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/. Introduction 

Electromagnetism is the force of chemistry. Com­
bined with the consequences of quantum and statistical 
mechanics, electromagnetic forces maintain the struc­
ture and drive the processes of the chemistry around 
us and inside us. Because of the long-range nature of 
Coulombic interactions, electrostatics plays a particu­
larly vital role in intra- and intermolecular interactions 
of chemistry and biochemistry. 

Intramolecular interactions are complicated by 
quantum mechanical effects. For example, covalent 
bonds and electron distributions require nonclassical 
descriptions. Nonetheless, energetics with a strong 
electrostatic component determine such properties as 
conformation and dissociation. Polarizability plays an 
important role in hydrogen bonding. All of this bears 
on such important considerations as molecular stability 
and enzymatic activity. 

Intermolecular interactions are dominated by elec­
trostatic forces. Understanding of these interactions 
is importance because encounter is the initial step of 
biomolecular processes. While some encounters may 
involve molecules held to a framework that facilitates 
their approach, more often one, or both, are moving 
freely in solution. Thus, diffusional encounter of a pair 
of molecules is the precursor to many biomolecular 
processes whether the constituents be an enzyme and 

its substrate, two electron-transfer proteins, DNA and 
a regulatory protein, or an ion and a channel. Berg and 
von Hippel1 review the different forms that the diffu­
sion process can take, while Calef and Deutch2 review 
the various theoretical models of diffusion. 

An understanding of the initial encounter step is 
critically important in a number of situations. For 
example, the diffusion encounter rate sets a limit on the 
overall reaction rate that further improvements in the 
chemical efficiency of the participants cannot overcome. 
For this reason, enzymes whose reactions are diffusion 
limited have been called "perfected" by evolution.3 

Even in situations where it is not rate limiting, an un­
derstanding of the encounter step can be important. 
For example, it may elucidate orientational behavior 
important in the chemical reaction. Finally, methods 
developed to study diffusional encounters can often be 
used to study equilibrium aspects of pairs of molecules 
in solution. 

Early work was limited to particles moving in po­
tentials with high degrees of symmetry. Computer 
Brownian dynamics (BD) simulations of diffusional 
motion have provided the ability to move into a more 
realistic realm. The basic algorithm of Ermak and 
McCammon4 allows the simulation of diffusional mot­
ion in much the same way as the molecular dynamics 
(MD) method allows the simulation of the inertial 
motion of a set of particles. This algorithm along with 
further refinements5-11 has allowed the study of biom­
olecular systems that often exhibit markedly nonsym-
metric geometries and potentials. 

The crucial component of these studies is the elec­
trostatic model chosen. In this paper we examine a 
number of historically successful methods and a number 
of newer techniques that are coming into their own. 
Several other reviews provide excellent accounts of 
various aspects of electrostatics in solution.12"17 An 
excellent review on dynamical aspects of reactions in­
volving proteins has been presented very recently by 
Case.18 

/ / . Review of Current Methods 

Because of the importance of electrostatic interac­
tions and because of the complications arising from 
many-body effects, a wide range of techniques have 
been developed for modeling electrostatic interactions. 
Their history follows the theoretical and numerical 
techniques available. From simple pairwise interac­
tions, approaches have been extended to include ion 
screening and arbitrary geometries. The different 
methods all have their weaknesses as well as their 
strengths. 

0009-2665/90/0790-0509S09.50/0 © 1990 American Chemical Society 
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A. Uniform Dielectric Models 

That the force between two charges varies inversely 
with the square of the distance between them was first 
stated by Joseph Priestly in response to the observation 
of the absence of charge on the interior surface of a 
charged, hollow, spherical conductor. Charles Coulomb, 
whose name has been associated with the law, then 
verified the behavior through accurate measurements 
with a torsion balance.19 It was later discovered that 
materials, dielectrics, placed between the charges could 
scale their interaction, reducing the magnitude of the 
force, but maintaining the relationships to charge and 
distance. The scaling parameter of the material, the 
dielectric constant, is a function of the polarizability of 
the medium, i.e., the ability for dipoles to be induced 
in the medium. These net dipoles can arise both from 
the reorientation of permanent molecular dipoles and 
from intramolecular redistribution of electronic charge. 
Thus the average behavior of the many-body problem 
is encapsulated in a single parameter. Application of 
such a macroscopic quantity in molecular-level calcu­
lations is certainly questionable. 

The use of a uniform, low dielectric constant is at 
least a reasonable approximation in MD simulations in 
which all the solute and solvent atoms are explicitly 
represented. MD calculations generally ignore intra­
molecular electronic polarizability and parameterize the 
permanent dipoles in such a way as to try to compen­
sate for the omission. Some internal polarizability can 
be incorporated explicitly by using flexible molecular 
models (i.e., allowing for vibrations).20,21 Most MD 
models of liquid water22 involve rigid molecules, how­
ever. The reorientation part of the high polarizability 
of the solvent is included since the water molecules are 
treated explicitly, although such models have difficulty 
producing the correct dielectric constant.23-28 The use 
of a uniform, vacuum dielectric constant is, in principle, 
exact when all contributions to the polarizability are 
explicitly accounted for. Several groups are currently 
developing many-body potential functions that treat 
internal polarizability explicitly.29-36 The complicated 
nature of these functions and the need for fitting pa­
rameters have limited current usage mostly to small 
molecular systems. A few applications have been made 
to proteins, as discussed in section II.C.3. 

The use of a single, uniform dielectric constant clearly 
represents a severe approximation when one considers 
bulky macromolecules such as globular proteins without 
an explicit treatment of the solvent. Nonetheless, 
electrostatics of this form have provided useful insights 
into the interactions of pairs of molecules too large to 
be amenable to full-scale MD simulations. Studies of 
electrostatic complementarity have been quite helpful 
in examining docked conformations of various pro­
teins.37,38 Simple charge-charge interaction models have 
provided insight into the conformations of proteins.39-45 

Qualitative considerations of charge-charge interactions 
with a-helix dipoles have been used to design protein 
mutations that enhance stability46,47 and to explain 
binding arrangements of proteins and dinucleotides.48 

Attempts to simulate the solvent by the use of a 
uniform, large dielectric constant that permeates the 
solute overestimate the screening of interior charge-
charge interactions. The technique, however, has been 
applied to mapping potential fields around proteins.49,50 
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Calculations by methods that include the lower polar-
izability of the molecular interior show that the irregular 
surface of a protein can have a large effect upon the 
electric potential.51 Brownian dynamics simulations 
have shown poor results with uniform dielectric mod­
els.52 They may be of qualitative, but not quantitative 
utility. 

