Transition-Metal Fluoro Compounds Containing Carbonyl, Phosphine, Arsine, and Stibine Ligands

NANCY M. DOHERTY*

Department of Chemistry, University of California, Irvine, California 92717

NORRIS W. HOFFMAN*

Department of Chemistry, University of South Alabama, Mobile, Alabama 36688

Received December 7, 1990 (Revised Manuscript Received February 15, 1991)

Contents

Ι.	Introduction	553
II.	Metal Carbonyl Fluoro Compounds	555
	A. Chromium, Molybdenum, and Tungsten	555
	B. Manganese and Rhenium	556
	C. Other Systems	556
III.	Fluoro Complexes of d ¹⁰ Metal Centers	556
IV.	Fluoro Complexes of d ⁸ Metal Centers	557
	A. Rhodium(I) and Iridium(I)	557
	B. Nickel(II), Palladium(II), and Platinum(II)	560
٧.	Fluoro Complexes of d ⁶ Metal Centers	561
	A. Chromium(0), Molybdenum(0), and	561
	Tungsten(0)	
	B. Manganese(I) and Rhenium(I)	561
	C. Iron(II), Ruthenium(II), and Osmium(II)	563
	D. Rhodium(III), Iridium(III), and Platinum(IV)	563
VI.	Fluoro Complexes of d ⁴ Metal Centers	564
	A. Molybdenum(II) and Tungsten(II)	564
	B. Other Systems	565
VII.	Fluoro Complexes of d ² Metal Centers	565
VIII.	Fluoro Complexes of d ⁰ Metal Centers	568
IX.	Odd-Electron Metal Fluoro Complexes	568
Χ.	Comments and Conclusions	570
XI.	Acknowledgments	570
XII.	Abbreviations	570
XIII.	References and Notes	570

I. Introduction

Many organotransition-metal compounds contain chloro, bromo, and iodo ligands. The reactivity of these species is dictated by the nature of the metal, the halide, and the ancillary ligands. Steric and electronic properties of these three components have been used extensively for homogeneous catalyst design.¹ Relatively unexplored, however, is the chemistry of organotransition-metal fluoro complexes, especially species containing low-valent metal centers. For example, a recent study of substitution of carbonyl ligands in [Rh₅(CO)₁₅]⁻ by monoanions employed chloride, bromide, iodide, and thiocyanate, but not fluoride.² Similarly, the kinetics of carbonyl substitution by phosphines in $WX(NO)(CO)_4$ were examined for X = Cl, Br, and I, but not for F.^o Several factors have contributed to the lack of study of organotransition-metal fluoro complexes. The principal one appears to be labeling of the combination of a low-valent metal center and a fluoride ion as inherently unstable by hard/soft acid/base rules, in spite of considerable experimental evidence suggesting the opposite when π -back-bonding ligands are also present.

Nancy M. Doherty was born and raised in Lynn, Massachusetts. She received her B.A. in chemistry from Dartmouth College in 1979 and her Ph.D. in chemistry from Caltech in 1984. After postdoctoral research at the University of Bristol in England, she joined the faculty of the University of Washington in 1985. In 1990, she became an Associate Professor of Chemistry at the University of California, Irvine. Her research interests are in the areas of synthetic and mechanistic inorganic and organometallic chemistry with emphasis on problems related to the preparation and study of new transition-metal containing polymers and materials. She is an Alfred P. Sloan Research Fellow for 1990–92.

Norris W. Hoffman is Assistant Professor of Chemistry at the University of South Alabama. He received his B.S. from the University of Florida in 1967 and his Ph.D. in inorganic chemistry at Stanford University in 1973. He did postdoctoral research at Max-Planck-Institut für Kohlenforschung in Mühleim/Ruhr and at the University of Illinois at Urbana and held research positions with Pfizer, Inc., J. T. Baker Chemical Company, and Union Carbide before returning to academia. His current research interests lie in low-valent d transition-metal fluoro complexes and stereoelectronic effects of anionic ligands in reactivity of low-valent d transition-metal complexes.

The properties of the halogens which are important in considering their bonding to metal centers are listed

TABLE I. Properties of the Halogens

halogen	ionic radius, Ū	covalent radius, Ū	electro- negativity ^a	cone angle ⁶
F	1.36	0.709	3.98	92
Cl	1.81	0.994	3.16	102
Br	1.95	1.142	2.96	105
I	2.16	1.333	2.66	107

in Table I.⁴ The monoanion of fluorine, the most electronegative element in the periodic table, is small and only weakly polarizable, and is therefore considered a hard base in the Pearson system.⁵ Chlorine is of lower electronegativity and the chloride ion larger and of intermediate polarizability. This trend continues for bromide and iodide. Overall, chloride and bromide are considered borderline bases and the large and easily polarized iodide ion, a soft base.

Many important organotransition-metal systems contain low-valent metal centers and considerable loosely held electron density, so these are weakly polarizing cations and are considered soft acids.⁶ The Pearson rule-of-thumb predicts that in solution soft acids form more stable complexes with soft bases than with hard bases. That criterion implies on purely electronic grounds that halide preference in solution by low-valent organometallics should follow the trend $F^ < Cl^- < Br^- < I^-$. Reinforcing the expectation of relatively weak metal-fluoride bonding in organometallic systems are reports of rhodium(I) and iridium(I) compounds in which coordinated fluoride can be replaced by chloride, bromide, or iodide by using the sodium salt, or even the perchlorate ion (section IV).

Other factors contributing to lack of study of organometallic fluoro compounds arise principally from the dearth of convenient ways to introduce fluoro ligands. Most starting materials used for synthesizing organometallics are more readily available and more easily handled as chloro or bromo derivatives, particularly given the propensity of fluoride systems to etch glassware. The difficulties of working with elemental fluorine and hydrogen fluoride⁷ are major deterrents to extending reactions readily performed with the heavier halogens and hydrogen halides to F_2 and HF. Furthermore, although the challenges of working with F_2 , HF, and MF, can be surmounted by available experimental apparatus, exerting control over the reactivity of these species remains an issue (see section II). The tenacity with which fluoride reagents hold onto water and other protic reagents due to strong hydrogen bonding⁸ makes the preparation of clean fluoride reagents difficult.⁹⁻¹¹ This can lead to the isolation of transition-metal complexes containing hydroxide¹² or bifluoride¹³ instead of the desired fluoride.

In spite of these many obstacles, there are, in fact, a number of organotransition-metal fluoro compounds scattered throughout the literature.¹⁴ These include high-valent cyclopentadienyl fluoro derivatives,¹⁵ metal carbonyl fluorides, and fluoro compounds containing one or more carbon-bound groups supported by ancillary phosphine ligands. The subject of this review is transition-metal fluoro compounds containing carbonyl, phosphine, arsine, and stibine ligands. This classification includes a great majority of known low-valent metal fluoro derivatives, as well as a variety of highvalent metal fluoro complexes. It should be noted that many of the compounds in this review do not fit the strict definition of organometallics because they do not contain metal-carbon bonds. Nonetheless, most are closely related to important organometallic systems (e.g., $RhF(PPh_3)_3$ vs $RhF(CO)(PPh_3)_2$).

