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/. Introduction 

The problem of vibrational relaxation is of interest 
for a variety of reasons, most notably because of the 
importance of energy-transfer processes in chemical 
reactions. In particular, almost any bond-breaking or 
bond-forming process requires the transfer of energy 
either into or out of a molecule's vibrational modos. In 
liquids, our understanding of this fundamental reaction 
step is limited by the high density and disordered na­
ture of the medium. For example, the application of 
isolated binary collision (IBC) models is complicated 
in liquids by many-body dynamics. Recent interest in 
theories of vibrational relaxation has been fueled by a 
variety of new experimental techniques, although the 
information gained from experiments is still difficult 
to interpret. One major difficulty in comparing ex­
periments with theories of vibrational relaxation results 
from a lack of knowledge concerning interaction po­
tentials in solution. For this reason the evaluation of 
the effectiveness of various theories in treating this 
problem is based more on a theory's ability to predict 
trends of density and temperature dependence than on 
its quantitative agreement with experimentally deter­
mined relaxation rates. 

There are three regimes of vibrational motion that 
we will deal with throughout this review, namely, 
high-frequency, low-frequency, and large-amplitude-
motion regimes. The high-frequency regime is strictly 
quantum mechanical in nature at temperatures most 
commonly of interest. Isolated binary collision models 
are effective in treating high-frequency oscillators both 
because of the possibility of including quantum effects 
in the coupling and because the assumptions implicit 
in IBC models are most valid in this limit. The low-
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Salt Lake City, UT 84112. 

frequency regime, not including large-amplitude motion, 
which will be discussed next, encompasses a much 
smaller cross section of interesting systems. The low-
frequency nature of these systems allows for a classical 
treatment of the oscillator motion, thus opening up 
these systems to a variety of classical tools including 
molecular dynamics and stochastic simulation methods. 
The questions that remain to be answered in this regime 
concern the validity of classical approximations to the 
vibrational motion. The final regime is that of large-
amplitude vibrational motions. This regime is ex­
tremely important in understanding vibrational energy 
transfer during chemical reactions, i.e., during bond 
breaking and bond formation. It is also in some re­
spects the most difficult regime to treat. IBC models 
break down with large-amplitude vibrational motions, 
and although the system motions can often be treated 
classically due to the anharmonicity of the potentials, 
classical techniques such as stochastic simulation 
models rely upon assumptions of linear response that 
become invalid with the large-amplitude motions. Each 
of these three regimes presents different problems, and 
each approach to vibrational relaxation has different 
regions of validity. 

This review will cover in detail the period from 1984 
to present, for systems of diatomic vibrational popula­
tion relaxation in simple solvents. Previous work will 
be referred to often for historical background and 
theoretical developments. There have been several 
other review articles published recently,1 including most 
recently one by Chesnoy and Gale (1984). Problems of 
more complicated nature, namely, polyatomic relaxation 
and the interpretation of experimental results, will not 
be dealt with exhaustively. 

/ / . Isolated Binary Collision (IBC) Theories 

A. General and Early History 

It has been 30 years since the isolated binary collision 
(IBC) theory was proposed to describe vibrational re­
laxation in liquids.2,3 Ultrasonic absorption experiments 
on various liquids were performed, and the results were 
related to the vibrational relaxation of an oscillator. 
Experimentally it was found in many cases that the 
relaxation rate increased linearly with density at low 
density. As the density increased, however, the rate 
increased nonlinearly with density. Litovitz believed 
that the results could be explained by making two as­
sumptions. The first assumption was that the relaxa­
tion could be explained by the gas-phase relaxation 
equation 

*<j = Ptf> (D 
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where Ky is the rate of relaxation from vibrational state 
i to j . Py is the gas-phase probability of changing from 
vibrational state i to j given a collision with one mole­
cule averaged over oscillator phase, impact parameter, 
and a Maxwell-Boltzmann distribution of velocity, v 
is the collision frequency. Notice that Py is only tem­
perature dependent, whereas v is both density and 
temperature dependent. The second assumption Li-
tovitz made was that v is not given by the ideal gas 
collision rate in the dense phase, but that the volume 
the molecules take up must be taken into account in 
calculating the collision rate. An example of one of the 
collision rate formulas used at the time is 

9 ~ V / ( p - V » - a) (2) 

Harris et al. 
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Note that this is the average velocity (V) divided by the 
mean free path of a molecule in a moving-wall cage.2 

One problem with this formulation is that the mean free 
path should be proportional to p"1 as p —> 0, but where 
this transition occurs is not defined. 