B. Effective Dielectric Constant Models 

In attempts to apply Coulomb's law on the molecular 
level, it is apparent53 that different pairs of charge sites 
behave as if they had different effective dielectric 
constants. Experimentally, effective dielectric constants 
have been defined53 on a site-site basis as the expected 
vacuum electrostatic energy q^/An0Ti2 divided by the 
measured interaction energy, where Q1 and q2 are the 
charges at the two sites, t0 is the vacuum permittivity, 
and r12 is the distance between the sites. The expo­
nential factor of Debye-Hiickel theory has also been 
viewed54 as an effective dielectric constant. One major 
difficulty with effective dielectric constants, however, 
is that their definition is not unambiguous. For exam­
ple, the exponential Debye-Hiickel (DH) factor is dif­
ferentiated when calculating the electric field, so the 
effective dielectric constant defined in terms of the force 
differs from that defined in terms of the energy. 

Experimentally, it has been found that the effective 
dielectric constant in a globular protein generally in­
creases with separation.53,55 Nearby charges, having 
little intervening material, can interact almost as in a 
vacuum if they are not very close to the solvent. More 
distant charges feel more of the shielding effect due to 
the solvent surroundings. Attempts have been made 
to model this behavior56 with the introduction of a 
distance-dependent dielectric function that goes from 
vacuum permittivity at close range to bulk solvent 
permittivity at large range, with some appropriate 
switching function in between. The microdielectric 
method, which will be discussed in section ILD., has 
been utilized to justify and define such a relation. A 
simple form, which has been used to advantage in MD 
simulations, expresses the permittivity as being pro­
portional to separation.57 Such an expression was ad­
vantageous in MD simulations as it turned 1/r energy 
terms into 1/r2 terms and r/r3 force terms into 2r/r4 

terms, thus eliminating the need for time-consuming 
square root calculations in the evaluation of electrostatic 
forces. While not accurately matching experimental 
data or more detailed theoretical models,55,58 the me­
thod does permit the inclusion of solvent electrostatic 
screening, in at least a crude fashion, in cases where the 
computational load would preclude any more accurate 
treatment. 

An additional method, which can be described as a 
type of effective dielectric model, scales the charge as 
a function of distance from the molecular surface.57'59 

Taken to an extreme, some DNA simulations60 have 
scaled the phosphate charges to zero. This ad hoc 
method again crudely includes the solvent screening 
effects while keeping the calculations to a minimum. 

As will be seen in the following sections, the dielectric 
constant D, or permittivity e = De0, is better associated 
with regions of space than with sites. Consider the 
differential form of Gauss's law in an inhomogeneous 
medium 

-V.«(r)V0(r) = p(r) (1) 

where e is the position-dependent permittivity (which 
may be a tensor), 4> is the electrostatic potential, and 
p is the charge density. The permittivity is a measure 
of the polarizability of regions of space. An additional 
concern arises from the fact that inhomogeneities in the 
permittivity lead to stresses on the medium (a matter 
that will be discussed in more detail below). 

C. Heterogeneous Dielectric Models 

The first steps in taking continuum models beyond 
the uniform and effective dielectric descriptions have 
involved models consisting of a central cavity with as­
sociated charges. Original attempts took advantage of 
as much symmetry and as many limiting approxima­
tions as possible to make the problem analytically 
tractable. Modern computers are pushing back the 
limitations and allowing more complicated geometries 
and conditions to be studied. 

1. Dielectric Cavity: Bom Energy 

Perhaps the oldest cavity model is that of Born,61 

which considers the free energy of solvation of a 
spherical ion immersed in a homogeneous fluid of 
permittivity ta. Spherical symmetry reduces the Poisson 
equation to an ordinary differential equation 

d2(r4>)/dr2 = rp/ts (2) 

In regions where there is no charge the potential then 
has the form </> = Cx/r + C2. The constant on the 1/r 
term satisfies Gauss's law, while the constant term 
provides for continuity of the potential. 

The Born model of solvation can be understood either 
in terms of a uniform dielectric or in terms of a cavity 
model. In the uniform model the ion of charge q is 
considered as a sphere of radius a with its charge 
smeared uniformly over the surface. To satisfy Gauss's 
law and have the potential vanish as r -* <*>, the po­
tential external to the sphere must be 0 = q/Airer, where 
e is the permittivity. The total electrostatic energy is 
GB = 1Z2SPQ dV or q2/8irta. So the energy change on 
going from vacuum to solution is 

AGB = (q2/8ira)(l/t0 - l/es) (3) 

where e0 is the permittivity of free space. 
Alternatively, consider the charge q to be a point 

charge at the center of a solvent exclusion sphere of 
radius a. The potential external to the sphere is again 
4> = q/Airtr. Inside the sphere C1 must be equal to 
q/AiTt1, where «; is the permittivity of the interior of the 
ion. To keep the potential continuous, C2 = q/Airea -
q/Airt-fl. The infinite potential at the charge indicates 
an infinite energy, but this singularity occurs even in 
a uniform dielectric. The infinity arises because the 
generation of a mathematical point charge involves 
bringing finite amounts of charge to zero separation. To 
avoid the infinite self-energy of creating a mathematical 
point charge, subtract the uniform dielectric self-po­
tential q/iiref before calculating the energy. The total 
electrostatic energy is then GB = (<72/87ra)(l/e - 1/q). 
Again, changing the external dielectric surrounding the 
ion yields the same change in energy as that given in 
(3). Actually, any spherically symmetric distribution 
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of charge within the radius a yields the same result. 
The Born expression provides a useful measure of the 

solvation free energy of ions. Obviously the radii can 
always be chosen ex post facto to match the experi­
mental solvation energy. Latimer et al.62a found rea­
sonable fits using crystal radii with corrections for ex­
pected solvation structure. Rashin and Honig62b have 
shown that simply choosing the ionic radii for anions 
and the covalent radii for cations predicts reasonable 
solvation energies for a wide range of ions. Their choice 
was based on arguments concerning electron densities 
in the ions but are similar to Latimer's values. Hirata 
et al.62c have used integral equation techniques, de­
scribed in section III.B, and found similar cavity radii 
again grounded in the structure of the solvent. 