More than two hundred compounds reported in the literature available through the end of 1990 are covered by the title subject. These are listed in Tables II–IX organized by d^n configuration, with the exception of the carbonyl fluorides, $MF_x(CO)_y$, which are discussed separately. Literature formulations are presented in the tables, except where convincing subsequent evidence has shown earlier descriptions to be incorrect. It should be noted that the level of certainty in characterization of metal fluoro compounds varies considerably. Perusal of the literature also reveals a general incompleteness of spectral data reported for metal fluoro complexes.

The characterization data unique to metal fluoro complexes, M-F bond lengths and ¹⁹F NMR spectra, are summarized in Tables X and XI. For the compounds which have been the subject of X-ray crystallographic studies, terminal M-F distances can be seen to span a relatively broad range from 1.88 to 2.21 Å (Table X). ¹⁹F NMR data have been reported for fewer than a quarter of the compounds described in this review. The ¹⁹F chemical shifts for the fluoro ligands are presented in Table XI, along with associated ³¹P chemical shifts and P-F coupling constants if reported. We have attempted to place the ¹⁹F NMR data on a single scale with positive chemical shift values downfield relative to CFCl₃ at δ 0; similarly, we have converted the ³¹P NMR data to a single chemical shift scale.¹⁶ No attempt will be made here to draw conclusions from the varied data reported in the literature. In several instances, lack of observable ¹⁹F NMR signals for metal fluoro complexes has been noted; however the origin of this phenomenon is not clear.

Because one of the major obstacles to the study of metal fluoro derivatives is their preparation, Tables II-IX list the starting material plus reagent combinations which yield these compounds. As can be seen from the compilations, the syntheses of many metal fluorides involve halide metathesis. Other common methods include addition of HF and oxidation of metal complexes by fluorinating agents including formyl fluoride, xenon difluoride, and sulfur tetrafluoride. Many of the reported fluorides are unexpected products of F^- abstraction from polyfluoro anions or organic ligands. Additionally, many of the compounds listed in Tables III-X are prepared from other metal fluorides found in these tables by simple ligand substitution or oxidative-addition reactions.

Although the number of fluoro derivatives included in the title subject is fairly large, many of the compounds have only a single literature citation, principally focused on preparation and identification. There are relatively few reports describing the chemical reactivity of these species. This is surprising because the combination of a soft low-valent transition-metal center and a hard fluoride ion suggests the potential for interesting chemistry as has been observed for other soft metal/ hard ligand combinations.¹⁷ Our interests in metal fluoro compounds are directed at developing a better understanding of their reactivity both for comparison

TABLE II. Metal Carbonyl Fluoro Compounds

	starting material	reagent(s)	refs
$[MF(CO)_{r}]^{*}$: M = Cr. Mo. W	Cr(CO)	KF. dibenzo-18-crown-6	29
[Mo(CO)	KF or NeBF.	30
	W(CO).	KF dibenzo-18-crown-6	31
	$M(CO)_6$ $M(CO)_6$ $M = Cr W$	NFt.F	31
	$M(CO)_6$, $M = C_1$, W	DDNE	20
	$M(CO)_6$, $M = Cr, W$		20
	$[W_2(CO)_{10}]^-$; $W = Cr, W$	Agr N-F	02 05
$MOF_2(CU)_3$			20
$MF_{2}(CO)_{4}; M = MO, W$	$MCl_2(CO)_4; M = MO, W$	HF	51
$MoF_3(CO)_3$	$MoF_2(CO)_4$	XeF ₂	51
$MoF_4(CO)_2$	Mo(CO) ₆	Mor ₆	50
MoF ₄ (CO) ₃	MoF ₂ (CO) ₄	XeF ₂	51
$[M_2F_3(CO)_6]^{3-}; M = Cr, Mo, W$	$M(CO)_6$; M = Cr, Mo, W	NMe₄F	33
MnF ₃ (CO) ₃	$MnBr(CO)_{\delta}$	AgF	45
	$Mn(OClO_3)(CO)_5$	NEt ₄ F	46
$[Mn_{9}F(CO)_{0}]^{-}$	$Mn_2(CO)_{10}$	KF, dibenzo-18-crown-6	52
Mn.F.(CO).	MnBr(CO)s	AgF	45
$Mn_{e}(\mu-F)(\mu-OEt)_{e}(CO)_{e}$	Mn _e (µ-OEt) _e (CO) _e	BF.	53
$Mn_{4}(\mu - F)_{4}(\mu - OH)_{4} = (CO)_{16}; x = 1, 2, 3$	MnX(CO): X = CL Br	TIF or AgF	12
$ReF(CO)_{a} = [Re(u-F)(CO)_{a}]_{a}$	ReBr(CO).	AgF	43.44
$R_{0}F(CO)_{2} = [IU(u-1)(UO)_{0}]_{4}$	$[Be F(CO)_{-1}]^+$	MeCN	42
Iter (CO)g	$\mathbf{P}_{\mathbf{n}}$	HF	35 30
	Rechools Re (CO)	BaF or YaF	35
$\mathbf{D}_{\mathbf{F}}\mathbf{F}(\mathbf{OO})$	$Re_2(CO)_{10}$	Var	41
$\operatorname{Rer}_{2}(\operatorname{CO})_{3} = \operatorname{ID}_{2}(\operatorname{CO})_{1}\operatorname{ID}_{2}\operatorname{E}_{1}$	$Re_2(CO)_{10}$		41
$\operatorname{Rer}_{3}(\operatorname{CO})_{3} = [\operatorname{Re}(\operatorname{CO})_{6}][\operatorname{Rer}_{6}]$	$[\mathbf{Re}(\mathbf{CO})_{5}](\mu - \mathbf{r})(\mathbf{Rer}_{5})$		20
D D (00)	$\operatorname{Re}_2(\operatorname{CO})_{10}$		20
$\operatorname{ReF}_{3}(\operatorname{CO})_{3}$	$\operatorname{Re}_2(\operatorname{CO})_{10}$	Ref ₆	35, 36
	ReF(CO) ₅	Xer ₂	35
$[\operatorname{Re}_{2}(\mu-F)(\operatorname{CO})_{10}]^{+}$	ReMe(CO) ₅	$[CPh_3][PF_6]$ or HPF_6	42
$\operatorname{Re}_{2}F_{6}(\operatorname{CO})_{5} = [\operatorname{Re}(\operatorname{CO})_{5}](\mu - F)(\operatorname{Re}F_{5})$	$\operatorname{Re}_2(\operatorname{CO})_{10}$	ReF ₆	37, 40
	$\operatorname{Re}_2(\operatorname{CO})_{10}$	XeF ₂	39
$Re_{3}F_{11}(CO)_{6} = [Re(CO)_{6}][Re_{2}F_{11}]$	$\operatorname{Re}_2(\operatorname{CO})_{10}$	ReF ₆	26, 37, 38
$RuF_{2}(CO)_{3} = [Re(\mu - F)F(CO)_{3}]_{4}$	$Ru_2F_7(CO)_2$	CO	47
	$Ru_{s}(CO)_{12}$	XeF ₂	27
$RuF_{a}(CO)_{a}$	$Ru_{3}(CO)_{12}$	XeF_2 or F_2	27
$Ru_{2}F_{7}(CO)_{2}$	RuFs	co	28
$\operatorname{Ru}_{2}F_{7}(\operatorname{CO})_{e} = [\operatorname{Ru}F(\operatorname{CO})_{e}]_{e}(\mu - F)_{e}(\operatorname{Ru}F_{e})_{e}$	RuFs	CO	27
	Ru _e (CO) ₁₀	XeF.	27
[Ru-FC(CO),]	Ru _r C(CO),	NEL F	54
RhF _a (CO) _a	RhF.	CO	48
IrF.(CO)	IrF.	čo	49
$I_{2}(CO)_{2}$ $I_{2}F_{2}(CO)_{2}$	IPF-	čõ	40
			70
h that of the heavier halide derivatives	¹⁸⁻²⁰ and for SCHEME I	[
of metal fluoride chemistry to educat	age in syn.		_
tic schemes 20-23 The number of this	ABU III BYII-	M(CO) ₆ KF or PPNF [M(F)(CO) ₅] [•]
suc schemes. " The purpose of this	review 18 to		