According to early IBC proponents, one only had to 
correctly calculate the collision frequency in order to 
predict the vibrational relaxation. However, there were 
more assumptions than Litovitz and Madigosky stated 
in the original papers. Fixman and Zwanzig objected 
that IBC neglected the constant collective random force 
on the vibration, the possibility that in the liquid the 
collisions may not be independent due to a nonrandom 
phase of the oscillator during collisions, and that col­
lisions may overlap in time.4,5 Fixman modeled the 
collective random force due to the solvent as a force 
with a white noise spectrum. His calculation showed 
that the white noise random force is very efficient at 
relaxing the oscillator. However, the white noise ran­
dom force overestimates the high-frequency random 
forces in a liquid, as Fixman noted, and the model's 
criticism of IBC was rebuffed by Herzfeld.6 Zwanzig 
approached the problem from a time correlation func­
tion perspective where the rate should be proportional 
to 

Cdtexp(i<at) (F(t) P(O)) (3) 

where co is the frequency of the oscillator and Fit) is the 
force on the oscillator at time t. Zwanzig then assumed 
that the force on the oscillator could be decomposed 
into isolated events at some time tk. 

F(t) = Ef(t ~ h) (4) 
k 

(F(t) Fit + r)> = £.£</(* - tk) fit+ T- tj)) + 

Z(fH - tk) fit + T - tk)) (5) 
k 

Zwanzig defined the second part of the equation as the 
binary part of the force on the oscillator. He found that 
the binary part dominates relaxation when 

<OTC » 1 (6) 
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where u> is the oscillator frequency and rc is the time 
between events. Herzfeld convinced Zwanzig that this 
was consistent with IBC if TC is the time between ef­
fective events.6 According to Herzfeld, the molecules 
that were studied were high-frequency oscillators and 
relaxed very slowly; therefore the time between effective 
events was very long. Zwanzig agreed that IBC was 
internally consistent.7 Several authors have examined 
interference effects and have come to about the same 
conclusion. lb'd'8,9 

B. Statistical Mechanics and IBC 

IBC remained stable until 1971, when Davis and 
Oppenheim used a master equation approach to de­
scribe vibrational relaxation in a liquid in the weak-
coupling limit.10,11 Again their theory, as in earlier ones, 
applies only to high-frequency oscillators. They pointed 
out that using weak-coupling theories may not be ap­
propriate, because even though relaxation is slow, the 
forces that cause the relaxation are strong. They de­
rived an equation that was forced into a binary form 
and found that 

Kx/Kt = (Pl/P^g1(R*) /gg(R*) (7) 

K1 is the rate for the liquid where the ij subscript has 
been dropped, K% is the gas rate, p\ is the liquid density, 
pg is the gas density, g\{R*) is the radial distribution 
function for that liquid density evaluated at some R*, 
and gg(R*) is the gas radial distribution function 
evaluated at R*. R* is the turning point for the most 
effective collisions, and it is assumed that this region 
is small. This is only valid for spherical molecules with 
small-amplitude vibrations. Equation 7 could have 
been derived by incorporating into IBC Einwohner and 
Alders models for collision rates in a liquid.12 A very 
intuitive development of this is given by Delalande and 
Gale.13 Notice that unlike the earlier equation for the 
rate by Litovitz, this incorporates the structure of the 
liquid. At this point experimentalists had started to 
look at vibrational relaxation with more specific tech­
niques than ultrasound. Unlike the ultrasound studies, 
the use of lasers allowed experimentalists to study the 
relaxation of diatomics. The first experiments by 
Calaway and Ewing of the vibration to translation re­
laxation of N2 in liquid N2 served not only as a simple 
system to test the above ideas but showed the enormous 
range over which vibrational relaxation takes place.14'15 

