Organometallic Chemistry of Vinylidene and Related Unsaturated Carbenes

MICHAEL I. BRUCE

Jordan Laboratories. Department of Physical and Inorganic Chemistry, University of Adelaide. Adelaide, South Australia 5001

Received July 5, 1990 (Revised Manuscript Received November 14, 1990)

Contents

Michael Bruce was born in London and educated at Lincoln College, Oxford. He worked first at the CSIRO's Division of Plant Industry in Canberra, Australia, on plant cell-division initiators, and returned to Bristol, England, in 1965 to study with Professor Gordon Stone. After seven years on the faculty, he took up the chair in inorganic chemistry at the University of Adelaide, South Australia, where he has been the Angas Professor of Chemistry since 1982. His main interests are in complexes containing M-C(sp) or $M-C(sp^2)$ bonds and in metal cluster chemistry. He was elected to the Australian Academy of Sciences in 1989.

/. Abbreviations

/ /. Introduction

The stabilization of transient species by coordination to transition metals has enabled their chemistry to be studied and their behavior as intermediates to be modeled and understood. For many years, it has been popular to extend this modeling to surface chemistry, by using metal cluster complexes as the analogues. Considerable progress has been made in determining reaction pathways and mechanisms, for example, of the reduction of carbon monoxide and related reactions.

During the last 10 years or so, the chemistry of unsaturated carbenes, such as vinylidene, allenylidene, and their derivatives, coordinated to one or more metal atoms, has been explored. In general, these ligands form a series C_nH_2 ; for $n=1$, methylene, complexes of the parent ligand, and particularly substituted derivatives are well known and have been reviewed on several α ccasions.¹ The chemistry of CCH_2 (vinylidene) has been developing rapidly, and while no examples of complexes containing CCCH₂ (propadienylidene) have been described, several substituted derivatives are known. To a lesser extent, the free molecules have also been obtained and studied, either in a matrix, or by suitable trapping reactions.

The importance of vinylidenes in the overall chemistry of two-carbon ligands has become evident and it is now opportune to summarize progress that has been made. This review surveys the rapidly developing organometallic chemistry of these species. It supplements an earlier review of the synthesis, structures, and chemistry of mono-, bi-, tri-, and tetranuclear metal

complexes.² Some mention of binuclear complexes occurs in a survey of systems containing bridging hydrocarbon groups,³ while a brief account of reactions of alkynes at electron-rich metal centers⁴ concentrates on rhenium chemistry. More recently, a review of this chemistry has appeared in the Russian literature.⁵ It is appropriate in this article to give a reminder of the salient points of vinylidene chemistry; otherwise, the literature has been covered to the end of 1989. This review will not discuss heterovinylidenes, such as ketenylidenes or aza- and phospha-vinylidenes; the chemistry of the former and their metal complexes (partic-

///. Vinylidene and Related Unsaturated Carbenes

ularly clusters) has been reviewed recently.6,7

A. Vinylidene

/. Generation and Trapping of Vinylidenes

Vinylidene, $H_2C=C$:, is the simplest unsaturated carbene, and is tautomeric with ethyne, $HC=CH$. The organic chemistry of unsaturated carbenes has been summarized in two excellent reviews by Stang.⁸ In solution, vinylidenes have been generated from primary vinyl halides and LiR, by the base-induced decomposition of N -nitrosooxazolidones, and from vinyl triflates and KOBu^t. The latter reactions have been demonstrated by the stereochemical addition of $CCMe₂$ to olefins, which is stereospecific for *cis-* and *trans-2* butene and 98% stereoselective for cis- and *trans-2* methoxy-2-butene. In the presence of dimethyl- or diethyl-acetylenes polymers were produced via methylenecyclopropenes, detected below -20 ⁰C as the sole products. The latter were trapped with $HClO₄$ as cyclopropenium salts and showed the formation of the dialkylvinylidenes. Trapping experiments with substituted styrenes showed that the electrophilic properties of $CCR₂$ are comparable to those of dihalocarbenes.

Early reports described singlet C_2 obtained from a carbon arc in a high vacuum, which reacted with $RCH₂D$ to give $RCD=C=CH₂$ via an alkylcarbenevinylidene pair followed by coupling.⁹ In the presence of acetone, hydrogen abstraction gave $CCH₂$ which isomerized to ethyne. With cyclopropane, C_2 gave CCH2, cyclopropene (which isomerized to allene), and the coupled product methylenecyclopropane.¹⁰

Kinetic and trapping experiments with ethyne/ benzene and ethyne/toluene mixtures pyrolyzed at >820 K and studied by modulated beam dynamic mass spectrometry have given evidence for the fast equilibrium preceding carbene addition to the aromatic ring.¹¹

$$
HC=CH \rightleftharpoons H_2C=C:
$$

Thus, straight pyrolysis has an activation energy of 155 (8) kJ mol"¹ ; the reaction gives firstly vinylethyne and then benzene. In the presence of benzene, peaks at *m/z* $= 78 + 26n$ ($n = 1,2,3,4$) correspond to polyvinylbenzenes; with toluene, methylstyrene isomers were found. The reactions were described by a series of steps involving insertion/addition of vinylidene into the aromatic C-H bonds.

Flash vacuum pyrolysis (FVP) of a tetrafluoroanthracene at 600 \degree C gave HC=¹³CD, which rearranged

SCHEME 1

at 700 °C to give $DC=^{13}CH$ without appreciable intermolecular H/D exchange: it was proposed that this process occurred via intermediate vinylidene species.¹² Thermal intramolecular scrambling in $H_2C=13$ CDC- $D=$ ¹³CH₂ requires a discrete symmetrical intermediate resembling CCH₂. Similarly, FVP of silyl-substituted phenylethynes gave silaindenes via thermally induced acetylene-vinylidene rearrangements, the vinylidene inserting into a Si-H bond to complete the cyclization (Scheme I).¹³

The long-lived triplet state $(^{3}B_{2})$ of vinylidene was produced by 1,1-elimination of HCl from vinyl chloride induced by flash photolysis in helium; it was detected by its characteristic 137-nm absorption.¹⁴ Quenching in helium gave ethyne. Vacuum UV photolysis of ethyne or ethene gave triplet $CCH₂$ in quantum yields of 0.4 and 0.75, respectively. Spectroscopic, thermochemical, and kinetic data have been reported.¹⁴

Difluorovinylidene is the principal primary photoproduct obtained by the triplet Hg photosensitization of $CF_2=CHF$, and reacts with C-H bonds to give 1.1-difluoro-1-alkenes, and with $C=C$ bonds to give difluoromethylenecyclopropanes.¹⁵

Protonation (12 N H_2SO_4) of $[NMe_4][Fe(\eta C_5H_5(\eta^5-HCB_9H_9CC_2H)$] afforded the unusually stable dark red zwitterionic vinylidene 1, which could be deprotonated by $NaBH_4$ or LiMe.¹⁶ Addition of HX (X = Cl, Br) to 1 gave $\overline{Fe}(\eta - C_5H_5)(\eta^5-HCB_9H_9CC(X)Me)$.

2. Theory

A multitude of theoretical studies of the ethyne/vinylidene system have been made. Many of the ab initio studies were summarized by Krishnan et al.,¹⁷ and a detailed account was also given by Osamura et al.;¹⁸ $CCH₂$ is either a very shallow minimum or a saddle point with an extremely short lifetime as a result of quantum mechanical tunneling.18-20 Skell's trapping experiments suggested a lifetime of 10^{-10} M s.¹⁰ Vinylidene is considered to be the effective transitionstate structure for the degenerate exchange of the two

Figure 1. Calculated geometries and relative energies of C_2H_2 isomers.

H atoms on the C_2H_2 surface. The activation energy for this process is ca. 188 kJ mol⁻¹; the barrier to tautomerization of CCH_2 to C_2H_2 is between 4 and 21 kJ mol^{-1.21} The calculated geometries and energies relative to C_2H_2 of the 1A_1 , 3B_2 , and 3A_2 states are shown in Figure 1; the ${}^{3}B_{2}$ triplet state has a much higher barrier to isomerization than singlet CCH_2 .²²⁻²⁴

The difluoro species has also been examined. Ab initio calculations on the isomerization $C_2F_2 \rightarrow F_2CC$ show that the vinylidene is $152 \text{ kJ} \text{ mol}^{-1}$ above the alkyne, with $E_a = 569 \text{ kJ mol}^{-1}$.²⁵

Several observations of H_2CC^- have been described; theoretical calculations have predicted electron affinities of ca. 0 and -1.8 eV for H_2CC and HC_2H , respectively.²⁶ The long-lived H_2CC^2 anion (ΔH_1 372–423 kJ $mol⁻¹$) can be generated from reaction of \overrightarrow{O} atoms with ethyne; $19,27$ the electron is in a nonbonding orbital on the carbene carbon, leading to partial saturation of the $C=C$ double bond.²⁸ This species can also be generated on MgO surfaces.²⁹ The ion of *m/z* 44 produced by resonant dissociative electron attachment to *cis-*CHF=CHF has been ascribed the CCHF⁻ structure.²⁶

The 2A_1 and 2B_2 states of H_2CC^+ are almost degenerate and lie about 47.7 kJ mol⁻¹ above neutral vinylidene.³⁰

B. Propadienyildene and Higher Species, H₂C_n $(n\geq 3)$

Propadienylidene (allenylidene, vinylidenecarbene, or ethylidenecarbene), $H₂CCC$, has been obtained by photolysis of cyclopropenylidene, from pyrolysis of di-tert-butyl 2-cyclopropene-l,l-diperoxycarboxylate. In an argon matrix, propargylene (ethynylcarbene),

Figure 2. Calculated geometries and relative energies of C_3H_2 isomers.

 $CH(C=CH)$, is formed first (75% conversion after 2.5 h) which with further irradiation for 20 h gives propadienylidene.³¹ The latter was identified from its calculated IR spectrum. Irradiation at shorter wavelengths (254 nm) results in rapid reversion to propargylene.

Theoretical studies have shown the ground state of $H₂CCC$ to be a singlet, with the triplet state lying some 201 kJ mol-1 higher.20,32 Cyclopropenylidene is the most stable C_3H_2 isomer and has been detected in space;³³ $H₂CCC$ is more stable than propargylene by 50-67 kJ mol-1 . The triplet states are much higher in energy, the most stable being propargylene, with triplet H_2CCC being 102.5 kJ mol⁻¹ higher still.³⁴ The zwitterion $H_2C^+C^{\text{inter}}$ is an important contributor to the structure. The geometries and relative energies of these species are shown in Figure 2.

The latest example of chemical generation and trapping of an unsaturated carbene is that of CCCCCHBu^t, obtained from $H_2C_2C_2CHBu^t(OSO_2Me)$ and $KOBu^t$ in 1,2-dimethoxyethane at -62 °C.³⁵ Slow warming to room temperature in the presence of trapping agents such as C_2Me_4 or SiHEt₃ afforded the corresponding addition (isolated as a cyclodimer) and insertion products, respectively.

The higher cumulenyl carbenes require increasing numbers of singlet and triplet configurations to describe their structures, and their stabilization by charge separation is most effective with odd-numbered carbon chains. For H_2C_n ($n = 2-5$), singlet ground states have been predicted.^{20,32} Interestingly, the energy difference between the two C_4H_2 isomers [CCH(C \equiv CH) (ethynylvinylidene) and H_2CCCC (Figure 3)] and HC_2C_2H is about the same as that between H_2CC and HC_2H^{32} .

IV. Mononuclear Vinylidene Complexes

A. Preparative Methods

Several methods have been employed for the preparation of mononuclear vinylidene complexes: (i) from 1-alkynes via a formal 1,2-hydrogen shift; (ii) by ad-

Figure 3. Calculated geometries and relative energies of C_4H_2 isomers.

dition of electrophiles to metal alkynyl complexes; (iii) by deprotonation of carbyne complexes; and (iv) by formal dehydration of acyl complexes. In addition, alkenes, preformed vinyl complexes, and disubstituted alkynes have been used as precursors in a variety of transformations. Finally, transfer of vinylidene ligands between metal centers and modification of existing vinylidene ligands are reactions which deserve further investigation. Table 1 lists mononuclear vinylidene complexes reported during the period of this review.

/. From 1-Alkynes

The 1,2-hydrogen shift undergone by many 1-alkynes on reaction with certain transition metal complexes has proved to be a useful entry into vinylidene complexes. This ready rearrangement has been shown to be preceded by an η^2 - to η^1 -alkyne slippage (section VIII.A). For d^6 metal complexes, the η^2 -alkyne complex is destabilized by a repulsive 4e interaction between the filled π_1 orbital of the alkyne and a filled $d_{\tau}(t_{2g})$ metal orbital.³⁸ The relative stability of the vinylidene over the alkyne complex increases with increasing electron density at the metal center.

The cationic alkyne complex $[Mo(\eta-HC_2Bu^t) (PMe₂Ph)₂(\eta-C₅H₅)$ ⁺ was converted to [Mo- $(CCH\bar{B}u^t)(CO)(\bar{P}M\tilde{e}_2Ph)_2(\eta-C_5H_5)]^+$ under CO (1 atm, 20 °C). This reaction is notable as the first example of alkyne/vinylidene tautomerism on a d^4 metal.³⁷

The $Mo(\eta$ -C₇H₇) group is isoelectronic with the often-used $Ru(r-C_5H_5)$ group, so that it is not surprising that heating $[Mo(NCMe)(dppe)(\eta-C_7H_7)][PF_6]$ with $HC₂Ph$ in refluxing acetone for 10 days afforded [Mo- $(CCHPh)(dppe)(\eta$ -C₇H₇)][PF₆], albeit in only 7% yield.³⁸ A better route to larger quantities of this complex is from $[Mo(\eta-PhMe)(\eta-C_7H_7)][PF_6]$, dppe, and $HC₂Ph$ in acetone; the product, however, contains a paramagnetic impurity. Deprotonation (NaOMe or proton sponge) gave the corresponding neutral phenylacetylide complex. A red solution containing the phenylvinylidene complex was also obtained from MoCl- $(d$ ppe) $(\eta$ -C₇H₇) and HC₂Ph in methanol; the phenylacetylide was obtained in 51% yield after the addition of NaOMe. Protonation of the acetylide with $HBF₄$ gave the vinylidene (33%), while the corresponding *tert-b\xty* complex was not characterized, but was deprotonated to the acetylide in 35% yield with KOBu^t.

1-Alkynes reacted directly with $fac-W(CO)_{3}(dppe)$ -(thf) to give mer-W(CCHR)(CO)₃(dppe) in $65-70\%$ yield. This alkyne/vinylidene isomerization is catalyzed by water, and in its presence, yields of 96% were obtained $(R = Ph)$.³⁹⁻⁴² The strong trans influence of the vinylidene group leads to a small J_{WP} of about 145-155 Hz. Spectroscopic data suggest the formation of an intermediate $fac-n$ -alkyne adduct. The mixed CCMePh complex was obtained by further alkylation with $[M_{e_3}O]^+$ to give the phenylethylcarbyne complex, which was then deprotonated with alumina.

Propiolic aldehyde acetals displaced Et₂O from Mn- $(OEt_2)(CO)_2(\eta$ -C₅H₅) to give the η^2 -alkyne complexes; deprotonation/protonation cycles with LiBu and H_2O , respectively, gave the red vinylidenes Mn(CCCH- $(OR)_2(CO)_2(\eta$ -C₅H₅) $[(OR)_2 = (OMe)_2, (OEt)_2, O \widetilde{\text{CH}_2)}_3\text{O}$].⁴³ Manganese complexes derived from 1,4diethynylbenzene have been obtained from Mn(thf)- $(CO)₂(\eta-C₅H₅)$. Initially the reaction gave a mixture of the mono- and binuclear η^2 -alkyne complexes, which were isomerized by treatment with LiPh.⁴⁴ The mononuclear derivative (71%) is a red oil, unstable in air; it could be converted to several other related complexes by conventional reactions on the uncomplexed ethynyl group (Scheme 2). The binuclear complex was obtained in 40% yield.

Displacement of N_2 from trans-ReCl(N_2)(dppe)₂ by excess HC_2R (R = Et, Bu^t, Ph, CO₂Me, CO₂Et, C₆- $H_{10}OH-1$, SiMe₃) occurred readily in refluxing thf to give trans-ReCl(CCHR)(dppe)₂.^{45,46} The vinylidene ligand occupies a site opposite the strongest net electron donor, Cl, in these electron-rich complexes.

Chromatography $(SiO₂)$ of the reaction products from ${[Fe(CO)_2[P(OMe)_3]_2]_2(\mu-N_2)}$ and ${HC_2CH(OR)_2 [R = Me]}$, Et; $(OR)_2 = O(\overline{CH}_2)_3O$ afforded Fe(CCH(CHO)}- $(CO)₂(P(OMe)₃)₂$; the same complex was also obtained. directly from the N_2 complex and HC_2CHO .⁴⁷ The IR spectrum indicated the presence of *cis-* and *tran\$-{P-* $(OMe)_{32}$ -cis- $(CO)_2$ isomers; the trans isomer is found in the solid state.

Smooth formation of $[Fe(CCHR)(dppe)(\eta-C_5H_5)]^+$ from the bromo complex, alkyne, and NH_4PF_6 was reported;⁴⁸ alternatively, the reaction between the iodo complex, alkyne, and TlBF₄ in dichloromethane was reported to give an 80% yield of the CCHMe complex.⁴⁹ A variety of new iron and ruthenium complexes containing chiral tertiary phosphine ligands have been described in the course of a study of the influence of chirality at the metal atom on diastereomeric equilibria.⁵⁰ In the case of (S, S) -RuCl(chiraphos)(η -C₅H₆), the conversion to the phenylvinylidene by reaction with $HC₂Ph$ in refluxing MeOH was neither stereospecific nor stereoselective; in addition, 10-15% methoxy(bennot stereose fective, in addition, 10 10 % includes (bei-
zyl)carbene complex was obtained.⁵¹ This reaction may proceed via a 16 e intermediate, such as $(Ru(PP)(n-1))$ C_5H_5]⁺X⁻, or via a five-coordinate alkynyl/hydride complex. Under milder conditions (2-3 h/room temperature), the configuration at the metal remained unperature), the comiguration at the metal remained un-
changed.^{49,50} Low-temperature ³¹P NMR spectra showed the presence of two diastereoisomers.

The formation of the intermediate η^2 -alkyne complex, and its rearrangement to the corresponding η ¹vinylidene, has been observed in the ruthenium series.⁵² Ethyne or propyne reacted with $RuCl(PMe₃)₂(\eta-C₅H₅)$ in methanol to give $\text{[Ru(\eta^2\text{-}HC_2R)(PM\hat{e}_3)_2(\eta\text{-}C_5H_5)]^2}$ (R) = H, Me). The propyne derivative rearranged to [Ru-

 $(CCHMe)(PMe_3)_2(\eta$ -C₅H₅)]⁺ in MeOH or MeCN (half-life 5.5 min at 40 $^{\circ}$ C in MeCN; ΔH^{*} 97.9 (1.1) kJ mol⁻¹, ΔS^* 1.6 (4.0) J K⁻¹ mol⁻¹). The ethyne complex is more stable, with half-life >5 h at 60 °C; the parent vinylidene was obtained from HC₂SiMe₃.

In studies of the chemistry of $\text{Os}(\text{CO})(\text{PR}_3)(n-\text{C}_5\text{Me}_5)$ complexes, reactions of the iodo complex with $HC₂Bu^t$ or HC_2Ph in the presence of AgBF₄ gave the corresponding vinylidene cations; the phenylvinylidene rapidly afforded the phenylacetylide by deprotonation when filtered through Celite in air.⁵³ The CCHBu^t complex was stable toward this workup. The tricarbonyl cation was isolated from similar reactions of $OsI(CO)₂(\eta-C₅Me₅).$

Protonation of $RuCl(C_2Ph)(PMe_3)(\eta$ -C₆Me₆) (HBF₄ in $Et₂O$) afforded the corresponding phenylvinylidene cation.⁵⁴

Reactions between $RhCl(PPr₃)₂$ and 1-alkynes gave trans-RhCl(η^2 -HC₂R)(PPrⁱ₃)₂ (2, R = H, Me, Ph; Scheme 3), which slowly equilibrate with RhHCl- $(C_2R)(PPr_3^{'})_2$ (3) in benzene or thf at room temperature; the latter complexes are very air sensitive and were not isolated.⁵⁵ In pyridine, $\text{R}\text{hHCl}(C_2\text{R})(\text{py})(\text{P}\text{Pr}^i_3)_2$ (4) were formed; these readily lost pyridine in hydrocarbon solvents to give trans-RhCl($CCHR$)($PPr₃$)₂ (5).⁵⁶ The latter complexes were also formed by the quantitative rearrangement of the η^2 -alkyne complexes 2 on heating in hexane $(2 h/50 °C)$.⁵⁵ The alkyne/vinylidene isomerization may proceed by an intermolecular route, as also found for the iridium complex.

The reactions of 4 with NaC_5H_5 are complex, a mixture of $Rh(\eta^2-HC_2R)(PPr^i{}_3)(\eta-C_5H_5)$ (6) and Rh- $(CCHR)(\overrightarrow{P}Pr^i_3)(\eta-C_5H_5)$ (7) being obtained, the relative proportions which depend on R; for $R = H$, no alkyne complex was formed.^{55,57} Vinylidene 7 ($R = H$) was also formed in the reactions between 4 ($R = H$) and NaC₅H₅; after 2 min, only air-sensitive trans- $Rh(C_2R)(py)(PPr_3^i)_2$ (8) was isolated. Dehydrochlorination of 4 by $C_5H_5^-$, acting as a base, gave C_5H_6 which then reacted with 8 to give 9 and pyridine. In the presence of water, RhH- $(C_2R)(PPr_3)(\eta$ -C₅H₅) (10) was formed and isomerized only slowly to 7.58

Reactions between $RhCl(PPrⁱ₃)₂$ and $HC₂CO₂Me$ at 0 °C gave square-planar $trans-RnCl(\eta-HC_2CO_2Me)$ - $(PPr₃)₂$; at 60 °C, isomerization to the vinylidene occurred.⁵⁹ Similar reactions with HC_2 Bu^t at -30 °C afforded isomeric trans-RhCl(η -HC₂Bu^t)(PPrⁱ₃)₂ and RhHCl(C_2 Bu^t)(PPrⁱ₃)₂ (9/91) which on heating gave the vinylidene complex. Both alkyne complexes gave only the vinylidenes $Rh(CCHR)(PPrⁱ₃)(\eta \cdot C_5H_6)$ ($R = Bu^t$, $CO₂Me$) in reactions with NaC₅H₅.

The related alkyne-iridium complexes obtained from $HC₂R$ (R = H, Me, Ph) gave 80–90% yields of thermally stable vinylidene complexes after heating for 36 h in refluxing toluene; the intermediate hydrido-phenylethynyl complex was isolated in 95% yield from the reaction in pentane at -10 °C.⁵⁶ While several rhodium complexes can be obtained from terminal alkynes and $RhCl(PPrⁱ₃)₂$ (which, although unstable, can be isolated free of excess tertiary phosphine), the analogous iridium complexes cannot be so obtained. An alternative approach is to use the dihydride $IrH_2Cl(PPr_i^i)_2$. This reacts with HC_2CO_2Me to give the hydrido-alkynyl complex with elimination of dihydrogen; heating in refluxing benzene for 24 h converts this smoothly into the corresponding vinylidene.⁶⁰ In refluxing toluene,

TABLE 1. Mononuclear Vinylidene Complexes, LnM(CCRR)

TABLE 1 (Continued)

TABLE 1 (Continued)

 $HC₂SiMe₃$ affords the very proton-sensitive silylvinylidene, which was not isolated pure.

In contrast with the above results, reactions between $[Rh(PMe₃)₄]$ Cl and 1-alkynes in tetrahydrofuran or water gave cis- $(RhH(C_2R)(PMe_3)_4]Cl$ (R = various, including CH_2CH_2OH and $CH_2CH_2CO_2H$) by C-H activation and oxidative addition.⁶¹ No migration of H to form the vinylidene was reported (see also section IV.A.2).

2. From Metal Acetylides

Coordination of acetylide anion to a metal center transfers the nucleophilicity from C_{α} to C_{β} . Electrophilic attack on the alkynyl C_β atom is charge controlled, while nucleophilic attack on C_{α} is frontier orbital controlled. Addition of electrophiles to the electron-rich C_{β} of metal acetylides has been described on many occasions, and is perhaps the best entry into vinylidene complexes for many systems.

Accordingly, protonation or alkylation of $M(C_2R)$. $(CO)(P(OMe)_{3/2}^3(\eta - C_5H_5)$ (M = Mo, W; R = Bu^t, Ph) gave the corresponding vinylidene complexes; the Mo complex is unstable above $0^{\circ}C$, tautomerizing to the η -alkyne cation with concomitant loss of $CO.^{37}$ In contrast, the related vinylidenes $[Mo(CCHBu^t)(L)₃(n-$ $(C_5H_5)'$ (L₃ = (CO)(PMe₂Ph)₂, {P(OMe)₃}₃) are stable. Reaction of $[W(C_2Bu^t)(CO)_5]$ ⁻ (from $[WCl(CO)_5]$ ⁻ and

 $\rm LiC_2Bu^t$ in thf) with $\rm [R_3O]^+$ ($\rm R = Me, Et$) afforded the neutral W(CCRBu^t)(CO)₅ in 40–60% yields as deep green oils.⁶² Protonation of $[W(C_2Ph)(CO)_5]$ ⁻ gave the phenylvinylidene, which decomposed at -77 °C.⁶³ Similar reactions with $[fac-W(C_2R)(CO)_3(dppe)]$ ⁻ (R = H, Me, Bu, Ph) (obtained in 60-95% yield from /ac-W- $(CO)_{3}$ (dppe) (Me₂CO) and alkali metal acetylide) afforded mer-W(CCRR')(CO)₃(dppe) (R = H, Ph, R' = H; $R = Me$, Ph , $R' = Me$).⁶⁴ In the acetylides, ion pairing with $Li⁺$ or Na⁺ was indicated by spectroscopic $[\nu({\rm CO})]$ studies, suggesting a tendency to form the vinylidene tautomer. Treatment of the butylacetylide with CO₂ followed by $[Mg_3O]^+$ gave mer-W(CCBu- $(CO₂Me)$ }(CO)₃(dppe), via an intermediate carboxylate. The fac \rightarrow mer isomerization is intramolecular, as indicated by lack of ¹³CO exchange during the reaction.

The stereospecificity of protonation or alkylation reactions of $Re(C_2R)(PPh_3)(NO)(\eta$ -C₅H₅) is discussed in section IV.C.l.

Scheme 4 summarizes the wide variety of substituted vinylidenes obtained from ruthenium acetylide complexes. Iron and ruthenium complexes $M(C_2R)(L)_2(\eta$ - C_5H_5) are remarkably strong carbon-centered bases; typical pK_a values for the *tert*-butylacetylides in MeCN

SCHEME 2

are 13.6 $[M = Fe, L_2 = (CO)(PMe_3)]$ and 20.8 $(M = Ru,$ $L = PMe₃$.⁶⁶ Proton transfer to the iron complex gave two isomers of the tert-butylvinylidene complex in 84/16 ratio; $Ru(C_2Me)(PMe_3)_2(\eta-C_5H_5)$ is protonated by $MH(CO)₃(\eta-C₅H₅)$ (M = Cr, Mo, W) to give the salts

 $[Ru(CCHMe)(PMe₃)₂(\eta$ -C₅H₅)][M(CO)₃(η -C₅H₅)] as yellow powders. The thermodynamic driving force for the protonation is favorable by $26.8 \text{ kJ} \text{ mol}^{-1}$, but there is a large intrinsic barrier because of electronic and structural rearrangement. NMR measurements of the equilibrium constants showed a lower ΔH° for the more acidic hydrides, with a negative ΔS° because of solvation of ionic products.

Alkylation of $Fe(C_2Ph)(CO)(PPh_3)(\eta-C_5H_5)$ with $CF₃SO₃Me$ gave the unstable dark blue methyl(phenyl) vinylidene complex (65%).⁶⁶ Alkylation of iron or ruthenium acetylides with alkyl halides has provided a powerful method for the introduction of a wide variety of functional groups. The barrier to rotation of the vinylidene is low, since the $CCMe₂$ complexes show only one Me resonance, and the same CCMeEt complex was obtained from the methyl- or ethylacetylide and iodoethane or -methane, respectively.⁶⁷ An internal cyclization was found with 6-chlorohex-l-yne, probably proceeding via intramolecular attack of the acetylide proceeding via intramolecular attack of the acceptuation the terminal C–Cl bond.⁶⁷ Extension of this reaction to a variety of halogenated organics has given many disubstituted vinylidene complexes 11 (Scheme 4) containing alkyl, alkenyl, alkyl, and alkynyl substituents.⁶⁸

Addition of tropylium cation to a series of ruthenium acetylide complexes afforded the orange cycloheptatrienylvinylidene derivatives 12 (Scheme 4).69,70 Their reactions are characterized by ready displacement of the C_7H_7 group and formation of the neutral acetylide. Thus, NaOMe gave C_7H_7OMe , and $K[HBBu^s₃]$ gave C_7H_8 as the organic products, while in MeOH, the methoxy(benzyl)carbene complex was formed. Similar reactions of $Fe(C_2Ph)(CO)_2(\eta-C_5H_5)$ with $[C_7H_7]^+$ gave [Fe(CO)₃(η -C₅H₅)]⁺ via the vinylidene (detected by FAB mass spectrometry) and thf cations.

Complexes 13 (Scheme 4) containing azovinylindene ligands were prepared by addition of aryldiazonium salts to iron, ruthenium and osmium acetylides. In these complexes, the azo group could be further protonated, alkylated, and entered into cyclometalation reactions, e.g. with $Mn(CH_2Ph)(CO)_5$.^{69,71}

Addition of halogens to ruthenium acetylides afforded deep green halovinylidene complexes 14 (Scheme 4); in some cases, halogenation of the phenyl group of a C_2Ph ligand also occurred, for example, in the structurally characterized $\left[\text{Ru}(\text{CCBr}(C_6H_4Br-p))(\text{PPh}_3)_2(\eta\text{-}C_5H_5)\right]$ -Br₃. A similar complex was obtained indirectly from the reaction between $Ru(C_2Ph)(PPh_3)_2(\eta-C_5H_5)$ and $[MeCO][SbCl₆]⁷²$ These reactions demonstrate the remarkable resistance of the $Ru-C(sp)$ bond toward cleavage.

Protonation of $Rh(C_2Ph)(np_3)$ [np₃ = N- $(CH_2CH_2PPh_2)_3]$ afforded $[\text{Rh}(\text{CCHPh})(\text{np}_3)]^+$ (70%), which eliminated H_2 on heating (refluxing thf) to give paramagnetic rhodium(II) derivative $\text{[Rh(C}_2\text{Ph})$ - $(np_3)!^{1/3}$ No interconversion of $(cis-RhH(C_2R)(L))$ ⁺ (R) = various; L = np_3 , pp_3), obtained from $[\hat{Rh(L)}]^+$ and 1-alkynes, and the isomeric vinylidene complexes, was found. However, the rhodium(I) σ -acetylides were protonated by strong acids in thf to give trigonal-bypyramidal vinylidene complexes, which react with hydride (NaB H_4 , LiBHE t_3) to give alkenyl derivatives. These experiments show that vinylidenes are not formed from 1-alkynes via hydrido-alkynyl complexes on rhodium.⁷⁴

R = Me, Bu", Ph, CO2Me, etc; R' = Me, Pr¹ , CH2Ph, 0.5 CH2, etc; Ar = Ph, C6H3Mer3,4, C6H3CI2-ZA etc; X - Cl, Br, I

3. By Deprotonation of Carbyne Complexes

This route to vinylidene complexes is formally the reverse of their protonation (section IV.D). Addition of LiBu to M (CCH₂Bu^t){P(OMe)₃}₂(η -C₅H₅) (M = Mo, W) gave deep red lithium derivatives of an anionic species which can be formulated with the charge on the metal or on C_{β} :⁷⁵

L_nMo^{\dagger} = C=CHBu^t \leftrightarrow L_nMo =C-C-HBu^t

The reaction between $Mo(C(CH₂Bu^t))(P(OMe)₃)/\eta$ - C_5H_5) and CF_3I afforded red MoI(CCHBu⁴){P- $(OMe)_{3/2}(\eta$ -C₅H₅) as one product (30%); initial electron transfer from the carbyne HOMO to $CF₃I$ is followed by abstraction of H by the resulting CF_3 radical.⁷⁶ Similarly, the reaction between the carbyne complex and $[p-FC_6H_4N_2][BF_4]$ gave Mo(CCHBu^t)(N₂C₆H₄F $p)$ {P(OMe)₃}(η -C₅H₅).

In related work, the complex $MoBr(CCHPh)$ [P- $(OMe)_{3}$ ₂(η -C₅H₆) was obtained, with Mo(CCH₂Ph){P- $(OMe)_{3}^3$ ₂(η -C₅H₅), from the reaction between K- $(BHBu^2_{3})$ and $(Mo(\eta^2-PhC_2Br)(P(OMe)_{3/2}(\eta-C_5H_5))^+$. The vinylidene is the major product (39%); the CCMePh complex was obtained from the alkyne cation and $LiCuMe₂$, but reacted further to form the carbyne (43%) . 77,78

The chlorocarbyne complexes $M(CCl)(CO)_{2}^{3}(pz)_{3}BH$ $(M = Mo, W)$ reacted with NaCHXY $(X, Y = CN,$ $CO₂Et$) to give yellow-orange anionic vinylidenes [Mo- $(C\tilde{C}XY)(\tilde{C}O)_2$ (pz)₃BH)⁻ (15).⁷⁹ In contrast with the related $\widehat{\text{CCHBu}^t}$ complex (see above), these species do not react with water; with HCl or PhCOCl, oxidizing agents such as $[Fe(\eta-C_5H_5)_2][BF_4]$, $[Ph_2I][PF_6]$ or NaOCl, or CoCl₂, the oxametallacarbenes Mo- $\{CHCX=CC(0)OEt\}(CO)_2(\text{pz})_3BH\}$ (X = CN or CO_2Et) were formed. Addition of electrophiles to 15 $(X = \overline{C}N)$,

[M] - M(CO)2UpZ)3BH), M = Mo, W

 $% \begin{pmatrix} \vspace{-0.15cm} \vspace$

 $Y = CO₂Et$) afforded the corresponding carbyne complexes $Mo(CCXYZ)(CO)₂({pz})₃BH$ (Z = HgCl, HgBr, $Hgl, Cu, or N₂C₆H₄NMe₂$. The dicyanovinylidene also forms a stable Cu(I) adduct.

