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/. Introduction 

Although the first example of a transition-metal 
cluster compound was discovered more than 50 years 
ago, it was not until the early 1960s, when three-circle 
X-ray diffractometers became generally available, that 
this area of chemistry began to emerge as a major 
subdiscipline. These clusters, which can be obtained 
in gram quantities by conventional synthetic chemistry 
techniques, have a protective sheath of ligands coor­
dinated to the metal atoms. This ligand shell confers 
solubility in organic solvents on the cluster and also 
prevents cluster aggregation to the bulk metal. For 
transition-metal clusters these ligands can be either ir 
acceptors (e.g., CO, CNR, NO) or ir donors (e.g., Cl, OR, 
S) and for main-group clusters they are generally hy­
drogen or an organic alkyl group. 

Examples of ligated clusters with up to 44 metal at­
oms have been characterized in the solid state by sin­
gle-crystal X-ray crystallographic techniques.1 This has 
provided detailed structural information on the geom­
etries and bond lengths associated with both the metal 
cluster and the ligand shell. The structures of the 
compounds in solution have been investigated by in­
frared and NMR spectroscopic techniques, and such 
studies have established that in many of these com­
pounds the ligands migrate over the surface of the 
cluster rapidly on the NMR time scale. There are also 
a few examples where the metal core is stereochemically 
nonrigid, in particular with the gold phosphine clusters, 
[Au(AuPR3)J

1+. These spectroscopic techniques have 
also provided a basis for defining the products of re­

actions of these clusters with a wide variety of sub­
strates, e.g., hydrogen, unsaturated organic and inor­
ganic molecules, etc. In addition, a reasonable under­
standing of the electronic structures of these clusters 
has emerged as a result of the combination of molecular 
orbital calculations and photoelectron spectral studies. 

More recently, physicists and physical chemists have 
shown an interest in clusters formed in molecular beam 
experiments.2 The study of clusters in the gas phase 
can be traced to the pioneering work of Schumacher 
and co-workers,3 Foster and Leckenby,4 and Echt, 
Recknagel, and Sattler,5 although several other groups, 
mentioned below, have also contributed substantially 
to the development of the field. These clusters were 
originally generated in the gas phase by high-temper­
ature techniques and analyzed by mass spectrometry.5,6 

In addition, Knudsen cell methods were used to study 
the energetics of the vapor equilibria involving the 
metal clusters. The study of very small clusters (two 
and three atoms) with low internal temperatures by 
modern spectroscopic methods has yielded high-reso­
lution data concerning their electronic structures.7'8 The 
molecular beam experiments combine a means of pro­
ducing metal vapors at elevated temperatures with the 
techniques of rarefied gas dynamics to produce an is-
entropic and supersonically expanded "free jet" of 
"cold" metal clusters which are probed by mass spec­
trometry and laser spectroscopy. 

Alternatively, metal vaporization in an inert carrier 
gas stream leads to a "quenching" of the metal vapor.9 

This leads to large supersaturation ratios and rapid 
nucleation and cluster growth.10 Mass spectrometry, 
fluorescence excitation spectroscopy using tunable dye 
lasers, and multiphoton ionization spectroscopy have 
provided particularly useful information concerning 
cluster stability and electronic structure.11 Photodis-
sociation on neutrals and photodetachment of electrons 
from mass-selected anions are other techniques that 
have been applied.12 In early experiments it was es­
tablished that sodium clusters exhibit distinct "magic 
numbers" indicating cluster nuclearities with high sta­
bilities relative to neighboring clusters. In particular, 
large mass spectral peaks corresponding to n = 8, 20, 
40, 58, and 92 have been associated with clusters of high 
stability.13 This observation has been rationalized by 
using the spherical jellium model, a simple one-electron 
spherical potential model.13 Such studies have been 
subsequently extended to a wide range of metals and 
main-group atoms. Finally, reactivity studies have re­
cently yielded information on the size dependence of 
the chemical behavior of clusters.14 

The major aim of this review is to provide a theo­
retical framework applicable to both gas-phase bare 
clusters and condensed-phase ligated clusters. In par­
ticular, we shall demonstrate that although chemists 
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and physicists have developed models that superficially 
appear to be very different, there are many points of 
similarity and the conclusions derived from them are 
frequently identical. The review consists of two major 
parts: the first, a comparison of the jellium and LCAO 
approaches, and the second, the application of elec­
tron-counting rules to molecular beam clusters. 

II. Models for Simple Metal Clusters 

A. The Spherical Jellium Model 

The "magic numbers" oberved in molecular beam 
experiments are particularly evident in the mass spec­
tral data for alkali-metal clusters, noble gases, and 
carbon clusters, although the occurrence of clusters of 
particular stability is, as we shall see, considerably wider 
than this. In this section we are concerned with the 
alkali metals. In this group, mass spectra have been 
reported for Li,15 Na,13 K,16-17 LiKx,

18 LixNay,
19 RbxCs^,20 

and NaxK.16 

Theoretical studies of the stabilities and structures 
of alkali-metal clusters have been of four types. Huckel 
calculations have been carried out on all possible neutral 
and cationic structures up to M9 and on several cluster 
structures up to M14

21,22 as well as on anions up to M7.
23 

Several aspects of the results have been analyzed: no­
tably the orbital energies, electronic shell structures, 
and ionization potentials. In addition, some extrapo­
lations to the bulk limit have been made. Calculations 
based on interatomic potentials have also been re­
ported.24 More accurate calculations using both ab 
initio25 and local spin density,26 or Xa, methods have 
been carried out on small lithium and sodium clusters, 
including some geometries up to M2o,27 and the results 
provide more detailed information on the geometries 
and stabilities of the smaller lithium clusters and some 
sodium clusters. These calculations along with many 
others have been reviewed recently by Koutecky and 
Fantucci.25 

The simplest model is the spherical jellium model of 
Knight et al.,13 which has successfully predicted several 
of the magic numbers for alkali-metal clusters by as­
sociating these nuclearities with closed-shell electron 
counts. This model postulates that the electronic 
structure of free-electron metal clusters may be ap­
proximately described by considering only the energies 
of the valence electrons in a smooth potential, without 
specific information about the positions of the atomic 
cores. 

The original investigation13 of Knight and co-workers 
employed a central field potential of the form 

V0(r) = 1 \ (D 
e x p ( ^ - ° ) + 1 

where U0 is the sum of the Fermi energy and the work 
function of the bulk and r0 is the effective radius of the 
cluster sphere and assumed to be T3]V

1/2, where rs is the 
radius of a sphere containing one electron in the bulk. 
The parameter t was taken as 1.5 au in their calcula­
tions. This potential is a finite well with rounded sides 
and is illustrated in Figure 1. 

This potential is also used in nuclear physics shell 
models, where it goes under the name of the Woods-
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Figure 1. Woods-Saxon central field potential used by Knight 
et al. in their spherical jellium model of cluster electronic structure. 

Saxon potential28 and has no a priori justification in the 
context of clusters. Many of the jellium model con­
clusions are insensitive to the precise form of the central 
field potential, and Knight and co-workers have ex­
plored other forms of potential, including perturbed 
harmonic oscillator and rectangular potential well po­
tentials.29 

A crucial feature of the model is the separation of the 
Schrodinger equation into radial and angular parts, for 
it is this separation that yields the shell structure. The 
angular solutions are the spherical harmonics, which we 
shall meet many times during the course of this article, 
so the jellium wave functions can be written 

tnlm = fnl(r)Yr(e,<t>) (2) 

where Y/"(0,</>) is a spherical harmonic and fnl{r) de­
pends on the form of the central field potential. The 
wave function can thus be labeled by a principal 
quantum number (n) and the angular quantum num­
bers (I and m). In Knight's contributions, the energy 
level order for this one-electron model that results is13 

Is < Ip < Id < 2s < If < 2p < Ig < 2d < 3s < Ih... 

(note that for non-Coulombic potentials the wave 
function is conventionally written so that a given n has 
all positive integers / associated with it). Each shell, 
specified by n and I, has an orbital degeneracy of {11 
+ 1), the individual states being labeled by m. Elec­
tronic shell closings thus occur for the Woods-Saxon 
potential at 2, 8,18, 20, 34, 40, 58, 68, 70, 92 Mass 
spectra revealed large peaks for masses corresponding 
to n = 2, 8, 20, 40, 58, and 92 atoms for neutral sodium 
and potassium clusters generated in gas evaporation 
experiments, as shown in Figure 2.13 All these values 
are consistent with the spherical jellium model. 

Subsequently, the spherical jellium model has been 
applied to rationalize the mass spectral patterns derived 
from charged alkali-metal clusters and from other ele­
ments. Recently reported sodium cation spectra con­
tained large peaks at n = 19, 21, 35, and 41—also values 
predicted by the model.30 Several peaks in the mass 
spectra of Cu, Ag, Au,31 Zn, and Cd32 have also been 
assigned to jellium closed shells. 

A chemist may find the ordering of levels unfamiliar 
compared, for example, with the hydrogen-like atom 
energy levels, i.e. 

Is < 2s < 2p < 3s < 3p < 4s < 3d < 4p... 

The potential is, however, different in the two cases. 
The hydrogen-like central potential is infinite at the 
origin, falling off slowly (as 1/r) with distance. In 

1d 2s 2d 3s 1h 

Figure 2. Mass spectrum for sodium clusters showing discon­
tinuities at jellium "shell-closing" numbers 8, 20, 40, and 58. 
Adapted from: Knight, W. D.; Clemenger, K.; de Heer, W. A.; 
Saunders, W.; Chou, M. Y.; Cohen, M. L. Phys. Rev. Lett. 1984, 
52, 2124. 

Harmonic oscillator Intermediate Square well Hydrogen atom 

Figure 3. Energy level diagram showing energy level orderings 
for the hydrogen atom, the harmonic oscillator, the rounded square 
well, and the square well. The Woods-Saxon potential of Knight 
et al. and the perturbed oscillator of Clemenger both correspond 
to the "intermediate" case. 

contrast, the jellium potential is essentially flat out to 
the outer spherical surface of the cluster, which is 
modeled as a rounded square well, as shown in Figure 
1. This is very similar to a particle-in-a-sphere model. 
Chemists have previously used such an approach for 
interpreting the spectral properties of solvated elec­
trons, where the electron is thought to be trapped in 
a spherical cavity. The s solutions are the only ones 
with nonzero density at the origin and so are greatly 
stabilized in the hydrogen atom as compared to the 
particle-in-a-sphere case, p functions are likewise sta­
bilized compared to functions of higher angular mo­
mentum, as can be seen by comparing the ordering in 
the two cases. Figure 3 shows the relation between the 
energy level orderings for the hydrogen atom, the square 
well, and the isotropic harmonic oscillator, which is 
intermediate in character. 

It has become customary to refer to a set of orbitals 
specified by n and Z, e.g., 2p, as a shell in a jellium 
context, even though the word is used for a collection 
specified only by the principal quantum number n in 
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an atomic context. We employ the jellium terminology 
throughout this review. 

