Chemical Reviews

Volume 90, Number 6 September/October 1990

Directed Ortho Metalation. Tertiary Amide and O-Carbamate Directors in Synthetic Strategies for Poiysubstituted Aromatics^t

VICTOR SNIECKUS

Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received August 17, 1989 (Revised Manuscript Received February 20, 1990)

Contents

[†]It is with regret that I am unable to provide complementary reprints.

Victor Snieckus was born in Kaunas, Lithuania, and spent his childhood in Germany during World War II. He obtained his B.Sc. degree from the University of Alberta in 1959, where he was strongly influenced by R. Sandin. He studied with D. S. Noyce (M.Sc., University of California, Berkeley, 1961) and V. Boekelheide (Ph.D., University of Oregon, 1965). Following a postdoctoral year with O. E. Edwards (National Research Council, Ottawa), he joined the University of Waterloo. His major research focus is in the development of new methods and strategies in organic synthesis. with increasing emphasis on biological molecules. He can be distracted from the laboratory by good jazz and noncontact hockey.

I. Introduction

Studies on the structure, reactions, and synthesis of aromatic compounds are steeped in the history of organic chemistry since the time of Kekulé's dream a century ago.^{1,2} Today, the regiospecific preparation and modification of polysubstituted aromatic molecules constitute engaging fundamental problems in synthetic chemistry in both industrial and academic laboratories.^{1,3} Many modern synthetic targets, in particular those of interest for pharmaceutical and agrochemical preparations, either are benzenoid or incorporate key aromatic or heteroaromatic components.^{4,5} In these endeavors, commercially available aromatic substances are modified in a variety of ways for a variety of purposes by (a) functional group introduction into a monoor disubstituted material, (b) functional group interconversions, (c) attachment of chains either to existing functionality or directly onto the ring, (d) hetero- or carbocyclic ring annelation, and (e) reduction (e.g., Birch) and ring destruction (e.g., ozonolysis) to carbocyclic and acyclic derivatives.

The initial response triggered by traditional pedagogy in undertaking a problem in synthetic aromatic chemistry is to apply classical electrophilic substitution.⁶ While these diverse reactions are not to be denied in synthetic planning, they often suffer from harsh conditions and formation of mixtures of positional isomers. Given the normal electrophilic substitution rules, the preparation of contiguously substituted systems (1,2-, 1,2,3-, and 1,2,3,4-) can become a most demanding challenge. To aid the synthetic chemist in the fundamental task of constructing the prototype 1.2-disubstituted aromatics, an armamentarium of methods has evolved in the interim (Scheme 1):⁷ electrophilic substitution via para protection-deprotection⁸ and metal chelation;⁹ the use of σ -transition-metal complexes, the synthesis of which σ invariably depend upon the pres-

SCHEME 2. The Directed Ortho Metalation Reaction

ence of o -halo groups;^{10,11a} similarly, $S_{RN}1$ reactions based on 1,2-disubstituted precursors;¹² nucleophilic substitution of $(\pi$ -arene)metal (Cr, Mn) tricarbonyl complexes;^{11b,13} sigmatropic rearrangements;¹⁴ carbanionic de novo ring construction;¹⁵ cycloaddition with or without small-molecule extrusion;^{16,17} transformation of heterocycles:¹⁵⁻¹⁷ dearomatization-rearomatization tactics. $15,18$

In 1939–1940, the independent discovery by Gilman and Bebb¹⁹ and Wittig and Fuhrman²⁰ of anisole ortho deprotonation by *n*-BuLi constituted a harbinger for a new conceptual framework in synthetic aromatic chemistry. These seminal results of the directed ortho metalation (DoM) process initiated fundamental reactivity studies by Gilman²¹ and, in the early 1960s, by Hauser and his students,²² who also systematically expanded the scope of directed metalation groups (DMGs). The complementary technique of metalhalogen exchange, also discovered by Gilman²³ and Wittig,²⁴ provided further impetus to this area.²⁵ In the 1970s, the industrial use of alkyllithium bases as polymerization catalysts²⁶ led to their commercial availability and allowed the metalation technique to be practiced widely. In 1979, the outstanding comprehensive review by Gschwend and Rodriguez²⁷ brought timely appreciation of the potential of the DoM reaction.²⁸ The past decade has seen the evolution of this reaction as a significant fundamental methodology, demanding at least "equal time" with other methods, for the regiospecific construction of polysubstituted aromatic and heteroaromatic compounds.

II. Aim and Scope of the Review

This review²⁹ will focus on tertiary amide and Ocarbamate DMGs for methodological and total syn-

TABLE 1. DMGs in Synthesis: Qualitative Evaluation

°pK" data in parentheses are given in ref 30 and: Fraser, R. R.; Bresse, M.; Mansour, T. S *J. Chem. Soc, Chem. Commun.* **1983,** *620.* b ⁺⁺⁺ = well proven/extensively applied; ++ = promising/requires studies in scope, application; + = inadequately tested/new/limited use. Fuhrer, W.; Gschwend, H. W. J. Org. Chem. 1979, 44, 1133. dFitt, J. J.; Gschwend, H. W. J. Org. Chem. 1976, 41, 4029. Muchowski, J. M.; Venuti, M. C. *J. Org. Chem.* **1980,** *45,* 4758. 'Cr(CO)3 complex. Fraser, R. R.; Mansour, T. S. J. *Organomet. Chem.* **1986,** *310,* C60. 'Kraus, G. A.; Pezzanite, J. 0. *J. Org. Chem.* **1979,** *44,* 2480. ^KCushman, M.; Choong, T.-C; Valko, J. T.; Koleck, M. P. *J. Org. Chem.* **1980,** *45,* 5067. 'Narasimhan, N. S.; Chandrachood, P. S. *Synthesis* **1979,** 589. -"Bonfiglio, J. N. *J. Org. Chem.* **1986,** *51,* 2833. *Figuly, G. D.; Martin, J. C. *J. Org. Chem.* **1980,** *45,* 3728. 'Iwao, M.; Iihama, T.; Mahalanabis, K. K.; Perrier, H.; Snieckus, V. *J. Org. Chem.* **1989,** *54,* 24. ^mQuesnelle, C; Iihama, T.; Perrier, H.; Aubert, T.; Snieckus, V., unpublished results. "Ito, Y.; Kobayashi, K.; Seko, N.; Saegusa, T. *Bull. Chem. Soc. Jpn.* 1984, *57,* 73. ° Muthakrishnan, R.; Schlosser, M. *HeIv. Chim. Acta* 1976, *59,* 13. "Wada, A.; Kanatomo, S.; Nagai, S. *Chem. Pharm. Ball. Jpn.* 1985, *33,* 1016. 'Gschwend, H. W.; Hamdan, A. *J. Org. Chem.* **1982,** *47,* 3652. *^r*Sutter, M, A.; Seebach, D. *Ann.* **1983,** 939. •Dashan, L.; Trippett, S. *Tetrahedron Lett.* **1983,** *24,* 2039. 'Yoshifuji, M.; Ishizuka, T.; Choi, Y. J.; Inamoto, N. *Tetrahedron Lett.* **1984,** *25,* 553. "Posner, G. H.; Canella, K. A. *J. Am. Chem. Soc.* **1985,***107,* 2571. "Plaumann, H. P.; Keay, B. A.; Rodrigo, R. *Tetrahedron Lett.* **1979,** *20,* 4921. Tiguly, J. D.; Loop, C. K.; Martin, J. C. *J. Am. Chem, Soc.* 1989, *111,* 654. Block, E.; Eswarakrishnan, V.; Gernon, M.; Ofori-Okai, G.; Saha, C; Tang, K. *J. Am. Chem. Soc.* 1989, *111,* 658. Smith, K.; Lindsay, C. M.; Pritchard, G. J. *J. Am. Chem. Soc.* **1989,** *111,* 665. 'Uemura, M.; Tokuyana, S.; Sakan, T. *Chem. Lett.* **1975,** 1195. Meyer, N.; Seebach, D. *Chem. Ber.* **1980,** *118,* 1304. ^Harris, T. D.; Roth, G. P. J. Org. Chem. 1979, 44, 2004. ^{*}Houlihan, W. J.; Parrino, V. A. J. Org. Chem. 1982, 47, 5177. Houlihan, W. J.; Parrino, V. A. J. *Heterocycl. Chem.* 1981, *18,* 1549. Hommes, H.; Verkrusse, H. D.; Brandsma, L. *Tetrahedron Lett.* **1981,** *22,* 2495. Hommes, H.; Verneterocyct. Chem. 1981, 16, 1949. Whommes, H.; Verkrusse, H. D.; Brandsma, L. *Tetranearon Lett.* 1981, 22, 2495. Hommes, H.; Ver-
kruijsse, H. D.; Brandsma, L. *J. Chem. Soc. Chem. Commun.* 1981, 366. ^{bb} Neugebauer, W.: *Chem.* **1982,** *228,* 107.

thesis journeys in aromatic chemistry. After a brief overview of general aspects of the DoM reaction, the utility and applications of tertiary amide and carbamate DMGs will be systematically and comprehensively developed. Where appropriate, comparison with other carbon-based (CONHR, oxazoline) and oxygen-based (OMOM) DMGs for synthetically equivalent operations will be provided.

/// . The Directed Ortho Metalation (DoM) Reaction

A. General Characteristics of DoM and Scope of Directed Metalation Groups (DMGs)

The DoM reaction (Scheme 2) comprises the deprotonation of a site ortho to a heteroatom-containing

TABLE 2. Aggregation State of Organolithium Reagents SCHEME 3

RLi	solvent	concn range, M	species	ref
MeLi	THF or Et ₂ O	$0.2 - 1.2$	tetramer	α
n-BuLi	C_6H_{12} or PhH	$0.4 - 3.4$	hexamer	b-d
	THF or Et.0	$0.1 - 0.7$	tetramer \leftrightarrow dimer	a, c, e, f
n-BuLi-TMEDA	၇	0.1	monomer	g
n-BuLi-TMEDA		high	dimer	g
sec-BuLi	$C_{5}H_{10}$		tetramer \leftrightarrow hexamer	h
	THF or Et ₂ O		tetramer	d
t -BuLi	n -Hex, C_eH_{12} , or PhH	$0.05 - 0.50$	tetramer	c. i
	THF		dimer	d

a West, P.; Waack, R. *J. Am. Chem. Soc.* 1967, 89, 4395.
⁸ Margerison, D.; Newport, J. P. *Trans. Faraday Soc.* 1963, 59, 2058.
^c Brown, T. L. J. A*m. Chem. Soc.* 1970, 92, 4664. ^d Eastham, J. J. A*m. Chem. Soc.* **1964,** *86,*1076. "Quirck, R. P.; Kester, D. E. *J. Organomet. Chem.* 1974, 72, C23. *'* See ref 43. *'* See ref 26a. *'*' Fraenkel, G.; Henrichs, M.; Hewitt, M.; Su, B. M. *J. Am. Chem. Soc.* 1984, *106,* 225. 'West, P. *Inorg. Chem.* 1962, *1,* **654.**

DMG (1) by a strong base, normally an alkyllithium reagent, leading to an ortho-lithiated species 2. This species, upon treatment with electrophilic reagents, yields 1,2-disubstituted products 3. Table 1 lists the currently available repertoire of DMGs, somewhat arbitrarily divided into strong, moderate, and weak groups,³⁰ together with pK_a data and qualitative evaluation of use and potential in synthesis. Of the over 40 DMGs, over half, including the $CONF_2$ and $OCONR₂$ groups, have been introduced into synthetic practice since the publication of the Gschwend and Rodriguez review.²⁷

B. Bases

The DoM process normally demands the use of powerful alkyllithium bases³¹⁻³⁴ in organic solvents in which they exhibit high solubility due to association into aggregates of defined structure, typically as hexamers (in hydrocarbon solvents) or tetramers-dimers (in basic solvents) (Table 2). On the basis of reactivity,³¹ NMR,³⁵ X-ray structure,³⁶ and calculational³⁷ studies, alkyllithiums are viewed predominantly as bridged structures of electron-deficient bonding arrangements of polar multicovalent C-Li bonds which in solution undergo fast equilibrium carbon-lithium and lithium-ligand bond exchanges as well as rapid conformational interconversions.

In hydrocarbon solvents, alkyllithiums are thought to react as aggregates and mixtures of aggregate or dissociated species.³⁸ Addition of basic solvents (ethers, amines, phosphines) causes dissociation by an acid-base reaction: e.g., THF coordination to $(n-BuLi)_{6}$ leads to solvated $(n-BuLi)_4$ (Table 2), and addition of Et_3N to $(t-BuLi)₄$ leads to a 50-fold acceleration in dissociation to $(t-BuLi)₂$.³⁹ Furthermore, bidentate ligands, in particular TMEDA, effectively break down alkyllithium aggregates, forming monomers and dimers in solution (Table 2), and thereby significantly increase their basicity.³² X-ray crystal structure data indicate that these species are usually of the form $(RLi\text{-}TMEDA)_2$ involving fourfold-coordinated lithium.^{26a,36} Their enhanced basicity is illustrated by the observed quantitative deprotonation of benzene by n-BuLi-TMEDA compared to its nonreactivity with n -BuLi alone.^{26a} The

sec-BuLi-TMEDA combination appears to be a most potent metalating agent, effecting deprotonation of $Me₄Si$ 1000-fold faster than the *n*-BuLi-TMEDA complex.²⁶* Increased understanding of the stability of RLi-solvent aggregates,^{40,26} as well as the effect of metal alkoxides⁴¹⁻⁴³ and continuing evolution⁴⁴ of the powerful LICKOR bases,⁴⁵ which have not as yet been applied in DoM reactions, will undoubtedly influence future application in synthesis.

 $\dot{\rm L}$ ithium dialkylamides 46,47 are of insufficient kinetic basicity for the DoM reaction. However, reports of effects of LiX on selectivity of enolization⁴⁸ and success in aromatic and heteroaromatic deprotonations using in situ trapping combinations under thermodynamic conditions⁴⁹⁻⁵¹ (e.g., LiTMP/TMSCI)⁴⁹ should also be viewed with anticipated synthetic potential.

C. Mechanistic Aspects

Although undoubtedly simplistic, the DoM process may be viewed as a three-step sequence (Scheme 3): coordination of the (RLi) , aggregate to the heteroatom-containing DMG, $4 \rightarrow 5$; deprotonation to give the coordinated ortho-lithiated species, $5 \rightarrow 6$; and reaction with electrophile to yield product, $6 \rightarrow 7$. The original suggestion⁵² that the ortho-lithiated species 6, DMG = OMe, is stabilized by coordination has been supported by thermochemical data which established that proton quench of (p-anisyl)lithium is 3.6 kcal/mol more exoquenci of $(p$ -anisyl) iteration is 3.0 Kear, more than the exo-
thermic than that of $(o\text{-anis}u)$ lithium.⁵³ Studies concerning rate enhancement of anisole deprotonation cerning rate emiancement of amisole deprotonation
relative to benzene⁵⁴ σ Taft relationships between relative to be the red relationships between
DMGs and partial rate factor f_{α} , for base-catalyzed DIVIUS and partial rate lactor, I_{ortho} , for base-catalyzed
deuterium exchange 55 nK, measurements 30 steric efdeuterium exchange, $p_{\mathbf{A}_a}$ measurements, steric ei-
fects $27.56-58$ and ab initio calculations 59.60 are all con s_{start} with the thermodynamic stabilization of an orsistent with the thermodynamic stabilization of an ortho-lithiated species 6, $DMG = OMe$. That complex- α _{th} is also kinetically acidifying was suggested initially ation is also kinetically acidifying was suggest
from qualitative NMD,^{30,56} kinetic isotope,⁵⁶ red middle
condictorie from qualit
55.57.58 cc $R_{\text{invariant}}$. Recent crystal structure effect^{oo,c.},⁰⁰ investigations. Recent crystal structure determinations of ortho-lithiated species indicating complex tetrameric aggregates with a high degree of lithium-heteroatom coordination⁶¹ may be taken as circumstantial evidence for the existence of the ortho-
lithiated intermediate 6.

Using HOESY and supportive MNDO calculations, Bauer and Schleyer obtained initial mechanistic evidence for the formation of 2^{62} In toluene at -64 °C, anisole and n-BuLi exist as a tetrameric aggregate 8 (Scheme 4). Addition of 1 equiv of TMEDA forms the 1:1 n -BuLi•TMEDA dimer 9 and free anisole (no HOESY anisole-Li interactions), which, however, does not undergo ortho lithiation. This is hypothesized to occur via a low (NMR undetectable) stationary concentration of species 10 whose newly available two co-

SCHEME 5

ordination sites at Li are taken up by anisole oxygen and agostic Li-H interactions to give 11. Irreversible deprotonation follows to give ortho-lithiated species 13 and $1:1$ n-BuLi-TMEDA species 12, both of which undergo aggregation. MNDO calculations support the postulated structure 11. Thus kinetic (Li with the availability of more than one coordinating site) and thermodynamic (ortho heteroatom coordination to Li) factors appear to be significant in the DoM process. Similar observations were recorded for 1,2-dimethoxybenzene and N , N -dimethylaniline but not for fluorobenzene.

Mechanistic studies by Beak³⁸ and Meyers⁶⁴ on the α -deprotonation of amides and formamides, respectively, are relevant to understanding the course of the DoM reaction. For example, in the reaction of amides 14 (Scheme 5) with RLi, stopped-flow IR spectroscopy has provided evidence for the intermediacy of amidelithium reagent complex(es) 17, which may be en route to the α -lithiated species 15 and eventually to product 16. Although the kinetics of this reaction are exceedingly complex, it appears that, at least in cyclohexane solution, amide-sec-BuLi-TMEDA complexes are involved which, contrary to expectation, become more reactive with increasing number of ligands. These results echo those of Schlever⁶² and McGarrity⁴³ and are inferential for preequilibrium formation of the coordinated species 6 (Scheme 3) by a complex-induced proximity effect, a concept with broader synthetic implications and unifying value in organolithium chemistry.⁶⁵ The formation of ortho-lithiated species 6 by radical and radical ion mechanisms has been invoked

with marginal supporting evidence,^{57,66} although the intervention of radicals in reactions of naphthalene with n-BuLi-TMEDA⁶⁷ and anisole with lithium naphth a lide⁶⁸ has been reported.

The mechanism of the reaction of G with electrophiles to give 7 (Scheme 3) has not been investigated for any DMG. The reaction of alkyl halides with alkyllithiums has been studied extensively and shown by CIDNP experiments to proceed by a SET process.^{39,69} On the basis of kinetic and physical measurements, Brown and co-workers have suggested that PhLi reacts as a dissociated species.³⁹ However, Bauer and Schleyer have demonstrated that the monomer-dimer equilibrium of PhLi is shifted completely toward dimer upon addition of 1 equiv of TMEDA. 62 The evolving mechanistic studies of organic reactions that occur by SET pro- $\cos\theta$ will undoubtedly have an impact on the understanding of the conversion $6 \rightarrow 7$.

D. Nature of the DMG

For a successful deprotonation to occur, the DMG (Table 1) must exhibit the somewhat schizophrenic properties of being a good coordinating site for alkyllithium and a poor electrophilic site for attack by this strong base. A heteroatom is therefore an obligatory component of a DMG. Steric hindrance $(CONEt₂, 0x$ azolino, OCONEt₂, P(O)NR₂), charge deactivation (CON⁻R, CSN⁻R, imidazolino), or both $(\neg NCO_{2} \cdot t\text{-}Bu,$ $NCO-t-Bu$) may be incorporated into the design of the metalation director. On the basis of limited data on systems containing two competing DMGs, Gschwend and Rodriguez suggested 27 the operation of either a "coordination only" or an "acid-base" (inductive) mechanism. The relative significance of coordination and inductive effects of modern DMGs has not been systematically correlated with fundamental Lewis acid-base and electronic principles.⁷¹ Inductive effects appear to play the major role in ortho deprotonation of fluorobenzene⁶² and benzonitrile,⁷² since neither can achive normal coordinatively stabilized ortho-lithio intermediates. pK_a determinations reflecting mainly inductive effects show little variation (Table 1) and, since qualitative observation of variation in rates as a function of DMG is common, suggest that differential coordination under the kinetic conditions normally used in synthesis determines the relative metalation priorities.

Substituent effects on the rate of ortho deprotonation are also unavailable. Gschwend and Rodriguez used 27 kinetic data of rate-determining ortho metalation of bromobenzenes as a rough but useful extrapolation of substituent effects. Br, F, and CF_3 groups located meta to the deprotonation site show strong acidifying effects that parallel those observed for the corresponding ortho series.⁵⁶ This suggests the predominant influence of inductive factors in the ortho deprotonation step for this series. On the other hand, OMe and $NMe₂$ groups ortho to the deprotonation site show rate enhancements greater than expected on the basis of inductive effects. To rationalize these results, a coordination component in the deprotonation step has been invoked. The acidifying effect of Ph is greater than that of OMe in the meta series but almost equal to H in the ortho series. A dominant steric effect in the latter case is a reasonable explanation for this observation.

SCHEME 6

SCHEME 7. Relative Directing Abilities of Ortho Metalation Groups

intramotecutar Competition OMe **P-BuLi/various conditions** Slocum and Jennings 1976⁶ **DMC** $\overline{DMB} = SO_2NR_2$, $SO_2N'R$, $COM'R$, $CH_2NR_2 > OMe > CH_2CH_2NR_2$, NR_2 , CF_3 , F $(eqn 1)$ s-BuLi/TMEDA/THF/-78°C Beak and Brown 1979, 1982, 1983 **DMG** DMG = CON'R > CONB. SO₂NR₂, SO₂N'R, CH₂NR₂, OMe, CI (0.002) **S-Bul I/TMEDA/THE/-78°C** Miah and Snieckus 1984 o.p-DMG DMG = OCONEt2 >> CONEt2 >> OMOM > OMe. Ct rean 3 r-BuLi/THF/-78°C twao et al 1989⁰ $D^{\chi}(\mathbf{G} = \overrightarrow{\mathbf{OCONEt}}_2$ (t-BuLi) > \mathbf{SO}_2 t-Bu > \mathbf{CONEt}_2 , OMOM. INt-BOC $tean 4$ Intermotecutar Competition n-Bulli/THE/-45°C Mevers and Lutomski SO2NR2 > CONR2 (s-BuL) tegn 5 twan et af 1989^d DMG = SO2/-Bu > CON(APr)2, OCON(APr)2, OMOM > 'N(-BOC ((-BuLi) tean 6

^a Table 3, footnote b. ^bReferences 73 and 86. Beak, P.; Brown, R. A. J. Org. Chem. 1979, 44, 4463. CReference 117a. dTable 1, footnotes l and m. eMeyers, A. I.; Lutomski, K. J. Org. Chem. 1979, 44, 4464.