The η^2 -acyl-molybdenum complexes $Mo(\eta^2$ -O= $CR(CO₂)(dmpz)₃BH$ (R = Me, Et) reacted with NaOEt/EtOH to give the carbyne derivatives Mo- $(CR)(CO)_{2}$ $(dmpz)_{3}BH$; the methyl complex was deprotonated $(Na[N(SiMe₃)₂])$ to $[Mo(CCH₂)(CO)₂$ - ${(\mu mpz)_3BH}]$, characterized by NMR and its alkylation (R^T) to $Mo(CCH₂R')(CO)₂$ $(dmpz)₃BH$ $(R' = Me, Et).⁸⁰$

4. From Acyl Complexes

Dehydration of acyl complexes to vinylidenes with triflic anhydride was first achieved by Boland-Lussier and Hughes.⁸¹ Application to the rhenium series resulted in concomitant protonation of the acyl to a stable hydroxycarbene complex by the $CF₃SO₃H$ formed. The vinylidene/hydroxycarbene mixture so obtained was deprotonated [KOBu^t or 2,2,6,6-tetramethylpiperidine (tmp)] to a 1/1 acetylide/acyl mixture. In a second reaction with triflic anhydride, the acetylide is protonated to the same vinylidene formed by dehydration of the acyl (Scheme 5).82,83 Dehydration of Fe(COMe)- $(CO)(\dot{P}Ph_3)(\eta$ -C₅H₅) (HBF₄-Et₂O/triflic anhydride) gave $[Fe(CCH₂)(CO)(PPh₃)(\eta-C₅H₅)][BF₄].⁸⁴]$

5. From Vinyl Complexes

An α -hydrogen shift from a vinyl ligand produces $Ta(H)(\text{CCH}_2)(\eta-\text{C}_5\text{Me}_5)_2$ in 75% yield when $TaCl_2(\eta-\text{C}_5)$ C_5Me_5 ₂ was treated with vinylmagnesium bromide in thf. The shift was reversed in the presence of CO (1 atm, 60 °C), when $Ta(CH=CH_2)(CO)(\eta-C_5Me_5)_2$ was formed; the vinylidene was reformed on UV irradiation.⁸⁵

A new approach to the formation of M-C multiple bonds has been the elimination of small molecules across the M-C bond. Application to certain vinylmetal complexes has provided a route to new vinylidene complexes. For example, the osmium acetylide OsI- $(C_2Ph)(PPr₃)(\eta-C_6H₆)$ cannot be protonated, but reacts

SCHEME 5

readily with N a $BH₄$ in methanol to give the hydrido-E-vinyl complex. Chlorination $(CCl₄)$ or iodination (CH_2I_2) , followed by reaction with LiBuⁱ at -40 °C, gave a 90% yield of Os(CCHPh)(PPrⁱ₃)(η -C₆H₆); the methyl complex is much less stable and could not be isolated.⁸⁶ The analogous rhodium complex $RhCl(Z-CH=$ $CHPh) (PPr₃) (\eta - C_5H_5)$ can be similarly dehydrochlorinated with NEt_3 . In contrast, the square-pyramidal complexes MCI (CH=CHR)(CO)($PPr₃ⁱ$)₂ (M = Ru, Os) did not give vinylidene complexes on treatment with $NEt₃$ or LiBu.⁸⁷

6. From Olefins

Elimination of chlorosilanes from appropriate metal precursors has provided a novel method to generate

metal-element double bonds, including vinylidenes. Thus oxidative addition of α -halogenovinylsilanes to coordinatively unsaturated metal fragments, such as those formed by irradiation of $Mn(CO)_2(L)$ (η -C₅H₄Me) $[L = CO, PR₃, P(OR)₃]$ or $Cr(CO)₃(\eta$ -arene), gave a series of mono- and di-substituted vinylidene complexes (Scheme 6). 88,89 In the case of $Mn(n-CMe₂=CBr (SiMe₃)(CO)₂(\eta-C₅H₄Me)$, formed as an intermediate, slow conversion to the corresponding $CCMe₂$ complex could be followed. In contrast, the major product from $Me₂C=CClSiMe₃$ in thf was the butatriene complex $Mn(\eta^2-Me_2C=C=C=CMe_2)(CO)_2(\eta$ -C₅H₄Me), formed by coupling of CCMe₂ residues. In pentane, the vinylidene is the major product.⁹⁰ The coupling reaction is reminiscent of the formation of $trans$ -Bu^tCH=C== $C = CHBu^t$ in the reaction of $HC₂Bu^t$ with $RuH₂$ - $(CO)(PPh_3)_{3}.^{91}$

In the presence of excess reducing agent $[Fe(II)]$, $S_2O_4^2$ -], DDT (1,1-bis(p-chlorophenyl)-2,2,2-trichloro e_2e_4 , e_2e_1 , e_3e_2 and e_3e_1 , e_2e_2 are the set that phenylporphinato $(2-)$ to give vinylidene complex $16.^{92}$ Scheme 7 outlines several reactions, including oxidation to paramagnetic 17, in which the vinylidene group now bridges the iron atom and a ring nitrogen.⁹³ This complex reacted with acid to give the N -vinylporphyrin 18 and was oxidized (FeCl₃ or electrochemically at $+0.8$ V) to the N,N'-bridged porphyrin 19.⁹⁴ The X-ray structures of 16^{95} and $17^{93,96}$ and of the Fe(II) derivative of 18⁹⁷ have been determined.

SCHEME 8

The N,N'-bridged vinylporphyrin 19 reacted with metal carbonyls to break one or both C-N bonds, with incorporation of the metal into the porphyrin. With $Fe₃(CO)₁₂$, vinylidene complex 16 was obtained (90%), while with $Ni(CO)_4$, complex 20, analogous to the iron derivative 17, was formed, only one C-N bond being broken.⁹⁸ With $Ru₃(CO)₁₂$, three products were isolated, purple Ru{ $CC(C_6H_4Cl-p)_2$ }(tpp) (21) (40%) and the C-bonded complexes 22 and $23.\overline{^{36-100}}$ The latter was also formed by heating 23 in PhCl (85%); the tolyl analogue was produced from DDT and $K_2[Ru(ttp)]$.¹⁰¹

Addition of norbornadiene to ${[IrCl(\tilde{C}_8H_{14})_2]}_2$ gave ${[IrCl(nbd)₃]}_n$ which with ${PPr}^i_3$ or \rm{PMeBu}^i_2 in \rm{C}_6H_6 at 50 °C, formed violet, square-planar trans-IrCl(CCH- $(C_7H_9)(PR_3)$ ₂ (24; Scheme 8) in almost quantitative yield.¹⁰² If the reaction is carried out in pentane/thf mixtures at lower temperatures, a green complex, 25, containing (probably) the exo,trans,exo isomer of norbornadiene dimer is obtained. This slowly decomposes with the elimination of cyclopentadiene to give metallacyclopentene 26 which then rearranges to the vinylidene complex. The reaction is probably driven by the bulky phosphine ligands, steric congestion in 26 promoting the rearrangement.

7. From Dlsubstltuted Alkynes

The manganese vinylidene complex 27 (Scheme 9) was obtained from the cyclic silylalkyne illustrated and characterized by X-ray crystallography.¹⁰³ The formation of 28 from the reaction between $Fe₂(CO)₉$ with a related diyne may involve an intramolecular addition of an iron-vinylidene derivative (formed by 1,2-migration of the silyl group on one $C=CC$ triple bond) with the second $C=$ triple bond.

?j-(l-Iodoalkyne)manganese complexes undergo 1,2 halogen shifts to give the corresponding iodovinylidenes, $\text{Mn}[\text{CC}(I)CH(\text{OR})_2](\text{CO})_2(\eta \text{-} C_5H_5)$ [R = Me, Et; (OR)₂ $= O(CH₂)₃O$, probably via dissociation and readdition of I⁻; the iodo complex was structurally characterized.¹⁰⁴

8. By Vinylidene Ligand Transfer

The reaction between $Rh(CCH_2)(PPr_3)(\eta$ -C₅H₆) and IrCl(PPr¹₃)₂ results in transfer of the vinylidene ligand from Rh to Ir in 77% yield, probably via an interme-

diate binuclear $Rh(\mu$ -CCH₂)Ir complex. The nature of the rhodium product is unknown.⁶⁰ The only previously reported example of this potentially useful reaction is the rather inefficient transfer of CCHPh from manganese to rhenium, proceeding in only 4% yield.¹⁰⁵

9. By Modification of the Vinylidene Ligand

In the ruthenium series, electrophilic addition of $CH₂$ (from diazomethane) to the C_4 -H bond is followed by hydrogen migration to give 50-70% yields of [Ru- $(\text{CCMéR})(\text{chiraphos})(\eta \cdot \tilde{C}_5H_5)]^+$ (R = Bu^t, Ph).¹⁰⁶ An alternative possibility is the formation of MeV_2^+ and methylation of the acetylide complex. This reaction has relevance to the Fischer-Tropsch reaction, since insertion of carbenes into the C-H bond of a vinylidene would give branched chain hydrocarbons, as an alternative to the McCandlish mechanism (see below).

B. Structure and Bonding

/. X-ray Structures

Many vinylidene complexes have been characterized by X-ray structural determinations and the salient features of the vinylidene group geometry are collected in Table 2. In mononuclear complexes, the $M=C=C$ group is essentially linear, the angle at C_{α} being in the range 167-180°. The C=C bond length is between 1.25 and 1.41 A, corresponding to a bond order of between two and three, as predicted by theory. The $M=C$ bond is also short and consistent with a bond order of about two. Although the plane of the vinylidene is predicted to be perpendicular to the molecular plane in complexes to be perpendicular to the indicedual plane in complexes
of the type $M(CCR_2)(L)_2(n-C_5H_5)^{107}$ the barrier to roof the type $M(CCT_2)(L/2(T^cGTH_5))^{\sim}$ the barrier to ro-
tation is computed to be only ca. 15 kJ mol⁻¹, so that this preference is often overridden by steric effects. In 63 this preference is often overridden by steric effects. In
[Os(CCHBu^t)(CO)(PMe₂)(n-C_cMe₂)]⁺,⁵³ for example. the torsion angle P-Os-C_{β}-C differs by 27° from that in the Re cation, the bulk of the C_5Me_5 group directing the Bu* group toward the CO ligand at the expense of the HOMO/ C_{α} p orbital overlap.⁸³

The structure of the pyrrolylcarbene complex $RuCl₂(CCl(C₄H₄N))(CO)(PPh₃)₂ (A), which contains a$ planar $RuC(C_4N)$ unit, with an $Ru=C=C$ angle of 139.2°, and a long C-Cl distance [1.826 (13) A], suggests

TABLE 2. Some Structural Features of Mononuclear Vinylidene Complexes, MLn(CCRR')

ML_n	ion	R	\mathbf{R}'	$M-C$	$C-C$	$M-C-C$	ref
$MoBr[P(OMe)3]2(\eta-C6H6)$		н	Ph	1.917(5)	1.327(7)	177.9(5)	77, 78
$\text{MoI}(\text{P}(\text{OMe})_{3}_{2}^{12}(\eta-\text{C}_{5}\text{H}_{5})$		н	Bu ^t	1.927(3)	1.333(5)	178.2(3)	76
$mer-W(CO)_{3}(dppe)$		H	CO ₂ Me	1.98(1)	1.30(1)	173(1)	39
$mer-W(CO)_{3}(dppe)$		CO ₂ Me	(Z) -C(CO ₂ Me)= CHPh	1.899(6)	1.376(7)	174.4(5)	144
$[W(CO)(P(OMe)3]2(\eta-C6H6)]+$	PF_{α}	Me	Ph	1.947(6)	1.330(9)	177.6(5)	37
$Mn(CO)2(r-C6H6)$		н	$C_6H_4CBr = CH_2-p$	1.75(2)	1.32(2)	177(2)	44
$Mn(CO)2(\eta-C5H5)$			$CH(OMe)$,	1.777(6)		175.5(6)	104
$trans\text{-}\mathrm{ReCl(dppe)}_2$		н	Ph	2.046(8)	1.31(2)	166(1)	45, 46
$[Re(NO)(PPh3)(\eta-C5H6)]+$	PF_6	H	$1 - C_{10}H_7$	1.840(7)	1.39(2)	178.1(9)	83
Fe(tpp)		C_6H_4Cl-p	C_6H_4Cl-p	1.689(3)	1.336(4)	176.7(3)	95
$Fe(CO)2(P(OMe)3)2$		н	CHO	1.749(5)	1.335(7)	177.6 (4)	47
$Fe(CO)2(P(OMe)3)2$ $[Fe(dppe)(\eta - C_{\delta}H_{\delta})]^+$ $[Ru(PMe3)2(\eta-C6H6)]+$ $[Ru(PPh_3)_{2}(\eta - C_5H_5)]^{+}$ $[Ru(PPh_3)_{2}(\eta - C_{5}H_{5})]^{+}$ $[Ru(PPh_3)_2(\eta - C_5H_5)]^+$ $[Ru(PPh_3)_2(\eta - C_5H_5)]^+$ $[\text{Ru(dppe)}(\eta\text{-}C_bH_b)]^+$ $[\text{Ru}(\text{prophos})(\eta - C_b H_b)]^+$ $[Os(CO)(PPh3)(\eta-C5Me5)]+$	BF ₄ PF_{ϵ} r BF ₄ I_3 ⁻ Br_3 PF_6^- PF_{6} BF_{4}	$CHOCH2$ ₃ O Me н Me Ph Ph C_6H_4Br-p Ph H н	(dimer) (dimer) Me Ph $N_2C_6H_3Me_2-3,4$ Br C_7H_7 Me Bu ^t	$1.778(9)$, $1.763(9)$ $1.746(9)$, $1.766(9)$ 1.845(7) 1.86(1) 1.823(9) 1.839(7) 1.85(1) 1.848(9) 1.84(1) 1.879(6)	1.34(1), 1.35(1) 1.33(1), 1.32(1) 1.313(10) 1.29(2) 1.34(1) 1.31(1) 1.31(2) 1.32(1) 1.25(1) 1.28(1)	176.1 (8), 174.8 (7) 174.9 (7), 170.0 (8) 180(2) 173(1) 169.9(7) 171.0(7) 169.4(14) 174.9(6) 175(1) 175.0(5)	47 122 370 371 69, 71 72 72 69, 70 49 53
$trans-RhCl(PPr3)2$		н	Me	1.775(6)	1.32(1)	177.9(6)	55, 56
$Rh(PPr3i)(\eta - C_{\delta}H_{\delta})$ trans-IrCl(PPr' ₃) ₂		$\mathbf H$ H	Ph CO ₂ Me	1.83(2), 1.74(2) 1.764(6)	1.30(2), 1.41(2)	175(2), 173(1)	57, 58 60

that there is a contribution from the vinylidene resonance structure (B):¹⁰⁸

 $[Ru] = RuCl₂(CO)(PPh₃)₂$

2.¹³CNMRStUdIeS

Table 1 contains ¹³C NMR data pertaining to the resonances of the two carbon atoms of the $MC_aC₃$ unit. As previously observed, C_{α} is strongly deshielded and resonates in the range *8* 258-382 ppm but most commonly around 330 ppm, while the resonance for C_g is found between *8* 87-143 ppm. Theoretical studies show that the sign and magnitude of the paramagnetic contributions to nuclear shielding, which are related to differences in energies of filled and unfilled orbitals on C_{α} , are more significant in determining this chemical shift than the electron-deficient nature of C_{α}^{375}

3. Theoretical Investigations

The original and much quoted paper of Kostic and Fenske¹⁰⁹ explains many of the physical, structural, and chemical properties of mononuclear vinylidene complexes. The correspondence to a metalla-allene system has also been noted.^{110,111} MO calculations predict that addition of electrophiles to vinylidenes will be governed by the significant charge localization on C_{β} . For example, protonation to form carbyne complexes occurs readily unless the vinylidene is present in a cationic complex:

 $M=C=CHR + E^+ \rightarrow [M=C-CH(E)R]^+$

However, soft electrophiles may attack the metal center; metal basicity dominates in the reactions of an ambi-

dent molybdenum complex,⁷⁵ and of square-planar rhodium(I) and iridium(I) complexes.¹¹⁰

4. Electrochemical Studies

Electrochemical and UV-visible spectroscopic studies of $Mn(CCHPh)(CO)₂(\eta-C₆H₅)$ and of $Mn₂$ and $MnPt$ complexes containing μ -CCHPh ligands have shown that coordination of the Mn=C system with the second metal atom results in transfer of the electrophilic center from C_{α} to Mn or Pt, respectively.¹¹² The electrochemical reduction potential of the MnPt complex relates to the energy of the $\sigma \rightarrow \sigma^*$ transition of the M-M' bond. Donor ligands on the platinum increase the Mn-Pt bond strength, while the Pt $\rightarrow \mu'$ -CO donor interaction has the opposite effect.

The complexes trans-ReCl(CCHR)(dppe)₂ ($R = B u^t$, Ph) undergo single-electron reversible oxidations at -0.26 and -0.16 V (vs SCE), respectively, followed by an irreversible process at ca. 1.0 V.¹¹³ The results confirm the electron richness of the metal fragment and allow an ordering of ligands in terms of π -acceptor- σ donor power:

$$
CCH2But > CNR > CNH2 > C=CHPh > C=CHBut
$$

Although poor net electron acceptor ligands, vinylidenes are much better acceptors at Re (strongly electron releasing) than are carbenes at Cr, for example.

C. Stereochemical Aspects of Vinylidene Complexes

1. Rhenium Complexes

High diastereomeric excesses have been found in the products obtained by nucleophilic attack on C_{α} in rhenium carbene complexes of the type [Re(CHR)- $(NO)(PPh_3)(\eta-C_5H_5)]^+$, because the HOMO of the metal fragment overlaps with the p acceptor orbital in the carbene. Similarly, chiral rhenium vinyl complexes

 $R = CH_3$, $R' = H$ (R)_{Ru}, (R)_C $R \neq H$, $R' \neq CH_3$ (S)_{Ru}, (R)_C

undergo stereospecific electrophilic attack at C_{β} to give carbene derivatives. Similar behavior has been found with the related vinylidene complexes; those containing two different substituents were obtained as kinetic and thermodynamic isomers.82,83 If the entering electrophile is smaller than the acetylide substituent, the kinetic product (synclinal, *sc,* isomer) will be less stable than the thermodynamic (anticlinal, *ac)* isomer. In general, slow isomerization to an equilibrium *sc/ac* mixture occurred at room temperature over 24 h.

Deprotonation of the vinylidenes with KOBu^t or tmp gave the corresponding acetylides in 53-93% yields. Initial protonation (CF3SO3H) gave the *ac* isomer as kinetic product, which isomerized to the *ac/sc* equilibrium mixture after 24 h (Scheme 10). In the transition state, the electrophile approaches C_{β} from the $direction$ opposite to the bulky $PPh₃$ ligand. Methylation proceeded similarly, the two methyl resonances being readily distinguishable. Use of CD_3SO_3F gave the mixed CH_3/CD_3 product, which initially showed only one Me resonance, but on warming, the second isomer was formed.

The high degree of reaction asymmetry conferred on the cylindrical $C = C$ triple bond of the acetylide was rationalized by transmission of the rhenium chirality through the bond leading to only one of the four ace-

TABLE 3. Diastereomeric Composition of Iron and Ruthenium Vinylidene Complexes, $[M(\text{CCHR})(\text{PPh}_2\text{CHR}^{\prime}\text{CHR}^{\prime\prime}\text{PPh}_2)(\eta-\text{C}_5\text{H}_5)]^+$ at 160 K⁵¹

			absolute	diastereomeric ratio				
R	R	R"	configuration	$M = Fe$	$M \bullet R \cup$			
Ph	H	Me	$(R)_{\text{Ru}}(R)_{\text{C}}$		78/22			
Ph	Me	H	$(S)_{\text{Ru}}(R)_{\text{C}}$		>90/10			
Me	H	Me	$(R)_{\text{Ru}}(R)_{\text{C}}$		50/50			
Me	Me	H	$(S)_{\text{Ru}}(R)_{\text{C}}$		90/10			
Ph	Me	Me	(S, S)	86/14	50/50			
Me	Me	Me	(S, S)	55/45				
$\mathbf{B}\mathbf{u}^t$	Me	Me	(S,S)		65/35			
$\mathbf{P}_{\mathbf{h}}$	$-({\rm CH}_2)_3-$		(S, S), (R, R)	> 90/10	> 90/10			
Me	$-(CH2)3$ -		(S, S), (R, R)	>90/10	90/10			
$\mathbf{B}\mathbf{u}^{\mathrm{t}}$	$-(CH2)3$ -		(S, S), (R, R)	> 90/10				

tylide orbitals, that anti to the bulky $PPh₃$ ligand [a; Scheme 10] being sterically favored. If the entering electrophile is smaller than the acetylide substituent R, the kinetic isomer should not be the thermodynamic isomer.

Electrophilic attack on the acetylide generates a new C_{β} stereogenic center via an atom with more than four valences to give an unprecedented 1,3-asymmetric induction. By the same token, Reger's stereospecific addition of $[CuMe₂(CN)]^{2-}$ to the iron-methyl(phe m yl)vinylidene⁶⁶ should give the *sc* or *E* isomer. In fact, the *Z* isomer is obtained, probably because of facile isomerization and the use of less hindered nucleophiles. The 84/16 isomer mixture formed by protonation of Fe(C_2 Bu^t)(CO)(PMe₃)(η -C₅H₅)⁶⁵ reflects the same stereodifferentiation.

Detailed kinetic studies of the isomerization reaction suggests that it proceeds by simple bond rotation;⁸³ it is independent of the anion, with $\Delta G^*_{110^\circ} > 75$ kJ mol⁻¹. Irradiation at -78 °C gave a 50/50 photostationary state, which returned to the thermal equilibrium point after warming. Photolysis leads to excited species with formal $\text{Re-}C_{\alpha}$ single bonds. Comparison with data for other vinylidenes suggest that isomerization is more facile for iron and ruthenium complexes $(\Delta G^* 33 - 42 \text{ kJ})$ mol-1), suggesting that the electronic barrier is much less in these complexes. Activation parameters for the isomerization of vinylidenes are similar to those found for carbenes. The simplistic explanation that the lesser steric component is balanced by the electronic component is not possible because of the extra $\mathrm C_{\alpha}$ =C $_\beta$ unsaturation which leads to other complex interactions.

2. Ruthenium Complexes

Consiglio's group has made extensive studies of the stereochemistry of transformation of chiral ruthenium $complexes.$ ⁵⁰ They used the metal/ligand combination $Ru(LL)(\eta$ -C₅H₅) (LL = chiraphos, cypenphos), and the relationships involving vinylidenes that have been established are shown in Scheme 11. The reactions are stereospecific at the metal atom under mild conditions. The $S_{\text{Ru}}R_{\text{C}}$ or $R_{\text{Ru}}R_{\text{C}}$ configurations were assigned by ³¹P NMR studies.

The vinylidene complexes exist as equilibrium mixtures of diastereomers (Table 3), as first shown in the iron system; an AB³¹P NMR spectrum was found.¹¹⁴ The barrier to rotation is about $38-43$ kJ mol⁻¹ and is independent of the phosphine ligand, but depends on the vinylidene substituent, so that it is fast at 150 K for the Bu^t complex. Epimerization of the vinylidene

observed on heating probably occurs via η^2 -alkyne complexes, as found with analogous olefin complexes. Differences in diastereomer population arise for steric reasons, the substituents being in a chiral pocket formed by the P-phenyl groups. Similarly, a $2/1$ ratio of the rotational conformers of *(S,S)-* [Ru(CCHPh) (chiraphos) $(\eta^5$ -C₉H₇)]⁺ was present at 80 °C; the difference from the η -C₆H₅ complex again being ascribed to the different environment of the P-phenyl groups.¹¹⁵ For complexes 29a-c the asymmetric induction is 0,56, and >80%, respectively; in the latter two cases, the induction is *stereogenic,* while in the former the ruthenium is *chirotopic.⁶¹*

Asymmetric induction is higher for iron than for ruthenium, (cf. the predominance of S_{Fe} (86/14) over the S_{Ru} (50/50) configuration for chiraphos complexes), and larger for S_{Ru} than for R_{Ru} complexes; the smaller pocket formed with cypenphos leads to higher asymmetric induction compared with chiraphos.⁵¹ The absolute configuration at the metal is influenced mainly by the phosphine ligands, although it was not possible to determine whether the configuration of the vinylidene is influenced by the configuration at the metal.

The *\-8* stereoisomer interconversion of the RuPCCP chelate rings is rapid on the NMR time scale. Only the δ form of the chiraphos complex, with S absolute configuration of the two carbon atoms, is found as two diastereomeric rotamers. No interconversion of the diastereomers of the prophos complex occurs, only one species being found at low temperatures.

D. Reactions of Coordinated Vinylidenes

As mentioned above, a theoretical study of vinylidene complexes by Kostic and Fenske¹¹⁰ identified the electron deficiency at C_{α} and the localization of electron density in the \dot{M} =C double bond and on C_6 (the

SCHEME 12

HOMO). Chemical reactivity is thus oriented toward electrophiles at both the M= C bond and at C_8 and toward nucleophiles at C_{α} . Vinylidene complexes are related to other n^1 -carbon-bonded ligands (Scheme 12). Many of these reactions are stereospecific with retention of configuration at the metal atom.49,50

1. Reactions with Electrophiles

Protonation of the vinylidene ligand at C_β to form a carbyne occurs readily unless the ligand is present in a cationic complex. However, with more electron-rich metal centers, addition to the $M=^C$ bond gives an η^2 -allene- or heteroketene-metal complexes.

Double electrophilic addition to metal acetylides was reported in the tungsten series with $W(CCRR')(CO)_{5}$ $(R = Bu^t, R' = Me, Et).$ ⁶² Protonation with CF_3SO_3H in dichloromethane at -70 °C and addition of MeI gave $trans-WI{CHRR'}{COO}$; proton addition probably goes via an undetected carbyne cation, such as [W{C- $(CHRR')(CO)_{5}]^{+}$, or a tetracarbonyl containing a weakly coordinated $CF₃SO₃$ group. A single-pot synthesis of the carbyne derivatives was achieved by reacting $[NEt_4][W(\dot{C}_2R)(CO)_5]$ $(R = But, Ph)$ with excess $CF₃SO₃H$ in the presence of [NMe₄]I to give 50–60% yields of trans-WI{C($CH₂R$)}(CO)₄.

Protonation $(HBF_4\text{-}OMe_2)$ of $W(\text{CCHPh})$ (CO)₃(dppe) (reversed on alumina or by l,8-bis(dimethylamino) naphthalene) gave $W(C(CH_2Ph)/(CO)_3(dppe)$ ⁺ which decarbonylated in refluxing $CH₂Cl₂$ (24 h) to give the coordinatively unsaturated dicarbonyl complex; with halide this gave *trans*-WX{C(CH₂Ph)}(CO)₂(dppe) (X $=$ F, Cl, Br, I).³⁹ The dicarbonyl readily adds ligands such as CO, PMe₃, acetone, and water. Bidentate ligands, such as dialkyldithiocarbamates, also add with concomitant coupling of carbyne and carbonyl ligands to give $W(\eta^2$ -OC= CCH_2Ph)(CO)(dppe)(dtc). Methylation with $[Mg_3O]^+$ then gave the η^2 -alkyne complex $[W(\eta^2\text{-MeOC} = \text{CCH}_2\text{Ph})(\text{CO}) \text{(dppe)}(\text{dtc})][\text{BF}_4]$; protonation gave an unstable hydroxyalkyne complex which was not isolated.⁴² These reactions overall demonstrate the two-carbon coupling reaction:

 $M=CR + CO \rightarrow M(RC=C=O) \rightarrow M(RC=COR')$

The lithium complex $\text{Li}(\text{Mo}(\text{CCHBu}^t)(\text{P}(\text{OMe})_3)_2(\eta (C_5H_5)$] (30) reacts with many electrophiles to form carbyne complexes $Mo(C(CHBu^tR))(P(OMe)_{3/2}(\eta-C₅H₅)$ $(R = Me, CH_2CH_2OH, CH_2OEt, COBu^t, SiMe₃, SMe)$ by selective attack at C_6 ⁷⁵ Both "hard" and "soft" nucleophiles add to the carbon center, probably because

of steric effects. In one case $(CH_2=CHCH_2Cl)$, attack at the metal was also found, and this became the predominant mode with $CH_2=CHCH_2I$; the product was $\text{MoI}(\eta^4\text{-CH}_2\text{=CHCH}\text{=CHCH}_2\text{Bu}^t)[\text{P}(\text{OMe})_3](\eta\text{-C}_5\text{H}_5)$ $(31).^{75}$

Protonation of MoBr(CCHPh){P(OMe)₃}₂(η -C₅H₅) (32) gave $[MoBr(C(CH_2Ph)](P(OMe)_{3}^2(\eta-C_5H_5))^+$ (77%), containing Mo(VI), which could be reduced to the neutral carbyne $\text{Mo}(\text{C}(\text{CH}_2\text{Ph})\text{)}\text{P}(\text{OMe})_{3\text{2}}(\eta\text{-C}_5\text{H}_5)$ with magnesium amalgam. 77.78 Excess triflic acid protonated trans- $Mo(C_2\bar{B}u^{t})(CO)[P(OMe)_{3}]_2(\eta-C_5H_5)$ via the vinylidene to give trans- $\overline{[Mo(CCH_2Bu^t)(OTf)]}$ P- $(OMe)_{3/2}(\eta - C_5H_5)]^{4/37}$

Addition of the Pt-H bond in $[PtH(OCMe₂)(PEt₃)₂]$ ⁺ to mer-W(CCHPh)(CO)₃(dppe) occurs regiospecifically across the W=C bond to give the orange, fluxional μ - σ , η ⁴-styryl complex $[PtW\{\mu\text{-}CH=CHPh)(CO)\}$ ₃- $(PEt₃)₂(dppe)[†]$ (33) (72%). In solution, the styryl group is bonded as shown, but in the CHCl₃ solvate, the aryl group is not coordinated to tungsten.¹¹⁶

Protonation $(HBF₄·OEt₂)$ of trans-ReCl(CCHR)- $(dppe)_2 (R = Bu^t, Ph)$ gave the corresponding carbyne complexes trans- $[ReX(CCH_2R)(dppe)_2][BF_4]$ (X = Cl, F), the latter being formed by Cl/F exchange.¹¹⁷ Stopped-flow methods have shown that protonation with $[NHEt_3]^+$ can occur by three routes involving (a) a slow, direct protonation of the vinylidene ligand or α siow, unect protonation of the virigination α (b) a fast addition of $H⁺$ to the metal (or the Cl atom) followed by either an intramolecular 1,3-proton shift from Re to C_{β} , or by further protonation to give a hydrido-carbyne complex, of which the metal center is deprotonated by base (Scheme 13).¹¹⁸ Protonation at the metal center deactivates the vinylidene ligand toward addition of a proton.

Protonation of $Rh(CCH_2)(PPr_3^i)(\eta$ -C₅H₅) with CF₃C- O_2H , HCl, or HI gave RhX(CH=CH₂)(PP_{rⁱ3})(η -C₅H₅) $(X = CF₃CO₂, Cl, or I)$; addition of a second molecule of HCl to the chloro complex gave the 2-chloroethyl derivative.¹¹⁹ The kinetically preferred Z isomer of the vinyl, formed first, rearranges in polar solvents to the

thermodynamic *E* isomer. Halide exchange with NaI gave the iodo complex. The methylvinylidene complex gave a 62/38 mixture of *Z/E* isomers which was independent of anion and solvent. Excess acid resulted in cleavage of the Rh–C bond and formation of RhX_2 - $(PPrⁱ3)(\eta$ -C₅H₅) (X = Cl, CF₃CO₂). The Z-styryl complex partially isomerized with NEt₃ in benzene at 50 °C, with 75% regeneration of the vinylidene. Conversion of $Rh(CCHBu^t)(PPr^t₃)(\eta-C₅H₅)$ to $Rh(CH=CHBu^t)$. \overline{O} (O)CF₃ \overline{O} (PPrⁱ₃)(η -C₆H₅) was achieved by addition of $CF₃CO₂H₁$ ⁵⁹

While protonation of the molybdenum or tungsten vinylidene complexes described above afforded the corresponding carbyne complexes by attack on C_{β} , metal basicity dominates in the square-planar iridium(f) complexes, Ir(CCHR)(Cl)(PPrⁱ₃)₂ (R = H, Me, Ph).¹¹¹ These undergo electrophilic addition to the metal to give the cationic hydrido-vinylidenes [IrHCl- $\text{(CCHR)}\text{(PPri3)_2}$ ⁺. These transformed rapidly (seconds) to the carbyne complexes $[Ir(CCH₂R)(Cl)-]$ $(PPr₃)₂$ ⁺. However, the solid products obtained from nitromethane solution contain an equilibrium mixture of carbyne/hydrido-vinylidene cations. Addition of NaH regenerated the vinylidene, while excess NaH gave $IrH₅(PPrⁱ₃)₂.$

Reactions of diazomethane with Rh(CCHR)- $(PPrⁱ₃)(\eta$ -C₆H₅) (R = H, Me, Ph) in the presence of $CuSO₄$ at 0 °C resulted in stereoselective addition of $CH₂$ to the Rh= C bond and formation of the allene complexes $Rh(\eta^2 \text{-CH}_2\text{---} \text{CHR})(PPr_3^1)(\eta \text{-} C_5H_5)$, in which the substituents L_nRh/R are cis.^{110,120}

Addition of S, Se, or Te directly to Rh(CCHR)- $(PPrⁱ₃)(\eta$ -C₅H₆) gave the corresponding thio-, seleno-, or telluroketene complexes $Rh(\eta^2-E=C=CHR)$ - $(PPr^i_3)(\eta$ -C₅H₅) (E = S, Se, Te) in 50-90% yields.^{110,120,121} The tellurium complex slowly decomposes in benzene at room temperature to give back the vinylidene with deposition of tellurium. The complexes obtained from the unsubstituted vinylidene were the first derivatives of $CH_2=C=E$ to be obtained. Similarly, reactions of $Rh(CCHR)(PPr₃)$ ($n-C_5H_5$) ($R = But$, $CO₂Me$) with S₈ afforded the corresponding $n^2-S=$ C= CHR complexes, which were methylated (CF_3SO_3Me) to $[\text{Rh}(\eta^2\text{-MeS}=\text{CCHR})(\text{PPri}_3)(\eta\text{-C}_5\text{H}_5)]^{\text{+}}.60$

2. Oxidation

Reactions of the molybdenum complex 30 with oneelectron oxidants $([Fe(\eta - C_5H_5)_2]^+$, CuI) afforded the coupled bis-carbyne complexes 34 as meso and the *RS* pair.⁷⁵ Similar oxidative couplings have been found in

the reaction between $[Fe(CCHMe)(dppe)(\eta-C_5H_5)]^+$ and PhIO in MeCN, which afforded $[Fe_2(\mu-C_4Me_2) ({\rm dppe})_2(\eta\text{-C}_5{\rm H}_5)_2]^{2+}$ (35; 77%),¹²² and the aerial oxidation of $[\text{Ru}(\text{CCH}(\text{SiMe}_3))(\text{PMe}_3)_{2(n}\text{-C}_5\text{H}_5)]^+$, which gave the related $C_4(SiMe_3)_2$ complex.¹²³ The X-ray structure

of 35 showed that the l;3-butadien-l,4-diylidene ligand had the s-trans conformation at the C-C bond.¹²² The oxidation of the phenylvinylidene analogue was achieved with $Cu(OAc)_2$ in MeOH. The suggested mode of formation is given in Scheme 14. The related binuclear complex ${[Fe(CO)_2[P(OMe)_3]_2[CC(R)^-]]_2}$ (R = $\overline{\text{CHO}(\text{CH}_2)_3\text{O}}$ was obtained from the μ -N₂ complex and $\text{ClC}_2\text{CHO}(\text{CH}_2)_3\text{O}.47$

3. Reactions with Nucleophlles

The further reactions of the vinylidene 32 with K- $[BHBu^s₃]$ and $LiCuPh₂$ to form the corresponding carbyne complexes was envisaged to proceed by an S_N2' mechanism via attack of the nucleophile on C_β of an intermediate η^2 -bromoalkene complex, followed by loss of bromide: the η^2 -vinyl complex may be an intermediate.^{77,78} The ready loss of the α -bromine atom recalls the easy hydrolysis of a related platinum-chlorovinyl complex, which was related to the long C-Cl bond found in the latter complex.¹²⁴

Attack of $PEt₃$ on the molybdenum complex 32 occurs at the metal atom, resulting in displacement of a $P(OME)_3$ ligand. Excess PEt_3 or $K(BHBu^3)$ gave a low yield of the mixed ligand carbyne complex, formed by PEt₃ attack on the bromine followed by H⁺ abstraction from the solvent.77,78

Isocyanides reacted with $Mn(CCHPh)(CO)_2(\eta$ -C₅H₅) to give the reactive ketenimines $Mn(NR=C=C CHPh(CO)₂(\eta-C₅H₅)$ (R = Bu^t, Cy, CH₂Ph), which added H_2O or NHEt₂ to give complexes containing cinnamic acid amides and CHPh= $C=C=C(NEt_2)$ -(NHCy), respectively. These reactions were used to synthesize the olefins by displacement of the latter from manganese by N donors.¹²⁵