There has been debate over the significance and 
usefulness of the spherical jellium model.18 Such a 
simple model does, of course, have several weaknesses 
and limitations. In particular, although the model 
mades predictions concerning the electronic structure 
of those clusters with "closed shells" (and so could be 
expected to yield ionization energies, for instance, for 
these clusters; these predictions turn out to be inaccu­
rate18), it does not make accurate predictions concerning 
the electronic structure of "nonmagic number" clusters. 
The approximation of a spherical potential leads to 
stable configurations for closed shells, but for non-
closed-shell clusters, for which there is no such stability, 
we may expect the potential to alter "shape". Such a 
distortion perturbs the electronic energy levels, splitting 
the high degeneracy associated with spherical symme­
try. Such a splitting would be expected to stabilize 
clusters with partially filled shells. 

Second, the model often predicts too many "magic 
numbers". The electronic closed-shell requirement 
appears to be a necessary, but not sufficient, condition 
for the spherical stability associated with "magic 
numbers": how can be explain which closed shells will 
be observed as magic numbers and which will not? A 
third limitation is that the energy level ordering of the 
Woods-Saxon potential, which fits the alkali-metal 
spectra so well, does not fit the observations for several 
mixed, or compound, clusters. For instance, the Mg1K^ 
system has been studied18 and shows evidence for a 
particularly stable cluster at ten valence electrons: 
MgK8. This suggests that the 2s shell is brought down 
in energy below the Id shell in this system.33'34 Finally, 
if we are interested in a more detailed analysis of the 
properties of alkali-metal clusters, we need to have more 
information concerning their structures. The spherical 
jellium model provides little guide for us in this, even 
for closed-shell clusters. 

These limitations have prompted extensions to the 
original spherical jellium model. Electron-electron in­
teraction has been included in the spherical jellium 
model by Ekardt.35,36 Baladron and Alonso37 replaced 
the Woods-Saxon potential with a background positive 
charge density of spherical symmetry but varying with 
radial distance from the center in order ot explain the 
electronic structure of closed-shell compound clusters 
such as MgK8. Clemenger38 removed the restriction of 
spherical symmetry, employing a perturbed harmonic 
oscillator model and constant kz to the (degenerate) x 
and y force constants kxo,—to yield oblate (kz > kxJ and 
prolate (kz < kxy) shaped potential wells. Both Up-
ton39,40 and the present authors41 have explored the 
relationship of the spherical jellium model (and its ex­
tension to oblate/prolate shapes) to the "crystal field" 
expansion of the nuclear-electron potential and so 
clarified the relationship of the jellium model to nuclear 
configuration. These extensions have extended the 
scope and removed some of the limitations of the ori­
ginal model, and are discussed in the following section. 

B. A Structural Jellium Model 

We consider an independent-electron model in which 
the electron moves in the Coulomb potential of a col­
lection of pointlike atomic cores of effective nuclear 

charge Z at positions X0. This potential, V{r), can be 
expanded in spherical harmonics as follows:42,43 

+L 

V(r) = E E VL
M(r,e,4>) 

I=O M=-L 
(3) 

where the components of the potential are given by 

ViMirM = ^ i i m i YL
M(6,d>) (4) 

We employ this expansion just as it is used in crystal 
field theory:42 by taking the spherical (L = 0) compo­
nent as the zero-order potential and treating the non-
spherical remainder as a perturbation. We use this 
perturbation, in a qualitative first-order treatment, to 
evaluate the splitting patterns of each shell {n,l). These 
splitting patterns enable us to make predictions con­
cerning the shape of both closed-shell and non-closed-
shell clusters, while the form of the zero-order potential 
enables us to suggest necessary conditions for energy 
level ordering changes, as observed for some mixed 
clusters. 

The matrix elements of a potential component VL
M 

are given by the following:42,44 

(n,l,m\VL
M\n',l',m') = 

^^^YLM(ea,<Pa)Ul,mI - ^ 1 \YL
M(8,4>)\n',U,m') 

(5) 

The infinite number of VL
M components is reduced to 

a manageable number if we neglect the interaction of 
states with different principal quantum numbers. Se­
lection rules42'43 then dictate that only matrix elements 
of L such that L is even and less than or equal to 21 are 
nonzero and that only values of M = m- m'contribute. 
Further, once we specify a nuclear geometry, only VL

M 

terms that belong to the totally symmetric represent­
ation of the point group can contribute to the potential 
expansion. 

The neglect of interaction between states with dif­
ferent principal quantum numbers is a major approx­
imation, as there are no symmetry restrictions on matrix 
elements of the form (n,l,m\VL

M\n',l,m), which are thus 
coupled by an infinite number of components of the 
potential. The major consequence of this is that radial 
eigenfunctions of the central-field Schrodinger equation, 
with potential V0

0; a r e n° t S°°d approximations to the 
actual radial form of the cluster eigenfunctions: the 
perturbation analysis applies properly only to the an­
gular aspects of the problem. 

In eq 3, the Coulomb potential V(r) is decomposed 
into a spherical part, V0

0 > a n d a nonspherical part. 
When the former is the major contribution to the po­
tential, we obtain shell structures for clusters with 
"magic numbers" of electrons. Thus we recapture the 
essential features of the spherical jellium model if we 
ingore the nonspherical part of the potential. We note, 
however, that both the spherical and nonspherical parts 
of the potential are derived from a well-defined rela­
tionship to the Coulomb potential exerted by a par­
ticular configuration of atomic cores—hence the name 
"structural jellium model".41 The nonspherical part of 
the potential mixes extensively functions that have the 
same I and m values (to shift the energy of each shell) 
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TABLE 1. Electron Count and Energy for Oblate and 
Prolate Clusters 

P orbitals D orbitals F orbitals 
Figure 4. Splitting patterns of shells produced by a V2

0 per­
turbation. The sign of the perturbation is such as to yield a 
prolate-shaped potential well. The splittings obey a barycenter 
rule so that the sum of all splittings is zero. The individual states 
are labeled by the z component of their angular momentum. 

and, crucially, splits the (21 + l)-fold orbital degeneracy 
of the shell. This splitting of shells by the nonspherical 
components of the potential is a determinant of the 
shape of the cluster for both non-closed-shell and 
closed-shell electron counts. The splitting is propor­
tional to the effective charge of the atomic cores, tends 
to decrease (for a given value of /) with increasing nu-
clearity of the cluster, and tends to increase (for a given 
nuclearity) with L40,41 We now consider how this 
splitting is determined by, and affects, cluster geometry. 

C. The Shape of Non-Closed-Shell Clusters 

Very small neutral alkali-metal clusters Mn (n < 8) 
have only Is and Ip solutions of the jellium model filled. 
The degeneracy of the p shell can be split, but only by 
the V2

0 component of the perturbation.42 We consider 
a geometry where these n atoms are arranged on a 
spherical surface of radius r0. The sign of the splitting 
is determined by the geometric factor in eq 5; in fact, 
we can write41 

sign (AE(Km)) = sign (£y2°(0a,</>a)am|yLM|/,m>) = 

sign ( [ Z ( W - r0
2)](l,m\YL

M\l,m}) (6) 
a 

Several standard texts42'44 show the splitting patterns 
produced by the matrix elements {l,m\YL

M\l,m}, and 
these are reproduced in Figure 4 for the case where the 
geometry-dependent term in square brackets, hence­
forth abbreviated as [£] , is positive. In this case the 
m = 0 orbital is of lowest energy, for any /, and the 
energy increases with |m|. This corresponds to a prolate 
perturbation. 

The splittings are governed by a barycenter principle 
such that the stabilization or destabilization associated 
with the p±1 components is half that associated with 
P0.

45 The alternative splitting patterns for oblate and 
prolate geometries lead directly to a preference for a 
specific type of distortion as a function of the number 
of electrons occupying the p shell. In the spherical 
jellium model stability is associated with the presence 
of closed shells. Thus an alkali-metal cluster with a 
total of four electrons, i.e., a Is2Ip2 configuration, would 
have a preference for a prolate geometry because the 
stabilization energy associated with placing two elec­
trons in P0 is twice as large as that for placing two 
electrons in p±1 (see Figure 4). Similarly, an alkali-metal 
cluster with six electrons, Is2Ip4, is oblate. When eight 

electron count 
oblate 
prolate 
B(prolate) - £(oblate) 
preferred structure 

n = 2 

7 
2/3 
/3 

-0 
oblate 

n = 3 

n=5 n = 6 

Figure 5. The regular deltahedra. Two points can only define 
a line; three points are able to define an equilateral triangle. The 
deltahedra are the tetrahedron (4 points), the trigonal bipyramid 
(5 points), the octahedron (6 points), the pentagonal bipyramid 
(7 points), the dodecahedron (8 points), the tricapped trigonal 
prism (9 points), the bicapped square antiprism (10 points), and 
the icosahedron (12 points). Eleven vertices cannot define a 
regular deltahedron, but the closest geometry is shown. Thirteen 
points characterize a centered icosahedron. 

electrons are available, the p shell is completely filled 
and there is no driving force to reduce the symmetry 
from spherical. The energy difference between oblate 
and prolate options is shown as a function of electron 
count in Table 1. 

Oblate and prolate have, of course, strict definitions. 
A body is oblate (prolate) if the moments of inertia 
about two orthogonal axes are equal and are greater 
(less) than that about the third orthogonal axis. The 
definition we use is based on orbital splittings as defined 
below. In general, it coincides with the strict definition, 
but not always, e.g., the edge-shared bi-tetrahedron. 

The geometry of a cluster, even with all atoms at the 
same distance from the center, can be classified as 
"oblate" or "prolate" according to the sign of [£] , and 
this definition is precisely the same as that in terms of 
the moments of inertia of the clusters. Thus, for ex­
ample, a trigonal bipyramid is prolate; a pentagonal 
bipyramid is oblate; a tetrahedron, a cube, or octahe­
dron is spherical ((X] = 0); a tricapped trigonal prism 
is oblate; a bicapped square antiprism is prolate; and 
an icosahedron is spherical. Table 2 classified several 
common polyhedra as oblate, prolate, or spherical. 
These polyhedra are shown in Figure 5. 

In actual clusters, all nuclei do not generally lie on 
the same spherical surface. Furthermore, they deviate 
from this idealized case in such a manner as to enhance 
their oblate or prolate character. Thus, the equatorial 
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TABLE 2. Classification of Polyhedra according to Their 
Oblate/Prolate/Spherical Shape 

nuclearity 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
8 
8 
8 
8 
9 
9 

10 
10 
10 
10 
12 

geometry 
tetrahedron 
square 
edge-capped tetrahedron 
trigonal bipyramid 
square pyramid 
pentagon 
octahedron 
trigonal prism 
edge-shared tetrahedra 
pentagonal pyramid 
capped octahedra 
tricapped tetrahedron 
pentagonal bipyramid 
cube 
tetracapped tetrahedron 
dodecahedron 
square antiprism 
capped square antiprism 
tricapped trigonal prism 
tetracapped octahedron 
bicapped square antiprism 
pentagonal prism 
pentagonal antiprism 
icosahedron 

shape 
spherical 
oblate 
prolate 
prolate 
oblate 
oblate 
spherical 
prolate 
prolate 
oblate 
prolate 
oblate 
oblate 
spherical 
spherical 
prolate 
oblate 
prolate 
oblate 
spherical 
prolate 
oblate 
oblate 
spherical 

nuclei in the pentagonal bipyramid are farther from the 
center of the cluster than are the axial nuclei, while the 
converse is true for the trigonal bipyramid. This occurs 
because, if the V2

0 term from a configuration with all 
nuclei at radius r0 corresponds to an oblate (prolate) 
perturbation, then a geometrical distortion of the same 
oblate (prolate) type will reinforce that perturbation, 
so increasing the splitting of the p-orbital set. 