The evolving mechanistic picture of the DoM reaction summarized above suggests that solvation, alkoxide
doping,⁴¹ in situ base-electrophile systems,^{42,49-51} and complexation³⁸ effects will have significant future impact on the synthetic use of currently available DMGs (Table 1) and the development of new ones.

E. Hierarchy of DMGs

The scope and limitations of achievable substitution patterns by the DoM reaction will be determined by an interplay of the incipient DMG with the nature and position of other DMGs and substituents that tolerate the RLi conditions and, ultimately, by the conversion of DMGs into other functionality. Generalized expectations for the three theoretically possible bis-DMG benzenoid systems 18, 19, and 20 (Scheme 6) may be formulated, although only a few systematic competition studies have been carried out. In early work, using a 4-OMe anchor group under a variety of metalation conditions, Slocum and Jennings suggested the rough

order indicated in eq 1, Scheme 7. These were extended by Beak and Brown under standardized conditions but using a 4-CONE t_2 anchor group (eq 2). This order must be treated with some caution since it was established by d_1 incorporation in which up to 15% of isomeric deuterated species may have been undetected. Nevertheless, for the moderate and weak directors, 4-OMe and 4-Cl, the metalation is overwhelmingly ortho to CONEt₂. Intermolecular competitions by Meyers and Lutomski (eq 5) using the oxazolino anchoring group invert the order of the CON⁻R and SO_2NR_2 groups compared to the order based on the intramolecular competition results (eq 2). However, comparisons are rendered tentative by the use of different conditions for metalating \check{CONR}_2 (sec-BuLi) and CON-R (HMPT) systems. This view is reinforced by the order in intra- and intermolecular competitions $(CON'R > CONR₂ = 5:1$ and 1:10, respectively) under the same conditions.⁷³

The intramolecular competitions of Miah and Snieckus (eq 3, Scheme 7) indicate that the OCONEt, is by far the most powerful DMG with respect to ortho and para CONEt₂ and OMOM groups. The essentially regiospecific metalation ortho to $OCONEt₂$ in the competitions with OMOM is of synthetic value in view of the differential deprotection sensitivities of the two DMGs. The SO_2 -t-Bu DMG has been recently evaluated in both intra- (eq 4) and intermolecular (eq 6) competitions. While the results are again complicated by variation in conditions $(t$ -BuLi for OCONE t_2 , N- t -Boc), SO_2 -t-Bu appears to outrank $CONF_2$ and perhaps OCONEt, in the hierarchy of metalation.

Interpretation of competition results must take into account steric and inductive effects that affect aggregation and complexation of alkyllithium reagents and formation of the ortho-lithiated species. This is especially true for the intramolecular competition experiments. Although further work is required to resolve the observed inconsistencies and to quantitatively understand the relative hierarchy of DMGs, the available results (Scheme 7) offer a guide for formulating synthetic strategy.

F. Cooperative Metalation Effects

A most powerful synthetic rudiment of the DoM reaction deserving separate discussion is the cooperative effect of 1,3-interrelated DMGs in promoting metalation at their common site (19, Scheme 6). A selection of cases illustrate the merit of this effect for the synthesis of contiguously substituted aromatics (Table 3). In the carbon-based DMG series, CON⁻R, CONEt₂, and oxazolino groups in a meta relationship with OR, Cl, F, $CH = NR$, but not $NMe₂$ show exclusive metalation in the common site (entries 1-9). Likewise, the CH=NR group cooperates with the OR substituent (entry 10); the same species may also be obtained from the corresponding 6-Li species, generated by metal-halogen exchange, a result that constitutes a rare demonstration of thermodynamic stability of the doubly coordinated 2-Li species. The 1,3-CH₂OLi-OMOM system shows good regioselectivity reversal as a function of base, solvent, and $Cr(CO)₃$ complexation (entries 12 and 13).

Metalation of 1,3-related heteratom-based DMGs follows a parallel pattern. The $N-t$ -Boc, $NCO-t$ -Bu, and $OCONEt₂$ groups mostly show excellent "in between"

TABLE 3. Cooperative Effects of Meta-Related Directed Metalation Groups

entry	substrate	metalation conditions	electrophile	yield, %	regioselectivity, % $C_2:C_6^a$	ref
18	OCONEI,	sec-BuLi/TMEDA/THF/-78 °C	CO ₂	83	67:33	114
19	ÓMe ,OCONEI ₂	sec-BuLi/TMEDA/THF/-78 °C	Mel	83	95:5	129
$20\,$	OCONEt ₂ NMe ₂	sec-BuLi/TMEDA/THF/-78 °C	TMSCI DMF	93 30	0:100 0:100	j \dot{j}
${\bf 21}$	MOMO,	n -BuLi/C ₆ H ₁₂ /0 °C t -BuLi/TMEDA/Et ₂ O/-78 °C	ICH_2CH_2I ICH ₂ CH ₂ I	71 76	95:0.5 10:90	66 66
$2\sqrt{2}$	MOMO.	t -BuLi/hexane/0 °C t-BuLi/ $Et_2O/0$ °C	ICH_2CH_2I ICH_2CH_2I	78 95	97:3 59:41	66 66
$\bf 23$	OMe OMOM	n -BuLi/Et2O/reflux n -BuLi/TMEDA/C ₆ H ₁₄ /room temp	Mel DMF	78 66	0:100 28:38	$j\over j$
$\bf 24$	OTHP	n -BuLi/Et2O/reflux	$CO2/H+$	60	95:5	27
25	OTHP OMe	n -BuLi/Et ₂ O/+35 \rightarrow -78 °C	Me ₂ CHCOCl	78	95:5	27, k
${\bf 26}$	OMo OMe.	n -BuLi/TMEDA/Et ₂ O/35 °C	Ph ₂ CO	80	95:5	ь
27	NMe ₂ ,OMe	n -BuLi/THF/-65 °C	$B(OMe)3/H2O2/HOAc$	53	95:5	b, l
${\bf 28}$		n -BuLi/THF/-65 °C	CO ₂	88	95:5	$\bf 27$

^a The number "4" drawn on a structure indicates that the regioselectivity should be read as C₂:C₄. ^b Slocum, D. W.; Jennings, C. A. J. Org. Chem. 1976, 41, 3653. "Baldwin, J. E.; Bair, K. W. Tetrahedron Lett. 1978, 19, 2559. "Newman, M. S.; Kanakarajan, J. J. Org. Chem. 1980, 45, 2301. "Ziegler, F. E.; Fowler, K. W. J. Org. Chem. 1976, 41, 1564. "Uemura, M.; N Higuchi, T.; Hayashi, Y. J. Org. Chem. 1983, 48, 2349. ⁸ Table 1, footnote c. ^hReed, J. N.; Rotchford, J.; Strickland, D. Tetrahedron Lett. 1988, 29, 5725. Clark, R. D.; Caroon, J. M. J. Org. Chem. 1982, 47, 2804. Skowronska-Ptasinska, M.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1985, 50, 2690. * Koft, E. R.; Smith, A. B., III. J. Am. Chem. Soc. 1982, 104, 2659. ¹Furlano, D. C.; Calderon, S. N.; Chen, G.; Kirk, K. L. J. Org. Chem. 1988, 53, 3145.

regioselectivity in concert with OMe, Cl, and F substituents (entries 14-18). Analogous to results observed with the CONEt₂ (entry 7), the OCONEt₂-NR₂ combination prefers metalation at C-6 (entry 20). The most systematically studied OMOM group shows a striking dependence on solvent effects for both OR and NR_2 meta substituents (entries 21-23). The early investigated 1,3-related OR-OR and OMe- NR_2 DMGs show clean metalation at the common site (entries 24-26). The OMe-F and F-F DMG combinations (entries 27 and 28) have not yet received wide synthetic exploitation.

The presence of a third DMG in 19 (Scheme 6) at C-4 or C -6 that is weaker than $DMG₁$ usually does not effect the result of C-2 metalation. With the exception of N , N -diethyl-3,5-dimethoxybenzamide,⁷⁴ such combinations have not been systematically studied.

G. Practical Aspects

The inert atmosphere-low temperature-syringe techniques used in DoM reactions are typical of modern operations in organometallic synthesis.⁷⁵⁻⁷⁸ For exploratory experiments, the adoption of conditions based

TABLE 4. Practical Aspects of the DoM Reaction

on the prototype systems (Table 4) are advised, although a systematic search for the optimum conditions by variation of alkyllithiums, solvents, and complexing agents invariably proves to be rewarding. In large-scale synthesis, the conversion from more conventional routes to those based on use of RLi reagents may result in a significant reduction in number of operational steps at a modest increase in expense. This factor coupled with the development of safe handling practices and lowtemperature techniques is leading to the greater industrial use of organolithium chemistry.⁷⁹

IV. Methodological Aspects of Tertiary Amide and O-Carbamate DMGs

A. Aromatic Tertiary Amide

In 1973, Hauser⁸⁰ reported that N , N -dimethylbenzamides undergo attack by n -BuLi to give aryl butyl ketones. Pursuing these observations, Beak and coworkers 81 first showed that treatment of N , N -diethylbenzamide with LiTMP gives N,N -diethyl-o-benzoylbenzamide, a result that implicated the formation of an

ortho-lithiated intermediate by the use of a sterically hindered base and that led to the discovery of synthetically useful conditions⁸² for the generation of this species. Table 5 shows the effect of conditions and N-substitution on the success of the tertiary benzamide DoM process. Metalation of the dimethylamide *(n-*BuLi, sec-BuLi) and the diethylamide (n-BuLi, *sec-* $BuLi (Et₂O)$, and t-BuLi) followed by D₂O quench leads to ketone and self-condensation products (entries 1-4 and 6), although the last result was not obtained under comparable conditions. As demonstrated by Gschwend comparable conditions. As demonstrated by Oschwend
and co-workers, ⁸³ ketone formation need not be synthetically unproductive since the carbinolamine formed by n-BuLi addition to a tertiary benzamide may serve as an in situ DMG and lead to ortho-substituted aryl ketones. A fundamental variation of this concept that does not involve functional group transformation, thoroughly developed by Comins and co-workers, invokes the use of carbinolamine DMGs derived from addition of dialkylamide nucleophiles to benzaddition of diaikylamide nucleopinies to benz-
aldehydes.⁸⁴ In general, ortho-lithiated dimethylbenzamides cannot be generated except by metal-halogen amides cannot be generated except by metai-nailogen
exchange⁸⁵ or with the assistance of cooperative (meta-OR DMGs) or steric hindrance (ortho-OR

 \mathbf{e}

TABLE 5. Effect of Conditions and N-Substitution on the Tertiary Benzamide DoM Reaction

						products, yield, %			
ntrv	CONR ₂	base	conditions	\mathbf{E}^+	COR.	-CONR_2	.CONR ₂ COPh	ref	
	Me	n -BuLi	$THF/0$ °C		70			80	
	Me	sec-BuLi	TMEDA/THF/-78 $°C$	D ₂ O	14		26	86	
3	$\mathbf{E}\mathbf{t}$	n -BuLi	$THF/-78 °C$	D ₂ O	31			86	
4	$\mathbf{E}\mathbf{t}$	sec-BuLi	TMEDA/Et ₂ O/-78 °C	D ₂ O		$~1$ $~53$	14	86	
5.	$\mathbf{E}\mathbf{t}$	sec-BuLi	TMEDA/THF/-78 °C	D_2O		> 90		86	
6	Et	t -BuLi	THF/-78 $^{\circ}$ C	TMSCI	9	28	5	206	
	i -Pr	n-BuLi, sec-BuLi	TMEDA/THF/-78 $°C$	D ₂ O		> 90		86	
8	$i-Pr$	t -BuLi	THF/0 °C	D ₂ O		91		206	
9	$Et, N(Et)CH_2CH_2NEt_2$	sec-BuLi	$TMEDA/THF/-78 °C$	TMSCI		75		101	
10	⇜ ⇜	sec-BuLi	$TMEDA/THF/-78 °C$	TMSCI		61		a	
11	Me, CH ₂ TMS	sec-BuLi	TMEDA/THF/-78 $°C$	DMF			70	157	
12	i -Pr. CH ₂ TMS	sec-BuLi	TMEDA/THF/-78 °C	MeOD		92		a	
13	Me , $CH(TMS)$,	t -BuLi	$TMEDA/THF/-78 °C$	MeOD		98		104	

Snieckus

DMGs) effects and at lower temperatures as demonstrated in isolated cases (Table 6, entries $1-9$). On the other hand, clean ortho metalation is observed for the diethyl- and diisopropylamides using all three alkyllithiums (Table 5, entries 5, 7, and 8). The use of sec-BuLi/TMEDA/THF/-78 °C in inverse addition mode established by Beak and Brown⁸⁶ has become the optimum, highly reliable conditions for ortho metalation. The "built-in" TMEDA benzamide (Table 5, entry 9) serves as a useful DMG and offers greater facility in hydrolysis (section IV.C). The piperidino amide (entry 10) is moderately effective but, similar to the pyrrolido and N-methylpiperazino amides, is more useful in systems with m -alkoxy chelation or amide carbonyl deactivating features (Table 6, entries 144-147). The mono'- α -TMS amide (Table 5, entry 11) requires the incorporation of a steric effect (entry 12) to avoid self-condensation. Increasing the effective bulk to the bis- α' , α' -TMS amide (Table 5, entry 13) gives a stable, synthetically useful ortho-lithiated species.

^a Cuevas, J.-C.; Patil, P.; Snieckus, V., unpublished results.

Table 6 provides a comprehensive list of substituted aromatic amides available by the DoM reaction and allows evaluation of functional groups that tolerate the strongly basic conditions of this process. A large number of alkoxybenzamides, of great value in natural product synthesis, have been used (e.g., entries 77-102), whereas halo (Cl, F) (entries 103, 106-108, 118, and 129), amino (Table 3, entry 7), sulfur (no entries), and carbon (Table 6, entries 27, 65, and 66) substituted systems have not been extensively explored. While $C-3^{86}$ and $C-4$ methylbenzamides are not deprotonated under kinetic conditions (Table 6, entries 27, 65, and 66), the $C-2$ methyl systems readily form o -toluamide anionic species of synthetic value (section VIII.A). The demonstrated bissilvlation of such systems (entries $30-36$) as a C-CH₃ protective expedient awaits broader synthetic exploitation (Table 21). Naphthamide DoM reactions with simple electrophiles have received limited use (Table 7), most work involving the bare N , N -diethyl-1-naphthamide, which has served as a valuable synthon for the construction of diverse polycyclic aromatic hydrocarbons (PAH) (section VIII.D.3 and Table The corresponding 2-naphthamide undergoes 29). ready 1-addition of RLi reagents, 87-89 although hindrance and deactivation effects (Table 7, entries 5 and

6) may be used to overcome this problem. Similar problems have been encountered in metalation reactions of the 2-oxazolinonaphthamide, which, however, have been turned into impressive synthetic advantage.⁸⁹ Aside from the N,N-diethyl-9-phenanthrenecarboxamides, which are valuable in alkaloid synthesis (section VIII.D.2), more highly condensed aromatic tertiary amides have not been adequately evaluated in DoM reactions.

Table 6 also offers an overview of the scope and diversity of electrophiles that may be introduced. Among carbon-based electrophiles, methyl iodide has served as the outstanding alkylating agent (e.g., entries $11, 77, 112,$ and 143 ; few examples of direct introduction of longer alkyl chains have been reported (entry 12). Presumably owing to proton exchange, allylation can only be achieved by prior transmetalation to the corresponding softer ortho Grignard reagents (entries 9, 13, 42, 56, 80, and 102). For a similar reason, successful reaction with aliphatic aldehydes can only be achieved via the same expedient (section VIII.D.2 and Table 26). Clean hydroxyalkylation reactions occur with aromatic aldehydes and benzophenone to give products that usually are directly transformed into phthalides for ease of isolation (Table 26). o-Formyl products or their carbinolamine precursors, invariably obtained by DMF treatment, often undergo cyclization upon workup or chromatography to hydroxyphthalides. Steric effects of 6-substitution appear to facilitate this reaction. Hydroxyphthalides are also deliberately formed by acid treatment for ease of isolation purposes (Table 26). The oxidation state of carboxylic acid in the ortho position can be achieved by isocyanate (e.g., Table 6, entries 71 and 87), by carbamoyl chloride (e.g., entries 72 and 138), and, most directly, by carbon dioxide (e.g., entries 32, 58, 78, and 96) electrophiles.

Among heteroatom electrophiles, a large number of $N⁺$ synthons have been introduced to give anthranilamides (entries 16, 27, 36, 45, 52, 60, 66, 73, 106, 146, and 147) and o -anilinobenzamides (entries 1, 3, 4, 8, 10, 17, 18, 35, and 62). The synthetic utility of the former is depreciated by the difficult amide hydrolysis, while the latter serve as useful intermediates for acridones (section IX.A.2). OH^+ synthon introduction may be achieved by direct oxygenation (entries 19, 46, 59, 99,

TABLE 6. Synthesis of Ortho-Substituted Benzamides by **the DoM Reaction⁰**

L.

$\textbf{TABLE 6}\ \textbf{(Continued)}$

TABLE G Footnotes (Continued)

^a Unless otherwise indicated, sec-BuLi/TMEDA/THF/-78 °C conditions apply. o-Deuteration experiments have been omitted. With DMF as electrophile, only cases of uncyclized o-formylated benzamides are given, Cases that lead upon workup or deliberate acid treatment to 3-hydroxy-
phthalides are listed in Table 26, For ortho boronation, see section IX.E. ^b Methyl-3-[2-(diethylcarbamoyl)phenyl]phthalide (35%). ^Parker, K. A.; Koziski, K. A. *J. Org. Chem.* 1987, *52,* 674. 'Doadt, E. G.; Snieckus, V., unpublished results. 'Table 1, footnote /. 'Reed, J. N.; Snieckus, V. *Tetrahedron Lett.* 1983, *24,* 3795. ''Isolated as the corresponding MOM derivative. Isolated as the corresponding phthalic anhydride. The silyloxy intermediate was prepared separately $(NH(TMS)_2/neat/40$ °C or Et_3 SiCl/Et₃N/PhH/reflux) or in situ (sec-BuLi/THF/-78 °C) and subjected to the standard metalation conditions. *Together with N_rN-diethyl-3-hydroxy-6-(trimethylsilyl)benzamide with N,N-diethyl-3-hydroxy-6-(trimethylsilyl)benzamide (5-16%) and 3-hydroxy-2,6-bis(trimethylsilyl)benzamide (4-11%). 'Together with N,N-diethyl-4-hydroxy-2,6-bis(trimethylsilyl)benzamide (10-11%). "Together with N,N-diethyl-2-(triisopropylsilyl)-6-[(triisopropylsilyl)oxy]benzamide (10-30%). "Based on recovered starting material. "Sloan, C. P. M.Sc. Thesis, University of Waterloo, 1986. "Yield obtained with PhN(TMS)Li. 'Without TMEDA. 'LiTMP/HgCl₂/THF/0 °C conditions.

and 101) or, more reproducibly and in better yields, by the trimethyl borate /hydrogen peroxide method (entries 7 and 20). The formation of such salicylamides is especially useful in OR-amide DMG cooperative situations for the preparation of differentially functionalized oxygenated systems (entry 46). The intermediate boronic acids obtained by simple hydrolysis serve as productive partners in transition-metal-catalyzed cross-coupling methodologies (section IX.E.l). Sulfur (including S_8) (entries 23, 34, 48, 53, 63, 68, 124, and 141), selenium (entries 24, 54, and 64), phosphorus (entry 26), and tin (entries 25 and 140) electrophile incorporation has seen few applications to date (sections IX.B.D). The normally smooth and high-yield introduction of TMSCl (e.g., entries 22, 38, 75, 89,123, and 145), even in cases of potential incomplete lithiation, is undoubtedly related to its in situ compatibility with alkyllithiums.⁹⁰ Ortho silylation plays a useful protecting group role in aromatic ring manipulations (section IX.C). Ortho silylated benzamides are also obtained, albeit in poor yields, by ortho metalation mediated oxygen to carbon silyl migration of silyloxy derivatives (entries 37-40). Notable among the halogen electrophiles introduced (entries 21, 49, 50, 74, 88, and 139) is the absence of ortho fluorination, although new F^+ reagents are known⁹¹ and fluorobenzamides have themselves been metalated (entry 103 and Table 3, entry 5). Certain electrophiles fail in DoM reactions with tertiary benzamides, 86 whereas they have been reported to be successful with secondary amide^{29f,h,i} and oxazoline29g DMGs. In general, most electrophiles in Table 6 serve equally well for these three DMGs.

B. Heteroaromatic Tertiary Amide

Heterocyclic amide DoM reactions are in the early stages of development. In the pyridine series (Table 8), the combination of diisopropylamide substrate and LDA or, preferably, LiTMP base is required to avoid rapid self-condensation (entries 8,19, and 26) and addition.⁹² The significance of steric effects is revealed by comparison of dimethyl- and diethylbenzamide nucleophiles (entries 15 and 16). A limited number of electrophiles may be introduced in modest yields, although utility in tandem metalation to heteroanthraquinones has also been demonstrated (Table 30). In simple reactions with electrophiles, secondary amides have comparable utility,⁹³ while oxazolines show dual character of ortho metalation and addition of broader synthetic scope.^{29g}

 N,N -Diethylthiophene-2-carboxamide and -3carboxamide are useful metalation substrates. The less accessible 3-carboxamide has been used in tandem metalation sequences to obtain heteroanthraquinones

(Table 30), while the 2-carboxamide allows access to a variety of 2,3- and 2,3,5-substituted thiophenes (Table 9) via silicon protection (section IX.C.l) and dianion (section VI) protocols. The corresponding furan-3 carboxamide also undergoes tandem DoM reactions to anthraquinones (Table 30), while the undetected anion of the 2-derivative 21 (Scheme 8) rapidly fragments to the enyne **22** even at low temperatures owing to the electron-withdrawing effect of the amide.⁹⁴ Complementary DoM reactions of secondary amide and oxa $zoline⁹⁵$ furans and thiophenes provide greater scope, although further manipulation of all systems is limited by lack of mild hydrolytic conditions for these acidsensitive π -deficient heterocycles. Recent studies by Comins⁸⁴ on furan, thiophene, and pyrrole α -amino α alkoxide DMGs and by Keay⁹⁶ on furancarbinols promise to circumvent some of these difficulties.