A good review of the above theoretical and experimental 
techniques is given by Chesnoy and Gale.la 

C. Reexamination of Assumptions (Post-1984 
Work) 

After 1984IBC was applied to the relaxation of many 
simple molecules; however, most of the experiments 
were vibration to vibration relaxation and not as simple 
to model as vibration to translation relaxation. In many 
experiments, IBC was used to explain the data and the 
basic theory was usually not questioned, only the effect 
of anisotropy, how hard or soft potentials affected the 
relaxation, how to calculate g(R*), and what R* to 
use.1^34 One major change was a paper by Chesnoy and 
Weis8 studying the density dependence of relaxation 
times. They performed a molecular dynamics simula­
tion of a Lennard-Jones fluid and calculated two force 

autocorrelation functions as a function of density 

Fit) = (Zf(rh(t))Zf(rc(0))) (8a) 
b c 

Fb(t) = (Lf(rb(t)) f(rb(0))) (8b) 
b 

where F(t) is the total force autocorrelation, Fb(t) is the 
binary force autocorrelation, and fit) is the coupling 
from the Lennard-Jones liquid to the oscillator at time 
t. From these correlation functions and the Golden 
Rule they calculated the relaxation rate 

1/T1 « j&t e^Fit) (9) 

Basically the component of the force autocorrelation 
spectrum at the oscillator frequency determines relax­
ation. They found that the binary force autocorrelation 
function frequency spectrum was very similar to the 
total force autocorrelation function frequency spectrum, 
all the way to frequencies of «10 cm"1. This would 
extend the validity of IBC calculations to near-resonant 
vibration to vibration relaxation and perhaps to de-
phasing.35"37 

The last major theoretical consideration of IBC was 
by Dardi and Cukier.38"40 They calculated the relaxa­
tion of a dilute diatomic in a structureless fluid and 
discuss explicitly all approximations in their calcula­
tions and an IBC approach. They examine interference 
effects as other authors have and assumed again that 
for high-frequency oscillations this is not a problem. 
Another assumption is that dynamically correlated 
collisions are not important. Dynamic correlations are 
the correlations between successive elastic collisions. 
The nondynamic effects of correlated elastic collisions 
should be taken into account by the radical distribution 
function. No one has examined the effects of dynamic 
correlations on vibrational relaxation, although by its 
very definition it should not be important. Also it is 
not clear that a Maxwell-Boltzmann distribution in 
velocity exists around the oscillator, although some 
work indicates this is true as long as the transition 
probability is small.41,42 Another assumption implicit 
in all IBC models is that vibrational relaxation is a 
Markov process. Finally, they propose that a weak-
coupling assumption can be made, unlike Davis and 
Oppenheim. Gas-phase calculations have shown the 
weak-coupling approximation to work well, if the elastic 
cross section is much smaller than the inelastic cross 
section and the elastic and inelastic potentials are 
chosen correctly.43,44 Cukier et al.'s final paper attacks 
the scaling of vibrational relaxation by the radial dis­
tribution function. They calculate the relaxation of an 
oscillator in a dilute gas using their formalism and show 
that the result is the standard dilute gas rate constant. 
They perform the same calculations for a liquid and 
find that to do the correct averaging the R* of g(R*) 
must be chosen so large that g(R*) ~ 1. They believe 
that there is no basis for using the ratio of g\(R*) to 
gg(R*) to explain the nonlinearity of relaxation vs 
density. One possible criticism of their calculation is 
that they must assign a transition probability R as a 
function of P(momentum) and b(impact parameter), 
R(P,b). Unfortunately, they approximate RiP,b) as a 
constant in b up to bmax, where it drops to zero. This 
functional form is highly unlikely for vibrational re­
laxation, and most previous authors have assumed that 
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R(P,b) is sharply peaked at b = 0. It is generally ac­
cepted that hard direct collisions are responsible for the 
majority of relaxation. As noted earlier to prove or 
disprove many of these theories a density-dependent 
study is needed. 