In summary, the inclusion of a V2
0 perturbation 

suggests that non-closed-shell clusters will adopt either 
an oblate or prolate geometry so as to produce a large 
HOMO-LUMO gap and hence optimum stabilization 
of the occupied orbitals. The odd-electron systems are 
more likely to deviate from the pattern imposed by the 
structural jellium model with a V2

0 perturbation. 
The arguments developed above not only define the 

general shape of the cluster but also severely limit the 
structures that are consistent with this shape. Table 
2 provides specific examples of this principle. We shall 
demonstrate in the next section that these conclusions 
are very similar to those derived from molecular orbital 
arguments. 

D. An LCAO Model of Shell Structure 

The free-electron model has considerably utility in 
treating the energetics of alkali-metal clusters, and, 
when combined with ideas from crystal field theory, it 
can make structural predictions. A complementary 
approach to structure and bonding in clusters based on 
an LCAO model46-48 yields the spherical jellium results 
for smaller alkali-metal clusters and also enables us to 
extend the structural predictions to other, seemingly 
unrelated, clusters. 

As in the spherical jellium model, we start with a 
spherically symmetric model system, but here we re­
strict ourselves initially to the case of a single shell of 
atomic cores on the surface of a sphere, so that only the 
angular aspects of the spherical problem are of concern. 
The atomic orbital basis functions are categorized as 
a, ir, or 8 type if they have 0, 1, or 2 nodal planes con­
taining the radius vector of the atom, respectively.46,47 

Mlngos et al. 

p z - • 

• 9S? 
Figure 6. Locally defined s, p2, and d22 orbitals, showing their 
a character. 

Here we consider only a orbitals,49-51 returning to the 
case of 7T and 5 orbitals later. 

If we choose a local coordinate system such that the 
z direction is along the radius vector from the cluster 
center passing through the atomic core, then the set of 
a orbitals includes the s, p2, and d22, orbitals, all cylin-
drically symmetric about this radius vector. These 
orbitals are illustrated in Figure 6. Consider first the 
case where there is only one a basis function on each 
atom, which we call <ra. We then obtain an LCAO wave 
function from a parent spherical harmonic YL

M by 
setting the coefficient of each atomic orbital equal to 
the value of YL

M at the atom core position: 

VLM = ZYL
M(6a,cj>a)aa 

a 

where 6a and cpa are the angular coordinates of atom a. 
The conventional shorthand for these symmetry-

adapted cluster orbitals is hM
x, where X = a, it, or S.46,47 

It is always possible to obtain cluster orbitals LM
X that 

transform according to definite irreducible represent­
ations of the molecular point group either by descent 
in symmetry or projection operator techniques. The 
approximate spherical symmetry of the clusters suggests 
that there will be little mixing between LM" of the same 
point group symmetry but derived from different 
spherical harmonics: the orthogonality between the 
parent free-electron wave functions is approximately 
preserved for the cluster. (The major asymmetry is the 
concentration of the potential at core sites, and this is 
accounted for by the use of an LCAO wave function.) 

The LCAO wave functions LM
X provide a useful 

framework in which to discuss the closed-shell re­
quirements and structural aspects of ligated clusters. 
In the general case their approximate energies are best 
derived from an evaluation of the Coulomb and inter­
atomic resonance integrals rather than from the energy 
of the parent spherical harmonic.46 For a cluster where 
only the valence s orbitals are important for bonding, 
the two approaches—spherical jellium and LCAO— 
yield the same energy level pattern. 

In Figure 7 the LCAO skeletal molecular orbitals for 
an icosahedron of s orbitals are illustrated. The most 
stable molecular orbital is an in-phase combination of 
all the s orbitals and is designated S", to emphasize the 
fact that the coefficients of the atomic orbitals have 
been derived from an expression of the Y0

0 spherical 
harmonic. The next most stable set of molecular or­
bitals is triply degenerate and singly noded, has been 
derived from Y1

0, Y1
1, and Yf1, and is described as Pff. 

The remaining molecular orbitals have the nodal 
characteristics of d and f orbitals and are described as 
D" and F". It is noteworthy that only three components 
of F" appear, because the remaining Y3

M functions are 
noded at the atom positions. 

In general, the Lj/ set have L nodal surfaces each and 
so increase in energy with L. The P" orbitals only be-
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D" h. 

TABLE 3. Most Stable Geometries of Lithium Clusters from ab 
Initio Calculations by Fantucci and Koutecky0 

Figure 7. a molecular orbitals of the icosahedron. In order of 
increasing energy these molecular orbitals are S" (no nodes), P" 
(one angular node), D" (two angular nodes)e, and F' (three angular 
nodes). Note that there are only three linearly independent F" 
orbitals. 

come overall bonding when n > 6, and the D" orbitals 
only become overall bonding when n > 16. Further, the 
splitting patterns of the LCAO LM" orbitals in the 
nonspherical case are the same as the splitting pattern 
of the jellium wave functions shown in Figure 4. 

For small alkali-metal clusters the LCAO and jellium 
models give identical conclusions. Clusters with closed 
shells (at 2, 8, and 18 electrons) will have spherical 
topologies, should be more stable than adjacent mem­
bers of the series, and will, in general, have higher 
ionization potentials. 

The energies associated with the Sff, P", and D" shells 
are determined by the number of nearest-neighbor at­
oms in the cluster and the nodal properties of the 
functions. Within a tight-binding or Huckel approxi­
mation the stabilization of a molecular orbital depends 
primarily on the next-neighbor resonance integral 
terms. For atoms on a singly spherical surface the 
largest number of nearest neighbors is achieved by 
deltahedral geometries. A deltahedron has exclusively 
triangular faces and therefore, by Euler's relationship, 
the maximum number of edges—or in a chemical con­
text the maximum number of nearest-neighbor inter­
actions. If the atoms lie on several spherical shells, the 
largest number of nearest-neighbor interactions is 
achieved by close packing—either in a conventional 
metallic sense or by icosahedral packing modes with 
fivefold symmetry. 

Therefore, in an LCAO approximation alkali-metal 
clusters with closed electronic shells—clusters with 2, 
8, 18, 20, 34 ... valence electrons—are anticipated to 
have pseudospherical close-packed structures of high 
symmetry, i.e., Td, Oh, or Ih if possible.52 This conclu­
sion, which has been derived from elementary consid­
erations, is supported by the geometric predictions 

molecular 
formula 

Li8
+ 

Li3 

Li4
+ 

Li4 

Li6
+ 

Li5 
Li6

+ 

Li6 

Li6 

Li7
+ 

Li7 

Li8
+ 

Li8 

Li9
+ 

Li9 

Li9 

Li10
+ 

Liio 
L i 1 4 

L i 1 8 

L i 1 8 

L i 1 9 

L i 1 9 

LJlB 
Li2O 

Li20 

electron 
count 

2 
3 
3 
4 
4 
5 
5 
6 
6 
6 
7 
7 
8 
8 
9 
9 
9 

10 
14 
18 

18 
19 
19 
19 
20 
20 

symmetry 

C21, 
D3H 
C21) 
D2H 
D3H 
C20 

D2H 
C20 

D3H 
DlH 
DbH 

c, 
Td 

Du 
C20 

C, 
C20 

C20 

C30 

DtH 

D3H 
DiH 
OH 
C30 

Ti 
Ti 

structure 

obtuse isosceles triangle 
equilateral triangle 
triangle, with one terminal atom 
rhombus 
trigonal bipyramid 
planar, triangular lattice 
edge-linked tetrahedra 
pentagonal pyramid 
planar, triangular lattice 
pentagonal bipyramid 
pentagonal bipyramid 
capped pentagonal bipyramid 
tetracapped tetrahedron 
centered square antiprism 
bicapped pentagonal bipyramid 
tetracapped trigonal bipyramid 
interlinked pentagonal bipyramids 
interlinked pentagonal bipyramids 

centered, omnicapped, pentagonal 
prism 

face-centered cubic 
bi-icosahedron 
centered octahedron 

face-centered cubic 
pseudospherical 

Figure 8. Geometries of neutral alkali-metal clusters with nu-
clearities and electron counts equal to jellium shell closings, from 
calculations by Fantucci and Koutecky:27 (a) Li8, tetracapped 
tetrahedron {Td symmetry); (b) Li18, hexagonal close packed (Dy1); 
(c) Li18, omnicapped pentagonal prism (Dy1); (d) Li20, face centered 
cubic tetrahedron (T )̂; (e) Li2Q, tetrahedron surrounded by points 
on a spherical surface (Td). 

derived from ab initio calculations by Fantucci and 
Koutecky,25,27 listed in Table 3 and illustrated in Figure 
8. 

It is not possible for all nuclearities to adopt high-
symmetry structures. Where a high-symmetry structure 
can be adopted, this will reinforce the stability asso­
ciated with a closed electronic shell, whereas if such a 
structure is not possible, no such reinforcement can 
occur. Instead, there would be a splitting of the shell 
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structure, with its attendant instability. We would thus 
expect the observation of "magic numbers" to depend 
on the nuclearity of the cluster as well as on the number 
of electrons. This argument suggests that the magic 
numbers observed in cation and neutral spectra of the 
alkali metals may differ: each may exhibit different 
subsets of the shell-closing numbers predicted by the 
spherical jellium model. 

Neutral sodium clusters exhibit "magic numbers" at 
n = 8, 20, 40, 58, and 92, but not at n = 18, 34, 68, and 
70, which are also closed-shell numbers in the jellium 
scheme. Although high-symmetry structures (Td, Oh, 
or If1) can be generated for the former set, no such 
structures exist for the latter. An alkali-metal cation 
spectrum recently reported showed magic numbers at 
n = 19, 21, 35, and 41,30 all numbers for which high-
symmetry structures are available (it should be noted 
that high-symmetry structures are also available for n 
= 9 and 93). Katakuse et al.31 have reported discon­
tinuous variations in the ion intensity of mass spectra 
of gold, sivler, and copper cations at n = 3, 9, 19, 21, 
35, 41, 598 93, 139, and 199. LaiHing et al.53 have 
carried out laser photoionization experiments on silver 
cation clusters and report mass spectra with noticeable 
discontinuities at n = 3, 9, 21, and 41. 