The chemistry of the manganese complexes Mn- $(CCHR)(CO)₂(η -C₅H₅)$ had already been shown to involve addition of bases to C_{α} , ¹²⁶ although substitution of CO at the metal center was also known. Addition of tertiary phosphines (PPh₂R') to $Mn(CCHR)(CO)_{2}$ - $(\eta$ -C₅H₅) afforded Mn[[]C(PPh₂R')=CHR[]](CO)₂(η -C₅H₅) $[R = Ph, R' = Me, Ph; R' = Ph, R = Me, CBu^{t}_{2}(OH)].$ Exchange of more basic for less basic phosphines was **SCHEME 14**

shown for $PMePh_2$, although the complex Mn(C- $(PMePh₂)$ =CHPh}(CO)₂(η -C₅H₅) dissociates in polar solvents.¹²⁷ The original reaction of $\text{Mn}(\eta$ - HC_2CO_2Me)(CO)₂(η -C₅H₅) with PPh₃ in pentane was described as giving a red 1/1 adduct in 85% yield which was thought to be $Mn(C(PPh_3) = CH(CO_2Me)/(CO)_2(\eta C_6H_5$).¹²⁸ An attempt to add PPh₃ directly to the vinylidene gave instead a brown isomer. An X-ray crystallographic study of the red complex showed that a new $\pi \rightarrow \sigma$ rearrangement had occurred to give the zwitterionic complex $Mn^{1}C(CO_2Me) = CH(P^+Ph_3)$. $(CO)₂(\eta-C₅H₅)$, also formulated as the carbene ylid Mn {C(CO₂Me)CH=PPh₃}(CO)₂(η -C₅H₅). Orange Mn- $\{C(\rm CO_2M\acute{e})\rm CH=PPh_2(CH_2)_2P\acute{P}h_2\}\rm (CO)_2(\eta\text{-}C_6H\acute{e})$. was $\frac{\cos(3\pi/2)}{1 + \cos(3\pi/2)}$ is $\frac{\cos(3\pi/2)}{1 + \cos(3\pi/2)}$ The earlier formation of $Mn(CCHPh)(CO)(PPh₃)(\eta-C₅H₅)$ by addition of $PPh₃$ to the dicarbonyl is now shown to proceed via initial formation of Mn [C(PPh₃)=CHPh](CO)₂(n- C_6H_6 .¹²⁷ Similar reactions between Mn(n^2 -C₂H₂)- $(\text{CO})_2(\eta \text{-} \text{C}_5\text{R}_5)$ (R₅ = H₅, H₄Me, Me₅) and PR'₃ (R⁷ = Me, Et) gave $1/1$ adducts formulated as Mn /CH=CH- (PR'_3) (CO)₂(η -C₅R₅) which readily rearranged to the vinylidene ylids $Mn^{-1}(C(P+R)=-CH_2)(CO)_2(\eta-C_5R_5).^{130}$

Rhenium vinylidenes reacted with nucleophiles, e.g. PMe₃, to give Re⁻{C(P⁺Me₃)= CMe_2 }(NO)(PPh₃)(η - C_5H_5). This reaction is stereospecific, attack of the nucleophile occurring anti to the bulky PPh_3 ligand.⁸³

The complex fac-Mn(CCl= $C(CN)_{2}$ (CO)₃(dppe) (36) was earlier reported to react with $P(OPrⁱ)₃$ under irradiation to give the chelate phosphonato complex 37 (L = CO).¹³¹ Similar complexes were obtained from the

reaction between 36 and a mixture of $(RO)₂P(O)H$ (R $=$ Me, Et) and LiBu^t, followed by irradiation, while irradiation of 36 with $P(OR)_{3}$ (R = Me, Et) afforded the

SCHEME 15

monocarbonyls 37 ($L = P(OR)_{3}$). The Russian group has found that a novel variant of this Arbuzov reaction occurs when $Mn(CCHPh)(CO)_{2}(n-C_{5}H_{5})$ is treated with $P(OR)$ ₃ (R = Et, Ph).¹³² In cyclohexane, the olefin complexes $Mn\{n^2-\text{CHP}\}=CHP(O)(OR)_2\} (CO)_2(n-C_5H_5)$ are formed in quantitative yields; they were also obtained in reactions of the manganese complex with $Pt(P(OR)₃)₄$. The mechanism shown in Scheme 15 was suggested.¹³³ With $\text{PPh}(\text{OEt})_2$, $\text{Mn}\{\eta^2\text{-CHPh}=\}$ $CHPPh(O)(OEt)$ (CO)₂(η -C₅H₅) was obtained as a mixture of isomers, while similar compounds were formed from $P(OCHMeCHMeO)(SiMe₃)$ and $P(O-HMeOHMeO)$

 $\overline{\text{[CH_2]}_3\text{O}}$ Bu. Subsequent reactions with CO, PPh₃, or $P(OPh)$ ₃ gave up to 98% free styryl phosphonate.¹³⁴

Ready deprotonation of the vinylidenes (basic alumina) formed from terminal alkynes was again demonstrated for several iron and ruthenium complexes, including products from $FeCl(dppe)(\eta-C_6H_6)$, [Fe- $(NCMe)$ (dppe)(η -C₅H₅)]⁺, RuCl(PPh₃)₂(η -C₅H₅), or RuCl(dppe)(η -C₅Me₆) with HC₂R (R = Ph or Bu^t).^{135,136} In MeOH, the reactions between FeCl(dppe)(η -C₅H₅) and C_2H_2 or HC_2SiMe_3 gave the parent vinylidene complex, but the reaction with $RuCl(PPh_3)_{2}(n-C_6H_6)$ gave 75% $[\text{Ru(CMe})(\text{PPh}_3)_2(\eta-\text{C}_5\text{H}_5)]^+$ by rapid addition of MeOH to the vinylidene.⁶⁷

Attack on Fe(CCMeR)(CO)(PPh₃)(η -C₆H₅) (R = Me, Ph) by carbon-based nucleophiles delivered by $Li₂$ - $[Cu(CN)R₂]$ or SPh⁻ readily gave the corresponding vinyl complexes. Addition of Li_2 [Cu(CN)Me₂] to the methy(phenyl)vinylidene gave a quantitative yield of $Fe(CMe=ChePh)(CO)(PPh₃)(\eta-C₅H₅)$ (Z/E isomer ratio $93/7.66$

Reactions between $[Fe(CCH₂)(CO)(PPh₃)(\eta C_5H_5$][BF₄] and hydrazines afforded [Fe(NCMe)- $(CO)(PPh_3)(\eta$ -C₆H₆)]⁺ by a facile organometallic Beckman rearrangement of an intermediate hydrazine complex (Scheme 16); with p -MeC₆H₄SO₂NHNH₂, the sulfonamide was also isolated (84%).⁸⁴

SCHEME 17

Claisen rearrangement of iron (allyloxy)carbene complexes was observed in the reaction of the vinylideneiron complex 38 (Scheme 17) with allylic alcohols. Treatment of the initial products with KH in the presence of 18-crown-6 afforded the acyl complexes 39 in $10-60\%$ yields.¹³⁷ In the same type of reaction, propargyl alcohol afforded the allenyl-acyl complex 40, which readily isomerized to the butadienyl-acyl 41.

[Fe] • Fe(COMP(OMe)3)(Ti-CsH5)

4. Cycloaddltlon Reactions

The intermediacy of $Cr(CCH₂)(CO)₅$ in the reaction of $Cr(C(OH)Me)(CO)_5$ with $CyN=CC=NCy$ was used to explain the formation of complex 42, by subsequent cycloaddition of the carbodiimide to the vinylidene.¹³⁸

This reaction has been exploited for β -lactam synthesis, taking advantage of the ready conversion of $R_2C=$ $[Cr(CO)_5]$ to $R_2C=O$ with certain oxidizing agents. Thus, vinylidenes are ketene surrogates, and their potent electrophilic nature allows their use in synthesis. The chromium vinylidene was generated from $[NMe₄][Cr(C(O)Me)(CO)₅]$ and tosyl chloride and reacted with benzylideneimines to give 43 (25%), which in turn were converted to the β -lactams by reaction with $PhIO$ or pyridine N -oxide in 87 -100% yields.¹³⁹ The reaction was postulated to proceed via cycloaddition of the imine to the vinylidene (route A, Scheme 18), although a possible alternative is reaction via the open

SCHEME 18

Ar - Ph, **C6H4Me-3** or -4, (E)-CH-CHPh

SCHEME 20

system, obtained in MeOH, followed by cyclization (route B).

Similar reactions were found with the cationic iron systems derived from $[Fe(CO)(PR_3)(\eta$ -C₆H₆)]⁺ (R = Ph, OMe). Cycloaddition of benzylideneimines gave the corresponding azetidinylidene complexes, which could be oxidized (PhIO) to β -lactams in moderate yield (Scheme 19).140,141 Low diastereomeric selectivity was found, apparently as the result of stepwise reactions which allow time for E/Z isomerization of the intermediates to occur.

Extension to sulfur-containing heterocycles (Scheme 20) gave mono and bicyclic intermediates with part of the penicillin framework.¹⁴² In these cases, E/\tilde{Z} isomerization of the intermediate 44 cannot occur, so that there is considerable facial selectivity in the formation of the final C-C bond. Final oxidation of the heterocyclic iron carbene complexes was achieved with $[NBu_4][NO_2]$ in dichloromethane under pressure.

SCHEME 21

The reaction between $Cr(OEt_2)(CO)_{5}$ and HC_2CO_2Me gave the three complexes $Cr(\eta^2-HC_2CO_2Me)(CO)_5$, Cr- $[CCH(CO₂Me)CH=C(CO₂Me)](\overline{CO})_5$, and Cr(CC- $(CO_2Me)CH=CH(CO_2Me)$ $(CO)_5$, the former rearranging to an undetected vinylidene and adding a second molecule of alkyne.¹⁴³ Similar reactivity between $W(CCHPh)(CO)₃(dppe)$ and $C₂(CO₂Me)₂$ afforded the \overline{Z} and \overline{E} isomers of W_iCC(CO₂Me)^C(CO₂Me)= $CHPh(CO)₃(dppe)$ (45a), formed by ring opening of an intermediate cyclobutenylidene complex formed by cycloaddition of the alkyne to the $C=$ C double bond of the vinylidene (Scheme 21).¹⁴⁴ Irradiation of the kinetic *Z* isomer gave a 1/8 mixture of the Z and *E* isomers. Structural data on the *Z* isomer suggest a significant contribution from the carbyne form (45b).

Three-component reactions between 1-alkynes, cyclohexyl isocyanide, and $W(C(OEt)Ph)(CO)$ ₅ afforded azetidinylidene complexes via a tungsten vinylidene complex formed from the 1-alkyne (Scheme 22).¹⁴⁵ Subsequent attack of 46, formed from the carbene complex and the isocyanide, and liberated in acetonitrile solution, gave an intermediate which cyclized to the heterocyclic product.

The $[2 + 3]$ -cycloaddition of benzoyl azide to M- $(CCHR)(PPr₃)(n-C_nH_n)$ (R = Me, Ph; M = Rh, $n = 5$; $M = Os$, $n = 6$) gave metallocyclic complexes 47 (68-72%).¹⁴⁶ - 147 Both phenyl derivatives have the *Z* configuration; the methyl-rhodium complex exists as a 10/3 *Z/E* isomer mixture in diethyl ether, but 10/8 in acetone. The metallacycles are formed by addition of benzoylnitrene to the $M=C$ bond, followed by ring-opening and subsequent cyclization of the dipolar intermediate. The *Z/E* isomerization may occur via a ring-opened intermediate. Phenyl azide and Rh- $(CCHPh)(PPr₃ⁱ)(\eta-C₅H₅)$ gave almost quantitatively the red ketenimine complex $Rh(\eta^2-PhNC=CHPh)$ - $(PPrⁱ₃)(\eta$ -C₅H₅) (48) (85%); this reaction resembles that of CH_2N_2 (above).¹⁴⁸

S. Displacement of Vinylidene Llgands

In MeCN, the salts $\text{Ru(CCHMe)}(\text{PMe}_3)(\eta\text{-C}_5\text{H}_5)\text{-}$ $[M(CO)₃(\eta-C₅H₅)]$ (M = Cr, Mo, W) disproportionate on heating to give $[Ru(NCMe)(PMe_3)_2(\eta-C_5H_5)]^+$ and

SCHEME 23

the intensely orange cation 49, independently synthesized from an equimolar mixture of the vinylidene

and parent acetylide in 73% yield.⁶⁵ In acetonitrile, the vinylidenes (as PF_6 salts) cleanly transformed into the corresponding acetonitrile cations and the 1-alkyne.⁵²

E. Reactions in Which Vinylidenes Complexes Have Been Implicated

Ethyne reacts with $Ti(PMe₃)₂(\eta$ -C₅H₅)₂ to give, first, dark purple Ti(C_2H_2)(PMe₃)(η -C₅H₅)₂ and with excess ethyne, $Ti(C_4H_4)(\eta$ -C₅H₅)₂, together with black *trans*polyacetylene. The latter is formed catalytically, but the titanacyclopentadiene is not a catalyst. It is suggested that the η^2 -ethyne complex isomerizes to the vinylidene, after which replacement of $PMe₃$ by ethene gives the alkyne-vinylidene complex which can rearrange to an allenyl derivative; insertion of ethyne then leads to polyacetylene (Scheme 23).¹⁴⁸ The reaction is not found with substituted alkynes, which reactions favor formation of the metallacycle.

The titanacycle complex 50 was obtained from $\text{TiCl}_2(\eta\text{-C}_5\text{H}_5)_2$ and LiCH - CH_2 in a reaction suggested to proceed by metal-centered coupling of vinylidene and ethene ligands formed by H-transfer between vinyl groups (Scheme 24).¹⁴⁹ Substituted complexes (51, Scheme 25) were obtained from titanacyclobutanes and 1,1-disubstituted allenes; in turn these gave good to excellent yields of substituted allenes when treated with ketones.¹⁵⁰ The mechanism supposes the intermediacy of a vinylidene-titanium complex and is supported by unpublished work demonstrating the formation of Ti- $(CCMe_2)(PMe_3)(\eta$ -C₅H₅)₂ in the reaction between (51, $R^2 = R^3 = Me$ and $PMe₃$. 150b

Vinylidene complexes have been proposed as intermediates in the reactions of chromium or manganese η -ethyne complexes with PMe₃ to give M{C(PMe₃)- $CH_2(CO)_2(L)$ (M = Cr, L = η -C₆H₃Me₃; M = Mn, L = η -C₅H₆); with Cr, phosphines with larger substituents (PEt₃, PBu₃) added to C_β to give Cr{CHCH(PR₃)}- $(CO)₂(\eta-C₆H₃Me₃)$. A similar reaction with NHMe₂

SCHEME 24

afforded $Cr(C(NMe₂)Me)(CO)₂(η -arene).¹⁵¹$

R 2 « R³ - H, Me, Ph; R*, R⁵ . various

The kinetics of phenylethyne polymerization by a $W(C(OMe)Ph)(CO)_{5}$ initiator¹⁵² were originally interpreted in terms of an intermediate of the type Ph- $(MeO)C=CPhCH=W(CO)₄.¹⁵³$ More recently, alkyne polymers were obtained by irradiation of hydrocarbon solutions containing $W(CO)₆$ and 1-alkynes; with acetylene, irradiation was required only for the initiation of the reaction. The suggested intermediacy of a vinylidene complex was supported by the reaction between $W(CCMeBu^t)(CO)₅$ and $HC₂Ph$; no reaction occurred at room temperature for 22 h, but irradiation caused a color change from green to red and the deposition of phenylethyne polymer. Irradiation of the vinylidene complex in MeCN caused spectral changes consistent with the formation of $cis-W(CCMeBu^t)$ - $(NCMe)(CO)₄$, which reacted with but-2-yne to give the r^2 -alkyne complex. After addition of a trace of HC₂Ph, photoinduced polymerization of the but-2-yne occurred after an induction period of 30-40 min.⁶³

Irradiation of $W(CO)_6$ or $W(CO)_4(cod)$ in the presence of ethyne or HC_2SiMe_3 , in dichloromethane or hexane, followed by treatment with MeOH on silica, afforded $W(C(OMe)Me)(CO)₅$ in 32% yield.¹⁵⁴ Other combinations of alkynes $(H\check{C}_2R)$ and alcohols $(R'OH)$ gave related products (52); 4-hydroxybutyne gave the cyclic

carbene $W(CO(CH_2)_2CH_2)(CO)_5$. These results point

to a common intermediate of the type $W(CCHR)(CO)₅.$ Protonation (HBF₄) of $WH_2(C_2R)(dppe)_2$ (R = Ph, $CO₂Me$) gave WF{CH(CH₂Ph)}(dppe)₂ and WF- $(CCH₂CO₂Me)(dppe)₂$, respectively.¹⁵⁵

In general, alkynes react with $[Fe(CO)_2[P-V]$ (OMe) ₃]₂*l*₂(μ -N₂) to give Fe(η^2 -R¹C₂R²)(CO)₂(P(OMe)₃*l*₂, which for C_2H_2 and HC_2Ph reversibly convert to the

hydrido-acetylide.¹⁵⁶ With HC_2CO_2Me , the initial η^2 -alkyne complex reacts with excess alkyne, presumably via the very reactive vinylidene Fe(CCH- $(CO_2Me)(CO)_2(POMe)_3l_2$, to give 53 by successive head-to-tail insertions (or possibly cycloaddition to the vinylidene?), followed by chelation via other ester CO groups.

Protonation of Fe(CH=C=CH₂)(CO)₂(η -C₅H₅) (54), followed by reaction with water, gave a $2/1$ mixture of the ketone 55 and the propionyl 56 complexes, formation of which can be envisaged via the n^2 -alkyne and vinylidene cations, respectively (Scheme 26).¹⁶⁷ Similar stabilized carbonium ions, obtained from the isobutylene cation and terminal alkynes, react with EtOH

SCHEME 27

[Fe] = Fe(CO)2(Ti-C5Hs)

SCHEME 28

to give the corresponding vinyl complexes, while addition of water gave acyl derivatives; protonation afforded the ethoxycarbene derivatives. In EtOD, only one D atom adds to the carbon adjacent to the oxonium center.¹⁶⁸ Methyl propiolate gave the vinyl derived from the η^2 -alkyne complex. In contrast, vinylidene intermediates are not implicated in the reactions of the isobutylene cation with phenylethyne to give 2 phenylnaphthalene.¹⁵⁹ The formal $[2 + 2]$ -cycloaddition reactions of 57 with cyclohexenone have been suggested to proceed via a vinylidene cation (Scheme 27).¹⁶⁰

Several ruthenium complexes, including RuCl₂- $(PR_3)(\eta$ -C₆Me₆), are catalyst precursors for the addition of carbamates to 1-alkynes to give vinylcarbamates in 55-60% yields.¹⁶¹ The reaction is assumed to proceed via a vinylidene intermediate, and although no reaction occurs in nonpolar solvents, this has been trapped with alcohols as the corresponding alkoxycarbene complex (Scheme 28). The yields are decreased in the presence of NEt_3 as a result of deprotonation of the vinylidene. A byproduct is the corresponding ene-yne RCH= $CHC=CR$. Reactions of the PMe₃ complex with 1alkynes in MeOH in the presence of NH_4PF_6 have given $[Ru(C(OMe)CH₂R)(PMe₃)(\eta-C₆Me₆)]⁺$ (R = Ph, Bu^t); the PMe₂Ph complex from HC_2 Ph was also prepared. With HC_2SiMe_3 , the methyl(methoxy)carbene complex was isolated, probably because of ready hydrolysis of the C-Si bond with formation of the parent vinylidene,¹⁶² while with $\rm HC_2CH_2OH$, the cyclic carbene complex RuCl(CO(CH₂)₂CH₂}(PMe₃)(η -C₆Me₆) was isolated.⁵⁴

A vinylidene complex has been suggested as an intermediate in the photosensitized reductive cleavage of ethyne to methane on a pentammine-ruthenium(II) complex.¹⁶³

Oxidation of cis -Os(C₂Ph)₂(PMe₃)₄ with Ag⁺ ion gave a 64% yield of complex 58, containing a C_4Ph_2 ligand formed by coupling of the two phenylacetylide groups.¹⁶⁴ In the suggested mode of formation, electron and proton transfer to one of the acetylide units forms a vinylidene which then undergoes an intramolecular coupling reaction with the second acetylide. Parallels are drawn with the dimerization of ethyne on [Cu- $(NH_3)_2$ ¹, of phenylethyne by Wilkinson's complex, and the oxidative coupling of copper(I) acetylides. The related complex 59 was obtained from HC_2Ph and $RuH_4(cyttp)$ (cyttp = PPh{(CH₂)₃PCy₂}₂).¹⁶⁵

A general route to 60 from the maleoyl-cobalt complex 61 and 1-alkynes (Scheme 29) has been described.¹⁶⁶ The intermediate is formed from the dioxocyclobutene and $CoCl(PPh_3)_3$, followed by reaction with dimethylglyoxime and treatment with $AgBF_4$ in acetonitrile. Lower yields were obtained when electron-withdrawing substituents are present, while 1/1 mixtures of double bond stereoisomers were obtained with asymmetric cyclobutene precursors. Complexes similar to 61 with pyridine in place of $PPh₃$ gave quinones; the retardation of the overall reaction by PPh_3 allows the slower alkyne \rightarrow vinylidene isomerization to occur and results in the observed products.

The formation of 62 in 83% yield from the reaction between $\{RhCl(cod)_{2}\}$ and HC_2 Bu^t in the presence of $AgPF₆$ is envisaged to proceed by the linking of three alkynes via an intermediate vinylidene derivative (Scheme 30).¹⁶⁷ Treatment of (62) with acetonitrile afforded 1,3,6-tri-tert-butylfulvene quantitatively, to-, gether with $[Rh(NCMe)_2(cod)]^+$.

Rhodium(I) complexes are active catalysts for the formation of 63 from phenylethyne and 3-butenoic acid (Scheme 31), which reaction is envisaged to proceed via an intermediate vinylidene-rhodium complex.¹⁶⁸ Subsequent insertion of the unsaturated molecule gives a four-membered metallocycle, which can transform by an internal hydrogen transfer to the phenylhexadienoate precursor, or enlarge by insertion of further alkyne or alkene to give 64-66.

2-Aryl- and 2,2-diaryl-l,l-dibromoethenes gave the corresponding butatrienes in reactions with $Ni(PPh₃)₄$ (from $NiBr_2(PPh_3)_2$ and zinc in benzene); the reaction was accelerated in the presence of $[NEt_4]$ ¹⁶⁹ Similarly, with an active nickel reagent (from NiI₂, Li, and naphthalene) a variety of products were formed also consistent with the generation of diarylvinylidene (Scheme 32); reactions carried out in the presence of diarylalkynes gave hexaarylfulvenes.¹⁷⁰ Isolation of trimers of Ar₂CC suggest the Ar₂CC \rightarrow ArCCAr rearrangement occurs via aryl group migration. Cyclooligomerization of dialkylbutatrienes to [4]- and [6] radialenes occurs on Ni(O) complexes derived from $NiBr₂(PR₃)₂$ (R = Bu, Ph) and activated Zn in benzene, thf, or dmf. Likely mechanisms involve hydrogenative debromination or dimerization of Ar_2CC formed by reductive elimination of $NiBr_2(PPh_3)_2$ from a bromovinyl-nickel intermediate. The formation of the intermediate butatrienes from dihaloethenes may involve either dehalogenation of a 2,3-dihalo-l,3-butadiene (as found with the manganese system)⁹⁰ or coupling of vinylidene intermediates at the nickel (0) center.¹⁷¹

Other examples of the cyclization of nickel methylenecarbenoids generated from 1,1-dihalogenoethanes and activated nickel (from NiI₂, Li powder, and a catalytic amount of 4,4'-di-tert-butylbiphenyl as electron carrier in thf under sonification) to [3]-, [4]-, and [5]-radialenes have been described.¹⁷² Precursors included 2-aryl-l,l-dibromopropenes (aryl = Ph, p- C_6H_4Cl , p-C $_6H_4CN$), $CMe_2=CRr_2$, and fluorene derivatives. The reaction between 67 and 68 in the presence of activated Ni gave the mixed [3]-radialene (69) (10%), perhaps by addition of the intermediate vinylidene to the triene (Scheme 33).

Coupling of l,l-diphenyl-2,2-dibromoethene via the lithium cuprate(I) complex $LiCu(CBr=Ch₂)₂$ gave tetraphenylbutatriene, together with octaphenyl[4]radialene, via oligomerization of the ate complex and reductive elimination of CuBr from 70.¹⁷³ [4]- and [5]-radialenes were obtained by warming the ate complex from $Me_2C=CBr_2$, LiBu and Cu(I) complexes;

SCHEME 29»

^a Reagents: (i) CoCl(PPh₃)₃/C₆H₆; (ii) dimethylglyoxime/MeCN; (iii) AgBF₄/MeCN.

SCHEME 30

SCHEME 32

also

SCHEME 31

(64)

their formation may involve the intermediacy of $Me₂CC.¹⁷⁴$

Reactions between (Z) -BCl₂CEt=CEtBCl₂ and $(Me_3Sn)_2C=CMe_2$ afforded the diboron heterocycle 71 by elimination of SnClMe₃ (Scheme 34).¹⁷⁵

V. Blnuclear VinyHdene Complexes

The chemistry of binuclear metal complexes containing vinylidene ligands bridging the two metal cen**SCHEME 33**

SCHEME 34

ters has largely concentrated on their preparation, with the notable exception of the elegant studies of Casey,

SCHEME 35°

^a Reagents: (i) LiMe, $2 H^{+}$, $- H_{2}O$; (ii) LiMe, NEt₃ or $H_{2}O$; (iii) H^+ ; (iv) H^- ; (v) $[CPh_3]^+$, - $H^-.$

Knox, and others on the iron and ruthenium systems described in detail below. The vinylidene complexes occupy a central position in respect to related complexes containing CO, CMe, CHMe, C_2H_4 , and vinyl ligands (Scheme 35). The chemistry will be discussed according to the element involved; there are also several reports of complexes containing two different metals. These complexes feature in a review of hydrocarbylbridged binuclear complexes.³

Synthetic methods are generally based on addition of an electrophile to a μ -acetylide or by generation of a vinylidene fragment from α , α -dihalo-olefins in the presence of a potential or actual binuclear systems. Other methods include addition of a metal hydride across the $C=C$ bond of a metal acetylide and addition of appropriate metal-ligand fragments to mononuclear vinylidene complexes. Tables 4-6 collect reported binuclear μ -vinylidene complexes with some spectroscopic

TABLE 5. Heterobinuclear Complexes $ML_m\{M'L'_n\}(\mu-X)(\mu-CCRR')$

$\overline{\text{ML}}_m$	$\overline{\textbf{x}}$	$\overline{M'L'}$	$\overline{\mathbf{R}}$	\mathbf{R}'	color	$\delta(C_\alpha)$	$\delta(C_g)$	ref
$Cr({\rm CO})_2(\eta$ -C ₆ H ₆)	$\overline{\text{co}}$	$Rh(PPr_3)(\eta$ -C ₅ H ₅)	\overline{H}	\overline{H}	deep red	285.0	120.3	229, 230
$W(CO)_{\delta}$		Pt(dppm)	$\bf H$	н	yellow	241.3	125.9	220
W(CO)	dppm	Pt(CO)	н	$\mathbf H$	yellow	254.4	123.9	220
$W(CO)_{3}(\eta - C_{5}H_{5})$		$[Pt(PEt3)2]+PF6$	$\, {\bf H}$	${\bf Ph}$	brown			218
$Mn(CO)(\eta$ -C ₅ H ₅)	\rm{co}	Rh(CO)(acac)	н	Ph		290.6	132.4	225
$Mn(CO)2(\eta-C\deltaH\delta)$		$Fe(CO)_{4}$ (E)	$\bf H$	CO ₂ Me	red			223
$Mn(CO)2(\eta-C6H6)$		$Fe(CO)_{4} (Z)$	$\mathbf H$	CO ₂ Me	dark red			223
$Mn(CO)(\eta$ -C ₅ H ₅)	\bf{CO}	$Rh(PPr3i)(\eta$ -C ₆ H ₆)	$\bf H$	H	deep red	278.9	121.5	229, 230
$Mn(CO)2(\eta-C\deltaH\delta)$		$Pt(PPh_3)_2$	$\mathbf H$	Ph	yellow	264.3	141.3	226
$Mn(CO)2(\eta-C5H5)$		$Pt[POEt]_3]_2$	H	Ph	orange	259.8	141.1	226
$Mn(CO)2(\eta-C\deltaH\delta)$		PtIP(OPr) ₃	$\bf H$	${\bf Ph}$	yellow	259.5	141.4	228
$Mn(CO)2(n-C6H6)$		$Pt(POPh)_{3}$	$\mathbf H$	${\bf Ph}$	orange			226
$Mn(CO)2(\eta-C5H5)$		$Pt(CO)(PPh_3)$	$\mathbf H$	${\bf Ph}$	red-orange	260.5	146.3	226
$Mn(CO)2(\eta-C5H5)$		$Pt(CO)[P(OPr^i)_3]$	$\mathbf H$	${\bf Ph}$	yellow			228
$Mn({\rm CO})_2(\eta\text{-C}_5{\rm H}_5)$		$Pt(PPh3)(P(OPri)3)$	н	Ph	orange	260.0	140.3	228
Fe(CO) ₃	\rm{co}	$Rh(PPri3)(\eta$ -C _b H _b)	н	$\bf H$	deep red	250.6	124.7	229, 230
Fe(CO) ₃	CO.	$Rh(PPr3i)(\eta$ -C ₅ H ₅)	$\mathbf H$	Me	deep red	248.4	130.5	230
$Fe(CO)_{3}$	\mathbf{CO}	$Rh(PPr3i)(\eta$ -C _b H _b)	$\bf H$	${\bf Ph}$	deep red	238.8	140.0	230
$Fe({\rm CO})_{2}({\rm PMe}_{3})$	\rm{co}	$Rh(PPr3i)(\eta-C6H6)$	H	Me	deep blue			230
$Fe(CO)(\eta$ -C ₅ H ₅)	$_{\rm CO}$	$Fe(CO)(\eta - C_5Me_5)$	н	Bu	red	$274.5, 272.1^a$		239
$Fe(CO)(\eta - C_{\delta}H_{\delta})$	\rm{co}	$[Pt(PEt3)2]+PF6$	$\bf H$	${\bf Ph}$	orange-red			218
$Os(PPr3i)(\eta-C6H6)$		CuCl	н	Ph	vellow			86
$Rh(PPr3)(\eta$ -C _b H _b)		CuCl	$\, {\bf H}$	$\bf H$	orange-red	274.1		210
$Rh(PPr_3)(\eta$ -C ₅ H ₅)		CuCl ^b	$\mathbf H$	H	red			210
$Rh(PPr3i)(\eta$ -C ₅ H ₅)		CuCl	$\bf H$	Me	red			210
$Rh(PPr3i)(\eta-C6H6)$		CuCl	н	P _h	red			210
$Rh(PPr3)(\eta$ -C ₅ H ₅)		$Cu(T-C6H6)$	$\bf H$	$\bf H$	dark red			210
NiCl	$(dppm)_2$	PdCl	$\bf H$	$\mathbf H$	red			213
NiCl	$(dppm)_2$	PdCl	C1	C1	orange			213
NiCl	$(dppm)_2$	PtCl	$_{\rm C1}$	C1	orange			213
$Ni(C_2Ph)(PEt_3)_2$		$[Pt(PEt3)2]+PF6$	н	${\bf Ph}$	brown			218
PdCl	$(dppm)_2$	PdI	C1	C1	orange			216
$Pd(C_2Ph)(PEt_3)_2$		$[Pt(PEt3)2]+PF6$	$\, {\bf H}$	P _h	brown			218
PtCl(PEt ₃)		PtCl(PEt ₃) ₂	$\mathbf H$	P _h	orange			219
PtCl(PEt ₃)		$Pt(C_2Ph)(PEt_3)$	$\bf H$	${\bf Ph}$	orange-red			219
PtBr(PEt ₃)		PtBr(PEt ₃) ₂	н	Ph	pale orange			219
PtBr(PEt ₃)		$Pt(C_2Ph)(PEt_3)_2$	$\mathbf H$	${\bf Ph}$	orange-red			219
PtI(PEt ₃)		PtI(PEt ₃) ₂	$\bf H$	${\bf Ph}$	orange			219
PtI(PEt ₃)		$Pt(C_2Ph)(PEt_3)_2$	$\mathbf H$	${\bf Ph}$	red			219
Pt(NCS)(PEt ₃)		Pt(NCS)(PEt ₃) ₂	H	P _h	pale orange			219
Pt(NCS)(PEt ₃)		$Pt(C_2Ph)(PEt_3)_2$	$\bf H$	${\bf Ph}$	red-orange			219
Pt(SPr')(PEt ₃)		$Pt(C_2Ph)(PEt_3)_2$	H	${\bf Ph}$	bright yellow			219
Pt(SPh)(PEt ₃)		$Pt(C_2Ph)(PEt_3)_2$	н	Ph	dark purple			219
$Pt(SC_6Cl_5)(PEt_3)$		$Pt(C_2Ph)(PEt_3)_2$	н	P _h	red-orange			219
$[Pt(PEt3)2]+PF6$		$Pt(C_2H)(PEt_3)_2$	н	н	orange			218
$[Pt(PEt3)2]+PF6$		$Pt(C_2H)(PEt_3)_2$	$\, {\bf H}$	Me	red			218
$[Pt(PEt_3)_2]^+PF_6^-$		$Pt(C2Me)(PEt3)2$	H	Me	orange			218
$[Pt(PEt_3)_2]^+PF_6$		$Pt(C_2Ph)(PEt_3)_2$	н	Ph	red			217
$[Pt(PEt3)2]$ + $PF6$		Au(PEt _s)	H	Ph	deep brown			218
$[Pt(PEt3)2]+PF6$		Au(PPh ₃)	н	Ph	amber			218
$^{\circ}$ δ (C _a , μ -CO). ^b Polymeric form.								

details. The majority of these complexes contain the vinylidene ligand bridging the two metals in a more or less symmetrical fashion, in a μ -2 σ (2e) arrangement (C); a few complexes contain the side-on, μ - σ , n^2 (4e) system (D). Tables 7 and 8 summarize available structural data.

- **A. HomometalNc Complexes**
- 1. Molybdenum and Tungsten

The first example of a side-on bonded vinylidene ligand (or μ - σ , η ²(4e)-CCH₂), analogous to side-on CO, was prepared by UV irradiation of a mixture of (Mo- $(CO)₂(r-C₅Me₅)₂$ and ethyne, when air-stable blue-black 72 (Scheme 36) was formed in 40% yield.¹⁷⁶ Similar complexes were later obtained from the ambident anion 73 formed by addition of lithium acetylides to {Mo- $(CO)₂(\eta-C₅H₅)₂$ or to its $\eta⁵$ -indenyl analogue, or by deprotonation of μ -alkyne-Mo₂ complexes with LiBu.¹⁷⁷ Reaction of the anions with MeOH resulted in protonation to the dark purple μ - σ , η ²-vinylidenes 74, obtained in 80% yield. The vinylidenes rearrange to the μ -alkyne complex within 12 h at room temperature in solution, or in 2 weeks as a solid. Methylation of the anion gave the CCMePh complex 75 (dark blue, 85%), although if the reaction was carried out in tetrahydrofuran,

TABLE 6. Complexes Containing μ **-** σ **,** η **²-CCRR' Ligands**

ML_n	$M'L'_n$	R	R	color	$\delta(C_\alpha)$	$\delta(C_g)$	ref
$Mo(CO)_{2}(\eta$ -C _δ H _δ)	$Mo(CO)_{2}(\eta$ -C ₅ H ₅)	н	н		329.5	40.0	179
$Mo(CO)_{2}(\eta-C_{\delta}H_{\delta})$	$Mo(CO)_{2}^{T}(\eta - C_{6}H_{6})$	H	Ph	dark purple	333.2	66.1	177
$Mo(CO)_{2}(\eta-C_{5}H_{5})$	$Mo(CO)_{2}^{T}(\eta$ -C _δ H _δ)	Me	Me	blue-black	342.9	79.8	178
$Mo(CO)_{2}(\eta-C_{\delta}H_{\delta})$	$Mo(CO)_{2}(\eta-C_{5}H_{5})$	Me	Ph	dark blue	340.7	78.9	177
$Mo(CO)_{2}(\eta-C_{6}H_{6})$	$Mo(CO)_{2}^{T}(\eta-C_{6}H_{6})$	(CH ₂) ₄ OMe	Ph	blue	338.7	83.8	177
$Mo(CO)_{2}(\eta-C_{\delta}Me_{\delta})$	$Mo(CO)2(\eta-C5Me5)$	н	н	blue-black	337.3	45.3	176, 177
$W(CO)_{2}(\eta - C_{\delta}H_{\delta})$	$W(CO)2(\eta-C5H5)$	Me	Me	deep blue	315.2		178
$Mn({\rm CO})_2(\mu$ -dppm)	Mn(CO)	н	Bu'			84.8	183
$Rh(PPr3i)(\eta-C6H6)$	RhCl(PPr ₃)	н	H	orange-red			110, 210
$Rh(PPri3)(\eta$ -C _b H _b)	RhCl(PPr ₃)	H	Ph				110
$Rh(PPri3)(\eta$ -C _b H _b)	$Rh(PPri3)(\eta$ -C _b H ₅)	H	н	red	310.4		110, 210

TABLE 7. Some Structural Features of Binuclear Complexes $ML_{n_2}(\mu-\mathbf{X})(\mu-\text{CCRR}')$

х	R	\mathbf{R}'	M-Mʻ	M-C	M' -C		ref
	н	CHO	2.753(1)	1.945(4)	1.949(4)	1.347(5)	43
	H		2.748(1)	1.983(3)	1.954(4)	1.329(5)	43
PPh ₂		PHC _{y2}	2.550(2)	1.969(7)	1.956(7)	1.322(9)	191
	F	F	2.674(1)	1.954(4)	1.956 (4)	1.288(6)	186
CO	н	$C(CN) = C(CN)2$	2.503(1)	1.874(3)	1.888 (3)	1.358(5)	256
co	CH ₂ Ph	Ph	2.510(1)	1.944(2)	1.936 (2)	1.326(3)	372
(H) ₂	н	н	2.428(1)	1.920(8)	1.928(8)	1.35(1)	188
CO	H		2.696(1)	2.033(7)	2.026(7)	1.326(11)	259
	H	н	2.500(1)	1.886(1)	1.882(1)	1.312(2)	203
			3.011(1)	2.063(7)	2.051(7)	1.329(9)	207, 208
		Bu ^t	2.625(2)	2.00(2)	1.98(2)	1.32(3)	212
	Me	Me	2.684(0)	1.978(1)	2.043(1)	1.318(2)	206
	н		2.691(1)	1.982(3)	1.988(3)	1.304(5)	204
	H		2.840(4)	1.871(7)	1.885(7)	1.134(9)	213
$\mathrm{(dppm)}_{2}$	C1	C ₁	3.248(2)	1.96(1)	2.01(2)	1.30(2)	216
	$(dppm)_2$ $C_4HBu^t(CF_3)_2CO$ $(dppm)_2$	H H H	CHOCH ₂ 3O H Ph H H				$c-c$

TABLE 8. Some Structural Features of Heteronuclear Complexes $\{ML_m\}$ $(M'_{m}) (\mu - X) (\mu - CCRR')$

ring-opening of the solvent afforded 76, characterized by an X-ray structure. The formation of these com-

plexes was rationalized on the basis of a rotation of the symmetrically bound vinylidene ligand to relieve steric strain, with formation of the Mo=C bond to relieve the electronic unsaturation.¹⁷⁷ On heating in toluene at 50 P C, 74 underwent a 1,3-H shift to give a μ - σ , η ³-CHCPhCH₂ complex.