with that of the heavier halide derivatives¹⁸⁻²⁰ and for use of metal fluoride chemistry to advantage in synthetic schemes.²⁰⁻²³ The purpose of this review is to provide a basis for ourselves and others to discuss and understand the chemistry of metal fluoro compounds and to extend these studies to other organometallic systems.

II. Metal Carbony' Fluoro Compounds

The class of low-valent metal fluoro compounds first approached in any systematic way was that of metal carbonyl fluorides. Reported examples of these compounds are presented in Table II along with their methods of preparation: a subset has been reviewed by Bruce and Holloway and presented along with their scheme for predicting the stable building blocks of metal carbonyl fluorides.²⁴ The formulas given in Table II are empirical compositions as they appear in the literature and are based primarily on elemental analyses. In the absence of single-crystal X-ray structural determination, unambiguous assignment of structure to most $MF_{r}(CO)_{v}$ compounds is difficult: their infrared and mass spectra are frequently consistent with more than one formulation, and ¹⁹F and ¹³C NMR spectroscopy have not been applied to any of these systems. In some cases, the composition of products reported in early papers has been brought into question in more recent studies;^{12,25-28} the formulations best supported by the evidence available in the literature are presented here.

M = Cr. Mo. W

AaF

[M2(CO)10]2-

A. Chromium, Molybdenum, and Tungsten

NMe₄F

 $[M_2(F)_3(CO)_6]^3$

A relatively straightforward series of $MF_{x}(CO)_{y}$ compounds are the fluoropentacarbonyl anions of chromium, molybdenum, and tungsten, $[MF(CO)_5]^-$ (Scheme I).²⁹⁻³² These are prepared by reactions of the fluoride salts KF, NEt₄F, or (PPN)F with the parent hexacarbonyls (M = Cr, Mo, W)²⁹⁻³² or by addition of silver fluoride to the anionic dimers $[M_2(CO)_{10}]^{2-}$ (M = Cr, W).³² In the latter reaction, silver fluoride apparently acts both as a source of the fluoro ligand and as an oxidizing agent. Note that the report of formation of dinuclear fluoro-bridged anions $[M_2F_3(CO)_6]^{3-}$ when NMe₄F is used³³ indicates that fluoride substitution in this system is not completely straightforward. Infrared spectroscopic studies for the series of compounds $PPN[WX(CO)_5]$ (X = F, Cl, Br, I) and $PPN[CrX(CO)_5]$ (X = F, I) reveal a surprising insensitivity of ν_{CO} to the

SCHEME II

identity of the halide ligand.³² In contrast, ⁹⁵Mo NMR data for the series of molybdenum compounds [MoX- $(CO)_5$]⁻ show substantial changes in chemical shift with changes in X.³⁰ For these compounds, shielding of the molybdenum center increases in the order F (δ -943) < Cl (δ -1513) < Br (δ -1540) < I (δ -1660).³⁰ This is the so-called "normal halogen dependence" frequently observed for transition-metal NMR of open shell (e.g., d⁴, d⁶, and d⁸) complexes.³⁴

B. Manganese and Rhenlum

Rhenium carbonyl fluorides are particularly illustrative of the complexities possible in $MF_x(CO)_y$ systems (Scheme II). A compound of formula $ReF_3(CO)_3$ isolated from the reaction of dirhenium decacarbonyl and xenon difluoride is best described as a salt, [Re- $(CO)_6$][ReF₆].²⁶ One product of the reaction of dirhenium decacarbonyl and rhenium hexafluoride is also formulated as $ReF_3(CO)_3$;^{35,36} however, comparison of the infrared and X-ray powder diffraction data for this species and [Re(CO)₆][ReF₆] indicates that they are not the same material;²⁶ furthermore, a different ionic compound, [Re(CO)₆][Re₂F₁₁], has been isolated from the reaction of $Re_2(CO)_{10}$ with ReF_6 and structurally characterized.^{26,37,38}

Further complicating interpretation of the rhenium system is the observation that small differences in reaction conditions can result in different products. For example, the reaction of $\text{Re}_2(\text{CO})_{10}$ and 3-4 equiv of XeF_2 produces predominantly $[\text{Re}(\text{CO})_6][\text{ReF}_6]$ when the CO pressure in the reaction vessel is allowed to build up to roughly 1 atm, exclusively $[\text{Re}(\text{CO})_5](\mu$ - $F)(\text{ReF}_5)$ when the CO is removed under vacuum during the course of the reaction, and a mixture of the two at intermediate CO pressures.³⁹ Additionally, $[\text{Re}-(\text{CO})_5](\mu$ - $F)(\text{ReF}_5)$ can be isolated from the reaction of $\text{Re}_2(\text{CO})_{10}$ and ReF_6 ,^{37,40} and a compound of formula $\text{ReF}_2(\text{CO})_3$ has been reported as the product of reaction of dirhenium decacarbonyl and xenon difluoride.⁴¹

Disparate results exist in the literature concerning ReF(CO)₅. This compound is reported to be produced by the reaction of Re₂(CO)₁₀ with XeF₂ or ReF₆,³⁵ by the addition of HF to ReCl(CO)₅,^{35,39} and by the cleavage of [Re₂(μ -F)(CO)₁₀]⁺ by acetonitrile.⁴² However, reaction of AgF and ReBr(CO)₅ yields a different compound, structurally characterized tetrameric [Re-(μ -F)(CO)₃]₄, proposed to form via facile decarbonylation of intermediate ReF(CO)₅ at ambient temperature.^{43,44} Note that similar attempts to prepare manganese pentacarbonyl fluoride likewise result in formation of fluoro compounds which have lost CO ligands and are formulated as [MnF(CO)₄]₂ and MnF₃(CO)₃.^{45,46}

C. Other Systems

As for the metal carbonyl fluorides described above, other $MF_{x}(CO)_{y}$ compounds in Table II are synthesized by three principal methods: carbonylation of metal fluorides, $2^{2,28,47-49}$ oxidation of metal carbonyls by XeF₂ or $MF_{*}^{25,27,50,51}$ and substitution of fluoride for coordinated carbon monoxide or halide.^{12,51-54} Note that the first two routes require solvents which can withstand the highly oxidizing conditions present during the reaction and subsequent purification steps; CCl_2FCClF_2 , anhydrous HF, and metal fluorides have been used. As described above, some of the structurally characterized compounds in Table II do not have both fluoro and carbonyl ligands attached to the same metal center; this may be true for other $MF_{x}(CO)_{y}$ compounds as well. Additionally, a tendency for fluoro ligands to bridge two or more metal centers can be noted. Clearly many of the simple empirical formulas taken from the literature are likely to represent more complex species including carbonyl fluoride salts, fluoro-bridged structures, and mixtures of products.

