

resulted but with higher yields.^{50,132} Others have activated the diacid functional group by forming the bis(thiazolidine-2-thione) derivative by reacting the diacid with thiazolidine-2-thione in the presence of dicyclohexylcarbodiimide (DCC) together with a catalytic amount of 4-(dimethylamino)pyridine or the thalium salt of thiazolidine-2-thione. Bis(thiazolidine-2 thione) derivatives are reactive toward amines and do not yield hydrochloric acid as a byproduct.^{133,134} An

excellent yield of 91 % was observed for the formation of the cyclic diamides with 6% of cyclic tetraamide byproduct (result of a 2:2 cycloaddition). Isobutyl chloroformate was also reacted with a diacid to form an active derivative that was reacted with a diamine in much the same manner.¹³⁵

Biernat and co-workers used the bis(3,5-dimethylpyrazolide) of tetraglycolic acid (prepared by reacting the crude acid with the pyrazole in the presence of O -ethylphosphoric acid)¹⁰¹ for the preparation of the macrocyclic diamide in excellent yields and under normal reaction conditions.¹⁰¹

The simultaneous addition of the two starting materials over an extended time period is not convenient. Tabushi and co-workers found that high-dilution techniques were not required for the reaction of diesters (including malonates) with diamines to form the cyclic diamides (see method AH, section IV.C).¹³⁶⁻¹³⁸

IV. Specific Syntheses of the Aza-Crowns

A. Monoaza-Crowns (Table I)

The first monoaza-crown compounds were prepared by reacting the appropriate diethanolamine with an oligoethylene glycol ditosylate, dimesylate, or dihalide (method A).92,139" 141 This method is convenient because

the two starting materials are readily available. The unsubstituted aza-crown can be prepared when the R group is benzyl, trityl, or tosyl. Removal of the protecting group can be achieved by acid cleavage or reduction.140,141 The cyclization step was accomplished by using sodium hydride in DMF or THF or in *tert*butyl alcohol with sodium or potassium metal. The yields were moderate, depending on the size of the macroring.

Okahara and co-workers reported a similar reaction to prepare unsubstituted aza-crowns.¹⁴² They treated unprotected diethanolamine compounds, some of which contained methyl substituents on the carbon atoms of the molecule, with various oligoethylene glycol ditosylates or dichlorides (method B). Lai used a modification of method B to prepare similar aza-crowns in better yields.¹⁴³ Gokel and co-workers used methods A and D (see below) to prepare many of their nitrogen-pivot $lariat$ ethers. $^{10,144-146}$

Method B

Lockhart and co-workers prepared N -phenyl-substituted and benzoaza-crowns by reacting 2-aminophenol with dihalides (method C).^{147,148} When the reaction was carried out in water and *n =* 2, only the N -phenyl-substituted aza-crown was formed. In other solvents, such as DMF, and where *n >* 2, only the benzoaza-crown was formed.

Calverley and Dale reacted various aliphatic and aromatic amines with the diiodide derivative of tetraethylene glycol to prepare N -alkyl(aryl)-substituted aza-12-crown-4 compounds (method D).^{149,150} The

diiodide was prepared from the dichloride and sodium iodide in acetone. Shono, Kimura, and co-workers extended method D also using ditosylate starting material.⁵² The unsubstituted aza-crown product could be alkylated to form other more complicated N -alkylaza-12-crown-4 ligands.

Okahara and co-workers used cyanamide to prepare some aza-crowns (method E).¹⁵¹ The N-cyano group was converted to an imino ether that hydrolyzed to the N-H compound when treated with aqueous acetic acid.

The Okahara ring-closure reaction^{8,84,85,109,112} discussed in section III.A has been used to prepare many azacrown compounds (method F). The yields of these reactions were 50-80%, depending on ring size and the substituent on the nitrogen atom.

Method E

The amido crown ethers have interest as model compounds for natural ionophores.¹⁵² The urethane-containing crown compounds were prepared because they are similar to the amido crowns (method G).¹⁰⁸ The reaction proceeds by a thermal rearrangement of an amino amide to an isocyanate (as shown). The ω -hydroxyl group then adds to the isocyanate.

Functionalized aza-crown ethers are important intermediates. The dihydroxyaza-crowns, where the hydroxy groups are attached to ring carbon atoms, were prepared by reacting a primary amine with an oligoethylene glycol diglycidyl ether in protic solvents such as water or methanol (method H).⁷⁹

Method H

Monoaza-crowns with two different functional groups were prepared by Bartsch and co-workers (method **J\ 45,153**

Method I

TABLE I. Monoaza-Crown Compounds

D. Aza-16-Crown-5

One additional method to prepare N -alkyl-substituted aza-crowns is the alkylation of an already cyclized aza-crown (method J).^{10,144},^{146,154,155} Ethylene oxide or

Method K

2-bromoethanol has been used to prepare $N-(2-)$ hydroxyethyl)-substituted aza-crowns (method K ^{3,154,156} The resulting $N-(2-hydroxyethyl)$ product can be converted to the $N-(2\text{-chloroethyl})$ derivative. Dihalo or ditosyl compounds have been used to bridge two monoaza-crowns to prepare ligands with higher ion selectivities (method L).^{52,149} Bridged monoaza-crowns

were also prepared by reacting a bis acid chloride with N -(2-hydroxyethyl)aza-crown (method M),^{52,157} by the reaction of a monoaza-crown with formaldehyde in methanol followed by treatment with a cyclic urea

(method N),¹⁵⁸ and by the biscyclization of *N,N,N',-* N' -tetrakis(2-hydroxyethyl)ethylenediamine with 2 mol of triethylene glycol ditosylate (method O).¹⁵⁹

Method M

Method N

Method O

A listing of monoaza-crowns is given in Table I.

B. Dlaza-Crowns (Table II)

The diaza-crowns are most important because they are key intermediates in the synthesis of cryptands and other N-substituted ligands.^{8,5,128,129} The diaza-crowns also have complexing properties that are similar to those of certain biological systems.² Diaza-crowns that have no substituents on nitrogen or that have functional groups substituted on nitrogen are also useful for the synthesis of macrotricyclic ligands.^{1,9,131} In addition, cryptands that are formed from diaza-crowns can be attached to synthetic polymers.51,161-163 Diaza-crowns have also been attached to silica gel.¹⁶

Lehn and co-workers used the Stetter method (method P) to prepare the first diaza-crown compounds.^{128,129} This method requires the simultaneous addition of the diacid dichloride and the diamine in the ring-closure step as was discussed in section III.B.

Richman and Atkins prepared the *N,N'-bis(p*toluenesulfonamide) derivative of diaza-18-crown-6 by reacting the ditosyl derivative of triethylene glycol with the N \mathcal{N}' -bis(p-toluenesulfonamide) of triethylene glycol diamine (method Q).94,95 The method to remove the Method P

 N -tosyl groups by reduction with lithium aluminum hydride is the preferred procedure to deblock the amino nitrogen atoms to prepare unsubstituted azacrowns.2,131,164

Vögtle and co-workers used the reaction of sodium p-toluenesulfonamide with the ditosylate (or dichloride) derivative of triethylene glycol to form the *N,N'* ditosyldiaza-18-crown-6 (method R).¹⁰³ They compared

Method R

methods P, Q, and R and reported the best overall yield for method $P(37\%)$, then method $Q(13\%)$, and finally method R (9-14%). Their calculations did not include removal of the tosyl group (methods Q and R) or amide reduction (method P).

King and Krespan used the bis(trifluoroacetamide) derivatives rather than the bis(p-toluenesulfonamide) derivatives in their preparation of the diaza-crowns (method S).⁶⁰ The removal of the trifluoroacetyl group

Method S

was accomplished by a simple hydrolysis step rather than the more difficult reduction process that was used to remove the tosyl protecting groups of method Q. Even with this modification, the overall yield for method S was only 3%, similar to that obtained by the same authors for a simple autoclave reaction of triethylene glycol dichloride with an excess of ammonia.⁶⁰

Kulstad and Malmsten reported that the diazacrowns could be prepared by reacting a diamino ether

with a diiodo ether with sodium or potassium carbonate as the base (method T).^{70,104} The yield was 17% for diaza-15-crown-5 but 44% for diaza-18-crown-6. The best yields were obtained when the cation size matched the cavity size.¹⁶⁵

Sutherland and co-workers used ethyl carboxylate protecting groups on the diamine when they reacted an oligo(ethyleneoxy) bis(carbamate) with a ditosylate or dihalide to form an N, N' -bis(ethoxycarbonyl)substituted diaza-18-crown-6. The ethoxycarbonyl groups were reduced to form the bis-methyl-substituted crowns (method U).^{166,167}

Okahara and co-workers, in an attempt to prepare aza-9-crown-3, reacted an azatriethylene glycol with benzenesulfonyl chloride. The small crown was not obtained but rather two diaza-18-crown-6 compounds (method V)¹⁰⁹ resulting from different dimerization pathways.

Method V

Gokel and co-workers prepared a series of N,N'-disubstituted diaza-18-crown-6 compounds by a 2:2 reaction of a primary amine with triethylene glycol dihalide (method W).^{71,77,168} Only the diaza-18-crown-6

Method W

was observed when R was a benzylic or aliphatic group. When R was a 4-substituted phenyl, only the 1:1 adduct, aza-9-crown-3, was isolated. The diaza-18-crown-6 (and crown-5) compounds were prepared by these authors by a procedure similar to methods S, T, and U except they reacted an N,N' -dialkyl-substituted diamine with 1,8-diiodo-3,6-dioxaoctane (method X).^{71,77} They found that method X gave superior overall yields. For example, N , N' -dibenzyldiaza-18-crown-6 was preMethod **X**

pared in a 66% yield by method X but in only 29% yield by method W. The product was more difficult to isolate in the one-step synthesis of method W because of the many products that were formed.

The N , N' -dibenzyldiaza-crowns are important because they can be readily hydrogenated to form the diaza-crowns. The diaza-crown can then be alkylated to form different N,N' -dialkyldiaza-18-crown-6 compounds (method Y).⁷¹

Method Y

Okahara and co-workers prepared a number of diaza-crown compounds with substituents on the carbon atoms of the macroring. They used both the Okahara ring-closure reaction of a substituted diazaoligoethylene glycol with tosyl chloride and the reaction of the glycol with a ditosylate (method Z). $85,142,169$

Method Z

Bradshaw and Krakowiak prepared N,N' -dialkyldiaza-15-crown-5, -18-crown-6, and -21-crown-7, compounds by similar reactions except that the nitrogen atoms contained alkyl substituents (method AA).⁸⁰ They obtained excellent yields of the diaza-crowns.