The dynamic process occurring in these complexes was revealed by the low-temperature NMR study of the μ - σ , η ²-CCMe₂ complexes, obtained from $(M(\text{CO})_2/\eta$ - (C_5H_5) ₂ (M = Mo, W) and LiC₂Me, followed by methylation with $CF₃SO₃Me$. This procedure gave a separable mixture of the red μ -alkyne and deep blue μ vinylidene complexes. Barriers to rearrangement were measured from both the Me and Cp resonances as ΔG^*_{Te} 61 (2) (Me) and 59 (2) (Cp) kJ mol⁻¹ for Mo; the values for the W complex were experimentally the same.¹⁷⁸

Protonation of 72 with CF_3CO_2D afforded {Mo- $(CO)₂(\eta-C₅H₅)₂(\mu-CD=CH₂)(OCO(O)CF₃$, whereas the μ -CCD₂ complex gave the corresponding μ -CH=CD₂ derivative with $CF₃CO₂H$, showing that protonation of C_{α} occurred, the $CF_{3}CO_{2}^-$ anion adding to the resulting cationic vinyl.¹⁷⁹ A similar reaction occurred with 72 $(R = Me)¹⁷⁶$ but with $HBF₄·OEt₂$, the cationic μ -allyl 77 was obtained; the same complex was formed by protonation (HBF₄-OEt₂ or CF₃SO₃H) of { $Mo(CO)_{2}(n C_6H_5$)₂(μ - σ , η ³-CHCMeCH) (which was formed¹⁷⁷ by heating 72 ($R = Me$) in hexane for 4 h).¹⁷⁹ Protonation

SCHEME 36

at C_{α} is followed by H transfer from one of the Me groups via the metal and an agostic $Mo(\mu-H)C$ interaction. Transfer to carbon forms the asymmetric allyl attached via a $3c-2e$ bridge across the Mo \equiv Mo bond and η^2 -coordination to one Mo atom.

In these complexes the unsaturation rests in the Mo=C bond, diazomethane reacting to form the same μ -allene complex 78 as that obtained from the unsaturated Mo_2 complex and allene. Reaction with CF_3CO_2H (but not with HBF₄-OEt₂) affords initially the μ - σ , η^2 -vinyl, and with excess acid, the μ -CHMe cation.¹⁷⁶

Related 1,2-H shifts may occur in the reactions of μ -alkyne-Mo₂ complexes with PClPh₂ to give the phospha-allene complexes 79 (Scheme 37).¹⁸⁰

2. Manganese

Treatment of $Mn(\eta$ -C₂H₂)(CO)₂(η -C₅H₅) with NEt₃ afforded $\text{Mn}_2(\mu\text{-CCH}_2)$ (CO)₄($\eta\text{-C}_5H_5$)₂ (80, R = H).¹⁸¹ The phenyl complex 80 ($R = Ph$) does not react with PPh_3 between 20–80 °C, but on UV irradiation afforded $Mn(CCHPh)(CO)_2(\eta-C_5H_5)$ and $Mn(CO)_2(PPh_3)(\eta C_5H_5$).¹²⁶ Protonation (HX) of 80 (R = Ph, CO_2Me)

gave unstable μ -carbyne complexes $Mn_2(\mu$ -CCH₂R)- $(CO)_4(\eta \cdot C_5H_5)_2$ which were not isolated. Free rotation of the CH_2R groups occurred as was shown by the equivalence of the C_5H_5 groups.¹⁸² Related complexes were obtained from propiolaldehyde acetals and excess $Mn(OEt₂)(CO)₂(\eta-C₅H₅)$.⁴³ Chromatography (SiO₂) resulted in the formation of $Mn_2\mu$ -CCH(CHO)(CO)₄- $(\eta$ -C₅H₅)₂, containing the complexed aldehyde. The two

SCHEME 37

$$
\begin{array}{c}\n\langle 79 \rangle \\
\bullet \\
\bullet \\
\end{array}
$$

 $Mn(CO)₂(\eta-C₅H₅)$ moieties take up a *transoid* configumetion. The configuration of the

The complex $Mn_2(\mu\text{-}H)_2(\mu\text{-}dppm)(CO)_6$ reacted with $HC₂Bu^t$ to give a small amount of $Mn_{2}(\mu$ -CCHBu^t)(μ - $\text{dppm}(CO)_6$, the hydrido-acetylide being the major product.¹⁸³

product.
3 Tron Di 3. Iron, Ruthenium, and Osmium

Comparison of the X-ray structures of the two complexes $Fe_2(\mu$ -CX)(CO)₈ (CX = CH₂, CCH₂) shows that in the former, the Fe-Fe bond [2.507 (1) A] is strengthened by overlap of the e" MO (the HOMO) with the μ -ligand orbitals; there are also two μ -CO ligands in this molecule. In the μ -vinylidene, there are no bridging CO groups, and no resulting MO to stabilize the antibonding e" MO of the diiron system. Consequently, in this complex the Fe-Fe bond [2.635 (3) A] is weaker.¹⁸⁴ Earlier calculations for coordinatively unsaturated $Fe_2(\mu$ -CCH₂)(CO)₆ indicated that the anti-van't Hoff geometry, in which the $CH₂$ plane is perpendicular to the $Fe₂C$ plane, is stabilized by the diiron unit.¹⁶⁵

The first difluorovinylidene complex was prepared from $CF_2(COCl)_2$ and $[Fe_3(CO)_{11}]^2$; yellow $Fe_2(\mu CCF_2$)($C\tilde{O}$)₈ was obtained in 25% yield.¹⁸⁶ The short $C=\overline{C}$ bond length (1.288 Å) and FCF angle (106.2°) show the pronounced effect of the fluorine atoms.

The dinitrogen complex ${Fe(CO)_3(PEt_3)}_2(\mu-N_2)$ reacted with $\rm{C_2H_2}$ to give the μ -CCH₂ derivative 81, detected by NMR methods, which is in equilibrium with the μ -CH₂CCO complex 82, isolated in 5% yield at low temperatures.¹⁸⁷

Green complex 83 was obtained in 50-60% yields either from the reaction between $Fe(\eta-C_6H_6)(tmps)$ [tmps = $\text{MeSi}(\text{CH}_2\text{PMe}_2)_{3}$] and ethene (50 °C/7 atm), or by reduction of $[\{Fe(mps)\}_{2}(\mu\text{-Cl})_{3}][BPh_{4}]$ with sodium amalgam under ethene (1.5 atm/2 days).¹⁸⁸ The

X-ray structure shows the symmetrical μ -vinylidene ligand and two μ -H atoms bridging the two iron atoms;

formal electron counting does not require there to be an Fe-Fe bond, but the short separation between the Fe atoms $[2.428(1)$ Å suggests that there is significant interaction between them. The vinylidene ligand has a greater trans influence than H. This dissociation of ethene into $2H + CCH_2$ models the proposed first step in the chemisorption of ethene on the Pt(IIl) surface (see section IX).

Addition of amines to $Fe_2(\mu\text{-}PPh_2)(\mu\text{-}C_2R)(CO)_6$ gave three types of adduct, including the yellow zwitterionic vinylidene complexes, $Fe₂(\mu-PPh₂)(\mu-CCR(NHR'₂)).$ $(CO)_6$ (84; R = Ph, R' = Me, Et; R = C₆H₄OMe-p, R' = Et); on warming, isomerization to red $Fe₂(\mu-PPh₂)$ - $(\mu$ -CHCR(NR'₂)}(CO)₆ (85) occurred.¹⁸⁹ This conversion

occurred more readily with bulky amines (NHPr'₂, $NHCy₂$). NMR studies revealed that competitive reversible addition of NHR'₂ to C_β gave 84, while irreversible addition of the N-H bond across the $C=CC$ triple bond gave 85, eventually as the sole product. This reaction was extended to survey the Fe, Ru, and Os triad (for $R = Ph$, $R' = Et$).¹⁹⁰

The reaction between PHCy₂ and $Fe_2(\mu\text{-}PPh_2)(\mu\text{-}P)$ C_2Ph)(CO)₆ gave bright yellow 86 (90%), in which similar addition of the secondary phosphine to C_6 has produced the μ -CCPh(PHCy₂) ligand.¹⁹¹ A ³¹P NMR

study of this and related complexes has been reported.¹⁹² These reactions, which give complexes containing trigonal carbon bridges, contrast with the addition of $P(OEt)_{3}$, which gave $Fe_2(\mu\text{-}PPh_2)(\mu\text{-}C[P(OEt)_{3}]CPh$ }- $(CO)_6$, with a two-carbon bridge,¹⁹³ and also with the addition of PMe₂Ph to $\text{Os}_3(\mu\text{-H})(\mu\text{-CH}=\text{CH}_2)(\text{CO})_{10}$, which afforded $\mathrm{O}_{s_3}(\mu\text{-H})\{\mu\text{-CHCH}_2(\text{PMe}_2\text{Ph})\}(\mathrm{CO})_{10}$ containing a tetrahedral carbon bridge.194,195

Cleavage of P-C(sp²) bonds in $CH_2=C(PPh_2)_2$ (dppee) occurred readily on heating $Fe₂(\mu$ -dppee)(μ - $CO(CO)₆$ (87; Scheme 38) in refluxing heptane, with concomitant loss of CO; the phospha-allene complex 88 so formed rearranged to the phosphavinyl 89 on UV irradiation.¹⁹⁶ A vinylidene-related ligand is also found in the isomerization of $\text{Fe}_2(\mu\text{-dppm})(\mu\text{-CHCHCO})(CO)_{5}$ from $\text{Fe}_2(\mu\text{-dppm})(\mu\text{-CO})(CO)_6$ and C_2H_2] at 90 °C in solution; complex 90 (Scheme 39) was formed, in a reaction where $CCH₂$ formally inserts into the P-Fe bond.¹⁹⁷ This may occur by intramolecular attack of the P atom on a carbon of the CHCHCO unit, followed by H migration and breaking of the C-CO bond. A further slow reaction resulted in quantitative isomerization to 91.

The thioketene complex 92 reacted with the free thioketene to give the dark brown 93 in 72% isolated yield (Scheme 4O).¹⁹⁸ The X-ray structure shows that

SCHEME 40

cleavage of the $C=$ S bond has occurred to give a bridging dithiolato ligand, while the sulfur-free vinylidene resulting has displaced \rm{PPh}_3 from one of the iron atoms [Fe-C 1.79 (1), C -C 1.30 (2) Å, Fe-C-C 177 (1)°].

4. Cobalt and Rhodium

It has been known for many years that $Co_2(CO)_{6}$ complexed propargylic alcohols react with strong acids (HPF_6, HBF_4) to form stabilized carbocations, which are isolobal with the $Co_3(CO)_9$ -stabilized species of Seyferth (section VI.B.4). Reactions of the dinuclear

SCHEME 41

cations with nucleophiles afford alkylated products (the Nicholas reaction).¹⁹⁹ Recent modifications of this reaction have been designed to extend its usefulness to species containing acid-sensitive functional groups. One such approach has been to add a Lewis acid (BF_3-Et_2O) to a 1/1 mixture of the dicobalt complex and the nucleophile.²⁰⁰ High levels of diastereoselection for synalkylated products formed in intermolecular reactions were achieved. The results are rationalized in terms of the transition-state model 94, where the intermediate is a cis-allyl cation equivalent. The organic product

can be isolated by treatment of the reaction mixture with $Me₃NO$ or $Fe(NO₃)₃$; where protection with $SiMe₃$ groups was employed, concomitant removal of the protecting group can be achieved by using $[NBu_4]F$. In some reactions, complexed cycloalkynes are formed (Scheme 41). These cannot be displaced by $Me₃NO$, the complexes following different reaction pathways still to be elucidated. The products can be further elaborated by the Pauson-Khand reaction to give a method for the intramolecular construction of medium-sized rings.²⁰¹

The formation of $Co_3(\mu\text{-CR})(CO)_9$ (R = $CMe=CH_2$, CHMe₂) by reaction of $Co_2(CO)_8$ with Me₂CCO was explained by the interaction of an intermediate $Co_2(\mu$ - $CCMe₂)(\mu$ -CO)(CO)₆ with Co₂(CO)₈ or CoH(CO)₄, respectively.²⁰²

The radical anion Na $[\langle Co(CO)(\eta-C_5H_5)\rangle_2]$ reacted with $Br_2C=CH_2$ to give the deep red $Co_2(\mu\text{-}CCH_2)(CO)_2(\eta\text{-}CCH_2)$ C_5H_5 ₂ in 48% yield.²⁰³ Protonation (HBF₄-Et₂O) gave the alkylidyne complex, in contrast with the analogous rhodium complex, which is protonated at the Rh-Rh bond.²⁰⁴ Hydrogenation $(3-4 \text{ atm}, C_6D_6, 60 \text{ °C})$ gave the μ -CHMe complex, obtained in only 43% yield because of subsequent slow conversion to ethane. Addition of $MoH(CO)₂(L)(\eta-C₅H₅)$ (L = CO, PPh₃, PMe₃) (but not the Cr or W analogues) or $MnH(CO)_5$ to the dicobalt complex afforded the heteronuclear clusters 95 and 96, respectively. A kinetic study of the molybde-

center. This collapses to an intermediate which then loses 2 CO to form the cluster. It is concluded that the reaction can only proceed for hydrides with a critical M-H bond strength, since those with strong M-H bonds will not react because H transfer to give the radical intermediate cannot occur, while those with weak M-H bonds hydrogenate the vinylidene $C=_C$ double bond.

The well-known synthesis of μ -methylene complexes from diazomethanes and compounds containing multiple metal-metal bonds has been adapted to the preparation of μ -vinylidene derivatives. Although N_2 =C=CR₂ are unstable, they can be generated in situ from cyclic nitrosourethanes 97. Accordingly, addition

of LiOEt to 97a or 97b in the presence of $(M(\mu$ -CO $)(\eta$ - (C_5Me_5) ₂ at -50 °C afforded low yields of $M_2(\mu$ - $CCR_2 (CO)_2 (\eta - C_5H_5)_2$ [98, M = Co, R = Me, blackgreen; $M = Rh, R = Me$; $R, R = (CH₂)₅, deep red$. 206,206 Some of the μ -methylene complex was also obtained. The vinylidene group is symmetrically bonded to the two metal atoms.

Reactions of HC₂Ph with $Rh_2(\mu\text{-dppm})_2(CO)_3$ afforded the fluxional vinylidene $Rh_2(\mu\text{-}CCHPh)(\mu\text{-}CCHPh)$ $\text{dppm})_2(\text{CO})_2$ (99) by an associative reaction, and the alkyne complex $Rh_2(\mu\text{-}HC_2Ph)(\mu\text{-}dppm)_2(CO)_2$ (100) from the dicarbonyl intermediate formed by CO dissociation.^{207,206} The vinylidene is the thermodynamic

isomer, slow isomerization of **100** to 99 occurring on heating in benzene at 80 °C $(t_{1/2} \sim 27$ h). These studies established that the μ -alkyne complex does not lie on the reaction path of the metal-promoted alkyne-tovinylidene isomerization, which is a bimolecular process between the tricarbonyl and the alkyne, with C-H bond activation occurring in or before the rate-determining step. High yields of the vinylidene were obtained by using a 10-fold excess of the alkyne at 25 ⁰C. Reaction of 99 with CO gave a labile CO adduct, with a color change from intense purple to pale yellow, which was reversed on heating. The vinylidene complexes were also obtained from the corresponding μ -acetylide complexes and $Li[BHEt₃];$ the deep blue tert-butyl complex

SCHEME 42

was oxidized by O_2 to regenerate the red μ -C₂Bu^t complex.²⁰⁹ Addition of PRPh_2 (R = Me, Ph) to the μ -C₂H complex gave μ -CCH(PRPh₂) derivatives.

The vinylidene complex 99 catalyzed the disproportionation of HC₂Ph to a mixture of PhC₂C₂Ph and PhCH= $CH₂$, together with about 10% of a 1/1 mixture of (E) and (Z) -PhC₂CH=CHPh; Scheme 42 shows a possible mechanism for this reaction.²⁰⁸ Hydrogenation of $HC₂Ph$ to styrene also occurs in the presence of 99, 100 also being present during the reaction; labeling studies indicated unusual reactivity patterns for the proposed intermediates and a definitive mechanism has still to be established.

Addition of $RhCl(PPrⁱ3)₂$ to $Rh(CCH_2)(PPrⁱ3)(\eta$ -C₅H₅) gave the orange μ -vinylidene complex $(\eta$ -C₅H₅)- $\text{(PPr}_3\text{)}\text{Rh}(\mu\text{-}\eta\text{-}1,\eta^2\text{-CCH}_2)\text{RhCl}(\text{PPr}_3)_{2}$ (101), which with NaC_5H_5 afforded $(\eta$ -C₅H₅)(PPrⁱ₃)Rh(μ -CCH₂)Rh- $(PPrⁱ₃)(\eta$ -C₅H₅) (102); protonation of the latter $(HBF_4\text{-}Et_2O)$ gave a μ -vinyl derivative, which regenerated 101 on treatment with KOH.^{110,210} Warming 101

in benzene to 50 ⁰C gave 103 by coupling of the CCHR ligand with one of the PPr_{3}^{i} ligands via oxidative addition of the latter to one metal atom; similar com-

pounds were obtained directly from Rh(CCHR)- $(PPr₃ⁱ)(\eta$ -C₅H₅) (R = Me, Ph) and RhCl(PPr¹₃)₂. This reaction may be related to the formation of the binuclear complexes $Co_2(\mu \cdot \sigma, \eta^3,P\text{-}\text{MeCC}_6\text{H}_4\text{PPh}_2)(\eta \text{-} \text{C}_5\text{H}_4\text{R})_2$ from $(\eta$ -C₅H₄R)Co(PPh₃)₂ (R = H, COMe, CO₂Me) and C₂H₂, via addition of $(\eta$ -C₅H₄R)Co to an intermediate C_2H_2 , via addition of $(\eta$ -C₅H₄R)Co to an intermediate $(\eta$ -C₅H₄R)(PPh₃)Co(μ -CCH₂)Co(η -C₅H₄R) (Scheme (43) .²¹¹

One of six complexes isolated from the reaction between HC_2 Bu^t and $Rh_2(CO)(C_2(CF_3)_2)(\eta$ -C₅H₅)₂ in hexane for 6 days was the crystallographically characterized 104.²¹² This yellow complex appears to isomerize during chromatography either by switching of the H and Bu' groups, or by flipping of the μ -cyclopentadienone ligand.

5. Nickel, Palladium, and Platinum

Red-purple $\text{Ni}_2(\mu\text{-CCH}_2)(\mu\text{-dppm})_2\text{Cl}_2$ (105; M = Ni, $X = Cl$) was obtained in 38% by double oxidative addition of 1,1-dichloroethene to $Ni(cod)_2$ in the presence of dppm, or in 74% yield from NiCl(CCl=CH₂)(PPh₃)₂, $\text{Ni}(\text{cod})_2$, and dppm.²¹³ It is thermally very stable, decomposing above 200 ⁰C, and undergoes ready halide replacement by Br, I, or SCN; no replacement by alkyl or aryl groups could be effected, however. An impure cationic complex, $[Ni_2(\mu\text{-CCH}_2)(\mu\text{-dppm})_2(Me_2CO)_2]$ - $[PF_6]_2$, was formed from the chloro complex and $TIPF_6$.

Analogous dipalladium complexes 105 (M = Pd) were obtained from $Pd(PPh_3)_4$ or from $Pd(dba)_2$, dppm, and $CH_2=CX_2$ (X = Cl, Br),^{214,215} or from {Pd(μ -dppm)Cl}₂ and C_2I_2 .²¹⁶ Ready exchange of Cl for Br, I, or SCN occurred in acetone, while TlOAc afforded $Pd_2(\mu CCH₂)(\mu$ -dppm)₂(OAc)₂. Complex 105 (M = Pd) reacted with $LiC₂(tol)$ to give the orange acetylide, and with (tol)NC to give the dication $[{\rm Pd}_2(\mu\text{-}{\rm CCH}_2)(\mu\text{-}$ dppm)₂(CNtol)₂]²⁺; other acetylides were prepared from 105 (M = Pd), HC_2R [R = Ph, tol, $CMe_2(OH)$], and TlPF₆. A related μ -CCCl₂ compound was obtained from $Pd(P\hat{P}h_3)_4$, $PdCl(CCI=CCl_2)(PPh_3)_2$, and dppm, while the μ -CHMe(PPh₂)₂ derivative was formed as a single isomer, probably 106 ; only 105 (M = Pd) was isolated

SCHEME 44

from the reaction with $CH(SiMe₃)(PPh₂)$ ². Protonation $(HBF₄·OEt₂)$ of 105 (M = Pd) gave two intermediates which changed within minutes to an asymmetric (NMR) μ -CMe complex, possibly containing cis-dppm ligands.

1,2-Addition of a metal hydride across the C=C triple bond of a metal acetylide has been used to produce bridging vinylidene ligands, the first example of this reaction being applied to the synthesis of 107 from trans- $Pt(C_2R)_2(PEt_3)_2$ ($R = H$, Me, Ph) and [trans- $PtH(OCMe₂)(PEt₃)₂[(BF₄].^{217,218}$ Other applications of this reaction to the synthesis of heterodimetallic species are described in section V.B. Initial displacement of acetone by the acetylide, followed by a hydrogen atom shift from platinum to C_{β} , is the likely mechanism. The orange to red Pt₂ complexes were obtained in 40-70% yield. Two isomeric forms were obtained which interconverted, perhaps via addition of a trace of PE t_3 to C_8 allowing rotation around the $C-C$ bond of the resulting μ -ethylidyne group (Scheme 44).

Replacement of one PEt_3 ligand in the Pt_2 complex by halide, pseudohalide, or RS⁻ occurred readily $(54-75\%)$, while protic acids (HX) reacted to give $HC₂Ph$ and the corresponding $Pt₂X₂$ derivatives 108 $(46-76\%)$.²¹⁹ Addition of HBF₄ or HPF₆ to 107, followed by LiBr, also gave the Pt_2Br_2 complex. In these complexes, the μ -CCHPh ligand can take up two positions 107a or 107b; the products from nucleophilic substitution on either 107a or 107b all have configuration 108a, but it was noted that 107b reacted at a quarter of the rate of the other isomer. Complexes formed by elimination of HC_2Ph are found as isomeric mixtures.

SCHEME 45

Preliminary theoretical studies of **107** showed that the HOMO is primarily vinylidene Ph and μ -C in character, with the LUMO (only 0.36 eV above the HOMO) mainly having acetylene Ph character.²¹⁹ Neither has more than 4% Pt character. The net atomic charges for the $Pt^1(\mu$ -C¹C²) Pt^2 system are as follows: C^1 , 0.26; C^2 , -0.09; Pt¹, -1.07; Pt², -1.18. The Pt¹Pt² interatomic population is -0.467, indicating that there is no formal metal-metal bond. Similarities between the electronic structures of 107 and $[Pt_2(H_2P_2O_5)_4]^4$ are apparent, and preliminary studies of the photophysics and photochemistry of **107** were made.²¹⁹ A red-orange luminescence $(\lambda_{\text{max}} 696 \text{ nm})$ is emitted from 108 (X = Cl) in an EtOH/MeOH matrix at 77 K when excited (410 nm).

The photochemical reactivity observed for 108 included its acting as a catalyst for the dehydrogenation of Me₂CHOH to acetone, with formation of an (unidentified) Pt-H species. Irradiation of a mixture of 107 and MeI resulted in its conversion to the $Pt₂I(C₂Ph)$ (33%) and $Pt_2I_2(25\%)$ complexes, but the reaction does not proceed thermally.²¹⁹

B. Heterometalllc Complexes

Chromatography of $PtW\mu-C(OMe)Me$ ₍(CO)₅(dppm) on basic alumina afforded $PtW(\mu$ -CCH₂)(CO)₅(dppm) **(109;** Scheme 45), in which the Pt-W bond is asymmetrically bridged by the $CCH₂$ ligand and one of the CO groups.²²⁰ An isomeric complex was obtained from the same precursor by thermal isomerization, conversion to the cationic μ -CMe complex with HBF₄-OEt₂, and deprotonation with $K(BHBu₃⁸]$ or NaOMe; some **109** is also reformed with the latter.

Reactions of the manganese-vinylidene complexes 110 with various transition metal substrates have given

several interesting bimetallic derivatives (Scheme 46). With $M(CO)_{5}$ (thf) (M = Mo, W) dark brown bi- and trinuclear complexes 111 and 112 containing chelating vinylidene ligands were obtained; the ester oxygen coordinates to the group 6 metal.221,222 The *E* and *Z* isomers of the Mn-Fe complex 113 were similarly prepared; they interconvert via protonation/deprotonation reactions, with formation of the μ -carbyne intermediate in which free rotation of the $CH₂R$ group can occur (cf. Scheme 44).²²³ In contrast, 110 (R = Ph) afforded 114, formulated as containing a mangana-trimethylenemethane ligand bonded to an $Fe(CO)_3$ group.²²⁴ With $Rh(CO)_{2}$ (acac), the Mn-Rh derivative 115 was obtained; reaction with PPh_3 gave $\text{Rh}(\text{CO})(\text{PPh}_3)(\text{acac})$ and 110 $(R = Ph).^{225}$

The reactions between 110 ($R = Ph$) and PtL₄ [$L =$ PPh_3 , $P(OEt)_3$, $P(OPh)_3]$ or $Pt(\eta^2$ -stilbene)($PPh_3)_2$ afforded the binuclear Mn-Pt complexes 116.127,226 These complexes are yellow-orange, with relative stabilities $P(OEt)_{3} < P(OPh)_{3} < PPh_{3}$. Comparison of the μ -CCHPh complexes with the μ -C(OMe)(C₆H₄Me-4) complexes of Stone et al. 227 showed that the vinylidene ligand was more electron-withdrawing than the carbene. They show a tendency to exchange the ligands at platinum; for example, in benzene, CO or $P(OR)_{3}$ exchanged for one of the PPh₃ ligands. Good yields of the CO complex can be obtained in reactions with $Co_2(CO)_{8}$, perhaps via an intermediate in which the vinylidene bridges the two metals. One of the CO groups is semibridging to balance the strong electron withdrawal by the vinylidene ligand.127,226

A mixture of mono- and disubstituted (on Pt) complexes was obtained from 110 $(R = Ph)$ and $P(OPrⁱ)₃$; in the former, the phosphite is cis to the vinylidene ligand.²²⁸ The complexes are air-stable yellow-orange compounds; the proportion of disubstituted complex

increases with increasing amount of phosphite reactant. The exchange is reversed by treating the disubstituted complex with PPh_3 . The first ligand to be replaced is trans to the vinylidene group. With $Co_2(CO)_8$, a mixture of the carbonyl-phosphine and carbonyl-phosphite complexes was obtained from the monosubstituted complex. Slow disproportionation of the latter to the bisphosphine and bisphosphite complexes occurred on standing. A byproduct from the reaction of 110 with $Pt(P(OR)_{3})_4$ is the olefin complex $Mn(CO)_2[\eta^2-CHP]$ $CHP(O)(\tilde{O}R)_{2}(\eta$ -C₅H₅)^{127,226} (see section IV.D.3).

The mixed Ni-Pd complex $NiPd(\mu- CCH_2)(\mu \text{dppm}_2\text{Cl}_2$ (105; MM = NiPd) was obtained from a reaction of the chloro(chlorovinyl)nickel derivative with $Pd(PPh₃)₄$; with $Pd(dba)₂$ or $Pt(PPh₃)₄$, the dichlorovinylidene complexes $\text{NiM}(\mu\text{-}\text{CCCl}_2)_2(\mu\text{-}\text{dppm})_2\text{Cl}_2$ (M $=$ Pd and Pt, respectively) were formed in low yield.²¹³

Addition of the Pt-H bond in $[PtH(OCMe₂)(PEt₃)⁺$ across the $C=^C$ bonds in alkynyl-transition metal complexes (see above) is a general approach to the synthesis of heterometallic μ -vinylidene complexes 117 (Scheme 47).²¹⁸ These compounds were obtained in 30-75% yields and were characterized by NMR spectroscopy, the vinylidene proton resonance being most useful in this regard.

The complexes $Rh(CCHR)(PPrⁱ₃)(\eta$ -C₅H₅) (R = H, Me, Ph) have also been used to make heterobimetallic complexes (Scheme 48).^{229,230} Thus, with $Cr(CO)₃(\eta$ - C_6H_6), the Cr-Rh complex 118 was obtained, while with $\text{Mn}(\text{thf})(CO)_{2}(n-C_{5}H_{5})$, the Mn-Rh derivative 119 was formed. Protonation $(HBF_4 \cdot OEt_2)$ of the latter gave the dark blue μ -CMe cation. With $Fe_2(CO)_9$, the Fe-Rh complex **120** was formed, together with a trinuclear Fe₂Rh derivative; again, protonation gave μ -alkylidyne cations, while $PMe₃$ substituted a CO group on iron (121). The isomeric $(\eta - C_5 H_5)(Pr^i{}_3P)Rh(\mu - \eta^1, \eta^3)$. CHCPhCO)Fe(CO)₃ (122) was also characterized.²³¹ Addition of CuCl to $Rh(CCHR)(PPrⁱ₃)(\eta-C₅H₅)$ (R = H, Me, Ph) gave the orange-red to red μ -CCHR complexes **123;** their chirality is shown by the Pr' resonances.^{110,210} The μ -CCH₂ complex can be obtained as a second, less-soluble form, perhaps a dimer or polymer. Both forms react with NaC_5H_5 to give $(\eta \text{-C}_5\text{H}_5)$ - $(Prⁱ₃P)Rh(\mu- CCH₂)Cu(\eta-C₅H₅)$ as a dark air-sensitive oil. A similar reaction with $Os(CCHPh)(PPr₃)$ (η -C₆H_e) gave $CuOs(\mu$ -CCHPh)(Cl)(PPrⁱ₃)(η -C₆H₆) (124) in almost quantitative yield.⁸⁶

C. Complexes $\{M(CO)(\eta - C_5H_5)\}\n2(\mu - CO)(\mu - CCRR')$ (M = Fe, **Ru)**

1. Iron

Binuclear iron complexes containing bridging vinylidene ligands (Table 9) have proved to be important intermediates and to have a fascinating chemistry. Some related chemistry of the ruthenium analogues has also been developed.

(a) Synthesis. The parent complex, $\{Fe(CO)(\eta (C_5H_5)Q_2(\mu$ -CO)(μ -CCH₂) (125), was first described in 1980,²³² being obtained from reactions of LiMe with ${[Fe(\mu\text{-CO})(CO)(\eta\text{-}C_5H_5)]_2}$ followed by protonation (Scheme 49). Deprotonation of the related μ -CMe cation also afforded 125^{233} Generally, these complexes have been prepared by hydrocarbation of alkenes with $[{{\{Fe(CO)(\eta-C_5H_5)}_2(\mu-CO)(\mu-CH)}]^+}$ (126) followed by rapid deprotonation (aqueous NaHCO₃) of the μ -alkylidyne cations 127 so formed (Scheme 50).^{234–239} The μ -alkylidene complexes are in rapid equilibrium with $\mu-\sigma,\pi$ -vinyl complexes 128, but only the former are deprotonated rapidly.²⁴⁰ Formation of the *u*-vinyl complexes is favored by sterically demanding substit**SCHEME 49**

uents on the olefin and hence lower vields of the μ -vinylidenes were obtained from the more hindered olefins.^{238,239} The μ -vinyl can be deprotonated to a μ - β hydroxycarbene or μ -vinylcarbene complex.

Monosubstituted alkenes CH_2 =CHR (R = Me, Ph, Bu^t) and 126 gave 129 ($R^1 = H$, $R^2 = Et$, CH_2Ph , $CH₂Bu^t$, respectively) after deprotonation. For 127 (R $= Pr$), thermal isomerization to 128 (R $= Pr$) occurred at elevated temperatures; only the former is selectively deprotonated to $129 \text{ (R}^1 = \text{H}, \text{R}^2 = \text{Pr})$.²³⁸ The reaction between $cis-2$ -butene and 126 gave a $2.3/1.5/1.0$ mixture of 127 ($R = CHMeEt$) and isomers of the μ -CH= CMeEt complex (Scheme 51). Deprotonation of the former resulted in complete conversion to $129 \text{ (R}^1 = \text{Me}$, $R^2 = Et$). Protonation of the latter regenerated the equilibrium mixture of cations. When $126-d_1$ was used, the product was $129 \text{ (R}^1 = \text{Me}, \text{R}^2 = \text{CHDMe}).$

Vinylcyclopropane and vinyl acetate gave only the μ -vinyl complexes and hence the μ -vinylcarbene. Detailed studies of the steric effects on the position of the μ -alkylidyne/ μ -vinyl equilibrium have been made.²³⁹ Of interest is the comparison between $CH_2=CH_2$ and the planar 130, where only the latter formed a μ -alkylidyne which could be deprotonated to the μ -vinylidene.

 μ -Vinylcarbyne complexes 131 were formed in high yield by allylic hydride abstraction from μ -vinylidene complexes with $[CPh₃]$ ⁺ (Scheme 52).²⁴¹ The reaction is reversed by addition of $[NEt_4][FeH(CO)_4]$, which acts as a source of H⁻. Addition of nucleophiles at the remote vinyl carbon in 131 is an alternative route to μ vinylidene complexes 132.²⁴² The addition is regiose-

TABLE 9. Binuclear Iron Vinylidenes, $\{Fe(CO)(\eta - C_kH_k)\}\sim (\mu - CORR')$

lective and has been observed with LiC_6H_4Me-p , $NaCH(CO_2Et)_2$, LiMe, hydride (from [FeH(CO)₄]⁻), and PMe₃; with the μ -CCH=CMe₂ complex, addition to give the μ -CCHCHR(Nu) complexes is favored over deprotonation (which would give the μ -CCHCMe=CH₂ derivative).

SCHEME 52

Reaction of 127 ($R = H$) with NaN₃ gave EtCN (19%) and 125 (57%); the amount of nitrile was increased by working in $CF₃CO₂H$ (39%) or by using $Me₃SiN₃$ (24%), while the yield of 125 dropped below 7%.²⁴³ A 56/44 mixture of alkylidyne and vinylidene was obtained from the reaction between 127 ($R = H$) and N_2O .