It is possible that the absence of large peaks in the 
spectrum for the "missing" shell-closing numbers is 
caused not by the absence of high-symmetry structures 
but by some other factor, such as accidental degenera­
cies of energy levels or the kinetics of cluster growth, 
but there is clearly circumstantial evidence in favor of 
this simple structural jellium model.52 

It is a well-established principle of molecular orbital 
theory that molecules with incompletely filled electronic 
shells undergo distortions in order to increase the en­
ergy separation between the highest occupied molecular 
orbital (HOMO) and the lowest unoccupied molecular 
orbital (LUMO). Therefore, alkali-metal clusters with 
incompletely filled V" shells are expected to undergo 
geometric distortions away from the deltahedral geom­
etries preferred by closed-shell molecules. The resultant 
molecular orbital splitting diagram for olbate and pro­
late distortions is similar to that described above for 
a crystal field perturbation and illustrated in Figure 4, 
except the origins of the splittings are now changes in 
interatomic resonance integrals arising from changes in 
internuclear distances. The overall conclusions will, 
however, be similar to those in Table 1, i.e., prolate 
geometries preferred for (Str)2(Pcr)2 and oblate for 
(S")2(P'r)4. Structures that retain the maximum number 
of nearest neighbors will, if possible, be retained. 

A Hiickel molecular orbital study on alkali-metal 
clusters bears out this conlcuison.21"28 Hiickel calcula­
tions on alkali-metal clusters (see Figure 9) pick out, 
in almost all cases, the most stable cluster structure for 
cations and neutral clusters, as verified by ab initio 
calculations, and Hiickel calculations on anions23 are the 
only available source of information of these species. 
We consider only species with even numbers of elec­
trons. 

Na3
+ has two electrons (jellium Is2: TSH (Sff)2) and 

so should be spherical. With only three nuclei, the 
nearest this cluster can get to spherical is an equilateral 
triangle, as observed. Meanwhile Na3", with four elec­
trons (jellium Is2Ip2), should be prolate, and indeed it 

Figure 9. Most stable structures of cationic, neutral, and anionic 
alkali-metal clusters according to Hiickel theory. The geometries 
obey the predictions of the structural jellium model as far as 
possible, (a) M3

+; (b) M3"; (c) M4; (d) M6
2"; (e) M5"; (f) M6; (g) 

M7
+; (h) M7-; (i) M8; 0') M9

+. 

is calculated to be linear—an extreme form of prolate 
geometry. 

Na4
0, with a partially filled Ip shell, adopts a rhom­

boid shape (strictly speaking, an asymmetric top), which 
can be viewed as either oblate or prolate, as opposed 
to a more spherical tetrahedral geometry. 

Na5
+ is an edge-bridged tetrahedron (four electrons; 

prolate), while Na5" is either a square pyramid or a 
pentagon—they are isoenergetic within the Hiickel 
approximation—both oblate structures. 

Na6" is a pentagonal pyramid (oblate). 
Na7

+ is an oblate "squashed" pentagonal bipyramid, 
in which the axial atoms are bonded to one another, 
while Na7" is a pentagonal bipyramid without an axial 
bond—the closest a seven-atom system can come to a 
spherical geometry. 

Na8 is a dodecahedron (prolate) in the Hiickel ap­
proximation, but ab initio calculations show it to be a 
tetracapped tetrahedron, which is spherical. The 
adoption of a spherical structure with the atoms on two 
layers increases the next-nearest-neighbor resonance 
stabilization energies. 

Na9
+ is a tricapped trigonal prism. Like the pen­

tagonal bipyramid, this is an oblate structure but is as 
close as a nine-atom structure can come to being 
spherical. 

The simple systems thus obey, in all cases, the dic­
tates of the structural jellium model as far as they can. 
The odd-electron systems have a smaller energy dif­
ference between oblate and prolate forms, and many 
adopt structures that are neither one nor the other. 

The energies of the P levels of several alkali-metal 
geometries, within the Hiickel model, are shown in 
Figure 10 and show that the anticipated splitting pat­
terns are observed. The tetrahedron has a set of de­
generate P orbitals; the prolate trigonal bipyramid ex­
hibits a P0 orbital below the degenerate P±1 pair; the 
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Figure 10. Orbital energies from Huckel theory for small alkali-metal clusters. The orbitals are labeled according to their approximate 
spherical symmetry. Structures that are spherical, oblate, or prolate give energy orderings as predicted by the structural jellium model. 

octahedron again exhibits a degenerate set; the edge-
fused tetrahedra of M8 exhibit the prolate pattern; in 
the oblate pentagonal bipyramid the ordering is re­
versed; the capped trigonal prism is prolate; the cube 
again shows the high degeneracy of spherical systems; 
and the dodecahedron is prolate. 

The fact that, for small clusters at least, the LCAO 
and jellium approaches give the same predicts con­
cerning the (spheroidal) "shape" of alkali-metal clusters 
provides an immediate explanation of the, perhaps 
otherwise surprising, observation that the results of 
Huckel calculations, called "tight binding" in the con­
text of solid-state physics and applicable principally to 
insulators,64 are in accord with the free-electron-based 
jellium models. Given that these two very different 
models agree, it is further not surprising that the crude 
Huckel model gives the right result. 

E. Gold Phosphine Clusters and Alkali-Metal 
Clusters: A Surprising Analogy 

An advantage of the LCAO reformulation is that it 
can be applied to any cluster in which bonding by a 
orbitals dominates. An example of such a set of clusters 
is provided by the ligated gold clusters of formula 
[Aun(PPh3),,]1+ or [Au(AuPPh3)J1+.55 These can be 
isolated as air-stable crystalline solids and their struc­
tures studied in detail by single-crystal X-ray diffraction 
techniques. The most common ligand observed in gold 
clusters is PPh3 . Each AuPPh3 fragment in a cluster 
contributes only one electron for skeletal bonding. The 
Au-P bond is a dative bond formed from the lone pair 
of phosphorus and an empty sp hybrid on gold, and the 
single valence electron of gold is left in an inward-

Figure 11. Geometries of gold clusters: (a) [Au6(PPh3)6]
2+, which 

adopts a prolate geometry; (b) [Au7(PPh3)7]
+, which adopts an 

oblate geometry; (c) [Au8(PPh3)7]
2+, which adopts an oblate ge­

ometry; (d) [Au9(P(p-C6H4Me)3)8]
3+, which adopts an oblate 

geometry; (e) [Au13Cl2(PR3)Xo]3+, which adopts a spherical geom­
etry. 

pointing sp hybrid with a high proportion of s charac­
ter.56,57 The gold pT orbitals are at too high energy to 
participate significantly in skeleton bonding,57 and the 
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gold d10 shell is virtually corelike.57 

The cluster [Au6(PPh3)6]
2+ has a geometry based on 

two tetrahedra sharing a common edge.58 This prolate 
geometry, illustrated in Figure 11, leads to stabilization 
of P0" at the expense of the P±1" orbitals, and a 
closed-shell electron configuration is achieved when the 
four electrons occupy S" and V0". In contrast, [Au7-
(PPh3)7]

+ has a very distinctive oblate geometry based 
upon a pentagonal bipyramid with the two axial gold 
atoms separated by a very short Au-Au bond.59 In this 
geometry the P" shell splits to give P±1

ff below P0" and 
a closed-shell electronic configuration is achieved when 
these orbitals are fully occupied by six valence electrons. 
The same geometry has been predicted for Li7

+ 25 and 
Na7

+.26 Clearly, the alternative symmetrical geometry 
based on a capped octahedron for [Au7(PPh3)7]

+ will 
not be favored for this electron count since it has a 
prolate geometry. Moreover, the following electro­
chemical process should be accompanied by a change 
in cluster geometry: 

Au7(PPh3)/ - 2e" — Au7(PPh3)7
3+ 

oblate pentagonal bipyramid -* 
prolate capped octahedron 

Another class of gold clusters is of general formula 
[Au„(PR3)m]x+ and consists of a central gold atom 
surrounded by AuPR3 moities.60 The central atom does 
not alter the electron-counting requirements of spher­
ical, oblate, or prolate geometries, and these clusters too 
have structures that can be understood in terms of a 
radial bonding model and hence in terms of an LCAO 
shell-structure model. Since the central atom has s and 
p orbitals available for bonding, which overlap strongly 
with Sff and P" cluster skeletal molecular orbitals, the 
central atom reinforces the closed-shell requirements 
of the spherical cluster, a point we return to below. 
[Au13Cl2(PR3)io]3+ has eight skeletal electrons and is 
icosahedral,61 which is to say spherical. [Au6(dppp)4]

2+, 
dppp being a bidentate phosphine ligand, has four 
skeletal electrons and so is predicted to be prolate; it 
is found to consist of a tetrahedron with two edges 
bridged,62 as in Figure 11. [Au9(PR3)8]

3+ and [Au8-
(PR3)7]

2+ are both six-skeletal-electron species, and so 
are oblate. These geometries, which have also been 
described as toroidal,55 are shown in Figure 11. 

These results show a very close correspondence in the 
results for different types of clusters where the primary 
bonding occurs through radial interactions, and the 
geometric conclusions could have been derived in either 
a tensor surface harmonic (TSH) or jellium model, once 
the separation of ligand and skeletal or cluster bonding 
electrons is made. This separation is an example of the 
isolobal analogy:63'65 two cluster fragments are said to 
be isolobal if they have the same number, symmetry, 
and approximate energy of valence orbitals and the 
same number of valence electrons. Hence Au(PPh3) is 
isolobal with alkali-metal atoms. Besides recognizing 
analogies between the gold phosphine and alkali-metal 
clusters, we also anticipate that clusters of the coinage 
metals Cu, Ag, and Au would show similar shapes, al­
though there are not the ab initio calculations on such 
species to check our predictions. 

A set of clusters intermediate between the gas-phase 
bare alkali-metal clusters and the condensed-phase Ii-
gated gold clusters is the gas-phase oxidized alkali-metal 

clusters.66 The mass spectrum of cesium oxide clusters 
shows unusually high ionization energies for Cs2n+2On 
(n = 1-7)8, with 2 = 8,18, 34, 58, and 92, each of which 
is a closed-shell number within the jellium scheme. 
These observations were explained as follows:66 

"Qualitatively one can think that each oxygen atom 
bonds two electrons from a sea of delocalized electrons 
in a Cs cluster. With the use of this picture Cs38O2, 
Cs40O3, Cs42O4, etc. would be said to contain 34 delo­
calized electrons. ...Clusters with composition CsJ+2nOn 
have 2 delocalized electrons which can apparently be 
described as moving in a spherical potential, just as in 
pure alkali-metal clusters. The orbitals are defined by 
angular momentum / and the observed anomalies in the 
mass spectra correspond to electron configurations 
(ls,lp,ld); (ls,lp,ld,2s,lf); (ls,lp,ld,2s,lf,2p,lg,2d,-
lh,3s)." 

Isolobal gold clusters have been established for lower 
nuclearity examples with Is2Ip6 closed shells,55,67 e.g., 
0(AuPPh3)/, N(AuPPlIg)4

+, [C(AuPPh3)5]
+, and [C-

(AuPPh3)6]
+. Otherwise, the structure of these clusters 

remains unknown, as do the reasons why only certain 
magic numbers are observed. The clusters are a chal­
lenge to both "free-electron" and LCAO approaches in 
that that separation of what we may call "cluster 
bonding" electrons from those involved in localized 
"ligand" bonding arises naturally out of the LCAO ap­
proach but not the jellium model, while the large size 
of these clusters can be accommodated within the jel­
lium model but is currently beyond the scope of LCAO 
interpretations. 