Method AA

As mentioned in section IV.A, crown ethers containing functional substituents, such as hydroxymethyl or vinyl groups, are important synthetic intermediates

TABLE II. Diaza-Crown Compounds

 $\mathcal{A}^{\mathcal{A}}$

77 (27% overall); 168, 294 (92%); 292

W, Y from no. 436 X1Y

P

71 (92%); 77 (63%, two steps) 159 (56%)

R

TABLE II (Continued)

R

TABLE II (Continued)

 \sim

F. 1,10-Diaza-18-Crown-6 (R and R¹ Different)

TABLE II (Continued)

I. Diaza-Crowns with One Miscellaneous Bridge

J. Diaza-Crowns with Butylene Bridges

K. Diaza-Crowns (R and R¹ Different)

RN NR¹

676 677 678 $C(O)CH₂O(CH₂)₂OCH₂C(O)$

H $\mathrm{PhCH_2O_2C}$ 2 2 2

2 2

from no. 678 from no. 534

274 (74%) 260 (60%) 260 (60%)

 $\mathrm{CH}_2(\mathrm{CHOH})_2\mathrm{CH}_2$ $\mathrm{CH}_2(\mathrm{CHOH})_2\mathrm{CH}_2$

used to immobilize the crown onto silica gel^{16,49,87,170,171} and to make more complex compounds such as the lariat crown ethers.⁷¹ The easiest method to attach a functional group is through one of the ring nitrogen atoms. Those types of reactions are shown in method Y. Functionalized diaza-crowns, where the functional group is attached to a ring carbon atom, also have been synthesized. Krespan was one of the first to prepare a functionalized diaza-crown when he synthesized a bis(hydroxymethyl)diaza-19-crown-6 (method AB).83,172

Method AB

Tomoi and co-workers and, more recently, Bradshaw and co-workers have prepared similar diaza-crowns but containing an exo-methylene group (method AC),^{161,162,173-175} which can be easily converted into a hydroxy compound by hydroboration.¹⁷³

Okahara and co-workers prepared some diaza-crowns containing two hydroxy functions by reacting a diamine with a bisepoxide (method AD).⁷⁹

Method AD

Three hydroxymethyl-substituted diaza-crown compounds were prepared by Bartsch and co-workers using method P but with an (allyloxy)methyl substituent on the diacid chloride (method AE).⁵⁰ The starting (al-

Method AE

lyloxy)methyl-substituted diacid chloride was prepared in three steps. The purification of the diacid was difficult because it polymerized during distillation. The cyclization step also required high-dilution techniques. Cinquini used methods AE and Y to prepare diazacrowns containing long-chain lipophilic substituents on both a ring carbon and the two ring nitrogens.⁴⁷

Bradshaw and co-workers reported a more convenient method to prepare the (allyloxy) methyl-substituted diaza-crown compounds (method AF).⁴⁹ Their method,

Method AF

using the Okahara ring-closure procedure, gave a good overall yield of N,N' -dialkyl-substituted (allyloxy)methyldiaza-18-crown-6 and can be applied to the synthesis of other similar diaza-crown ethers.¹⁷⁵

A listing of diaza-crowns is given in Table II.

C. Polyaza-Crowns (Table III)

Richman and Atkins as well as Vögtle and co-workers have prepared a number of polyaza-crown compounds by reacting the appropriate per-p-toluenesulfonamide derivative of a polyamine with the ditosylate derivative of an oligoethylene glycol (method AG).^{94,95,164,176,177}

Method AG

They were able to prepare polyaza-crowns with different ring sizes and numbers of oxygen and nitrogen atoms. Different methods to remove the N -tosyl blocking groups were tried, including $HBr/phenol, H₂SO₄$, LIAIH₄/THF, and NaAlH₂(OCH₂CH₂OCH₃)₂.¹⁶⁴ The yields of this last step varied as a function of the number of tosyl groups and the size of the macrocycle. With a triaza-12-crown-4, it was found that HBr/phenol was the best detosylating reagent followed by H_2SO_4 and $LiAlH₄¹⁶⁴$

Tabushi and co-workers reported a general synthetic procedure to prepare the polyaza-crown compounds by reacting a polyamine and the dimethyl ester of an oligoglycolic acid followed by reduction of the resulting cyclic diamide (method AH).^{136,137,178} This method uses

TABLE III. Polyaza-Crowns

A. 1,4,7-Triaza-Crowns

B. Triaza-18-Crown-6 and Triaza-21-Crown-7

C. Triaza-Crowns with Propylene Bridges

D. Tetraaza-Crowns Containing the Hydrazine Moiety

E. Tetraaza-Crowns with Miscellaneous Bridges

F. Tetraaza-Crowns with Miscellaneous Bridges (R and R¹ Different)

G. Hexaaza-24-Crown-8

H. Hexaaza-27-Crown-9

readily available starting materials and does not require high-dilution techniques.

Method AH

Lehn and co-workers used a number of methods to prepare some interesting polyazaoxa-crown compounds.^{2,5,131,179-184} These authors used many steps to elaborate a bis(p-toluenesulfonamide) derivative of a diamino ether to form $[24]$ N₆O₂ crowns (method AI).^{183,184} In the process, a diacid chloride-diamine

Method Al

reaction was used to close the ring, followed by reduction and detosylation. Although the yield for each step was reasonable, the use of many steps greatly reduces the overall yield of polyaza-crowns. This procedure allows the preparation of polyaza-crowns with some of the ring nitrogen atoms blocked. A somewhat similar sequence to form the same crown by a shorter route is shown in method AJ.¹⁸³ This method does not require

Method A

the cyclic diamide formation-reduction procedure of method AI but does require a detosylation step to form $[24]$ N₆O₂ crowns. The tosyl groups greatly add to the molecular weight of the starting materials and intermediates so that large quantities (by weight) of these materials must be used to obtain reasonable amounts of the final products. These authors also prepared a $[27]N_6O_3$ crown by method AG.¹⁸¹

A different procedure was used by Lehn and coworkers to prepare the triaza-18-crown-6 compounds (method $\mathbf{A}\mathbf{\dot{K}}$).¹⁸⁰ This method uses the *p*-toluene-

sulfonamide derivative of diethanolamine as a starting material as shown. The methylation and reductiondetosylation steps shown in the middle of the sequence can be reversed. Schmidtchen reported the same synthesis of the $[18]N_3O_3$ crowns in 12 steps.¹⁸⁵

Pelissard and Louis prepared *N,N',N",N'"-tetm*methyltetraaza-15-crown-5 (or its tetraethyl analogue) by reacting the tetramethyltriethylene tetraamine (or its tetraethyl analogue) with diglycolyl dichloride followed by reduction (method AL).¹⁸⁶ Although this

procedure circumvents the high molecular weights and blocking group removal problems of the N -tosyl groups, it is still necessary to apply high-dilution techniques. The final polyaza-crowns contain N -alkyl groups but for many applications, the N -alkyl groups are useful. For example, complexation of metal and organic ammonium cations by the N -alkyl-substituted aza-crowns is about the same as complexation by the non- N -alkyl-substituted aza-crowns.⁶

Krakowiak, Bradshaw, and Izatt have developed more convenient methods to prepare the N -alkyl-substituted triaza- and tetraaza-crown compounds.^{81,82} N - $[2-(2-$ Chloroethoxy)ethyl]acetamide is the key reactant in the new methods. Method AM shows that 2 mol of the key

reactant can be added to a primary amine followed by a diacid chloride and reduction to form the symmetrical triaza-18-crown-6 in four steps from compound A. The intermediate triamine of method AM can also be reacted with a dihalide to form another triaza-crown as shown. Compound A of method AM was also reacted with N , N' -dialkyloligoethylenediamine to form an oligoethylenetetraamine, which was reacted with a diiodide to form a tetraaza-crown (method AN).⁸¹ These

Method AN

methods allow the synthesis of tri- and tetraaza-crowns in a few number of steps with good overall yields $(30-40\%)$ and with the possibility of having two different functional groups in the macrocycle.

New aza-crowns containing the hydrazine moiety have been prepared by method AM except a hydrazine starting material rather than an amine was used.¹⁸⁷ 1,2-Diethylhydrazine was also reacted with chloroacetyl chloride followed by a diamine and reduction as another procedure to prepare the new hydrazino-crowns (method AO).¹⁸⁷

As discussed previously, monofunctionalized azacrowns are important intermediates for bonding the aza-crowns to solid supports. A new method to prepare 2V-(hydroxyalkyl)polyaza-crowns and cyclams has been studied (method AP).⁸² The pendant hydroxy groups are not ionized by the sodium carbonate base so that the nucleophilic reactions take place on nitrogen.

Method AP

Kawaguchi and Ohashi reported a one-step procedure to prepare a symmetrical tetraaza-18-crown-6 compound (method AQ).¹⁸⁸

Method AQ

Sutherland and co-workers prepared symmetrical crown ethers with propylene or mixed propylene and ethylene bridges.⁹⁰ They used an N-tosylamino glycol which was described in section ILC. The glycol was reacted with acrylonitrile followed by reduction to give a triamine that was used to build the crown ethers (method AR). A triaza-crown containing both ethylene

Method AR

and propylene bridges was prepared in a similar manner by using (N-tosylamino)diethanol rather than the (Ntosylamino)dipropanol and diacid chloride used in method AR.

Tetraaza-crown ethers were obtained by Bogatsky and co-workers starting from derivatives of diamines and carbon disulfide or an isothiocyanate (method AS).¹⁸⁹

Method A5

A listing of polyaza-crowns is given in Table III.

D. Benzoaza-Crowns (Table IV)

1. One Benzo Unit

A number of benzoaza-crowns have been prepared. This section will present specific methods for the synthesis of aza-crowns with one and more benzo groups. Benzoaza-crowns with one nitrogen atom in the ring were first reported by Lockhart and co-workers in 1973¹⁴⁷ and by Pedersen and Bromels.¹⁹⁰ Lockhart reacted 2-hydroxyaniline with a series of dihalides to obtain both $N-(2-hydroxyphenyl)$ aza-crowns and benzoaza-crowns (method G, section IV.A). Pedersen and Bromels, using the same starting materials, produced benzoaza-15-crown-5 and benzoaza-18-crown-6 in *tert*butyl alcohol.¹⁹⁰ Lockhart and co-workers obtained both a monoaza- and a diaza-crown from 1,2-diaminobenzene (method AT).^{147,148}

Method AT

Hogberg and Cram made a series of benzoaza- and benzodiaza-crowns from the methanesulfonamide derivative of 1,2-diaminobenzene or 2-hydroxyaniline (method AU).¹⁹¹ The monoaza product (where $A = 0$) was formed in 32% yield while the diaza-crown was formed in only 5% yield.

p-Toluenesulfonamide has been reacted with a bis- (toluenesulfonate) derivative of a benzoglycol to form a benzoaza-crown where the benzo unit was not attached to the nitrogen atom (method AV).¹⁹¹ Meth-

Method AV

anesulfonamide gave higher yields of the N -mesylblocked product but the mesyl group was more difficult to remove. Methanesulfonamide similar sequence was reported by He and Wu for the preparation of benzopolyaza-crowns, except they used the tris- or tetrakis- (p-toluenesulfonamide) derivative of diethylenetriamine or triethylenetetramine (method AW).¹⁹² These researchers did not report their method for removing the tosyl groups.

Method AW

Sutherland and co-workers used several procedures to prepare a series of o-, *m-,* and p-benzodiaza-crown compounds. Three of the methods are shown here (methods AX, AY, and AZ).^{167,193,194} The p-benzodiaza-crowns were prepared as in method AY from the corresponding p-bis(chloromethyl)benzene. The ringclosure steps for each of these methods gave only moderate yields.