The Born energy has also been applied63 to correcting 
energies in MD calculations which utilize cutoffs in their 
electrostatic potentials. The cutoff ignores Coulombic 
interactions beyond a specified radius a. The correction 
is to assume that the region beyond the cutoff can be 
treated as bulk solvent. Then, the charge's interaction 
energy with the solvent beyond a is given by the Born 
energy AGB. Adding this energy to that calculated 
explicitly within the cutoff yields the corrected energy. 
Note, this is a first-order correction ignoring the reac­
tion field from any other charges in the cavity. In ad­
dition, the dimensions of large solutes such as proteins 
approach and exceed the cutoff distance, rendering the 
assumption of bulk solvent invalid. Therefore, care 
should be taken in applying this correction. 

In the area of intermolecular interactions, the Born 
model is not an improvement over the uniform dielec­
tric model. The cavities of other molecules cannot be 
included without destroying the symmetry and thus the 
simplicity of the solution. The charges of any second 
molecule can only be treated as test charges in the field 
of the first molecule. Because of the symmetry, the field 
outside of the cavity is identical with that for just a 
point charge in the high dielectric. So the interaction 
potentials will be identical with those of the uniform 
dielectric model. 

2. Debye-Huckel Model 

In 1923, Debye and Hiickel published their work64 on 
a theory to include the effects of electrolyte ions in the 
description of electrostatic phenomena in liquids. In 
polar solvents, an applied field will cause the dipoles 
to align, which will on average lead to no net charge 
density in the uniform bulk, but only at boundaries or 
inhomogeneities in the permittivity. For ionic solutions, 
however, the charges are not bound as dipoles but have 
the ability to move freely under the influence of electric 
fields. Their own interaction and thermal agitation 
keep them from collapsing onto the boundaries, which 
leads to net charge densities throughout the bulk sol­
vent. 

From statistical mechanics, the ions should be dis­
tributed in the solution according to a Boltzmann dis­
tribution. The number density of positive and negative 
ions n± is given by 

n± = n„ exp(-U±/kBT) (4) 

where n„ is the bulk number density, U± is the free 
energy of potential of mean force for a positive or 
negative electrolyte ion to be at the location of interest, 

kB is Boltzmann's constant, and T is the absolute tem­
perature. For a 1:1 electrolyte, adding the local elec­
trolyte charge to the explicit charge p makes the dif­
ferential form of Gauss's law 

-V-eV0 = p + en+ - en. (5) 

with e being the unit electrical charge. If one assumes 
that the energy of the ion is just its charge times the 
potential, then this becomes a nonlinear differential 
equation in <j>, the Poisson-Boltzmann (PB) equation 
for a 1:1 electrolyte 

-V-eV0 = p - 2en„ sinh (e<t>/kBT) (6) 

Without the modern advantages of computers, solutions 
to the nonlinear equation were too hard to obtain. The 
next approximation, then, was to assume that e<p was 
small with respect to kBT and then take only the linear 
term in the Taylor series expansion of the hyperbolic 
sine function. This yields the linearized Poisson-
Boltzmann (LPB) equation 

-V-eV$ = p - en2 (7) 

where, in this case, K2 = 2e2n^/kBTt. More generally 
in SI units, the Debye-Hiickel screening parameter K 
is given by K2 = Ie2/kBTt, where / is the ionic strength. 

As in the derivation of the Born energy, assume that 
the "central ion" is a sphere with a charge q at its center. 
Then if the radius of this sphere is a 

Q 

4> 

1 ^ +
 l 

ef efi e3a(l + Ka) 

q exp(-/c(r - a)) 

4irtsr{l + Ka) 

r < a (8a) 

> a (8b) 

As in the cavity derivation of the Born energy, sub­
tracting out the constant infinite self-energy of the point 
charge leaves the total free energy of the ion 

G1DH -

4TT 

1 
«sa(l + Ka) 

(9) 

Differences can then be taken between a given solvation 
state and the vacuum state {ts = e0 and K = 0) to obtain 
the ionic-strength-dependent solvation energy. 

AGnH = 
47T eso(l + Ka) i0a 

(10) 

Note that again the internal permittivity cancels out 
in the differences. 

For use as an intermolecular potential, it must be 
noted that, as with the Born model, the potential is not 
the sum of the individual particle potentials when the 
cavity radii are nonzero. Mathematically, this results 
from the fact that the differential equation is not linear 
in such a combination of particles, because the posi­
tion-dependent permittivity function also changes. 
Physically, summing the potentials ignores the inter­
action of each atom with the polarization charge it in­
duces at the surface of the other cavities. If the radii 
are zero, then there are no dielectric boundaries. Al­
though this leads to infinite total energies because the 
self-induced polarization charges collapse to mathe­
matical singularities, this yields a form of the potential 
for point charges in an ionic solution that is strictly 
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additive in the manner of the Coulombic interaction. 
In BD studies done on the enzyme superoxide dis-

mutase (SOD),52,65 it was discovered that the neglect of 
the irregular shape of the exclusion volume led to pre­
dicted reaction rates that are significantly different 
from those observed. The convolutions of the dielectric 
and ion exclusion boundaries lead to focusing of the 
electrostatic potential in the solvent that affects the 
steering of the substrate to the active site of the enzyme. 
In situations where such focusing effects are not im­
portant, or where computational efficiency demands, 
the Debye-Hiickel potential for a spherical central ion 
still serves as an important first approximation. But 
with the simplified geometry there is a certain arbi­
trariness about the definition of reactive patches on the 
spheres, which permits a large range of reaction rates 
to be predicted with reasonable parameters. 

3. Kirkwood-Westheimer-Tanford Model 

Kirkwood66 generalized the Debye-Hiickel model by 
considering charge distributions in the cavity that were 
not spherically symmetric. Kirkwood and Westheimer 
then applied this method to calculate dissolution con­
stants of organic acids, with models for both spherical 
and ellipsoidal cavities.67,68 The later extensions have 
been primarily applied to the simpler spherical model, 
so we will restrict our considerations to that model here. 

In regions with no explicit charge, the LPB equation 
becomes Laplace's equation inside the ion spherical 
exclusion cavity (radius a) and Helmholtz's equation 
in the solvent. 