The relaxation of I2 in Xe is a good test case for many 
reasons. The vibrational frequency is very low (214 cm"1 

at the bottom of the well) and the solvent is simple to 
describe. Brown et al. have examined the vibrational 
relaxation of I2 after geminate recombination by mo­
lecular dynamics.45,46 A density-dependent study was 
performed and it was found that the relaxation in four 
densities was qualitatively the same and could be ov­
erlapped by scaling the relaxation in time. This could 
be explained by IBC if there was a way to quantitatively 
predict the scaling factors. In order to test the appli­
cation of IBC to this system, a collinear gas-phase sim­
ulation of the relaxation of I2 by Xe was completed.46 

Quantitatively, the IBC results could not model the 
relaxation by a physically meaningful collision rate. 
The collision rate in the liquid could be defined as the 
flux of Xe atoms through a sphere of reasonable radius 
centered on each of the I atoms; this was calculated in 
the molecular dynamics simulation. It was found for 
a reasonable radius that the collision rate was «2 ps"1; 
however, for the IBC calculation to overlap the mo­
lecular dynamics results a collision rate of «4 ps"1 was 
needed. The IBC calculation was a collinear calculation, 
and therefore a steric factor of 1/3 is usually applied; 
this would imply that to match the molecular dynamics, 
a collision factor of 12 ps"1 would be needed. The 
largest problem with this comparison is that the I2 has 
a very large amplitude oscillation at the top of the well 
and IBC theory may not be applicable. The probability 
of relaxation for the higher vibrational states can with 
difficulty be found experimentally or predicted; how­
ever, if the oscillation of the vibration is very large, as 
in I2 at the top of the well, the frequency of collisions 
and characteristics of the collisions will be determined 
by the I2 motion and not the solvent. At the top of the 
well molecular dynamics shows a definite phase rela­
tionship between the I2 and the solvent. Further studies 
on the relaxation at the bottom of the well are in 
progress to see if they can be explained quantitatively 
by IBC. 

/ / / . Computer Simulations 

Methods of computer simulation are extremely pow­
erful tools in the study of chemical reactions in solution. 
This is primarily because of the accessibility of virtually 
all details of the system motion in such computer ex­
periments. Simulations of vibrational relaxation in 
liquids have great potential for revealing relevant re­
laxation mechanisms as well as for giving accurate in­
formation on the sensitivity of the relaxation to various 
system parameters. Thus simulations potentially pro­
vide an ideal testing ground for various theoretical 
models. Yet in practice simulations of vibrational re­
laxation have proven to be quite difficult to perform for 
several reasons. First, an accurate treatment of vibra­
tional motion in most systems of interest must be 
quantum mechanical in nature, and although great 
progress has been made in recent years in simulating 
quantum processes, such techniques remain quite com­
putationally burdensome. As a result, most simulations 

of vibrational relaxation have been restricted to systems 
for which a classical treatment of vibrational motion is 
not altogether unreasonable, i.e., to systems with either 
high temperatures or low vibrational frequencies. 
Solvents are typically monatomic and therefore also 
amenable to classical treatments. Second, vibrational 
relaxation is usually a slow process relative to the vi­
brational motion and solvent motions, and therefore 
simulations of relaxation must be performed for long 
times to give relevant information, making the cost of 
many such simulations prohibitive. Finally, at least in 
brute force methods such as molecular dynamics, the 
system sizes required to give reasonable relaxation re­
sults are often quite large even though details of the 
solvent motion far from the reaction center are seldom 
of great interest. 