/ / / . Models for Main-Group and 
Transition-Metal Clusters 

Almost 20 years ago, empirical correlations between 
the structures of cluster compounds and the number 
of electrons involved in skeletal bonding began to 
emerge. The contributions of Williams68,69 and 
Wade70'71 were particularly influential in demonstrating 
that the structures of boranes and carboranes could be 
related to the parent deltahedral structure that had 
been elucidated for BnHn

2". These relationships were 
extended to the classes of polyhedral molecules by 
Rudolph,72 Corbett,73,74 and Mingos,75 and the under­
lying reasons for their success was elucidated by 
semiempirical molecular orbital calculations.76 This 
molecular orbital approach was placed on a more gen­
eral theoretical foundation by Stone's tensor surface 
harmonic (TSH) theory.46-48 A recent review has 
presented a more detailed historical account of the 
development of ideas in this area of cluster chemistry.77 

There have been other approaches that have attempted 
to account for these structural relationships; for exam­
ple, King78 has proposed a graph theoretical metho­
dology and Teo79,80 has developed a topological elec­
tron-counting procedure. The discussion below is based 
on the tensor surface harmonic theory,46-48 because this 
model has many similarities to the jellium model de­
veloped in the molecular beam area. 

A. The Tensor Surface Harmonic Model 

We return now to bare clusters and ask when the 
jellium model is anticipated to break down. The crystal 
field formulation of the model suggests some criteria 
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for smallness of the perturbation that is a necessary 
criterion for the success of the jellium model. Generally 
speaking, the jellium model fails when the cluster 
electronic structure can no longer be regarded as a 
perturbation of a spherical shell model, i.e., when the 
splitting of the shell produced by the nonspherical part 
of the potential is large. 

The splitting is obviously large for large effective 
nuclear charges. It has also been shown40,41 that the 
splittings are large, for clusters of a given nuclearity, 
for shells with large angular momentum. These levels 
are populated when the cluster atoms each have a large 
number of valence electrons. Further, the splitting of 
a given shell is expected to decrease for large cluster 
nuclearities. Thus we can conclude that the jellium 
model will fail for clusters with a large number of va­
lence electrons per atom, and for small clusters in 
particular. Clearly, we cannot expect the jellium model 
to apply properly to p-block elements (with the possible 
exception of aluminum) or to transition metals, with the 
exception of the coinage metals, for which it works 
reasonably well. 

The LCAO approach illuminates the reasons for 
failure of the jellium model, but from a different per­
spective. Many main-group and transition-metal ligated 
clusters can be treated as having approximate spherical 
symmetry, as mentioned above. They will therefore 
exhibit some form of shell structure—characteristic sets 
of quasi-degenerate orbitals. A proper LCAO treatment 
of this situation, including not only the LM" orbitals 
described above but also L1/ orbitals of x and 5 type, 
has been carried out by Stone and is called by him 
tensor surface hamonic theory.46-48 It reveals that the 
basic features of the electronic structure of main-group 
and transition-metal ligated clusters are different from 
those of the free-electron metals. The results of this 
analysis are summarized briefly below. References 
46-48 provide a more detailed description of the 
methodology. 

We look here at the ir orbitals, important for main-
group clusters. We can form cluster orbitals from the 
ir basis orbitals (local px and p„ orbitals) if we exploit 
the fact that they behave locally like a pair of orthog­
onal vectors tangential to the surface of the sphere. If 
we can find a vector function of 6 and 4>, then the di­
rection and magnitude of the vector at (#„,</>„) will in­
dicate the direction and magnitude of a x-orbital con­
tribution to a cluster wave function. 

We can form two such vector functions from the 
spherical harmonics (except for L = M = 0). The first 
is given by the gradient of the spherical harmonic: 

VLM = V Y ^ ( M (7) 

and the second by 

V t M = rAVYL
M(0,0)' (8) 

the cross product of the position vector with the gra­
dient of the spherical harmonic. 

These two vector surface harmonics are shown in 
Figure 12. They are at right angles to each other at 
every point on the sphere. Figure 13 shows how the PT, 
DT, P*, and D* molecular orbitals of the octahedron are 
derived from the vector spherical harmonics V1M, V2A/, 
V1M, and V2M, respectively. 

It can be seen that the L* orbital derived from VLM 
can be constructed from the corresponding L* orbital 

Figure 12. Vector surface harmonics on a sphere, with the 
direction and magnitude of the vector function at selected points 
indicated by arrows. The functions V1n are formed by taking the 
gradient of the spherical harmonic Y(m, while the functions Vtm 
are formed by taking the cross product of the position vector with 
the function Vim. The superscript "c" indicates that the cosine 
combination of functions Y[m and Y( _m have been taken. 
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Figure 13. The -K orbitals of the octahedron, with their TSH 
classification and point group symmetry classification. 

by rotating every atomic w function through 90°. This 
is a general result. Further, the rotation converts a 
bonding interaction between two orbitals into an an-
tibonding interaction, and so a pairing theorem can be 
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Figure 14. Interaction among a and -K orbitals of borane del-
tahedra leading to the resulting energy levels of the deltahedron 
on the right. 

shown to hold for the cluster -K orbitals. The orbitals 
constructed from WLM are bonding, and those con­
structed from \LM antibonding for deltahedra.46,47 

As a result of this pairing theorem, the In p orbitals 
of 7T symmetry yield n bonding orbitals and n anti-
bonding orbitals for any polyhedron. A Hiickel ap­
proach, and inspection of Figure 13 for the special case 
of the octahedron, show that the highest value of L 
generated by the cluster under consideration will yield 
the lowest energy 17 orbitals. thus for an octahedron 
we will find six accessible Lx orbitals: three D* orbitals 
and, at higher energy, three PT orbitals. These are 
illustrated in Figure 13. 

The differing behavior under inversion of the bonding 
and antibonding orbitals limits the orbital mixing that 
can occur in clusters. The L" and 17 orbitals of the 
same L and M values can mix with each other, but there 
is not mixing with L" orbitals. 

We have already shown that for most main-group 
clusters the L" orbitals will be antibonding for all but 
the Sa while there will generally benir bonding orbitals. 
The L" and 17 orbitals, where they can mix, will interact 
to produce one bonding and one antibonding combi­
nation. This interaction does not alter the total number 
of bonding orbitals, although it can and does alter the 
energy level ordering among the bonding orbitals. 
Figure 14 shows, again for the octahedron, how the 
interactions among the orbitals is restricted by sym­
metry and how the interactions that do take place alter 
the energy ordering of the bonding manifold but, cru­
cially, do not alter the number of bonding orbitals. In 
summary, the total number of bonding orbitals for a 
deltahedron will thus be n + 1. 

The full development of tensor surface harmonic 
theory is not given here. Instead, we simply summarize 
the electron-counting rules that have been deduced 
from tensor surface harmonic theory together with the 
use of the isolobal analogy and molecular orbital cal­
culations. This complex of ideas together with the rules 
deduced from them goes under the name "polyhedral 

TABLE 4. Closed-Shell Requirements for Ligated 
Main-Group and Transition-Metal Clusters with n Atoms 

transition-metal 
structure main-group cluster carbonyl cluster 

deltahedral 
closo in + 2 electrons 14n + 2 electrons 
nido in + 4 electrons Hn + 4 electrons 
arachno in + 6 electrons Un + 6 electrons 
hypho in + 8 electrons 14n + 8 electrons 

three-connected 
closo 5n/2 electrons 15rc/2 electrons 

skeletal electron pair theory" (PSEPT). 

B. Polyhedral Skeletal Electron Pair Theory 

Electron-Counting Rules for Main-Group Ligated 
Clusters 

The LCAO approach briefly summarized above pro­
vides a powerful framework for rationalizing the geom­
etries and closed-shell requirements of main-group 
clusters. In particular, there is an intimate relationship 
between the polyhedral geometry and the number of 
valence electrons required for achieving an electronic 
closed shell and a large HOMO-LUMO gap. The pio­
neering molecular orbital studies on SnHn

2" by Lon-
guet-Higgins49 and Lipscomb and Hoffmann51 were 
important in highlighting these relationships, although 
it was Williams69 and Wade71 who proposed the specific 
relationship between the geometric and electronic as­
pects of the structures. In deltahedral clusters the 
bonding is highly delocalized, and the nodal patterns 
associated with the molecular orbitals are accurately 
represented by the tensor surface harmonic theory. 
With a slight oversimplification, it can be stated as 
above that in such molecules there are n L* tangential 
bonding skeletal molecular orbitals derived from pT 
orbitals, and a single radial S" molecular orbital, i.e., n 
+ 1 skeletal bonding molecular orbitals. These mole­
cules have a further n out-pointing radial molecular 
orbitals which are not used for skeletal bonding but are 
available either for electron-pair occupation ("lone 
pairs") or for forming <r bonds to ligating atoms, such 
as H, Cl, or CH3. Therefore, such deltahedral clusters 
are characterized by a total of In + 1 available molec­
ular orbitals, which can accommodate a total of 4n + 
2 valence electrons. 

This bonding pattern is retained even in those del­
tahedral molecules that have 1-3 atoms missing. Such 
molecules are described as nido (n - 1), arachno (n -
2), and hypho (n - 3) to distinguish them from the 
parent deltahedron, which is described as closo. These 
incomplete polyhedral fragments retain the n + 1 
skeletal bonding molecular orbitals of the parent del­
tahedron71 but of course no longer have the electron 
pairs associated with the B-H c-bonding and out­
pointing orbitals of the missing vertices. The resulting 
closed-shell requirements of these molecules are sum­
marized in Table 4. Examples of polyhedral boranes 
showing these relationships are illustrated in Figure 15. 

In three-connected main-group polyhedral molecules 
the bonding can adequately be described in terms of 
localized two-center, two-electron bonds along the 
edges, and the large and clear separation between L"" 
and L* tangential skeletal molecular orbitals is no longer 
observed. Since three-connected polyhedra have a total 
of 3n/2 edges, such molecules are characterized by 3n/2 
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No. of cluster 

vertices (n) 

TABLE 5. Isostructural Main-Group and Transition-Metal 
Clusters 

No. of SEP's (n»1) 

n ido 

(n + 2) 

araCir.o 

(n»3) 

Figure 15. Polyhedral borane structure, showing the relationship 
between the number of cluster vertices and skeletal electron pair 
count. Adapted from: Rudolph, R. W.; Pretzer, W. R. Inorg. 
Chem. 1972, 11, 1974. 

C^Hg cubane 

S^Rg1[MeAIN1Pr]4 

H- prismane 

m 
[HAlN1Pr]6 ^ 2 0 

dodecahedrane 

Figure 16. Structures of three-connected compounds, of which 
hydrocarbons form a major subset. 

skeletal bonding molecular orbitals, and n out-pointing 
bonding molecular orbitals, which can be used to ac­
commodate "lone pairs" or for bonding to ligands. The 
hydrocarbons provide the most extensive series of 
three-connected polyhedral molecules, and some of their 
structures are illustrated in Figure 16. Interestingly, 
P4 provides an inorganic example of a three-connected 
(tetrahedral) cluster belonging to this class. 