Condensation of cationic μ -carbyne complexes with aldehydes, acetone, or ortho esters also afforded *n-vi*nylcarbyne complexes via attack of the intermediate vinylidenes (formed by deprotonation of the μ -carbyne by the aldehyde, etc.) on the C-electrophile (Scheme 53J.²⁴⁴ Addition to aldehydes probably proceeds via deprotonation, subsequent attack of the μ -CCH₂ complex on the protonated aldehyde and elimination of water. The vinyl ether carbyne complex 133 exchanges OEt for NMe_2 in a reaction with $HNMe_2$ at -78 °C

SCHEME 53

(83%)

C¹-C² 1.377(10) C²-C³ 1.391(11) C³-N 1.295(9) A

(Scheme 54).²⁴² ¹H and ¹³C NMR studies showed contributions from both resonance forms, the carbyne **134a** and the vinylidene **134b.** Similar exchange of OEt for O occurred on reaction with aqueous $NAHCO₃$.

Reaction of vinylcarbyne 135 with $[N(SiMe₃)₂]$ gave a 3.8/1 mixture of cis/trans isomers of the butadienylidene complex 136, while PMe₃ adds to C_{γ} also to produce a mixture of stereoisomers (Scheme 55). Related complexes were formed by loss of the secondary or tertiary H, e.g. from 137. The μ -CCMeEt complex gave a 3.8/1 mixture of isomers of **129** by exclusive loss of the secondary allylic H.²⁴¹

Related reactions with cationic complexes derived from **126** and diazoalkanes afforded the substituted μ -vinylidene complexes.²⁴⁵ Thus, the μ -alkenyl from 126 and $\rm N_2CH(CO_2Et)$ decomposes above -20 °C to give a mixture containing 129 ($\hat{R}^1 = H, R^2 = CO_2Et$) (23%); the analogous complex (as a 6/1 *E/Z* isomeric mixture) from $N_2CMe(CO_2Me)$ gave 129 ($R^1 = Me$, $R^2 = CO_2Me$) (40%) after reaction with NMe₃. Prolonged (10 days)

reaction between 127 ($R = H$, Pr) and $N_2CH(CO_2Et)$ gave low yields of 129 $(R^1 = R, R^2 = CH_2CO_2Et)$, probably by attack of the μ -vinylidene complex on $N_2C^+H_2(CO_2Et)$, followed by deprotonation of the resulting μ -alkylidyne complex. The μ -vinyl reacted with increasing excesses of CH_2N_2 (up to 40 equiv) to give as successive insertion products the μ -CCHMe, μ -CCMe₂, and μ -CCMeEt complexes.²⁴⁵

Addition of CO to 126 gave the acylium cation $[{}$ ^[Fe-1] $(CO)(\eta$ -C₅H₅ $)$ ₂(μ -CO)(μ -CHCO)]⁺; this reacted with excess $\text{Li}_2[\text{CuMe}_2(\text{CN})]$ to give the μ -CCMe₂ complex (32%) , probably by addition of Me⁻ to the initially formed μ -CHC(O)Me complex to give the anionic μ - $CHC(O⁻)Me₂$ derivative, followed by protonation at oxygen and elimination of water.²⁴⁶

Nucleophilic addition of Br⁻ to 126 gave the μ -bromocarbene derivative, which reacted with $CH₂=CMe₂$ to give the μ -CCHCHMe₂ derivative (16%), probably by reaction of **126** generated by ionization of Br", followed by deprotonation $(NMe₃)$.²⁴⁷

The mixed complex ${Fe(CO)(\eta-C_5H_5)}{Fe(CO)(\eta-C_5H_5)}$ $C_5Me_5\}(\mu\text{-CO})(\mu\text{-CCHBu})$ was obtained (61%) by deprotonation of the μ -C(CH₂)₄Me complex formed by addition of 1-pentene to the corresponding μ -CH⁺ cation.²³⁹ The bis-C₅Me₅ complex does not react.

(b) Reactions. The gas-phase basicity of **125** has been determined by FT MS as similar to that of NEt_3 (proton affinities: 125, 232.5; NEt₂, 232.3 kcal mol⁻¹).²⁴⁸ This high value can be related to the interaction of the π_{\perp} orbital of the Fe(μ -C)Fe framework with an empty $\overline{\pi_y}$ orbital of the μ -C⁺Me group (see below). Decomposition of collisionally activated $[\{Fe(CO)(\eta-C_5H_5)\}_2$ - $\rm (CO) (CCH_2)$]⁺ proceeded via sequential loss of three $\rm CO$ groups to $[\text{[Fe(C₆H₆)]₂C₂H₂]⁺, which then afforded$ $[Fe_2C_{10}H_{10}]^+$, $[FeC_{12}H_{12}]^+$, and $[FeC_{10}H_{10}]^+$ by elimination of C_2H_2 , Fe, and $\text{Fe}C_2H_2$, respectively.

SCHEME 56

Reversible protonation of 125 to the μ -CMe cation was first demonstrated by Pettit²³³ and Stone.²³² Protonation of substituted vinylidenes afforded the same alkylidene cations from which the vinylidenes were derived (Scheme 51).^{234,235} Alkylation ($[Me_3O][BF_4]$) of the μ -CCMe₂ complex slowly formed the cationic μ -CBu^t alkylidyne derivative (36%) by addition at C_{β}^{245} .

The CuCl-catalyzed reaction of CH_2N_2 with 125 afforded the cyclopropenylidene complex 138 (Scheme 56) $\frac{249}{100}$ the equilibrium $6/1$ mixture of red cis and purple trans isomers, which slowly interconvert in solution, rearranges on heating (100 ⁰C) or photolysis to the μ -allene complex 139 (R = H).²⁵⁰ Protonation (HBF₄) or $CF₃SO₃H$ of 138 gave the μ -CEt cation, which was deprotonated to 129 ($R^1 = H$, $R^2 = Me$).²⁵¹ Repetition of this series of reactions gave exclusively the μ -CCMe₂ complex, with none of the linear isomeric μ -CCHEt derivative being found. This contrasts with the situation in the Fischer-Tropsch reaction: selective attack of H⁺ at the less-branched C atom occurred. These observations contradict the McCandlish mechanism for chain growth, ²⁵² which suggested that vinylidene, perhaps formed by combination of surface carbide with methylene, itself reacts further with methylene to give a cyclopropenylidene. Alternative modes of ringopening then result in either linear or branched growth. The relative stabilities of the carbonium ions involved in this process suggest that linear growth would be favored.

Related reactions between $N_2CH(CO_2Et)$ and 125 gave three products (Scheme 56).²⁵³ In the presence of CuI, the cyclopropenylidene 138 ($R = CO₂E$ t) was obtained (60%) , which on photolysis gave the μ -allene 139 $(R = CO₂Et)$ (45%), also obtained directly by photolyzing a mixture of 135 and the diazo compound. Later studies demonstrated the direct formation of the μ - allene complexes by photolysis of the reaction mixtures; only with $CH(SiMe₃)N₂$ was replacement of the μ -vinylidene by μ -CHSiMe₃ found. In the presence of HBF_4 , ring-opening of 138 ($R = CO_2Et$) gave 129 (R^1) = H, $\mathbf{R}^2 = \mathbf{C} \mathbf{H}_2 \mathbf{C} \mathbf{O}_2 \mathbf{E}$ t) via initial addition of H⁺ to the ester CO group.²⁵³

While no reaction occurred with HC_2R ($R = H$, Ph, $CO₂Me, CF₃$ or SiMe₃), thermal or photochemical insertion of C_2R_2 (R = Me, Ph) into one of the Fe-C bonds of the μ -CCH₂ complex occurred, the highest yield of the metallacyclopentenones 140 being obtained under CO (Scheme 57).²⁵⁴ Further irradiation of the phenyl derivative in the absence of CO resulted in decarbonylation to the μ - σ , η ³-allylic complex 141. Several possible mechanisms for the rearrangement of the initially formed η^2 -alkyne complex to the products were discussed.

Complex 125 reacted with HC_2CN by insertion of the alkyne into a C(sp²)-H bond to give purple (Fe(CO)- $(\eta \text{-} \check{C}_6H_5)$ ₂(μ -CO){ μ -CCHCH=CH(CN)} (142), formed as a separable $1.4/1$ mixture of E/Z isomers.²⁵⁵ Similar

(142)

complexes were obtained from the μ -CCHMe and μ -CCHPrⁱ derivatives. There is no reaction between 142 and CO, even upon UV irradiation. Addition of $HBF₄·OEt₂$ afforded a μ -alkylidyne complex, which rapidly decomposed, while $Li[BHEt_3]$ gave a stable anionic species, thought to contain a μ -organovinylalkylidene ligand.²⁶⁸

Tetracyanoethene and 125 gave the orange-red buta-l,3-dienylidene complex 143 with elimination of HCN. ESR studies of the reaction mixture after mixing indicated the presence of radical species, including [tcne]^{*} and the radical Fe{N= $C^{\bullet}\bar{C}(CN)$ =C(CN)₂)- $(CO)₂(\eta-C₅H₅)$, the reaction proceeding via successive electron transfer steps.²⁵⁶ Insertion into the vinylic

C-H bond probably occurs by C-C bond formation between the electron-rich vinyl carbon and the electron deficient alkyne carbon, followed by a 1,3-H shift. Substitution of CO by dppm occurs in refluxing toluene to give $\{Fe(\eta-C_5H_5)\}_2(\mu-\text{CO})(\mu\text{-dppm})\{\mu-\text{CCHCH}=\text{CH}-\text{CH}^2\}$ (CN)). A similar complex was obtained (60%) from tcne and ${Fe(\eta - C_5H_5)}_2(\mu - CCH_2)(\mu - CO)(\mu - dppe)$ [from 125 and dppe in toluene]; its deep violet color $(\lambda_{max} 539 nm)$ is associated with the presence of both the electron-rich metal system and the tricyanobutadienyl group.²⁵⁷

Coupling between 125 and the ethoxyvinylcarbyne cation occurred with elimination of EtOH to give the pink-brown tetra-iron complex 144 (84%), which is fluxional. The X-ray study showed the symmetrical attachment of the bridging ligand, which can be rationalized by the valence tautomers shown.²⁵⁸ Elec-

Fe-C' 1.859,1.894(8), Fe-C⁵ 1.855,1.884(8), C¹C 2 1.355(11), C⁴ -C⁵ 1.373(11) A

$$
\fbox{[Fe]} = Fe(CO)(\eta \cdot C_5 H_5)
$$
\n
$$
(144)
$$

trophilic addition of 125 to 126, followed by a 1,2-H shift, gave the blue-black cation $[$ {Fe₂(μ -CO)(η - $\mathrm{C}_5\mathrm{H}_5)_{2}^3(\mu$ -C₃H₃)]⁺ (144a). The structure is best de-

(144a)

scribed as containing an allylic cation with two in-plane iron substituents syn to the central CH, with the other iron atoms above and below the allyl plane. These interact strongly with the terminal C atoms, but only weakly with the central C atom.²⁶⁴

Displacement of the vinylidene ligands from a variety of μ -vinylidene-diiron complexes was achieved by photolysis under hydrogen, when mixtures of the corresponding alkanes and alkenes were obtained. Reactions with $SiHMe₃$ gave the $SiMe₃$ -substituted olefin in a reaction that was inhibited by CO. These reactions probably proceed via an intermediate such as ${Fe(\eta (C_5H_5)$ ₂(μ -CO)₂(μ -CCRR').^{253b}

2. Ruthenium

In the ruthenium series, the alkyne-CO adducts $\{Ru(CO)(\eta$ -C₅H₅ $)\}_2(\mu$ -CO) $\{\mu$ -C(O)CHCR $\}$ (145) are fluxional below 100 °C, but in refluxing toluene they underwent C-C bond cleavage to give μ -CCHR complexes $146.²⁵⁹$ The reaction was slow, requiring a day for completion and gave cis/trans mixtures for $R = H$ $(63\%, 1.2/1)$ and $R = Ph (20\%, 1/1)$. A one-pot synthesis of the parent vinylidene complex in 77% yield was achieved by treating $\{Ru(CO)_2(\eta-C_5H_5)\}_2$ with LiMe, followed by HBF_4 -OEt₂, then deprotonation with water or NEt_3 (Scheme 58). The reaction is assumed to proceed via a concerted ring-opening to give a terminal vinylidene complex. Protonation $(HBF_4 \cdot OEt_2)$ of 146 gave the methylcarbyne complex 147. Detailed procedures for the synthesis of a variety of $\{Ru(CO)(\eta-\}$ (C_5R_5) ₂(μ -CO)(μ -L) complexes (R = H, Me), including $L = CCH₂$, have been given.²⁶⁰

Irradiation of 146 in MeCN resulted in displacement of CO by MeCN; addition of $\rm CH_2N_2$ gave the red μ - η^3 -allene complex 148 in 10% yield.²⁶¹ Details of the **SCHEME 58**

synthetic procedures required for these and related complexes have been given.²⁶²

3. Structure and Bonding

The X-ray structures of the μ -CCH₂ complexes (Table 7) show that the $CH₂$ group is coplanar with the $M₂C$ unit, thereby maximizing overlap of the vinylidene π -acceptor orbital with the filled orbitals of the metal framework. An extended Huckel MO study of the diiron complex showed that three MO's of the $Fe₂$ framework are directed at the bridging site.²⁶³ There are strong interactions of the vinylidene $3a_1$ and $2b_1$ orbitals with the 22a' and 18a" orbitals of the dimer framework (Figure 4) leading to coplanarity of the CH₂ group with the Fe2C unit, as found in the X-ray structure of the analogous ruthenium complex.²⁵⁹ The Ib2 orbital scarcely interacts with the dimer framework. The π_{\perp} system is localized on C_{α} and C_{β} , and the C-C π -bond is relatively unaffected by coordination to the Fe₂ system. Thus, thermal reactions proceed as with the olefin, e.g. addition of $CH₂$, but the primary photochemical process is cleavage of the Fe-C and Fe-Fe bonds, so that in these reactions, again e.g. with CH_2 , coupling occurs with the vinylidene ligand. Similarly, alkynes photochemically insert into the Fe-C bond.

The X-ray structure of 134 revealed similar C-C distances in the vinylidene moiety together with a short C-N bond, indicating contributions from tautomers 134a and 134b (Scheme 54).²⁶⁴ Likewise, observation of two isomers of the ethoxyvinylcarbyne cation indicate restricted rotation about the C-O bond of the vinyl ether. These and related results suggest that the planar vinylcarbyne ligand remains in conjugation with the electron-deficient μ -carbyne atom throughout rotation of the vinylcarbyne ligand.²⁶⁶ The solid-state structures established the coplanar arrangements and MO calculations showed that conjugation can be preserved during rotation because of the orthogonal p orbitals on the μ -carbyne carbon, which result in a low rotational barrier to the entire vinylcarbyne ligand. Alternatively, it can be considered as stabilization of a perpendicular $C=C$ double bond by the diiron unit, as calculated earlier¹⁸⁵ for $\text{Fe}_2(\mu\text{-CCH}_2)(\text{CO})_6$ (section V.A.3).

Vl. Polynuclear (Cluster) Complexes Containing Vinylidene Ligands

Cluster complexes containing vinylidene ligands have been prepared by the following routes: (a) deprotona-

Figure 4. Molecular orbital diagram of cis- $[Fe(CO)(\eta - C_5H_5)]_2(\mu$ -CO $)(\mu$ -CCH₂) (adapted from ref 263).

tion of a cluster-bound alkylidyne; (b) reactions of μ -CO ligands with organolithium reagents, followed by alkylation; (c) from 1-alkynes or 1-haloalkynes with cluster complexes; (d) alkylation of ketenylidene ligands; (e) reactions of mono- or binuclear vinylidene complexes with reactive metal precursors to build up the cluster. Examples of compounds containing terminal or μ -vinylidene ligands are known, but the majority of complexes contain the ligand coordinated to three (E) or four (F) metal atoms:

Tables 10 and 11 collect reported examples of cluster complexes containing vinylidene ligands together with

selected NMR data. Tables 12 and 13 summarize the structural data for μ_3 - and μ_4 -vinylidene complexes and the metal frameworks to which they are attached.

Multi-site bonded vinylidenes are postulated on theoretical or mechanistic grounds as intermediates in the formation of alkylidynes from alkenes and alkynes adsorbed on metal surfaces (see section IX.A). Vinylidenes interacting with up to four metal atoms are conceivable intermediates in elementary processes involved in the production of hydrocarbons from simpler molecules. Nucleophilic addition to cluster-bound vinylidene would increase the number of reactions observed for these species. As the number of metal atoms increases, the electronic nature of C_{α} and C_{β} exhibits a reversal in character (umpolung), so that on a $Co₃$ cluster, for example, these atoms are nucleophilic and electrophilic, respectively.

A. Complexes Containing Terminal or μ -Bridging **Vinylidenes**

As with the binuclear iron complex 93 (section V.A.3), the sterically hindered thioketene $C_6H_6Me_4CCS$ reacts

TABLE 10. Homometallic Cluster Complexes Containing μ_3 -CCRR' Ligands

cluster	$\mathbf R$	\mathbf{R}'	color	$\delta(C_\alpha)$	$\delta(C_g)$	ref
Fe ₃ (CO) ₉	OMe	$CH = NCy^a$	brown	302.0	128.7	279
Fe ₃ (CO) ₉	Pr ⁱ	OPPh ₂	brown-green	264.2	145.4	278
$Fe3(\mu$ -CO $)(CO)9$	$\frac{H}{H}$	н	green	292.3	74.5	272
$\text{Fe}_3(\mu\text{-CO})(\text{CO})_9$		$\overline{\mathbf{H}}$	red	250.1	75.1	275
$Fe3(\mu$ -CO)(CO) ₉	H	E t	green	287.8	105.1	277
$Fe3(\mu$ -CO)(CO) ₉	$\mathbf H$	Pr	green oil	285.8	101.9	277
$Fe3(\mu$ -CO)(CO) ₉	H	Bu	green oil	285.6	102.3	277
$Fe3(\mu$ -CO)(CO) ₉	$\mathbf H$	P _h	green	274.1	102.7	277
$\text{Fe}_3(\mu\text{-CO})(\text{CO})_9$	H	CH ₂ OMe	green oil	288.2	95.2	277
$Fe3(\mu$ -CO)(CO) ₉	$\mathbf H$	SiMe ₃	brown-green oil	292.0	96.7	277
$[Fe3(\mu-H)(CO)9]$ ⁻	$\mathbf H$	H	red	254.3	72.9	271, 272
$[Fe3(\mu-H)(CO)9]$ ⁺ NHEt ₃ ⁺	H	$\bf H$	red-brown			270
$\rm [Fe_3(\mu\text{-}H)(CO)_9]^+PPh_4^+$	$\mathbf H$	Pr	dark red	280.4		273
$[Fe3(\mu-H)(CO)9]$ -PPh ₄ +	H	P _h	dark brown	278		273
$[Fe3(\mu-H)(CO)9]$ PPh ₄ ⁺	H	COMe	dark brown	293.0		273
$[Fe3(\mu-H)(CO)9]$ PPh ₄ ⁺	H	CO ₂ Me	dark red	294.0		273
$[Fe3(\mu-PPh2)(\mu-CO)2(CO)6]-PPh4+$	H	Bu ^t	dark green	232.6		274
$Fe_3(\mu-PPh_2)_2(\mu-CO)(CO)_6$	$\mathbf H$	H	dark green	274	95.6	196
(asym, sym isomers)				305.7	141.3	
$Ru_3(\mu_3\text{-CO})(CO)_9$	Me	OMe	orange-yellow	214.2	149.8	280
$Ru_3(CO)_9$	${\bf Pr}^{\rm i}$	PPh_2^b	green-brown	254.9	100.3	278
$[Ru_3(\mu$ -CO) ₃ (η -C ₅ H ₅) ₃] ⁺ BF ₄ ⁻	Η	н	orange			284
$Os_3(\mu-H)_2(CO)_9$	H	Pr ⁱ	yellow	201.7	103.3	294
$Os_3(\mu-H)_2(CO)_9$	H	OEt	pale yellow			290, 294
$O_{8_3}(\mu$ -H) ₂ (CO) ₉		$-(CH2)3$ -				295, 296
$Os_3(\mu-H)(\mu-Br)(CO)$ ₉	н	Ph				293
$[C03(CO)9]+FSO3$	H	Pr ⁱ		272.0	131.6	300
$[Pt_3(\mu\text{-dppm})_3]^+PF_6^-$	$\mathbf H$	$\mathbf H$	yellow	252.1	86.8	303
^ª Bridges Fe-Fe bond. ^b Bridges Ru-Ru bond.						

with $\text{Os}_3\text{Pt}(\mu\text{-H})_2(\text{CO})_{10}(\text{PCy}_3)$ to give red complex 149 as the major product (45%) .²⁶⁶ In this case, two sulfur

atoms have transferred to the cluster; the initial tetrahedral $Os₃Pt$ core has opened to a spiked triangular skeleton, the vinylidene being attached to an Os atom $[Os-C, 1.90 (1); C-C, 1.29 (2) Å; Os-C-C 175 (1)°].$

The complex $\text{Mo}\{[\mu\text{-}\text{CCHC}(O)\text{OMe}]\text{Mn}(\text{CO})_2(\eta\text{-}O)\}$ (C_5H_5) ₂(CO)₂ (112) (section V.B) was obtained from Mn (CCH(CO₂Me))(CO)₂(η -C₅H₅) and excess Mo(CO)₅-(thf).²²²

Nucleophilic addition of LiMe to a bridging CO in $Co_4(\mu_4\text{-PPh})(\mu\text{-}CO)_2(CO)_8$ afforded the acyl anion, which with trifluoroacetic anhydride forms the dark burgundy vinylidene complex 150, probably via an intermediate μ -CMe ${OC(O)CF_3}$ complex, which decomposed on workup with elimination of $CF₃CO₂H$. The CCHMe

ligand bridges a Co-Co edge [Co-C, 1.928 (2); C-C 1.355 (6) A]. This is a general reaction, for example, addition of LiBu and the anhydride gave the μ -CCHPr complex

in 60% yield in a one-pot synthesis.²⁶⁷ The reaction parallels the acid-induced elimination of ROH from Fischer-type carbene complexes.

B. μ ₃-Vinylidenes

/. *Iron*

Relationships established between vinylidene, vinyl, and alkylidyne iron clusters are illustrated in Scheme

TABLE 11. Heterometallic Cluster Complexes Containing μ ₂-CCHR Ligands

^a MM' bond bridged by CCHR. ^b $\delta(C_\beta)$ 79.5. 'Two isomers (1/1.5): $\delta(C_\alpha)$ 297.5, 311.8; $\delta(C_\beta)$ 92.7, 93.6. $d\delta(C_\alpha, C_\beta)$ 264.8, 80.7. $\delta(C_\alpha, C_\beta)$ 238.7, 78.0.

59.^{268,269} Deprotonation (KOAc or NEt₃) of Fe₃(μ - $\mathrm{H})_{3}(\mu_{3}\text{-CMe})(\mathrm{CO})_{9}$ gave $[\mathrm{Fe}_{3}(\mu\text{-H})(\mu_{3}\text{-CCH}_{2})(\mathrm{CO})_{9}]^{-1}$ (151) quantitatively at 25 °C. The reaction was accompanied by loss of H_2 and was reversed by addition of acid under H_2 (70%). Conversion of the trihydrido cluster to $Fe_3(\mu \cdot \text{H})(\mu_3 \cdot \text{CMe})(\mu \cdot \text{CO})(\text{CO})_9$ (152, L = CO) (40%) occurs in 5 h at 60 °C under CO. Addition of CO to the μ_3 -CCH₂ anion was followed by migration of cluster-bound hydride to give the μ_{3} -CMe complex, and finally protonation to 152 (L = CO).²⁷⁰ Labeling studies showed that the proton attacks the vinylidene in the anion with high selectivity (albeit with some scrambling), opening the Fe-Fe bond and allowing coordination of H_2 at the unique iron atom. Protonation/ deprotonation of the alkyl group precedes addition/ elimination of H_2 from the metal cluster; substituted methyl systems (Et , Pr , $CH₂Ph$) showed a steric effect on the reaction rate. Rapid elimination of H_2 from an

intermediate with two terminal H atoms is consistent with a kinetic isotope effect favoring D_2 elimination.^{269,270}

An intermediate μ -CH= CH_2 anion 153 was proposed, formed by transfer of metal-bound hydride to carbon. It can be trapped by Lewis bases, e.g. CO, to give $Fe_3(\mu-H)(\mu_3-CMe)(\mu-CO)(CO)_9$ (152, L = CO). The facile reaction of 151 with CO may proceed via an intermediate analogous to 154; addition of $PMe₂Ph$ to 151, followed by protonation, gave only one isomer of 152 (L = PMe_2Ph). The reactions demonstrate the importance of the stabilization of the vacant coordination site by the $C=CH_2$ double bond and the nonthermal generation of intermediates which do not differ much in energy, allowing a number of competitive, consecutive reaction pathways to be available to cluster complexes.

Rearrangement of $[Fe_3(\mu\text{-}CMe)(CO)_{10}]^-$, which is

cluster	MM' ^a	R	\mathbf{R}'	M^1-M^2	M^1 – C^1	M^2-C^1	M^3 -C ¹	M^3-C^2	C^1-C^2	tilt ^b	ref
				(a) Homometallic							
Fe ₃ (CO) ₉		OMe	$CH = NCr$	2.675(1)	1.939(5)	1.823(5)	1.981(5)	2.458(7)	1.391(7)		279
$\text{Fe}_3(\text{CO})_9$		Pr _i	OPPh _s	2.586(1)	1.853(3)	1.945(3)	1.982(3)	2.230(3)	1.388(5)		278
$Fe3(\mu$ -CO)(CO) ₉		н	Ph	2.562(1)	1.917(2)	1.909(2)	2.009(2)	2.288(2)	1.378(3)		277
$Fe3(\mu$ -CO)(CO) ₉		H	н	2.547(1)	1.877(6)	1.901(6)	1.966(6)	2.194(6)	1.399(9)		275
$[Fe3(\mu-PPh2)(\mu-CO)2(CO)6]-PPh4+$		$\dot{\mathbf{H}}$	$\mathbf{B}\mathbf{u}^t$	2.578(1)	1.955(4)	1.913(4)	2.013(3)	2.294(4)	1.378(5)		274
$Fe_3(\mu\text{-}PPh_2)_2(\mu\text{-CO})(CO)_6$ (asym isomer)		H	H	2.557(1)	1.881(7)	1.984(8)	2.063(7)	2.302(8)	1.35(1)	38.6	196
$Ru_3(CO)_9$		Pri	PPh_2^d	2.733(1)	1.921(5)	2.182(5)	2.126(5)	2,340(5)	1.408(7)		278
$Ru_3(\mu_3$ -CO)(CO) ₉		Me	OMe	2.793(1)	2.056(2)	2.066(2)	2.161(2)	2.782(2)	1.387(3)	63	280
$Ru_3(\mu\text{-}H)_2(\text{CO})_9$		Me	Ph	2.821(1)	2.057(5)	2.019(6)	2.167(4)	2,500(4)	1.379(8)		283
$O_{\rm 83}(\mu$ -H) ₂ (CO) ₉		н	OEt	2.883(1)	2.01(2)	2.06(2)	2.21(2)	2.43(2)	1.39(2)		291
$Os3(\mu-H)2(CO)9$		$-(CH2)3$ -		2.897(1)	2.05(1)	2.09(1)	2.21(1)	2.40(1)	1.38(2)	19	296
$\mathrm{Os}_3(\mu\text{-H})(\mu\text{-Br})(CO)_{9}$		н	Ph	2.883(1)	2.16(1)	2.05(2)	2.27(1)	2.34(2)	1.37(2)		293
				(b) Heterometallic							
$\text{Au}_2\text{Ru}_3(\text{CO})_9(\text{PPh}_3)_2$	RuRu H		$\mathbf{B}\mathbf{u}^t$	2.918(2)	2.10(2)	2.04(1)	2.19(1)	2.42(2)	1.41(2)		314
$CoRuW(CO)_{6}(\eta-C_{\delta}H_{\delta})$	$_{\rm{CoW}}$	н	\mathbf{B} u ^t	2.723(3)	1.95(1)	2.01(1)	2.10(1)	2.35(2)	1.29(2)	45.1	308, 316
Co ₂ Fe(CO) ₉	CoCo	H	$OC(O)$ -	2.490(1)	1.856(5)	1.868(4)	1.983(4)	2.221(5)	1.362(7)		310
			CCo ₃ $(CO)_{9}$								
Co ₂ Ru(CO) ₉	CoCo	H	Bu'	2.489(1)	1.901(7)	1.893(7)	2.099(8)	2,405(8)	1.37(1)	47.2	312
Co ₂ Ru(CO) ₉	CoCo	H	Ph	2.513(1)	1.93(1)	1.92(1)	2.07(1)	2,40(1)	1.25(1)	50.2	312 _b
$Co2Ru(CO)6(PMe2Ph)(Ru-P)$	CoCo	н	Me	2.491(1)	1.88(1)	1.87(1)	2.13(1)	2.36(1)	1.39(1)		320
$FeW_{2}(CO)_{7}(\eta - C_{6}H_{5})_{2}$	WW	H	H	3.030(1)	2.04(1)	2.07(2)	1.96(2)	2.21(2)	1.43(3)		306
$Fe_2Rh(\mu$ -CO) ₂ (CO) ₃ (PPr ⁱ ₃)(η -C ₅ H ₅)	FeFe	$\mathbf H$	$\mathbf H$	$2.558(1)$, 2,552(1)	$1.858(6)$, 1.869(8)	1.927(8), 1.932(6)	$2.183(6)$, 2.166(8)	$2.219(6)$, 2.212(8)	$1.37(1)$, 1.36(1)		230
$\text{Re}_2\text{W}_2(\mu\text{-H})(\mu_3\text{-CMe})(\mu\text{-CO})(CO)_6(\eta\text{-C}_5\text{H}_5)_2$ ReW		H	$\, {\bf H}$	2.923(1)	2.03(2)	2.19(1)	2.18(2)	2.41(2)	1.41(2)		305
^o MM' bond bridged by CCHR. ^b Angle of C _a -C _β vector with M ₃ plane. CBridges Fe-Fe bond. ^d Bridges Ru-Ru bond.											

TABLE 12. Some Structural Features of Cluster Complexes Containing prCCRR' Ligands

TABLE 13. Some Structural Features of Complexes Containing μ -CCHR Ligands

SCHEME 60

formed from $[Fe_3(\mu\text{-H})(CO)_{11}]$ " and ethyne at room temperature, occurs by migration of the proton to the cluster to give 151 (72%). The reaction occurs in refluxing acetone; the immediate reversal under CO is in marked contrast with the corresponding osmium system.²⁷¹ The ethylidyne anion gave green $Fe₃(\mu₃$ - $\text{CCH}_2(\mu\text{-CO})(\text{CO})_9$ (155) with $[\text{CPh}_3]^+$, a complex also obtained by heating $Fe₃(\mu-H)(\mu-CMe)(CO)₁₀$ in methylcyclohexane.²⁶⁹ Hydrogen reacts with the anionic vinylidene cluster to give traces of ethane and ethene, together with $[Fe_3(\mu_3\text{-COEt})(CO)_9]$; the neutral complex gave EtOPr by hydrogenation and coupling of the resulting two CR fragments.²⁷²

In acetone, alkynes reacted with $[Fe_3(\mu\text{-H})(CO)_{11}]$ ⁻ to give $[Fe_3(\mu - H)(\mu_3-CCHR)(CO)_9]$ ⁻ (156; R = Ph, Pr, $CO₂Me$, $COMe$) as dark brown or dark red solids.

Initial formation of $[Fe₃(\mu₃-CCH₂R)(CO)₁₀]$ ⁻ probably occurs; heating the vinylidene under CO (20 atm) gave the alkylidyne complexes, which on refluxing in acetone, reformed the vinylidenes.²⁷³ At higher temperatures (refluxing 2-methoxyethanol), the acetylide anions $[Fe₃(\mu₃-C₂R)(CO)₉]$ ⁻ (R = Pr, Ph) were formed, thus completing the transformation

 $RC=CH \rightarrow RCH_2C \rightleftharpoons RCH=C \rightarrow RC \leftleftharpoons C \rightleftharpoons C$

on the Fe₃ cluster, earlier demonstrated for the Ru and Os analogues.

Similarly, the reaction between $Ph_2PC_2Bu^t$ and $[PPh_4][Fe_3(\mu-H)(CO)_{11}]$ gave dark green $[PPh_4][Fe_3 (\mu_3$ -CCHBu^t)(μ -PPh₂)(μ -CO)₂(CO)₆] (157), formed by $P-C(sp)$ bond cleavage and H migration from the cluster.²⁷⁴

Reactions between $Fe_3(CO)_{12}$ and LiBu or LiPh, followed by $[OMe_3][BF_4]$, gave $Fe(\mu_3-CCH_2)(\mu-CO)$ - $(CO)_{9}$ (155) (2-6%); the major products were $Fe₃(\mu$ $H)(\mu$ -COMe)(CO)₁₀ (34%) and Fe₃(μ ₃-COMe)₂(CO)₉ (15%) .²⁷⁵ This reaction was first reported in 1975 ;²⁷⁶ the green vinylidene complex, then described as a μ - C_2H_2 complex, has now been crystallographically characterized. It probably results from the reductive dimerization of two CO groups on the cluster; this is supported by the above results, and by its formation from $Fe₃(\mu₃-COMe)₂(CO)₉$ and $Li(BHEt₃],$ followed by protonation (20%). Irradiation of 155 under H_2 gave $Fe_3(\mu-H)(\mu_3-CMe)(CO)_{10}$ and $Fe_3(\mu-H)_3(\mu_3-CMe)(CO)_{9}$; with E-cyclooctene, dark green $Fe₃(\mu₃-CCH₂)(\mu$ -CO)- $(CO)_8(C_8H_{14})$ was formed.

Reactions between 1-bromoalkynes and $[NHEt_3]$ - $[Fe₃H(CO)₁₁]$ gave the vinylidenes $Fe₃(\mu₃-CCHR)(\mu CO$)(CO)₉ (R = Ph, CH₂OMe, SiMe₃, Et, Pr, Bu) in 17-51% yields; no reaction was found with BrC_2Bu^t , and the complex $(R = CH_2NMe_2)$ was thermally unstable.²⁷⁷

Isomerization of $Ph_2P(O)C_2Pr^i$ occurred in the reaction with $Fe_2(CO)_9$ (12 h, 24 °C) to give brown-green $Fe_3\mu_3$ -CCPr[[](OPPh₂)}(CO)₉ (158), together with the allene derivative $\text{Fe}_2\tilde{h}$ -Ph₂P(O)CH= C =CMe)(CO)₆.²⁷⁸

SCHEME 61

the vinylidene complex 160.¹⁹⁶ In solution, this compound exists as the two isomers shown, in which the μ_3 -CCH₂ group rotates around the Fe₃ core (NMR). The solid-state structure corresponds to 160b. The stepwise fragmentation of the dppee ligand occurs more rapidly on the Fe₃ center, the conversion Fe₃(μ dppee)(CO)₁₀ \rightarrow 159 \rightarrow 160 (Scheme 60) being accompanied by opening and closing of the triangular Fe₃ core.

Transmetalation of the vinylcarbene ligand in Cr(C- $(NHCy)C(OMe) = CH₂ (CO)₆$ with $Fe₂(CO)₉$ afforded the four $Fe₃$ clusters 161-164 (Scheme 61), which are related by oxidative addition of the $CH₂$ group in 161 to the cluster to give 162, a 1,3-hydrogen transfer (to give 163) and finally loss of two hydrogens to give the vinylidene 164.²⁷⁹

2. Ruthenium

A series of transformations has related μ_3 ketenylidene clusters to derivatives containing the μ_3 -CCMe(OMe) ligand (Scheme 62),²⁸⁰⁻²⁸² and these reactions reflect the stabilization of vinylidenes by the $Ru₃(CO)₉ cluster. Thus, methylation and carbonylation$

SCHEME 62

of the ketenylidene dianion 165 gave the acetyl anion 166, whose NMR and structural parameters suggested a contribution from the $C=C(\hat{O})$ Me valence isomer 166b. In solution, the equilibrium

$$
[\text{Ru}_3]_{\mu_3}^{\cdot} \text{CC}(O) \text{Me}^{\cdot} + \text{CO} \rightleftharpoons
$$

$$
[\text{Ru}_3]_{\mu_3}^{\cdot} \text{C} (= \text{C} = 0) \text{C} \text{Me} = 0
$$

exists but the acylketenylidene 167 could not be isolated; labeling studies showed the CO added to the μ_3 -CC(O)Me comes from the cluster.²⁸¹ Further methylation converted 166 to $Ru_3\mu_3$ -CCMe(OMe) μ_3 - CO)(CO)₉ (168). This complex contains a nearly planar capping CCR_2 group inclined at 63° to the Ru_3 plane; however, the $Ru-C_\beta$ distance [2.782 (2) Å] precludes the strong bonding interaction normally found in vinylidenes of type E. An intermediate form between E and a 4e/3-center attachment probably exists. This conclusion is supported by ¹³C NMR data, with C_{α} and C_{β} resonating at *8* 214.2 and 149.8, respectively, compared with values of δ 168.7 and 192.8 found for the dihydro analogue 169. The latter derivative was obtained by successive attack of Me⁻ and Me⁺ on $Ru_3(\mu-H)(\mu_3$ - CCO)(CO)₉ (170) or by addition of H₂ to 166 (to give the μ_3 -CHC(O)Me complex 171) followed by methylation. Cleavage of the C_{α} -Ru(3) bond gave a μ -CCR₂ group on a 46e cluster, and the facile H_2/CO exchange suggests that this coordinatively unsaturated isomer is readily accessible.