A. Molecular Dynamics Simulations 

The first molecular dynamics (MD) simulations of 
vibrational relaxation were reported by Riehl and 
Diestler in 1976,47 in which the computational burdens 
described above were minimized by considering a one-
dimensional system of low-frequency (10 cm"1) diatomic 
oscillators arranged head to tail. The extremely low 
frequency of the oscillator used in these simulations was 
necessary to achieve reasonable computational times. 
Nordholm, Jolly, and Freasier48 subsequently consid­
ered the density dependence of bromine relaxation in 
argon ranging from gas-phase to moderate liquid-phase 
densities. The system size was rather small and re­
laxation was calculated only in the upper portions of 
the bromine potential where frequencies were fairly low, 
thus saving computation time and also justifying the 
classical treatment of the vibration. 

More recently, advances in the availability of super­
computers have made possible the first extensive MD 
simulations of vibrational relaxation in a physically 
relevant system. Brown, Harris, and Tully45 have re­
ported a series of simulations of iodine relaxation in 
liquid xenon out to 500 ps for several densities. The 
system conditions were chosen to match those in a re­
cent set of experiments by Paige et al.49,50 The resulting 
vibrational relaxation curves are quantitatively quite 
different from experimental observations, being some­
where between a factor of 5 and 10 too fast. The tem­
perature and density dependencies, however, measured 
as ratios of the relaxation rates, agree quite well with 
experiments. Quantitative differences can be explained 
as being due to the extreme sensitivity of simulation 
results to the potential parameters used and are typi­
cally not considered as significant as the ability to re­
produce density and temperature trends. An additional 
source of error in these MD simulations is due to a 
gradual rise in the temperature of the solvent during 
each trajectory, a result of the finite system size, with 
a total temperature rise of about 30 K over the entire 
relaxation process. This set of simulations provides 
perhaps the most complete body of information avail­
able on the vibrational relaxation of a realistic model 
system and is proving to be useful in evaluating a va­
riety of theoretical models for vibrational relaxation 
including IBC46 and generalized Langevin-based theo­
ries.51,52 

Visscher and Holian53'54 have performed MD simu­
lations of vibrational energy transfer in high-density, 
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high-temperature systems with the goal of under­
standing the dynamics of condensed-phase chemical 
explosions. Their classical treatment is justified by the 
high system temperatures and pressures. Their work 
consists first53 of the evaluation of various thermo-
stating techniques used to accomplish constant-tem­
perature MD simulations, a feature that as seen above 
would be appealing in a variety of applications. A 
second set of simulations54 were performed on a one-
dimensional system of diatomic molecules with the 
purpose of gaining insight into the mechanisms re­
sponsible for vibrational to translational energy transfer. 
The qualitative conclusions they arrive at, that relax­
ation is most efficient from highly excited molecules due 
to the anharmonicity of the potentials, is not surprising. 
The harsh nature of their "explosive" system makes 
comparison with other systems quite difficult. These 
same conditions do, however, provide an interesting test 
of some theories in a regime where they are not ex­
pected to hold, i.e., IBC theories at very high densities. 

B. Stochastic Simulations 

An interesting alternative to MD simulations is pro­
vided by stochastic simulation techniques, in which the 
solvent dynamics are modeled by some sort of stochastic 
equations of motion while the solute motion is treated 
explicitly as in MD. The most common approaches to 
stochastic modeling of the solvent begin with the gen­
eralized Langevin equation (GLE), as first developed 
by Mori, Kubo, and Zwanzig.55"57 The GLE can be 
written in scalar form for a single particle of mass m 
as 

mv(t) = - C'dt'myit') v(t - t') + R(t) (10) 

where R{i) is the "random" force and the convolution 
integral is the dissipative force. It can be further shown 
that R(t) and the memory function y(t) are related by 
the second fluctuation dissipation theorem57 