Metalation of N , N -diethylindole-2-carboxamide 23 (Scheme 9) leads to $24,^{97}$ a fate analogous to that observed for the corresponding furan-2-carboxamide (Scheme 8). The triazolopyridinecarboxamide 25 undergoes metalation at either C-4 (slow) or C-7 (fast); quenching with anisaldehyde gives 26.98

Clearly, tertiary amide DoM chemistry in the heterocyclic area is in its infancy.

C. Amide Manipulation

The recalcitrant nature of N , N -dialkylbenzamides to acid (e.g., stable to refluxing 16 N HCl for 72 h) or base hydrolysis is well recognized. The synthetic use of the $CONF_{t_2}$ DMG is thus seriously compromised. However, anchimeric assistance by ortho-introduced electrophiles capable of forming five- or six-membered-ring tetrahedral intermediates greatly enhances amide hy- $\frac{1}{2}$ drolytic rates, $\frac{99}{2}$ a feature that may be turned into synthetic benefit. Thus ortho-hydroxyalkylated and carboxylated products of DoM reactions may be hydrolyzed under relatively mild acidic conditions to give phthalides (section VIII.D.2) and phthalic acids or anhydrides (section VIILE). Similarly, o-allyl derivatives can be cyclized to benzoisocoumarins (sections VIILA. 2 and VIII.B.l), although in some cases six-memberedring formation via attack on intermediate carbonium ring formation via attack on intermediate carbonium
ions is inhibited by the diethylamide substituent.¹⁰⁰ In search of hydrolytic facility, Comins tested the "builtsearch of hydrolytic facility, Comins tested the "built-
in" TMEDA benzamide 27**a** (Scheme 10).¹⁰¹ The developed three-step sequence affords the benzoic acid 28 in good yield but still requires relatively vigorous hydrolytic conditions. A milder three-step route for the preparation of 28, amenable to scale up, that takes advantage of acid-catalyzed tert-butyl cleavage of the CON(Me)-t-Bu DMG 27b has been devised by Reitz.¹⁰² In the absence of other interfering functionality, di-

^{*a*}Unless otherwise specified, sec-BuLi/TMEDA/THF/-78 °C conditions apply. ^{*b*}Table 6, footnote *d.* ^ct-BuLi conditions. ^{*d*}Bindal, R. D.; Katzenellenbogen, J. A. J. Org. Chem. 1987, 52, 3182. ^{*e*}n-BuLi conditio

TABLE 8. Synthesis of Substituted Pyridinecarboxyamides^a

² Unless otherwise stated, LDA/Et₂O/-78 °C conditions were used. ^b Epsztajn, J.; Berski, Z.; Brzezinski, J. Z.; Jozwiak, A. Tetrahedron Lett. 1980, 21, 4739. Epsztajn, J.; Brezezinski, J. Z.; Jozwiak, A. J. J. Chem.

TABLE 9. Synthesis of 2,3- and 2,3,5-Substituted Thiophenecarboxamides"

^a Unless otherwise indicated, sec-BuLi/TMEDA/THF/-78 °C conditions apply. ^bUsing LDA/THF/-78 °C or sec-BuLi/THF/-78 °C conditions. Accompanied by the 3-CO₂H derivative (50%). ^dVia 3,5-dilithiated intermedite; see section VI. ^e Accompanied by 10% of 3-CH(OH)Ph product. *'* Accompanied by 10-20% of starting material. *K* Accompanied by 25% of 3,5-disubstituted product of \dot{E}_1 ⁺ introduction.

SCHEME 8

SCHEME 9

SCHEME 10

ethylbenzamides may be converted into benzaldehydes as demonstrated in the high-yield, overreduction-oxidation sequence $29 \rightarrow 30 \rightarrow 31$ (Scheme 11).¹⁰³ Preliminary results suggest that the bis- α', α' -TMS amide DMG may provide a general solution to the hydrolysis problem.¹⁰⁴ Thus 32 (Scheme 12) is readily unmasked by fluoride to the dimethylbenzamide 33, which may be readily reduced by standard methods to aldehyde 34 or alcohol 35 oxidation states.

With the aim of developing a new aryl aldehyde and ketone synthesis, Comins has systematically explored the classical amide-alkyllithium reaction originally re**SCHEME 11**

D₂

ported by Hauser⁸⁰ for a variety of amides, including the "built-in" TMEDA DMG system (Table 1O).¹⁰¹ Thus in the N , N -diethyl series, lateral metalation is suppressed by using PhH rather than THF as solvent, thereby leading to good yields of ketones from alkyllithiums (entries 2-5) but not from Grignard reagents (entry 1). The piperazine amide (entry 8) is less valuable in view of its poor DMG properties.¹⁰¹ However, both of these amide types are unreliable in forming benzaldehyde products (entries 6, 7, 9, and 10). The value of "built-in" TMEDA DMGs (entries 11-20) is thus reinforced, especially in the β -(dimethylamino)ethyl series (entries 11-17), in providing ortho-substituted benzaldehydes (entries 14 and 17). Although little exploited, amide to aryl ketone conversion has been achieved via intermediate α -alkoxy amine DMGs.⁸³ active a via intermediate α -alkoxy amilie Divicis. this purpose has added a new dimension to the amide aryl ketone conversion (Table 11). A variety of ketones are available in excellent yield with the exception of those that suffer double-jeopardy hindrance from ortho and N substituents. Reduction methods (e.g., LAH, Dibal, Super-Hydride) that are effective on N , N -di-

		CONR22		LOR ³		
		R١	PhH + R ³ MgX or R ³ Li	R١		
		benzamide			product	
entry	R ¹	R^2	R^3MgX/R^3Li	R ¹	R ³	yield, %
1	Me	Et	MeMgCl	Me	Me	0
$\overline{\mathbf{2}}$	Me	E _t	MeLi	Me	Me	72
3	Me	Et	n -BuLi	Me	n -Bu	61
$\overline{\mathbf{4}}$	$n - Bu$	Et	MeLi	n-Bu	Me	55
$\overline{5}$	$n-Bu$	E_{t}	n -BuLi	$n-Bu$	$n-Bu$	62
6	Me	Et	SmEAH ^a	Me	н	0
$\overline{1}$	$n-Bu$	Et	SMEAH [®]	$n-Bu$	н	0
8	n -Bu	∼ NMe	n-BuLi	n -Bu	$n - Bu$	58
9	Me	NMo	SMEAH ^a	Me	H	57
10	$n-Bu$	NMe	SMEAH [®]	n -Bu	н	0
11	Me	Me, CH ₂ CH ₂ NMe ₂	MeMgCl	Me	Me	56
12	Me	Me, CH ₂ CH ₂ NMe ₂	MeLi	Me	Me	82
13	Me	Me, CH ₂ CH ₂ NMe ₂	n-BuLi	Me	n-Bu	80
14	Me	Me, CH ₂ CH ₂ NMe ₂	SMEAH [®]	Me	н	80
15	$n - Bu$	Me, $CH_2CH_2NMe_2$	MeLi	n-Bu	Me	77
16	n -Bu	Me , CH_2CH_2NMe	n-BuLi	n -Bu	n-Bu	70
17	n -Bu	Me, $CH_2CH_2NMe_2$	SMEAH ^a	n-Bu	н	51
18	Me	Et, $CH_2CH_2NEt_2$	MeMgCl	Me	Me	38
19	n -Bu	$Et, CH2CH2NEt2$	n -BuLi	n Bu	n-Bu	64
20	Me	Et. CH ₂ CH ₂ NEt ₂	$SMEAH^a$	Me	н	0

TABLE 11. Tertiary Benzamide to Aryl Ketone Conversion Using Lanthanum Triflates¹⁰⁵

methylbenzamide (Scheme 12)¹⁰⁴ are not satisfactory for o - and o,o' -substituted diethylbenzamides.¹⁰⁵

D. Aromatic Tertiary 0-Carbamate

As appreciated by a glance at Table 12, electrophile introduction into ortho-lithiated O -aryl N,N -diethyl carbamates occurs with equal efficacy and comparable scope to that observed for the corresponding amides. Differences to note are the allylation (entry 2) and hydroxyalkylation (entry 3) reactions, which do not require transmetalation tactics. Amination and hydroxylation are effected in excellent yield by the tosyl azide-borohydride reduction (entry 11) and trimethyl borate/hydrogen peroxide (entry 12) procedures, respectively. The initial component of the latter reaction has consequences for cross-coupling chemistry (section IX.E). m-Methoxy (entries 27 and 28) and m-chloro (entries 35-37) systems show good C-2 regioselectivity, while *m*-methyl (entry 20) and *m*-dialkylamino (entries 22-25) substituents force metalation of the alternate site. Difficult to access o-halo-masked phenols (entries 13-15) and systems containing more than one kind of halogen (entry 41) may be obtained. O-Phenyl *N,N*diisopropyl carbamates suffer complications in hydrolytic manipulation after DoM chemistry, while the corresponding dimethyl systems undergo rapid anionic ortho-Fries rearrangement (section V.A). Condensed aromatic carbamate metalation has been only briefly explored (Table 13) but shows excellent regioselectivities in the 1-naphthyl (entries 1-3) and 9-phenanthryl (entries 6 and 7) series.

In comparison with other oxygen-based DMGs OMe,²⁷ OMOM,⁶⁶ OP(OR)₂,^{107a} and OPO(NMe)₂,^{107b} the carbamate has advantage in the milder metalation conditions (Table 4) and complementarity in the basic conditions for hydrolysis.

E. Heteroaromatic Tertiary O -Carbamate

All possible isomeric O -pyridyl N , N -diethylcarbamates undergo smooth metalation and electrophile quench to give a rich variety of substituted derivatives that are difficult to prepare by classical substitution or de novo pyridine construction modes (Table 14).¹⁰⁸ The clean regiospecific 4-metalations of the 3-carbamate are complemented by the recent preliminary results¹⁰⁹ of efficient 2-deprotonation of 3-methoxypyridine using mesityllithium. The anionic ortho-Fries rearrangement (section V.A), iterative metalation (section VII), facile

TABLE 12. Synthesis of Ortho-Substituted 0-Aryl Carbamates"

"All reactions were carried out under *sec* -BuLi/TMEDA/TMF/-78 °C conditions. ^bTable 6, ref g. ^cTogether with 2-CH₂TMS derivative (26%) as an inseparable mixture. Under $LDA/THF/-78 °C$ conditions, yield was obtained. d Table 3, ref j. e Combined yield with 6-Me isomer a mixture of $2\text{-CH}_2\text{TMS}$ and 2-CH(TMS)_2 in a $(2-Me:6-Me = 3:1)$. $120\% 6-CO₂H$. $827\% 6-I$. *1* 5:1 ratio and 80%

TABLE 13. Synthesis of Ortho-Substituted O-Naphthyl and O-9-Phenanthryl Carbamates"

E
OCONEt₂

ethyl-3-hydroxy-2-naphthamide was obtained.

^aReference 108. Unless otherwise indicated, sec-BuLi/TME-DA/THF/-78 °C conditions were used. ^bObtained under LDA/ THF/-78[']°C conditions.

 \sim 4 $\sqrt{\text{pconv}}$

^a Unless otherwise indicated, LDA/THF/-78 °C conditions were used. ^bsec-BuLi/THF/-100 °C conditions were used. ^cRearranged product I (R = Et (19%), R = Ph (24%)) was also isolated. ^dThe 3-OH quinoline derivative. Corresponding decarboxylated material was also obtained in variable yields. /In situ LDA/TMSCI/-78 °C conditions. "Obtained in a 1:1:1 ratio.

 \mathbf{I}

CH(R)OCONEI,

SCHEME 14 EISNOCO t, MBuLi / THE $2. TMSCI$ 39

hydrolysis (especially for the 2- and 4-carbamates),¹⁰⁸ and latent DMG potential $(36 \rightarrow 37 \rightarrow 38,$ Scheme 13) constitute properties of the pyridyl carbamates that make them attractive for diverse synthetic use.

Comprehensive methoxypyridine and -quinoline
DoM reactions^{42,109,110} complement the carbamate results, although both DMGs have seen limited synthetic applications.^{29h,i}

The DoM chemistry of isomeric O-quinolyl N,N-dimethyl- and N,N-diethylcarbamates has been less diversely explored (Table 15). As may be expected from

the known compatibility of LDA and TMSCl,^{42,50} silylation is, with two exceptions (entries 14 and 16), cleanly achieved (entries 5, 12, 13, and 15). In one of the exceptions (entry 14), formation of mixtures may be avoided via a metal-halogen exchange process, $39 \rightarrow 40$ (Scheme 14), at the cost of requiring the bromo-
quinoline precursor.¹¹¹ Hydroxyalkylation with aromatic and aliphatic aldehydes proceeds only in moderate yields and leads to some unusual products (Table 15, entries 3, 4, 8, 9, and 17-23). Some of these products 42 (Scheme 15) (entries 1, 7, and 11) have been converted into isomeric dihydrofuroquinolines 41, 43, and 44.112

SCHEME 16

Carbamate metalation has not been as yet pursued in other heteroatomic systems, although an initial report of successful 0-furyl phosphonate metalation may point the way.¹¹³

F. Carbamate Manipulation

Hydrolysis of tertiary 0-aryl carbamates to phenols normally requires vigorous basic conditions;¹¹⁴ in the absence of other similarly sensitive sites, $LiAlH₄$ reduction followed by mild acid workup may be used. Similar to tertiary amides, ortho-hydroxyalkylated, formylated, or -carboxylated carbamates suffer faster hydrolysis via anchimeric-assisted mechanisms. In the quinoline carbamate series, intermediates of such reactions have been isolated.^{112,115,116}

V. The Amide-Carbamate Connection

A. Anionic Rearrangements

Methods for the regiospecific preparation of polysubstituted aromatics are considerably enhanced by the availability of the carbamate into salicylamide rearrangement, $45 \rightarrow 46$ (Scheme 16, Table 16).¹¹⁴ In this anionic equivalent of the ortho-Fries rearrangement, the carbamate 45 serves as a "carrier" of the amide into an ortho site 46 from which, after suitable phenol protection, it may oblige further DoM chemistry 48. In between metalation of 1,3-related DMG substrates 47 leading to 1,2,3-trisubstituted aromatics 48 and strategies for combinational use of amide-carbamate MGs are therefore conceptually possible. The 2-methyl carbamate migrates cleanly into the ortho site (Table 16, entry 3), while the corresponding 3-methyl derivative yields the 4-methyl product (entry 4) presumably as a consequence of a steric effect. The meta-cooperative metalation effect is demonstrated cleanly by carbamate (entry 14) and chloro (entry 17) DMGs; surprisingly, the corresponding methoxy system shows poorer regioselectivity (entry 11). An illustration of a double 1,3-carbamoyl rearrangement to a hydroquinone diamide has been recorded (entry 15). The anionic

TABLE 16. o-Hydroxy Aromatic and Heteroaromatic

ortho-Fries rearrangement has also been observed in the naphthyl (entries 19 and 20), phenanthryl (entry 21), pyridyl (entries 22-25), and quinolinyl (entries 26-31) carbamate series. The rate of the anionic ortho-Fries rearrangement is highly sensitive to N-substitution and temperature (Table 17) and has been shown by cross-

TABLE 17. Anionic Ortho-Fries Rearrangement of o-Aryl Carbamates as a Function of N-Substituent^{117a}

	.OCONR ₂	1. sec-BuLl/TMEDA	.OCON _R	.OH
		2. MeI	Me	CONR ₂
$\mathbf R$	temp, °C	time(metalation) min	product ratio	vield. %
Et	-78	$10 - 60$	100:0	70
Me	-78	45	0:100	75
Me	-78	10	67.33	80
Me	-95	10	100:0	90

over experiments to proceed by an intramolecular mechanism.^{117a}

Combinational use of amide and carbamate DoM chemistry is illustrated by the synthesis of ochratoxins A and B, toxic metabolites isolated from strains of Aspergillus ochraceus and Penicillium viridicatum (Scheme 17).¹¹⁸ Metalation and carbamoylation of 49a and 49b led smoothly to compounds 50a and 50b, respectively, which, upon anionic rearrangement and methylation of the intermediate phenols, gave the isophthalamides 51a and 51b. The allyl group was introduced by the metalation-transmetalation sequence to afford 52a and 52b, which were directly treated with HCl to effect lactonization, amide hydrolysis, and demethylation in one pot to give the isocoumarincarboxylic acids $53a$ and $53b$ in $6-14\%$ overall yields. These known compounds had been previously transformed into ochratoxin $B(54a)$ and ochratoxin A $(54b)$, respectively. An alternate route to 53b by direct carboxylation of 49b was accomplished in low overall vield owing to an inefficient allylation step corresponding to $51b \rightarrow 52b$.

Amide-carbamate DoM reactions have also been exploited in the synthesis of pancratistatin (61) (Scheme 18), a phenanthridone alkaloid from Pancratium littorale showing promising antitumor activity.¹¹⁹ Anionic ortho-Fries rearrangement on 55 followed by silylation afforded benzamide 56, which was metalated. formylated, and subjected to chain extension and dehydration to give the arylbutadiene 57. Cycloaddition with an acetylenic dienophile equivalent and tin hydride induced elimination afforded the cyclohexadiene 58. Following desilylation, halolactonization to 59 was

72 (56%) 73 (97%) achieved by an innovative process that takes advantage of amide stannylation to effectively increase its nucleophilicity. Extensive oxygenated ring manipulation which includes a suprafacial allylic $O \rightarrow N$ transposition of 60 and terminal lactone to lactam rearrangement

gave rise to pancratistatin (61) . In contrast to the kinetic result (Table 16, entry 3), LDA deprotonation of the o-tolyl carbamate 62a (Scheme 19) leads to o-hydroxyphenylacetamide 63 (49%) :^{117a} the yields of 63 are improved by using silylated starting carbamate 63b.¹¹⁷⁶ The demonstrated conversion of 63 into 64 in good yields suggests that this methodology may have general synthetic utility for difficult to access benzofuran-2-ones.

B. Benzyne Generation

The discovery by Kobayashi¹²⁰ that o-TMS aryl triflates serve as benzyne precursors led to the development of two routes for the generation of the synthetically useful benzamide benzyne intermediate 68 (Scheme 20).¹²¹ Precursor isomeric TMS phenols 66 and 70 were secured by anion-induced ortho-Fries 65 \rightarrow 66 or O \rightarrow C silicon 69 \rightarrow 70 rearrangements, re-

spectively. The latter reaction, proceeding via intraor intermolecular paths, depending on the position of the silyloxy substituent, has modest, as yet incompletely explored, scope for the preparation of o-silylbenzamides (Table 6, entries 37-40).¹²² The triflates of **66** and 70, obtained by standard procedures, upon treatment with TBAF in the presence of an excess of appropriate dienes afford products **67a-c, 72,** and **73** in good yields. In the solitary pertinent case studied (67c), the reaction shows no regioselectivity. Using the same benzynegenerating conditions but in the presence of excess of nucleophiles in protio, lithio, and TMS precursor forms allows rapid access to a variety of meta-functionalized benzamides 71. As observed by Kobayashi,¹²⁰ the success of this reaction with protio nucleophiles such as MeOH is consistent with a mechanism that involves either rapid loss of OTf from a desilylated precursor or concerted formation of the benzyne. These reactions, which are under further exploration,^{123,124} parallel and complement observations by Meyers and co-workers on benzyne species derived from (m-chlorophenyl)oxazolines under strongly basic RLi metalation conditions.¹²⁵ Aside from participating in cycloaddition similar to that observed for **68,** the oxazoline benzynes have been shown to react in situ with organolithiums and cuprates at either C-2 or C-3 dictated by kinetic or thermodynamic control conditions. The resulting anions may be treated with electrophiles, thus providing an innovative tandem route to 1,2,3-trisubstituted benzenes.

Similarly, carbamate benzynes may be generated from analogous precursors (Scheme 21).^{123,124} Thus conversion of 74 into the ortho-silylated phenol 75 followed by triflation and fluoride-induced benzyne formation in the presence of furan affords cycloadduct 76 in good yields.

VI. 2,6-Dlanion Equivalents

The successful generation of a dimetalated or higher order metalated aromatic species promoted by one or more DMGs will be dependent upon electrostatic repulsion, additional complexity in aggregation, and solubility, among other factors. Utility in synthesis has only recently been explored.^{34,126} In the context of the tertiary amide DMG, the formal dilithiated species 78 (Scheme 22) cannot be generated directly by double DoM reaction, but may be obtained by metal-halogen ϵ exchange from the 2.6-dibromobenzamide 77^{127} or by reverse transmetalation from the dimercurial 79.¹²⁸ Compound 77 is available by double ipso bromodesilylation of 80, which, in turn, is readily accessible by one-pot sequential bissilylation of N , N -diethylbenzamide; 79 is obtained from the bare benzamide 82 under in situ trap thermodynamic conditions using the compatible $LiTMP/HgCl₂$ base-electrophile combination. Electrophile quench of 78 leads to satisfactory yields of otherwise poorly accessible 2,6-disubstituted benzamides $81a^{127,128}_{1}81b^{127}_{1}81c^{127,128}_{1}$ and $81d^{128}_{1}$ High **SCHEME 22**

SCHEME 23

SCHEME 24

 $\bigotimes_{\mathsf{S}} \longrightarrow \text{Cone1}_2$ $\begin{array}{c}\n \text{1. 2 equiv} \\
 \text{2. E}^+ \\
 \text{2. E}^+ \\
 \end{array}$ **S-BuU/TMEDA S 90 CONEt2 2. E1* 3. E2* E2 "s" ^ CONEt² 91**

 d_2 incorporation $(95\%)^{127}$ and clean disubstitution by electrophiles (e.g., MeI) that would expose highly acidic sites in potential monosubstituted intermediates strongly suggest that the dilithiated species 78 is generated in these reactions.