Method AZ

Stoddart and co-workers used a similar reaction sequence to prepare a 1,4-benzodiaza-crown ether (method BA).¹⁹⁵

Using bis(phthalimide) derivatives of the oligoethylene glycols, Komalow and co-workers prepared crown ethers containing a phthalamide moiety (method BB).196,197 The starting bis(phthalimide) and diamine were reacted in a water-methanol mixture, and the product was isolated by chromatography.

Method BB

Other benzodiaza-crowns containing N -acetic acid substituents have recently been reported.¹⁹⁸ The synthetic procedure involved the use of ethylenediaminetetraacetic dianhydride (method BC). Bislactones have been prepared with yields in the 21-24% range. These authors also prepared a bislactam with two benzo rings starting with A plus a diamine.¹⁹⁸

Method BC

Table IV contains a listing of monobenzoaza-crowns.

2. Two Benzo Units

An early synthesis of a dibenzodiaza-crown was reported by Wudl and Gaeta.¹⁹⁹ They used optically active proline to obtain a macrocycle containing two benzo and two pyrolidine rings (method BD). These researchers also prepared a macrocycle from D-ephedrine.¹⁹⁹

TABLE IV. Monobenzoaza-Crowns

1. One Benzo Unit

2. Two Benzo Units

A. Dibenzomonoaza-Crowns

B. Dibenzodiaza-Crowns with Methylenyl Bridges and o-Benzo Groups

C. Dibenzodiaza-Crowns with o-Benzo Groups

D. Dibenzodiaza-Crowns with Methylenyl Bridges and *m*-Benzo Groups

E. Dibenzodi(tri)aza-Crowns with Aza Groups Two Atoms Removed from the Benzo Units

F. Dibenzodi(tri,tetra)aza-Crowns with Aza Groups next to the Benzo Units

G. Miscellaneous Dibenzoaza-Crowns

3. Three or Four Benzo Units

Method BD

Pedersen prepared one dibenzodiaza-crown by a three-step process (method BE).¹⁹⁰

Method BE

Hogberg and Cram prepared the same dibenzodiaza-crown by a different procedure (method BF).¹⁹¹ This procedure allows the synthesis of dibenzo-crowns containing from two to four nitrogen atoms, depending on the nature of A and B in the starting materials. The small amount of benzene ring bromination product in this reaction was removed by reduction with hydrazine and palladium on carbon. Lockhart and Thompson used a similar approach to prepare a dibenzodiazacrown except they used a triglycolyl dichloride in the ring-closure step followed by reduction (method BG).¹⁴⁸ This latter method, (method BG), using the Stetter

bis(amide) synthesis for ring closure, has been used by other researchers in the preparation of dibenzodiazacrowns.200-202 Biernat and co-workers have prepared a series of dibenzodiaza-crowns by methods BF and BG except that some of their macrocycles contained propylene bridges and they used dichlorides as well as activated diacid intermediates as discussed in section III.B. 66,101

As would be expected, the dibenzodiaza-crowns have been prepared by a one-pot synthesis using catechol and N -alkyl-substituted bis(2-chloroethyl)amine (method $BH)$.²⁰³ These authors patterned their work after **Method BH**

Pedersen's patent for dibenzoaza-18-crown-6.¹⁹⁰ A similar synthesis used either isophthaloyl dichloride or m-bis(bromomethyl)benzene to form dibenzodiaza macrocycles (method BI).^{141,204,205}

Mclhod BI

1,2-Diaminobenzene has been used to prepare dibenzoaza-crowns (method BJ).¹⁹⁰ One of the amino nitrogens was blocked with terf-butoxycarbonyl chloride, which was readily removed in a later step. Unfortunately, the experimental procedure is not fully described in the patent.

Method BJ

Sutherland and co-workers have prepared some interesting biphenyl-containing diaza-crowns (methods BK and BL).²⁰⁶ The R group was (benzyloxy)carbonyl,

which could be reduced to give methyl substituents or could be hydrolyzed with HBr/AcOH to give the bis-NH crown. A mixed 1,2-benzo- and 1,3-benzodiazacrown system was prepared by the same researchers (method BM).¹⁹⁴ In another paper, these authors reported the preparation of $bis(1,2\textrm{-}benzodiaza-crowns)$ using this same method.¹⁶⁷

The synthesis of a variety of dibenzo-containing aza-crowns from salicylaldehyde or its derivatives has been reported by Lindoy and co-workers.²⁰⁷⁻²¹² The salicylaldehyde was first reacted with a dihalide fol-

lowed by condensation with a diamine to form an imine, which was reduced as shown (method BN). These workers also reversed the process by first reacting the salicylaldehyde with the diamine followed by the dihalide. Kodera and co-workers used the same method to prepare a series of diamino-crowns except they also used LiAlH₄ in the reduction step.²¹³

Wild and co-workers prepared a dibenzodiaza-14 crown-4 with a trans arrangement of the N_2O_2 donor groups (method BO).²¹⁴ The hydroxymethyl group of **Method BO**

the starting material was first oxidized to the aldehyde, which condensed with the primary amine of another molecule of starting material. The resulting bis Schiff base was reduced to form the final dibenzodiaza-crown.

Recently, Schultz and co-workers reported a new procedure to prepare dibenzo N_2O_2 macrocycles.²¹⁵ They used the bimolecular cyclization reaction of ofluorobenzamide derivatives (method BP).

Lehn and co-workers prepared some macrocycles that incorporate two guanidinium groups into the macroring (method BQ).²¹⁶ A bis(isothiocyanate) was reacted with a diamine in the ring-closure step, followed by conversion of the bis(thiourea) into the bis(quanidinium) material.

IV. A listing of the dibenzoaza-crowns is given in Table

V. Organization of Tables

Tables I-IV give listings of the aza-crowns synthesized since 1981. The following remarks are pertinent for the tables.

Formula Index. This is the molecular formula for the substituent R groups. This allows for a more rapid search of the substituted aza-crown ethers. Each table is organized with the more simple substituents listed first, starting with the smaller number of carbons and then hydrogen, halogen, nitrogen, phosphorus, oxygen, and sulfur atoms.

Structure. Standard abbreviations for the various alkyl and aryl groups are used. In the case of substituted phenyl groups, a number is placed before the substituent to indicate its position on the benzene ring. In general, parentheses indicate that a group is attached to the preceding atom. For example, in $H_2NCH(Me)$ - $CH₂$, the Me group is attached to the preceding carbon atom. An (O) indicates a carbonyl oxygen atom.

Methods. The methods given in the tables are those shown in section IV. The symbol N/A indicates that a specific method was not given in the reference. The term "as K" indicates that the method used was similar to method K. Many substituted aza-crowns were prepared by modifying another aza-crown. In those cases, the tables shows a "from no. xxx" in the methods column. The term "Y(alk)" shows that the alkylation part of method Y was used. The term "X, other" indicates that the method was comparable to method X but some modifications were used in the reference. "Other" means that the method used was given in the reference but it was a "one of a kind" procedure and is not otherwise listed in this review.

Yields. The yields are those given for the last step in the reaction except where an overall yield was given. A yield given after two or more reference numbers means that the same reaction yield was reported in two or more references. The "% HCl" etc. indicates that the yield was for a salt of the aza-crown. A range of yields indicates that the reaction was carried out more than once, giving different yields. Some yields were determined by GLC and are so indicated.

VI. References

- (1) For a review, see: Sutherland, I. O. *Chem. Soc. Rev.* 1986,*15,* 63.
- (2) Hosseini, M. W.; Lehn, J. M.; Duff, S. R.; Gu, K.; Mertes, M. P. *J. Org. Chem.* **1987,** *52,* 1662.
-
- (3) Lehn, J. M. *Science (Washington, D.C.)* **1985,** *227,* 849. (4) Yohannes, P. G.; Mertes, M. P.; Mertes, K. B. *J. Am. Chem. Soc.* 1985, *107,* 8288.
- (5) Lehn, J. M.; Vierling, P. *Tetrahedron Lett.* 1980, *21,* 1323. (6) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. *Chem. Rev.* 1985, *85,* 271.
-
- (7) Lamb, J. D.; Izatt, R. M.; Christensen, J. J.; Eatough, D. J. In *Coordination Chemistry of Macrocyclic Compounds;* Melson, G. A., Ed.; Plenum Press: New York, 1979; pp 145-218.
- (8) Dietrich, B.; Lehn, J. M.; Sauvage, J. P.; Blanzat, J. *Tetra-hedron* 1973, *29,* 1629. (9) Lehn, J. M. *Ace. Chem. Res.* 1978, *11,* 49.
-
- (10) Schultz, R. A.; White, B. D.; Dishong, D. M.; Arnold, K. A.;
Gokel, G. W. J. A*m. Chem. Soc.* 1985, *107,* 6659.
(11) Löhr, H. G.; Vögtle, F. *Chem. Ber*. 1985, *118,* 905.
(12) White, B. D.; Arnold, K. A.; Gokel, G.
-
- 1987, *28,* 1749. (13) For a review, see: Kauser, A. R. *J. Chem. Soc. Pak.* 1983, 5,
- 227.
- (14) For a review, see: Weber, E. *Kontakte (Merck)* 1983, 38. (15) For a review, see: Weber, E. *Kontakte (Merck)* 1984, 26.
- (16) Bradshaw, J. S.; Krakowiak, K. E.; Tarbet, B. J.; Bruening, R. L.; Biernat, J. F.; Bochenska, M.; Izatt, R. M.; Christensen,
- J. J. *Pure Appl. Chem.,* **submitted.** (17) Gokel, G. W.; Korzeniowski, S. H. *Macrocyclic Polyether Syntheses;* Springer-Verlag: Berlin, Heidelberg, New York, 1982; pp 156-219.
- (18) Gokel, G. W.; Durst, H. D. *Synthesis* 1976, 168.
- (19) Pedersen, C. J. "Synthetic Multidentate Macrocyclic **Compounds". In** *Synthetic Multidentate Macrocyclic Compounds;* Izatt, R. M., Christensen, J. J., Eds.; Academic Press: New York, 1978; pp 1-51.
-
- (20) Bradshaw, J. S.; Stott, P. E. *Tetrahedron* 1980, *36,* 461. (21) Gokel, G. W.; Dishong, D. M.; Schultz, R. A.; Gatto, V. J.
-
- Synthesis 1982, 997.

(22) Bogatsky, A. V. Proc. Indian Natl. Sci. Acad. 1982, 48A

(Suppl. No. 1), 65; Chem. Abstr. 1983, 98, 143298k.