(R(f) R(t'+ t)) = kBTmy{t) (11) 

where the brackets indicate an ensemble average, kB is 
Boltzmann's constant, and T is the temperature. The 
GLE is particularly useful in that it easily lends itself 
to approximation. R(t) can be represented as a Gaus­
sian random force, and the memory function y(t), which 
in essence contains all relevant information about the 
full many-body dynamics of the solvent, can be ap­
proximated by a variety of simple functional forms, thus 
making evaluation of the GLE a relatively simple task. 
Stochastic simulations have both advantages and dis­
advantages when compared with MD. The most ob­
vious advantage is in their potential computational 
efficiency. The stochastic model for the solvent can be 
developed to arbitrary accuracy providing a balance 
between adequate solvent modeling and computational 
complexity. Information about relevant solute-solvent 
interactions can also be readily obtained through 
evaluation of the effectiveness of various solvent models 
in the stochastic simulations. The primary disadvan­
tage of stochastic models is that potentially useful in­
formation about the solvent dynamics is lost when the 
solvent is not treated explicitly. There is also some 
uncertainty in stochastic simulation results associated 

both with the assumption of solvent linear response, 
implicit in the GLE, and with the approximations in 
the solvent model. Thus the two techniques seem to 
be complementary in nature rather than competitors. 

The most thoroughly developed stochastic simulation 
technique is the MTGLE work of Adelman and co­
workers.58-60 Their approach consists of reformulating 
the generalized Langevin equation into an equivalent 
set of linear coupled equations that govern the motion 
of an infinite chain of harmonically bound "atoms". 
The individual chain atoms are related intuitively to 
successive solvation shells in the liquid. The compu­
tational efficiency of the technique is derived from the 
ability to truncate the harmonic chain after a very few 
atoms. Parameters for the harmonic chain are deter­
mined from equilibrium pair distribution functions for 
the system of interest. The pair distribution functions 
can in turn either be calculated explicitly from a mo­
lecular dynamics simulation or approximated analyti­
cally, the latter being much more efficient. The 
MTGLE technique has been applied to the vibrational 
relaxation of iodine in a variety of Lennard-Jones sol­
vents by Brooks, Balk, and Adelman.59,60 Results are 
qualitatively quite reasonable though only calculated 
for relaxation in the upper portions of the well. There 
were no reported studies of density or temperature 
dependence. 

More recent work by Adelman and Balk61"63 has been 
directed toward extending the MTGLE approach to 
include molecular solvents. Such an extension is not 
at all trivial because of the need to realistically include 
vibrational structure in the solvent. Even ignoring the 
difficulties inherent in treating these modes classically, 
the high-frequency nature of the vibrations is not 
amenable to MTGLE techniques as originally formu­
lated. The work of Adelman and Balk accomplishes the 
necessary modifications, yet implementation of their 
model requires in addition a knowledge of the random 
force autocorrelation function of the molecule, which 
is, at present, unavailable. Thus this promising exten­
sion of a computationally efficient algorithm to simu­
lations of vibrational relaxation in molecular solvents 
remains essentially untested. 

Smith and Harris51'52 have recently applied a sto­
chastic simulation technique of similar spirit to the 
problem of iodine vibrational relaxation. Input into 
these simulations comes directly from a MD simulation 
of single iodine atom dissolved in Lennard-Jones xenon 
at equilibrium. These simulations contain the same 
potential parameters as the full-scale MD simulations 
of Brown et al.45 and no other adjustable parameters. 
This close connection allows for both a direct and a 
meaningful comparison of the stochastic and MD sim­
ulation results, providing for an interesting evaluation 
of stochastic methods in general. Results are shown in 
Figure 1 in comparison with MD simulation results of 
Brown et al. As can be clearly seen, the stochastic 
simulation results are in very good agreement with MD, 
lending credibility to this and related techniques that 
rely upon an assumption of solvent linear response. As 
it is developed to this point, this technique requires 
explicit calculation of atomic force autocorrelation 
functions, albeit for single atoms at equilibrium, and 
thus the computational burdens are not completely 
negligible. (The computational requirements are still 
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IODINE RELAXATION, SD VS MD 

Figure 1. Comparison of stochastic simulation (SD) and mo­
lecular dynamics (MD) results for vibrational relaxation of iodine 
in liquid xenon. Solvent densities simulated correspond to 
Lennard-Jones reduced densities of p* = 0.57 and p* = 0.95. 

considerably less than in full-scale MD simulations of 
vibrational relaxation.) 