Excluded from Table II are highly reactive or unstable metal carbonyl fluoro derivatives which have been reported in the literature. For example, coordinatively unsaturated $MF_2(CO)$ (M = Cr, Mn, Ni, Cu) and $(MF_2)_2(CO)$ (M = Cr, Ni) have been generated and characterized by matrix isolation techniques, and Ni- $F_2(CO)$ has been the subject of a theoretical study.⁵⁵ Also studied by matrix isolation techniques is $MoFCp(CF_2)(CO)_3$, generated by the first example of α -F elimination upon stepwise ejection of two carbon monoxides from $MoCp(COCF_3)(CO)_3$.⁵⁶ Neutral and cationic chromium carbonyl fluorides, CrF(CO)₅ and $[CrF(CO)_5]^+$, are formed in solution by electrochemical oxidation of the anion $[CrF(CO)_5]^{-.29}$ An anionic ruthenium carbonyl fluoride may be involved in CO hydrogenation catalyzed by $Ru_3(CO)_{12}$ plus KF, analogous to the species $[Ru(CO)_{3}I_{3}]^{-}$ observed spectroscopically when iodide is added; note that fluoride is the least efficient in the $Ru_3(CO)_{12}/X^-$ systems for production of oxygenates from synthesis gas.⁵⁷ In the gas phase, addition of F^- to $Fe(CO)_5$ produces $[FeF(CO)_3]^{-,58}$ whereas addition of fluoride to $CoCp(CO)_2$ produces [CoFCp(CO)]⁻ and [CoFCp]^{-.59} In contrast, neither Cl⁻ nor I⁻ adds to $CoCp(CO)_2$; this is proposed to reflect the much weaker gas-phase basicity of the heavier halides compared to $\overline{F}^{-.59}$

III. Fluoro Complexes of d¹⁰ Metal Centers

Triarylphosphine copper(I) and silver(I) fluoro complexes have been reported (Table III). Reaction of

TABLE III. Fluoro Complexes of d¹⁶ Metal Centers

	starting material	reagent(s)	refs
$CuF(PPh_3)_3$	CuF2	PPh ₃	60-62
AgF[P(p-tol)_3]_n; n = 2, 3	AgF	P(p-tol) ₃	63

 CuF_2 and PPh₃ in refluxing ethanol or methanol results in reduction of the copper(II) center and formation of CuF(PPh₃)₃.⁶⁰⁻⁶² An X-ray crystal structure reveals the expected tetrahedral arrangement of the four ligands about this d¹⁰ center in the solid state; however, solution conductivity measurements and ¹⁹F NMR spectra for CuF(PPh₃)₃ suggest substantial ionic dissociation of this species in methanol.⁸⁰ In dichloromethane, a much lower solution conductivity and a complex temperature dependence of the ¹⁹F and ³¹P NMR spectra are interpreted as arising from two temperature-dependent processes, phosphine dissociation to yield $CuF(PPh_3)_2$ and partial dissociation of F^{-,80} Related three- and four-coordinate silver compounds, $AgF[P(p-tol)_3]_2$ and $AgF[P(p-tol)_3]_3$, are prepared by addition of phosphine to AgF.63

IV. Fluoro Complexes of d⁶ Metal Centers

The many applications of d⁸ systems in organometallic chemistry have inspired a variety of studies of rhodium(I), iridium(I), nickel(II), platinum(II), and, to a lesser extent, palladium(II) fluorides.

A. Rhodium(I) and Iridium(I)

Certaintly the most extensively studied and readily prepared of all organometallic fluorides are the rhodium and iridium Vaska's derivatives, $MF(CO)(PPh_3)_2$ (M = Rh, Ir) (eq 1). These compounds can be synthesized

in high yield by reaction of MCl(CO)(PPh₃)₂ with silver carbonate and ammonium fluoride via the intermediacy of the methanol cation [Ir(MeOH)(CO)(PPh₃)₂]^{+.64,65} They can also be prepared by reaction of the acetonitrile cation and fluoride,^{66–68} or from the chloride by using either silver fluoride^{69–71} or [S(NMe₂)₃][SiF₂Me₃] (TASF),²² an excellent anhydrous and organic solvent soluble source of the fluoride ion.⁷² Related tri-*p*tolylphosphine,^{22,73} alkyldiphenylphosphine,⁷⁴ triphenylarsine,^{75,76} and triphenylstibine⁷⁵ carbonyl fluoro derivatives have also been reported.

Solution conductivity measurements indicate that $RhF(CO)(PPh_3)_2$ and $IrF(CO)(PPh_3)_2$ behave as weak electrolytes in methanol^{64,65} or tetrahydrofuran,²² but not in acetone or nitrobenzene in which they are non-conductors.^{64,65} This suggests that the solvolytic equilibrium in eq 2 is important in some media.

Figure 1. Halides can be considered to (a) compete with CO for π -backbonding to M and (b) enhance π -backbonding to CO via π -donation to M.

In the rhodium system, anion preference of [Rh-(CO)(PPh₃)₂]⁺ has been shown to follow the trend X^- = $F^- > Cl^- > Br^- > I^-$ in dichloromethane solution (eq 3),^{18,19} opposite that predicted by hard/soft acid/base rules.⁵ Earlier observation of similar trends for

 $[MX_2(CO)_2]^-$ and $MX(CO)(PPh_3)_2$, where X = Cl, Br, or I, led Forster to suggest that "in rigorously aprotic solvents, fluoro derivatives may frequently be found to be the most stable halocarbonyl species."⁷⁷ The position of the equilibrium in eq 3 is shifted markedly to the right by the presence of small amounts of compounds such as water and methanol, presumably because of the considerable affinity of uncomplexed fluoride for these species due to strong hydrogen bonding to their hydroxyl groups.¹⁹ Vaska has exploited this property of the fluorides to prepare a wide range of MY(CO)(PPh_3)_2 products (e.g., Y = Cl, Br, I, CN, NCS, NCO, N₃, OH, OPh, O₂CH, O₂CMe, O₂CPh, ONO₂, OClO₃) by anion metathesis in methanol solvent.^{64,85}

Physicochemical studies of the series of rhodium(I) and iridium(I) Vaska's halides have been reported, including electronic, infrared, and NMR spectroscopies, Mössbauer and XPS data,^{78,79} and electrochemistry. These data almost always display significant differences between the fluoro complex and the heavier halo derivatives, which are frequently quite similar to each other. The patterns which emerge with variation of halide have been interpreted in terms of the interplay of the σ -donor and π -acceptor characteristics of the halide ligands. Surprisingly, the possible influence of the π -donor ability of the halides (which is expected to follow the order $F^- > Cl^- > Br^- > I^-$) on the spectral properties of these compounds is not discussed in the literature. Figure 1 illustrates metal-halide π -bonding interactions in trans-halocarbonylmetal complexes such as the Vaska's halides.