(23) Hamilton, A. D. "Crown Ethers and Cryptands". In Com-

prehensive Heterocyclic C 731-761.
- (24) Rossa, L.; Vogtle, F. "Synthesis of Medio- and Macrocyclic Compounds by High Dilution Principle Techniques". In *Topics in Current Chemistry;* Vogtle, F., Ed.; Springer-Ver-lag: Berlin, Heidelberg, New York, 1983; Vol. 113, pp 1-86.
- (25) Ostrovskaya, V. M.; Dyakonova, I. A. *Khim. Geterotsikl. Soedin.* 1987, 867; *Chem. Abstr.* 1988,*108,* 1316096. (26) Potvin, P. G.; Lehn, J. M. "Design of Cation and Anion Re-
- ceptors, Catalysts and Carriers". In *Progress in Macrocyclic Chemistry;* Izatt, R. M., Christensen, J. J., Eds.; Wiley: New York, 1987; Vol. 3, pp 167-240.
-
- (27) Perry, S. Z.; Hibbert, H. *Can. J. Res., Sect B* 1936, *14,* 77. (28) Dale, J.; Kristiansen, P. O. *Acta Chem. Scand.* 1972,*26,*1471.
- (29) Newcomb, M.; Moore, S. S.; Cram, D. J. *J. Am. Chem. Soc.* 1977, *99,* 6405.
- (30) Bradshaw, J. S.; Reeder, R. A.; Thompson, M. D.; Flanders, E. D.; Carruth, R. L.; Izatt, R. M.; Christensen, J. J. *J. Org. Chem.* 1976, *41,* 134.
- (31) Cornforth, J. W.; Morgan, E. D.; Potts, K. T.; Rees, R. J. *Tetrahedron* **1973,** *29,* 1659.
- (32) Kravchenko, A. L.; Lipatnikov, N. A.; Burmistrov, V. T.; Gritsenko, T. M.; Popov, I. A. *Zh. Prikl. Kim.* 1972, *45,* 2581; *Chem. Abstr.* **1973,** *78,* 1366986.
- (33) Kimura, K.; Tanaka, M.; Iketani, S.; Shono, T. *J. Org. Chem.* 1987, *52,* 836.
- (34) Laurie, J. W. In *Glycerol and the Glycols;* American Chemical Society Monograph Series No. 44; Chemical Catalog Co., Inc.: New York, 1928; pp 361-386.
- (35) Coudert, G.; Mpassi, M ; Guillaumet, G.; Selve, C. *Synth. Commun.* **1986,** *16,* 19.
- (36) Nakatsuji, Y.; Kameda, N.; Okahara, M. *Synthesis* 1987, *3,* 280.
- (37) Ikeda, L; Yamamura, S.; Nakatsuji, Y.; Okahara, M. *J. Org. Chem.* 1980, *45,* 5355. (38) Ikeda, I.; Emura, H.; Okahara, M. *Synthesis* 1984, 73.
-
- (39) Jungk, S. J.; Moore, J. A.; Gandour, R. D. *J. Org. Chem.* 1983, *48,* 1116.
- (40) Czech, B. *Tetrahedron Lett.* 1980, *21,* 4197.
- (41) Miyazaki, T.; Yanagida, S.; Itoh, A.; Okahara, M. *Bull. Chem. Soc. Jpn.* 1982, 55, 2005.
- (42) Czech, B.; Babb, D. A.; Bartsch, R. A. *Org. Prep. Proced. Int.* 1983, *15,* 29. (43) Czech, B.; Kang, S. I.; Bartsch, R. A. *Tetrahedron Lett.* 1983,
- *24,* 457. (44) Czech, B.; Son, B.; Babb, D. A.; Bartsch, R. A. *Synthesis*
- 1985, *314.* (45) Son, B.; Czech, B.; Bartsch, R. A. *Synthesis* 1984, 776.
- (46) Fukunishi, K.; Czech, B.; Regen, S. L. *J. Org. Chem.* 1981, *46,*
- 1218.
(47) Cinquini, M. Synthesis 1976, 516.
- (47) Cinquini, M. *Synthesis* 1976, 516. (48) Bradshaw, J. S.; Nakatsuji, Y.; Huszthy, P.; Wilson, B. E.; Dalley, N. K.; Izatt, R. M. *J. Heterocycl. Chem.* 1986,*23,* 353.
-
- (49) Bradshaw, J. S.; Krakowiak, K. E.; Bruening, R. L.; Tarbet, B. J.; Savage, P. B.; Lzatt, R. M. J. Org. Chem. 1988, 53, 3190.
(50) Babb, D. A.; Czech, B. P.; Bartsch, R. A. J. Heterocycl.
Chem. 1988, 23, 609.
(50) Mon
-
-
- 1157.
- (54) Jolley, S. T.; Bradshaw, J. S. *J. Org. Chem.* 1980, *45,* 3554. (55) Cooper, K. D.; Walborsky, H. M. *J. Org. Chem.* 1981, *46,* 2110.
- (56) Jones, B. A.; Bradshaw, J. S.; Izatt, R. M. *J. Heterocycl. Chem.* 1982, *19,* 551.
- (57) Ikeda, I.; Yamamura, S.; Okahara, M. *Bull. Chem. Soc. Jpn.* 1982, *55,* 3341.
-
-
- (58) Krakowiak, K.; Kotelko, B. *Pol. J. Chem.* 1982, 56, 1145.
(59) Krakowiak, K.; Kotelko, B. *Pol. J. Chem.* 1983, 57, 597.
(60) King, A. P.; Krespan, C. G. *J. Org. Chem.* 1974, 39, 1315.
- (61) Wiley, P. F. *J. Am. Chem. Soc.* **1946,** *68,* 1867.
- (62) Whitmore, F. C; Mosher, H. S.; Adams, R. R.; Taylor, R. B.; Chapin, E. C; Weisel, C; Yanko, W. *J. Am. Chem. Soc.* **1944,** 66, 725.
- (63) Wiedeman, 0. F.; Montgomery, W. H. *J. Am. Chem. Soc.* **1945,** *67,* 1994.
- (64) Kimura, G.; Migake, R.; Juraba, Y. *J. Soc. Org. Synth. Chem. Jpn.* **1964,** *22,* 296.
-
- (65) Glinka, R. *Pol. J. Chem.* **1982,** *56,* 1139. (66) Biernat, J. F.; Jereczek, E.; Bujewski, A. *Pol. J. Chem.* **1979,** *53,* 2367.
- (67) Bradshaw, J. S.; Koyama, H.; Dalley, N. K.; Izatt, R. M.; Biernat, J. F.; Bochenska, M. *J. Heterocycl. Chem.* **1987,** *24,* 1077.
- (68) Biernat, J. F.; Bochenska, M.; Bradshaw, J. S.; Koyama, H.; LindH, G. C; Lamb, J. D.; Christensen, J. J.; Izatt, R. M. *J. Incl. Phenom.* **1987,** 5, 729.
- (69) Desreux, J.; Renard, A.; Duyckaerts, G. *J. Inorg. Nucl. Chem.* **1977** *39* 1587
- (70) Kulstad.'s.; Malmsten, L. A. *Acta Chem. Scand., Ser. B* **1979,** *B33,* 469.
- (71) Gatto, V. J.; Arnold, K. A.; Viscariello, A. M.; Miller, S. R.; Morgan, C. R.; Gokel, G. W. *J. Org. Chem.* **1986,** *51,* 5373.
- (72) Kern, W.; Iwabuchi, S.; Sato, M.; Bohmer, V. *Makromol. Chem.* **1979,** *180,* 2539.
- (73) Chadwick, D. J.; Cliffe, I. A.; Sutherland, I. 0.; Newton, R. F. *J. Chem. Soc, Perkin Trans. 1* **1984,** 1707.
- (74) Boon, W. R. *J. Chem. Soc.* **1949,** 1378.
- (75) Petranek, J.; Ryba, 0. *Collect. Czech. Chem. Commun.* **1980,** *45,* 1567.
- (76) Krakowiak, K.; Kotelko, B. *Acta Pol. Pharm.* **1983,** *40,* 313; *Chem. Abstr.* **1984,** *101,* 22952J.
- (77) Gatto, V. J.; Arnold, K. A.; Viscariello, A. M.; Miller, S. R.; Gokel, G. W. *Tetrahedron Lett.* **1986,** *27,* 327.
- (78) Pietraszkiewicz, M. *J. Incl. Phenom.* **1984,** *2,* 195.
- (79) Kikui, T.; Maeda, H.; Nakatsuji, Y.; Okahara, M. *Synthesis* 1984, 74.
- (80) Bradshaw, J. S.; Krakowiak, K. E. *J. Org. Chem.* **1988,** *53,* 1808.
- (81) Krakowiak, K. E.; Bradshaw, J. S.; Izatt, R. M. *Tetrahedron Lett.* 1988, *29,* 3521.
- (82) Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M., unpublished esults.
- (83) Krespan, C. G. *J. Org. Chem.* **1975,** *40,*1205.
- (84) Kuo, P. L.; Miki, M.; Ikeda, I.; Okahara, M. *J. Am. Oil Chem. Soc.* 1980, *102,* 227.
- (85) Maeda, M.; Furuyoshi, S.; Nakatsuji, Y.; Okahara, M. *Bull. Chem. Soc. Jpn.* **1983,** 56, 3073.
- (86) Maeda, H.; Kikui, T.; Nakatsuji, Y.; Okahara, M. *Synthesis* 1983, 185.
- (87) Bradshaw, J. S.; Izatt, R. M.; Christensen, J. J.; Krakowiak, K. E.; Tarbet, B. J.; Bruening, R. L.; Lifson, S. *J. Incl. Phe-*
- *nom.,* in press. (88) Dale, J.; Calverley, M. J. International Patent WO/044253, 1982; *Chem. Abstr.* **1983,** *98,* 179431g.
- (89) Martin, A. E.; Bulkowski, J. E. J. Org. Chem. 1982, 47, 415.
(90) Pratt, A. J.; Sutherland, I. O.; Newton, R. F. J. Chem. Soc.,
Perkin Trans. 1 1988, 13.
(91) Marecek, J. F.; Burrows, C. J. Tetrahedron Lett. 1986, 27,
-
- 5943.
-
- (92) Greene, R. N. *Tetrahedron Lett*. 1**972**, 1793.
(93) Frensdorff, H. K. J. Am. Chem. Soc. 1**97**1, 93, 600.
(94) Richman, J. E.; Atkins, T. J. *J. Am. Chem. S*oc. 1974, 96, 2268.
-
- (95) Richman, J. E.; Atkins, T. J. *Org. Synth.* 1978, *58,* 86. (96) Koyama, H.; Yoshino, T. JSuH. *Chem. Soc. Jpn.* **1972,***45,* 481.
- (97) Dijkstra, G.; Kruizinga, W. H.; Kellogg, R. M. *J. Org. Chem.* **1987** 52 4230.
- (98) Vriesema, B. K.; Buter, J.; Kellogg, R. M. J. Org. Chem. 1984, *49,* 110.
- (99) Isele, G.; Martinez, J. A. *Synthesis* **1981,** 455.