The generation of dianion equivalent synthons may be extended to phthalamides. Thus the dianion from dibromophthalamide 84, obtained analogously by bromodesilylation of 83, has been shown to react with similar electrophiles to give 3,6-disubstituted products $85a-c$.¹²⁷ The generation of the corresponding dianions of isophthalamides and terephthalamides was impeded at the dibromo and bis-TMS precursor stages, respectively.¹²⁷

In contrast to the phthalamide 84, the catechol and hydroquinone dicarbamates 86 and 88 (Scheme 23) undergo direct dilithiation under the standard *sec-*BuLi/TMEDA conditions and lead, after electrophile treatment, to products **87a,b¹²⁹** and 89a-c,¹²⁷ respectively. The evident potential for sequential introduction of two different electrophiles **(87a,b)** may have application in these and related systems for the synthesis of unsymmetrically substituted benzoquinones.

In the solitary study of a dimetalated DMG heteroaromatic system, the thiophene-2-carboxamide 90 (Scheme 24) has been shown to serve as a 3,5-dianion equivalent and to produce, following the expected carbanion reactivity order, a variety of thiophenes with

SCHEME 25

the same or different 3,5-substituents in modest yields (Table 9, entries $6-16$).⁹⁴

VII. Iterative DoM Reactions

Iterative DoM processes, as yet little exploited, are potentially valuable for rapid access to diverse polysubstituted aromatics. The concept (92, Scheme 25) involves sequential introduction of electrophiles that serve as DMGs for subsequent metalation in an overall "walk-around-the-ring" regimen. The relative hierarchy of the introduced DMG_2 and the original DMG_1 dictates the position of the incomimg $DMG₃$ and is a repetitive consideration. Illustrative of possibilities are the conversions of 93 and 96 into the polysubstituted systems 95 and 98, respectively.¹³⁰ Metalation of 93 followed by phenyl isothiocyanate quench gave the lithiated thioamide 94, which, without isolation, was metalated and treated with methyl iodide to give 95 in good overall yield. Alternatively, a sequence of metalations on 93, involving two carbamoyl chloride and one trimethylsilyl chloride electrophile quenches, led, via isolated intermediates 96 and 97, to the hexasubstituted aromatic 98, a highly crowded molecule with a nonplanar benzene ring as established by X-ray crystallographic analysis.¹³⁰

Similarly, broader synthetic potential of iterative metalations initiated by the carbamate DMG is suggested by the conversion of 99 and 102 into the tetrasubstituted systems 101 and 103, respectively (Scheme 26).^{117a} Thus a one-pot sequence of metalation silvlation, metalation, and carbamovlation gave the trisubstituted derivative 100, which was isolated and subjected to a second metalation-carbamoylation treatment to give the tetrasubstituted derivative 101. A similar one-pot sequence on the o-methoxy carbamate 102 gave a different contiguously substituted aromatic 103.

Iterative metalation processes have also been demonstrated for O-pyridyl carbamates (Scheme 27).¹⁰⁸ Thus the 4-bromo derivative 105a (Table 14, entry 8), when subjected to known conditions for metalation of the bromopyridine prototype, $131,132$ afforded the 3,4,5trisubstituted pyridine 104. In a parallel series of reactions, the intermediate isonicotinamide 105b (Table 14, entry 7) furnished a different trisubstituted derivative 106. On the other hand, the nicotinamide 107 (Table 14, entry 12) led to yet another variation of pyridine trisubstitution (108). The final products in all three cases indicate that the last metalation occurs at C-5 irrespective of the DMG. Complementary 2metalation of unsubstituted 3-methoxypyridine has been achieved by using mesityllithium.¹⁰⁹

VIII. Synthetic Consequences of o-Carbon **Electrophile Introduction**

Products derived from regiospecific DoM reactions may be further manipulated by standard functional group interconversions into a variety of useful polysubstituted aromatics. Of equal synthetic value is the potential, as yet in the early stages of exploration, to parlay DoM processes, via the initially introduced electrophile, into chain extension, carbo- or heteroring annelation, and other carbon-carbon bond-forming protocols. These synthetic consequences are discussed according to the nature of the initially introduced electrophile.

With the exception of the areas of cross-coupling chemistry (section IX.E) and anionic rearrangement (section V), few results are available for the $OCONEt₂$ DMG and, as the discussion will make evident, the majority of synthetic applications is the exclusive domain of the CONR₂ DMG.

A. o-Methyl

The simple expedient of methylation of an ortholithiated benzamide to give 109 (Scheme 28) provides a handle for further electrophilic functionalization via the easily generated (usually burgundy red) o-tolyl anion 110, thus offering avenues for chain extension and ring annelation strategies 111. For annelations, introduced olefinic, imine, nitrile, carboxy, and hydroxyalkyl functionalities serve as electrophilic or nucleophilic sites

TABLE 18. Synthesis of 3-Aryl-3.4-dihydroisocoumarins

	'Me					
R	z	ArCHO	7 ,	Ar	yield, %	ref
Et	н	PhCHO	Н	Ph	$30(62)^a$	100, 101
Et	Н	$2-MeOC6H4CHO$	н	$2-MeOC6H4$	45	100
Et	н	$3-MeOC6H4CHO$	н	$3-MeOCaH4$	40	100
Et	н	$4-MeOC6H4CHO$	Н	$4-MeOC6H4$	65	100
Et	н	$3-PhCH2O$, $4-MeOC6H3CHO$	Н	$3-PhCH2O$, $4-MeOC6H3$	32	100
Et	Η	furan-2-carbaldehyde	н	2-furyl	30	100
Et	н	thiophene-2-carbaldehyde	н	2-thienyl	30	100
Me	OMe	$4 \cdot \text{MeOC}_6H_4CHO$	OMe	$4-MeOC6H4$	$35(46)^b$	100
Me	OMe	$3-PhCH2O$, $4-MeOC6H3CHO$	OMe	3-PhCH ₂ O, 4-MeOC ₆ H ₃	$32(21)$ ^b	100

SCHEME 29

for cyclization by amide participation. This partly confers a chameleon character to the CONR₂ in that it originally withstands attack by potent RLi reagents. Complementary routes are available from o-tolyl secondary amides,^{29h,1} oxazolines,^{29g} α -amino alkoxides,⁸⁴
and esters,¹³³ although the last species, while widely used, clearly cannot be derived via initial DoM chemistry. As documented below, a large body of literature attests to the synthetic value of the o-tolyl tertiary amide anion 110.

1. Chain Extension

With the exception of ethylation (Table 6, entry 12). introduction of long chains into ortho-lithiated N,Ndiethylbenzamides has not been reported, perhaps due to intervention of elimination reactions. The less basic o-tolyl anion is recommended for such processes as illustrated by the short synthesis of lunularic acid 112 \rightarrow 113 \rightarrow 114 (Scheme 29) using the more easily hydrolyzed $CON(Me)-t$ -Bu DMG.¹⁰²

2. Heteroannelation via o-Tolyl Anions

The carboxylation of the o-tolyl anion of 116 (Scheme 30), obtained from the benzamide 115, leads to the homophthalic acid amide 117.¹³⁴ This overall twocarbon chain extension, not achievable directly by treatment of 116 with ethyl α -bromoacetate, can also be carried out in a one-pot procedure and provides convenient access to the homophthalic anhydride 118, previously available by a classical route in nine steps and low overall yield. The heteroring annelation product 118 served as one component for a convergent and abbreviated synthesis of the phthalide isoquinoline alkaloids cordrastine $I(119a)$ and cordrastine II (119b), which also embodied a key bromohomophthalic anhydride-phthalide α -carboxamide rearrangement. 5-Methoxyhomophthalic anhydride has been similarly **SCHEME 30**

SCHEME 31

prepared for use in a naphthoquinone ring construct (Scheme 36).

An alternate annelation method leading to the same ring system at a different oxidation state 123 (Scheme) 31) may be achieved via amide alcohol intermediate $121.^{100,101}$ A typical sequence¹⁰⁰ of some generality (Table 18) begins with a rare case of an N,N-dimethylbenzamide 120 metalation followed by methylation, a second metalation, and treatment with O benzylisovanillin in a one-pot process to give amide alcohol 121 in modest overall yield. Compound 121 is also available by condensation of the intermediate otoluamide with the appropriate benzoate ester followed by sodium borohydride reduction. Base-induced cyclization to 122 followed by deprotection affords phyllodulcin (123), a natural product with a sweetness index 400 times that of sucrose. Base hydrolysis of the tertiary amides was necessitated by the derailment of the synthesis to a stilbene derivative under the standard TsOH-catalyzed conditions. This problem appears to be circumvented by the use of the TMEDA-like DMG (Table 18).¹⁰¹ A single case of condensation of lithiated

SCHEME 32 SCHEME 34

N,N-dimethyl-2-methoxy-6-methylbenzamide with an aliphatic aldehyde has been recorded.¹³⁵

N-Heteroring annelation using imine electrophilic partners has been demonstrated and applied to alkaloid synthesis by Clark and Jahangir (Schemes 32-35, Tables 19 and 20).^{136,137} In this rapid heteroring construct related to several other methods of isoquinoline synthesis,¹³⁸ o -toluamides 124 (Scheme 32) are condensed with a variety of aromatic and aliphatic imines to give satisfactory yields of 3-substituted isoquinolones 126 $(E = H)$ via the 4-lithiated species 125. Among the derivatives available by this procedure are functionalized amine (Table 19, entries 7 and 8), spiro (entry 16), and fused (entries 17 and 18) systems. In contrast to the acid-mediated synthesis of isocoumarins (Table 18), this route involves amide participation as an electrophilic site in what appears to be a stepwise process. As a consequence of the generation of the 4-lithiated species **125** (formed by proton exchange with the in situ generated $LiNEt₂$, quench with electrophiles other than a proton source leads to 3,4-disubstituted products **126** ($E = alkyl$), thereby adding a valuable feature to 120 ($E = \text{a}$ Ky), thereby adding a valuable leature to t refluit is necessarily defined. The scope of this stereospecific tandem reaction has been explored (Table 20) and extended to heterocyclic analogues $(127 \rightarrow 128,$ Scheme 33).¹³⁷ Instructive applications of this methodology for the construction of protoberberines (Table 19, entries 17 and 18), a benzophenanthridine alkaloid $(129 + 130 \rightarrow 131 \rightarrow 132,$ Scheme 34),^{136a} and a proposed common biosynthetic intermediate $(133 + 134 \rightarrow$ $135 + 136 \rightarrow 137$, Scheme 35)^{136b} for these two classes of natural products have been demonstrated. In the last case, the inability to obtain 136 by the tandem sequence, presumably owing to decreased acidity of the C-4 hydrogens, necessitated the use of the 2-ethyl starting material 133.

Condensation of o-tolyl amide anions 139 (Scheme 36 ¹³⁹ with homophthalic anhydride 138 leads to adducts **140** in a reaction that embodies overtones of polyketide biogenesis.15b Since both reacting partners may be prepared by DoM, the overall process has considerable scope. Sequential Claisen-aldol condensation, base-catalyzed aerial oxidation, and amide hydrolysis on **140** afford the hydroxynaphthoquinones **141** in good overall yields. The pendant quinone hydroxy group presumably assists the hydrolysis step under these relatively mild conditions.¹³⁴ These compounds were converted into pyranonaphthoquinones, one of which **(142)** was shown to be identical with the antibiotic WS-5995A isolated from *Streptomyces auranticolor.*

SCHEME 35

This convergent synthesis illustrates the use of the o-tolyl amide anion as a lynchpin for the C/D rings of compounds **142** and the amide as a terminal electrophile for heteroannelation.

N-Heteroring annelation to the α -lithiated o-toluamide synthon may be achieved by use of nitrile electrophiles as demonstrated in the instructive synthesis of the potent antitumor antibiotic fredericamycin A (148) (Scheme 37).¹⁴⁰ Thus starting with simple indan **143** or dihydroisocoumarin **146** precursors, intermediates **144** were prepared, which, upon LiTMP-induced condensation with diethoxyacetonitrile, produced 145 in good yield on a multigram scale. Conversion into the silyl anion **147** followed by coupling with an appropriate naphthalene anhydride set the stage for the successful completion of the total synthesis of fredericamycin A (148). The heteroannelation tactic has also been used for the construction of the isoquinolone **151,** initiated by a comprehensive DoM approach on **149** and involving the intermediate **150,** with the same target molecule as a goal.¹⁴¹

3. α -Silylated o-Toluamides

The **a-silylated** o-toluamides **153a,b** (Scheme 38) are formally o-tolylamide anion synthons through the expediency of fluoride ion. As demonstrated by several examples, TBAF-induced carbodesilylative hydroxylation on the α -silyl o-toluamides 153a, available in high yield from precursors 152, gives products **154a-d** in good yields.¹³⁰ Since this process is carried out under essentially neutral conditions, it complements the direct chain extension of the anion derived from **152** with benzaldehyde to give **154** and may be valuable for the preparation of substituted systems that cannot tolerate strongly basic conditions. α -Bromination of derivatives

TABLE 19. Synthesis of 3-Substituted 3,4-Dihydro-l(2£T)-isoquinolones

" Obtained after cyclization (TsOH/xylene/reflux) of initially isolated open-chain intermediate. *^b* Byproduct from tandem reaction, 129 - 131 (Scheme 34).

TABLE 20. Synthesis of 3,4-Disubstituted

153a is also possible (section VIII.C.2). Fluoride-mediated Peterson olefination may be effected on the equally accessible α , α -disilylated o-toluamide 153b with an aromatic aldehyde leading to a stilbene derivative 157. The reduced counterpart of the monosilylated amide **153a** is useful as an o-quinodimethane precursor 155 to the tetral in 156.¹³⁰ α' , α' -Disilylated derivative 153b undergoes further kinetic metalation at aromatic C-6 rather than methine site as evidenced by products

of electrophile quench (Table 21).¹³⁰ Fluoride-induced desilylation to contiguously substituted aromatics with diverse functionality concludes this methodology, which has been applied (Table 29, entries 3 and 4; Scheme 62) and deserves further attention.

B. o-AIIyI

 N , N -Diethyl-o-allylbenzamides may assume either cationic **158** (Scheme 39) or anionic **159** annelation modes. In the former, the amide is internally hydrolyzed by anchimeric assistance from the developing carbocation; in the latter, it reveals its chameleon electrophilic character which is not granted to RLi reagents.

SCHEME 38

SCHEME 39

1. Isocoumarins

o-Allylbenzamides 161 (Scheme 40), readily prepared from the parent 160 by the ortho metalationtransmetalation technique, are converted into substituted isocoumarins 162 under acid-catalyzed conditions.¹⁴² The vigorous conditions of this reaction lead, in part, to demethylation but this result has, at times, advantage in that two natural products, mellein (162b) and kigelin (162e), are directly formed. The synthesis of ochratoxin (Scheme 17) demonstrates the application of this cyclization to a more complex system. Secondary toluamides^{29h,i} and o -tolyl oxazolines^{29g} have been adapted for similar ring construction.

2. 1-Naphthols

In contrast to the nature of the above isocoumarin ring closure, the electrophilic character of the tertiary amide in o-allylbenzamides is manifested in a methyllithium-induced regiospecific construction of 1-naphthol derivatives $(Table 22).¹⁴³$ Although not thoroughly evaluated in scope and mechanistically ambiguous,¹⁴³

TABLE 22. Synthesis of 1-Naphthols¹⁴³

^a Yields in parentheses are for reactions using 2.2 equiv of LDA.

SCHEME 40

this anionic carboannelation reaction provides rapid and regiospecific assemblage of several significant oxygenated naphthols. The operation of a steric factor is evident from comparison of yields of products from diethyl- and dimethylamides (entries 4 and 5), although it appears not to have a detrimental effect for a number of oxygenated cases. The o-crotyl derivative 164a (dotted bond) (Scheme 41), prepared by Ni-catalyzed cross coupling, allows access to 2-methyl-1-naphthol 163 while the (trimethylsilyl) allyl counterpart 164b, obtained by metalation-silylation of the parent system, affords 1-(diethylamino)naphthalene (165), a product of an intramolecular amide Peterson olefination. A useful, potentially general, adjunct to this method is the regiospecific preparation of oxygenated naphthoquinones as illustrated by the conversion of 167 (Scheme 42) into both 166 and 168 (juglone acetate) in unoptimized yields.

SCHEME 43

SCHEME 44

C. o-Formyl

The N ₋N-diethyl-o-formylbenzamide synthon, readily available in a variety of substitution patterns (Table 6), may, in principle, partake in the large body of fundamental carbonyl chemistry. The expedient of anchimerically assisted hydrolysis to 3-hydroxyphthalide derivatives has dominated the utility of o-formylbenzamides in synthesis (section VIII.C.2); however, chain extension by an acetic acid dianion $169 \rightarrow 170$ (Scheme 43)¹⁴⁴ is a simple illustration of further synthetic potential. Compound **170** represents isoochracinic acid, a rare phthalide natural product isolated from the parasitic fungus *Alternaria kikuchiana* which is responsible for black spot disease on Japanese pears. Similarly, chain elongation via Grignard reagents (Schemes 18, 44) has been exploited. The efficient construction of the A/B ring synthon **174** (Scheme 44)145 0f the antitumor antibiotic daunomycinone (175) was initiated by the incorporation of a four-carbon Grignard into the o-formylbenzamide 171. The phthalide **172,** resulting from subsequent acid-catalyzed cyclization, was partially reduced and carefully hydrolyzed to give the hemiacetal 173, which upon intramolecular aldol condensation furnished **174** in 38% overall yield.

7. Phthalldes by Reduction

As a consequence of the inconvenience and poor reproducibility of tertiary benzamide DoM reactions with various sources of formaldehyde, the preparation of C-3-unsubstituted phthalides has been pursued by the

SCHEME 45

SCHEME 46

three-step process $176 \rightarrow 177 \rightarrow 178$ (Scheme 45, Table 26 , entries $1-4$).¹⁴⁶ Analogous sequences have been effected via DoM chemistry of secondary amides^{29h,i} and oxazolines.^{29g,147} This general and invariably high-yield protocol is particularly valuable for the preparation of oxygenated phthalides, useful synthons for natural products, which have been previously available only by tedious and inefficient routes.¹⁴⁸

2. 3-Hydroxyphthalides and Isobenzofurans

The easily achieved, acid-driven cyclization of *o*formyl DMG aromatics **179** (Scheme 46) to 3 hydroxyphthalide 180 has served as the basis for the development of several new important annelation methods. The hydroxyphthalides are usually converted into carbanion-activating derivatives 181 which proceed by metalation **(182)** and condensation (183) with Michael acceptors to give quinones 185. In this sequence, the 3-hydroxyphthalide synthon **180,** easily available in a variety of substitution patterns (Table 26, entries $46-54$), acts as a 1,4-dipole equivalent $186.¹⁴⁹$ The assumed two-step anionic process in the conversion 182 \rightarrow 183 is synthetically equivalent to a $(4 + 2)\pi$ cycloaddition $184 \rightarrow 185$, the 3-(silyloxy)isobenzofuran 184 being generated by an in situ silicon trap of the ambident anion 182.¹⁵⁰ The contribution of benzamide DoM chemistry to these two types of protocols is indicated in Schemes 47-51 and Schemes 52-54, respectively.

A convergent synthesis of the 7-deoxy-7-epimethoxydaunomycinone derivative **192** (Scheme 47)149b commences with the hydroxyphthalide 188, obtained in satisfactory yield from the anisamide 187. Conversion into the corresponding sulfone **189** and condensation with the quinone monoketal **190** led directly to the tetracyclic product **191.** Cosmetic modification gave the daunomycinone derivative **192** in good overall yield. In a synthesis of the antiprotozoal pigment bikaverdin **(196)** (Scheme 48),149a a more highly oxygenated phthalide sulfone **194** was coupled with the chromone

SCHEME 49

SCHEME 50

193 to give the annelated product 195, which was oxidized and demethylated to complete the brief synthesis of 196.

3-Cyanophthalides appear to be even more effective 1,4-dipole equivalents (186) . In a comprehensive study, Biehl and co-workers have demonstrated a rapid construction of anthraquinones 200 (Scheme 49)¹⁵¹ by base-mediated condensation of 3-cyanophthalides 198, readily available from benzamides via the corresponding hydroxy derivatives 197, with benzynes derived from haloaromatic precursors 199. A variety of alkoxy, aldehyde, and condensed anthraquinones are available by this reaction, whose regioselectivity is dictated by methoxy substituents ortho to the incipient benzyne

SCHEME 52

SCHEME 53

SCHEME 54

site. A selection of natural products and natural product precursors available by this protocol from simple 3-cyanophthalides and haloaromatics is shown in Scheme 50: $201 + 202 \rightarrow 203$ (ziganein dimethyl ether),

TABLE 23. Reaction of N,N-Diisopropyl-2-(diazomethyl)benzamides with Dienophiles¹⁵⁶

 a Using Cu(acac) $_2$ catalyst. b N,N-Diethyl-2,3-bis(methoxycarbonyl)naphthalene (17%) byproduct. c Using Rh $_2$ (OAc) $_4$ catalyst. d The aromatized (-H₂) product was obtained. $e30$ mol % of Cu(acac)₂ was used. The regioisomer from addition at the α,β -double bond was obtained (35%) as a separable cis: trans = 21:13 mixture.

 $204 + 205 \rightarrow 206$ (chrysophanol dimethyl ether), 204 $+ 207 \rightarrow 208$ (islandicin trimethyl ether) $+ 209$ (digitopurpone trimethyl ether). In addition, the coupling of 210 and 211 leads to 212, a valuable intermediate for 4-demethoxydaunomycinone.