The electronic absorption spectra of MX(CO)(PPh₃)₂ in benzene show λ_{max} for the $d_{z^2} \rightarrow b_1 \pi$ transition^{80,81} increasing in the order X = F < Cl < Br < I (Table XII).⁸⁰ This has been discussed in terms of greater stabilization of the $b_1 \pi$ level with increasing π -acceptor strength of X,⁸⁰ which is considered to follow the order F < Cl < Br < I on the basis of the availability of low-lying empty d_{π} orbitals on the halide.^{64,80} An alternative explanation invokes greater destabilization of d_{z^2} with increasing σ -donor ability in the order F < Cl < Br < I, paralleling decreasing electronegativity and increasing polarizability.⁸⁰

The carbonyl stretching frequencies of MX(CO)-(PPh₃)₂ in various solvents are found to follow the order $X = F < Cl \le Br \le I$ (Table XII),^{20,64,69,70,82} consistent with increasing π -acceptor strength of the halides along this series.⁶⁴ These IR data have been used to explain the observed trend in halide affinity for [Rh(CO)-(PPh₃)₂]⁺, with fluoride most preferred, on the basis of minimizing competition between the halide and the trans carbon monoxide for electron density in the filled rhodium d_{π} orbitals (Figure 1).¹⁹ Analogous trends in ν_{CO} with variation of X are observed for RhX(CO)L₂, (L = AsPh₃, SbPh₃)⁷⁵ and IrX(CO)(PEtPh₂)₂.⁷⁴ However, ν_{CO} values do not follow a readily interpretable pattern with variation of L.⁷⁴ This indicates that carbonyl stretching frequencies are not necessarily a simple measure of the σ -donor or π -acceptor capabilities of ligands attached to the metal in the MX(CO)L₂ system.

¹⁹F and ³¹P NMR data for MF(CO)(PPh₃)₂ have been reported by several different groups (Tables XI).71,78,83-87 Comparisons of ³¹P NMR chemical shifts for the rhodium halides, $RhX(CO)(PPh_3)_2$, show no discernible trend.^{83,84} However, variation in the magnitude of the ¹⁰³Rh-³¹P coupling constants in the order F (-135.5 Hz) > Cl (-126.9 Hz) > Br (-125.0 Hz) > I (-123.5 Hz) has been interpreted as indicating increased effective electronegativity of the rhodium center with increased electronegativity of X.83 108Rh NMR data for this series of compounds have also been reported and indicate that shielding of the metal center increases in the order F $(\delta 5711) < Cl (\delta 5488) < Br (\delta 5436) < I (\delta 5324),^{83}$ the normal halogen dependence.³⁴ Chemical shift differences in metal NMR are dominated by variations in the paramagnetic contribution to shielding (σ_{p}) which depend on the distance of the metal d electrons from the nucleus (r) and the average energy of excited states of appropriate symmetry (ΔE) as shown in eqs 4 and 5.^{34,88}

$$\sigma = \sigma_{\rm d} + \sigma_{\rm p} \tag{4}$$

$$\sigma_{\rm p} = -2/3(e\hbar/mc)^2 \langle 1/r^3 \rangle (1/\Delta E)$$
 (5)

It has been noted⁸⁴ that the trend observed for δ (¹⁰³Rh) in the rhodium Vaska's halides is opposite that expected based on the $1/\Delta E$ term: because RhF(CO)(PPh₃)₂ has the smallest λ_{max} values,⁸⁰ it should have the most shielded rhodium center. However, the variation in δ (¹⁰³Rh) is consistent with increasing d electron distance from the metal nucleus and increasing M-X bond covalency on going from fluoride to iodide.

Overall, the spectral data for $MX(CO)L_2$ are most consistent with the surprising interpretation that the fluoro complex has the most electron-rich metal center. This is further supported by electrochemical experiments which show the peak potentials for irreversible reduction of $MX(CO)(PPh_3)_2$ (M = Rh, Ir) follow the order F < Cl < Br < I (Table XII);⁸⁹ that is, the fluoro complexes are the most difficult to reduce. These observations are opposite expectations based on electronegativity arguments and suggest that differences in metal-halide π -bonding dominate in the electronic structure of their rhodium(I) and iridium(I) compounds, with fluoride the poorest π -acceptor and best π -donor. By using this interpretation, the surprising halide preference and spectral trends for $MX(CO)(PPh_3)_2$ are readily explained.

A variety of reactivity studies of the rhodium(I) and iridium(I) Vaska's halides has been reported, included detailed kinetics of the oxidative addition of small molecules to iridium(I). The second-order rate constants (M^{-1} s⁻¹) for oxidative addition of methyl iodide

$$(a) \begin{array}{c} \mathsf{PPh}_3 \\ \mathsf{OC}_{III} \\ \mathsf{X} \checkmark | r \cdots | \\ \mathsf{PPh}_3 \\ \mathsf{PPh}_3 \end{array} \begin{array}{c} \mathsf{PPh}_3 \\ \mathsf{OC}_{III} \\ \mathsf{X} \checkmark | r \cdots | \\ \mathsf{PPh}_3 \\ \mathsf{PPh}_3 \end{array}$$

Figure 2. Proposed transition states for oxidative addition of (a) methyl iodide and (b) dioxygen to iridium Vaska's halides.

to $IrX(CO)(PPh_3)_2$ (eq 6) follow the trend X = F (2.2 × 10⁻²) > Cl (1.0 × 10⁻²) > Br (6.0 × 10⁻³) > I (4.8 × 10⁻³).⁹⁰ In contrast, the opposite trend is observed for

$$\begin{array}{c} PPh_{3} \\ | \\ OC - Ir - X + Mel \end{array} \xrightarrow{\begin{array}{c} PPh_{3} \\ | \\ PPh_{3} \end{array}} \begin{array}{c} OC \\ Me \end{array} \xrightarrow{\begin{array}{c} PPh_{3} \\ | \\ PPh_{3} \end{array}} \begin{array}{c} (6) \\ PPh_{3} \end{array}$$

addition of several other addenda to iridium halides. For example, second-order rate constants ($M^{-1} s^{-1}$) for uptake of O₂ by IrX(CO)(PPh₃)₂ follow the order X = F (1.48 × 10⁻²) < Cl (1.01 × 10⁻¹) < Br (2.06 × 10⁻¹) < I (7.23 × 10⁻¹) (eq 7).^{91,92} The same order of reactivity

$$OC \xrightarrow{PPh_{3}} OC \xrightarrow{I}_{r} X + O_{2} \xrightarrow{OC _{n}} OC _{n} \xrightarrow{I}_{r} OC _{n} OC _{n}$$

$$PPh_{3} \xrightarrow{OC _{n}} OC _{n} OC _{n$$

is also observed for $IrX(CO)(PMePh_2)_2$ and $IrX(CO)(PEtPh_2)_2$.⁷⁴ Rates of addition of both MeI and O_2 to $IrX(CO)L_2$ increase with increasing basicity of L.^{74,90} The rate trend X = Cl < Br < I is observed for addition of organoazides to RhX(CO)(PPh_3)_2⁹³ and for addition of dihydrogen,⁹⁴ chloroacetylenes,⁹⁵ and organoazides⁹⁶ to the heavier halides of $IrX(CO)(PPh_3)_2$.