- (100) Bogatsky, A. V.; Lukyanenko, N. G.; Basok, S. S.; Ostrovsk-aya, L. K. *Synthesis* **1984,** 138.
- (101) Biernat, J. F.; Luboch, E. *Tetrahedron* **1984,** *40,* 1927.
-
- (102) Shaw, B. L. *J. Am. Chem. Soc.* **1975,** *97,* 3856. (103) Rasshofer, W.; Vogtle, F. *Liebigs Ann. Chem.* **1978,** 552.
-
-
-
- (104) Kulstad, S.; Malmsten, L. A. *Tetrahedron Lett*. 1980, 21, 643.
(105) Yamawaki, J.; Ando, T. *Chem. Lett.* 19**79**, 755.
(106) Yamawaki, J.; Ando, T. *Chem. Lett.* 1980, 533.
(107) Pietraszkiewicz, M.; Jurczak, J. *J. mun.* 1983, 132.
- (108) Masuyama, A.; Nakamura, Y.; Iwasaki, T.; Okahara, M. *Synth. Commun.* **1985,** *15,* 521. (109) Kuo, P.; Miki, M.; Ikeda, L; Okahara, M. *Tetrahedron Lett.*
- 1978, 4273. (110) Kuo, P.; Miki, M.; Okahara, M. *J. Chem. Soc, Chem. Com-*
-
-
- mun. 1978, 504.
(111) Nakatsuji, Y.; Nakamura, T.; Yonetani, M.; Yuga, H.; Okahatsuji, Y.; Nakamura, T.; Osahara, M.
hara, M. J. Am. Chem. Soc. 1988, 110, 531.
(112) Ajinomoto Co., Inc. Jpn. Kokai Tokkyo Koho JP 58 154 566
- (113) Schwartz, E.; Shanzer, A. *J. Chem. Soc, Chem. Commun.* **1981,** 634.
- (114) Schwartz, E.; Gottlieb, H. E.; Frolow, F.; Shanzer, A. *J. Org. Chem.* **1985,** *50,* 5469.
- (115) Leygue, N.; Cazaux, L.; Picard, C.; Tisnes, P. Tetrahedron
Lett. 1987, 28, 4049.
(116) Shanzer, A.; Shochet, N. M.; Frolow, F.; Rabinovich, D. J.
Org. Chem. 1981, 46, 4662.
-
- (117) Shanzer, A.; Libman, J.; Gottlieb, H. E.; Frolow, F. *J. Am. Chem. Soc* **1982,***104,* 4220. (118) Shanzer, A.; Libman, J.; Gottlieb, H. E. *J. Org. Chem.* 1983, *48,* 4612.
- (119) Shanzer, A.; Shochet, N.; Rabinovich, D.; Frolow, F. *Angew. Chem., Int. Ed. Engl.* **1980,** *19,* 326.
- (120) Ninagawa, A.; Maeda, T.; Matsuda, H. *Chem. Lett.* 1984, 1985.
- (121) Steliou, K.; Szczygielska-Nowosielska, A.; Favre, A.; Poupart, M. A.; Hanessian, S. *J. Am. Chem. Soc.* **1980,** *102,* 7578. (122) Steliou, K.; Poupart, M. A. *J. Am. Chem. Soc.* **1983,** *105,*
- 7130.
- (123) Yeda Research and Development Co. Israeli Patent IL 58084, 1985; *Chem. Abstr.* **1986,** *104,* 18646Ou.
- (124) Picard, C; Cazaux, L.; Tisnes, P. *Tetrahedron Lett.* **1984,***25,* 3809
- (125) Tisnes, P.; Cazaux, L.; Picard, C. J. Chem. Res. S 1**98**4, 2, 38.
(126) **Picard**, C.; Cazaux, L.; Tisnes, P. *Tetrahedron* 1**986**, 42, 3503.
(127) Stetter, H.; Marx, J. *Liebigs Ann. Chem.* 1**957**, 607, 59.
-
-
- (128) Lehn, J. M. Struct. *Bonding (Berlin)* 1973,*16,* 1.
- (129) Dietrich, B.; Lehn, J. M.; Sauvage, J. P. *Tetrahedron Lett.* **1969,** 2885.
- (130) Petranek, J.; Ryba, O. *Collect. Czech. Chem. Commun.* 1983, *48,* 1944.
- (131) Graf, E.; Lehn, J. M. *HeIv. Chim. Acta* **1981,** *64,* 1038. (132) Czech, A.; Czech, P. B.; Bartsch, R. A. *J. Org. Chem.* 1988,
- 53,5. (133) Nagao, Y.; Seno, K.; Miyasaka, T.; Fujita, E. *Chem. Lett.*
- **1980,** 159. (134) Nagao, Y.; Miyasaka, T.; Seno, K.; Fujita, E. *Heterocycles* **1981,** *15,* 1037.
- (135) Bartsch, R. A.; Babb, D. A.; Knudsen, B. E. *J. Incl. Phenom.* 1987, 5, 515.
- (136) Tabushi, I.; Taniguchi, Y.; Kato, H. *Tetrahedron Lett.* 1977, 1049.
- (137) Tabushi, I.; Okino, H.; Kuroda, Y. *Tetrahedron Lett.* 1976, 4339.
- (138) Morphy, R. J.; Parker, D.; Alexander, R.; Bains, A.; Carne, A. F.; Eaton, M. A.; Harrison, A.; Millican, A.; Phipps, A.; Rhind, S. K.; Tetmas, R.; Weatherby, D. J. Chem. Soc., Chem. Commun. 1988, 156.
- (139) Gokel, G. W.; Garcia, B. J. *Tetrahedron Lett.* 1977, 317.
- (140) Johnson, M. R.; Sutherland, I. O.; Newton, R. F. *J. Chem. Soc, Perkin Trans 1* **1979,** 357.
- (141) Johnson, M. R.; Jones, N. F.; Sutherland, I. O. *J. Chem. Soc, Perkin Trans. 1* **1985,** 1637.
- (142) Maeda, H.; Furuyoshi, S.; Nakatsuji, Y.; Okahara, M. *Bull. Chem. Soc Jpn.* **1983,** *56,* 212. (143) Lai, J. T. *J. Org. Chem.* **1985,** *50,* 1329.
-
- (144) Schultz, R. A.; Schlegel, E.; Dishong, D. M.; Gokel, G. W. *J. Chem. Soc, Chem. Commun.* **1982,** 242.
- (145) Schultz, R. A.; Dishong, D. M.; Gokel, G. W. *Tetrahedron Lett.* **1981,** *22,* 2623.
- (146) White, B. D.; Dishong, D. M.; Minganti, C.; Arnold, K. A.; Goli, D. M.; Gokel, G. W. Tetrahedron Lett. 1985, 26, 151.
(147) Lockhart, J. C.; Robson, A. C.; Thompson, M. E.; Furtado, S. D.; Kaura, C. K.; Allan, A. R.
- *1* **1973,** 577.
- (148) Lockhart, J. C; Thompson, M. E. *J. Chem. Soc, Perkin Trans. 1* 1977, 202.
- (149) Calverley, M. J.; Dale, J. *J. Chem. Soc, Chem. Commun.* 1981, 684.
- (150) Calverley, M. J.; Dale, J. *Acta Chem. Scand., Ser. B* 1982,*36,* 241.
- (151) Maeda, H.; Nakatsuji, Y.; Okahara, M. *Tetrahedron Lett.* **1981,** *22,* 4105.
- (152) Painter, G. R.; Pressman, B. C. *Top. Curr. Chem.* 1982,*101,* 84.
- (153) Son, B.; Czech, B. P.; Bartsch, R. A. *Tetrahedron Lett.* 1985, *26,* 1787. (154) Newkome, G. R.; Marston, Ch. R. *J. Org. Chem.* 1985, *50,*
- 4238. (155) Masuyama, A.; Kuo, P. L.; Ikeda, I.; Okahara, M. *Nippon*
-
- *Kagaku Kaishi* **1983,** 249; *Chem. Abstr.* **1983,** *99,* 53719s. (156) Masuyama, A.; Nakatsuji, Y.; Ikeda, L; Okahara, M. *Tetra-hedron Lett.* **1981,** *22,* 4665.
- (157) Sakamoto, H.; Kimura, K.; Koseki, Y.; Shono, T. *J. Chem. Soc, Perkin Trans. 2* **1987,** 1181. (158) Bogatsky, A. V.; Lukyanenko, N. G.; Pastushok, V. N. Syn-
-
- thesis **1983,** 992. (159) de Jong, F.; van Zon, A.; Reinhoudt, D. N.; Torny, G. J.; Tomassen, **H.** P. *Reel. Trav. Chim. Pays-Bas* 1983,*102,* 164.
- (160) Lehn, J. M. U.S. Patent 3888877, 1980.
- (161 Kakiuchi, H.; Tomoi, M. *Kenkyu Hokoku*—*Asahi Garasu Kogyo Gijutsu Shoreikai* **1981,** *38,* 37; *Chem. Abstr.* **1982,***97,* $216142v$
- (162; Tomoi, M.; Kihara, K.; Kakiuchi, H. *Tetrahedron Lett.* 1979,
- (163)
(164) 3485. Montanari, F.; Tundo, P. *Tetrahedron Lett.* 1979, 5055. Buhleier, E.; Rasshofer, W.; Wehner, W.; Luppertz, F.; Vogtle, F. *Liebigs Ann. Chem.* 1977, 1344.
-
- (165)
(166) Kulstad, S.; Malmsten, L. A. *Tetrahedron* **1980,** *36,* 521. Leigh, S. J.; Sutherland, I. O. *J. Chem. Soc, Chem. Commun.*
- 1975, 414.
- (167 Hodgkinson, L. C; Johnson, M. R.; Leigh, S. J.; Spencer, N.; Sutherland, I. O.; Newton, R. F. *J. Chem. Soc, Perkin Trans. 1*, 1979, 2193.
- (168) (169: Ajinomoto Co. Inc. Jpn. Kokai Tokkyo Koho JP 58154 565, Gatto, V. J.; Gokel, G. W. *J. Am. Chem. Soc.* **1984,***106,*8240. 1983; *Chem. Abstr.* 1984,*100,*121125m.
- (170) Bradshaw, J. S.; Bruening, R. L.; Krakowiak, K. E.; Tarbet, B. J.; Bruening, M. L.; Izatt, R. M.; Christensen, J. J. *J.*
- (171 *Chem. Soc, Chem. Commun.* **1988,** 812. Izatt, R. M.; Bruening, R. L.; Bruening, M. L.; Tarbet, B. J.; Krakowiak, K. E.; Bradshaw, J. S.; Christensen, J. J. *Anal. Chem.* 1988, *60,* 1825.
- (172 Krespan, C. G. *J. Org. Chem.* 1980, *45,* 1177.
- (173) Tomoi, M.; Abe, O.; Ikeda, M.; Kihara, K.; Kakiuchi, H. *Tetrahedron Lett.* **1978,** *33,* 3031.
- (174: Kakiuchi, H.; Tomoi, M.; Abe, O.; Kihara, K. Jpn. Kokai Tokkyo Koho JP 8019222, 1980; *Chem. Abstr.* **1980,** *93,* 204707r.
- (175: Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M. *J. Heterocycl. Chem.,* in press.
- (176: Rasshofer, W.; Wehner, W.; Vogtle, F. *Liebigs Ann. Chem.* **1976,** 916.