The total synthesis of granaticin (217) (Scheme 51), 152 an antibiotic with powerful and diverse biological activity, incorporates a complex cyanophthalide 214, available from the aryl bromide 213 by a six-step sequence which was initiated by incorporation of the tertiary amide DMG by a metal-halogen exchange $carbamoylation (CICONEt₂) process. Disciplined con$ ditions for the condensation of 214 with the furan enone 215 gave 216, which was converted into the natural product 217 by a series of equally carefully executed steps.

The utility of Diels-Alder cycloaddition to in situ generated 3-(silyloxy)isobenzofurans (184 \rightarrow 185, Scheme 46) is illustrated by a procedure for rapid aromatic ring annelation (Scheme 52).¹⁵³ Thus phthalides 218, available by benzamide DoM methodology, provided mixtures of cycloadducts 219a-d, which upon acid treatment were smoothly aromatized to the naphthols 220a-d in high yields. In a non-DoM-mediated application of this method, phthalide 221, prepared via metal-halogen exchange, was converted into the aryl naphthalide lignan diphyllin (222). The Diels-Alder approach has also been used for the construction of the spiroindandione 226 (Scheme 53), 154 a model for fredericamycin A (148, Scheme 37). The cyanophthalide 223, derived by DoM chemistry from the appropriate benzamide, was deprotonated and silylated to give 224, whose solution NMR spectrum at room temperature could be recorded. Treatment with the enedione 225 at low temperatures gave the fredericamycin A model 226 in good yield. In an elegant and instructive study, Keay and Rodrigo used an iso-

benzofuran intermediate derived by benzamide DoM chemistry for the total synthesis of the aptly named antibiotic resistomycin (231) (Scheme 54).¹⁵⁵ Cooperative imine-amide DMGs in 227 promoted regiospecific lithiation and condensation with 228 to afford 229. Special conditions of iodoacetic acid-pyridine led to the cycloadduct 230, which, in several steps, was transformed into resistomycin (231).

A tertiary amide DMG based generation of 1 aminoisobenzofurans 238, $R = i-Pr$ (Scheme 55),¹⁵⁶ allows the construction of a variety of dihydronaphthalene derivatives (Table 23). The undetectable species 238 were generated by DoM chemistry from the pivotal o-formylbenzamide 232 via the easily accessible diazomethyl (235), imidate salt (236), and bromo(trimethylsilyl) methyl (237) intermediates. These were treated with reactive dienophiles under copper or rhodium catalytic (method A), LiTMP (method B), and CsF (method C) conditions, respectively, to give prod-

TABLE 24. Synthesis of 2-Isoquinolones from *a'-* **and** α' , α' -Silylated Benzamides

SCHEME 57

ucts 239. Ring annelation using diethylamides 235, R = Et, gives products in low yields. Although substituted benzamide precursors **232** have been only briefly investigated, the cycloaddition provides good scope for the preparation of non-aromatic ring functionalized systems 239, including some condensed and heterocyclic analogues (241 \rightarrow 240 and 242; 243 \rightarrow 244; Scheme 56).*^m*

3. Isoquinolones

The development of α' - and α', α' -silylated tertiary carboxamide DMGs has provided a rational basis for a fluoride-induced intramolecular carbodesilylative route to isoquinolines 247 (Scheme 57, Table 24).^{104,157} Clean metalation-formylation of α -silylated benzamide 245a cannot be achieved without competing self-condensation of the ortho-lithiated species unless a steric effect $(R^2 = i\text{-}Pr)$ or ring deactivation $(R^1 = OMe)$ (Table 6, entries 126, 128, and 129) is incorporated in the precursor. On the other hand, the corresponding α' , α' -disilylated 245b (and a variety of other orthofunctionalized products) may be obtained in high yields for R^2 = Me (Table 6, entries 135-142). Treatment of 245a with CsF leads to the hydroxydihydroisoquinolones 246, which by acid-catalyzed dehydration furnish product 247.¹⁵⁷ The same conditions applied on the disilylated substrates **245b** result in intramolecular Peterson olefination to afford mixtures of 246

SCHEME 58

SCHEME 59

a R' = R² = H. b: R' = H1 R² = OWe: **C: R' * R² •** OMe

and 247, the former being readily converted into the latter by acid treatment.¹⁰⁴ Preliminary results on both substrates promise generalization (Table 24). Furthermore, the reactivity of **245a,b** as amide dipole-stabilized carbanion equivalents in lateral condensation and 1,3-dipolar cycloaddition protocols has been demonstrated.^{104,157} This coupled with the ready transformation of **245b** into other functionality (Scheme 12) provides a new focus for DoM-mediated chemistry.

As an early indication of the additional utility of o-formylbenzamides, the simple imine derivative 248 (Scheme 58) has been converted into 3-phenyl-4 hydroxyisoquinoline **(249).**¹⁵⁸

D. Ortho Hydroxyalkylation

7. Naphthoquinones

The previously encountered (Scheme 41) chameleon character of the tertiary amide DMG is further evidenced in the general synthesis of naphthoquinones (Scheme 59).¹⁵⁹ A variety of benzamides **250** were sequentially ortho metalated under standard conditions, treated with 3-(phenylthio)acrolein, and α -metalated to give transient dianions **251,** which, upon warming to room temperature, led to products **252.** Good yields of alkoxy-substituted (phenylthio)naphthoquinones (Table 25) may be obtained by this regioselective tandem metalation process, although use of o-methoxy (entries $10-12$), naphthalen-1-amide (entry 13), and m-fluoro (entry 3) derivatives gives lower yields presumably due to steric hindrance effects in the former two cases and competitive benzyne formation in the latter sample.

Potential extension of this methodology to heterocyclic quinones is indicated by entries 14 and 15.

Removal of the phenylthio α -metalation director may be achieved by sequential treatment of **252** with MCPBA and $\text{Bu}_3\text{SnH}^{1.159}$ However, more significant is its use in controlling the regiochemistry of subsequent Diels-Alder reaction.¹⁶⁰ Thus a variety of naphthoquinone sulfoxides or sulfones **253a,b,** readily obtained from **252,** have been shown to undergo cycloaddition with vinylketene acetals to give, after base-catalyzed aromatization, anthraquinones **254** and 255. In this comprehensive study, Iwao demonstrated that sulfoxides and sulfones **253a,b** show greater regioselectivity and rate of reaction compared to the corresponding sulfides. For example, the naturally occurring anthraquinones pachybasin **(254a),** phomarin 6-methyl ether **(254b),** and emodin 6,8-dimethyl ether **(254c)** were obtained in high yield together with small amounts of corresponding methyl ethers **255a, 255b,** and **255c,** respectively. Similarly, the cycloaddition of sulfones **256a-c** with a cyclic vinylketene acetal produced anthracyclinone analogues **257a-c** and **258a-c** in somewhat lower yields but good selectivities favoring phenols **257.**

2. Phthalides and Derived Anthraquinones

Hydroxyalkylation of ortho-lithiated benzamides followed by anchimerically assisted¹⁶¹ acid-catalyzed cyclization constitutes a convenient entry into 3-substituted phthalides (Tables 26 and 27). A diverse and extensive group of 3-arylphthalides (Table 26, entries 17-34; Table 27), heterophthalides (Table 26, entries 63-74), and, by transmetalation, 3-alkylphthalides

(Table 26, entries 8-12) are rapidly available by this tactic. Comparable routes are known by secondary amide^{29h,i} and oxazoline^{29g} DoM technology. A solitary attempt to induce optical activity by the reaction of (S) -O-methyl-N-methylbenzoylleucinol with 1-naphthaldehyde was unsuccessful.⁷³ In contrast, optically active oxazolines serve as excellent chiral auxilliaries in numerous preparative applications.^{29g} As summarized below, phthalides derived from tertiary benzamides are useful intermediates for a variety of more highly condensed systems such as anthraquinones (Schemes 61, 62, and 64; Tables 28 and 30), heterocyclic quinones (Schemes 65 and 66), anthracyclinones (Scheme 63), several classes of alkaloids (Schemes 68-70), and polycyclic aromatic hydrocarbons (PAH) (Scheme 72, Table 29).

Classical approaches to unsymmetrically oxygenated anthraquinones **263** and **264** (Scheme 60) initiated from phthalic acids and phenols by double Friedel-Crafts reactions are, as illustrated for a specific bond construct, plagued by lack of regiocontrol (initial Friedel-Crafts step $259 + 260 \rightarrow 261 + 262$), inefficiency (electronwithdrawing benzoyl substituent in **261** and **262** in the second Friedel-Crafts step), and ambiguity (potential Hayashi rearrangement of the equilibrating acylium ions corresponding to **261** and 262). According to DoM retrosynthetic analysis (illustrated only for **263),** four modes of initial coupling of two appropriately substituted and usually readily accessible lithiated benzamide (267, 269) and benzaldehyde (268, **270)** partners are eminently feasible; the productive dissections a and b focus on the regiospecific positioning of the bond to ring A $(\rightarrow 265, 266)$, thus avoiding the ambiguity in the first Friedel-Crafts step of the classical approach. Although

TABLE 26. Synthesis of Phthalides and Phthalic Anhydrides from Ortho-Lithiated Tertiary Aromatic Amides^a

TABLE 26 (Continued)

^a Unless otherwise noted, N,N-diethylbenzamide starting materials were employed. The phthalides resulted from spontaneous cyclization of intermediate alcohol amides upon workup or chromatography or upon deliberate treatment with acid. * Table 6, footnote 6. 'Fluoride desilylation of the unisolated CH(TMS)₂ intermediate prior to acid-catalyzed cyclization. ^d5-(4,5-Dihydro-4,4-dimethyl-2-oxazolyl). Obtained from a competitive metalation reaction of a 1:1 mixture of N-methylbenzamide and N,N-diethylbenzamide. The yield was improved to 55% of a 3:1 mixture of products of entries 42:41. entries 42:41. ^Morrow, G. W.; Swenton, J. S.; Filippi, J. A.; Wolgemuth, R. L. J. Org. Chem. 1987, 52, 713. ⁸ Yield obtained with the α, α -dideuterated 2,3-dihydrophenalen-1-one. ^{*} Yield of the benzoic acid obtained by Zn-Cu/KOH reduction of the phthalide. $N-[2-(\text{Diethylamin})\text{ethyl}-N\text{-ethylbenzamide starting material. }^jN,N-\text{Dlisopropylamide}$ starting material. * Table 8, footnote *b.*

the second bond formation to ring C is carried out by Friedel-Crafts technology and is therefore dictated by normal electronic substitution rules, regioselectivity may be decided by appropriate choice of benzaldehyde reactant. Furthermore, the Hayashi rearrangement is precluded by use of intermediate benzyl benzoic acids obtained from amide alcohol intermediates 265 and 266.

This strategy, which is also viable via secondary am- $\frac{1}{10}$ and oxazoline^{29g} DMG protocols, has been applied to the synthesis of anthraquinones, including several natural products (Table 28).^{159,160,162–165} Early illustrations are delinated in Scheme 61.¹⁶² Metalation of **271** followed by condensation with an appropriate benzaldehyde and TsOH cyclization afforded phthalide 272, which upon hydrogenolysis and mild Friedel-Crafts cyclization led to the anthracenol 273. Chromium trioxide oxidation to the corresponding anthraquinone followed by selective deprotection afforded either catenarin **(274a)** or erythroglaucin **(274b).** Significantly, acidic methyl hydrogens in aldehyde and, in certain cases, amide (e.g., soranjidiol, Table 28) components are tolerated in the metalation-condensation stages of this route.

The synthesis of desoxyerythrolaccin trimethyl ether (278) (Scheme 62)¹⁶⁴ involves a similar strategy but illustrates the silicon protection of reactive o-methyl hydrogens in toluamide **275** for the construction of this peri-methyl anthraquinone. Thus α, α -disilylation of 275, prepared by DoM, furnished 276, which upon metalation, condensation with 3,5-dimethoxybenzaldehyde, and, without isolation of intermediates, CsF-mediated desilylation and cyclization gave the phthalide **277.** A simple three-step conversion afforded the trimethyl ether of the natural product **278** in 51% overall yield. The use of the silicon protection tactic for simpler systems has also been demonstrated (Table 26, entries 23, 28, 31, and 32).

Similarly, ketone 285 (Scheme 63), a key intermediate in several syntheses of daunomycinone, has been prepared by a route that is initiated from 279 and 282 by amide DoM tactics and that converges into the phthalide 281.¹⁶⁶ Thus treatment of lithiated 279 and aldehyde 282, which are interrelated by DoM reactions, with aldehydes **280a,b** and lithiated 283, respectively, led, after TsOH cyclization, to the phthalides **281a,b** in good overall yields. Standard manipulation provided

TABLE 27. Synthesis of Phthalides from Ortho-Lithiated Naphthamides

"Yield of corresponding benzoic acid obtained after Zn-Cu/ KOH reduction of the phthalide. $\frac{b}{c}$ Yield obtained with the α, α **dideuterated indan-1-one. 'Overall yield from amide after treatment of o-CHO intermediate with Me3SiCN, KCN-18-C-6; HOAc; CH2=C(OMe)Me, camphorsulfonic acid.**

the anthraquinone **284,** which upon epoxidation and acid-catalyzed rearrangement afforded the anthracyclinone 285. Syntheses of this class of antitumor antibiotics via analogous convergent approaches involving the secondary amide DMG have been reported.¹⁶⁷

A maximum convergence approach is also portrayed by the synthesis of the "angular" anthracyclinone antibiotics X-14881C **(290a)** and ochromycinone **(290b)** isolated from several strains of *Streptomyces* (Scheme 64).¹⁶⁸ Thus treatment of the metalation-interrelated tetralin derivatives **286** and **287** with appropriate anisamides followed by acid-induced cyclization afforded the phthalide **288.** The first route involving the use of the $CH₂OLi$ DMG proved to be the more efficient one.Standard conversion into an anthraquinone was fol**SCHEME 60**

٥ĸ

CONR OH

268

267

òı 266

270

lowed by a regioselective selenohydroxylation to give **289.** Oxidation and deselenylation yielded X-14881C $(290a)$, which was demethylated $(AICI₃)$ to ochromycinone **(290b),** thus concluding these short syntheses (21% overall yields).

269

Phthalide-mediated routes to anthraquinones may be extended to heterocyclic analogues as shown by the synthesis of the cytotoxic furanonaphthoquinone 295 (Scheme 65).¹⁶⁹ Thus treatment of lithiated benzamide **291** with furfural **(292)** and cyclization afforded the furanophthalide **293** in good yield. Zinc chloride promoted acylation at the highly reactive furan 2-position followed by protection gave the ketal **294,** which was converted into the unnamed natural product **295** by standard steps.

The synthesis of the rare azaanthraquinone bostrycoidin **(301)** (Scheme 66) involves analogous steps but also illustrates an interesting pyridine methylation re- $\arctan 170$ Although 4-silylation of the methylnicotinamide **296a** was achieved under sec-BuLi/TMEDA/ $THF/-78$ °C conditions,¹⁷¹ metalation using LiTMP followed by dimethylbenzamide¹⁷⁰ or benzaldehyde¹⁷¹ quench led to products of lateral substitution, e.g., **297.** This result necessitated the introduction of the methyl group at a later stage in the synthesis. Optimized metalation of **296b** using LiTMP followed by condensation with an appropriate N , N -dimethylbenzamide, a reaction of some generality (Table 8, entries 6 and 14-18), afforded the keto amide 298. Regioselective 2-methyl group introduction was achieved via the *N*oxide of **298** involving an acetoacetic ester synthon which suffers hydrolysis, decarboxylation, and deacylation in the last acid-catalyzed step. The resulting product **299** was reduced and cyclized to furnish the phthalide 300, which was conventionally manipulated

TABLE 28. Synthesis of Anthraquinones from Ortho-Lithiated Tertiary Benzamides via Phthalide Intermediates

SCHEME 61

SCHEME 63

 MaO

 \circ

285

اا
ہ MeÓ

284

ÓМe

SCHEME 62

into the antibiotic bostrycoidin (301).

In a further application of pyridine amide DoM, the conformationally rigid analogue of the tricyclic antidepressant imipramine (306) (Scheme 67) was prepared by condensation of metalated nicotinamide 302 with the dibenzazepine carbaldehyde 303, which was also obtained by DoM chemistry.¹⁷² Surprising difficulty was encountered in the hydrolysis of the initial product 304 or the corresponding diisopropylamide, which was similarly secured. However, hydrogenolysis of 304 in acetic acid followed by POCl₃ treatment gave the lactam 305,

 $rac{1}{2}$ MAOH/ail

SCHEME 65

a sequence that likely proceeds via a phthalide intermediate. Unexceptional steps led to the target molecule 306 as a separable cis-trans mixture.

Concurrent with a DoM approach to the phthalide isoquinoline alkaloids cordrastine I and II (Scheme 30), a second, more direct, synthesis was also formally achieved by simple condensation of the isoquinolinecarbaldehyde 307 (Scheme 68) with the ortho-lithiated species derived from 308 to give, after acid-catalyzed cyclization, phthalide 309 (also Table 26, entry 38).¹⁷³

Following careful experimentation in pyridinecarboxamide metalation, Iwao devised an innovative synthesis of the antileukemic pyridinecarboximide
sesbanine (315) (Scheme 69).¹⁷⁴ The spirophthalide 311 was secured by metalation of the diisopropylnicotinamide 310 in preference to the corresponding diethylamide (e.g., Table 8, entries $8 \text{ vs } 9-11$), followed by condensation with 3-cyclopentenone and acid-mediated cyclization. Chemical hydrogenolysis usefully completed the circumscribed amide "hydrolysis" to afford

SCHEME 69

the nicotinic acid 312, which upon benzylic metalation, carbonation, and esterification afforded the diester 313. Nonstereoselective bromohydrin formation, 314, was later recouped when both of the corresponding debrominated products were converted into sesbanine (315) $(12.5\%$ overall yield).

An abbreviated synthesis of the phenanthroindolizidine and -quinolizidine alkaloids antofine (319a) and cryptopleurine (319b) was achieved by using the common phenanthrenecarboxamide 316 as starting material (Scheme 70).¹⁷⁵ Metalation of 316 followed by condensation with pyridine-2-carbaldehyde and Nbenzylpyrrole-2-carbaldehyde and TsOH cyclization afforded the phthalides 317a and 317b, respectively, in good yields. These were subjected to sequential C-O bond hydrogenolysis and heterocyclic ring hydrogenation with slight additional procedural variation to give lactams 318a and 318b, which were reduced to antofine (319a) and cryptopleurine (319b), respectively. The N-methoxymethylpyrrole phthalide corresponding to 317b, obtained in 72% yield, proceeded smoothly through the Zn/Cu hydrogenolysis stage but suffered hydrogenolytic OMe cleavage during pyrrole ring catalytic reduction, thus thwarting this approach. The five-step heteroannelation process was generalized to prepare the condensed lactams 320, 321, 323, and 324 in modest to good yields from the ortho-lithiated amide

SCHEME 72

322 and respective pyrrole- or pyridine-2-carbaldehyde precursors (Scheme 71).¹⁷⁵

3. Polycyclic Aromatic Hydrocarbons via Phthalides

The facile and generally high-yield condensation of ortho-lithiated benzamide with aromatic aldehydes provides a general principle for the regiospecific construction of polycyclic aromatic hydrocarbons (PAH). In view of the significant environmental presence of this class of carcinogenic substances, the development of regiospecific syntheses that avoid isomeric mixtures and extended handling of intermediates is of considerable merit. Application of the amide DMG has led to the rapid and efficient preparation of a variety of PAH (Table 29) of value in analytical, metabolism, and carcinogenicity studies. Thus condensation of simple lithiated N , N -diethylbenzamides, N , N -diethylnaphthamides, and, in one case, the "built-in" TMEDA benzamide (entry 26) with aryl aldehydes or ketones, normally readily obtained by classical electrophilic (e.g., marry readily obtained by classical electrophile (e.g.,
Villsmeier) substitution, leads to the following PAH: $\frac{1}{2}$ henz[a]anthraquinones (entries $1-4$) $164,171$ whose reduction to the corresponding PAH is well documented, duction to the corresponding PAH is well documented,
benz[a]anthrancenes (ontries 5 and 6),^{176,177} dibenz. penz_lajanthrancenes (entries 5 and 6).
La ilenthrencenes (entries 7–10),^{176,178} o), unenz-
^{3,178} dibenz[a,h] $[a, j]$ anthrancenes (entries $(-10),$ 10,10 , a 1)enz $[a, h]$ -
enthracenes (entries 11 and 12).¹⁷⁶ benze[g]nymenes anthracenes (entries 11 and 12),¹⁷⁶ benzola pyrenes
(entries 12–15),^{176,179}, ehelenthrenes (entries) (entries 13–15),^{176,179} cholanthrenes (entries)
16–21),^{176,180,181} benzo[a]fluoranthene (entry 22),¹⁸² ne $16-21$, 16 , 16 , 16 , 16 , 16 and a if $\ln 2$ at hence $(a + 1)$, $a + 1$, $phtho[2,1-a]$ fluoranthene (entry 23),¹⁸² phtho $[2,1-a]$ fluoranthene (entry 23),¹⁸² 1,12-
methylenebenz[a]anthracene (entry 24),¹⁸³ 1,14methylenebenz[a]anthracene (entry 24),¹⁶³ 1,14-
methylonodibenz[a,b]anthrancene (entry 25),183 and methylenedibenz[a,h]anthrancene (entry 25
dibenz[a b]esenbenanthrylene (entry 26).184

The preparation of 3-methylcholanthrene (329) (Scheme 72)¹⁷⁶ is representative but also illustrates the advantage of deuteration of α -carbonyl sites to diminish proton exchange in strong-base-mediated processes.

SCHEME 73

Thus condensation of the indanone 325a with the lithiated species of naphthamide 326 followed by acidcatalyzed cyclization afforded the spirophthalide 327 in low yield. In contrast, under the same conditions, the α , α -dideuterated indanone 325b gave the product 327 in substantially improved yield. This marked isotope effect, which evidently attenuates proton exchange, has also been used to enhance the yields of analogous condensation reactions (Table 29, entries 14 and 17-21). Hydrogenolysis of phthalide 327 led to 328, which was converted into 3-methylcholanthrene (329) in excellent overall yield.