Therefore, for a point charge q at r0, the potential 
must have the form 

0 = <7/(4ir«i|r - r0|) + £ E AlmrlYr(6,<j>) r<b 
!=0 m—I 

(Ha) 

= E L (Blmr< + Clmrl-l)Yr(8,ct>) b<r<a 
1=0 m—/ 

(lib) 

» i K,{Kr) exp(-Kr) 
= E E A m - — 1 7 7 — - W M ) 

(=0 m=-l -m+1 
r > a 

(Hc) 

where Kt are the modified spherical Bessel functions 
and Yim are spherical harmonics. Expanding l/\r- r0| 
in terms of spherical harmonics allows the boundary 
conditions at the dielectric discontinuity b and the ion 
exclusion radius a to be applied term by term to de­
termine the coefficients. 

For a collection of N charges the potential is the sum 
of the individual potentials since the equation is linear. 
The energy is therefore 

W = Wcc + W08 + Wci (12) 

where (in SI units) 
N 

Wcc = ^ZZ 
QjQk 

2 / - i k*j4iriirjk 

(13) 

is the charge-charge interaction energy (rjk is the dis­
tance separating charge j and charge k), 

^ C S = 

1 N N qflk - ( n+ !)(«.-*,)/ rjrk V 

2,5 £i^£o(»+l)e8 + 4 ^ 7 P"(C°S W 
(14) 

is the energy from the interaction of the charges j with 
induced polarization charge at the solvent interface 
from charges k (6jk is the angle between r, and r*, and 
Pn are the Legendre polynomials), and 

W1. 
= I g N qflk 

2 ;-=i fc=i47reiC[ 

KQ 

1 + Ka + 

n=\ 

2n + l / t, V 
2n-l\(n + l)es + mj 

X 

(Kd)Hrfk/a)nPn(cos 6jk) 

n((s-Kn+AKa) 

Kn-AKO) (n + Dt, + nii\a/ 

2«+i Ua)2 

4n2-l 

(15) 

is the energy from the interaction of the charges with 
the net charge density induced in the ion distributions. 

Tanford and Kirkwood69-71 applied this method to 
proteins in 1957 to determine protein titration curves. 
To arrive at a calculable form for these systems with 
multiple titratable groups, they assumed that ea » tit 
that all of the charges were at the same depth, and that 
identical residues had identical pXa values. The average 
contribution to the free energy from all configurations 
was then approximated as a series in the statistical 
moments of the distribution of the energies of the 
different configurations. Tanford and Roxby72 noted 
difficulties in the method for accurate calculation of p/fa 
values of individual groups when applied to proteins. 

An ad hoc method for accounting the irregular shape 
of the protein was introduced by Shire et al.,73,74 who 
used a scaling factor that depends on the solvent ac­
cessibility of each charged residue. The new interaction 
energy W\j between charges i and j is given by 

(16) W1J = (I-S^j)W1J 

where Wtj is the standard Tanford-Kirkwood (TK) 
interaction energy and SA^ is the average of the frac­
tional solvent accessibilities of the sites i and ;'. This 
form has been used successfully to calculate titration 
curves for globular proteins.13,58 

While it does provide a scheme for including the extra 
shielding that a surface charge will have, the solvent 
accessibility factor seems questionable for intermole-
cular potentials. Such a scaling seems to imply that a 
charged residue that extends out into the solvent could 
have a smaller effect on the field in the solvent sur­
rounding it than would a more distant buried charge. 
Nonetheless, electrostatic complementarity, the 
matching of positive to negative regions during binding 
of enzyme and substrate, has been found in several 
systems utilizing this method.13,75 

An alternative inclusion of solvent accessibility de­
veloped by States and Karplus appeared in an appli­
cation to hydrogen exchange behavior by Delepierre et 
al.76 By using actual charge positions obtained from 
X-ray crystallography and defining the radius of the 
cavity as the radius at which the protein density drops 
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to half of its central value, they position some charges 
in the solvent, where they are more strongly shielded 
from the interior. This will also provide an approximate 
model for intermolecular interactions. However, it will 
still not include the focusing effects found so important 
in the studies of SOD. 

Other modifications include the Head-Gordon and 
Brooks77 rederivation which provides a form for simpler 
calculation and extensions by van Faassen et al.78 which 
smooth the dielectric discontinuity. 

In addition to the applications to titration curves and 
complementarity mentioned above, the Kirkwood-
Westheimer (KW) cavity model has been used widely 
because of its analytic form. It has been utilized for 
calculations of properties ranging from electron-transfer 
rates,79 to electrostatic free energies of proteins,80 to 
potential functions for BD simulations.81'82 

4. Finite Element Methods 

Orttung83 moved beyond the simple geometry cavity 
by exploiting the finite element method for solving 
differential equations. The finite element method was 
developed by engineers studying mechanical stress 
problems but has become a method widely used in 
many disciplines.84,85 In this method, space is divided 
into a collection of small domains, the finite elements, 
on which the solution is assumed to have a very simple 
form of only a very limited number of terms in a power 
series. For example, on a triangular element the solu­
tion could be expanded in terms of three functions, each 
of which has value one at one corner (node) and zero 
at the other two. To improve the accuracy, rather than 
include more terms in the expansion, the space is 
merely divided into smaller elements. 

The solution of Poisson's equations in terms of these 
functions, coupled with the boundary conditions with 
adjacent elements, leads to a large system of linear 
equations in the coefficients of these functions. For the 
functions cited above, the coefficients are just the po­
tentials at the nodes. Many tricks have been imple­
mented in finite element packages to optimize solving 
these systems. For example, the numbering of the el­
ements can be reordered to move all of the nonzero 
coefficients close to the diagonal, producing a banded 
matrix with the narrowest possible width. This optim­
izes the system for both storage and solution. 

Dividing the space into elements is a major task. 
Much work has been done in developing algorithms for 
tiling two dimensions with triangles and rectangles. 
The problem is even harder in three dimensions, but 
algorithms are available; see, for example, refs 86 and 
87. Research continues on a posteriori error analysis,88'89 

which can be used in mesh refinement. 
The finite element method permits the description 

of arbitrary geometry, with high accuracy. Much of the 
work with this technique in engineering has utilized 
systems that were reducible to two dimensions, but 
three-dimensional calculations are increasing. Probably 
the largest deterrent to the use of finite element 
methods is the difficulty of implementation. The al­
gorithms are more complicated than the finite different 
methods described in the next section. The complexity 
in the grid generation is coupled with the complexity 
of the bookkeeping. Finding the potential at an arbi­
trary point after the solution has been determined is 

not as trivial as it is in the finite different approxima­
tion to be discussed next. 