The opposing trends for oxidative addition of methyl iodide vs dioxygen to iridium(I) have been discussed in terms of the different transition states (Figure 2) associated with these two different reactions.⁹⁰ A fivecoordinate transition state (Figure 2a) has been proposed to describe nucleophilic attack of iridium on methyl iodide. Competition between the electrophilic methyl carbon and the halide for the σ -bonding p_x and p_{v} orbitals in this proposed trigonal-bipyramidal structure will affect the energy of the transition state, hence the rate of reaction: strong σ -bonding of iridium to X = I, the best σ -donor of the halides, is suggested to lead to poor Ir-Me σ -overlap, consequent destabilization of the transition state, and a slower rate of reaction. The observed trend is also consistent with the idea that for the halide series the iridium center is most electron rich, therefore most nucleophilic, in the fluoro complex.

Addition of dioxygen to iridium is proposed to proceed through a six-coordinate transition state (Figure 2b). For the series of halides $IrX(CO)(PPh_3)_2$, this is a reversible process (eq 7) and activation parameters for both the forward and reverse reactions have been measured.⁹¹ The entropies of activation (ΔS^*) for O₂ addition are identical in sign and close in magnitude with the entropies (ΔS°) for the forward reaction, suggesting a late transition state which strongly resembles the O₂ adduct.⁹² For such a transition state, stability and hence rate of reaction should parallel the stability of the iridium(III) products. This is indeed the case; the equilibrium constants (M⁻¹) for eq 7 in-

та Т	starting material	reagent(s)	refs
RhF(CO)(PPh ₃) ₂	RhCl(CO)(PPh ₃) ₂	(i) NH_4F ; (ii) Ag_2CO_3	64,65
	$RhCl(CO)(PPh_3)_2$	AgF	69,70,71
	$RhCl(CO)(PPh_3)_2$	TASF	22
	RhF(PPh ₈) ₃	CO	102
	$RhF(C_2F_4)(PPh_3)_2$	CO	87
$RhF(CO)[P(p-tol)_3]_2$	$RhCl(CO)[P(p-tol)_3]_2$	(i) NH_4F ; (ii) Ag_2CO_3	73
$RhF(CO)L_2$; L = AsPh ₃ , SbPh ₃	$RhCl(CO)L_2$	AgF	75
$RhF(CO)(TCNE)(AsPh_3)_2$	$RhF(CO)(AsPh_3)_2$	TCNE	75
$RhF(CO)(SO_2)L_2$; L = PPh ₃ , AsPh ₃	$RhF(CO)L_2$	SO ₂	69,75
$RhF(C_2F_4)(PPh_3)_2$	$RhCl(C_2F_4)(PPh_3)_2$	(i) $AgBF_4$; (ii) TASF	87
	$[RhF(C_2H_4)(C_2F_4)]_4$	PPh ₃	87
RhF(PPh ₃) ₃	$[RhF(C_8H_{14})_2]_n$	PPh ₃	102
RhF(PCy ₃) ₂	$[RhF(C_{3}H_{14})_{2}]_{n}$	PCy ₃	85
$[RhF(C_8H_{14})(PCy_3)]_n$	$[RhF(C_8H_{14})_2]_n$	PCy ₃	85
$RhFL(PCy_3)_2$; L = CO, C_2H_4 , PhCCPh	$RhF(PCy_3)_2$		85
$[Rh(\mu-F)L]_2; L = dippe, dippp$	$[Rn(\mu-H)L]_2$	U_2F_4	86
$Irr(CO)(PPh_3)_2$	$IrCl(CO)(PPh_8)_2$	(1) NH_4F ; (11) Ag_2CO_3	64,65
	$I_{rCl(CO)}(PPn_3)_2$	Agr	71
	$\frac{1}{1} \frac{1}{1} \frac{1}$	TADF NU E of UE NE4	22 66 67 69
$I = E(C \cap (D(n + n)))$	$[Ir(INCIMe)(CO)(PPn_3)_2][CIO_4]$	TASE	00,07,00
$\frac{\Gamma\Gamma(CO)[\Gamma(D-OD)_{3}]_{2}}{\Gamma\Gamma(CO)[\Gamma(D-OD)_{3}]_{2}}$	$I_{r} = I_{r} = I_{r$	IASF	22 74
$IF(CO)L_2; L = FWeFn_2, FEtFn_2$ $I=F(CO)(A_2Dh_1)$	$II_{T}(NCM_{0})(CO)(A_{T}D_{0}) 1^{+}$	L HE NEt	14 76
$I_{r}F(CO)(ASF II_{g})_{2}$ $I_{r}F(CO)(DDb(CH, CH, A_{g}M_{G})) $	$I_{r} F(CO) I_{r} \cdot I_{r} = PPh_{r} A_{r} Ph_{r}$	$\frac{111}{2}$	101
$I_{r}F(CO)(RCCR)(PPh_{a}) + R = CF_{a}COOM_{a}$	$I_{r}F(CO)(PPh_{2})$	RC=CR	97 104
$I_{r}F(CO)(C_{r}F_{r})(PPb_{r})_{r}$	$I_r F(CO)(PPh_s)_s$	C.F.	104
$IrF(CO)L(PPh_{3})_{2}; L = TCNE, CH_{2}$ —CHCN, MeCH—CHCN, CNCH—CHCN	$IrF(CO)(PPh_3)_2$	L .	68,97,103,104
IrF(CO)(SO ₂)(PPh ₂) ₂	$IrF(CO)(PPh_3)_2$	SO ₂	68,97
$IrF(N_2)(PPh_3)_2$	$IrF(CO)(PPh_3)_2$	$N_3 \tilde{C} O(C_4 H_4 O)$	100
IrF(AsPh _s) ₃	$IrCl(CO)(AsPh_3)_2$	(i) NH_4F ; (ii) Ag_2CO_3	76
$NiF(C_{6}F_{5})(PEt_{3})_{2}$	$Ni(cod)(PEt_3)_2$	C ₆ F ₆	106
NiF(COPh)(PEt ₃) ₂	$Ni(cod)(PEt_3)_2$	PhCOF	106
NiF_2L_2 ; L = PBu ₃ , PPh ₃ , PCy ₃ ; L ₂ = dppe	NiF ₂	L	108
$Ni_2F(OMe)Me_2(PMe_3)_2$	$Ni_2(OMe)_2Me_2(PMe_3)_2$	MeCOF	109
$Ni_2F(NMe_2)Me_2(PMe_3)_2$	$Ni_2F_2Me_2(PMe_3)_2$	Me ₂ NSiMe ₃	109
$Ni_2FClMe_2(PMe_3)_2$	$Ni_2Cl_2Me_2(PMe_3)_2$	$Ni_2F_2(Me)_2(PMe_3)_2$	109
$Ni_2F_2Me_2(PMe_3)_2$	$Ni_2F(OMe)Me_2(PMe_3)_2$	MeCOF	109
$PdFH(PPh_3)_2$	$Pd(PPh_3)_4$	HCOF	110
$[PGF(PEt_3)_3][BF_4]$	$[PdCl(PEt_3)_3][BF_4]$	Agr	71,118
$\left[Pd_{2}F_{2}(PPn_{3})_{4} \right] F_{2}$	$Pa(PPn_3)_4$ $P_4(PPh_3)$		111
$P(F\Pi_{g})_{2}$	$FU(FFR_{3})_{4}$ $D+CIM_{2}(DE+)$		110
	P+CIDL(DE+)	Agr Agr	12
$P+F(CH(CF_{1}))(PPL_{1})$	$P_{t}(P_{t}) = C_{t}(P_{t})^{2}$	N _C (CF ₁)	114 115
$P+FC!(PPh_{2})$	$PtClY(PPb_{1}) \cdot Y = Cl H$	HF	111
	$PtClH(PPb_{a})$	(i) FCH=CF.; (ii) acetone CCl.	119
PtFBr(PPha)a	$PtBr_{a}(PPh_{a})_{a}$	HF	111
$[PtFL_3][BF_4]; L = PEt_3, PMe_2Ph, PPh_3; L_3 = (PEt_b)_3(PPh_3)$	$[PtClL_3][BF_4]$	AgF	71,111,117,118
$[PtF(PEt_a)_{a}L][ClO_{4}]; L = PPh_{a}. P(OPh)_{a}$	[PtCl(PEt ₃) ₂ LlClO ₄	AgF	71
$[PtFL_3][HF_2]; L = PMePh_2, PPh_3$	PtL	НF	111
$[PtF(PPh_3)_3]X; X = BF_4, BPh_4$	[PtF(PPh ₃) ₃][HF ₂]	LiBF ₄ or NaBPh ₄	111
PtF ₂ (PPh ₃) ₂	Pt(PPh ₃) ₃	XeF ₂	116
$[Pt_2F_2(PPh_3)_4][ClO_4]_2$	$[PtF(PPh_3)_3][HF_2]$	LiClO ₄	111