The regiospecific and efficient preparation of perimethyl-substituted benz[a]anthraquinones (Table 29, entries 3 and 4), using silicon protection of methyl groups of o-toluamides (Table 21), invites broader application of this tactic.

4. Anthraquinones Not via Phthalides

Tandem benzamide DoM processes may be used to effect one-pot regioselective synthesis of anthraquinones (Scheme 73).⁸⁷ In this sequence of potential broader application for other DMGs, the initial ortho-lithiated benzamide (330) -benzaldehyde $(331, X = H)$ condensation to give intermediate 332, $X = H$, is followed by a second metalation that takes advantage of the presence of the $CH₂OLi$ DMG to give 333. Although metalation ortho to the more powerful amine DMG undoubtedly occurs, equilibration of anions is assumed, with cyclization to an anthracene diphenolate 334 constituting a driving force for the overall reaction. Aerial oxidation to the anthraquinone 335 is a welldocumented process. The success of this reaction using acetophenone or benzophenone as the carbonyl reacacetophenone or benzophenone as the carbonyl reac-
tants⁸⁷ does not preclude an alternate mechanism involving benzylic deprotonation of 332 , $X = H$, and cyclization. On the other hand, 333 is the likely species in the more efficient tandem DoM metal-halogen exin the more efficient tandem DOM metal-halog
change involving intermediate $222, \text{V} = \text{Pa}^2$

In spite of mechanistic uncertainty, this method has considerable synthetic utility for the rapid construction of complex anthraquinones, including diverse heterocyclic analogues (Table 30). Illustrative of scope and generality is the synthesis of a variety of substituted and condensed anthraquinones (entries 1-20), thus constituting an alternate abbreviated route to PAH derivatives (section VIII.D.3). Significant improvement in yields is observed when the second metalation is carried out with excess sec-BuLi (entry 2) or by the metalhalogen exchange¹⁸⁶ (entries 5-15 and 18) processes. The latter is of course dependent upon the convenient availability of the o-bromoaldehyde precursor. Using the non metal-halogen exchange tactic, methoxy-substituted benzaldehydes give modest yields of products

TABLE 29. Synthesis of PAH Quinones and PAH via Phthalides^a

(entries 2 and 3), while methyl groups are poorly tolerated (entry 4). N , N -Diethyl-1-naphthamide is a useful reactant (entries 16-18) but the corresponding 2-naphthamide is a poor partner (entry 19), most likely due to nucleophilic addition of the alkyllithium.⁸⁶ The preferred formation of a linear anthraquinone using a naphth-2-carbaldehyde by a DoM process is clearly improved by incorporating a metal-halogen exchange step (entry 14).

Coupling of aromatic or heteroaromatic amides with heterocyclic aldehydes provides access to a variety of heterocyclic quinones, some of which are new and others of which have been previously prepared only by tedious and inefficient routes (entries 21-34). Although furancarbaldehyde (entry 22), thiophenecarbaldehyde (entries 21 and 23-26), and indolecarbaldehyde (entries 32-37) give useful yields of products, pyridinecarbaldehyde (entries $27-30$)¹⁸⁷ is a poor coupling partner, undoubtedly due to competing nucleophilic attack by alkyllithium in the second metalation step. A similar explanation may be responsible for the low yields of azaellipticine quinones from reactions with a pyrrolopyridinecarbaldehyde (entries 38-44).¹⁸⁸ A one-pot assemblage of the ellipticine alkaloid skeleton (entries 35-37) allows the achievement of a very short synthesis of the alkaloid itself, 336 \rightarrow 337 (Scheme 74).⁸⁷ Standard sec-BuLi/TMEDA metalation of *N,N-di*ethylbenzamide followed by warming to room temperature also affords anthraquinone (74%).⁸⁷ This potentially general reaction, which presumably proceeds via an ortho-lithiated benzophenone intermediate, has been effected under LDA conditions to prepare a symmetrical dipyridoquinone (entry 31).¹⁸⁹

5. Intramolecular Epoxycyclialkylation

Although intermolecular condensation of ortho-lithiated N , N -diethylbenzamides with epoxides fails, 86 the corresponding intramolecular process may be achieved

SCHEME 74 SCHEME 75

stereoselectively and has some generality (Table 31).¹⁹¹ This reaction, for which the Parham metal-halogen exchange analogue exists,²⁵ leads via 5-exo-tet modes to dihydrobenzofurans in acceptable yields (entries 1-4 and 6 and 7). Steric impedance to cyclization is observed in β -substituted epoxide (entry 5), although the formation of the requisite anion was confirmed by TMSCl quench. Bis (epoxycyclial kylation) (entry 8) cannot be achieved, and corresponding 6-exo-tet ring closure (entry 9) proceeds in lower yield.

E. Ortho Carboxylation and Acylation

Although DoM-mediated ortho carboxylation of benzamides and O-aryl carbamates proceeds well (Table 6, e.g., entries 58, 78, and 85; Table 12, entries 8 and 31), acylation with acid chlorides or esters is, with one exception (diethyl oxalate, Table 6, entries 86 and 97), not a useful synthetic process.¹⁹⁰ The demonstration of smooth acylation of metalated pyridinecarboxamides using N , N -dimethylbenzamides (Table 8, entries 14-18) suggests that the use of these electrophiles for the corresponding benzamides should be explored. The viability of introduction of a new DMG by carbamoylation using CICONEt₂ has been amply documented (Schemes 25 and 26).

XI. Synthetic Consequences of o-Heteroatom Introduction

A. o-Amino

1. Quinolones

The availability of anthranilamides 338 (Scheme 75) by the $TsN_3/NaBH_4$ method (Table 6, entries 27, 36, 45, 52, 60, 66, 73, 106, 146, and 147) and the demonstration of the electrophilic character of the CONEt. group (Scheme 41) led to the development of a new

TABLE 30. Synthesis of Anthraquinones by the Tandem DoM Reaction

Entry	Amide	Aldehyde	Product	Yield, % Cond ^a A в	Ref $\mathbf C$	
	CONEt2	(Br) н л О	o 8 b с h ₅ \overline{o}			
1 $\frac{2}{3}$ 4 5 6 $\overline{\mathbf{7}}$ 8 9 10	no subst no subst no subst no subst 3,4-(OMe) ₂ 5-OMe, 2-OMOM 2-TMS, 3,4-(OMe)2 3-OMe 3,4-(OMe) ₂ 4-CONEt2	no subst 2-OMe 4-OMe 4-Me no subst no subst no subst 3,4-OCH ₂ O 3,4-OCH ₂ O 3,4-OCH ₂ O	no subst 1-OMe 2-OMe $2-Me$ $1,2-(OMe)_2$ 1-OMe, 4-OMOM 1-TMS, 2,3-(OMe)2 1-OMe, 6,7-OCH ₂ O- 1,2-(OMe)2, 6,7-OCH2O- 2-CONEt2, 6,7-OCH2O-	43 10 55 28 15 15	87 87,123 87 65 ^b 87, 123,185 70 185 66 185 185 58 70 185 68 185 60 185	
		OHC	2 O 11 10 9 л О 8 6			
11 12 13	no subst 4-OMe 2-CONEt2	1-CHO 1-CHO, 2-Br 1-CHO, 2-Br	no subst 9-OMe 11-CONEt2	49 53	75 87,123,185 73 185 185 50	
			O 2 3 4 \circ			
14 15	no subst 4-OMe	2-CHO 2-CHO	no subst 3-OMe	39 ^c	61 87,185 70 185	
16	CONEt2	1-CHO	O ö	10	87	
17	CONEt2	2-CHO	o $\frac{1}{\alpha}$	10	87	
18	CONEt2	1-Br, 2-CHO	Ω О		62 185	
19	CONE _{t2}	$2-CHO$	O Ω	2	87	
			Ō	2		
$2\,0$	CONEt ₂	он	o	41	87	
21	CONEt ₂	OHO	o	35	87	

Directed Ortho Metalation

TABLE 30 (Continued)

Entry	Amide	Aldehyde	Product	Yield, % Cond ^a A в	Ref C	
		сно. N N Me	CI 10 N ² 3 ,, 4 Me			
38	no subst		no subst	$4(9)$ ^e	188	
39	4-OMe		9-OMe	$4(6)$ ^e	188	
40	3-OMe		10-OMe	12 (36) ^e	188	
41	$2,5-(OMe)2$		7,10-(OMe) ₂	20 ^e	188	
42	$3,4,5-(OMe)3$		$8,9,10-(OMe)3$	40°	188	
43	$3,5-(OMe)$ ₂		$8,10-(OMe)$ ₂	57 ^e	188	
44	2-OMe		7-OMe	g٥	188	

"Conditions A: (1) equiv sec-BuLi/TMEDA/THF/-78 °C/1 h; (2) ArCHO; (3) 1 equiv sec-BuLi/TMEDA/1 h; (4) \rightarrow room temperature (5) H⁺. Conditions B: Same as conditions A except for step 3, in which 4 equiv sec-BuLi/TMEDA was used, and step 5, CrO₃/HOAc. Conditions C: Same as conditions A; (2) ArCHO; (3) t-BuLi; (4) \rightarrow room temperature; (5) H₂O/O₂. ^b From reaction of 4-MeC₆H₄CONEt₂ with 2-BrC₆H₄CHO. ^c Benz[a]anthracene-7,12-dione (5%) was also isolated. ^dConditions: 3 equiv of LDA in THF-HMPA/-78 °C. The corresponding isonicotinamide also gave the same product in unspecified yield. ^eTwo equivalents of the diethylbenzamide was used.

general method for the regiospecific construction of 4-quinolones 340.¹⁹² Thus compounds **338** were readily converted into imines **339,** which, without purification, were treated with LDA to afford 4-quinolones 340. As gleaned from Table 32, 2-substituted (entries 1-5), annelated (entry 7), and condensed (entry 10) products have been obtained in good to excellent yield. Unsymmetrical imines undergo cyclization from the less sterically hindered incipient azaallyl anion (entries 2, 3, and 6). The formation of methoxy-substituted quinolones (entries 8 and 9) by this mild modification of the von Niementowski reaction is of particular synthetic significance.

2. Acridones

The demonstration of oxidative coupling of ortholithiated benzamides with anilido cuprates to form N-arylanthranilamides (Table 6, entries 1, 3-5, 8, 10, 17, 18, and 35) served as the basis for the general regiospecific synthesis of acridones (Table 33).¹⁹³ A variety of methoxy-substituted N-H and N-Me acridones have been prepared from N,N-dimethyl- or N,N-diethylamide precursors, mainly under vigorous heptafluorobutyric acid conditions. Naturally occurring acridones have been synthesized (entries 1, 7, and 8) in yields that compare favorably with those obtained by classical Ullmann- or benzyne-based¹⁹⁴ protocols.

B. o-Thiol and o-Selenol

The conveniently prepared thiosalicylamides (Table 6, entries 48, 53, 63, and 68) undergo lithium isopropylcyclohexylamide (LICA)-mediated condensation with benzynes, derived in situ from halobenzenes, to form thioxanthan-9-ones (Table 34).¹⁹⁵ All four isomeric monomethoxy thioxanthenones (entries 1, 3, 5, and 7) as well as some dimethoxy (entries 2, 4, 6, 8) and trimethoxy (entry 9) derivatives are obtained by taking advantage of the regioselective benzamide DoM reaction and the polarization effect of the OMe group in directing the cycloaddition. The 2-, 3-, and 4-methoxy regioisomers cannot be prepared from the corresponding condensation of methyl thiosalicylate owing to the unfavorable OMe polarization effect in the requisite **TABLE 31. Tertiary Amide DoM-Induced Epoxycyclialkylation¹⁹¹**

SCHEME 76

a: $R^3 = R^2 = H(40\%)$; b: $R^3 = H$, $R^2 = OMe$ (22%), c: R² = OMe, $R^2 = H(42\%)$

benzyne intermediates. Entry 10 illustrates an interesting albeit low-yield case of this type of heteroannelation using a thiosalicylate.

By an analogous process, several relatively unknown selenoxanthen-9-ones **342** (Scheme 76) have been pre-

TABLE 32. Synthesis of 4-Quinolone Derivatives from Anthranilamides¹⁹²

^a Conditions A: 0 °C \rightarrow room temperature, 8-12 h. Conditions B: reflux, 8-12 h. Conditions C: reflux, 3 h. ^b Yield using the N,N-dimethylanthranilamide.

TABLE 33. Synthesis of Acridones from N-Phenylanthranilamides

^cConditions A: POCl₃/PhMe/reflux/10 h. Conditions B: heptaflurobutyric acid/reflux/24-27 h. Conditions C: CF₃CO₂H/reflux/60 h. Conditions D: HCO₂H/reflux/60 h.

TABLE 34. Synthesis of Thioxanthan-9-ones from Thiosalicylamides¹⁹⁵

^a Conditions: (1) 1 equiv of thiosalicylamide/3 equiv of lithium isopropylcyclohexylamide (LICA)/THF/-78 °C; (2) \rightarrow -20 °C/2 equiv of halobenzene/THF; (3) \rightarrow room temperature.

TABLE 35. Silicon Protection Route to Polysubstituted Benzamides¹³⁰

pared from the corresponding diselenides 341 (Table 6, entries 24, 54, and 64).¹⁹⁵

o-Silvi C.

1. Protection of Aromatic Preferred Metalation Sites

The cooperative effects of 1,3-interrelated DMGs (Table 3) allow conceptualization of silicon protection (343, Scheme 77) of the in between site in order to achieve further DoM reactions (344, DMG1 more powerful than DMG_2 and, eventually, deprotection as a general three-step procedure to diverse polysubstituted **SCHEME 77**

aromatics 345. Such a sequence has been achieved for the ortho-silvlated m-methoxy- (Table 35, entries $1-7$). m -chloro- (entries 8 and 9), and m -fluorobenzamides (entries 10 and 11) and briefly explored in the synthesis of chloro and fluorophthalides, $346 \rightarrow 347$ (Scheme 78).¹³⁰ The former illustrates mainly the preparation of 1,3,5-functionalized systems at different oxidation states, while the latter sequence indicates potential for the preparation of specifically substituted PAH (section $VIII.D.3$).

2. Fluoride- and Electrophile-Induced Ipso Desilylation

ortho-Silylated benzamides may also be used in fluoride-mediated condensation with aromatic aldehydes to give, after acid treatment, modest yields of phthalides, $348 \rightarrow 349$ (Scheme 79).¹³⁰ Although as yet insufficiently investigated in terms of substituent effects, this mild carbodesily lation process accommodates groups that, owing to preferential metalation or potential benzyne formation (e.g., 348c) would not be

 $- R^2 = H (48\%)$; b: E = H, $R^1 = R^2 = OMe (49\%)$; $a: E = R¹$ c: E = Me, R¹ = Cl, R² = H (45%)

SCHEME 80

a: E - Me, R^1 - R^2 - H (89%); b: E - Me, R^1 - Cl, R^2 - H (81%); c: E - H, R¹ - R² - OMe (67%); d: E - Me, R¹ - R² - OMe (95%)

tolerated by the strongly basic DoM conditions, thus precluding the synthesis of analogous products by the latter method (compare Schemes 62 and 82).

Ipso bromodesilylation of ortho-silylated benzamides using bromine leads to o -bromobenzamides, $350 \rightarrow 351$ (Scheme 80).¹³⁰ Although well-known and mechanistically documented, this electrophilic reaction of arylsilanes has enjoyed limited synthetic application in spite of the promise of achieving substitution patterns that constitute far from trivial problems in classical electrophilic aromatic substitution. 2,6-Bis ipso bromodesilvlations of benzamides (Scheme 22) and carbamates¹⁹⁶ have also been reported. While as yet undefined in scope, interesting limitations that may also be of synthetic value are seen from comparison of these results with transformations 353 into 352 and 354. The high-vield formation of 354 is indicative of the overriding directing effect of the methoxy group¹³⁰ while the generation of 352a and 352b favoring the former product¹⁹⁷ suggests a steric effect of TMS to the larger nitronium electrophile.

Intramolecular versions of the fluoride-mediated carbodesilylation processes provide regiospecific routes to 7-methoxyindanol derivatives (360a-c, Scheme 81).¹⁰³ Benzaldehyde 355, obtained in three steps from the corresponding amide (Scheme 11), was converted by standard procedures involving Wittig chemistry and reduction via 356a-c into 357a-c. Cyclization using CsF afforded modest yields of 7-methoxy-1-indanols 360a-c. Under similar conditions, a more complex case, the keto ester 361, was transformed into the lactone 362.¹⁹⁸ These cases illustrate a mild methodology that overrides the textbook example of normal Friedel-Crafts reactivity and suggest broader utility for carboand heteroannelation. As a complementary method, the bromo acids 359, readily accessible from 356 by ipso bromodesilylation, have been converted¹⁰³ in somewhat higher overall yields into the 7-methoxy-1-indanones 358 by the metal-halogen exchange initiated Parham cycliacylation reaction.¹⁸⁸

Both silicon protection and ipso bromodesilylation serve as guiding principles in the synthesis of erythrolaccin tetramethyl ether (367) (Scheme 82).¹⁶⁴ Thus treatment of 363 with the benzaldehyde 365 in the presence of CsF followed by TsOH cyclization gave the phthalide 366 in modest yield. On the other hand, by taking advantage of extremely fast alkyllithium-induced metal-halogen exchange compared to o-tolyl methyl deprotonation, the bromobenzamide 364 provided, after condensation with 365 and acid treatment, 366 in almost quantitative yield. Unexceptional steps led to 367 in 65% overall vield, thus completing the most efficient synthesis of this penultimate precursor of the naturally occurring anthraquinone.

D. o-Stannyl

ortho-Stannylated benzamides and O-aryl carbamates, readily obtained by DoM processes (e.g., Table 6, entries 25 and 140; Table 14, entry 10), represent synthetic connections to the excellent Stille transition-metal-catalyzed cross-coupling regimen.¹⁹⁹ Thus 369a (Scheme 83) has been converted into 368 and 370a using aryl triflate²⁰⁰ and bromide¹⁵⁸ coupling partners, respectively; similarly, 369b gave 370b.¹⁵⁸ As a further link, the biphenyl 372, obtained from the o-stannyl α , α -disilyl amide 371 by cross coupling, has been transformed in modest yield into the dibenzazocinone 373 using an intramolecular Peterson olefination.¹⁰⁴ The known fast rate of electrophile-induced ipso destannylation of arylstannanes has been adapted in the regiospecific iodination (374) and acylation (376) of the

SCHEME 83 SCHEME 85

tin O-pyridyl carbamate 375 (Scheme 84).¹⁰⁸ Generalization of such synthetically useful processes for amide, carbamate, and other DMGs may be anticipated.

E. o-Boronic Acid

/. Cross-Coupling Methodology

The ready availability of ortho-DMG arylboronic acids either by metalation-boronation or by metalation-silylation-ipso borodesilylation sequences, $377 \rightarrow$ **378** (Scheme 85) provides a synthetic link to the Suzuki cross-coupling protocol.²⁰¹ Although the boronic acids **378a-d** may be characterized as their diethanolamine adducts, they are normally coupled directly as crude f_0 and f_1 are f_2 in f_3 and f_4 and f_5 catalysis, in one of several different solvent systems, to afford a variety of biaryls with carbon- and heteroatom-DMGs **379** in high yields.^{202,203} Furthermore, iteration of this process via the biarylboronic acids **380** allows access to similarly functionalized m -terphenyls 381.²⁰³

In the context of tertiary amide **377a** and carbamate **377b** arylboronic acids, procured by either indicated tactic, this sequence has considerable scope for the synthesis of unsymmetrical biaryls and heterobiaryls (Table 36). Thus a variety of biphenyl-2-carboxamides with methyl (entries 2-5 and 10), methoxy (entries 6-8), carboxamido (entries 4 and 9), and chloro (entry 5) substituents have been obtained. Steric hindrance appears not to be a major factor for the formation of 2,2'-disubstituted systems (entries 2-6 and 8) unless one of the ortho groups is exceedingly bulky in the aryl bromide coupling component (entry 9). Of the number of methoxy-substituted boronic acids that participate in this reaction (entries 19-26), those leading to the formation of a 2,2',6'-trisubstituted system (entry 22), a differentiated oxygenated derivative (entry 25), and others derived by inversion of the boronic acid (non-DoM origin) and bromo functions in the coupling partners (entries 24 and 27) may be of specific synthetic value. Furthermore, unsymmetrical phenyl-naphthyl

for **377a, b**

DMG = a: CONR₂; b: OCONEt₂; e: OMOM; d: NH f-BOC

SCHEME 86

(entries 11 and 12), phenyl-9-phenanthryl (entry 13), and phenyl-heteroaryl (entries 14-17) systems are accessible in high yields. A solitary case of coupling with benzyl bromide has been recorded (entry 18), but allyl and vinyl bromides have not yielded the expected products.²⁰²

Although requiring further investigation in scope, coupling reactions of phenyl O-carbamates provide products in lower yields (entries 28 and 29) perhaps due to competing hydrolysis under the mild base-catalyzed conditions.

Benzamide 2-aryl-6-boronic acids (380, Scheme 85), prepared by identical metalation-boronation sequences, undergo efficient cross coupling with substituted phenyl (Table 36, entries 30, 31, 33, and 34), naphthyl (entries 32, 35, and 36), and phenanthryl (entry 37) bromides to give diverse amide m-terphenyls. The observed good to excellent yields of these products suggest that aryl steric hindrance effects, clearly evident in the twisted orientation of the 1,2,3-substituents (X-ray structure of entry 32 , 204 are not detrimental to the cross-coupling process. Similarly, high yields of carbamate m-terphenyls are obtained (entries 38-40), which also suggest that, in comparison to the formation of the corresponding biaryl systems (entries 28 and 29), carbamate hydrolysis under the basic reaction conditions is sterically impeded.