- (177 Rasshofer, W.; Vögtle, F. *Liebigs Ann. Chem.* 1**977**, 1340.
Tabushi, I. Jpn. Kokai Tokkyo Koho JP 77 106 882, 1977;
Chem. Abstr. 1**97**8, 88, 89730a.
Hosseini, M. W.; Blacker, J. A.; Lehn, J. M. J. C*hem. Soc.*,
-
- (180 *Chem. Commun.* **1988,** 596. Graf, E.; Lehn, J. M. *J. Am. Chem. Soc.* 1975, *97,* 5022.
- (181 Dietrich, B.; Hosseini, M. W.; Lehn, J. M.; Sessions R. B. *HeIv. Chim. Acta* **1983,** *66,* 1262. Kotzyba-Hibert, F.; Lehn, J. M.; Saigo, K. *J. Am. Chem. Soc*
- (182 1981, *103,* 4266.
- (183 Comarmond, J.; Plumere, P.; Lehn, J. M.; Agnus, Y.; Luis, R.; Weiss, R.; Kahn, O.; Morgenstern-Badarau, I. *J. Am. Chem.*
- (184 *Soc.* 1982, *104,* 6330. Lehn, J. M.; Pine, S. H.; Watanabe, E.; Willard, A. *J. Am. Chem. Soc.* **1977,** *99,* 6766.
- Schmidtchen, F. P. *J. Org. Chem.* 1986, *51,* 5161.
-
- (185)
(186)
(187) Pelissard, D.; Louis, R. *Tetrahedron Lett*. 1972, 4589.
Bradshaw, J. S.; Krakowiak, K. E.; Wu, G.; Izatt, R. M.
Tetrahedron Lett. 1988, 29, 5589.
Kawaguchi, M.; Ohashi, J. Synthesis 1985, 701.
Lukyanenko, N. G.; Kiriche
-
- (188)
(189)
- (190 f atski, A. V. *Khim. Geterotsikl. Soedin.* **1987,** 263. 'edersen, C. J.; Bromels, M. H. U.S. Patent 3 847 949, 1974.
- (191
- (192 Hogberg, S. A. G.; Cram, D. J. *J. Org. Chem.* 1975, *40,* 151. He, Y.; Wu, C. *Gaodeng Xuexiao Huaxue Xuebao* **1984,** 5, 649; *Chem. Abstr.* **1984,** *101,* 211122b.
- (193 Leigh, S. J.; Sutherland, I. O. *J. Chem. Soc, Perkin Trans 1* 1979, 1089.
- (19< Hodgkinson, L. C; Sutherland, I. O. *J. Chem. Soc, Perkin*
- (195 *Trans. 1* 1979, 1908. Beckford, M. F.; King, R. M.; Stoddart, J. F.; Newton, R. F. *Tetrahedron Lett.* **1978,** 171.
- (196
- (197 Ganin, E. V.; Anikin, V. F.; Kamalov, G. L. *Khim. Geterot-
sikl. Soedin 1*981, 846; *Chem. Abstr.* 1981, *95, 187216b.*
Anikin, V. F.; Ganin, E. V.; Rozynov, B. V.; Zakharova, R. M.;
Kamalov, G. L. *Khim. Getrotsikl. Soed Abstr.* 1982, *96,* 181266s.
- (198: Qin, S. *Huaxue Xuebao* **1986,** *44,* 854; *Chem. Abstr.* 1987, *107,* 59005m.
- (199) Wudl, F.; Gaeta, F. *J. Chem. Soc, Chem. Commun.* 1972,
- (200: 107.
Markowich, J. S.; Filyagina, N. A.; Dziomko, V. M.; Ryabo-kobylko, Yu. S.; Adamova, G. M.; Zelichenok, S. L. Khim.
Geterotsikl. Soedin. 1983, 185; Chem. Abstr. 1983, 99, 5614g.
Formanovskii, A. A.; Murakhovskaya, A. S
- (201)
- (202) manovskii, A. A. Zh. Anal. Khim. 1986, 41, 1046; Chem.
Abstr. 1986, 105, 164013v.
Wu, C.; Song, J. Wuhan Daxue Xuebao, Ziran Kexueban
1986, 65; Chem. Abstr. 1987, 107, 39776k.
Zhang, Z.; Yoo, J.; Huang, Z. Huaxue Shiji 198
- (203
- (204)
- (205)
- (206
- **(207)** Grimsley, P. G.; Lindoy, L. F.; Lip, H. C; Smith, R. J.; Baker,
- J. T. *Aust. J. Chem.* **1977,** *30,* 2095. Armstrong, L. G.; Lindoy, L. F. *Inorg. Chem.* 1975,*14,*1322. Lindoy, L. F.; Lip, H. C.; Power, L. F.; Rea, J. H. *Inorg.* (208 (209: *Chem.* 1976, *15,* 1724.
- (210)
- Armstrong, L. G.; Lindoy, L. F.; McPartlin, M.; Mockler, G.
M.; Tasker, P. A. *Inorg. Chem.* 1977, 16, 1665.
Armstrong, L. G.; Grimsley, P. G.; Lindoy, L. F.; Lip, H. C.;
Norris, V. A.; Smith, R. J. *Inorg. Chem.* 1978, 17 (211
- (212)
- **1984,** *106,* 84577m. (213
- (214) Martin, J. W. L.; Wainwright, K. P.; Weerasuria, K. D. V.; Wild, S. B. *Inorg. Chim. Acta* **1985,** *99,* L-5. Schultz, A. G.; Pinto, D. J. P.; Welch, M. *J. Org. Chem.* 1988, (215
- *53,* 1372.
- Dietrich, B.; Fyles, T. M.; Lehn, J. M.; Pease, L. G.; Fyles, D.
L*. J. Chem. Soc., Chem. Commun.* 1978, 934.
White, B. D.; Arnold, K. A.; Garrell, R. L.; Fronczek, F. R.;
Gandour, R. D.; Gokel, G. W. J. *Org. Chem.* 1987, (216)
- (217
- 1982; *Chem. Abstr.* **1983,** *98,* 143475t. Carroy, A.; Langick, C. R.; Lehn, J. M.; Matthes, K. E.; (218)
- Parker, D. *Helv. Chim. Acta* 1**9**86, 69, 580.
Gokel, G. W. U.S. Patent 4436 664, 1984.
Pacey, G. E.; Sasaki, K. U.S. Patent 4 659815, 1987.
Katayama, Y.; Fukuda, R.; Hiwatari, K.; Takagi, M. *Kenkyu* (219)
- (220)
- (221
- *Hokoku*—*Asahi Garasu Kogyo Gijutsu Shoreikai* **1986,** *48,* (222
- 193; *Chem. Abstr.* 1987, 107, 32225w.
Bottino, F.; Grazia, M. D.; Finocchiaro, P.; Fronczek, F. R.;
Mamo, A.; Pappalardo, S. J. Org. Chem. 198,, 53, 3521.
Qin. S.: Hu. R. *Hugxue Shiji* 1984. 6. 159: Chem. Abstr. 1985. (223)
- *102,* 6449z. (224
- (225) Kimura, K.; Sakamoto, H.; Koseki, Y.; Shono, T. Chem. Lett. 1985, 1241.
- (226) Kimura, K.; Oishi, H.; Sakamoto, H.; Shono, T. *Nippon Kagaku Kaishi* **1987,** 277.
- (227) Maeda, M.; Nakatsuji, Y.; Okahara, M. J. Chem. Soc., Chem.
- (228)
-
- Maeda, M.; Nakatsuji, Y.; Okahara, M. J. Chem. Soc., Chem.
Commun. 1981, 471.
Bogatsky, A. V.; Ganin, E. V.; Makarov, V. F.; Kotlyar, S. A.;
Lukyanenko, N. G. Ukr. Khim. Zh. 1985, 51, 664; Chem.
Abstr. 1985, 103, 215266x.
 160484;. (229)
(230)
- (231) Ajinomoto Co., Inc. Jpn. Kokai Tokkyo Koho JP 58 131 974, 1983; *Chem. Abstr.* **1984,***100,* 683286.
- (232) Schultz, R. A.; Dishong, D. M.; Gokel, G. W. *J. Am. Chem. Soc.* **1982,** *104,* 625.
- Gokel, G. W.; Echegoyen, L.; Kim, M. S.; Eyring, E. M.; Petrucci, S. *Biophys. Chem.* 1987, *26,* 225. Tazaki, M.; Nita, K.; Takagi, M.; Ueno, K. *Chem. Lett.* 1982, 571. (233
- (234
- (235) Gokel, G. W.; Hernandez, J. C.; Viscariello, A. M.; Arnold, K. A.; Campana, C. F.; Echegoyen, L.; Fronczek, F. R.; Gandour, R. D.; Morgan, C. R.; Trafton, J. E.; Miller, S. R.; Minganti, C; Eiband, D.; Schultz, R. A.; Tamminen, M. *J. Org. Chem.* 1987, *52,* 2963.
- Matsushima, K.; Nakatsuji, Y.; Kawamura, N.; Okahara, M. *J. Heterocycl. Chem.* **1986,** *23,* 255. (236
- Nakamura, H.; Sakka, H.; Takagi, M.; Ueno, K. *Chem. Lett.* 1981, 1305. (237)
- Bogatsky, A. V.; Ganin, E. V.; Makarov, V. F.; Kotlyar, S. A.;
Lukyanenko, N. G. *Khim. Geterotsikl. Soedin.* 1986, 670;
Chem. Abstr. 1987, 106, 196420*m.*
Gustowski, D. A.; Gatto, V. J.; Mallen, J.; Echegoyen, L.;
Gokel (238)
- (239)
- (240
- 1633.
He, G. X.; Abe, A.; Ikeda, T.; Wada, F.; Kikukawa, K.;
Matsuda, T. Bull. Chem. Soc. Jpn. 1986, 59, 674.
He, G. X.; Kikukawa, K.; Ikeda, T.; Wada, F.; Matsuda, T.
J. Chem. Soc., Perkin Trans. 2 1988, 719.
Iyanov, E. I (241
- (242)
- *Chem. Abstr.* **1987,** *107,* 2366816. (243)
- (244) Nakatsuji, Y.; Sakamoto, M.; Okahara, M.; Matsushima, K. *Nippon Kagaku Kaishi* **1987,** 430. Kuo, P. L.; Ikeda, I.; Okahara, M. *Tenside Deterg.* 1982,*19,* (245:
- 204.
- Kuo, P. L.; Ikeda, I.; Okahara, M. *Tenside Deterg.* 1982,*19,* (246 4. (247
- Bock, H.; Hierholzer, B.; Vogtle, F.; Hollmann, G. *Angew. Chem.* 1984, *23,* 57. Ikeda, I.; Ozawa, Y.; Nakatsuji, Y.; Okahara, M. *J. Am. Oil Chem. Soc* **1987,** *64,* 1034. (248)
-
- (249) McLain, S. J. *J. Am. Chem. Soc.* **1983,***105,* 6355.
- (250) Shinkai, S.; Manabe, 0.; Oguchi, M. Jpn. Kokai Tokkyo Koho JP 6200074, 1987; *Chem. Abstr.* **1987,** *107,* 10692Ot.
- (251) Fery-Forgues, S.; Le Bris, M. T.; Guette, J. P.; Valeur, B. *J. Chem. Soc, Chem. Commun.* **1988,** 384.
- (252) Andrews, M. P.; Blackburn, C; McAleer, J. F.; Patel, V. D. *J. Chem. Soc, Chem. Commun.* **1987,** 1122.
-
-
- (253) Shinkai, S.; Shigematsu, K.; Kusano, Y.; Manabe, O. J.