Ready cleavage of the P-C(sp) bond in $Ru_3(CO)_{11}$ - $\{PPh_2(\tilde{C}_2Pr^i)\}\overline{{\rm occurred}}$ at 10 °C to give $Ru_3(\mu_3-\mu_4)$ C_2 Prⁱ)(μ -PPh₂)(CO)₉; after 48 h at 24 °C further alteration to greenish-brown $Ru_3(\mu_3\text{-}CCPr^i(PPh_2))$ (CO)₉ (172) had occurred, accompanied by several other binuclear and cluster complexes.²⁷⁸ Isomerization of the phosphinoalkyne occurs by an oxidative addition/intramolecular reductive coupling sequence.

Coupling between styrene and the carbide atom in $Ru_4C(\mu-H)$ (CO)₁₂ gave the yellow trinuclear complex $Ru_3(\mu-H)(\mu_3-CCMePh)(CO)_9$ (173).²⁸³

(173)

Oxidation (AgBF₄) of $Ru_3(\mu_3\text{-}CMe)(\mu\text{-}CO)_3(\eta\text{-}C_5Me_5)_3$ occurred stepwise to give the mono- and dications; the latter was deprotonated to the reactive cationic vinylidene $\text{[Ru}_{3}(\mu_{3}\text{-CCH}_{2})(\mu\text{-CO})_{3}(\eta\text{-C}_{5}\text{Me}_{5})_{3}]^{+}$ (174). With NaBH₄ or LiMe, the μ_3 -CMe or μ_3 -CEt complexes were obtained.²⁸⁴

An interesting series of pentanuclear vinylidene clusters has been obtained from the phosphino-acetylide complex $Ru_5(\mu_5-C_2PPh_2)(\mu-PPh_2)(CO)_{13}$ (175) (Scheme 63). Simple heating of 175 in refluxing toluene gave 176, containing a vinylidene ligand formed by migration of a phenyl group from the μ -PPh₂ ligand to C_{β}. Further alteration occurred by migration of the second PPh group to the cluster; the resulting $CCPh₂$ group was metalated concomitantly to give the μ_3 -CCPh(C₆H₄) ligand found in 177. This complex reacted with MeOH to give 178. In both cases, the C and P atoms have been incorporated into the cluster to give pentagonal bipyramidal C_2PRu_5 skeletons.²⁸⁶

3. Osmium

Early work showed that the vinylidene $\text{Os}_3(\mu\text{-H})_2$ - $(\mu_3$ -CCH₂)(CO)₉ (179; Scheme 64) could be obtained from 180 by hydrogenation and from related μ_3 -CMe and μ -CH=CH₂ complexes by pyrolysis.^{287,288} Deprotonation of 179 gave the anion $[Os₃(\mu-H)(\mu_{3}-CCH_{2})$ - $(CO)_9$]-, isolated as the $[ppn]^+$ salt. For 179, ¹H NMR spin-lattice relaxation studies showed that the T_1 times are determined by efficient dipolar interactions with mearby ¹H nuclei in an intramolecular process; no difference in T_1 for the different hydrido resonances was found: both have a T_1 of 4.3 s at 20 $^{\circ}$ C.²⁸⁹

Several other vinylidene complexes have been obtained from 179.^{290,291} Thus, addition of EtOH proceeds mainly (78%) at C_{α} to give 181 (as with pyridine, NH₃, or NHEt₂) but also afforded 21% $\text{Os}_3(\mu\text{-H})_2\mu_3\text{-CCH}$ - (OEt) (CO) ₉ (182). Thermal decarbonylation of 183 gave 67% of 182 and 7% of 181. The μ_3 -CCH(OEt) ligand is asymmetrically bonded to the Os_3 cluster; the

¹H NMR spectrum shows the presence of two isomers (by H position) which undergo intramolecular conversion. Rapid enantiomerization also occurs at a similar rate, probably by rotation of the vinylidene on the

 $Os = Os(CO)_3$

Organometallic Chemistry of Vinylidene and Carbenes

cluster (ΔG ca. 47 kJ mol⁻¹). Addition of CF_3CO_2H to 182 gave $[{\rm Os}_3(\mu\text{-}{\rm H})_2(\mu_3\text{-}{\rm C}_2{\rm H})({\rm CO})_9]^{+}$, which reacted with water to give $\mathrm{Os}_3(\mu\text{-H})(\mu_3\text{-CH})(CO)_9$ (184, R = H). In the presence of acid, the μ_3 -formylmethylidyne cluster 184 $(R = CHO)$ was also formed, probably by rearrangement of the hydroxyvinylidene 185.²⁹¹ The methyl analogue of complex 182 was obtained as a minor product in the reaction between $\text{Os}_3(\mu\text{-H})_2(\text{CO})_{10}$ and neat MeOCH= CH_2 , being formed by C-O bond cleavage; the major product is $Os_3(\mu-H)(\mu-CHMe (OMe)$ $(CO)_{10}$, an alkyl stabilized by O coordination and obtained as a mixture of two isomers. 292 The vinylidene is the major product from the reaction in thf at 90° C and is also formed with other products when the alkyl is heated in hydrocarbon solvents. Reactions between PMe₂Ph and $\text{Os}_3(\mu_3\text{-}HC_2H)(CO)$ ₉ or $\text{Os}_3(\mu\text{-}H)(\mu\text{-}H)$ $C_2Ph(CO)_{10}$ gave the yellow zwitterionic vinylidenes 186 (R = H, Ph), the tertiary phosphine adding to C_{β} . The H and $CCR(PMe₂Ph)$ ligands bridge an Os-Os edge [Os-Os 2.802 (1), Os-C 2.096, 2.103 (10), C-C 1.356 (13) Å].²⁹³

The hydrido-vinylidene complex 187 was prepared by decarbonylation and rearrangement of $\text{Os}_3(\mu\text{-Br})(\mu\text{-}$ $CH = CHPh(CO)₁₀$ in refluxing toluene.²⁹⁴ The open $Os₃ cluster has the nonbonded Os-Os vector bridged$ by the vinylidene and halogen moieties. As with 182

hydride migration between the two Os-Os bonds occurs. Under hydrogen, $\text{Os}_3(\mu\text{-H})_3(\mu_3\text{-CCH}_2\text{Ph})(\text{CO})_9$ was formed, while with C_2Ph_2 , dehydrogenation to $Os_3(\mu Br)(\mu_3-C_2Ph)(CO)_9$ occurred. These reactions demonstrate stepwise dehydrogenation of vinyl to vinylidene and acetylide.

Pyrolysis of the μ -carbyne complex 188, obtained from $\text{Os}_3(\mu\text{-H})_2(\text{CO})_{10}$ and 3,3-dimethylcyclopropene, afforded a mixture of the vinylidene 189 and vinyl 190 (Scheme 65).²⁹⁵ Reaction occurs via H transfer first to the carbyne C atom to give the intermediate vinyl derivative, and then to the cluster on prolonged heating to give up to 59% of 189, together with 31% of 190, and 10% of $\rm Os_3(\mu\text{-}H)_2(CO)_{10}$; 189 was obtained directly from 188 by photolysis (87%). Two geometric isomers of 189 did not interconvert at room temperature in solution. The overall sequence μ -carbyne $\rightarrow \mu$ -vinyl $\rightarrow \mu$ -vinylidene is a model for hydrocarbon rearrangements on

Figure 5. Conformations of $[Co_3(\mu_3\text{-}CCHR)(CO)_9]^+$, showing stationary points, i and ii, and rotation of CCHR group during isomerization (from refs 300 and 301).

SCHEME 65

Os - Os(CO)³

metal surfaces.

Methylenecyclobutane reacted with $\text{Os}_3(\text{CO})_{12}$ to give the vinylidene 191 by oxidative addition of the methylene C-H bonds to the cluster.²⁹⁶ Protonation af-

forded the trihydride, for which the single proton resonance showed two sets of $J(^1H-^{187}Os)$ coupling constants, consistent with the carbenium ion structure and rapid rotation of the tilted vinylidene ligand around the cluster.^{296a,297}

The reaction between $Mn(CCHPh)(CO)_2(\eta$ -C₅H₅) and $\mathrm{Os}_3(\mu\text{-H})_2(\text{CO})_{10}$ gave as the major product dark red $MnOs₃(\mu-H)(\mu-CH=CHPh)(CO)₁₂(\eta-C₅H₅)$ (192), isolated in 60% yield. Rapid decomposition in octane (120 °C/1 h) to $\rm Os_3(\mu$ -H)₂(μ_3 -CCHPh)(CO)₉ (193), $\rm Os_3(\mu$ -H)(μ -CH=CHPh)(CO)₁₀, and Os₃(μ -H)₂(μ ₃-HC₂Ph)- $\overline{\mathrm{CO}}_9$ occurred.^{298,299}

4. Cobalt

High-field ¹³C NMR studies of $[Co_3(\mu_3\text{-}CCHR)$ - $(CO)_{9}^{\bullet}$] suggested a structure in which the vinylidene ligand bends over one of the metal atoms; diastereotopic Me groups in the μ_3 -CCHPrⁱ complex 194 confirm this finding, and unambiguously exclude the upright position.³⁰⁰ Complex 194 was obtained by protonation of

S. Platinum

Modeling of reactions on a Pt(IIl) surface has been achieved with the cluster $[Pt_3(\mu_3-H)(\mu-dppm)_3]^+$ (195) (Scheme 66). With C_2H_2 at -80 °C, an adduct was obtained in which the bonding of the ethyne was not fully defined; the ethyne is probably weakly bound and fluxional. Attempted isolation of this complex gave instead the vinylidene 196, a 46e cluster.³⁰³ A detailed study using ${}^{1}H$, ${}^{13}C$, ${}^{31}P$, and ${}^{195}Pt$ NMR with $HC=CH$, $H^{13}C = ^{13}CH$, and DC=CD was carried out. H/D scrambling is consistent with the processes

$$
Pt_3(CH=CH_2) \rightleftharpoons Pt_3H(CCH_2) \rightleftharpoons Pt_3(CCH_3)
$$

although the latter complex is not formed by isomerization of the vinylidene, as found on the surface. Excess ethyne reacted with 195 to give $[Pt_3(\mu_3-C_2H_2)(\mu-C)$ $CH₂$)(μ -dppm)₃]⁺, in which H-H scrambling occurs within the vinyl group but not the ethyne.³⁰⁴ This

process, which is proposed to occur via a short-lived μ -CCH₂ intermediate 197, is closely related to processes occurring during chemisorption of ethyne on the Pt- (111) surface (section IX.A). Stoichiometric amounts of ethyne reacted with the Pt_3 cluster to give 196, although this complex failed to react with excess ethyne. It was thought that a rapid equilibration occurs via the sequence shown in Scheme 66.

6. Heterometallic Complexes

(a) Bimetallic Derivatives. The red 62e cluster $W_2Re_2(\mu_3-CCH_2)(\mu_3-CMe)(\mu-CO)(CO)_8(\eta-C_5H_5)_2$ (198) is one of the products from the reaction between $W(\equiv$ CMe)(CO)₂(η -C₅H₅) and Re₂(μ -H)(μ -CH=CHBu)(CO)₈. The metal core is nearly planar, with the vinylidene attached to the $WRe₂$ triangle.³⁰⁵ A second product is brown $W_2Re_2(\mu_3-C\bar{M}e)(\mu-CO)_2(CO)_7(\eta-C_5\bar{H}_5)_2$ (199), related to 198 by an H-atom shift from the cluster framework to the vinylidene C_{β} , partial rearrangement occurs on heating 198 in thf. The proposed mechanism of formation of 198 is shown in Scheme 67.

The purple $FeW₂$ cluster 200 was obtained as the major product (18%) from the reaction between $W(\equiv$ CMe)(CO)₂(η -C₅H₅) and Fe₂W(μ ₃-CC₆H₄Me-*p*)(CO)₉- $(\eta$ -C₅H₅); the products included two other FeW₂ clusters with μ -CR and μ -C₂R₂ (R = C₆H₄Me-*p*) ligands. The vinylidene ligand in 200 is derived from the CMe group.

Coordination to Fe lengthens the $C=$ C double bond to 1.43 (3) A.³⁰⁶

The $Os₃W$ oxo cluster 201 is converted into the vinylidene 202 by heating in refluxing toluene under N₂.³⁰ The reaction may proceed via a 4e → 2e → 4e transformation of the μ -oxo group, which allows oxidative addition of the C-H bond to the cluster.

Many cobalt-iron μ_3 -vinylidene clusters 203 have been obtained from $Co_2(\mu\text{-}HC_2R)(CO)_6$ (R = H, Me, Bu^t, Ph) and $Fe_2(CO)_9$ or $Fe_3(CO)_{12}$; in general, the μ_3 -alkyne complex was formed first, but isomerized on heating.³⁰⁸ The parent vinylidene cluster, $Co_2Fe(\mu_3$ - $CCH₂)(CO)₉$, was formed in refluxing thf.

The reaction between $[PPh_4][Fe_2(\mu\text{-}CH=CH_2)(CO)_7]$ and $Co_2(CO)_8$ gave a mixture of $[PPh_4][Co_2Fe(\mu_3 CMe$)(CO)₉] and CoFe(μ -CH=CH₂)(CO)₇. In refluxing hexane, the latter is converted to $Co_3(\mu_3\text{-}CMe)(CO)_9$ and the brown vinylidene cluster $Co_2Fe(\mu- CCH_2)(CO)_9$, in which C_{α} bridges the two cobalt atoms while the C=C bonds to the iron.³⁰⁹ A third product is brown CoFe₂- $(\mu_3\text{-}CMe)(\mu\text{-}CO)(CO)_{9}$. In this reaction, conversion of the vinyl ligand to vinylidene and CMe is a function of the stabilization of these ligands by Co_2Fe and $CoFe_2$ cores, respectively.

The major product 204 from the reaction between $[PPh_4][FeH(CO)_4]$ and $[Co_3(\mu_3 \text{-}CCO)(CO)_9][PF_6]$ results from coupling of the latter with $[Co_2Fe(\mu_3 CCHO)(CO)_{9}$, formed in situ by hydride addition and metal exchange in $[Co_3(\mu_3 \text{-}CCO)(CO)_9]$; attack of the aldehydic oxygen on C_{β} of the μ_3 -CCO ligand has direct analogues in its organic chemistry.³²⁶ In 204, the two cluster cores are joined by the vinylidene ester ligand μ_3 -CCH{OC(O)C}.

Reactions between $Co_2Ru(CO)_{11}$ and HC_2R (R = H, Me, Bu^t, Ph) gave the μ_3 -alkyne complexes as the first

product (90%) at 5-15 ⁰C, which rearranged in boiling hexane (hours) to the red μ_3 -vinylidene complexes 205 (80%).311,312 Both complexes were characterized crystallographically for $R = \overline{B}u^{t}$, from which it could be seen that the conversion is associated with a gradual inclination of the C= C bond with respect to the M_3 plane. There is a slight extension of the C-C bond from 1.34 to 1.37 Å. In contrast with the μ_3 -alkyne complexes, the vinylidenes have static structures, with C_{α} bridging the $Co-Co$ bond and the $C=C$ double bond being attached asymmetrically to Ru.

Small quantities of the Fe₂Rh clusters 206 (R = H, Me, Ph) were obtained from $\tilde{\text{Rh}}(\text{CCHR})(\text{PPr}_3)(\eta\text{-C}_5\text{H}_5)$ and $Fe_2(CO)_{.9}$; the η -C₅H₅ group had transferred from Rh to Fe.²³⁰ The iridium-iron cluster $Fe₂Ir(\mu_{3} C_2Ph(CO)_8(PPh_3)$ was converted to the hydrido-alkyne complex by H_2 or $K[\text{BHBu}^s_3]/H_3PO_4$; heating in refluxing toluene (1.5 h) resulted in isomerization to the hydrido-vinylidene $\rm Fe_2Ir(\mu-H)(\mu_3\text{-}CCHPh)(CO)_8(PPh_3)$ $(207).^{313}$

The reaction between $[Ru_3(\mu_3-C_2Bu^t)(CO)_9]$ and $[{\rm (Au(PPh₃)₃O]⁺}$ gave complexes containing AuRu₃ (9%) , Au₂Ru₃ (16%), and Au₃Ru₃ (3%) clusters. The second of these contains a trigonal-bipyramidal core with a μ_3 -C=CHBu^t ligand 208.³¹⁴ In contrast the

Figure 6. Isomers of CoNiRu(μ_3 -CCHMe)(CO)₈(η -C₅H₅).

complex obtained from H_2 contains a μ_3 -HC₂Bu^t ligand.³¹⁵

(b) Trimetallic Complexes. Few diastereoselective transformations have been accomplished on metal cluster complexes. For this reason, the transformations of bimetallic to trimetallic μ_3 -vinylidene clusters by metal-exchange reactions are of interest. Complexes 203 and 205 readily enter into these reactions and many complexes containing CoFeM or CoRuM (M = Mo, W, Ni) cores have been prepared by Vahrenkamp and coworkers (Scheme 68).^{306,316} For M = Ni(η -C₅H₆), the impure vinylidene was obtained from the μ_3 -alkyne for $R = H$ and Me; the Bu^t complex was better obtained from the $Co₂Ru-viny$ lidene. In the CoMoRu series, metal exchange was followed by ligand rearrangement, although CoMoRu-alkyne complexes could also be obtained from the vinylidene precursor. In the $Co₂Fe$ series, vinylidene complexes were best obtained from vinylidene precursors; the $FeCoNi-CCH₂$ derivative could not be obtained pure. The higher lability of 203 resulted in transfer of η -C₅H₅ groups (to give 209) or double exchange (to give 210) in reactions with $Ni(\eta$ - C_6H_6) precursors.

These trimetallic clusters are chiral and isomeric possibilities are shown in Figure 6; the μ_3 -vinylidene ligand has two chiral centers $(C_{\alpha}$ and $C_{\beta})$ and isomerization of the μ_3 -alkyne may afford two isomers. The

observed stereoselectivity (by NMR) in the metal-exchange and isomerization reactions ranged from 0 to 100%. The molecular structure of the derivative with the bulkiest groups (Bu^t and W) showed minimal steric hindrance (between \rm{Bu}^t and $\rm{C}_5\rm{H}_5$ hydrogens), suggesting that the observed stereoselectivity is not steric in origin, although the influence of other factors (kinetic, electronic) is not clear.

The reaction between $Fe₂(CO)₉$ and MnPt(μ - $CCHPh(CO)₂(P(OPr)₃_{2}(T-C₅H₆)$ (116) afforded the trimetallic derivative $211.^{317}$ Two isomers were formed;

a 14 ppm difference in \mathbf{C}_α chemical shifts suggests that this atom may bridge the Mn-Fe and Mn-Pt bonds in the two isomers.

7. Reactivity of $\mu_{\rm r}$ -Vinylidene Clusters

The conversion of μ_3 -alkylidyne complexes to μ_3 vinylidenes by loss of H_2 has been found to occur spontaneously for $Co_2Fe(\mu\text{-}H)(\mu_3\text{-}CMe)(CO)_9$ and, in the presence of acid, for $Fe_3(\mu\text{-H})(\mu_3\text{-}CMe)(CO)_9$; some metal exchange reactions of $\text{Co}_3(\mu_3\text{-}\text{CCH}_2\text{R})(\text{CO})_9$ have also given μ_3 -vinylidene complexes. Hydrogenation of $\rm Os_3(\mu\text{-}H)_2(\mu_3\text{-}CCH_2)(CO)_9$ to $\rm Os_3(\mu\text{-}H)_3(\mu_3\text{-}CMe)(CO)_9$ was reported as long ago as 1973.318 A survey of the reactivity of heterometallic clusters in this reaction showed that, while the relative stabilities of the HC_2R , CCHR and CCH2R ligands vary, the vinylidene is the corrivative compare is the vary, the viry fact it is the most stable on trinuclear clusters.³¹⁹ Thus for Co_2Ru , the μ_3 -CMe complex is unknown and is unstable on the $Co₂Fe cluster. Both μ_3 -CCH₂ and μ_3 -CMe ligands are$ found for CoFeMo and CoRuM (\dot{M} = Mo, W), the equilibrium for the CoMoRu derivatives being sensitive to H_2 pressure.

Substitution of CO by PR_3 in $Co_2Ru(\mu_3\text{-}CCHR')(CO)_9$ is kinetically controlled at Co, but thermally induced migration of the phosphine gave the more stable isomer 212. This isomerization occurs less readily down the series $PMe_3 > PMe_2Ph > PMePh_2 > PPh_3$.³²⁰ The Ru-substituted complexes were also obtained by isomerization of the corresponding μ_3 -alkyne derivatives. Complexes 212 were formed as 1/1 isomeric mixtures with alternative conformations of the CCHR' ligand.

 C_{β} in cluster-bound vinylidenes is highly electrophilic. C_p in cluster-bound vinylidenes is highly electrophilic,
tricularly in the cation $[Co_3(\mu_3\text{-}CCH_2)(CO)_9]$ ⁺, in particularly in the cation $\lfloor \frac{C}{3} \rfloor \frac{C}{3} - \frac{C}{2} \frac{C}{9} \rfloor$, in accord with the formulation as a cluster-stabilized
cerbonium ion 321 The isoelectronic neutral C_0 . Fe. carbonium ion.³²¹ The isoelectronic neutral Co_2 Fe-

 $(\mu_3\text{-}\text{CCH}_2)(\text{CO})_9$ is considerably less reactive toward nucleophiles. However, addition of PMe_3 to C_β below 0^oC gave zwitterionic 213, isosteric with $\mathrm{Co}_3(\mu_3$ - $CCH₂SiMe₃$ (CO)₉, in a reaction which competes with CO substitution at Co.³²² The latter reaction predom-

inates at elevated temperatures. Increasing the bulkiness of the tertiary phosphine has the same effect, the adduct being increasingly labile with PMe₂Ph and $PMePh₂$, and not formed at all with $PPh₃$. The corresponding $Co₂Ru$ complex reacts by CO substitution alone.

C. μ_{4} -Vinylldenes

1. Homometallic Complexes

The hypothetical complex $Fe_4(\mu_4\text{-}CCH_2)(CO)_{12}$ has been studied by molecular graphics in a survey which considered the steric effects of C(sp²)- and C(sp³)bonded substituents to the cluster carbon atom.³²⁵ It was concluded that the latter would have considerable interaction with the CO groups on Fe, the $CCH₃$ derivative lying 50 kT higher than $C=CH_2$, for example. It is significant that all derivatives of the Fe4C system isolated so far contain $C(sp^2)$.

Oxidation of the anion $[Fe_4C(CO)_{12}]^2$ with Ag⁺ afforded Fe₄C(CO)₁₃, which under CO gives Fe₄(μ ₄- CCO)(CO)₁₂; in the absence of other reagents, $Ag⁺$ oxidation affords $Fe₃(\mu₃-CCO)(CO)₉$.³²⁴ Addition of Li-[BHEt₃], alcohols, or secondary amines to $Fe_4C(CO)_{13}$ afforded the anions $[Fe_4\mu_4$ -CC(O)R'}(CO)₁₂]⁻ (R' = H, OR, or NHR, respectively), while alkyl halides and the dianion $[Fe_4C(CO)_{12}]^2$ gave $[Fe_4(\mu_4-CC(O)R'(CO)_{12}]^{-325}$ Further alkylation $((Me₃O)⁺)$ of these anions produced the neutral vinylidenes $Fe_4\mu_4$ -CCR'(OMe) $(CO)_{12}$ (214).

Addition of H_2 to 175 initially gave 215 containing the μ_5 -CCHPPh₂ ligand.²⁸⁵ Further stepwise addition re-

sulted in conversion to the μ_4 -CCH₂PPh₂ alkylidyne and finally cleavage of the $C_{\alpha}-C_{\beta}$ bond to give a cluster carbide and PMePh₂.

Phenylethyne reacted with $Os_4(\mu_3-S)(CO)_{12}$ in hexane at 55-60 °C over 12 h to give the complexes $\mathrm{Os}_4(\mu_4)$ $CCHPh)(\mu_3-S)(CO)_{12}$ (216, 46%) and $Os_4(\mu_4-\eta^3 \text{SCP}$ ₁₂(CO)₁₂(27%), which are not interconvertible.³²⁶ In 216, the vinylidene ligand is on the opposite side of the Os₄ rhombus to the sulfur. The analogous reaction with HC_2CO_2Me gave only the vinylidene complex. One of the two major products from the reaction between phenylethyne and $\rm Os_5(\mu\text{-}H)_2(CO)_{15}$ is the yellow μ_4 -vinylidene 217, in which the Os₅ cluster has the wing-tip bridged butterfly conformation.³²⁷

2. Heterometallic Complexes

The reaction between $\text{Re}_2(\mu\text{-H})(\mu\text{-C}_2\text{Ph})(\text{CO})_8$ and $\text{Mo(CO)}_{3}(\eta\text{-C}_{5}\text{H}_{5})$ ₂ gave black-green $\text{Mo}_{2}\text{Re}_{2}(\mu\text{-}$ $H\left(\mu_4\text{-}CCH(C_6H_4)\right)(\mu\text{-}CO)(CO)_7(\eta\text{-}C_5H_5)_2$ (218), formed by decarbonylation and isomerization of the initially formed $\text{Mo}_2 \text{Re}_2(\mu_4\text{-}HC_2\text{Ph})(\mu\text{-}CO)_2(\text{CO})_8(\eta\text{-}C_5\text{H}_5)_2^{328}$ Unusually, the phenyl group has been cyclometalated during the reaction.

Reaction of $[Fe_3(\mu_3\text{-}CMe)(\mu_3\text{-}CO)(CO)_9]$ ⁻ and $[RhCl (CO)₂$ in the presence of TlBF₄ gave an anion which was protonated to the green tetranuclear complex 219 (Chart 1); a higher yield (26%) was obtained from $[Fe₃(\mu-H)(\mu-CCH₂)(CO)₉]$. The phenylvinylidene afforded the analogous Fe3Rh complex in 84% yield, while the anion was isolated as the $[PPh_4]^+$ salt in 50% yield.³²⁹ Tested as catalysts, no specific activity was associated with the iron over that found for $Rh_4(CO)_{12}$ in hydroformylation, whereas the iron "poisoned" the rhodium in attempted hydrogenation of olefins, isomerization being favored.

The complexes $M_2Ni_2(\mu_4\text{-CCH}(CMe=CH_2))(CO)_6(\eta \mathrm{C}_5\mathrm{H}_5$)₂ (220; Chart 1) have been prepared from $\mathrm{Ni}_2(\mu \text{HC}_2\text{CMe} = \text{CH}_2\text{H}_2\text{H}_5\text{H}_2\text{H}_1$ and $\text{M}_3(\text{CO})_{12}$ (M = Fe, 330 Ru³³¹); the isomeric μ_4 -alkyne-iron derivative was also obtained, while the $NIRu₃$ complex 221 was also formed in the reaction with $Ru_3(CO)_{12}$. Complexes 220, with the unsaturated side chain coordinated to the M atom, can also be considered as allylic alkylidyne derivatives. The $NiRu₃$ complex 221 reacts with olefins to give several products including species formed by coupling

CHARTl

of the $=$ CHBu^t group with $=$ CRR' derived from the olefins ("olefin metathesis") and of the C=CHBut moiety with $=$ $CH₂$.³³² Products are also obtained from oligomerization (with or without dehydrogenation), C-C bond cleavage, and hydrogenolysis reactions, but none are formed by addition of the vinylidene across a $C=$ double bond.

Treatment of $MnPt(\mu$ -CCHPh $)(\mu$ -CO $)(CO)(dppe)(\eta$ - C_5H_5) with $Fe_2(CO)_9$ gave the Fe_3Pt complex 222 in 91 % yield, in which the attachment of the vinylidene ligand to the cluster is unusually asymmetric; the Mn fragment was found as $Mn(CO)₃(\eta$ -C₅H₆) (58%).³³³

Isomeric orange hydrido-alkynyl (30%) and red vinylidene (63%) complexes were obtained from PtRu₃- $(\mu$ -H)(μ ₄-C₂Bu^t)(CO)₉(cod) (223) and dppe.³³⁴ Facile reversible isomerization of the acetylide to the vinylidene **(224)** occurred, with a first-order rate constant, k , of 1.8×10^{-3} min⁻¹. The reaction is an intramolecular H migration, with concomitant conversion of the core from spiked-triangular to butterfly. The facile conversion, when compared with several stable hydridoalkynyl complexes, was explained in terms of electron donation by the ligands $(\mu_{3,4}$ -alkynyl, 5, vs μ - η^2 -alkynyl, 3; μ_3 μ_4 -vinylidene, 4, vs μ_7 ²-vinylidene, 2), so that the $\mu_{3,4} \rightarrow \mu_{3,4}$ (or $\mu \rightarrow \mu$) conversion involves a formal loss of 2e, to be recouped by M-M bond formation (addition of a 2e ligand does not appear to be effective). Protonation (HBF₄-Et₂O) of 224 gave $[PtRu_3(\mu-H)(\mu_4 \text{CCHBu}^{(1)}$ (CO)₉(dppe)]⁺ in which the hydride bridges the hinge $Ru(1)-Ru(2)$ bond; in the latter barriers to CO exchange are higher than those in **224.** In contrast, protonation of 223 occurred at C_{α} to give the μ_4 -HC₂Bu^t complex.

VII. Allenylidene Complexes

The previous review² described several complexes containing CCCRR' ligands, usually obtained by elimination of water or alcohols from intermediate carbene or vinylidene complexes or by deoxygenation of propargylate anions. This aspect of unsaturated carbene chemistry has been explored relatively little. Table 14 summarizes the allenylidene complexes which have been described during the period of this review.

Whereas mononuclear complexes contain an approximately linear MCCC unit, with the two C_{γ} substituents predicted to take up a configuration orthogonal to that of related vinylidene complexes, binuclear complexes may contain the unsaturated carbene

bridging in two modes, μ - σ , σ (2e) (G) or μ - σ , η ² (4e) (H) (side-on):

Some structural details of mono- and binuclear allenylidene complexes are given in Table 15.

A. Synthesis

Reactions between deprotonated $HC_2CR_2(OH)$ (R_2) = Ph_2 , 2,2'-biphenylyl) and M(CO)₆ (M = Cr, W) gave $[M(C=CCR₂O)(CO)₆$ ² which was deoxygenated with COCl_2 to deep blue $\mathrm{M}(\mathrm{CCCR}_2)(\mathrm{CO})_5$. These complexes are thermally unstable; the tungsten derivatives rearrange in solution to red binuclear $W_2(\mu\text{-CCCR}_2O)(CO)_{10}$. The C_3 ligand is characterized by ν (CCC) at ca. 1925 (terminal) or 1370 cm^{-1} (bridging). 335

Addition of LiC= $\text{CCMe}=CH_2$ to $\text{Mo}(\text{CO})_2(\eta\text{-}C_5H_5)\overline{C}_2$ $(M = Mo, W)$ gave a separable mixture of dark green $M_2(\mu \cdot \sigma, \eta^2 \text{-CCCMe}_2)(CO)_4(\eta \cdot C_5H_5)_2$ (225) (Scheme 69) and $M_2(\mu\text{-}HC_2CMe=CH_2)(CO)_4(\eta\text{-}C_5H_5)_2$.¹⁷⁸ The allenylidene was obtained in 50% yield and was formed by protonation of an anionic intermediate on the alumina column. Site exchange occurs slowly with this complex, in contrast with the side-on coordinated vinylidene complexes mentioned above (section V.A.1). The X-ray structure of the Mo complex showed that the Mo-C distances were shorter than those found in the vinylidene. The C_3 fragment is kinked [angles at C_α 167.2 (2) , C_g 144.5 $(3)°$]. The ¹³C NMR spectra contained resonances at δ 287.7 or 260.2 (C_{α} for Mo and W), 149.4 or 146.1 (C_{β}), and 148.9 or 145.6 (C_{γ}).

Details of the synthesis of $Mn(CCCBu_2^t)(CO)_2(\eta$ - C_5H_5 (90%) from the reaction of $Mn(\eta^2 HC_2CO_2Me$)(CO)₂(η -C₅H₅) with LiBu^t, followed by treatment of the resulting $\text{Li}_2[\text{Mn}(\text{C}_2 \text{CBu}^t_2(0)](\text{CO})_2$ - $(\eta$ -C₅H₆)] with COCl₂ have been given.³³⁶ Manganese and rhenium allenylidene complexes were prepared from $M_2(CO)_{10}$ either by reaction with $[C_2CBu^t_2O]^2$ directly to give the intermediate carbene complex, or by reaction of the $M_2(CO)_9(NMe_3)$ (from the carbonyl and Me3NO) with the acetylenic dianion.³³⁷ The re-

TABLE 14. Allenylidene Complexes

TABLE 15. Structual Features of AUenylidene Complexes

R. 3 2 >=C : **=C=ML.**

suiting binuclear anionic complexes (Scheme 70) were treated with COCl2 to give 226 or 227 in low yields.

The major products are the acetylides M- (C2CBu¹ JOH)(CO)5, also obtained directly from MCl- (CO)5, and the lithio derivative. The unusual difference in structure between the manganese and rhenium complexes is attributed to the heavier metal forming stronger bonds to terminal carbene and CO ligands.

Similar reactions with Fe(CO)5 afforded a series of mono- and polynuclear allenylidene complexes (Scheme 71).³³⁸ Those containing the CCCBu^l ² ligand are formed from the mononuclear complex 228 by successive addition of Fe(CO)4 moieties, and the red binuclear derivative 229 was also formed by reaction of Fe- (CCCBu⁴ J)(CO)4 with Fe2(CO)9. The black trinuclear complex 230 shows an interesting equilibrium between

SCHEME 70

O (226)

 μ_2 - and μ_3 -CCCBu^t₂ ligands, with concomitant change of a μ -CO group to a terminal position. Also isolated was 231 containing the 2-oxo-l,3-dioxolan-4-ylidene ligand, which was formed by an intramolecular cyclization of the intermediate alkynylacyl complex. The crystal structure shows that the carbene occupies an equatorial coordination site, in agreement with its strong π -acceptor powers; the Fe-C distance is 1.803 Å.

(227)

Reactions between $\{Fe(\eta-C_5H_5)\}\text{2}(\mu-CCH_2)(\mu-CO)(\mu-C)$ PP) (PP = dppe, dppm) and tcne gave the μ -CCH{C- (CN) =C (CN) ₂] complexes (section V.C.2) and green ${F_{\rm e}(\eta \text{-} C_5H_5)}_2$ /*u*-CCC(CN)₂}(μ -CO)(μ -PP) (232).²⁵⁷ The $C=C-C$ system has short (1.258 Å) and normal (1.345 A) C= \sim bonds, the former involving the μ -C atom. The

unusual conversion of $CCH₂$ to an allenylidene occurs with elimination of $CH_2(CN)_2$.

 $(232) n = 1, 2$

The hydroxy-alkyne $HC_2CPh_2(OH)$ reacted with $RuCl(PMe₃)₂(\eta-C₅H₅)$ to give 233 in 76% yield by dehydration of an intermediate vinylidene complex.³³⁹

Organometallic Chemistry of Vinylidene and Carbenes **Chemical Reviews, 1991, Vol. 91**, No. 2 249

The related $Fe(dppe)(\mu-C_5H_5)$ acetylide also undergoes a spontaneous dehydration. The ligand is essentially linear and undergoes rapid rotation; in the solid state, the CPh₂ group lies approximately (dihedral 10.6°) in the plane which contains Ru, C_{α} , and the midpoint of the C_5 ring, as predicted. It is as good a π -acid as CO, but weaker than CCH_2 . In the ¹³C NMR spectrum, C_{α} , C_{β} , and C_{γ} are found at δ 195.8, 216.0, and 153.8 ppm, respectively.