Iterative application of the DoM boronation-cross coupling process has led to the assemblage of highly functionalized m-tetraphenyls and mixed *m-* and ptetraphenyls (Scheme 86).²⁰⁵ Thus cross coupling of the biphenylboronic acid 382 with the o-bromophenyl

TABLE 36 (Continued)

TABLE 36 (Continued)

carbamate 383 gave the expected product 384, R = MOM (31%), and, surprisingly, the phenol 384, $R = H$ (41%). With 384, $R = MOM$, a second sequence of metalation, boronation, and cross coupling with 385 led to the m-tetraphenyl 386. Alternatively, anionic ortho-Fries rearrangement (section V.A) on 384, $R =$ MOM, followed by acid hydrolysis and etherification of the intermediate diphenol gave the m -terphenol 388, which now reveals a site for para cross coupling.

Metalation-boronation gave the boronic acid 389, which served a pivotal position for cross coupling with bromo carbamates 383 and 390 to afford, in low yields, the tetraphenyl 387 and the azapyridotetraphenyl 391, respectively.

The connection between the DoM and the Suzuki cross-coupling reactions provides an entry into highly functionalized biaryls, m-teraryls, and tetraaryls whose generality, scope, and regioselectivity allow anticipation

TABLE 37. Synthesis of Dibenzo[b,d]pyran-6-ones

3

5 X 6

^a The 2'-OMOM derivative was used. ^b The order of reactions with BBr₃ and HOAc was inverted. CObtained under 2 N HCl/reflux conditions.

of broad application for the synthesis of polyaryls with interesting properties.

TABLE 38. Synthesis of 9-Phenanthrols from Biaryls²⁰⁰

2. Dibenzopyrones

The simple two-step conversion of 2-methoxy-2'carboxamidobiphenyls, efficiently obtained by the cross-coupling tactic (Table 36), into dibenzopyranones (Table 37) constitutes a new general synthesis of this class of heterocycles.^{202,205-207} Good to excellent yields of highly oxygenated dibenzopyrones (entries 1-8) have been obtained, including two heterocyclic analogues (entries 9 and 10).

3. Phenanthrols and Phenanthrenes

The conversion of 2-methyl-2'-carboxamidobiphenyls into 9-phenanthrols (Table 38) defines a further exploitation of the DoM-cross coupling connection.²⁰⁰ This high-yield process, based on the vinylogous thermodynamic acidity of the 2-methyl hydrogens, shows good versatility for the regiospecific preparation of methoxy (entries 2, 5, and 6), carboxamido (entry 3), and chloro (entries 4 and 6) phenanthrols but fails for nitro derivatives (entries 7 and 8), presumably because of the incompatability of nitro aromatics and LDA. Peri-substituted (entry 5) and condensed (entry 9) phenanthrols have also been obtained. Access to the parent hydrocarbons via triflate intermediates, $392 \rightarrow$ 393 (Scheme 87), $200,208$ provides additional scope to this method which is favorably competitive with the classical

Pschorr, Ullmann, and the more recent Mallory phenanthrene methodologies.

4. Remote Metalation to Fluorenones

Examination of the X-ray crystallographic structure of a m-terphenyl (Table 36, entry $32)^{204}$ and consider-

TABLE 39. Synthesis of Fluorenones by Remote Metalation²⁰⁶' 208'209

 a Yield from the diisopropylamide. b t-BuLi/THF/0 $^oC \to$ room temperature conditions. c LDA/THF/0 $^oC \to$ room temperature condi tions. *^d* Yield from the the diethylamide.

SCHEME 87

ation of the role of complex induced proximity effects in amide reactions⁶⁵ led to the discovery of a remote metalation-induced synthesis of fluorenone derivatives, $394 \rightarrow 395 \rightarrow 396$ (Scheme 88).^{206,208,209} The regioselectivity of this process (395) will be dependent in part, upon the relative acidities of the remote hydrogens in the Ar¹ and Ar² moieties. On the basis of preliminary observations (Table 39), rapid regiospecific access to a variety of substituted (entries 1-3), heterocyclic (entries 4 and 5), and condensed (entries 6-8) fluorenones from

readily available m-terphenyls (Table 36, entries 30-37) is feasible and generalization is anticipated.

X. DoM of Benzamldes and Free Radical Chemistry

Although a variety of OMe- and OMOM-substituted bromoaryl allyl ethers **398a,b** (Scheme 89), available by the DoM reaction, undergo smooth radical-induced ring closure to give a series of benzene annelated furans $399,^{210}$ including aflatoxin synthons,²¹¹ the corresponding carboxamide **398c** suffers dehalogenation to **401a** in high yield. A tin deuteride mediated experiment on

SCHEME 90

d: $R^4 + R^2 = (CH_2)_2$, $R^3 = H$; e: $R^2 = R^2 = (CH_2)_3$, $R^3 = H(1)$: $R^1 = R^2 = R^3 = H$

398c gave 401b (>95% d_1 content), thus implicating the formation of an α -amidoyl radical via a 1,5-hydrogen atom transfer process, $397 \rightarrow 400$, which supersedes the normally rapid 5-exo-trig ring closure. On the basis of this observation, a new method for heteroannelation to an aromatic ring has been developed (Scheme 90).²¹² Thus application of the tin hydride method to compounds 404a-f, available from 402 by a sequence of DoM (402 \rightarrow 403), ipso halodesilylation, and standard Wittig procedures (403 \rightarrow 404), led to diasteremeric mixtures of dihydroisoquinolone derivatives 405a-f in modest to good yields. The success of this reaction is dependent upon rapid 1,5-hydrogen atom transfer and 6-exo-trig ring closure relative to ring-CO bond rotation of the incipient α -amidoyl radical and bimolecular quench by tin hydride. Intermolecular interception of the α -amidoyl radical by electron-deficient alkenes has also been demonstrated, $406 \rightarrow 407$ (Scheme 91). These early results suggest the development of a new class of intra- and intermolecular carbon-carbon bond-forming reactions, connected to DoM chemistry, which proceed via radical intermediates generated by 1,5-hydrogen atom transfer processes at normally unreactive sites.

XI. Concluding Remarks

Discovered 50 years ago by Gilman¹⁹ and Wittig,²⁰ the DoM reaction began its rise to prominence by the systematic studies of Hauser and his school in the late 1950s.^{22,29f} Early mechanistic studies^{39,52,56,58} provided additional stimulus. The accelerating pace of application became evident only after alkyllithiums reached

commercial status as a result of necessity in the industrially important anionic polymerization.²⁶ The timely review by Gschwend and Rodriguez²⁷ in 1979 stimulated synthetic chemists to fresh conceptualization in aromatic chemistry from the surprisingly large and, to that time, scattered body of accumulated knowledge on DoM processes.

In the past decade, the promise of the DoM reaction has been realized in significant and diverse applications in academic and industrial laboratories on micro- and macroscale operations. Although the reaction may be ripe for inclusion into undergraduate texts, the current limited mechanistic understanding⁶² and continuing accumulation of new DMGs (Table 1) with their inherent new synthetic vistas forces the admission that the DoM process is still in a highly evolutionary stage. Mechanistic⁶² and structural^{36,37} insight into organolithiums and their reactions will allow the formulation of new, industrially more convenient, conditions for the DoM reaction, the discovery of new DMGs, and the further rational design of new synthetic pathways in aromatic chemistry.

The above comments are pertinent to the areas of benzamide and O-aryl carbamate DoM reactions. While amide metalations have been significantly exploited in synthesis, corresponding carbamate reactions are at early stages of development. The limited results in DoM reactions of heterocyclic systems may be ameliorated by the development of new compatible base/ electrophile combinations. Consideration of amides and carbamates in combination and with other DMGs raises a multitude of retrosynthetic combinations and permutations invariably of considerable, and, at times, unique, value for the preparation of polysubstituted aromatics. The use of amide DMGs in electrophilic reaction modes subsequent to DoM chemistry has been barely initiated. The anionic ortho-Fries rearrangement of the carbamate DMG not only provides migratory functionalization methods for aromatics but also opens new doors for further DoM reaction of the migrated amide. The generation of dianionic species of both DMGs invites the development of new concepts in aromatic ring functionalization. The establishment of connections between the amide or carbamate DoM process and other modern synthetic methods, illustrated by cross coupling and free radical reactions, will continue to enhance the power of the methodology.

The complex induced proximity effect concept⁶⁵ will undoubtedly play a role in the further general development of DoM chemistry. Early indications in its value are evident in remote metalation of biaryl (Table 39) and annulene amides. 213 In a general context of amide and carbamate DMGs, this effect may stimulate the discovery of new metalation processes that would create a greater interplay between aliphatic and aromatic areas of chemistry. This path would naturally lead to the next evolutionary stage of the DoM reaction as a tool for organic synthesis. For, as in any scientific endeavor, "Ie dernier mot n'est certainement pas encore dit et l'avenir nous réservera encore bien des surprises".²¹⁴

XII. Acknowledgments

I heartily thank all students whose joy in discovery, dedication, insight, and skillful experimentation over the past decade has provided the harvest of results on the benzamide and carbamate DoM chemistry. I dedicate this article to those who have been, those who are here, and those who will come. Our work has been supported by NSERC Canada, Merck Frosst, Imperial Oil, and the Ministry of Environment (Ontario) to whom I am grateful.

The award of the 1989 Chaire Noelting at l'Universite de Haute Alsace, Mulhouse, France, provided the tranquility for word processing the first draft of this DoM article. Most appropriately, Prof. M. E. Noelting (1851-1922), almost a contemporary of Kekule, had a keen interest in aromatic structure and contributed significantly to aromatic dye chemistry. I am grateful to Professor J.-P. Fleury for the invitation and Professor J. Streith and other colleagues and students for providing the ambiance and stimulating teaching environment. This article would still be gestating as a diskette draft were it not for the perspicacity of Barb Weber (manuscript) and the perfection of Claude Quesnelle (graphics, tables).

XIII. References

-
- (1) Franck, H. G.; Stadelhofer, J. W. Industrial Aromatic
Chemistry; Springer-Verlag: Berlin, New York, 1987.
(2) Tarbell, D. S.; Tarbell, A. T., Eds. Essays on the History of
Organic Chemistry in the United States, 1875–1 Nashville, TN, 1986; p 139.
- (3) Kobayashi, M., Ed. *Chemical Resources. New Developments in Organic Chemistry;* Scientific Publishing Division of MYU K.K.: Tokyo, Japan, 1988; Chapters 1, 2, 5.
- (4) Lednicer, D.; Mitscher, L. A. *The Organic Chemistry of Drug Design;* Wiley-Interscience: New York, 1977; Vols. 1-3.
- (5) Sneader, W. *Drug Discovery: The Evolution of Modern Medicines;* Wiley: Chichester, 1985.
- (6) (a) Olah, G., Ed. *Friedel-Crafts and Related Reactions;* In-terscience: New York, 1963; Vols. I-IV. (b) Pearson, D. E.; Buehler, C. A. *Synthesis* 1972, 533. (c) Effenberger, F. *Ibid.* 1980, 151.
- (7) For discussion, earlier reviews, and leading references, see: Beak, P.; Snieckus, V. *Ace. Chem. Res.* 1982, *15,* 306.
- (8) Tashiro, M.; Fukuda, Y.; Yamoto, T. *J. Org. Chem.* 1983,*48,* 1927.
- (9) Aluminum: Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G.; Soncini, P.; Fava, G. G.; Bellichi, M. F. J. Org. Chem. 1988, 53, 1779. Boron: Nagata, W.; Itazaki, H.; Okada, K.; Waaki, H.; Okada, K.; Waaki, H.; Okada, K.
- (10) For application of cyclopalladated complexes in organic synthesis, see: Ryabov, A. D. Synthesis 1985, 233. Recent work [Compound type (metal)]: Actennilide (Pd): Tremont, S. J.; Ur Rahman, H. J. Am. Chem. Soc. 1984,

1983, *39,* 3373; (Cu, Hurtley reaction): Bruggink, A.; McKillop, A. *Tetrahedron* 1975, *31,* 2607; Smidrkal, J. *Col-lect. Czech. Chem. Commun.* 1982, *47,* 2140; Aalten, H. L.; van Koten, G.; Goubitz, K.; Stam, C. H. *Organometallics*

- 1989, 8, 2293.

(11) Colquhoun, H. M.; Holton, J.; Thompson, D. J.; Twigg, M. (11) Colquhoun, H. M.; Holton, J.; Thompson, D. J.; Twigg, M.
V. *New Pathways for Organic Synthesis*; Plenum: New
York, 1984: <u>(a)</u> p 44; (b) p 33.
- (12) Rossi, R. A.; De Rossi, R. H. *ACS Monograph 178;* American Chemical Society: Washington, DC, 1983.
- (13) Blagg, J.; Davies, S. G.; Goodfellow, C. L.; Sutton, K. H. *J. Chem. Soc, Chem. Commun.* 1986, 1283. Chung, Y. K.; Williard, P. G.; Sweigart, D. A. *Organometallics* 1982,*1,*1053.
- (14) Claisen: Parker, K. A.; Casteel, D. A. J. Org. Chem. 1988, 53, 2847; Bender, D. R.; Kanne, D.; Frazier, J. D.; Rapoport, H. J. Org. Chem. 1983, 48, 2709; Kaufman, K. D.; Erb, D. J.; Blok, T. M.; Carlson, R. W.; Knoec 770. Sommelet-Hauser: Ito, Y.; In Nozaki, H., Ed. Current
Trends in Synthesis; Pergamon: London, 1981; p 169; Shirai, N.; Sato, Y. J. Org. Chem. 1988, 53, 194; Inoue, S.; Ikeda, H.;
Sato, S.; Horie, K.; Ota, T.; Miyamoto,
- (15) (a) For an excellent, unique review, see: Baumfield, P.;

Gordon, P. F. Chem. Soc. Rev. 1984, 13, 441. (b) From β -

dicarbonyl systems: Harris, T. M.; Harris, C. M.; Kuzma, P.

C.; Lee, J. Y.-C.; Mahalingan, S.; G *Angew. Chem., Int. Ed. Engl.* **1984,***23,* 587; Wulff, W. D.; Xu, Y.-C. *J. Am. Chem. Soc.* 1988,*110,* 2312 and references cited therein.
- (16) From carbocycles: Rippol, J. L.; Rouessac, A.; Rouessac, F.

Tetrahedron 1978, 34, 19. From heterocycles: Boger, D. L.;

Weinreb, S. M. Hetero Diels-Alder Methodology in Organic

Synthesis; Academic: New York, 1987;
- (17) Meyers, A. I. *Heterocycles in Organic Synthesis;* Wiley-Interscience: New York, 1974; p 93.
- (18) Via Birch reduction: Mori, K.; Sato, K. *Tetrahedron* 1982, *38,* 1221; Chandrasekaran, S.; Turner, J. V. *Tetrahedron Lett.* 1982,*23,* 3799. Via electrochemical reduction: Kikuchi, Y.; Hasegawa, Y.; Matsumoto, M. *Tetrahedron Lett.* 1982, *23* 2199
- (19) Gilman, H.; Bebb, R. L. *J. Am. Chem. Soc.* 1939, *61,* 109. (20) Wittig, G.; Fuhrman, G. *Chem. Ber.* 1940, *73,* 1197.
-
-
- (21) Gilman, H.; Morton, J. W. Org. React. (N.Y.) 1954, 8, 258.
(22) Puterbaugh, W. H.; Hauser, C. R. J. Org. Chem. 1964, 29,
853. Slocum, D. W.; Sugarman, D. I. Adv. Chem. Ser. 1974,
No. 130, 227.
- (23) Gilman, H.; Jacoby, A. L. *J. Org. Chem.* 1938, 3, 108. (24) Wittig, G.; Pockels, U.; Droge, H. *Chem. Ber.* 1938, *71,*1903.
- (25) The key observation that, at very low temperatures, metal-
halogen exchange is rapid in comparison with attack of nor-
mally reactive groups (Kobrich, G.; Buck, P. Chem. Ber. 1970,
 $103, 1412$) set the stage for the useful aryllithium species bearing electrophilic groups (Par-ham, W. E.; Bradsher, C. K. Ace. *Chem. Res.* 1982,*15,* 300).
- (26) (a) Langer, A. W. Adv. Chem. Ser. 1974, No. 130. (b) Halesa, A. F.; Schulz, D. N.; Tate, D. P.; Mochel, V. D. Adv. Organomet. Chem. 1980, 18, 55.

(27) Gschwend, H. W.; Rodriguez, H. R. Org. React. (N.Y.) 1979,
-
- 26,1. (28) Brief sections on DoM are found in less recognized reviews: Abicht, H.-P.; Issleib, K. *Z. Chem.* 1977, *17*, 1; Omae, I*.
Chem. Rev.* 1979, 79, 287. For recent Chinese interest, see:
Liu, D. *Huaxue Tongba*o 1987, 1; *Chem. Abstr*. 1987, *107*, 235606u.
- (29) Reviews on the DoM reaction highlighting tertiary amide DMG: (a) Snieckus, V. Heterocycles 1980, 14, 1649; (b) ref. 7 ; (c) Snieckus, V. Lectures in Heterocyclic Chemistry; Castle, R. N., Ed., HeteroCorporation: Tam

Fr. (II) 1988, 67; (e) Watanabe, M. J. Synth. Org. Chem. Jpn.
1983, 41, 728. Secondary amide DMG: (f) Kaiser, E. M.;
Slocum, D. W. In *Organic Reactive Intermediates*; McMa-
nus, S. P., Ed.; Academic: New York, 1973; p DMG: (g) Reuman, M.; Meyers, A. I. *Tetrahedron* **1985,** *41,* 837. (h) DoM in synthesis: Narasimhan, N. S.; Mali, R. S. *Synthesis* **1983,** 957; (i) Narasimhan, N. S.; Mali, R. S. *Top. Curr. Chem.* **1987,** *138,* 63.

- (30) Fraser, R. R.; Bresse, M.; Mansour, T. S. *J. Am. Chem. Soc.* 1983, *105,* 7790.
- (31) Schlosser, M. *Structur und Reaktivitat Polar Organometalle:* Springer-Verlag: Berlin, 1973.
- (32) Wakefield, B. J. *The Chemistry of Organolithium Compounds;* Pergamon: Oxford, 1974.
- (33) Wardell, J. L. *Comprehensive Organometallic Chemistry;* Wilkinson, E., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, 1982; Vol. 1, Chapter 1.
- (34) Bates, R. B.; Ogle, C. A. *Carbanion Chemistry;* Springer-Verlag: Berlin, 1983.
- (35) Fraenkel, G.; Hsu, S.-P.; Su, B. M. In *Lithium Current Applications in Science, Medicine, and Technology;* Bach, R., Ed.; Wiley: New York, 1985; p 273. For leading references to recent work, see: Fraenkel, G.; Winchester, W. R. *J. Am. Chem. Soc.* **1988,** *110,* 8720.
- (36) Setzer, W. N.; Schleyer, P. v. R. *Adv. Organomet. Chem.* 1985 *24* 353.
- (37) Schleyer, P. v. R. *Pure Appl. Chem.* **1984,** *56,* 151.
- (38) Hay, D. R.; Song, Z.; Smith, S. G.; Beak, P. *J. Am. Chem. Soc.* 1988, HO, 8145.
- (39) Brown, T. L. *Pure Appl. Chem.* **1970,** *23,* 447.
- (40) Bates, T. F.; Clarke, M. T.; Thomas, R. D. *J. Am. Chem. Soc.* 1988, *110,* 5109.
- (41) Screttas, C. G.; Steele, B. R. *J. Org. Chem.* **1989,** *54,* 1013. (42) Trecourt, F.; Mallet, M.; Marsais, F.; Queguiner, G. *J. Org. Chem.* **1988,** *53,* 1367.
- (43) McGarrity, J. F.; Ogle, C. A. *J. Am. Chem. Soc.* **1985,** 207, 1805; McGarrity, J. F.; Ogle, C. A.; Brich, Z.; Loosli, H.-R. *J. Am. Chem. Soc.* **1985,** *107,* 1810.
- (44) Ahlbrecht, H.; Dollinger, H. *Tetrahedron Lett.* 1984, *25.*
- 1353. (45) Schlosser, M. *Pure Appl. Chem.* **1988,** *60,*1627; Schlosser, M. *Proc. Jpn. Chem. Soc.* **1984,** 3, 1820.
- (46) (a) DePue, J. S.; Collum, D. B. *J. Am. Chem. Soc.* **1988,***110,* 5524; Barr, D.; Clegg, W.; Mulvey, R. E.; Snaith, R.; Wright, D. S. *J. Chem, Soc, Chem. Commun.* **1987,** 716 and references cited therein, (b) Renaud, P.; Fox, M. A. *J. Am. Chem. Soc.* **1988,***110,* 5702. (c) Newcomb, M.; Burchill, M. T.; Deeb, T. M. *J. Am. Chem. Soc.* **1988,** *110,* 6528.
- (47) Fraser, R. R.; Mansour, T. S. *J. Org. Chem.* **1984,** *49,* 3442. (48) Seebach, D.; Bauer, V. W. *HeIv. Chim. Acta* **1984,** *67,*1972.
- (49) Krizan, T. D.; Martin, J. C. *J. Am. Chem. Soc.* 1983, 105,
- 6155.
-
- (50) Corey, E. J.; Gross, A. W. *Tetrahedron Lett.* **1984,** *25,* 495. (51) Eaton, P. E.; Lee, C.-H.; Xiong, Y. *J. Am. Chem. Soc.* 1989, *111.* 8016 and references cited therein.
- (52) Roberts, J. D.; Curtin, D. Y. *J. Am. Chem. Soc.* **1946,** *68,* 1658. See also: Morton, A. A. *J. Am. Chem. Soc.* **1947,** *69,* **969.**
- (53) Klumpp, G. W.; Sinnige, M. J. *Tetrahedron Lett.* **1986,** *27,* 2247.
- (54) Broaddus, C. D. *J. Org. Chem.* **1970,** *35,* 10.
- (55) Shatenshtein, A. I. *Tetrahedron* **1962,** *18,* 95.
- (56) Shirlev, D. A.; Hendrix, J. P. *J. Organomet. Chem.* **1968,** *11,* **217.**
- (57) Shirley, D. A.; Harmon, T. E.; Cheng, C. F. *J. Organomet. Chem.* **1974,** *69,* 327.
- (58) Slocum, D. W.; Koonsvitsky, B. P. *J. Org. Chem.* **1973,** *38,* 1675.
- (59) Pross, A.; Radom, L. In Taft, R. W., Ed. *Prog. Phys. Org. Chem.* **1981,** *13,* 1.
-
- (60) Ellison, R. A.; Kotsonis, F. N. J. Org. Chem. 1973, 38, 4192.