Chem. Soc., Perkin Trans. 1 1981, 3279.

(254) Echegoyen, L. E.; Hernandez, J. C.; Kaifer, A. E.; Gokel, G.

W.; Echegoyen, L. J. Chem. Soc., Chem. Commun. 1988
- (256) Nippon Oils and Fate Co., Ltd. Jpn. Kokai Tokkyo Koho JP 59157076, 1984; *Chem. Abstr.* **1985,** *102,* 6566*.
- (257) Nakatsuji, Y.; Kikui, T.; Ikeda, J.; Okahara, M. *Bull. Chem. Soc. Jpn.* **1986,** 56, 315. (258) Groth, P. *Acta Chem. Scand., Ser. A* **1985,** *39,* 363.
-
- (259) He, G. X.; Kikukawa, U.; Ohe, H.; Machida, M.; Mateuda, T. *J. Am. Chem. Soc.* **1988,** *110,* 603.
- (260) Lukyanenko, N. G.; Reder, A. S.; Lyamtseva, L. N. *Synthesis* **1986,** 932. (261) Beer, P. D. *J. Organomet. Chem.* **1985,** *297,* 313.
-
- (262) Beer, P. D.; Keefe, A. D. J. Organomet. Chem. 1986, 306, C10.
(263) Sheng, H.; Li, S.; Lu, H.; Cheng, D. Huaxue Xuebao 1983, 41,
1127; Chem. Abstr. 1983, 100, 209771e.
- (264) Sheng, H.; Li, S.; Lu, H.; Cheng, D. *Youji Huaxue* **1982,** 449; *Chem. Abstr.* **1983,** 98, 198182a. (265) Anelli, P. L.; Montanari, F.; Quici, S. *J. Chem. Soc, Chem.*
- *Commun.* **1985,** 132.
- (266) Jurczak, J.; Ostaszewski, R. *Tetrahedron Lett.* **1988,***29,* 959.
- (267) Pietraszkiewicz, M.; Salanski, P.; Jurczak, J. *Bull. Pol. Acad. ScL, Chem.* **1985,** *33,* 433; *Chem. Abstr.* **1987,** *106,* 50173n.
- (268) Kolinški, R. A.; Mrozinski, J. Proc. 9th Conf. Coord. Chem.
1983, 179; Chem. Abstr. 1983, 99, 168355n.
(269) Kolinski, R. A.; Mrozinski, J. Polyhedron 1983, 2, 1217.
(270) Boyce, B. A.; Carroy, A.; Lehn, J. M.; Parke
-
- *Soc, Chem. Commun.* **1984,** 1546.
- (271) Matthes, K. E.; Parker, D.; Buschmann, H. J.; Ferguson, G. *Tetrahedron Lett.* **1987,** *28,* 5573.
- (272) Fu, G. X.; Wu, Y. W.; Xu, X. Y. *Huaxue Xuebao* **1985,** *43,* 150; *Chem. Abstr.* **1985,** *102,* 220328c.
- (273) Carroy, A.; Lehn, J. M. *J. Chem. Soc, Chem. Commun.* **1986,** 1232.
- (274) Kumar, A.; Mageswaran, S.; Sutherland, I. 0. *Tetrahedron* **1986,** *42,* 3291.
- (275) Lukyanenko, N. G.; Basok, S. S.; Filonova, L. K. *Synthesis* **1988,** 335.
- (276) Calverley, M. J.; Dale, J. *J. Chem. Soc, Chem. Commun.* **1981,** 1084.
- (277) Gansow, O. A.; Kausar, R. A.; Triplett, K. B. *J. Heterocycl. Chem.* **1981,** *18,* 297.
- (278) Cheng, D.; Li, S.; Lu, H.; Chen, Y.; Sheng, H. *Youji Huaxue* **1983,** 207; *Chem. Abstr.* **1983,** *99,* 122440fe.
- (279) Ueno, K. Jpn. Kokai Tokkyo Koho JP 8204976,1982; *Chem. Abstr.* **1982,** *96,* 199752g. (280) Zinic, M.; Skaric, V. *J. Org. Chem.* **1988,** 53, 2582.
-
- (281) Kyte, A. B.; Owens, K. A.; Sutherland, I. O. *J. Chem. Soc,*
- Perkin Trans. 1 1987, 1921.
(282) Bogatsky, A. V.; Filippova, J. O.; Britva, I. E.; Golovienko, N.
Ya.; Lukyanenko, N. G.; Galkin, B. N.; Popkov, Yu. A. *Khim.
Farm. Zh.* 1984, 18, 1191; Chem. Abstr. 1985, 102, 132010n.
- (283) Kasprzyk, S. P.; Wilkins, R. G. *Inorg. Chem.* **1988,**27,1834. (284) Richardson, N. M.; Sutherland, I. O. *Tetrahedron Lett.* **1985,**
- *26* 3739
- (285) Tsukube, H.; Takagi, K.; Higashiyama, T.; Iwachido, T.; Hayama, N. *J. Incl. Phenom.* **1984,** 2, 103.
- (286) Tsukube, H.; Yamashita, K.; Iwachido, T.; Zenki, M. *Tetra-hedron Lett.* 1988, *29,* 569. (287) Shiga, M.; Nishida, H.; Nakamura, H.; Takagi, M.; Ueno, K.
- *Bunseki Kagaku* **1983,** *32,* E293; *Chem. Abstr.* **1984,** *100,* $28949v.$
- (288) Nishida, H.; Tazaki, M.; Takagi, M.; Ueno, U. *Mikrochim.* Acta **1981,** I, 281.
- (289) Dragomiretskaya, E. I.; Orfeev, V. S.; Popkov, Yu. A.; Andronati, S. A. *Dokl. Akad. Nauk. Ukr. SSR, Ser B: Geol, Khim. Biol. Nauki* **1987,** 40; *Chem. Abstr.* 1988,*108,*167446*.
- (290) Jones, N. F.; Kumar, A.; Sutherland, I. O. *J. Chem. Soc, Chem. Commun.* **1981,** 990. (291) Squiller, E. P.; Whittle, R. R.; Richey, H. G. *Organometallics*
-
-
- 1985, 4, 1154.

(292) Li, Yu.; Zheng, J.; Ma, W.; Ma, G. Huaxue Shijie 1985, 26,

446; Chem. Abstr. 1985, 104, 224880u.

446; Chem. Abstr. 1985, 104, 224880u.

(293) Lukyanenko, N. G.; Bogatsky, A. V.; Basok, S. S.; Ostrov
-
-
- (296) Ando, N.; Ohi, S.; Yamamoto, Y.; Oda, J.; Inouye, Y. *Bull. Inst. Chem. Res., Kyoto Univ.* **1980,** *58,* 293; *Chem. Abstr.* **1981,** *94,* 121489u.
- (297) Lukyanenko, N. G.; Bogatsky, A. V.; Kirichenko, T. J.; Scherbakov, S. V.; Nazarova, N. Yu. *Synthesis* **1984,** 137.
- (298) Arnold, K. A.; Viscariello, A. M.; Kim, M. S.; Gandour, R. D.; Fronczek, F. R.; Gokel, G. W. *Tetrahedron Lett.* **1988,** *29,* 3027.
- (299) Jurczak, J.; Ostaszewski, R.; Pietraszkiewicz, M.; Salanski, P.
- *J. Incl. Phenom.* **1987,** 5, 553. (300) Chang, C. A.; Rowland, M. E. *Inorg. Chem.* **1983,** *22,* 3866. (301) Tsukube, H.; Takagi, K.; Higashiyama, T.; Iwachido, T.; Hayama, N. *Bull. Chem. Soc. Jpn.* **1988,** *61,* 293.
- (302) Bogatsky, A. V.; Lukyanenko, N. G.; Pastushok, V. N.; Kos-tyanovskii, R. G. *Dokl. Akad. Nauk SSSR* **1982,** *265,* 619;
- *Chem. Abstr.* **1982,** *97,* 216146c. (303) Lukyanenko, N. G.; Kostyanovskii, R. G.; Pastushok, V. N.; Bogatsky, A. V. *Khim. Geterotsikl. Seodin.* **1986,** 413; *Chem. Abstr.* **1987,** *106,* 50175p.
- (304) Rubchenko, V. F.; Ignatov, C. M.; Chervin, J. J.; Nosova, V. S.; Kostyanovskii, R. G. *Izv. Akad. Nauk SSSR* **1986,**1153; *Chem. Abstr.* **1987,** *106,* 175847r.
- (305) Lee, E.; Park, S. K.; Paik, Y. H. *Bull. Korean Chem. Soc.* **1980,***1,* 145; *Chem. Abstr.* **1981,** *94,* 121489u.
- (306) Buoen, S.; Dale, J.; Krane, J. Acta Chem. *Scand.* **1984,** *B38,* 773.
- (307) Arnold, K. A.; Echegoyen, L.; Fronczek, F. R.; Gandour, R. D.; Gatto, V. J.; White, B. D.; Gokel, G. W. *J. Am. Chem. Soc.* **1987** *109* 3716
- (308) Hamilton', A. D.; Kazanjian, P. *Tetrahedron Lett.* **1985,** *26,* 5735.
- (309) Tsuchida, H. Jpn. Kokai Tokkyo Koho JP 81127 385,1981;
- *Chem. Abstr.* **1982,** 96, 142570s. (310) Tsukube, H.; Takagi, K.; Higashiyama, T.; Iwachido, T.; Hayama, N. *J. Chem. Soc, Perkin Trans. 1* **1986,** 1033.
- (311) Tsukube, H. *Chem. Lett.* **1984,**1961.
- (312) Tsukube, H. *J. Chem. Soc, Chem. Commun.* **1984,** 315.
-
- (313) Sonveaux, E. *Tetrahedron 1984, 40, 793.*
(314) Declercq, J. P.; Sonveaux, E. Nouv. J. Chem. 1984, 8, 591;
Chem. Abstr. 1985, 103, 22565k.
(315) Keana, J. F. W.; Cuomo, J.; Lex, L.; Seyedrezai, S. E. J. Org.
- *Chem.* **1983,** *48,* 2647.
- (316) Tsukube, H. *J. Chem. Soc, Perkin Trans. 1* **1985,** 615.
- (317) Kim, **M.** S.; Gokel, G. W. *J. Chem. Soc, Chem. Commun.* **1987,** 1686.
- (318) Shinkai, S.; Inuzuka, K.; Manabe, O. *Chem. Lett.* 1983, 747. (319) Lukyanenko, N. G.; Basok, S. S.; Filonova, L. K. *Zh. Org. Khim.* **1987,** *23,* 660; *Chem. Abstr.* **1987,***107,* 217612p.
- (320) Basok, S. S. *Nauchno-Tekh. Prog. Proizvod. Khim. Vesh-chestv. Mater., Mater. Ukr. Nauchno-Tekh. Konf. MoIo-dykh. Uch.-Khim. 1st* **1981** (Published 1984); 34 (Drach, B. S., Ed.; Naukova Dumka: Kiev, USSR); *Chem. Abstr.* **1986,** *105,* 6499c.
- (321) Tsukube, H. *J. Chem. Soc, Perkin Trans 1* **1982,** 2359.
- (322) Ganin, E. V.; Makarov, V. F.; Lukyanenko, N. G.; Kotlyar, S. A. *Khim. Geterotsikl. Soedin.* **1987,** 536; *Chem. Abstr.* **1988** *108* 131777e
- (323) Shinkai, S.; Kinda, H.; Sone, T.; Manabe, O. *J. Chem. Soc, Chem. Commun.* **1982,** 125.
- (324) Shinkai, S.; Kinda, H.; Araragi, Y.; Manabe, O. *Bull. Chem. Soc. Jpn* **1983,** *56,* 559.
- (325) Shinkai, S.; Nakamura, S.; Ohara, K.; Tachiki, S.; Manabe, O.; Kajiyama, T. *Macromolecules* **1987,** *20,* 21; *Chem. Abstr.* **1987,** *106,* 34137*.
-
- (326) Sesta, B.; D'Aprano, A. *J. Phys. Chem.* **1988,** *92,* 2992. (327) Sugai Chemical Industry Co., Ltd. Jpn. Kokai Tokkyo Koho JP 58135869, 1983; *Chem. Abstr.* **1984,** *100,* 51615u.
- (328) Chadwick, D. J.; Cliffe, I. A.; Sutherland, I. O. *J. Chem. Soc, Chem. Commun.* **1981,** 992.
- (329) Lukyanenko, N. G.; Bogatsky, A. V.; Shapkin, V. A.; Popkov, Yu. A. *Zh. Org. Khim.* **1981,***17,*1069; *Chem. Abstr.* **1984,** 700, 191855y.
- (330) Kimura, K.; Kumami, K.; Kitazawa, S.; Shono, T. J. Chem.
Soc., Chem. Commun. 1984, 442.
(331) Petranek, J.; Ryba, O.; Semler, M.; Panoch, M. Brit. U.K.
Patent GB 2086925, 1982; Chem. Abstr. 1983, 99, 159678t.
-
-
-
- (332) Bradshaw, J. S.; Jiang, W.; Krakowiak, K. E.; Wu, G.; Walke,
D. W.; Dalley, N. K.; Izatt, R. M. J. Incl. Phenom., in press.
(333) Bogatsky, A. V.; Lukyanenko, N. G.; Kirichenko, T. I. Zh.
 Org . Khim. 1980, 16, 1301.
- (335) Grien, A. I.; Timofyeyev, O. S.; Rozynov, B. V.; Lukyanenko, N. G.; Bogatsky, A. V.; Kirichenko, T. I. Izv. Akad. Nauk SSSR 1984, 2801; Chem. Abstr. 1985, 102, 148555s.
(336) Lukyanenko, N. G.; Bogatsky, A. V.; Kiric
-
- *Abstr.* **1982,** *96,* 6697m. (337) Bogatsky, A. V.; Lukyanenko, N. G.; Kirichenko, T. I.; Li-