The reactions of $RuCl₂(PMe₃)(\eta-C₆Me₆)$ with $HC_2CR_2(OH)$ in MeOH in the presence of NH_4PF_6 gave $[\text{RuCl}(\text{C}(\text{OMe})\text{CH}_2\text{CH}_2\text{OMe})(\text{PMe}_3)(\eta\text{-C}_6\text{Me}_6)]^+$ (for R = H) or $[RuCl(C(OMe)CH=CR_2] (PMe_3)(n-C_6Me_6)]^+$ [for R = Me, Ph; $R_2 = (CH_2)_5$], via the corresponding allenylidene intermediates.³⁴⁰ The 1-methoxyethyl cation was also prepared from HC_2CH_2X (X = Cl, OMe) in similar reactions. The violet $CCCPh₂$ cation **234** was isolated after short reaction times (69% after 20 min); the high reactivity of the arene-ruthenium complex again contrasts with that of the corresponding cyclopentadienyl species.

(234)

The violet binuclear heterometallic complex **235** was obtained from $Fe₂(CO)₉$ and $Mn(CCCPh₂)(CO)₂(\eta C_5H_5$).²²³

B. Reactivity

MO calculations on $Mn(CCCPh_2)(CO)_2(\eta$ -C₅H₅) showed that C_{α} and C_{γ} are electrophilic centers and that C_{β} is nucleophilic; experimentally, it is found that hard bases (such as MeO^- , $Me₂N^-$) add to C_{α} and soft bases (PR_3) to C_{γ} , $107,341,342$ The methoxyvinyl complex is more stable than the phosphine ylid. The $\mu-\sigma,\eta^2$ (4e) allenylidene 226 undergoes nucleophilic attack at C_{γ} and electrophilic attack at C_{α} .

Treatment of 225 (Scheme 69) with K[BHBu^s₃] in tetrahydrofuran at -78 ⁰C gave an anion **236** identical with that obtained from LiC_2Pr^i and ${Mo(CO)_2(n (C_5H_5)_{2}$ ³⁴³ i.e. kinetically controlled regioselective attack on C_{γ} occurs. Both Mo and W allenylidenes were protonated at C_a with HBF₄-OEt₂ to give $[M_2(\mu HC_2CMe_2(CO)_4(\eta$ - $C_5H_5)_{2}]^+$ (237); these complexes were also obtained directly by protonation of $M_2(\mu$ - $HC_2CMe=CH_2(CO)_4(\eta$ -C₅H₅)₂. The cations are isolobal with the cationic propargyl– $Co_2(CO)_6$ and $Co_3(\mu_3 CCH₂)(CO)₉$ complexes.

Protonation of $Mn(CCCR_2)(CO)_2(\eta$ -C₅H₅) (R = Bu^t, Ph) with HX $(X = CI, BF_4, CF_3SO_3)$ gave the orange

SCHEME 72

cationic vinylcarbyne complexes $[{\rm Mn}(\equiv CCH=CR_2)$ - $(CO)₂(\eta-C₆H₆)]⁺$; the electrophile has added to C_{β} . The very short Mn-C bond found in the phenyl complex indicates some contribution from the Mn=C=CH- $C^{+}Ph_2$ canonical form.¹⁸² The earlier report³⁴¹ of addition of PR₃ to C_y of the manganese complexes (R = Bu^t, Ph) has been corrected by X-ray characterization of Mn (C(PPh₃)CCPh₂)(CO)₂(η -C₅H₅);¹³⁰ this finding is in accord with the similar reaction of $Cr(CCCPr₂)$ - $(CO)_{5}$. 143

Insertion of CNBu^t into the Mn-C_{α} bond of Mn- $(CCCPh₂)(CO)₂(\eta-C₅H₅)$ proceeds more slowly than for the vinylidenes (section $IV.D.3$) to give an intermediate cumulenimine complex **238** (Scheme 72).¹²⁶ This was treated with water to give the η^2 -allene complex 239, formed by rearrangement of the η^2 -butatriene (not isolated).

VIII. Isomerization of 1-Alkynes to Vinylidenes on Metal Centers

Two possible mechanisms for the isomerization of 1-alkynes to vinylidenes on metal centers have been considered: (i) oxidative addition of the 1-alkyne to the metal center to give a hydrido-alkynyl complex, which then isomerizes by a 1,3-hydrogen shift from the metal to C_{β} ; and (ii) approach of the metal to C_{α} while the hydrogen atom concomitantly bends down and then toward C_{β} , a pathway which was first indicated by extended Huckel MO studies. It seems likely that both mechanisms may operate, dependent on the nature of the metal and associated ligands.

The alkyne-vinylidene rearrangement is promoted by an unfavorable 4e-2-center $d_{\pi}-\pi$ conflict in d^6 complexes because octahedral d⁶ complexes have no vacant d orbitals.³⁶ The dominant π -acceptor orbital on C_{α} thus finds filled d orbitals of similar energy and extension in all orientations. The isomerization is rarely observed in d^4 complexes³⁷ which, like the d^2 configuration, favor the formation of n^2 -alkyne complexes. The alkyne is a better ligand for high oxidation state metal complexes with vacant metal d_{τ} orbitals.

An important contribution to this discussion was the paper by Silvestre and Hoffmann,³⁴⁴ who performed extended Huckel MO calculations to define the 1,2 hydrogen shift. They noted that the reaction has been reported under mild conditions for mono- and polynuclear complexes, but not for binuclears. The transition-state geometry was optimized, and for ethyne, the

 E_a of 318 kJ mol⁻¹ is overestimated by ca. 1.0 eV. As negative charge builds up on C_{β} , positive charge develops on C_{α} , so that the hydrogen migrates as a proton.

A. Mononuclear Systems

In mononuclear systems, interaction of the alkyne or vinylidene involves forward donation from filled π_a and *a* orbitals with the metal 3a' level, and back-donation from the metal a" orbital to π_{σ}^* (C₂H₂) or $\pi_{\mathbb{I}}^*$ (CCH₂). On coordination the thermodynamic stabilities of acetylene and vinylidene are reversed (by 146 kJ mol⁻¹). The more electronegative transition metals form the more stable vinylidene complexes.

The synchronous interconversion has E^2 , 230 kJ mol⁻¹: the concerted 1,2-shift is not efficiently catalyzed by the metal. Following the organic analogy of the conversion of corner-protonated cyclopropene to a methylvinyl cation isomer, the isomerization is considered to involve an η^1 -alkyne complex, i.e. there is slippage prior to the hydrogen shift. The η^1 -isomer is ca. 37.5 kJ mol⁻¹ above the η^2 -isomer, but the E_a is only ca. 121 kJ mol⁻¹. Figure 7 shows the topology of the change and includes the transition state for addition of H^+ to MC_2R ; at all stages there is substantial electron density on the metal. There is a difference in speed of movement of ML_n and of H^* around C_{α} , with a slight tendency for H to join to the metal rather than to C_{α} ; distortion of the M- $-C_{\alpha}-C_{\beta}$ backbone ultimately leads to the oxidative addition product, but no symmetrical M-H-C systems develop.

Calculations of electron density changes indicate that donor groups near C_β would stabilize the η^1 -alkyne geometry; the off-center slippage is similar to nucleophilic addition to an η^2 -olefin complex. The CCH₂ unit is stabilized even in the transition state. By the isolobal analogy, the H can be replaced by $AuPR_3$, $Mn(CO)₂$. $(\eta$ -C₅H₅), or SnR₃; if an M-M bond is present, the μ - σ , π -alkynyl-Re₂ complexes 240, which interconvert σ and π bridging modes, also provide an analogy. The effect of ligands is such that while electronegative weak σ -donors push a_1 down, they also stabilize the η^2 -alkyne complex; enhanced π -acceptor ligands should send the d_{vz} orbital down in energy.

The alternative pathway of oxidative addition to give a hydrido-alkynyl complex, followed by a 1,3-shift of hydrogen to C_β was considered. This requires bending of the metal acetylide; calculations show that the energy expenditure to promote migration from the metal to \tilde{C}_β is prohibitive. The examples known (from Werner's work, see above, section IV.A.1) are rather slow and presumably proceed in a nonconcerted fashion.

B. Binuclear Systems

In a model binuclear Pt system, the μ -vinylidene is 21 kJ mol⁻¹ above the μ -2 σ -HC₂H isomer; while the two types of complex are well known, the isomerization is

Figure 7. Calculated trajectories of H shift and M-C bending during isomerization of $\rm{C_2H_2}$ to $\rm{CCH_2}$ at a metal center (reprinted from ref 344; copyright 1985 Verlag Helvetica Chimica Acta).

energetically unlikely. Dihaloalkynes have been reported to give binuclear vinylidene complexes, but no intermediate η^2 -alkyne complexes were detected.³⁴⁵

The formation of binuclear vinylidene complexes usually occurs via the combination of mononuclear vinylidenes with organometallic fragments in the reaction mixture. The formation of a binuclear vinylidene from a hydrido-acetylide complex appears to be more feasible. This is equivalent to a $[2 + 2]$ -addition, or the insertion of the $C=C$ into the M-H bond. Several examples are known in the platinum series (see sections V.A.5 and V.B). This reaction probably proceeds via coordination of the alkynyl to the metal bearing the hydride, followed by 1,2-addition of the M-H bond across the $C=$ C bond, and formation of a M-M bond by donation of an electron pair from d^{10} Pt to d^8 Pt. The polarization requires a weak donor on $Pt₁$ and a strong σ -donor trans to C_{α} on Pt₂.

C. Trinuclear Systems

For trinuclear systems, the energy of transition state (route a, Figure 8) is very high because of the loss of the strong interaction resulting from two electrons entering an M-M antibonding orbital. An alternative mechanism (route b) involves rotation of the alkyne to bisect the M-M bond, oxidative addition of the C-H bond to the cluster, pivoting of the acetylide, and migration of H to C_{β} . This process is favored by the μ -H atom, i.e. a small barrier in the vicinity of C_{β} , and the tendency of the acetylide to act as a μ_3 -5e donor. Supporting this are actual structures and the thermal supporting this are actual structures and the thermal isomerization of an $Os₃$ cluster.³⁴⁶ A theoretical study of CCH_3^+ on a $\text{Co}_3(\text{CO})_9$ cluster has also been given from which it was deduced that the electron-deficient C_{β} atom bends toward one Co atom (section VI.B.4).³⁰¹

Structural studies have shown the extent of the movement of the C_2 fragment during the conversion

$$
\mu_3\text{-HCCR} \rightarrow \mu_3\text{-CCR} \rightarrow \mu_3\text{-CCHR} \rightarrow \mu_3\text{-CCH}_2\text{R}
$$

1° 19° 50° 90°

Route a

Route b

Figure 8. Two possibilities for isomerization of C_2H_2 to CCH_2 on a trinuclear metal cluster (reprinted from ref 344; copyright 1985 Verlag Helvetica Chimica Acta).

(angles are inclination of CC vector to the M_3 plane) C_g lifting up from the M₃ plane so that for μ_3 -CCH₂R, the $C_{\alpha}-\tilde{C}_{\beta}$ bond is nearly perpendicular. A parallel is found in the conversion of the corresponding nitrogen containing molecules studied by Kaesz and co-workers.³⁴⁷ These changes in coordination allow mobility

$$
\mu_3\text{-}H\text{N}=\text{CR} \rightarrow \mu_3\text{-}\text{N}\text{=CR} \rightarrow \mu_3\text{-}\text{N}\text{-}\text{CHR} \rightarrow
$$

2°
21.5°
45.3°

$$
\mu_3\text{-}\text{NCH}_2\text{R}
$$

90°

of the multiple bond while the functional part $(C_{\alpha}$ or N) remains in one location on the core (or metal surface).

/JIf. Vlnylldenos on Metals

A. On Surfaces

Extensive investigations of the changes taking place after adsorption of C_2H_2 on a Pt(111) surface, using a variety of physical techniques including high-resolution IR, electron energy loss (EELS), low-energy electron diffraction (LEED), and NMR methods, have shown that isomerization to $CCH₂$ occurs readily.³⁴⁸⁻³⁵⁴ These changes and the further dehydrogenation to CH_n and finally to adsorbed carbon, are depicted in Figure *Q.³⁵⁵*

Several theoretical treatments have been given which have concluded that the vinylidene is relatively stable. Extended Huckel and empirical force field calculations of $CCH₂$ (and also of CCHF and $CCF₂$) on Pt clusters³⁵⁶ have been supplemented by considering the suprafacial $1,2$ -H shift on a Pt_{16} cluster model³⁵⁷ and by a more extensive study of CCH_2 chemisorbed on a four-layer surface.³⁵⁸ The latter considered four orientations of the C_2 fragment on the surface (Figure 10) and concluded that the 2σ (parallel) geometry a is strongly bound by both σ and π interactions, while the 2σ (perpendicular) b geometry is less strongly attached. In molecular complexes, it is the former that is favored, the π -bond determining the conformation. The 2σ (bent) geometry c , in which the $C=C$ double bond bends toward a third atom, is less favorable than the

Figure 9. Formation of adsorbed C/H species on a Pt surface.

Figure 10. Various geometries of CCH₂ on a metal surface: (a) 2σ (parallel); (b) 2σ (perpendicular); (c) 2σ (bent); (d) σ (linear) (from ref 358).

upright ones, although this apparent lack of correspondence with experimental results may be a consequence of the method. Finally, the σ (linear) geometry d is reinforced by backbonding interactions with adjacent Pt atoms, but is ca. 1.5 eV higher than the other conformations, because more surface atoms are involved in the bonding. In general, bonding within the $CCH₂$ fragment and within the surface are both weakened.

In recent years, many other reports of the detection of vinylidene on metal surfaces have appeared. These have mainly involved chemisorption of ethyne, but dehydrogenation of ethene has also been observed. The results are relevant to the mechanism of isomerization and of dehydrogenation of hydrocarbon species on metal surfaces. For example, electron energy loss spectra of mixtures of CO and H_2 on an Fe(110) surface gave evidence for C_2 , CH, and possibly CCH_2 (characterized by energy loss at 1190 cm^{-1}).³⁵⁹

Adsorption of ethene on $Ru(001)$ with ordered $p(2 \times$ 2) and $p(1 \times 2)$ overlayers of oxygen atoms has been studied by high-resolution EELS, thermal desorption mass spectrometry and LEED.³⁶⁰ On clean Ru(001), a di - σ -bonded C_2H_4 complex is formed, but in the presence of the oxygen atoms, a π -ethene complex forms; above 240 K, it is fully desorbed from the $Ru(001)-p(1)$ \times 2) surface, but only one-third is desorbed from Ru-(001)-p(2 \times 2). At 250 K, formation of CCH₃ with desorption of H_2 (25%) is found. At 350 K, quantitative conversion to $CCH₂$ is seen, again with evolution of $H₂$ (25%); at 400 K, decomposition to CH, surface C, and $H₂$ (25%) is found, while above 500 K, CH forms surface C and H_2 (25%). No CCH or CH_2 was found. In

contrast, on an $Ru(001)$ surface, which favors sp^3 species, ethyne forms CCH, which is converted to CH at 360 K, and to surface C and H_2 between 500-700 K. The vinylidene species were identified by comparison of their IR ν (CC) and δ (CH₂) modes with those assigned for an Os_3 cluster complex. A lower ν (CC) is found as a result of π -donation to the Ru because of tilting of the vinylidene relative to the surface normal. Rehydrogenation occurs under H_2 , CC H_2 being regenerated at 350 K.³⁶¹

Vinylidene is an intermediate in the formation of $CCH₃$ from H + $C₂H₂$ on Pd(III), and $CCH₂$ has been tentatively identified from $H + C₂H₂$ on Pt(III). Various studies of the decomposition of η -C₂H₄ on Pt- $(111)/O$ have been interpreted as giving CCH₂ at 325 K. Similarly, annealing the low-temperature phase of ethyne adsorbed on platinum at 350 K is proposed to give CCH_2 .³⁴⁶ The thermal evolution and decomposition of C_2H_4 on a Pt(111) surface shows that stable CHMe coexists with CCH_2 , so that it was proposed³⁵⁰ that the isomerization occurred via vinylidene:

$$
C_2H_4 \rightarrow CCH_2 + 2H \rightarrow CHCH_3
$$

These transformations have been modeled on $Pt_3(\mu$ $dppm$ ₃ clusters (section VI.B.5).

B. In Matrices

The ESR of the sodium-ethyne complex, prepared by photoirradiation of sodium atoms in an argon matrix containing 1% ethyne were interpreted in terms of formation of the adduct Na^+ / $~^C\text{CH}_2$. Sodium complexation reduces the barrier to ethyne isomerization by forming this anion.³⁶² A strong bond to Al is predicted [AlCCH₂ is 84 kJ mol⁻¹ below $(Al + C_2H_2)$].³⁶³ However, the ESR spectrum of the species formed from Al atoms and ethyne at liquid He temperatures³⁶⁴ was interpreted as the species AlCH=CH*, although it was also suggested that the 17 kJ barrier might be sufficient to preclude the 1,2-H shift at 4 K. 365

Codeposition of nickel atoms with ethyne in an Ar matrix at 12 K gave $\text{Ni}(\eta^2\text{-}C_2\text{H}_2)$ which was converted to Ni(CCH₂) on photolysis ($\lambda > 400$ nm); irradiation between 280-360 nm reversed the process. Reaction with H₂ decreased the intensity of the IR bands, but no Ni- C_2H_4 complex was formed.³⁶⁶

LCAO/SCF MO calculations of possible modes of coordination of Cu⁺ to C_2H_2 and CCH₂ showed the most stable gas-phase complex to be $[\text{Cu}(\eta\text{-C}_2\text{H}_2)]^+$, with ΔH_{f} $96.6 \text{ kJ} \text{ mol}^{-1}$ (from Cu^+ and C_2H_2).³⁶⁷ All adducts are stable with respect to Cu⁺ and C_2H_2 in the ground state. The barrier to isomerization of $[\text{Cu(CCH}_2)]^+$ to $[\text{Cu}(n)]$ C_2H_2]⁺ is 89.87 kJ mol⁻¹, with the positive charge localized on Cu. The reaction of gold atoms with ethyne in an adamantane matrix at 77 K gave bent AuCCH₂; the deuterio species was also identified.³⁶⁸ The variable-temperature ESR spectrum showed inversion between two equivalent structures at a rate comparable with the frequency of the β -hydrogen hyperfine coupling constant; 35% of the 6s spin density was on the gold atom. The species are formed by an initial rapid 1,2-shift of hydrogen in the vinyl AuCH=CH. Phenylethyne appears to give AuCH=C'Ph rather than AuCCHPh.

X. Prognosis

The organometallic chemistry of vinylidenes has exhibited strong growth over the past decade and these species are now widespread as ligands in both monoand polynuclear complexes. However, there is still a need to develop other routes to vinylidenes with selected substituents; one example is the lack of a general synthesis of fluorinated derivatives, although the preparation of uncomplexed $CCF₂$ was reported during the assembly of this survey.³⁷⁶ Undoubtedly, the application of vinylidene complexes to organic synthesis will increase and, as we learn more about their chemistry, further examples of their intermediacy in reactions catalyzed by transition metals will emerge. Again, a new development is the involvement of vinylidene intermediates in the polymerization of alkynes.³⁷⁷

The propensity of vinylidenes to interact with more than one metal atom and the reactivity thus conferred on them will make the chemistry of cluster-bound species an area of much growth in the future. Particularly, the ability of clusters to facilitate multicomponent reactions will result in much interesting chemistry. Heteroatom analogues $(CCO, CBH₂, etc.)$ are destined to play an important role in developing our knowledge of the reactivity of cluster-bound molecules. These and related species are also likely to be detected in various environments on metal surfaces.

Another area which may be expected to develop rapidly is the chemistry of higher members of the C_nH_2 series $(n \geq 3)$. The high degree of unsaturation and alternating degree of electrophilicity of the C atoms in the unsaturated chain will ensure that much new and interesting chemistry will be discovered, once the synthetic approaches to these molecules have been defined.

All in all, and in spite of the claim that the "final chapter" may have been written (from the theoretical point of view, at least), 378 one would expect to see continuing expansion of this exciting area of chemistry over the next decade, with the emphasis shifting from preparation and structural characterization to studies of reactivity and synthetic utility.

XJ. Acknowledgments

I am grateful to those colleagues who have communicated their results for inclusion into this review: Professors A. B. Antonova, R. M. Bullock, G. Consiglio, J. Davies, J. P. Selegue, H. Vahrenkamp, and H. Werner, to Professor J.-J. Bonnet and Dr. G. Lavigne for their hospitality during my visit to CNRS Laboratoire de Chimie de Coordination, Toulouse, France, where much of this article was written, and to Professor P. Braunstein, Laboratoire de Chimie de Coordination, Universite Louis Pasteur, Strasbourg. I thank Dr. N. N. Zaitseva for help with some of the Russian literature and Dr. Chris Adams for drawing the diagrams.

XIl. References

- (1) (a) Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159.
(b) Dotz, K. H. Transition Metal Carbene Complexes, Verlag
Chemie: Weinheim, 1983.
(2) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22,
- 59.
- (3) Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. *Chem. Rev.* **1983,** *83,*135.

Organometallic Chemistry of Vinylidene and Carbenes

-
- (4) Pombeiro, A. J. L. *J. Organomet. Chem.* **1988,** *358,* 273. (5) Antonova, A. B.; Johansson, A. A. *Usp. Khim.* **1989,***58,*1197; *Russ. Chem. Rev.* **1989,** 58, 693.
- (6) Geoffroy, G. L.; Bassner, S. L. *Adv. Organomet. Chem.* **1988, 28** 1.
- (7) Sailor, M. L.; Shriver, D. F. *Ace. Chem. Res.* 1988, *21,* 374. (8) Stang, P. L. *Chem. Rev.* **1978,** *78,*383; *Ace. Chem. Res.* **1982,**
-
- *15,* 348. (9) Skell, P. S.; Plonka, J. H. *J. Am. Chem. Soc.* **1970,** *92,* 5620. (10) Skell, P. S.; Fagone, F. A.; Klabunde, K. J. *J. Am. Chem. Soc.* **1972** *94* 7862. (11) Dura'n, R. P.; Amorebieta, V. T.; Colussi, A. J. *J. Am. Chem.*
-
- Soc. 1987, 109, 3154.

(12) Brown, R. F. C.; Eastwood, F. W.; Jackman, G. P. Aust. J.

Chem. 1978, 31, 579.

(13) Barton, T. J.; Groh, B. L. Organometallics 1985, 4, 575.

(14) Fahr, A.; Laufer, A. H. J. Chem. Phys. 1985,
-
-
- *Photochem.* **1986,** *34,* 261. (15) Strausz, O. P.; Norstrom, R. J.; Salahub, D.; Gosavi, R. K.; Gunning, H. E.; Csizmadia, I. G. *J. Am. Chem. Soc.* **1970,***92,* 6395.
- (16) Zakharkin, L. I.; Kobak, V. V. *J. Organomet. Chem.* 1984, *270* 229.
- (17) Krishnan, R.; Frisch, M. J.; Pople, J. A.; Schleyer, P. v. R. *Chem. Phys. Lett.* **1981,** *79,* 408.
- (18) Osamura, Y.; Schaefer, H. F., Ill; Gray, S. K.; Miller, W. H. *J. Am. Chem. Soc.* **1981,***103,* 1904. (19) Burnett, S. M.; Stevens, A. E.; Feigerle, C. S.; Lineberger, W.
-
- C. *Chem. Phys. Lett.* **1985,***100,*124. (20) Kenney, J. W., Ill; Simons, J.; Purvis, G. D.; Bartlett, R. J. *J. Am. Chem.* Soc. **1978,***100,* 6930.
- (21) Dykstra, C. E.; Schaefer, H. F., Ill *J. Am. Chem. Soc.* **1978,** *100,* 1378.
-
- (22) Schaefer, H. F., Ill *Ace. Chem. Res.* 1979,*12,* 288. (23) Osamura, Y.; Schaefer, H. F., **Ill** *Chem. Phys. Lett.* **1981,** *79,* 412.
- (24) Davis, J. H.; Goddard, W. A., Ill; Harding, L. B. *J. Am. Chem. Soc.* **1977,** *99,* 2919.
- (25) Strausz, O. P.; Norstrom, R. J.; Hopkinson, A. C; Schoen-born, M.; Csizmadia, I. G. *Theoret. Chim. Acta* **1973,***29,*183.
- (26) Dawson, J. H. J.; Nibbering, N. M. M. *J. Am. Chem. Soc.*
- 1978, 100, 1928, and references cited therein.

(27) (a) Lindinger, W.; Albritton, D. L.; Fehsenfield, F. C.; Ferguson, E. E. J. Chem. Phys. 1975, 63, 3238. (b) Dotan, I.;

Lindinger, W.; Albritton, D. L. J. Chem. Phys. 19 (c) DeFrees, D. J.; Mclver, R. T., Jr.; Hehre, W. J. *J. Am. Chem. Soc.* **1980,** *102,* 3334.
-
- (28) Chandrasekhar, J.; Kahn, R. A.; Schleyer, P. v. R. Chem.

Phys. Lett. 1982, 85, 493.

(29) (a) Taarit, Y. B.; Symons, M. C. R.; Trench, A. J. J. Chem.

(29) (a) Taarit, Y. B.; Symons, M. C. R.; Trench, A. J. J. Chem.
- (30) Rosmus, P.; Botschwina, P.; Maier, J. P. *Chem. Phys. Lett.*
-
- 1981, 84, 71.

(31) Maier, G.; Reisenauer, H. P.; Schwab, W.; Cārsky, P.; Hess,

B., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1987, 109, 5183.

(32) Dykstra, C. E.; Parsons, C. A.; Oates, C. L. J. Am. Chem. Soc. **1979,** *101,*1962.
-
- (33) DeFrees, D. J.; McLean, A. D. *Astrophys. J.* 1986, *308,* L31. (34) Hehre, W. J.; Pople, J. A.; Lathan, W. A.; Radom, L.; Was-serman, E.; Wasserman, Z. R. *J. Am. Chem. Soc.* **1976,** *98,* 4378.
- (35) Stang, P. J.; Learned, A. E. *J. Chem. Soc, Chem. Commun.* **1988** 301.
-
- (36) Templeton, J. L.; Winston, P. B.; Ward, B. C. *J. Am. Chem. Soc.* **1981,***103,* 7713. (37) Nickias, P. N.; Selegue, J. P.; Young, B. A. *Organometallics* **1988** 7 2248.
- (38) (a) Adams, J. S.; Cunningham, M.; Whiteley, M. W. *J. Or-anomet. Chem.* **1985,***293,* C13. (b) Adams, J. S.; Bitcon, C; *f* irown, J. R.; Collison, D.; Cunningham, M.; Whiteley, M. W. *J. Chem. Soc, Dalton Trans.* **1987,** 3049.
- (39) Birdwhistell, K. R.; Nieter Burmayer, S. J.; Templeton, J. L.
- *J. Am. Chem. Soc.* **1983,**105, 7789. (40) Tatsumi, K.; Hoffmann, R.; Templeton, J. L. *Inorg. Chem.* **1982,** *21,* 466.
- (41) Birdwhistell, K. R.; Tonker, T. L.; Templeton, J. L. J. Am.
Chem. Soc. 1987, 109, 1401.
(42) Birdwhistell, K. R.; Tonker, T. L.; Templeton, J. L. J. Am.
Chem. Soc. 1985, 107, 4474.
(43) Löwe, C.; Hund, H.-U.; Berke, H
-
-
-
-
- 378, 211.

(44) Kolobova, N. E.; Zhvanko, O. S.; Ivanov, L. L.; Batsanov, A.

S.; Struchkov, Yu. T. J. Organomet. Chem. 1986, 302, 235.

(45) Pombeiro, A. J. L.; Jeffery, J. C.; Pickett, C. J.; Richards, R.

(46) Pombeiro,
- (47) Lowe, C; Hund, H.-U.; Berke, H. *J. Organomet. Chem.* **1989,** *372,* 295.
- (48) Consiglio, G.; Bangerter, F.; Darpin, C; Morandini, F.; Luc-chini, V. *Organometallics* **1984,** *3,* 1446.
- (49) Consiglio, G.; Morandini, F.; Ciani, G. F.; Sironi, A. *Organometallics* **1986,** 5,1976.
-
-
-
-
-
- (50) Consiglio, G.; Morandini, F. Chem. Rev. 1987, 87, 761.

(51) Consiglio, G.; Morandini, F. *Inorg. Chim. Acta* 1987, 127, 79.

(52) Bullock, R. M. J. Chem. Soc., Chem. Commun. 1989, 165.

(53) Pourreau, D. B.; Geoffro
- 1985, *24,* 406. (57) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. *Angew. Chem.* **1983,** *95,*428; *Angew. Chem., Int. Ed. Engl.* **1983,***22,*
-
- 414.
(58) Werner, H.; Wolf, J.; Alonso, F. J. G.; Ziegler, M. L.; Serhadli,
O. J. Organomet. Chem. 1987, 336, 397.
(59) Werner, H.; Brekau, U. Z. Naturforsch. B 1989, 44, 1438.
(60) Höhn, A.; Otto, H.; Dziallas, M.; Werner
- *Chem. Commun.* **1987,** 852.
- (61) Marder, T. B.; Zargarian, D.; Calabrese, J. C; Herskovitz, T. H.; Milsteiii, D. *J. Chem. Soc, Chem. Commun.* **1987,**1484. (62) Mayr, A.; Schaefer, K. C; Huang, E. Y. *J. Am. Chem. Soc*
- **1984,***106,*1517.
- (63) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. *J. Am. Chem. Soc.* **1985,***107,* 6739. (64) Birdwhistell, K. R.; Templeton, J. L. *Organometallics* 1985,
- *4,* 2062.
- (65) Bullock, R. M. *J. Am. Chem. Soc.* **1987,***109,* 8087. (66) Reger, D. L.; Swift, C. A. *Organometallics* **1984,** *3,* 876.
-
- (67) Abbott, S.; Davies, S. G.; Warner, P. *J. Organomet. Chem.* 1983, *246,* C65.
-
- (68) Bruce, M. I.; Humphrey, M. G. Aust. J. Chem. 1989, 42, 1067.

(69) Bruce, M. I.; Dean, C.; Duffy, D. N.; Humphrey, M. G.; Coutsantonis, G. A. J. Organomet. Chem. 1985, 295, C40.

(70) Bruce, M. I.; Humphrey, M. G.; K
- (71) Bruce, M. I.; Humphrey, M. G.; Liddell, M. J. *J. Organomet. Chem.* **1987,** *321,* 91.
- (72) Bruce, M. I.; Humphrey, M. G.; Koutsantonis, G. A.; Nicholson, B. K. J. Organomet. Chem. 1985, 296, C47. Bruce, M. I.; Koutsantonis, G. A.; Liddell, M. J.; Nicholson, B. K. J. Organomet. Chem. 1987, 320, 217.
(73) Bi
-
-
-
- (75) Beevor, R. G.; Freeman, M. J.; Green, M.; Morton, C. E.;
Orpen, A. G. J. Chem. Soc., Chem. Commun. 1985, 68.
(76) Baker, P. K.; Barker, G. K.; Gill, D. S.; Green, M.; Orpen, A.
G.; Williams, I. D.; Welch, A. J. J. Che
-
- (77) Beevor, R. G.; Green, M.; Orpen, A. G.; Williams, I. D. J.
Chem. Soc., Chem. Commun. 1983, 673.
(78) Beevor, R. G.; Green, M.; Orpen, A. G.; Williams, I. D. J.
Chem. Soc., Dalton Trans. 1987, 1319.
-
- (79) Chaona, S.; Lalor, F. J.; Ferguson, G.; Hunt, M. M. *J. Chem. Soc, Chem. Commun.* **1988,** 1606. (80) Brower, D. C; Stoll, M.; Templeton, J. L. *Organometallics* **1989,** *8,* 2786.
-
- (81) Boland-Lussier, B. E.; Churchill, M. R.; Hughes, R. P.:
Rheingold, A. L. Organometallics 1982, J, 628.
(82) Wong, A.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4948.
(83) Senn, D. R.; Wong, A.; Patton, A. T.; Marsi,
- (84) Barrett, A. G. M.; Carpenter, N. E.; Sabat, M. *J. Organomet.*
- *Chem.,* **1988,** 352, C8. (85) van Asselt, A.; Burger, B. J.; Gibson, V. C; Bercaw, J. E. *J.*
- *Am. Chem. Soc.* **1986,***108,* 5347. (86) Weinand, R.; Werner, H. *J. Chem. Soc, Chem. Commun.*
- **1985,**1145. (87) Werner, H.; Esteruelas, M. A.; Otto, H. *Organometallics* **1986,** *5,* 2295.
-
-
-
-
- (88) Schubert, U.; Kirschgassner, U.; Grönen, J.; Piana, H. Polyhedron 1989, 8, 1589.

(89) Schubert, U.; Grönen, J. Chem. Ber. 1989, 122, 1237.

(90) Schubert, U.; Grönen, J. Organometallics 1987, 6, 2458.

(91) Yamazaki, **1981,** *214,* 303.
- (93) Olmstead, M. M.; Cheng, R.-J.; Balch, A. L. *Inorg. Chem.* 1982,21,4143.
- (94) Lange, M.; Mansuy, D. Tetrahedron Lett. 1981, 22, 2561.
(95) Mansuy, D.; Battioni, J.-P.; Lavallee, D. K.; Fischer, J.;
Weiss, R. *Inorg. Chem.* 1988, 27, 1052.
(96) Chevrier, B.; Weiss, R.; Lange, M.; Chottard, J.-C.
-

254 Chemical Reviews, 1991, Vol. 91, No. 2 Bruce **Bruce** *Bruce* **Bruce Bruce Bruce**

-
- **(97** D. J. A*m. Chem. Soc.* 1981, 103, 2899.
Balch, A. L.; Chan, Y. W.; Olmstead, M. M.; Renner, M. W.
J. Org. Chem. 1986, 51, 4651.
Chan, Y. W.; Renner, M. W.; Balch, A. L. Organometallics
- **(98; 1983 2 1888**
- **(99;** Chan, Y. W.; Wood, F. E.; Renner, M. W.; Hope, H.; Balch,
A. L. J. Am. Chem. Soc. 1984, 106, 3380.
Balch, A. L.; Chan, Y. W.; Olmstead, M. M.; Renner, M. W.;
Wood, F. E. J. Am. Chem. Soc. 1988, 110, 3897.
Collman, J. P.; B
- (ioo;
- **(101** *J. Am. Chem. Soc.* **1985,***107,* **6110.**
- **(102; (103; Dziallas, M.; Werner, H.** *J. Organomet. Chem.* **1987,333, C29. Sakurai, H.; Hirama, K.; Nakadaira, Y.; Kabuto, C.** *J. Am. Chem. Soc.* **1987,***109,***6880.**
- (104) **Ldwe, C; Hund, H.-U.; Berke, H.** *J. Organomet. Chem.* **1989,**
- **(105** 371, 311.
Kolobova, N. E.; Antonova, A. B.; Khitrova, O. M. J. Orga-
nomet. Chem. 1978, 146, C17.
Consiglio, G.; Schwab, R.; Morandini, F. J. Chem. Soc.,
Chem. Commun. 1988, 25.
Schilling, B. E. R.; Hoffmann, R.; Lichtenbe
- **(106;**
- **(107**
- **(108; Clark, G. R.; Hodgson, D. J.; Ne, M. M. P.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J.** *J. Chem. Soc, Chem. Commun.* **1988 1552**
- (109)
(110)
- (111) Kostic, N. M.; Fenske, R. F. *Organometallics* 1982, *1,* 974.
Werner, H.; Wolf, J.; Müller, G.; Krüger, C. *Angew. Chem.*
1984, 96, 421; *Angew. Chem., Int. Ed. Engl.* 1984, 23, 431.
Höhn, A.; Werner, H. *Angew. Chem.* 19
- **(112;** *Chem., Int. Ed. Engl.* **1986,** *25,* **737. Ioganson, A. A.; Antonova, A. B.; Trukhacheva, V. A.; Bur-makina, G. V.; Rubailo, A. L; Maksimov, N. G.; Kovalenko, S. V.; Deikhina, N. A.** *Izvest. Akad. Nauk. SSSR, Ser. Khim.*
- **(113** 1987, 56.
Lemos, M. A. N. D. A.; Pombeiro, A. J. L. J. Organomet.
- **(114;** Lemos, M. A. N. D. A.; Pombeiro, A. J. L. J. Organomet.
Chem. 1988, 356, C79.
Consiglio, G.; Bangerter, F.; Darpin, C.; Morandini, F.; Lucchini, V. Organometallics 1984, 3, 1446.
Morandini, F.; Consiglio, G.; Sironi, A.; M
- (115)
- (116)
(117)
- (118) Lukehart, C. M.; True, W. R. Organometallics 1988, 7, 2387.
Pombeiro, A. J. L.; Hills, A.; Hughes, D. L.; Richards, R. L.
J. Organomet. Chem. 1988, 352, C5.
Carvalho, M. F. N. N.; Henderson, R. A.; Pombeiro, A. J. L.;
Rich
-
- **(119 (120** *Chem.* **1988,** *340,* **161.**
- **(121 Werner, H.; Wolf, J.; ZoIk, R.; Schubert, U.** *Angew. Chem.*
- **(122 (123 (124**
-
- **(125;**
- **(126** 1983, 95, 1023; Angew. Chem., Int. Ed. Engl. 1983, 22, 981.
Iyer, R. S.; Selegue, J. P. J. Am. Chem. Soc. 1987, 109, 910.
Bruce, M. I.; Koutsantonis, G. A. Unpublished work.
Bell, R. A.; Chisholm, M. H. Inorg. Chem. 1977,
- **(127**
- **(128; Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Sizoy, V. F.; Nekrasov, Yu. S.** *Izvest. Akad. Nauk SSSR, Ser. Khim.* **1979, 2393.**
- **(129; Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Chechulina, I. N.; Batsanov, A. S.; Struchkov, Yu. T.** *J. Organomet.*
- **(130** *Chem.* **1982,** *238,* **223. Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Khitrova, O. M.; Batsanov, A. S.; Struchov, Yu. T.** *J. Organomet. Chem.*
- **(131**
- **(132**
- **(133**
- **(134;** 1984, 265, 271.