Graybill, B. M.; Shirley, D. A. *Ibid.* 1966, 31, 1221.

(61) (a) DMG = OMe: Harder, S.; Boersma, J.; Brandsma, L.;

Kanters, J. A. J. Organomet. Chem. 1
- (62) Bauer, W.; Schleyer, P. v. R. *J. Am. Chem. Soc.* **1989,** *111,*
-
- 7191.

(63) Hay, D. R.; Song, Z.; Smith, S. G.; Beak, P. J. Am. Chem.

Soc. 1988, 110, 8145.

(64) Meyers, A. I.; Fuentes, L. M.; Reiker, W. F. J. Am. Chem.

Soc. 1983, 105, 2082. See also: Fitt, J. J.; Gschwend, H. W.

J
-
- (65) Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986, 19, 356.
(66) Winkle, M. R.; Ronald, R. C. J. Org. Chem. 1982, 47, 2101.
(67) Shirley, D. A.; Johnson, J. R., Jr.; Hendrix, H. P. J. Organomet. Chem. 1968, 11, 209.
(68)
-
-

A; Buncel, E., Durst, T., Eds.; Elsevier: Amsterdam, 1980; p 197.

- (70) Ashby, E. C.; Pham, T. N. J. Org. Chem. 1987, 52, 1291.
(71) That equilibrium deprotonation is largely determined by inductive effects (F $>$ CF₃ $>$ PhO $>$ MeO $>$ NMe₂) has been demonstrated by ortho partial rate factor-Taft σ constant
- correlation.⁵ (72) Krizan, T. D.; Martin, J. C. *J. Org. Chem.* **1982,** *47,* 2681. (73) Beak, P.; Tse, A.; Hawkins, J.; Chen, C-W.; Mills, S. *Tetra-*
- *hedron* **1983,** *39,* 1983.
- (74) Meyers, A. L; Avila, W. B. *Tetrahedron Lett.* **1980,** *21,* 3335. (75) Durst, T. In *Comprehensive Carbanion Chemistry, Part B;* Buncel, E., Durst, T., Eds.; Elsevier: Amsterdam, 1980; p 239.
- (76) Technical Information Bulletin No. AL-134, Aldrich Chemical Co. Inc., Milwaukee, WI.
- (77) Brandsma, L.; Verkruijsse, H. D. *Preparative Polar Organo-metallic Chemistry 1;* Springer-Verlag: Berlin, 1987. (78) Wakefield, B. J. *Organolithium Methods;* Academic: New
- York, 1988.
-
- (79) Anderson, R. *Chem. Ind. (London)* **1984,** 205. (80) Ludt, R. E.; Griffiths, T. S.; McGrath, K. N.; Hauser, C. R. *J. Org. Chem.* **1973,** *38,* 1668.
- (81) Beak, P.; Brubaker, G. R.; Farney, R. *J. Am. Chem. Soc.* **1976,** *98,* 3621. (82) Beak, P.; Brown, R. A. *J. Org. Chem.* **1977,** *42,* 1823.
-
- (83) Barsky, L.; Gschwend, H. W.; McKenna, J.; Rodriguez, H. R.
J. Org. Chem. 1976, 41, 3651. For an improved procedure
using a "built-in" TMEDA DMG, see: Comins, D. L.; Brown,
J. D. Tetrahedron Lett. 1983, 24, 5465.
- (84) Comins, D. L.; Killpack, M. O. *J. Org. Chem.* **1987,** 52, 104. Comins, D. L.; Brown, J. D. *Ibid.* **1989,** *54,* 3730 and refer-ences therein.
- (85) Watanabe, M.; Shinoda, E.; Shimizu, Y.; Furukawa, S.; Iwao, M.; Kuraishi, T. *Tetrahedron* **1987,** *43,* 5281. (86) Beak, P.; Brown, R. A. *J. Org. Chem.* **1982,** *47,* 34.
-
- (87) Watanabe, M.; Snieckus, V. *J. Am. Chem. Soc* **1980,** *102,* 1457.
-
- (88) Mills, R. J.; Snieckus, V., unpublished results. (89) Meyers, A. I.; Roth, G. P.; Hoyer, D.; Barner, B. A.; Laucher, D. *J. Am. Chem. Soc* **1988,***110,*4611 and references therein.
- (90) Beak, P.; Lee, B. *J. Org. Chem.* **1989,***54,*458. See also ref 128 and references cited therein.
- (91) Lang, R. W.; Differding, E. *Tetrahedron Lett.* **1988,** *29,* 6087. (92) El Din, M. G.; Knaus, E. E.; Giam, C-S. *Can. J. Chem.* **1982,**
- *60,* 1821. (93) Katritzky, A. R.; Rahimi-Rastoo, S.; Ponkahe, N. K. *Syn-*
- *thesis* **1981,** 127.
- (94) Doadt, E. G.; Snieckus, V. *Tetrahedron Lett.* **1985,** *26,*1149. (95) Carpenter, A. J.; Chadwick, D. J. *J. Org. Chem.* **1985,** *50,* 4362.
- (96) Bures, E. J.; Keay, B. A. *Tetrahedron Lett.* **1988,** *29,* 1247. (97) Johnson, D. A.; Gribble, G. W. *Heterocycles* **1986,** *24,* 2127.
- (98) Abaca, B.; Hayles, D. J.; Jones, G.; Sliskovic, D. R. *J. Chem. Res. (S)* **1983,** 144.
- (99) Page, M. I. *Chem. Soc. Rev.* **1973,** 2, 295. Page, M. I. *Angew. Chem., Int. Ed. Engl.* **1977,** *16,* 449.
- (100) Watanabe, M.; Sahara, M.; Kubo, M.; Furukawa, S.; Bille-deau, R. J.; Snieckus, V. *J. Org. Chem.* **1984,** *49,* 742.
- (101) Comins, D. L.; Brown, J. D. *J. Org. Chem.* **1986,** 51, 3566.
- (102) Reitz, D. B.; Massey, S. M. *J. Org. Chem.* **1990,** 55, 1375.
- (103) Sibi, M. P.; Shankaran, K.; Hahn, W. R.; AIo, B. I.; Snieckus, V. *Tetrahedron Lett.* **1987,** 28, 2933. For another synthetic application, see ref 135.
- (104) Cuevas, J.-C; Patil, P.; Snieckus, V. *Tetrahedron Lett.* **1989,** *30,* 5841.
- (105) Collins, S.; Hong, Y. *Tetrahedron Lett.* **1987,** *28,* 4391. Collins, S.; Hong, Y.; Hoover, G. F.; Veit, J. R. *J. Org. Chem.* **1990,** in press.
- (106) Ronald, R. C.; Winkle, M. R. *Tetrahedron* 1983, 39, 2031.
(107) (a) Dhawan, B.; Redmore, D. J. Org. Chem. 1986, 51, 179 and
references therein. (b) Watanabe, M.; Date, M.; Kawanishi,
K.; Tsukazaki, M.; Furukawa, S.
- more powerful DMG than OCONEt₂, is readily hydrolyzed (HCO₂H/reflux), and has latent character (Na/liquid NH₃).
(108) Miah, M. A. J.; Snieckus, V. *J. Org. Chem.* 1985, 50, 5436.
(109) Comins, D. L.; LaMunyon, D. H.
- (110) Marsais, F.; Queguiner, G. *Tetrahedron* **1983,** *39,* 2009. (111) Godard, A.; Robin, Y.; Queguiner, G. *J. Organomet. Chem.*
-
- 1987, *336,* 1. (112) Godard, A.; Jacquelin, J. M.; Queguiner, G. *J. Heterocycl. Chem.* **1988,** *25,* 1053.
-
-
- (113) Nasman, J. H.; Kopola, N.; Pensar, G. *Tetrahedron Lett.*
1**986**, 27, 1391.
(114) Sibi, M. P.; Snieckus, V. J. Org. Chem. 1**983**, 48, 1935.
(115) Robin, Y.; Godard, A.; Queguiner, G. J. Heterocycl. Chem.
1987, 24, 14

Directed Ortho Metalation

- (116) Jacquelin, J. M.; Robin, Y.; Godard, A.; Queguiner, G. *Can. J. Chem.* **1988,** *66,* 1135.
- (117) (a) Miah, M. A. J. Ph.D. Thesis, University of Waterloo, 1985. (b) Tsukazaki, M.; Snieckus, V., unpublished results, 1989.
- (118) Sibi, M. P.; Chattopadhyay, S.; Dankwardt, J. W.; Snieckus, V. *J. Am. Chem. Soc.* **1985,** *107,* 6312. (119) Danishefsky, S.; Lee, J. Y. *J. Am. Chem. Soc.* **1989,** *111,* 4829.
- (120) Himeshima, Y.; Sonoda, T.; Kobayashi, H. *Chem. Lett.* 1983, 1211.
- (121) Shankaran, K.; Snieckus, V. *Tetrahedron Lett.* **1984,** *25,* 2827.
- (122) Billedeau, R. J.; Sibi, M. P.; Snieckus, V. *Tetrahedron Lett.* **1983,** *24,* 4515.
-
-
- (123) Doadt, E. G. Ph.D. Thesis, University of Waterloo, 1988. (124) Mahalanabis, K. K.; Snieckus, V., unpublished results. (125) Pansegrau, P. D.; Rieker, W. F.; Meyers, A. I. *J. Am. Chem. Soc.* **1988,** *110,* 7178.
- (126) Bates, R. B.; Siahaan, T. J.; Suvannachut, K.; Vasey, S. K.; Yager, K. M. *J. Org. Chem.* **1987,** *52,* 4605.
- (127) Mills, R. J.; Horvath, R. F.; Sibi, M. P.; Snieckus, V. *Tetra-*
- *hedron Lett.* 1985, *26,* 1145. (128) Eaton, P. E.; Martin, R. M. *J. Org. Chem.* **1988,** *53,* 2728.
- (129) Chattopadhyay, S.; Snieckus, V., unpublished results.
- (130) Mills, R. J.; Taylor, N. J.; Snieckus, V. *J. Org. Chem.* **1989,** *54,* 4372.
- (131) Gribble, G. W.; Saulnier, M. G. *Tetrahedron Lett.* **1980,** *21,* 4137.
- (132) Marsais, F.; Laperdrix, B.; Gungor, T.; Mallet, M.; Queguiner, G. *J. Chem. Res. (S)* **1982,** 278.
- (133) For an extensive list of references, see ref 100.
- (134) de Silva, S. O.; Ahmad, I.; Snieckus, V. *Can. J. Chem.* **1979,** *57* 1598
- (135) Sh'ibuya, M.; Toyooka, K.; Kubota, S. *Tetrahedron Lett.*
- 1984, 25, 1171.

(136) (a) Clark, R. D.; Jahangir. J. Org. Chem. 1988, 53, 2378. (b)

Clark, R. D.; Jahangir. *Ibid*. 1989, 54, 1174. (c) For recent

work, not incorporated in Tables 19 and 20, see: Clark, R. D.; Souchet, M. Tetrahedron Lett. 1990, 31, 193. (d) Jahan-
gir; Fisher, L. E.; Clark, R. D.; Muchowski, J. M. J. Org. gir; Fisher, L. E.; Clark, R. D.; Muchowski, J. M. *J. Org. Chem.* **1989,** *54,* 2992.
- (137) Clark, R. D.; Jahangir. *J. Org. Chem.* **1987,** *52,* 5378.
- (138) Lithiated phthalides with 3,4-dihydroisoquinolines: Jahangir;
MacLean, D. B.; Holland, H. L. Can. J. Chem. 1986, 64, 1031
and references cited therein. Homophthalic anhydrides and
esters with benzaldimines: Haimova, 52, 907 and references therein; Shamma, M.; Tomlinson, H.
H. *Ibid.* 1978, 43, 2825. TMSOTf-activated imines with
lithiated 3-cyano-4-methylpyridine: Jahangir; MacLean, D.
B.; Brook, M. A.; Holland, H. L. *Can. J. Chem*. and references therein.
- (139) Watanabe, M.; Date, M.; Kawanishi, K.; Tsukazaki, M.; Fu-rukawa, S. *Chem. Pharm. Bull.* **1989,** *36,* 2564.
- (140) Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. *J. Am. Chem. Soc.* **1988,** *110,* 6471.
- (141) Ciufolini, M. A.; Qi, H.-B.; Browne, M. E. *J. Org. Chem.* **1988,** *53,* 4151; Ciufolini, M. A., personal communication, May 11, 1989
- (142) Sibi.M. P.; Miah, M. A. J.; Snieckus, V. *J. Org. Chem.* 1984, *49,* 737.
- (143) Sibi, M. P.; Dankwardt, J. W.; Snieckus, V. *J. Org. Chem.* 1986, *51,* 273.
- (144) Billedeau, R. J.; Snieckus, V., unpublished results.
- (145) Sibi, M. P.; Altintas, N.; Snieckus, V. *Tetrahedron* **1984,** *40,* 4593.
- (146) de Silva, O. S.; Reed, J. N.; Snieckus, V. *Tetrahedron Lett.* **1978** *19* 5099
- (147) Meyers,'A. I.;Avila, W. B. *J. Org. Chem.* **1981,** *46,* 3881.
- (148) For a critical comparison of methods for selected cases, see: (a) Parker, K. A.; Spero, D. M.; Koziski, K. A. *J. Org. Chem.* 1987, *52,*183. (b) Freskos, J. N.; Morrow, G. A.; Swenton, J. S. *Ibid.* **1985,** *50,* 805.
- (149) For leading references to available variations of this strategy,
see: (a) Hauser, F. M.; Hewawasam, P.; Baghdanov, V. M.
J. Org. Chem. 1988, 53, 224. (b) Chenard, B. L.; Dolson, M.
G.; Sercel, A. D.; Swenton, J. S.
- (150) Isobenzofurans and their 1-alkoxy derivatives are valuable 47r-electron intermediates which may also be generated by non-DoM methods: for discussion, see refs 154 and 156.
- (151) Khanapure, S. P.; Reddy, R. T.; Biehl, E. R. *J. Org. Chem.*
- **1987,** *52,* 5685. (152) Nomura, K.; Okazaki, K.; Hori, K.; Yoshii, E. *J. Am. Chem. Soc.* **1987,** *109,* 3402.
- (153) Iwao, M.; Inoue, H.; Kuraishi, T. *Chem. Lett.* **1984,** 1263. (154) Evans, J. C; Klix, R. C; Bach, R. D. *J. Org. Chem.* **1988,** 53,
- 5519.
- (155) Keay, B. A.; Rodrigo, R. J. *Am. Chem. Soc.* 1**982,** *104*, 4725.
(156) Chen, C.-W.; Beak, P. J. *Org. Chem.* 1**986**, 51, 3325.
(157) Cuevas, J.-C.; Snieckus, V. *Tetrahedron Lett.* 1**989**, 30, 5837.
-
- (158) Siddiqui, M. A.; Quesnelle, C; Snieckus, V., unpublished results.
- (159) Iwao, M.; Kuraishi, T. *Tetrahedron Lett.* **1985,** *26,* 6213.
- (160) Iwao, M.; Kuraishi, T. *Bull. Chem. Soc. Jpn.* **1987,** *60,* 4051.
- (161) For a mechanistic study, see: Hauser, C. R.; Adams, T. C, Jr. *J. Org. Chem.* **1977,** *42,* 3029.
- (162) de Silva, S. O.; Watanabe, M.; Snieckus, V. *J. Org. Chem.* **1979,** *44,* 4802.
- (163) Kelly, T. R.; Parekh, N. D.; Trachtenberg, E. N. *J. Org. Chem.* **1982,** *47,* 5009.
-
- (164) Mills, R. J.; Snieckus, V. *J. Org. Chem.* **1989,** *54,* 4386. (165) Watanabe, M.; Fukuda, T.; Miyashita, T.; Furukawa, S. *Yakugaku Zasshi* **1985,** 105, 11.
- (166) Watanabe, M.; Maenosono, H.; Furukawa, S. *Chem. Pharm. Bull. Jpn.* **1983,** *31,* 2662.
- (167) Rizzi, J. P.; Kende, A. S. *Tetrahedron* **1984,** *40,* 4693.
- (168) Katsuura, K.; Snieckus, V. *Can. J. Chem.* **1987,** *65,* 124. (169) Zani, C. L.; de Oliveira, A. B.; Snieckus, V. *Tetrahedron Lett.*
- **1987,** *28,* 6561. (170) Watanabe, M.; Shinoda, E.; Shimizu, Y.; Furukawa, S.; Iwao,
- M.; Kuraishi, T. *Tetrahedron* **1987,** *43,* 5281.
- (171) Mills, R. J. Ph.D. Thesis, University of Waterloo, 1985. (172) Dunbar, P. G.; Martin, A. R. *Heterocycles* **1987,** *26,* 3165.
- (173) de Silva, S. O.; Ahmad, I.; Snieckus, V. *Tetrahedron Lett.*
- **1978** *19* 5107
- (174) Iwao', M!; Kuraishi, T. *Tetrahedron Lett.* **1983,** *24,* 2649.
- (175) Iwao, M.; Mahalanabis, K. K.; Watanabe, M.; de Silva, S. O.; Snieckus, V. *Tetrahedron* **1983,** *39,* 1955.
- (176) Harvey, R. G.; Cortez, C; Jacobs, S. A. *J. Org. Chem.* **1982,** *47,* 2120.
- (177) Newman, M. S.; Khanna, V. K. *J. Org. Chem.* **1986,***51,*1921. (178) Harvey, R. G.; Cortez, C; Sawyer, T. W.; DiGiovanni, J. *J. Med. Chem.* 1988, *31,* 1308.
- (179) Pataki, J.; Konieczny, M.; Harvey, R. G. *J. Org. Chem.* **1982,** *47,* 1133.
-
- (180) Harvey, R. G.; Cortez, C. *J. Org. Chem.* 1987, *52,* 283. (181) Harvey, R. G.; Cortez, C; Sugiyama, T.; Ito, Y.; Sawyer, T. W.; DiGiovanni, J. *J. Med. Chem.* **1988,** *31,* 154.
- (182) Ray, J. **K.;** Harvey, R. G. *J. Org. Chem.* **1982,** *47,* 3335.
-
- (183) Ray, J. K.; Harvey, R. G. *J. Org. Chem.* **1983,** *48,* 1352. (184) Cho, B. P.; Harvey, R. G. *J. Org. Chem.* **1987,** *52,* 5668.
- (185) Wang, X.; Snieckus, V. *SYNLETT* **1990,** in press.
- (186) This represents a variation of the Parham process. See ref 25 and: Boatman, R. J.; Whitlock, B. J.; Whitlock, H. W., Jr. *J. Am. Chem. Soc.* **1977,** *99,* 4822; Boatman, R. J.; Whitlock, B. J.; Whitlock, H. W., Jr. *Ibid.* **1978,** *100,* 2935.
- (187) Potts, K. T.; Bhattacharjee, D.; Walsh, E. B. *J. Org. Chem.* 1986,57,2011.
- (188) Robaut, C; Rivalle, C; Rautureau, M.; Lhoste, J.-M.; Bisagni, E. *Tetrahedron* 1985, *41,* 1945.
- (189) Bolitt, V.; Mioskowski, C; Reddy, S. P.; Falck, J. R. *Synthesis* **1988,** 388.
-
-
- (190) de Silva, S. O.; Snieckus, V., unpublished results. (191) Shankaran, K.; Snieckus, V. *J. Org. Chem.* **1984,** *49,* 5022. (192) Chong, R. J.; Siddiqui, M. A.; Snieckus, V. *Tetrahedron Lett.* **1986,** *27,* 5323.
	- (193) Iwao, M.; Reed, J. N.; Snieckus, V. *J. Am. Chem. Soc.* 1982, *104,* 5531.
	- (194) Watanabe, M.; Kurosaki, A.; Furukawa, S. *Chem. Pharm. Bull. Jpn.* 1984, *32,* 1264.
	- (195) Watanabe, M.; Date, M.; Tsukazaki, M.; Furukawa, S. *Chem. Pharm. Bull. Jpn.* **1989,** *37,* 36.
	- (196) Green, J. G.; Vollhardt, K. P. C, unpublished results. We thank Professor Green for this information.
	-
	- (197) Reed, J. N. Ph.D. Thesis, University of Waterloo, 1985. (198) Sibi, M. P.; Shankaran, K.; Snieckus, V., unpublished results.
- (199) Echavarren, A. M.; Stille, J. K. *J. Am. Chem. Soc.* **1987,***109,* 5478 and references cited therein.
- (200) Fu, J.-m.; Sharp, M. J.; Snieckus, V. *Tetrahedron Lett.* **1988,** *29,* 5459.
- (201) For leading references, see: Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem.
Soc. 1989, 111, 314.
(202) Sharp, M. J.; Snieckus, V. Tetrahedron Lett. 1985, 26, 5997.
- (203) Sharp, M. J.; Cheng, W.; Snieckus, V. *Tetrahedron Lett.* **1987,** *28,* 5093.
-
-
-
- (204) Sharp, M. J.; Taylor, N.; Snieckus, V., unpublished results.
(205) Cheng, W.; Snieckus, V. *Tetrahedron Lett*. 1**987**, 28, 5097.
(206) Sharp, M. J. M.Sc. Thesis, University of Waterloo, 1986.
(207) Kandil, A.; Siddiq lished results.
-
-
- (208) Fu, J.-m.; Snieckus, V., unpublished results.
(209) Zhao, B.; Snieckus, V., unpublished results.
(210) Shan, B.; Sloan, C. P.; Snieckus, V. Tetrahedron Lett.
1985, 26, 6001. Sloan, C. P. M.Sc. Thesis, University of
W
-
- rahedron Lett. 1988, 29, 4685.
(212) Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D.
P. J. Am. Chem. Soc. 1990, 112, 896.
(213) Neidlein, R.; Wirth, W. Helv. Chim. Acta 1986, 69, 1263.
-
- (214) Noelting, M. E. *Rev. Gen. ScL Pures Appl.* 1921, *32,* 400.