C. Semlclassical Simulations 

Herman64-66 has developed a semiclassical approach 
to simulating vibrational relaxation of diatomics based 
on a semiclassical theory of nonadiabatic processes. In 
this model, time scale arguments are used to separate 
the "fast" vibrational motion from the slower transla-
tional and rotational motions of the solute and solvent. 
The vibrational motion is treated quantum mechani­
cally using perturbation theory to calculate adiabatic 
vibrational energies and wave functions. Vibrational 
relaxation is treated semiclassically through calculation 
of nonadiabatic couplings which are dependent on slow 
variable dynamics. Translational and rotational mot­
ions in the system are treated classically. This model 
is applied to the system of bromine in liquid argon with 
Monte Carlo simulations of the solvent motions being 
used to calculate the 1 -»• 0 vibrational transition rate. 
Results are quantitatively reasonable, although only 
calculated for a single density and temperature. Fur­
ther applications of this technique, including temper­
ature and density dependencies, are required for a more 
effective evaluation of its usefulness. The quantum 
mechanical treatment of the vibrational motion sets it 
apart significantly from the other simulation methods 
discussed in this section. 

IV. Continuum Theories 

Several theories of vibrational relaxation have been 
presented that treat the solvent as a viscoelastic con­
tinuum.67-69 An early hydrodynamic model by Metiu, 
Oxtoby, and Freed69 related vibrational relaxation times 
of a harmonic oscillator to the solvent's frequency-de­
pendent shear and bulk viscosities with slip-boundary 
conditions. The resulting expression for the relaxation 
rate is 

1 _ Re [flo,,)] 
T1 ~ m 

(12) 

where wv is the harmonic oscillator frequency, m is the 
atomic mass, and f(w) is a function of the shear and 
bulk viscosities. 

TABLE I. Comparison of the Density Dependence of 
Relaxation Times for Iodine in Lennard-Jones Xenon As 
Calculated from Molecular Dynamics and the Analytical 
Method Described by Stote and Adelman0 

relax time, ns 

packing fraction Stote and Adelman molecular dynamics 
__ 0.50 

0.40 
0.30 

0.647 
2.04 
5.23 1.0 

" Molecular dynamics relaxation times are estimates of the total 
time required for relaxation from vibrational energies near disso­
ciation to equilibrium, while the results from Stote and Adelman 
are T1 times for I2 at its equilibrium frequency. MD temperature 
ranges from ~290 K near the top of the I2 potential well to ~310 
K at equilibrium. Stote and Adelman temperature is 298 K. All 
other system parameters are nearly identical. 

A recently developed model by Stote and Adel­
man70"72 includes a formula for T1 that is analogous to 
eq 12 

T1 = 
2kBT 

1TPF(W1) 
(13) 