Newton, M. G.; Pantaleo, N. S.; King, R. B.; Diefenbach, S.

P. J. Chem. Soc., Chem. Commun. 1979, 55.

Antonova, A. B.; Kovalenko, S. V.; Korniets, E. D.; Ioganson,

A. A. *Izvest. Akad. Nauk SSSR*, Ser.
- **(135; (136;**
- **(137 Barrett, A. G. M.; Carpenter, N. E.** *Organometallics* **1987,***6,*
- **(138 2249. Weiss, K.; Fischer, E. O.; Muller, J.** *Chem. Ber.* **1974,** *107,*
- **(139; 3548. Barrett, A. G. M.; Brock, C. P.; Stuigess, M. A.** *Organometallics* **1985,** *4,* **1903.**
- HO; **Barrett, A. G. M.; Sturgess, M. A.** *Tetrahedron Lett.* **1986,** *27* **3811.**
- 141 **Barrett, A. G. M.; Sturgess, M. A.** *J. Org. Chem.* **1987,** *52,*
- 142 3940.
Barrett, A. G. M.; Mortier, J.; Sabat, M.; Sturgess, M. A.
Organometallics 1988, 7, 2553.
Berke, H.; Härter, P.; Huttner, G.; Zeolnai, L. *Z. Naturforsch.*
B 1981, *36*, 929.
- 143;
- 144;
- 145)
146)
- Gamble, A. S.; Birdwhistell, K. R.; Templeton, J. L. Or-
ganometallics 1988, 7, 1046.
Aumann, R.; Kuckert, E. Chem. Ber. 1987, 120, 1939.
Werner, H.; Kuckert, E. Chem. Ber. 1987, 120, 1939.
Werner, H.; Hohn, A.; Weinand, R
- 147)
148)
- 149;
- **1989,** *369,* **43.**
- **i5o:** (a) Buchwald, S. L.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105 , 5490. (b) Buchwald, S. L.; Grubbs, R. H. Unpublished work cited in footnote 14, ref 150a.
(a) Alt, H. G.; Engelhardt, H. E.; Steinlein, E. J. Organomet.
(a
- **i5i; Filippou, A. C.** *J. Organomet. Chem.* **1988, 355,139.**
- (152) (a) Katz, T. J.; Lee, S. J. *J. Am. Chem. Soc.* 1980, *102, 422.*
(b) Katz, T. J.; Ho, T. H.; Shih, N.-Y.; Ying, Y.-C.; Stuart, V.
<u>I.</u> W. *J. Am. Chem. Soc.* 1984, *106, 2659.*
- 153; **Thoi, H. H.; Ivin, K. J.; Rooney, J. J.** *J. Chem. Soc, Faraday Trans. 1* **1982,** *78,* **2227.**
- 154; **Parlier, A.; Rudler, H.** *J. Chem. Soc, Chem. Commun.* **1986,**
- 155; **514. Hills, A.; Hughes, D. L.; Kashef, N.; Richards, R. L.; Lemos, M. A. N. D. A.; Pombeiro, A. J. L.** *J. Organomet. Chem.* **1988,** *350,* **C4.**
- **156: Birk, R.; Grossmann, U.; Hund, H.-U.; Berke, H.** *J. Organo-met. Chem.* **1988, 345, 321. Rosenblum, M.** *J. Organomet. Chem.* **1986,** *300,* **191.**
- 157
- 158; **Samuels, S. B.; Berryhill, S. R.; Rosenblum, M.** *J. Organo-***Bates, D. J.; Rosenblum, M.; Samuels, S. B.** *J. Organomet. Chem.* **1981,** *209,* **C55.**
-
- 160 *met. Chem.* **1979,***166,* **C9. Bucheister, A.; Klemarczyk, P.; Rosenblum, M.** *Organo-metallics* **1982,***1,* **1679.**
- 161 **Mahe, R.; Dixneuf, P. H.; Lecolier, S.** *Tetrahedron Lett.* **1986,** *27,* **6333.**
- 162; **Ouzzine, K.; Le Bozec, H.; Dixneuf, P. H.** *J. Organomet.*
- *Chem.* **1986,** *317,* **C25. Degani, Y.; Willner, I.** *J. Chem. Soc, Chem. Commun.* **1985, 648.**
- 164 **Gotzig, J.; Otto, H.; Werner, H.** *J. Organomet. Chem.* **1985,**
- **165:** *287,* **247. Jia, G.; Rheingold, A. L.; Meek, D. W.** *Organometallics* **1989,** *8,***1378.**
- 166; (a) Liebeskind, L. S.; Chidambaram, R. J. Am. Chem. Soc.
1987, 109, 5025. (b) Liebeskind, L. S.; Chidambaram, R.;
Mitchell, D.; Foster, B. S. Pure Appl. Chem. 1988, 60, 27.
Moran, G.; Green, M.; Orpen, A. G. J. Organomet.
- 167
- 168; **Chiusoli, G. P.; Salerno, G.; Giroldini, W.; Pallini, L.** *J. Or-ganomet. Chem.* **1981,** *219,* **C16. Iyoda, M.; Sakaitani, M.; Miyazaki, T.; Oda, M.** *Chem. Lett.*
- 169; **1984, 2005.**
- 170) 11)
- Iyoda, M.; Mizusuna, A.; Oda, M. *Chem. Lett.* 1988, 149.
(a) Iyoda, M.; Tanaka, S.; Nose, M.; Oda, M. J. *Chem. Soc.*,
Chem. Commun. 1983, 1058. (b) Iyoda, M.; Tanaka, S.;
Otani, H.; Nose, M.; Oda, M. J. *Am. Chem. Soc.* **8494.**
- 172; **Iyoda, M.; Mizusuna, A.; Kurata, H.; Oda, M.** *J. Chem. Soc, Chem. Commun.* **1989,1690.**
- 173; **Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N.** *J. Am. Chem. Soc* **1986,***108,* **5371.**
- 174 **Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N.** *J. Chem. Soc, Chem. Commun.* **1986, 1794. Schafer, V.; Pritzkow, H.; Siebert, W.** *Angew. Chem.* **1988,**
- **175:**
- **176:** 100, 271; Angew. Chem., Int. Ed. Engl. 1988, 27, 299.
Doherty, N. M.; Elschenbroich, C.; Kneuper, H.-J.; Knox, S.
A. R. J. Chem. Soc., Chem. Commun. 1985, 170.
- **177:**
- 178; Mercer, R. J.; Green, M.; Orpen, A. G. J. Chem. Soc., Chem.
Commun. 1986, 567.
Froom, S. F. T.; Green, M.; Mercer, R. J.; Nagle, K. R.; Or-
pen, A. G.; Schwiegk, S. J. Chem. Soc., Chem. Commun.
1986, 1666.
- 179; Conole, G. C.; Froom, S. F. T.; Green, M.; McPartlin, M. J.
Chem. Soc., Chem. Commun. 1989, 92.
Conole, G.; Hill, K. A.; McPartlin, M.; Mays, M. J.; Morris,
M. J. J. Chem. Soc., Chem. Commun. 1989, 688.
Alt, H. G.; Engelha
- i8o;
- 181
- 182

Organometallic Chemistry of Vinylidene and Carbenes

- (183) 1984, 262, 39. (225)
Alonso, F. J. G.; Sanz, M. G.; Riera, V.; Ruiz, M. A.; Tirip- (225)
icchio, A.; Tiripicchio-Camellini, M. *Angew. Chem.* 1988, *100,* 1224; *Angew. Chem., Int. Ed. Engl.* 1988, 27, 1167. (200, 1999, 20
- (184)
- (185) 3024. (226; Krogh-Jespersen, K.; Cremer, D.; Poppinger, D.; Pople, J. A.; Schleyer, P. v. R.; Chandrasekhar, J. *J. Am. Chem. Soc.* **1979,**
- (186) *101,*4843. (227 Schulze, W.; Seppelt, K. *Inorg. Chem.* **1988,** *27,* 3872. Birk, R.; Berke, H.; Huttner, G.; Zsolnai, L. *Chem. her.* **1988,** (228
- \mathcal{L} 121, 471.
(a) Boncella, J. M.; Green, M. L. H.; O'Hare, D. J. Chem.
Soc., Chem. Commun. 1986, 618. (b) Boncella, J. M.; Green, (229)
M. L. H. J. Organomet. Chem. 1987, 325, 217.
Mott, G. N.; Carty, A. J. Inorg. Chem. 1983,
- (189;
- (190
- (191
- (192 7, 1115.
Carty, A. J.; Mott, G. N.; Taylor, N. J.; Ferguson, G.; Khan, (232)
M. A.; Roberts, P. J. *Organomet. Chem.* 1978, 149, 345.
Carty, A. J.; Fyfe, C. A.; Lettinga, M.; Johnson, S.; Randall,
L. H. *Inorg. Chem.* 1989
- (193;
- (194 C39.
- (195; Churchill, M. R.; DeBoer, B. G.; Shapley, J. R.; Keister, J. B.
J. Am. Chem. Soc. 1976, 98, 2357.
Grist, N. J.; Hogarth, G.; Knox, S. A. R.; Lloyd, B. R.; Mor- (235)
ton, D. A. V.; Orpen, A. G. J. Chem. Soc.,
- (196) $1988, 673.$ (236)
- (197) Hogarth, G.; Knox, S. A. R; Lloyd, B. R.; Macpherson, K. A.; Morton, D. A. V.; Orpen, A. G. J. Chem. Soc., Chem. Com*mun.* 1988, 360.
- (198; Umland, H.; Behrens, U. *J. Organomet. Chem.* **1984,** *273,* (238; C39.
- (199) (2oo; p 1. (b) Nicholas, K. M. Ace. *Chem. Res.* **1987,** *20,* 207. Schreiber, S. L.; Klimas, M. T.; Sammakia, T. *J. Am. Chem.* (240; **(a)** Nicholas, K. M.; Nestle, M. O.; Seyferth, D. *Transition* (239; *Metal Organometallics;* Academic: New York, 1978; Vol. 2,
- (201 *Soc* **1987,***109,* 5749. Schreiber, S. L.; Sammakia, T.; Crowe, W. E. *J. Am. Chem.* (241
-
- **(202: (203:** *Soc.* **1986,***108,* 3128. (242 Young, D. A. *Inorg. Chem.* **1973,***12,* 482. **(a)** Jacobsen, E. N.; Bergman, R. G. *Organometallics* 1984, (243 3, 329. (b) Jacobsen, E. N.; Bergman, R. G. *J. Am. Chem.* (244
- **(204;** *Soc.* **1985,***107,* 2023. Al-Obaidi, Y. N.; Green, M.; White, N. D.; Taylor, G. E. *J.* (245 *Chem. Soc, Dalton Trans.* **1982,** 319.
- (205; Herrmann, W. A.; Weber, C. *J. Organomet. Chem.* **1985,***282,* (246 C31.
- (206; Herrmann, W. A.; Weber, C; Ziegler, M. L.; Serhadli, O. *J.* (247 *Organomet. Chem.* **1985,** *297,* 245.
- (207 Berry, D. H.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 7181. 7181. (249; Berry, D. H.; Eisenberg, R. *Organometallics* **1987,** *6,* 1796.
- (208; (209; Deraniyagala, S. P.; Grundy, K. R. *Organometallics* 1985,*4,* (250'
- (210) 424.
Werner, H.; Wolf, J.; Müller, G.; Krúger, C. *J. Organomet.* (251)
Chem. 1988, *342*, 381. (252)
- (211 Yamazaki, H.; Wakatsuki, Y. *J. Organomet. Chem.* **1984,***272,* (253
- (212; 251. Dickson, R. S.; Fallon, G. D.; McClure, F. L; Nesbit, R. J. *Organometallics* **1987,** *6,* 215. (254
- (213) Fontaine, X. L. R.; Higgins, S. J.; Shaw, B. L.; Thornton-Pett, M.; Yichang, W. *J. Chem. Soc, Dalton Trans.* **1987,** 1501. (255; Higgins, S. J.; Shaw, B. L. *J. Chem. Soc, Chem. Commun.*
- (214) **1986,** 1629.
- (215; Fontaine, X. L. R.; Higgins, S. J.; Shaw, B. L. *J. Chem. Soc,* (256 *Dalton Trans.* **1988,**1179. (257'
- (216 Davies, J. A.; Pinkerton, A. A.; Syed, R.; Vilmer, M. *J. Chem. Soc, Chem. Commun.* **1988,** 47. (258;
- (217 Afzal, D.; Lenhert, P. G.; Lukehart, C. M. *J. Am. Chem. Soc.*
-
- (218)
(219) 1984, *106*, 3050.
Afzal, D.; Lukehart, C. M. *Organometallics* 1987, 6, 546. (259)
Baralt, E.; Boudreaux, E. A.; Demas, J. N.; Lenhert, P. G.; Lukehart, C. M.; McPhail, A. T.; McPhail, D. R.; Myers, J. B., Jr.; Sacksteder, L.; True, W. R. *Organometallics* **1989,** *8,* (260 2417.
(220) Awang, M. R.; Jeffery, J. C.; Stone, F. G. A. J. Chem. Soc.,
- (220;
- (221
- **(222:**
- **(223:**
- **(224;** Awang, M. R.; Jeffery, J. C.; Stone, F. G. A. J. Chem. Soc., (261)

Dalton Trans. 1983, 2091.

For W, see: Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S. (262)

For W, see: Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S. (2
- (a) Antonova, A. B.; Johansson, A. A.; Kovalenko, S. V.;
Deykhina, N. A.; Korniets, E. D. Zh. Obshch. Khim. 1988, 58,
1173. (b) Antonova, A. B.; Kovalenko, S. V.; Johansson, A.
A.; Deykhina, N. A.; Korniyets, E. D.; Struch
- Antonova, A. B.; Kovalenko, S. V.; Korniyets, E. D.; Petrov-sky, P. V.; Gulbis, G. R.; Johansson, A. A. *Inorg. Chim. Acta* **1985,** *96,* 1.
-
- Berry, M.; Howard, J. A. K.; Stone, F. G. A. J. Chem. Soc.,
Dalton Trans. 1980, 1601.
Antonova, A. B.; Kovalenko, S. V.; Korniyets, E. D.; Petrov-
Artonova, A. B.; Kovalenko, S. V.; Korniyets, E. D.; Petrov-
sky, P. V.; Jo
-
-
-
- 1986, 306, C13.
(a) Dawkins, G. M.; Green, M.; Jeffery, J. C.; Stone, F. G. A.
J. Chem. Soc., Chem. Commun. 1980, 1120. (b) Dawkins, G.
M.; Green, M.; Jeffery, J. C.; Sambale, C.; Stone, F. G. A. J.
Chem. Soc., Dalton Tran
- Kao, S. C; Liu, P. P. Y.; Pettit, R. *Organometallics* 1982, /, 911.
- (a) Casey, C. P.; Fagan, P. J. *J. Am. Chem. Soc* **1982,***104,* 4950. (b) Casey, C. P.; Meszaros, M. W.; Fagan, P. J.; BIy, R. K.; Marder, S. R.; Austin, E. A. *J. Am. Chem. Soc.* 1986, *108,* 4043.
- Casey, C. P.; Marder, S. R.; Fagan, P. J. *J. Am. Chem. Soc.* **1983** *105* 7197 Casey, C. P.; Fagan, P. J.; Miles, W. H.; Marder, S. R. *J. MoI.*
- *Catal.* **1983,** *21,*173.
- Casey, C. P.; Meszaros, M. W.; Marder, S. R.; Fagan, P. J. J.
Am. Chem. Soc. 1984, *106*, 3680.
Casey, C. P.; Meszaros, M. W.; Marder, S. R.; Bly, R. K.;
Fagan, P. J. *Organometallics* 1986, 5, 1873.
Casey, C. P.; Meszar
-
- M.; Miles, W. H.; Gohdes, M. A. *Organometallics* **1986,** 5, 1879.
- Casey, C. P.; Marder, S. R.; Adams, B. R. *J. Am. Chem. Soc.*
-
- 1985, *107*, 7700.
Casey, C. P.; Marder, S. R. *Organometallics* 1985, 4, 411.
Casey, C. P.; Konings, M. S.; Marder, S. R. J. *Organomet.
Chem. 1988, 345, 125.*
Casey, C. P.; Woo, L. K. J. *Organomet. Chem.* 1987, 328, 161
-
- Casey, C. P.; Konings, M. S.; Palermo, R. E.; Colborn, R. E. *J. Am. Chem. Soc.* **1985,***107,* 5296. Casey, C. P.; Austin, E. A.; Rheingold, A. L. *Organometallics*
- **1987,** *6,* 2157.
- Casey, C. P.; Crocker, M.; Vosejpka, P. C; Rheingold, A. L. *Organometallics* **1989,** *8,* 278.
- Casey, C. P.; Crocker, M.; Vosejpka, P. C; Fagan, P. J.;
- Marder, S. R.; Gohdes, M. A. *Organometallics* 1988, 7, 670. Jacobson, D. B. *J. Am. Chem. Soc.* **1989,** *111,* 1626. Hoel, E. L.; Ansell, G. B.; Leta, S. *Organometallics* **1984,** 3,
- 1633. Hoel, E. L.; Ansell, G. B.; Leta, S. *Organometallics* 1986, *5,*
-
- 585. Hoel, E. *Organometallics* **1986, 5,** 587.
- McCandlish, L. *J. Catal.* 1983, *83,* 362.
- (a) Casey, C. P.; Austin, E. A. *Organometallics* **1986,**5, 584. (b) Casey, C. P.; Austin, E. A. *J. Am. Chem. Soc.* **1988,***110,* 7106.
- Casey, C. P.; Miles, W. H.; Fagan, P. J.; Haller, K. J. *Organometallics* **1985,** *4,* 559.
- (a) Etienne, M.; Guerchais, J. E. *J. Organomet. Chem.* **1986,** *314,* C81. (b) Etienne, M.; Guerchais, J. E. *J. Chem. Soc, Dalton Trans.* **1989,** 2187.
- Etienne, M.; Toupet, L. *J. Organomet. Chem.* 1988,*344,* C19. **Etienne, M.;** Toupet, L. *J. Chem. Soc, Chem. Commun.*
- **1989,**1110. (a) Casey, C. P.; Konings, M. S.; Haller, K. J. *J. Organomet. Chem.* **1986,** *301,* C55. (b) Casey, C. P.; Konings, M. S.; Marder, S. R. *Polyhedron* 1988, 7, 881.
- Colborn, R. E.; Davies, D. L.; Dyke, A. F.; Endesfelder, A.; Knox, S. A. R.; Orpen, A. G.; Plaas, D. *J. Chem. Soc, Dalton Trans.* **1983,** 2661.
- Knox, S. A. R.; Yates, M. I.; Collins, F. M.; Fildes, M. J.
Organomet. Synth. 1988, 4, 216–226.
Lewandos, G. S.; Doherty, N. M.; Knox, S. A. R.; Macpher.
som, K. A.; Orpen, A. G. *Polyhedron* 1988, 7, 837.
Fildes, M. J.;
-
- 8241.
-
- Casey, C. P.; Marder, S. R.; Rheingold, A. L. *Organometallics* **1985,** *4,* 762. Casey, C. P.; Konings, M. S.; Marder, S. R.; Takezawa, Y. *J. Organomet. Chem.* **1988,** 358, 347.
- Ewing, P.; Farrugia, L. J. *J. Organomet. Chem.* 1989, *373,* 259.

256 Chemical Reviews, 1991, Vol. 91, No. 2

-
- (267) Richmond, M. G.; Kochi, J. K. *Oreanometallics* 1987,*6,*777. (268) Vites, J. C; Jacobsen, G.; Dutta, T. K.; Fehlner, T. P. *J. Am. Chem. Soc.* **1985,***107,* 5563.
- (269) Dutta, T. K.; Vites, J. C; Fehlner, T. P. *Organometallics*
- 1986, *5,* 385. (270) Dutta, T. K.; Meng, X.; Vites, J. C; Fehlner, T. P. *Oreano-metallics* 1987, 6, 2191.
- (271) Lourdichi, M.; Mathieu, R. *Nouv. J. Chim.* 1982, 6, 231.
-
- (272) Lourdichi, M.; Mathieu, R. Organometallics 1986, 5, 2067.
(273) Suades, J.; Mathieu, R. J. Organomet. Chem. 1986, 312, 335.
(274) Suades, J.; Dahan, F.; Mathieu, R. Organometallics 1989, 8,
842.
-
-
- (275) Aradi, A. A.; Grevels, F.-W.; Krüger, C.; Raabe, E. Organo-
metallics 1988, 7, 812.
(276) Grevels, F.·W.; Schulz, D.; Koerner von Gustorf, E.; Bunbury,
D. St. P. J. Organomet. Chem. 1975, 91, 341.
(277) Seyferth, D.;
- (278) Fogg, D. E.; MacLaughlin, S. A.; Kwek, K.; Cherkas, A. A.; Taylor, N. J.; Carty, A. J. *J. Organomet. Chem.* 1988, 352, C17.
- (279) Aumann, R.; Heinen, H.; Kruger, C; Goddard, R. *Chem. Ber.* 1986,*119,* 401.
- (280) Sailor, M. J.; Brock, C. P.; Shriver, D. F. *J. Am. Chem. Soc.* 1987, *109,* 6015.
- (281) Sailor, M. J.; Sabat, M.; Shriver, D. F. *Organometallics* 1988, 7, 728.
- (282) Sailor, M. J.; Shriver, D. F. *Polyhedron* 1988, 7, 955.
- (283) Dodsworth, R.; Dutton, T.; Johnson, B. F. G.; Lewis, J.;
Raithby, P. R. Acta Crystallogr. 1989, 45, 707.
(284) Connelly, N. G.; Forrow, N. J.; Knox, S. A. R.; Macpherson,
K. A.; Orpen, A. G. J. Chem. Soc., Chem. Comm
-
- (285) Bruce, M. I.; Williams, M. L.; Skelton, B. W.; White, A. H. *J. Chem. Soc, Chem. Commun.* **1985,** 744; *J. Organomet. Chem.* 1989, *369,* 393.
- (286) Bruce, M. I.; Liddell, M. J.; Tiekink, E. R. T. *J. Organomet. Chem.* **1990,** *391,* 81.
- (287) Deeming, A. J.; Underhill, M. *J. Chem. Soc, Dalton Trans.* 1974, 1415.
- (288) Deeming, A. J.; Hasso, S.; Underhill, M. *J. Chem. Soc, Dalton Trans.* **1975,** 1614.
- (289) Aime, S.; Botta, M.; Gobetto, R.; Osella, D. *Inorg. Chem.* 1987, *26,* 2551.
- (290) Boyar, E.; Deeming, A. J.; Kabir, S. E. *J. Chem. Soc, Chem. Commun.* 1986, 577.
- (291) Boyar, E.; Deeming, A. J.; Felix, M. S. B.; Kabir, S. E.; Ada-tia, T.; Bhusate, R.; McPartlin, M.; Powell, H. R. *J. Chem. Soc, Dalton Trans.* **1989,** 5.
- (292) Boyar, E.; Deeming, A. J.; Arce, A. J.; de Sanctis, Y. *J. Or-*
- *f anomet. Chem.* **1984,** *276,* C45. Ienrick, K.; McPartlin, M.; Deeming, A. J.; Hasso, S.; Man-ning, **P.** *J. Chem. Soc, Dalton Trans.* **1982,** 899.
- (294) Chi, Y.; Chen, B.-F.; Wang, S.-L.; Chiang, R.-K.; Hwang, L.-S. *J. Organomet. Chem.* **1989,** *377,* C59.
- (295) Green, M.; Orpen, A. G.; Schaverien, C. J. *J. Chem. Soc, Chem. Commun.* **1984,** 37; *J. Chem. Soc, Dalton Trans.* 1989, 1333.
- (296) (a) Koridze, A. A.; Kizas, O. A.; Kolobova, N. E.; Petrovskii, P. V.; Fedin, E. I. *J. Organomet. Chem.* 1984, 265, C33. (b) Batsanov, A. S.; Andrianov, V. G.; Struchkov, Yu. T.; Koridze, A. A.; Kizas, O. A.; Kolobova, N. E. *J. Organomet. Chem.* 1987, *329,* 401.
- (297) Holmgren, J. S.; Shapley, J. R.; Belmonte, P. A. *J. Organo-met. Chem.* **1985,** *284, Cb.*
- (298) Antonova, A. B.; Kovalenko, S. V.; Komiets, E. D.; Efremova, I. Yu.; Ioganson, A. A.; Gubin, S. P. *Izvest. Akad. Nauk SSSR, Ser. Khim.* **1984,** 1146.
- (299) Antonova, A. B.; Kovalenko, S. V.; Komiyets, E. D.; Jo-hansson, A. A.; Struchkov, Yu. T.; Yanovsky, A. I. *J. Orga-nomet. Chem.* 1984, *267,* 299.
- (300) Edidin, R. T.; Norton, J. R.; Mislow, K. *Organometallics* 1982,*1,* 561.
- (301) Schilling, B. E. R.; Hoffmann, R. *J. Am. Chem. Soc* 1979, *101,* 3456.
- (302) D'Agostino, M. F.; McGlinchey, M. J. *Polyhedron* 1988, 7, 807.
- (303) Rashidi, M.; Puddephatt, R. J. *J. Am. Chem. Soc.* 1986,*108,*
-
- (304) Rashidi, M.; Puddephatt, R. J. Organometallics 1988, 7, 1636.

(305) Jeffery, J. C.; Parrott, M. J.; Pyell, U.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1988, 1121.

(306) Delgado, E.; Jeffery, J. C.; Stone, F.
-
-
-
-
-
- (312) (a) Bernhardt, W.; Vahrenkamp, H. Angew. Chem. 1984, 96,
139; Angew. Chem., Int. Ed. Engl. 1984, 23, 141. (b) Roland,
E.; Bernhardt, W.; Vahrenkamp, H. Chem. Ber. 1985, 118, 2858.
- (313) Bruce, M. I.; Koutsantonis, G. A.; Tiekink, E. R. T. *J. Organomet. Chem.,* in press. (314) Bruce, M. I.; Horn, E.; bin Shawkataly, O.; Snow, M. R. *J.*
- *Organomet. Chem.* **1985,** *280,* 289.
-
- (315) Aime, S.; Gervasio, G.; Milone, L.; Sappa, E.; Francini-Angela, M. *Inorg. Chim. Acta* 1978, 26, 223.
(316) von Schnering, C.; Albiez, T.; Bernhardt, W.; Vahrenkamp, H. *Angew. Chem.* 1986, 98, 474; *Angew. Chem., In*
- (317) Antonova, A. B.; Kovalenko, S. V.; Deikhina, N. A.; Komiets, E. D.; Petrovskii, P. V.; Iohansson, A. A. *Izvest. Akad. Nauk SSSR, Ser. Khim.* **1987,** 2827.
- (318) Deeming, A. J.; Underhill, M. *J. Chem. Soc, Chem. Com-mun.* 1973, 277. (319) Bernhardt, W.; Schacht, H.-T.; Vahrenkamp, H. *Z. Natur-forsch. B* **1989,** *44,* 1060.
-
-
-
- (320) Bantel, H.; Bernhardt, W.; Powell, A. K.; Vahrenkamp, H.

Chem. Ber. 1988, 121, 1247.

(321) Seyferth, D. Adv. Organomet. Chem. 1976, 14, 97.

(322) Albiez, T.; Vahrenkamp, H. Angew. Chem. 1987, 99, 561;

Angew. Chem
- *mun.* 1985, 759.
- (324) Davis, J. H.; Beno, M. A.; Williams, J. M.; Zimmie, J.; Ta-chikawa, M.; Muetterties, E. L. *Proc Natl. Acad. Sci. U.S.A.* 1981, *78,* 668.
- (325) Bradley, J. S. *Phil. Trans. R. Soc. Lond. A* 1982, *308,* 103. (326) Adams, R. D.; Wang, S. *Organometallics* 1985, *4,*1902. (327) Farrar, D. H.; John, G. R.; Johnson, B. F. G.; Lewis, J.;
-
- Raithby, P. R.; Rosales, M. J. *J. Chem. Soc, Chem. Commun.* 1981, 886.
- (328) Shaposhnikova, A. D.; Kamalov, G. L.; Stadnichenko, R. A.; Pasynskii, A. A.; Eremenko, I. L.; Struchkov, Yu. T.; Yanov-sky, A. I.; Petrovskii, P. V. *J. Organomet. Chem.* 1989, *378,* 67.
-
-
- (329) Attali, S.; Mathieu, R. J. Organomet. Chem. 1985, 291, 205.
(330) Marchino, M. L. N.; Sappa, E.; Lanfredi, A. M. M.; Tiripic-
chio, A. J. Chem. Soc., Dalton Trans. 1984, 1541.
(331) Lanfranchi, M.; Tiripicchio, A.; T
- (332) Castiglioni, M.; Giordano, R.; Sappa, E. *J. Organomet. Chem.* 1984, *275,* 1.
- (333) (a) Kovalenko, S. V.; Antonova, A. B.; Deikhina, N. A.; Ioganson, A. A.; Korniets, E. D.; Ginsburg, A. G.; Yanovski, A. I.; Slovokhotov, Yu. L.; Struchkov, Yu. V. 2028t. Akad. Nauk SSR, Ser. Khim. 1987, 2864. (b) Ant Ginzburg, A. G.; Petrovskii, P. V. *Metalloorg. Khim.* 1989, 2, 1090.
-
- (334) Ewing, P.; Farrugia, L. J. *Organometallics* 1989, *8,* 1246. (335) Berke, H.; Harter, P.; Huttner, G.; Zsolnai, L. *Chem. Ber.* 1982 *115* 695.
-
- (336) Berke, H.' *Organomet. Synth.* 1986, *3,* 239. (337) Berke, H.; Harter, P.; Huttner, G.; Zsolnai, L. *Chem. Ber.* 1984,*117,* 3423.
- (338) Berke, H.; Grossmann, U.; Huttner, G.; Zsolnai, L. *Chem. Ber.* 1984,*117,* 3432. (339) Selegue, J. P. *Organometallics* 1982,*1,* 217. (340) Le Bozec, H.; Ouzzine, K.; Dixneuf, P. H. *J. Chem. Soc,*
-
- *Chem. Commun.* **1989,** 219.
- (341) Berke, H.; Huttner, G.; von Seyerle, J. *Z. Naturforsch. B* 1981, *36,* 1277.
- (342) Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Chechulina, **I.** N.; Derunov, V. V. *Izvest. Akad. Nauk SSSR, Ser. Khim.* 1982, 2632.
-
- (343) Froom, S. F. T.; Green, M.; Nagle, K. R.; Williams, D. J. J.
Chem. Soc., Chem. Commun. 1987, 1305.
(344) Silvestre, J.; Hoffmann, R. Helv. Chim. Acta 1985, 68, 1461.
(345) Horváth, I. T.; Pályi, G.; Markó, L.; Andret *Chem.* 1983, *22,* 1049.
- (346) Cooksey, C. J.; Deeming, A. J.; Rothwell, I. P. *J. Chem. Soc, Dalton Trans.* **1981,** 1718.
- (347) (a) Andrews, M. A.; Kaesz, H. D. J. Am. Chem. Soc. 1979,
101, 7238. (b) Andrews, M. A.; Buskirk, G. V.; Knobler, C.
B.; Kaesz, H. D. J. Am. Chem. Soc. 1979, 101, 7245. (c)
Andrews, M. A.; Knobler, C. B.; Kaesz, H. D.
- (348) Ibach, H.; Lehwald, S. *J. Vac. ScL Technol.* 1978, *15,* 407.
- (349) Ibach, H.; Hopster, H.; Sexton, B. *Appl. Surf. Sci.* 1977,*1,*
- 1. (350) Baro, A. M.; Ibach, H. *J. Chem. Phys.* 1981, *74,* 4194.
- (351) (a) Kesmodel, L. L.; Dubois, L. H.; Somorjai, G. A. *Chem. Phys. Lett.* **1978,***56,* 267; *J. Chem. Phys.* **1979,** *70,* 2180. (b) Koestner, R. J.; van Hove, M. A.; Somorjai, G. A. *Chem. Tech.* **1983,** *13,* 376; *J. Phys. Chem.* 1983, *87,* 203.
-
- (352) Demuth, J. E. *Surf. Sci.* 1979, *80,* 367; *84,* 315. (353) Wang, P.-K.; Slichter, C. P.; Sinfelt, J. H. *Phys. Rev. Lett.* 1984, *53,* 82.
-
- (354) Felter, T.; Weinberg, W. H. *Surf. Sci.* 1981,*103,* 265. (355) Megiris, C. E.; Berlowitz, P.; Butt, J. B.; Kung, H. H. *Surf.*
-
-
-
-
- Sci. 1985, 159, 184.

(356) Simonetta, M.; Gavezzotti, A. J. Mol. Struct. 1984, 107, 75.

(357) Kang, D. B.; Anderson, A. B. Surf. Sci. 1985, 155, 639.

(358) Silvestre, J.; Hoffmann, R. Langmuir 1985, 1, 621.

(359) Erley
- *Soc.* 1987,*109,* 4224. (362) Kasai, P. H. *J. Phys. Chem.* 1982, *86,* 4092. (363) Scheiner, A. C; Schaeffer, H. F., Ill *J. Am. Chem. Soc.* 1985,
-
-
- 101, 4451.

(364) Kasai, P. H.; McLeod, D., Jr.; Watanabe, T. J. Am. Chem.

Soc. 1977, 99, 3521.

(365) Trenary, M.; Casida, M. E.; Brooks, B. R.; Schaeffer, H. F.,

III J. Am. Chem. Soc. 1979, 101, 1638.

(366) Kline, E.
-
-

Chemlcal Reviews, 1991, Vol. 91, No. 2 **257**

skaya, N. M.; Bernshtein, V. G.; Schmidt, F. K. *Kinet. Ratal.*

- 1984, *25,* 1000. (368) Chenier, J. H. B.; Howard, J. A.; Mile, B.; Sutcliffe, R. *J. Am. Chem. Soc.* 1983, 705, 788.
- (369) Gill, D. S.; Green, M. *J. Chem. Soc, Chem. Commun.* 1981, 1037.
- (370) Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. *J. Chem. Soc, Dalton Trans.* 1982, 2203. (371) Bruce, M. L; Humphrey, M. G.; Snow, M. R.; Tiekink, E. R.
-
- T. J. Organomet. Chem. 1986, 314, 213.
(372) Hosain, M. B.; Hanlon, D. J.; Marten, D. F.; van der Helm,
D.; Dehmlow, E. V. Acta Crystallogr. B 1982, 38, 1457.
(373) Brun, P.; Dawkins, G. M.; Green, M.; Mills, R. M.; Salaun
- J.-Y.; Stone, F. G. A.; Woodward, P. *J. Chem. Soc, Dalton Trans.* 1983,1357. '
- (374) Sappa, E.; Tiripicchio, A.; Tiripicchio-Camellini, M. *Inorg. Chim. Acta* 1980, *41,* 11. (375) Czech, P. T.; Xe, X.-Q.; Fenske, R. F. *Organometallics* 1990,
- *9,* 2016.
- (376) Brahms, J. Cj Dailey, W. P. *J. Am. Chem. Soc.* 1990,*112,* 4046.
-
- (377) Desbois, M.-H.j Astruc, D. *New. J. Chem.* 1989,*13,* 595. (378) Gallo, M. M.; Hamilton, T. P.; Schaefer, H. F., Ill *J. Am. Chem. Soc.* 1990, *112,* 8714.