The polyhedral skeletal electron pair theory sum­
marized briefly above has been successfully applied to 

structure 

trigonal bipyramid 
square pyramid 
octahedron 
pentagonal 

bipyramid 
tricapped trigonal 

prism 
bicapped square 

antiprism 

main-group 
cluster 

0283H5 

B5H9 

02B4H6 

C2B5H7 

C2B7H9 

C2B8HiO 

electron 
count 

22 
24 
26 
30 

38 

42 

transition-metal 
carbonyl cluster 

Os5(CO)16 

Ru5C(CO)I6 

Os6(CO)18
2-

Rhi0S(CO)22 

electron 
count 

72 
74 
86 

142 

boranes, hydrocarbons, carboranes, heteroboranes, an­
ionic "naked" clusters of tin, germanium, and lead, 
cationic "naked" clusters of bismuth, and ring com­
pounds of the later main-group elements.81'82 

Naked clusters are those that do not require ligands 
to stabilize them, e.g., Sn9

4" and Bi9
5+, and therefore 

most closely resemble clusters in molecular beams. 
These condensed-phase clusters go under the name of 
Zintl clusters.73'74 PSEPT is therefore a theory with 
wide applicability, few exceptions, and a firm theoretical 
foundation. In the subsequent section we shall dem­
onstrate its applicability to main-group clusters in 
molecular beams. 

Closed-Shell Requirements for Transition-Metal 
Carbonyl Clusters 

The spectrum of molecular orbitals generated from 
s and p atomic orbitals described above is also relevant 
to transition-metal carbonyl clusters. In particular, 
isostructural main-group and transition-metal carbonyl 
clusters generate closely related sets of radial and tan­
gential bonding skeletal molecular orbitals. Although 
the five d orbitals per metal atom play an important 
metal-metal bonding role, they make a secondary con­
tribution to defining the electronic requirements of the 
cluster. In consequence, the number of available or­
bitals in isostructural closo main-group and transi­
tion-metal clusters differs by 5n, where n is the number 
of skeletal metal atoms. Table 5 provides some specific 
examples. Some examples of deltahedral and three-
connected transition-metal carbonyl clusters that con­
form to this generalization are illustrated in Figure 17. 

In addition to these polyhedra, transition-metal 
carbonyl clusters are noted for their ability to form 
families of capped structures. Many hundred of these 
capped structures have now been characterized,83 and 
a typical illustrative series is shown in Figure 18.84 

Some years ago we defined the consequences of these 
capping processes on the closed-shell requirements of 
the parent polyhedral entity and demonstrated that 
such capped structures are usually associated with an 
increment in the total valence electron count of 12.85'86 

The series illustrated in Figure 18 provide a specific 
illustration of this principle. 

IV. Applications of PSEPT to Clusters In 
Molecular Beams 

A. PSEPT Applied to Gas-Phase Main-Group 
Clusters 

During the last 5 years, laser vaporization and cluster 
beam techniques have been extended to main-group 
elements and compounds,87 the elements involved in the 
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Figure 17. Deltahedral, four-connected, three-connected, and 
ring transition-metal carbonyl clusters, with their electron counts. 
This illustrates the range of structures that can be encompasses 
within the PSEPT approach. 

semiconductor industry having been the subject of 
particularly intense study.88 A substantial body of re­
sults concerning the stability, ionization potentials, 
reactivity, and fragmentation behavior of main-group 
clusters now exists, but understanding of the stability 
trends and knowledge of cluster structures are in their 
early stages. The structure and stability of main-group 
clusters, both elemental and compound, are intrinsically 
more complicated than those of the alkali metals and 
noble gases. In order to understand the stability trends 
of these clusters, a knowledge of the structural possi­
bilities open to all members of a series is required, so 
that the energies of each cluster can be compared. 

A large and interesting class of main-group clusters 
has close to 4n valence electron, and investigation of the 
structural possibilities open to these clusters can be 
substantially simplified by use of PSEPT. We discuss 
the structures of this class of main-group clsuters here. 
The applicability of PSEPT to these situations has also 
been alluded to in specific cases by Martin,89,90 Duncan 
and co-workers,91,92 and Schild et al.93 We present ev­
idence below that its applicability is widespread. Our 
findings differ from models proposed by some other 
workers, based on analogies with solid-state structures 
and arguments concerning coordination numbers. In­
deed, the sparsity of structural information combined 
with the rapid growth of interst in these clusters has 
led to many speculations concerning structural possi­
bilities for main-group clusters, several of which can be 

' ? e 
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Figure 18. Capped osmium clusters, with their valence electron 
counts. These clusters show how capping and the forming of nido 
and arachno structures, when combined, can lead to a wide variety 
of known structures with well-defined electron counts. 

discounted when the restrictions imposed by PSEPT 
are applied to the problem. 

Gas-Phase Zintl Clusters 

The utility of PSEPT electron-counting rules in un­
derstanding the stabilities of main-group clusters was 
first pointed out by Martin69 and by Duncan et al.91 in 
studies of compound clusters of group 14 and group 15 
metals, clusters that have also been investigated by 
Schild et al.93 

Martin89 has observed compound gas-phase clusters 
by cocondensing cesium with the group 14 metals Sn 
and Pb. The Zintl species Cs3Pb5

+, Cs3Sn5
+, Cs3Sn9

+, 
and Cs5Sn9

+ appear to be particularly stable (Martin's 
apparatus was not able to measure peaks up to the mass 
of Cs3Pb9

+ or Cs3Pb9
+), and Martin suggested that, by 

analogy with the solid-state structures, these species 
would have deltahedral frameworks for the group 14 
element: Cs3M5

+ a trigonal bipyramid, Cs3Sn9
+ a tri-

capped trigonal prism, and Cs5Sn9
+ a capped square 

antiprism (a mdo-deltahedron). These clusters are 
isoelectronic with the Zintl ions studied in the solid and 
liquid state,73,74 such as Sn5

2", Pb5
2"", Pb9

4", Bi9
5+, and 

Ge9
4", and as the electron-counting rules are known to 

work for these ligand-free ions in condensed-phase 
chemistry,73'94 the deltahedral structures are obvious 
candidates for the structures of the gas-phase analogues. 
The trigonal bipyramid (Sn5

2-), tricapped trigonal prism 
(Bi9

5+), and capped square antiprism (Pb9
4") are shown 

in Figure 19. To the (2n + 2) skeletal bonding electrons 
that characterize the doso-deltahedral must be added 
n radical nonbonding orbitals, containing either "lone 



Bonding in Clusters Chemical Reviews, 1990, Vol. 90, No. 2 397 

TABLE 6. Valence Electron Counts and Predicted Structures 
of Gas-Phase "Zintl" Clusters 

Figure 19. Structures of bare clusters of main-group elements: 
(a) trigonal bipyramid, adopted by Sn6

2"; (b) tricapped trigonal 
prism, adopted by Ge9

2"; (c) capped square antiprism, adopted 
by Pb9

4". 

pairs" or "corelike" s orbitals (depending on the ele­
ment), giving a total of (An + 2) valence electrons. The 
polyanion Sn9

2- has not been observed, but Ge9
2- has 

been observed in the solid state as a tricapped trigonal 
prism.95 Cs5Sn4

+ was also observed to be particularly 
stable among the Cs5Snn

+ series, along with Cs5Sn9
+, 

and a tetrahedral structure was suggested, by analogy 
with the isoelectronic P4. 

In a previous section we noted that alkali metals are 
isolobal with AuPR3, and this connection provides some 
additional information concerning the structures of 
these clusters. The AuPR3 fragment is able either to 
cap or, if steric requirements do not permit it, to 
edge-bridge deltahedral clusters without changing their 
basic geometries or electron counts. We propose that 
in these cesium clusters the Cs+ ions are face-capping 
unless the number of faces of the group 14 deltahedron 
is exceeded. 

Mass spectra of group 14/group 15 compound clus­
ters produced by cocondensation were observed by 
Schild and co-workers93 as well as by Duncan and co­
workers.91'92 These spectra showed highly nonstatistical 
distributions, being dominated by the following species: 
Sn2Bi3

+, Pb2Sb3
+, Sn2As3

+, Pb2As3
+ and Sn4Bi5

+, 
Pb4Sb5

+, Sn4As5
+, Pb4As5

+ (in conditions under which 
the spectrum could be interpreted in terms of cation 
stabilty); and Sn3Bi2, Pb3Sb2, Sn3As2, Pb3As2 and 
Sn5Bi4, Pb5Sb4, Sn5As4, Pb5As4 (under neutral condi­
tions). These five- and nine-atom clusters are isoelec­
tronic with the Zintl polyanions observed by Martin89 

and are likely to be isostructural also, having trigo-
nal-bipyramidal and capped square-antiprismatic ge­
ometries, respectively. 

Other species were observed in these spectra by 
Duncan and co-workers,91,92 although at lower intensity 
than the five- and nine-atom clusters. Examples in­
clude Pb4Sb2, Sn4As2, Sn3Bi3

+, Pb3Sb3
+ (all with six 

atoms and twenty-six valence electrons); Pb5Sb2, 
Sn4Bi3

+, Sn4As3
+ (seven atoms, thirty valence electrons); 

and Pb6Sb4, Sn6As4, Sn5Bi5
+ (ten atoms, forty-four 

electrons). These may thus be assigned c/oso-deltahe-
dral structures, save the last set, which have the nido 
electron count. 

The spectra of the group 13/group 15 compound 
clusters In1Bî , and InxSb., have also been observed by 
Duncan and co-workers.9® In addition to species with 
An valence electrons, which are discussed below, several 
(An + 2)-electron species were observed in significant 
abundance. InSb4

+ and InBi4
+ are the predominant 

species in the cation spectra of these systems, are iso­
electronic with Zintl species, and so are expected to be 
trigonal bipyramidal. Also observed in the cation 
spectra were In2Bi5

+ and (to a lesser extent) In2Sb5
+, 

atom and 
electron count 

4,20 
5, 22 

6,26 

7,30 

9,38 

9,40 

10,44 

predicted 
structure 

tetrahedron 
trigonal 

bipyramid 

octahedron 

pentagonal 
bipyramid 

tricapped trigonal 
prism 

capped square 
antiprism 

nido 11-vertex 
deltahedron 

examples 

As4, Sb4, Bi4, Sn4
4" 

Sn5
2", Pb5

2 ', Sn2Bi3
+, Pb2Sb3

+, 
Sn2As3

+, Pb2As3
+, Sn3Bi2, 

Pb3Sb2, Sn3As2, Pb3As2, InSb4
+, 

InBi4
+ 

Sn3Bi3
+, Pb3Sb3

+, Pb4Sb2, Sn4As2, 
In2Sb4, In2Bi4 

Sn4As3
+, Sn4Bi3

+, Pb5Sb2, In2Sb6
+, 

In2Bi5
+ 

Sn9
2-

Sn9
4", Sn4Bi5

+, Sn4As5
+, Pb4Sb5

+, 
Pb4As6

+, Sn5Bi4, Pb6Sb4, 
Sn6As4, Pb6As4 

Sn5Bi6
+, Sn6As4, Pb6Sb4 

which are expected to be pentagonal bipyramidal, and 
In2Bi4 and (to a lesser extent) In2Sb4, which are pre­
dicted to be octahedral within the PSEPT scheme. 