where k-% is Boltzmann's constant, T is the temperature, 
and p(a>) is the frequency spectrum of the fluctuating 
force exerted by the solvent on the vibrational mode. 
W1 is the gas-phase frequency of the oscillator corrected 
for the centripetal force and interactions with the local 
solvent environment. In their model, the force auto­
correlation function is approximated as a Gaussian and 
determined from pair potentials and pair correlation 
functions of the system. The pair correlation functions 
are in turn determined numerically as solutions of the 
Percus-Yevick integral equation. Results are given for 
iodine in several Lennard-Jones (L-J) liquids and bro­
mine in L-J argon. One result for iodine in L-J xenon 
is compared with the experimental measurement of 
Paige et al.49,50 and found to be in reasonable agreement, 
although it should be noted that the experiments were 
performed at 280 K and not 306 K as they quote. 
Comparison with the MD simulations of Brown, Harris, 
and Tully45 (BHT) is perhaps more meaningful as both 
sets of results contain an evaluation of density and 
temperature dependence of the relaxation rate. The 
Lennard-Jones parameters in each case are identical 
except for the L-J e's for the Xe-Xe interaction, which 
differs slightly (229 K for Stote and Adelman (SA) and 
222 K for Brown and co-workers). Relaxation results 
for the two systems are summarized in Table I. Note 
that the results for T1 of the SA analysis are signifi­
cantly longer than the BHT values, differing by over 
a factor of 2 at a packing fraction of 0.5 and by a factor 
of ~ 5 at a packing fraction of 0.3. SA results are given 
as the T1 value for iodine at vibrational frequencies 
corresponding to relaxation near the bottom of the well, 
while BHT results are given as the time for the entire 
relaxation process to occur. Extraction of T1 values at 
particular frequencies from the BHT results is not ac­
complished trivially given the noise in the simulations, 
but note that the resulting T1 values would be less than 
the relaxation times quoted. Therefore the discrepan­
cies between the SA and BHT results are actually 
greater than seen in Table I. The SA analysis of the 
density dependence of iodine relaxation was performed 
at 298 K, compared with 280 K in the MD simulations. 
This discrepancy is actually lessened by the tempera-
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ture rise during the MD trajectories discussed above, 
with the average temperature of the system being ~300 
K during the relaxation and reaching a final value of 
~ 310 K. Analysis of temperature dependencies in both 
systems suggests that temperature differences on the 
order of 10 K could not account for the observed dif­
ferences in relaxation results. The SA and BHT results 
disagree not only in absolute magnitudes but also in 
their density dependence. The BHT results show an 
increase in the relaxation rate by a factor of 4 from a 
packing fraction of 0.3-0.5, while the SA analysis pre­
dicts instead an increase by a factor of 8. In summary, 
the procedure of Stote and Adelman, while giving 
qualitatively reasonable results, does not give complete 
agreement with MD simulation results of nearly iden­
tical systems. This discrepancy could be due to a va­
riety of approximations in their model, including the 
calculation of the force autocorrelation functions from 
the Percus-Yevick equation or the subsequent ap­
proximation of that FAF by a Gaussian function. Fi­
nally, they claim to have developed a technique that 
decomposes the relaxation time into components that 
are due to direct (solute vibrational mode -»• solvent 
modes) and indirect (solute vibrational mode -»• solute 
translation and rotational modes -»• solvent modes) 
coupling mechanisms. This decomposition is mislead­
ing, as it does not lead to an expression for the total 
relaxation rate which is the sum of their "direct" and 
"indirect" relaxation rates, as is only reasonable. 

V. Conclusions 

The state of the theory of vibrational relaxation at 
this point must be driven by experiments. Due to the 
observation that relaxation is very sensitive to the po­
tentials, all the theories examined in this paper are 
useful only in predicting the density and temperature 
dependence of relaxation. Unfortunately, there have 
been very few experiments that provide this informa­
tion in a system that can be easily modeled. In the 
classical regime I2 in liquid Xe has been studied ex­
tensively in theory and experiment. This system has 
been modeled by most of the theories examined in this 
paper. The most successful model of the relaxation was 
based on the generalized Langevin equation. This 
model has reproduced the density trends seen in ex­
periments and has quantitatively reproduced a molec­
ular dynamics simulation of the relaxation of I2 in Xe. 
IBC theory, the most prevalent model, failed to model 
the relaxation, due to the large-amplitude motion of I2 
near dissociation. 

IBC theories have been somewhat successful in 
modeling quantum systems. The ease in applying IBC 
has made it most prevalent; however, it has been ap­
plied in detail differently in many experiments. This 
difference in application from experiment to experiment 
is partially due to the lack of a firm theoretical foun­
dation for IBC. This weakness causes the theory to still 
be attacked theoretically. Other theories to model 
quantum systems have been confined to semiclassical 
calculations; however, few of these calculations have 
been made because of their relative difficulty. Until the 
relaxation of simple oscillators in simple solvents is 
understood, it seems that relaxation mechanisms and 
dynamics of chemical relaxation in larger molecules in 
molecular solvents will still be a major challenge to 

experimentalist and theorist alike. 
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