In the area of molecular electric fields, this metho­
dology has been principally applied to small atomic and 
molecular systems.17 The prime concern has been de­
termining realistic local values for t as a function of 
position in molecules. Orttung and co-workers have 
written several papers90-93 that examine the local di­
electric constant. They determine the local value of t 
from quantum mechanical considerations, since e is just 
a measure of the polarizability of the medium, i.e., the 
electronic distribution in this case. 

Although most of the work with this method has not 
incorporated counterions, there is no inherent restric­
tion in the method. Code for solving the Poisson 
equation is probably more readily available, however, 
as it figures prominently in solid mechanics calculations 
and electrical engineering studies of antennas and re­
sonant cavities. 

5. Finite Difference Methods 

Warwicker and Watson94 applied the method of finite 
differences to the problem of electrostatics around an 
irregular cavity. In this method, space is divided into 
a regular (usually rectangular) grid of points, and de­
rivatives are approximated as differences between the 
values of the function at these points. The most 
physically illuminating method for deriving the finite 
difference form for the LPB equation is to integrate the 
equation over the small box around each grid point and 
utilize the divergence theorem 

-^\V0.dS + §ix24> dV = Jp dV (17) 

The normal of eV</> is assumed to be constant over each 
face and to be approximated by the value of e assigned 
to the face times the difference in the potential at the 
grid points on each side of the face, divided by the grid 
spacing. The value of e/c2 is considered to be constant 
over the volume and the potential is taken as that of 
the grid point at the center of the box. This reduces 
the integrodifferential equation to a set of difference 
equations 

h2L(a(4>i ~ 4>j)/h + c,/i8«Vi = Qt (18) 

where j runs over the six grid points adjacent to grid 
point i, iij is the permittivity of the face connecting i 
and j , c, is the fraction of the volume accessible to 
counterions, and <?; is the charge enclosed. 

The values of « for the grid faces are generally as­
sumed to be either that of the solvent or of the interior, 
based on some criteria for defining the surface. For 
example, e may be set to the internal permittivity if the 
midpoint of the line connecting the faces is within the 
van der Waals radius of the particular atom, and to the 
solvent permittivity otherwise. Similarly, various 
methods are available for assigning charges to the grid. 
The earliest attempts put the entire charge of an atom 
on the nearest grid point. With the grid spacing typ­
ically on the order of 1 A, this leads to rather large shifts 
in the relative positions of charges. Edmonds et al.95 

developed a scheme by which the charge is spread over 
the eight nearest grid points by a trilinear weighting 
function, which minimizes the errors in the lowest 
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moments of the charge distribution. Gilson et al.96 have 
developed a different scheme that minimizes the error 
in the center of charge. 

Advantages of the finite difference methods include 
the straightforward and physically transparent nature 
of the calculation and the ease of obtaining values for 
the field at arbitrary points. Its primary disadvantage 
has been its computational intensity. In addition, 
placing the molecule on the grid can produce a rather 
crude representation of the surface and charge locations. 
We will discuss some improvements to this assignment 
in section III. 

Finite difference methods have now been used ex­
tensively in BD simulations of SOD,52,65'97 heme pro­
teins,6,98 and triose phosphate isomerase." They have 
been used to calculate pKa shifts,100,101 conformation­
al94,102,103 and binding energies,103 redox potentials,104 

recognition potentials and interaction energies,105"108 

and the role of electrostatics in enzymatic mecha­
nisms.109 

6. Boundary Element Methods 

Any system with multiple dielectrics can be replaced 
by an equivalent uniform dielectric problem with ap­
propriate surface charges a at the dielectric boundaries. 
Levitt110 applied such a technique to systems with 
cylindrical symmetry, which reduces the determination 
of IT to a one-dimensional problem. Zauhar and Mor­
gan111,112 have extended the method to arbitrary geom­
etries. This method is similar to a finite element me­
thod, but only elements in the two-dimensional region 
of the interface need to be considered. Conceptually, 
the problem of determining the electric potential 
function for charges in an irregular low-dielectric cavity 
in a high-dielectric solvent is replaced by the problem 
of determining the charges that would produce the same 
potential function in a vacuum. To get the qj' Airt^r 
singularities at the actual charges, the charges q are 
replaced by q/t-v The discontinuity in the normal 
component of the field at the dielectric boundary is 
replaced by a surface charge density 

a = t-L-^-E-n (19) 

where E is the field on the solvent side of the boundary 
and h is the outward unit normal. (Again note the use 
of SI units rather than the Gaussian units of the original 
papers.) 

The finite element method is employed to determine 
the surface charge density. The surface is divided into 
triangular elements, so that the charge on each element 
becomes an unknown in a system of linear equations. 
With the solution of the system of equations, the po­
tential at any arbitrary point is just the sum of the 
Coulomb potentials for the all of the charges, explicit 
and polarization. 

In a region of high dielectric constant, such as the 
solvent surrounding a target protein, the explicit and 
polarization charges generate large canceling contribu­
tions. To avoid the numerical inaccuracies inherent in 
such a calculation, Zauhar and Morgan developed a 
variation in which the solution for a perfectly con­
ducting solvent, e = °°, is subtracted out of the system 
and then the difference in the polarization charge for 

the real solvent is calculated. The external field is 
produced just by this differential polarization charge. 

Rashin and Namboodiri113 utilize a similar technique 
but take a more simplified view of the method. Drum-
rnond114,115 uses a supertensor formalism to achieve a 
related approach. 

Since only a two-dimensional mesh is required, this 
method can describe the molecular surface much more 
accurately for a given number of equations than can 
finite element or finite difference methods. In addition, 
charges are placed exactly as point charges and not 
spread over grid points as in the finite difference me­
thod. 

The inclusion of ionic strength effects is difficult, 
however, because spectator ions produce a volume 
distribution of charge. Inclusion of the volume charge 
effects when only the dielectric interface is explicitly 
considered requires the knowledge of a type of Green 
function for the irregular cavity. Methods for bound­
aries with simple geometries exist, but solving for such 
a Green function in the general case is essentially what 
the finite element and finite difference methods do. 

The cylindrically symmetric formulation has been 
applied by Levitt110 and Jordan.116-120 The method has 
been applied to the fields around some small mole­
cules111 and lysozyme112 as well as to hydration en­
thalpies.113,121 It has not, to our knowledge, yet been 
applied to BD simulations. 