crease in the same order as the rates of the forward reaction: F $(2.9 \times 10^2) < Cl (7.3 \times 10^3) < Br (6.2 \times 10^4) < I (8.6 \times 10^5)$ (see section V).⁹¹ Linear correlations between the enthalpy of the forward reaction (ΔH°) and the electronegativity of X^{91,92,97} and between the free energy of activation (ΔG^*) and the lowest electronic excitation energy⁹² have been noted, although not fully rationalized.

Two examples of the use of $MF(CO)(PPh_3)_2$ as homogeneous catalysts have been reported. The iridium compound is a good catalyst for the reaction of silanes and alcohols to yield dihydrogen and siloxides.⁹⁶ Comparison of the activity of RhX(CO)(PPh_3)₂ in the hydroformylation of formaldehyde shows that the yield of glycolaldehyde decreases in the order Cl > Br > I > F, whereas the yield of methanol, the byproduct resulting from competing hydrogenation of formaldehyde, follows roughly the opposite order.⁹⁹

In addition to Vaska's rhodium and iridium fluorides, other d⁸ fluoro derivatives of these metals have been reported (Table IV). A dinitrogen iridium Vaska's fluoride analogue, $IrF(N_2)(PPh_3)_2$, has been prepared by reaction of $IrF(CO)(PPh_3)_2$ and furoyl azide.¹⁰⁰ The dinitrogen stretching frequencies in the compounds IrX(N₂)(PPh₃)₂ follow a trend analogous to that of ν_{CO} in the carbonyl derivatives; ν_{NN} increases in the order F (2088 cm⁻¹) < Cl (2103 cm⁻¹) < Br (2109 cm⁻¹) < I (2113 cm⁻¹).¹⁰⁰ The reaction of IrF(CO)L₂ (L = PPh₃, AsPh₃) and a chelating diarsinophosphine ligand yields oŤ compound formula IrF(CO)[PPha $(CH_2CH_2CH_2AsMe_2)_2$; the latter is nonconducting in nitromethane solution and is therefore proposed to be a five-coordinate iridium(I) fluoride (Scheme III).¹⁰¹ In contrast, the heavier halides are reported to produce

SCHEME III

mixtures of five-coordinate IrX(CO)[PPh-(CH₂CH₂CH₂AsMe₂)₂] and the four-coordinate iridium(I) cations as their halide salts [Ir(CO)(PPh-[CH₂CH₂CH₂AsMe₂]₂)]X (Scheme III).¹⁰¹ When the analogous chelating diarsinoarsine ligand, AsPh-(CH₂CH₂CH₂AsMe₂)₂, is used, only salts are observed for all of the halides (Scheme III).¹⁰¹ Surprisingly, reaction of IrCl(CO)(AsPh₃)₂ with Ag⁺ and then F⁻ in methanol does not produce IrF(CO)(AsPh₃)₂, which is prepared by addition of fluoride to the acetonitrile cation [Ir(NCMe)(CO)(AsPh₃)₂]⁺, but rather yields the tris(triphenylarsine) compound, IrF(AsPh₃)₃.⁷⁶

A rhodium(I) olefin complex $[RhF(C_8H_{14})_2]_n$, synthesized by the action of AgF on the chloride, can be used as the starting material for phosphine-substituted rhodium(I) fluorides such as $RhF(PPh_3)_3$, $[RhF-(C_8H_{14})(PCy_3)]_n$, and $RhF(PCy_3)_2$.^{85,102} ³¹P NMR data for $RhF(PCy_3)_2$ indicate that it has a monomeric structure; comparison of its extremely large phosphorus-fluorine coupling constant $(J_{PF} = 165 \text{ Hz})$ with those of square-planar $MF(CO)L_2$ ($J_{PF} = 20-30$ Hz) further suggests that $RhF(PCy_3)_2$ is a three-coordinate complex with FRhP angles greater that 90°.85 In contrast, rhodium(I) fluoro compounds containing chelating diphosphine ligands dippe (ⁱPr₂PCH₂CH₂PⁱPr₂) and dippp $({}^{i}Pr_{2}PCH_{2}CH_{2}CH_{2}P^{i}Pr_{2})$ which were the unexpected products of the reactions of $Rh_2H_2L_2$ (L = dippe, dippp) and tetrafluoroethylene are clearly shown to be fluoro-bridged dimers $Rh_2F_2L_2$ (L = dippe, dippp) by ³¹P NMR spectroscopy.⁸⁶

Supporting the idea of a three-coordinate structure for $RhF(PCy_3)_2$, facile addition of ligands occurs producing carbonyl, ethylene, and diphenylacetylene com-plexes, $RhFL(PCy_3)_2$.⁸⁵ All these rhodium(I) fluoro compounds have labile F^- ligands readily displaced by a variety of coordinating anions when metathesis is performed in a two-layer benzene/water mixture.⁸⁵ However, although chloro, bromo, or iodo derivatives can be prepared in this manner by using NaX as the source of the halide, where comparisons have been made, the fluoro derivatives have been found to be significantly more thermally stable than their heavier halide analogues.^{85,102} This again demonstrates that the affinity of fluoride for hydrogen bonding to hydroxyl groups markedly influences the reactivity of metal fluoro compounds. In two cases, comparison of the reactivity of $RhF(PCy_3)_2$ with that of the heavier halide derivatives RhX(PCy₃)₂ shows striking differences. Coordination of N_2 to form $RhX(N_2)(PCy_3)_2$ occurs rapidly for X = I (15 min) and Br (3 h) and slowly for X = Cl (4-5 days), but not at all for $X = F.^{85}$ Reaction of O_2 and $RhX(PCy_3)_2$ produces the dioxygen adducts of the heavier halides, but yields POCy₃ in the case of $X = F.^{85}$