mich, V. V. *Synthesis* **1984,** 136.

- (338) Bogatsky, A. V.; Lukyanenko, N. G.; Kirichenko, T. I.; Li-
mich, V. V.; Nazarova, N. Yu.; Karpienko, L. P. Zh. Org.
Khim. 1985, 21, 1513; Chem. Abstr. 1986, 104, 207242s.
Bogatsky, A. V.; Lukyanenko, N. G.; Kirichenko, T
- (339) *thesis* **1982,** 464.
- (340; Bogatsky, A. V.; Lukyanenko, N. G.; Kirichenko, T. I.; Li-mich, V. V.; Karpienko, L. P. *Zh. Org. Khim.* **1984,** *20,* 101; *Chem. Abstr.* **1984,** *100,* 174797p.
- (341 Alfheim, T.; Buoen, S.; Dale, J.; Krautwurst, K. D. *Acta Chem. Scand.* **1986,** *B40,* 40.
- (342 Zinic, M.; Bosnic-Kasnar, B.; Kolbah, D. *Tetrahedron Lett.* **1980,** *21,* 1365.
- (343 (344 Rossa, L.; Vogtle, F. *Liebigs Ann. Chem.* **1981,** 459. Krakowiak, K. E.; Kotelko, B.; Bradshaw, J. S.; Dalley, K. N.
- *J. Heterocycl. Chem.* **1988,** *25,* 1327. Buoen, S.; Dale, J. *Acta Chem. Scand.* **1986,** *B40,* 278. Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M. *Tetrahedron*
- (345 (346
- (347 Canceill, J.; Collet, A.; Gabard, J.; Kotzyba-Hibert, F.; Lehn, J. M. *HeIv. Chim. Acta* **1982,** *65,* **1894.** *Lett.,* submitted.
- (348 Graf, E.; Kintzinger, J. P.; Lehn, J. M.; LeMoigne, J. *J. Am. Chem. Soc.* **1982,** *104,* 1672.
- (349. Lukyanenko, N. G.; Kirichenko, T. I.; Limich, V. V. *Syn-thesis* **1986,** 928.
- (350 Hancock, R. D.; Evers, A.; Ngwenya, P. M.; Wade, P. W. *J. Chem. Soc, Chem. Commun.* **1987,** 1129.
- (351 (352; Katagi, T.; Kuriyama, H. *Heterocycles* **1982,***19,* 1681. Sun, Y.; Martell, A. E.; Motekaitis, R. J. *Inorg. Chem.* 1985,
- *24,* 4343.
- (353; Hosseini, M. W.; Lehn, J. M.; Mertes, M. P. *HeIv. Chim. Acta* **1983,** *66,* 2454.
- (354; Hosseini, M. W.; Lehn, J. M. *J. Chem. Soc, Chem. Commun.* 1985, 1155.
- (355; Hosseini, M. W.; Lehn, J. M.; Maggiora, L.; Mertes, K. B.; Mertes, M. P. *J. Am. Chem. Soc.* 1987, *109,* 537. Blackburn, M. G.; Thatcher, G. R. J.; Hosseini, M. W.; Lehn,
- (356) (357 J. M. *Tetrahedron Lett.* **1987,** *28,* 2779. Hosseini, M. W.; Lehn, J. M. *J. Chem. Soc, Chem. Commun.*
- 1988 397
- (358; Martin, A. E.; Ford, T. M.; Bulkowski, J. E. *J. Org. Chem.* **1982,** *47,* 412.
- (359; Dietrich, B.; Hosseini, M. W.; Lehn, J. M.; Sessions, R. B. *J. Am. Chem. Soc* **1981,** *103,* 1282.
- (360; Comarmond, J.; Dietrich, B.; Lehn, J. M.; Louis, R. *J. Chem. Soc, Chem. Commun.* 1985, 74.
- (361 Constantin, E.; Dietrich, B.; Hosseini, M. W.; Lehn, J. M.; Sessions, R. B. *Analytical Chemistry Symposia Series;* Fri-gerio, A., Ed.; Elsevier: Amsterdam, Oxford, New York, 1983;

- Vol. 12, pp 327-332. (362) Lipatova, T. E.; Kosyanchuk, L. F.; Khramova, T. S. *Teor. Eksp. Khim.* **1983,***19,* 323; *Chem. Abstr.* **1983,** *99,*132680a.
- (363) Fujioka, H.; Kimura, E.; Kodama, M. *Chem. Lett.* **1982,** 737. (364) Wu, Z.; Lu, T. Faming Zhuanli Shenqing Gongkai Shuom-
- ingshu CN **86**103456,1986; *Chem. Abstr.* **1988,***109,* 22986*. (365) Pietraszkiewicz, M.; Salanski, P.; Ostaszewski, R.; Jurczak, J.
- *Heterocycles* **1986,** *24,* 1203. (366) Song, J.; Wu, Ch.; Xu, K.; Shao, Q.; Huang, Y.; Yuan, H.; Qiu, J.; Shen, L. *Bopuxue Zazhi* **1985,***2,*173; *Chem. Abstr.* 1987, *106,* 4454/.
- (367) Yang, D.; Wang, T.; Wang, G.; Wu, Ch.; Song, J. *Youji Hu-axue* **1986,** 47; *Chem. Abstr.* **1986,** 205, 133215g. (368) Anelli, P. L.; Spencer, N.; Stoddart, J. F. *Tetrahedron Lett.*
- **1988** *29* 1569
- (369) Anelli, P. L.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J. *Tetrahedron Lett.* **1988,** *29,* 1575.
- (370) Anelli, P. L.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J. *Tetrahedron Lett.* **1988,** *29,* 1573.
- (371) Li, R. *Wuhan,* Daxue *Xuebao, Ziran Kexueban* **1985,** 121; *Chem. Abstr.* **1986,** *105,* 126460e.
- (372) Degutis, Yu.; Medeksiene, G. *Zh. Org. Khim.* **1982,***18,* 1015; *Chem. Abstr.* **1982,** *97,* 109979e.
- (373) Tasker, P. A.; Trotter, J.; Lindoy, L. F. *J. Chem. Res. (S)* **1981,** 328.
- (374) Paredes, R. S.; Valera, N. S.; Lindoy, L. F. *Aust. J. Chem.* **1986,** *39,* 1071.
- (375) Anderegg, G.; Ekstrom, A.; Lindoy, L. F.; Smith, R. J. *J. Am. Chem. Soc* **1980,** *102,* 2670.
- (376) Adam, K. R.; Baldwin, D.; Duckworth, P. A.; Leong, A. J.; Lindoy, L. F.; McPartlin, M.; Tasker, P. A. *J. Chem. Soc, Chem. Commun.* **1987,** 1124. (377) Dudler, V.; Lindoy, L. F.; Sallin, D.; Schlaepfer, C. W. *Aust.*
- *J. Chem.* **1987,** *40,* 1557.
- (378) Adam, K. R.; Dancey, K. P.; Harrison, B. A.; Leong, A. J.; Lindoy, L. F.; McPartlin, M.; Tasker, P. A. *J. Chem. Soc, Chem. Commun.* **1983,** 1351.
- **(379)** Harding, P. A.; Henrick, K.; Lindoy, L. F.; McPartlin, M.; Tasker, P. A. *J. Chem. Soc, Chem. Commun.* **1983,** 1300.
- **(380)** Adam, K. R.; Leong, A. J.; Lindoy, L. F.; McCool, B. J.; Ek-strom, A.; Liepa, L; Harding, P. A.; Henrick, K.; McPartlin, M.; Tasker, P. A. *J. Chem. Soc, Dalton Trans.* **1987,** 2537.
- (381) Glinka, R.; Piatowska, E.; Idowski, P. *Acta Pol. Pharm.* 1985, *42,* 587; *Chem. Abstr.* **1987,** *106,* 156445s.
- (382) Glinka, R.; Walczynski, K. *Acta Pol. Pharm.* **1986,** *43,* 32; *Chem. Abstr.* **1987,** *106,* 176361?.
- (383) Foti, S.; Maravigna, P.; Montaudo, G. *J. Polym. ScL* **1981,***19,* 1679.