7. Image Methods 

Another method for handling discontinuities is the 
method of images.122 Consider a charge q near a 
grounded plane conductor. It can easily be seen that 
the potential on the front side of the conductor (the side 
toward the charge) is equivalent to the potential that 
would exist if the conductor were replaced by a charge 
of -q the same distance behind the conductor as the 
actual charge is in front, analogous to a mirror image. 

This ability to replace boundaries with "image" 
charges is not limited to this simple geometry or to 
conductors. If the conductor (e = <*>) is replaced by a 
semiinfinite dielectric (finite «), the potential on the 
front side of the boundary is equivalent to that of the 
actual charge q plus a charge of -q(t - (0)/(e + t0) at the 
same distance behind the boundary. Behind the 
boundary, the potential is equivalent to that of a single 
charge q/t at the position of the original charge. 

For spherical conductors a simple image can also be 
obtained. It has charge -qa/r0 at radius a2/r0, where 
a is the cavity radius and r0 is the radial position of the 
actual charge. For spherical dielectrics, however, an 
infinite progression of images is necessary to match the 
boundary condition at the surface, for, in a sense, the 
image that is created by one surface of the sphere cre­
ates an image in the far surface, much as facing mirrors 
produce an infinite sequence of images. However, as 
an approximation, the same charge scaling as occurred 
in going from the conductor to dielectric in the plane 
case can be applied, yielding an approximate image 
charge of 

«'=-(^h (20) 

The approximate solution for a collection of charges is 
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just the collection of charges plus their individual im­
ages. 

This approximation moves cavity electrostatics into 
the realm of pairwise interactions, with the computa­
tional advantages that entail. Such advantages are 
primarily of value in Monte Carlo (MC) and MD sim­
ulations. For other applications, the accuracy of the full 
series solution may be more important than the com­
putational efficiency of the image approximation. The 
main application for spherical cavities in MC and MD 
simulations is as a boundary condition. Allen and 
Tildesley22 describe the implementation of the image 
charge method as a boundary condition for such simu­
lations. 

Shaw123124 has developed an analytic approximation 
for the surface charge theory that underlies the 
boundary element method. The latest work improves 
upon the accuracy by including approximate image 
charges, or quasi-images, along with a surface charge 
contribution. The quasi-image is the image charge that 
the original charge would generate in a sphere that 
would match the curvature of the nearest surface. 

As with the boundary element method, including 
ionic strength effects presents a problem except when 
the boundary geometry is simple. It is interesting to 
note, however, that the ions will only serve to make the 
solvent more like a perfect conductor and so improve 
the validity of the basic image approximation, but it is 
not clear how such a scheme might be implemented for 
arbitrary boundaries. In special cases, Green functions 
can be determined analytically that will allow the po­
tential everywhere to be determined from the equiva­
lent of a surface charge at the boundary, but for such 
geometries direct analytic methods (e.g., series expan­
sion) exist for calculating the potential as well. 

D. Inducible Dipole Models 

An alternate representation of the polarizability in­
volves modeling inducible point dipoles. In such 
methods the field due to the explicit charges is calcu­
lated with no induced dipoles. The induced dipoles are 
then calculated as the field times the local polarizability, 
and then new total fields are calculated. Iteration can 
be performed to convergence. 

This representation is roughly equivalent to a spa­
tially dependent dielectric constant. A sphere of radius 
a and permittivity 

< = 4 i + , 33 i (2i) 

will produce a field outside the sphere equivalent to an 
inducible point dipole of permittivity a (SI units) when 
subjected to a uniform applied field. Integration of the 
polarization P over the volume shows that the dipole 
moment is equivalent. 

Warshel has modeled protein-solvent systems as a 
set of inducible point dipoles. In this microdielectric 
model, the solvent is treated as an explicit set of dipoles 
located at fixed positions, whose polarization is deter­
mined through energy minimization. Distant waters are 
placed on a cubic grid and are also inducible. The 
method includes electronic polarization of the protein 
by a similar induced-dipole treatment and orientational 

polarization of the protein by nuclear displacement. 
The static nature of the solvent structure, attributing 
all of the polarizability of the solvent to inducible di­
poles, has attracted criticism, as has the arbitrary lo­
cation of the distant waters.125 It may be possible, 
however, that proper parameterization of the polariza­
bility permits a mimicking of the solvent behavior. 
Warshel has used the model to develop a distance-de­
pendent dielectric constant formalism that, as discussed 
before, leads to greater computational simplicity than 
the iterative scheme entails. The methodology has been 
applied primarily to intramolecular studies, for exam­
ple, structural stabilization126 and pKa calculations.127 

Pollock and Alder24 used inducible dipole models in 
MD studies of polarizable liquids. A similar repre­
sentation of inducible dipoles has been applied to MD 
simulations of proteins by Van Belle et al.128 In these, 
all solvent molecules are mobile, avoiding some of the 
problems of the microdielectric method. Their calcu­
lations on three proteins showed that the polarizability 
contributes to stabilization in ways that are not ac­
counted for in terms of a uniform low dielectric protein 
interior or by distance-dependent dielectric models. 
The added degrees of freedom lead to longer compu­
tational times in order to reach convergence. Typically 
about eight iterations are required for the fields to 
converge. 

It is important to note that potential energy functions 
will need to be reparameterized when polarization is 
included explicitly (as they must for any change in 
electrostatic model), since typical parameterizations 
have been skewed to artificially match experimental 
quantities without the inclusion of polarizability.35'36,129 

E. Hybrid Methods 

The particle-particle/particle-mesh (PPPM) me­
thod22 calculates short-range forces with pairwise ad­
ditive Coulombic interactions, while the long-range in­
teractions of the charges with all of their periodic im­
ages are calculated by a mesh technique. The mesh 
technique positions all of the charge on a grid as in the 
Warwicker and Watson algorithm.94 In this system a 
uniform dielectric is assumed and so the potential on 
the periodic grid can be determined by using fast 
Fourier transforms. It is a numerical alternative to 
performing an Ewald sum,22'130 

Nakamura131 has developed a variation that involves 
a hybridization of the mesh techniques of Warwicker 
and Watson for a spherical cavity and explicit charge-
charge interactions. This is similar to reaction field 
corrections for simulations in a finite spherical box.63 

The reaction field is calculated numerically, rather than 
with an analytic approximation. 