Table 6 summarizes many of these structural con­
clusions drawn from PSEPT arguments. 

Clusters of Group 14 Elements and Semiconducting 
Elements 

The (An + 2)-electron clusters are direct analogues 
of known "bare clusters" that exist in condensed phases. 
Many other gas-phase clusters have An valence elec­
trons: examples of particular importance are the group 
14 elements as well as some of the species seen in con-
condensation experiments of group 13 and group 15 
elements. The closeness of the electron count to the 
values required for deltahedra suggests that deltahe-
dra-based geometries are possible for these clusters. 
They are faced, however, with the necessity of removing 
one orbital from the bonding manifold compared to the 
closo structure. 

PSEPT suggests two methods for the destabilization 
of this orbital for small clusters. One is to cap a smaller 
deltahedron: the capping principle developed for Ii-
gated clusters tells us that capping a polyhedron adds 
no orbitals to the skeleton bonding manifold, so with 
the "lone pair" adding a single orbital, a capped delta­
hedron composed of a total of n atoms is characterized 
by (2(n - 1) + 1) + 1 = 2n orbitals. In addition to these, 
clusters with three or more caps can also include extra 
orbitals in the bonding manifold97 as they approach the 
bispherical case, with a central core of cluster atoms 
surrounded by an outer spherical shell of cluster atoms. 
A second possibility for small clusters that has no 
analogue in ligated clusters is the distortion of a pseu-
dospherical cluster by a "squashing" mode along the 
principal axis to form an oblate shape. This distortion 
removes one orbital of p symmetry that is antibonding 
along the principal axis by "pushing" it to higher energy. 
These two possibilities may lead to several, just one, or 
no "electron-correct" structures for each cluster. The 
possibilities generated by this approach for nuclearities 
four to ten are as follows:98 Si4, rhombohedral; Si5, 
oblate trigonal pyramid; Si6, bicapped tetrahedron or 
oblate-distorted octahedron; Si7, oblate pentagonal 
bipyramid, capped octahedron, or tricapped tetrahe­
dron; Si8, capped pentagonal bipyramid; Si9, capped 
dodecahedron; Si10, tetracapped trigonal prism or tet-
racapped octahedron. 
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Figure 20. Electron-correct structures for small silicon clusters. 
The numbers by each bond show the overlap populations from 
extended-Hiickel calculations and indicate the relative bond 
strengths within the cluster. Some cluster nuclearities have several 
possible electron-correct structures, (a) Si4, rhombus; (b) Si6, 
oblate-distorted octahedron; (c) Si5, oblate trigonal bipyramid; 
(d) Si6, bicapped tetrahedron; (e) Si7, oblate pentagonal bipyramid; 
(f) Si7, capped octahedron; (g) Si8, capped pentagonal bipyramid; 
(h) Si10, tetracapped octahedron; (i) Si10, tetracapped trigonal 
prism. 

These structures are shown in Figure 20. The silicon 
clusters of nuclearity up to ten have been the subject 
of more computational studies than any other main-
group cluster system. The most accurate and com­
prehensive calculations to data are those by Raghava-
chari and co-workers.99"101 These studies show that all 
of the above structures investigated correspond to 
minima on the potential energy surface and that the 
global minimum is, in all cases but Si8 and Si9 (for which 
the capped dodecahedron has not been investigated), 
one of these electron-correct structures: the capped 
pentagonal bipyramid for Si8 is unstable because of the 
short axial Si-Si distance. It is interesting to note that 
many of these structures are analogous to structures of 
ligated osmium clusters.84 

The mass spectra of silicon and germanium clusters 
have been observed under a wide variety of condi­
tions:102-104 laser photoionization mass spectra have 
been taken under high laser power conditions that yield 
information on the cations as well as low-power con­
ditions that yield information on the neutral species.104 

Electron impact ionization mass spectra have also been 
observed, and fragmentation patterns studied. The 
results are not all consistent with each other but, taken 
together, do indicate that cation or neutral species with 
six, seven, or ten atoms seem particularly stable for Si 
and Ge clusters. The six- and ten-nuclearity species are 
the only ones for which polycapped structures are 
possible, suggesting that there is a stability associated 
with capping. Together with the considerabl stability 

of M7, this suggests a general rule that silicon and 
germanium clusters that can form an electron-correct 
structure by capping or by oblate distortion without the 
loss of significant equatorial bonding will be particularly 
stable. 

Phillips has suggested that the particular stability of 
the Si10 cluster is associated with a fragment of the 
crystal "adamantane" lattice,105,106 but calculations have 
shown this structure to be considerably less stable than 
the more densely packed capped-trigonal-prism and 
capped-octahedron structures.101 Although interpre­
tations of these structures have been offered in terms 
of average coordination number and hybridization 
patterns, neither of these approaches has the breadth 
of scope of the PSEPT approach. 

Molecular dynamics studies107 lead to structures that 
can often be ruled out by PSEPT. The ground-state 
structure predicted for Si6 is the trigonal prism, which 
we have shown to be electron incorrect; they predict Si7 
to adopt the tetracapped-tetrahedron geometry, which 
is electron correct, while they predict another three-
connected structure, the cube, for the ground-state 
geometry of Si8. 

Calculations based on nonspherical interatomic po­
tentials108 produce structures that are too open for small 
silicon clusters, being based on five- and six-membered 
rings, far more similar in behavior to carbon clusters. 

There is a marked difference in the mass spectra of 
silicon and germanium cluters from those of tin and, 
particularly, lead.109 Although all these elements show 
similar beahavior in the region n < 10, lead shows a 
"magic number" at a nuclearity of thirteen, and tin 
shows some evidence of stability at this nuclearity also. 
This has been associated with a centered icosahedral 
geometry.106 This result can be explained simply within 
the PSEPT scheme, which suggests that this geometry 
may indeed be stable for lead, but not for silicon. The 
relative energy of the valence s and p orbitals makes 
no difference to the electron-counting rules for clusters 
with no interstitial atoms. With the appearance of 
interstitial atoms, however, the energy of the s orbital 
may become important for electron-counting purposes. 

If the s orbitals are included in the valence shell, the 
antibonding combination of the interstitial s orbital and 
the S function of the deltahedron will be of high energy. 
The centered icosahedron will thus be characterized by 
(4ra - 2) = 50 valence electrons, and this geometry would 
be unstable for an element with a high-energy s orbital. 
If the s orbital can be treated as a core orbital, then all 
n linear combinations of s orbitals will be occupied, and 
the cluster will be characterized by 4n (including s or­
bitals) or 2n valence electrons (neglecting s). Thus, Pb13 
is expected to be more stable in the centered icosahedral 
geometry than Si13. No calculations have yet been 
carried out to check this suggestion. The high coor­
dination of this cluster is a reflection, in cluster chem­
istry, of the same characteristics that make lead a 
close-packed metal while silicon and germanium are 
"network-bonded" crystals. PSEPT also suggests that 
Pb19 should be an octahedron with one interstitial atom 
rather than the icosahedrally based structure with two 
interstitial atoms suggested by Phillips.106 

Phillips105'106 has proposed that the magic nubmer of 
lead can be understood if both packing and jellium 
closed shells are considered. Noble gas clusters have 
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stabilities determined by favorable packing arrange­
ments, the sequence of icosahedral structures with n = 
13, 55, etc. being particularly stable.5,110 Phillips sug­
gests that the magic numbers at n = 7, 13, and 19 in 
the lead mass spectrum may be interpreted in terms of 
close-packed structures with fivefold symmetry (the 
pentagonal bipyramid, the centered icosahedron, and 
the "bi-icosahedron"), while that at n = 10, with 40 
electrons, could be interpreted in terms of a jellium 
closed shell. Phillips suggests a bicapped square an-
tiprism for this n = 10 isomer. We have seen in the 
discussion above that this closo structure will be 
characterized by 42 electrons, and so is not a likely 
candidate for the Pb10 structure. The structure is more 
likely to be an analogue of the Si10 structure above. It 
should be noted, however, that ultraviolet photoelectron 
spectroscopy experiments on silicon and germanium 
suggest that while the tetramer, hexamer, and heptam-
ers of both Si and Ge are closed-shell species with "band 
gaps" of 1-1.5 eV, the Ge10 species, surprisingly and 
unlike the Si10 species, exhibits no significant HOMO-
LUMO gap.111 Bare compound clusters with An valence 
electrons have also been observed in the spectra of 
group 13/group 15 mixtures. Duncan and co-workers 
have carried out experiments on the InxSb3, and In1Bi3, 
intermetallic clusters.96 The In2Sb2, In3Sb3, and In4Sb5 
species appear at moderate intensity in the spectra of 
InxBi3,. We thus predict these to be oblate trigonal 
bipyramid (five-atom species); oblate pentagonal bi­
pyramid, capped octahedron, or tricapped tetrahedron 
(seven atoms); and possibly capped dodecahedron (nine 
atoms). The most prominent feature in these spectra, 
is however, the In3Sb3 species, which is isoelectronic 
with the particularly stable Si6 and Ge6 clusters as well 
as Ga3As3 clusters observed by Smalley and co-work­
ers.112 Thus the bicapped tetrahedron or oblate octa­
hedron are likely structures for these systems. At higher 
nuclearities, the In6Sb5 cluster is particularly prominent, 
which is isoelectronic with the Si10 and Ge10 clusters. 

Although the structures of these 4n-electron species 
cannot be confidently assigned, at present, uniquely, 
PSEPT does greatly limit the choices available to the 
systems under study, and the analogies among the 
several spectra studied—of single elements and com­
pound systems—support the expectation that qualita­
tive models such as the PSEPT will be able to provide 
reliable models of the electronic structure of these 
systems. 

An interesting question for the compound clusters is 
the site preferences of the different atom types. Schild 
and co-workers93 made some tentative assignements for 
the Pb1Sb3, clusters on the basis of atomic valences, but 
the influence of electronegativity and resonance integral 
changes remains to be investigated. 

Clusters with More Than 4n + 2 Electrons 

Ligated clusters with bn valence electrons, such as 
(CH)n, often form three-connected clusters. The clus­
ters of group 15 elements are obvious candidates for 
such structures. It is well-known that the 20-electron 
species As4,

113 Sb4,
114,115 and Bi4,

116-117 are present in the 
vapor above the solids, and these are obvious candidates 
for tetrahedral structures. P4 is, of course, tetrahedral. 
Clusters of neutral and ionic group 15 elements have 
been reported recently.118,119 The following geometries 

are predicted for the neutral higher group 15 clusters: 
M6, trigonal prism; M8, cube or cuneane; M10, pentag­
onal prism; M12, truncated tetrahedron; M20, dodeca­
hedron. 

The cations of odd-nuclearity group 15 cluster are 
also able to adope electron-correct structures related 
to polyhedra. M5

+ will have seven electron pairs and 
so, as Geusic et al. have suggested,118 should be a 
rado-octahedron, while M7

+ will adopt an arachno 
structure based on the tricapped trigonal prism. Geusic 
et al. also suggest118 that M6 will adopt an arachno-
dodecahedron, but the trigonal prism is, in this case, 
perhaps more likely. 