Nakamura divides space into two regions. In the first, 
solute and solvent are treated explicitly. This region 
occupies a spherical cavity in the second region, which 
is treated as continuum solvent. The reaction field is 
calculated as the difference between the potential with 
the continuum as solvent and the continuum as vacu­
um. The charge-charge interactions are then included 
with Coulomb's law. As with the energy methods uti­
lized by Gilson and Honig,103 this two-step process 
eliminates the self-energy of creating each of the charges 
individually in an infinite medium of permittivity ev 
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/ / / . Perspective 

We have presented some of the more standard 
methodologies. In this section, we discuss some of the 
areas for improvement in these techniques. In addition, 
we examine some additional techniques that, while not 
necessarily new, are new to the realm of biomolecules. 
The outlook for overcoming many of the difficulties 
discussed previously is encouraging. 

A. Improvements to Finite Difference Methods 

The finite difference method for solving the LPB 
equation has become widely utilized. One of the 
impediments to its more widespread application has 
been the heavy computational demands of these cal­
culations. Recent work by the authors132 has shown 
that application of different numerical techniques de­
veloped for sparse matrix inversion133 can provide a 
significant improvement over the usual relaxation 
techniques for solving the LPB on a nonvector machine, 
although storage requirements are increased by a third. 
For a fixed amount of computer memory this reduces 
each grid dimension by 9%, or typically three grid 
points off each side. The application of these numerical 
techniques is made possible because of the very regular 
structure of the coefficient matrix for the system of 
equations being solved. The coefficient matrix is sparse 
and the nonzero elements occur in specific sub and 
super diagonals. (In the finite element and boundary 
element methods, the matrix is sparse and elements can 
be reordered to move the nonzero elements near to the 
diagonal, but they do not form the orderly structure 
obtained in the finite difference methods.) Vector and 
parallel optimization hold promise for even greater 
speed.134"136 

Another shortcoming of current cavity methods has 
been that for intermolecular (and for some intramo­
lecular) interactions, the test charge approximation is 
utilized. The electric potential <j> is first calculated from 
a given charge distribution and dielectric boundary. 
The charges that interact with this potential are then 
treated as test charges; i.e., their energy is q<j> and their 
force is -qV0. The test charge approximation assumes 
that the charges are small enough not to disturb the 
charge distributions generating the field. With inho-
mogeneous dielectrics this is not necessarily the case. 
The reaction field generated by these charges is not 
always negligible.137 

A finite rectangular grid is not always the most nat­
ural geometry. Extensions from simple rectangular 
grids are also being made. In their calculations of fields 
around DNA, Jayaram et al. implemented periodic 
boundary conditions along the helix axis to get the fields 
for an infinite molecule.138 Jordan et al.139 have ex­
ploited cylindrical grids for the study of ion channels. 
Currently, the authors are working on the implemen­
tation of a spherical grid. 

The linearization of the PB equation is another area 
of concern. The approximation that e</> be small with 
respect to kBT is not always valid, especially when 
considering such highly charged species as nucleic acids. 
Jayaram et al.138 in their finite difference calculation 
of the fields around DNA have included terms beyond 

the linear in the expansion of the sinh (e0/feBT) factor 
in eq 6. Allison et al.140 and Bacquet et al.141 have seen 
significant differences between linearized and nonlin-
earized PB potentials in protein systems as well. In­
clusion of the nonlinear terms in the finite difference 
calculations is not, however, a trivial matter. In addi­
tion to the cost of calculating the additional terms, the 
nonlinearity introduces instability into the relaxation 
techniques. To get convergence it sometimes is even 
necessary to use underrelaxation rather than overrela-
xation to achieve convergence. Finally, there are some 
difficulties with the energy no longer being uniquely 
defined in the nonlinear form of the equation.142 

One concern in all of the cavity methods is the value 
of the dielectric constant to be used for the protein 
interior. Gilson et al.143 provide an insightful discussion 
concerning the nature of this problem. The redistri­
bution of charge in a molecule as the result of an ap­
plied field can arise from electronic polarizability as well 
as the reorientation of charge-bearing groups. Simila-
tions of flexible molecules need only account for the 
electronic polarizability. In rigid systems, the local 
dielectric constant must account also for the reorien­
tation effects. Note that utilization of such a dielectric 
constant assumes that the response to the field is linear. 
In situations where large conformational changes can 
take place, it may not be possible to model the response 
in this fashion and flexibility will have to be included 
explicitly. 

In principle, it should be possible to refine the uni­
form cavity model to include the variation of polariza­
bility throughout a molecule. The application of a 
uniform field E to a sphere of radius a and permittivity 
e induces a polarization charge on the sphere equivalent 
to a point dipole of aE, where 

a = 47ra3e0(e - e0)/(e + e0) (22) 

with the polarizability a in SI units (a(SI) = 4xe0a-
(Gaussian)). For nonuniform fields, the results would 
be different since the sphere would feel a range of fields, 
while the point dipole only feels the field at the center. 
This is not necessarily a problem, since the ability to 
model variations in the field is often modeled with in­
duced multipoles; see, for example, Oxtoby.144 In ad­
dition, techniques such as including inducible dipoles 
at bond midpoints reflect the spatial dependence of the 
polarizability of the intramolecular medium. 

The assignment of the permittivity to local regions 
within a cavity is not unambiguous. The permittivity 
within the volume of each atom could be set to the value 
appropriate for a sphere, with the overlap regions di­
vided between the atoms. Or in the manner of the bond 
dipoles, the overlapping regions could be empirically 
parameterized to some combination. Nakamura et al.145 

examined a method using spherical averaging, including 
electronic and orientational polarization through atomic 
polarizabilities and the fluctuation-dissipation theorem. 
Adoption of radial polarizability functions (see, for 
example, Ehrenson146) provides an alternative approach. 
Of course, the most rigorous modeling would follow the 
work of Orttung and co-workers90"93 and approach the 
problem from a quantum mechanical standpoint. As 
pointed out by Harvey,17 the errors inherent in other 
parts of the treatment may obviate the need for extreme 
accuracy in the polarizability at the present time. 
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B. Beyond the Polsson-Boltzmann Equation C. Quantum Mechanics 

Methods such as the reference interaction site model 
(RISM) integral equations offer means to move beyond 
the approximations of the PB equation.147 Specifically, 
the energy that should appear in the Boltzmann dis­
tribution should be the potential of mean force rather 
than just the electrostatic energy q<j>. Short-range in­
teractions and ion-ion correlations are neglected in the 
PB approach. 