The tendency to form clusters increases down the 
group: cluster beam experiments on Sb (although not 
Bi) show that only clusters of nuclearity An are formed 
in condensation of the vapor in a noble gas, confirming 
the particular stability of the tetrahedral cluster,118,119 

while calculations show that the energy difference be­
tween P4 and cubic P8 is very small,120 and so it is un­
clear whether any chemically bound clusters of phos­
phorus of nuclearity higher than four will form. 

Clusters with 6n valence electrons generally form 
rings, and their bonding can be interpreted by using 
localized bond models. Sulfur provides an extensive 
series of clusters of this type.89 

B. PSEPT Applied to Gas-Phase 
Transition-Metal Clusters 

PSEPT was developed to account for the observed 
structures of condensed-phase, ligated clusters. Tran­
sition-metal clusters of this type are predominantly 
closed-shell, diamagnetic species, the narrow "band" of 
d orbitals being entirely filled. Bare transition-metal 
clusters are generally open-shell species, with a partially 
filled d-"band".121 The accurate theoretical description 
of even the smallest of these clusters has been a great 
challenge for theory, with the subtle interplay of Cou-
lombic repulsions and exchange forces making the 
electronic structure often finely balanced between 
different alternatives.122 The role of electron-counting 
rules and the possibility of structural generalizations 
in such situations have not yet been explored. 

One area where PSEPT does have an important role 
to play, however, is in the study of gas-phase ligated 
transition-metal clusters. In some recent very elegant 
molecular beam experiments Fayet, McGlinchey, and 
Woste have mass-selected individual Nin (n = 1-20) 
cluster ions and studied their reactions with carbon 
monoxide.123 A range of cluster ions was formed with 
varying numbers of carbonyl ligands and the following 
primary reactions were identified: 

Nin
+ + feCO - Nin(CO)4

+ 

Nin
+ + ICO - NinC(CO),+ 

Nin
+ + mCO -* Nin_x(CO)m

+ 

The limiting number of carbonyls for each of these 
reactions as a function of the number of metal atoms 
is summarized in Table 7. These have been recently 
reinterpreted by using the principles of the PSEPT 
approach.124 

It is apparent from Table 8 that Ni6(CO)13 and Ni7-
(CO)15 both have (14n + 2) cluster valence electrons, 
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TABLE 7. Limiting Stoichiometrics of Clusters Formed 
between Nickel Cluster Cations and Carbon Monoxide 

limiting 
stoichiometry 

Ni4(CO)10 

Ni6(CO)12 

Ni6(CO)13 

Ni7(CO)15 

Ni8(CO)18 

Ni9(CO)1, 
Ni10(CO)18 

Ni11(CO)19 

Ni15(CO)2O 

Ni13(CO)20 

no. of valence 
electrons 

60 (15n) 
74 (14re + 4) 
86 (14n + 2) 

100 (Un + 2) 
112 (Un) 
124 (Un - 2) 
136 (Un - 4) 
148 (Un - 6) 

160 (14n - 8) 

170 (14(n - 1) + i 

predicted structure 

tetrahedron 
square pyramid 
octahedron 
pentagonal bipyramid 
capped pentagonal bipyramid 
bicapped pentagonal bipyramid 
tricapped pentagonal bipyramid 
tetracapped pentagonal 

bipyramid 
pentacapped pentagonal 

bipyramid 
) centered icosahedron 

TABLE 8. Limiting Stoichiometries of Clusters Formed in 
the Fragmentation Process Nin

+ + mCO — Ni„-i(CO)m
+ 

limiting 
stoichiometrv 

Ni5(CO)11 

Ni6(CO)14 

Ni7(CO)1, 
Ni8(CO)18 

Ni9(CO)19 

Ni10(CO)20 

Ni11(CO)21 

Ni12(CO)2, 

no of valence 
electrons 

72 (14n + 2) 
88 (Un + 4) 

104 (Un + 6) 
116 (Un + 4) 
128 (14n + 2) 
140 (14n) 
152 (14n - 2) 
164 (Un - 4) 

predicted structure 

trigonal bipyramid 
nido pentagonal bipyramid 
arachno tricapped trigonal prism 
capped " 
bicapped " 
tricapped " 
tetracapped " 
pentacapped " 

W 

as appropriate for closo structures (see above)123 but 
that the subsequent clusters, with eight to twelve metal 
atoms, deviate from the closed-shell requirements for 
deltahedrai clusters. The successive increments of 
twelve in the total number of valence electrons for these 
clsuters suggest that the capping principle (see above) 
may be appropriate124 and that five caps are being 
added to the parent structure. Since the parent 
structure has a cluster valence electron count consistent 
with a pentagonal bipyramid with fivefold symmetry, 
this pattern suggest the growth pattern illustrated on 
the right-hand side of Figure 21. The pentacapped 
pentagonal bipyramid in Figure 21 is geometrically 
ideally set up to form an icosahedron with an interstitial 
nickel atom by the addition of one more nickel atom. 
According to PSEPT this centered geometry should be 
associated with a total of 170 valence electrons, i.e., 14 
x 12 + 2. As noted above, interstitial atoms do not add 
to the valence electron count of these clusters. The 
limiting molecular species observed by Fayet and co­
workers, Ni13(CO)2O, has just this electron count.123 

Such a growth sequence, based on fivefold symmetry, 
has previously been proposed on the basis of calcula­
tions for inert gas and metal atom clusters.125'126 

Further support for this proposal comes from an ex­
amination of the growth sequence in the fragmentation 
reaction 

Nin
+ + mCO - NU(CO)m

+ 

The limiting stoichiometries of the ions observed in this 
process are summarized in Table 8.123 The Ni6(CO)14 
species has an electron count consistent with a nido 
structure, (14rc + 4), and could most readily be ac­
counted for in terms of a pentagonal pyramid derived 
from the pentagonal bipyramid by the loss of an apical 
atom (see Figure 22). The next member of the series, 
Ni7(CO)17, has an electron count consistent with an 
arachno structure and a geometry based on a tricapped 
trigonal prism with two adjacent vertices missing. This 
structure, which is illustrated in Figure 22, could also 

Figure 21. Capping sequence from the pentagonal bipyramid 
to the centered icosahedron suggested for nickel carbonyl clusters. 

per'.agona py^c^ d ier'.ogc^a bi py.cr-

•;'dpp*=d pen;dgcnc dipyamid a-oc^nc snapped :ngonai pr.sm •:pped rrigcnal prsr-

Figure 22. Proposed growth sequence for products of the 
fragmentation reaction of nickel clusters with CO, based on the 
removal of a highly connected nickel vertex from a capped 
structure. 

be generated from a capped pentagonal bipyramid by 
the loss of the highest connected apical vertex, i.e., the 
same vertex as that lost for the pentagonal bipyramid 
above. Interestingly, the next five members of the series 
given in Table 8 have limiting electron counts that 
represent an increment of twelve valence electrons for 
each metal atom. This, of course, again suggests a series 
of capped molecules based on the arachno-Ni7(CO)17 
structure illustrated in Figure 22.124 These could all be 
derived from the capped structures illustrated in Figure 
22 by the removal of a highly connected nickel vertex. 
The important fact is that the fragmentation pattern 
reinforces the growth sequence based on a pentagonal 
bipyramid, as described above. 

In summary, PSEPT provides a consistent and uni­
fied account of the clusters observed in the molecular 
beam experiments when a high concentration of CO is 
present, although it can say little concerning the 
structures of clusters with few CO's. 

V. Dependence of Cluster Formation on Period 

We have so far generally emphasized the similarities 
among elements of a given group, but as the discussion 
of group 14 elements showed, cluster formation is also 
dependent on period. In particular, the chemistry of 
the second-row elements is, as is well-known, distinctly 
different from that of the heavier elements in their 
group. 

One of the main differences observed is the prefer­
ence of second-row elements, as compared to the heavier 
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elements in their group, to form multiple bonds. Re­
stated, this means that second-row elements are more 
reluctant to adopt high coordination structures. This 
difference is obvious in the elements themselves. Ni­
trogen and oxygen form dimers, while phosphorus forms 
a tetrahedral P4 unit that obeys electron-counting rules 
and sulfur forms eight-membered rings.89 The ther-
modynamically most stable form of carbon at room 
temperature and below is graphite (three-coordinate) 
while silicon forms a diamond-like lattice. This tend­
ency to form high coordination number species con­
tinues down the group, with lead, for instance, probably 
adopting a close-packed structure. 

The reasons for this fundamental difference among 
group members is still debated; a recent article by 
Kutzelnigg120 proposes that the crucial difference is that 
the s and p orbitals of all but second-row elements 
occupy significantly different regions of space (the p 
orbitals being more diffuse than the s orbitals) so that, 
despite the smaller s-p energy separation of the heavier 
elements, they are less able to hybridize. 

Whatever the reason, the observation suggests that 
the electron-counting rules for main-group clusters will 
not generally apply to second-row elements, and such 
is indeed the case. For nitrogen and oxygen, of course, 
as well as the halogens, no chemically bound clusters 
form. For carbon, clusters have been observed over a 
large size range: it is known that at lower nuclearities 
(values of n up to at least 20) carbon forms chains and 
rings, no three-dimensional structures being observed. 
At higher nuclearities, three-dimensional structures do 
form, with the remarkably stable C60

127 being a large, 
probably regular soccer ball shaped, polyhedron com­
posed of hexagonal and pentagonal faces. The bonding 
in this cluster, as well as in the lower homologues, can 
be explained in terms of classical a and ir bonding, just 
as in most organic molecules. 

The bonding in bare gas-phase boron clusters has 
been little investigated. There have been very few 
theoretical investigations on these species, so that no 
structures are currently known beyond a nuclearity of 
six, and even for the small clusters the structures are 
uncertain.128 Only a few experimental studies of these 
species have been carried out to date.128'129 It is cur­
rently unclear whether electron-counting rules have 
much to tell us about these 3rc valence electron species, 
although preliminary extended-Huckel MO investiga­
tions suggest that closed-shell boron clusters with n > 
5 may adopt three-connected structures.130 Hanley and 
Anderson128 suggest that B5

+ adopts a trigonal-bipy-
ramidal structure. 

VI. Conclusions 

This review has shown how simple methods of elec­
tronic structure enable us to make predictions con­
cerning the structures and stabilities of gas-phase 
clusters. The spherical jellium model and its extensions 
enable the prediction of many alkali-metal cluster 
shapes, and the analogous LCAO model of a single-shell 
spherical system enables us to extend these ideas to 
isolobal systems such as gold phosphine clusters. 

Main-group clusters, both ligated and bare, exhibit 
more complicated stability patterns than the alkali 
metals. The possible structures of these clusters, for 
all but bare clusters of second-row elements, are se­

verely limited by the requirements of polyhedral skel­
etal electron pair theory. The tensor surface harmonic 
theory provides the suitable zero-order spherical model 
that dictates the underlying electronic structures of the 
clusters. 

There is currently little information concerning the 
behavior of ligated transition-metal clusters in the gas 
phase, but the interpretation of the nickel carbonyl 
clusters generated by Fayet and co-workers provides 
grounds for considerably optimism that here, too, the 
simple requirements of electron counting can guide us 
in our search for an understanding and prediction of 
the structures of these species. 
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