The RISM approach derives from pair correlation 
theory. The total pair correlation H(T1J2) is the direct 
correlation C(I^r2) of finding an atom at T1 given one 
at T2; plus the probability of finding an atom at rx 

correlated with an atom at r3 while that particle is 
correlated with an atom at r2 integrated over all possible 
r3; plus triple pairs; and so on. That is 

h{rhr2) = C(T11T2) + JpC(T1J3)C(T3J2) dr 3 + 

P2C(TuT4)C(T4J3)C(T31T2) dr4 dr3 + ... (23) J"< 
where p is the particle density. Combining the integrals 
and factoring out the integral over r3 leaves an integral 
factor equivalent to the original expression and there­
fore equal to h(r3,r2), yielding the Ornstein-Zernicke 
(OZ) equation 

H(T1J2) = C(T1J2) + J*PC(T1J3Mr3J2) dr3 (24) 

This coupled set of integral equations relates the total 
pair correlation function h and the direct pair correla­
tion function c. To solve this system of integral equa­
tions a closure relation is required. 

The hypernetted chain (HNC) technique applies the 
approximate closure relation 

h = exp[-(u/kBT) + h-c]-l (25) 

where u is the effective pair potential and the h - c 
terms in the exponential add correlation effects to the 
standard Boltzmann factor. With these more accurate 
descriptions of the distribution of spectator ions (and 
solvent molecules, if these are included explicitly), more 
accurate potentials of mean force can be calculated in 
principle for the solute displacements of interest (intra-
or intermolecular). 

Such methods have been useful in the study of polar 
liquids,147 ionic solutions,148 dipeptides,149 ionic colloidal 
solutions,150 and simple models of biopolymers at in­
finite dilution.151'162 Hirata and Levy have applied this 
technique to a string-of-pearls model for DNA and 
found reasonable results for the B-Z transition depen­
dence on ionic strength.153 Murthy et al.154 have com­
pared PB, HNC, and MC approaches to ion distribu­
tions around an infinite circular cylinder model of DNA. 
Bacquet et al.141 have done the same for a protein 
model. Their results indicated that the HNC distri­
butions matched those from the MC calculations better 
than the PB distributions. This approach has been 
limited, however, to infinite dilution because inaccu­
racies arise in interactions between polyelectrolytes.155 

As with the MD simulations, HNC calculations fail to 
accurately calculate the dielectric constant of water. 

Alternatively, the PB equation can be modified to 
include ion-ion correlations.156"159 This approach has 
been primarily directed at electric double-layer prob­
lems and applications to micellar solutions.160'161 

An entirely different frontier lies in the realm of 
quantum mechanical calculations. Even if methods for 
modeling the spatial dependence of the permittivity are 
developed, they are just that, models of the underlying 
quantum mechanical behavior of the molecules. The 
distributions of electrons in molecules are determined 
by the time-independent Schroedinger equation for the 
electrons and nuclei, which interact with a Coulombic 
potential 

-L 
h2 QiQi 

V;2 + L L -87T5W i< i 4 " ( f i i 
* = EV (26) 

where h is Planck's constant, m, is the particle mass, 
and ^ is the molecular wave function. The summations 
run over all of the nuclei and electrons in the molecule. 
Ab initio techniques162,163 are used to solve this eigen­
value equation in various levels of approximation. Then 

-Mr)= L 
nuclei 47T€0|r; - r | S P(T') 

4irt0\r' - r\ 
dr ' (27) 

where p is the electronic charge distribution determined 
from the molecular wave function. 

Calculations of the molecular electric potential from 
ab initio calculations have been applied extensively to 
small molecular systems; see, for example, ref 164-172. 
Continuum approximations for solvent have been in­
cluded with quantum techniques in self-consistent re­
action field (SCRF) theories to move ab initio methods 
out of the gas-phase regime, as in ref 173-176. The 
complexity of such calculations is prohibitive for large 
systems, but new techniques and approximations com­
bined with ever more powerful computers open doors 
continually to new possibilities. 

IV. Concluding Remarks 

The array of methods is quite large and no one me­
thod is perfect for all applications. For any given 
amount of computing power, a hierarchy of models, as 
described by Friedman,177 will be necessary to cover the 
range of problems to be considered. Uniform dielectric 
models with fixed partial charges will remain the 
backbone of MD calculations with its speed and sim­
plicity. Effective dielectric models will provide an ap­
proximation for solvation when more accurate methods 
are prohibitive, but they should be approached with 
caution. The Born energy provides a convenient ap­
proximation for solvation energies for roughly spherical 
bodies and serves to correct for electrostatic cutoffs in 
MD simulations. Similarly, Debye-Hiickel theory 
provides a convenient approximation for such cases 
when counterion effects are of interest. For globular 
molecules with irregular charge distributions, the model 
of Kirkwood, Westheimer, and Tanford with modifi­
cations provides a methodology for calculating intra­
molecular interactions with a good degree of accuracy. 
All of the previous methods also share the fact that their 
analytic form makes them amenable to use in other 
analytic theories. Numerical techniques allow for the 
consideration of more detailed effects, not the least of 
which is the irregular shape of the molecules. They 
achieve this, however, at the expense of computation 
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speed. Finite element methods will allow for a very 
accurate description of the field but are complicated to 
implement. They will be most useful when a very de­
tailed description of the near field is important, but the 
bookkeeping of looking up potentials will not make 
them the most efficient for BD simulations. Finite 
difference techniques, on the other hand, gain the ad­
vantage of trivial look-up by sacrificing the precision 
of the surface description and the point nature of the 
charges. But, since the surface of the molecule and 
point nature of the charges are rather arbitrary con­
structions and do not have a strong physical basis, the 
more accurate calculations from finite element tech­
niques may not provide additional physical insight. 
Inducible dipole models will serve to improve MD 
calculations by including polarizability. If iteration to 
convergence is required, however, the calculation may 
prove prohibitive in the near term. Techniques beyond 
the PB equation will provide even more accurate 
models for large molecules in solvent in the future but 
are currently limited to simple or simplified systems 
and still face some difficulties matching certain ex­
perimental quantities. Quantum mechanical methods 
will remain limited to fairly small systems and will serve 
to provide charges and polarizabilities for classical 
models of larger systems for some time yet. 

Thus it is fortunate that such a plethora of ap­
proaches exists. Different methods are available for the 
different levels of accuracy required and different levels 
of computational power available. Neither is the field 
closed to new ideas. There are realms where new and 
innovative ideas may sweep aside current standard 
approximations. Meanwhile, applications for existing 
methods abound. 
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