A recent paper describes rhodium(I) tetrafluoroethylene fluoro complexes.⁸⁷ Reaction of [RhCl- $(C_2H_4)(C_2F_4)]_2$ with AgBF₄ followed by TASF yields the analogous fluoride, shown to have a tetrameric structure, [RhF(C₂H₄)(C₂F₄)]₄.⁸⁷ This compound reacts with triphenylphosphine to produce RhF(C₂F₄)(PPh₃)₂ which can alternatively be prepared from RhCl(C₂F₄)(PPh₃)₂ by reaction with AgBF₄ followed by TASF; CO readily displaces C₂F₄ from the fluoro complex to produce rhodium Vaska's fluoride, RhF(CO)(PPh₃)₂ (eq 8).⁸⁷ In

$$F = Rh = C_2F_4 + CO \qquad \qquad F = Rh = CO + C_2F_4 \qquad (8)$$

the case of iridium, a tetrafluoroethylene adduct of Vaska's fluoride, $IrF(CO)(C_2F_4)(PPh_3)_2$, can be isolated (eq 9).^{103,104} This compound is significantly more stable

$$F \xrightarrow{PPh_{3}} F \xrightarrow{PPh_{3}} OC_{i,...} \xrightarrow{PPh_{3}} OC_{i,...} \xrightarrow{PPh_{3}} (9)$$

$$F \xrightarrow{PPh_{3}} PPh_{3} PPh_{3} PPh_{3}$$

than the corresponding chloride, $IrCl(CO)(C_2F_4)(PPh_3)_2$, which loses C_2F_4 on recrystallization.^{103,104}

Related cyanoolefin and SO₂ adducts of IrF(CO)-(PPh₃)₂^{68,97,103,104} and RhF(CO)(AsPh₃)₂⁷⁵ have been reported; additionally, RhF(CO)(SO₂)(PPh₃)₂⁶⁹ and adducts of IrF(CO)(PPh₃)₂ with hexafluoro-2-butyne or dimethyl acetylenedicarboxylate have been prepared.^{103,104} Though formally described in many reports as five-coordinate adducts containing rhodium(I) and iridium(I) centers, all of these compounds contain η^2 coordinated electron-withdrawing ligands; on the basis of their CO stretching frequencies compared with MF-(O₂)(CO)(PPh₃)₂, they can be considered as d⁶ iridium-(III) octahedral complexes^{97,105} (section V).

B. Nickel(II), Palladium(II), and Platinum(II)

Several square-planar group 10 metal fluoro complexes have appeared in the literature (Table IV). Intermolecular oxidative additions of C-F bonds to the nickel(0) complex Ni(cod)(PEt₃)₂ are reported to yield $NiF(C_6F_5)(PEt_3)_2$ from hexafluorobenzene and NiF-(COPh)(PEt₃)₂ from benzoyl fluoride.¹⁰⁶ Similarly, formation of NiFBr(C_6F_4 -4-PPh₃)(PPh₃) via C-F addition to an unspecified intermediate is proposed to explain the product $[P(4-C_6F_4H)Ph_3]Br$ obtained upon hydrolysis of the solid produced by fusion of a mixture of NiBr₂, C_6F_5Br , and PPh₃.¹⁰⁷ Nickel(II) difluoro bis(phosphine) complexes are the proposed products of reaction of excess L and NiF_2 .¹⁰⁸ Dinuclear fluorobridged nickel(II) derivatives $Ni_2(\mu-F)(\mu-X)Me_2(PMe_3)_2$ have been prepared for X = OMe or F by replacement of fluoride for methoxide in $Ni_2(\mu - OMe)_2Me_2(PMe_3)_2$ by using acetyl fluoride, for X = Cl by reaction of $Ni_2(\mu-F)_2Me_2(PMe_3)_2$ and $Ni_2(\mu-Cl)_2Me_2(PMe_3)_2$, and for X = NMe₂ by addition of Me₂NSiMe₃ to $Ni_2(\mu-F)_2Me_2(PMe_3)_2$.¹⁰⁹

Palladium (II) and platinum (II) phosphine fluoro complexes can be prepared by oxidation of metal(0) compounds. Reactions of $M(PPh_3)_4$ and formyl fluoride yield $MFH(PPh_3)_2$ (M = Pd, Pt), which can be viewed as HF adducts of these metals.¹¹⁰ Interestingly, hydrido

fluoro complexes are not found to be the products of reactions of ML₄ and HF. Instead, addition of HF to $Pd(PPh_3)_4$ is reported to yield $[Pd_2F_2(PPh_3)_4]F_2$,¹¹¹ and addition of HF to PtL₄, which was originally reported to yield PtF_2L_2 ,^{112,113} has been shown to produce [PtF-L₃][HF₂].¹¹¹ The platinum(II) fluoride, PtF[CH- $(CF_3)_2](PPh_3)_2$, is among the products isolated from the reaction of Pt(PhCH=CHPh)(PPh₃)₂ and N₂C(CF₃)₂; the cis isomer has been structurally characterized by X-ray crystallography.^{114,115} Preliminary evidence suggests that a platinum(II) difluoride, $PtF_2(PPh_3)_2$, can be cleanly prepared by addition of XeF_2 to Pt- $(C_2H_4)(PPh_3)_2$.¹¹⁶ Because XeF_2 is readily consumed by PPh_3 , $Pt(PPh_3)_4$ is not a practical starting material for this reaction; an excess of the expensive fluorinating reagent must be used and problems arise in purification of the metal-containing product due to difficulties in separating it from the PF₂Ph₃ byproduct.¹¹⁶

Halide metathesis can also be used to prepare palladium(II) and platinum(II) phosphine fluorides. Addition of silver fluoride to [MClL₃]X produces [MFL₃]X, where X is a tetrafluoroborate or perchlorate ion.^{71,111,117,118} One member of this group of compounds, [PtF(PEt₃)₃][BF₄], has been structurally characterized.¹¹⁷ Simple exchange of the counterion occurs readily upon reaction of the related $[PtF(PPh_3)_3][HF_2]$ with $LiBF_4$ or $NaBPh_4$; however, addition of $LiClO_4$ to this bifluoride salt results in loss of phosphine and formation of a dimeric compound, $[Pt_2F_2(PPh_3)_4]$ -[ClO₄]₂.¹¹¹ NMR studies of a series of these [MXL₃]⁺ compounds where X = F or Cl shows a correlation between low values of ${}^{1}J_{PtF}$ and weak Pt-F bonding and, based on values of ${}^{1}J_{PtP}$ for the phosphine ligand trans to X, suggest that the trans influence of fluoride is slightly greater than that of chloride.⁷¹

Neutral platinum(II) fluoro complexes, PtFX(PPh₃)₂ where X = Cl or Br, have been prepared by reaction of anhydrous HF and PtX₂(PPh₃)₂ or PtClH(PPh₃)₂;¹¹¹ PtFCl(PPh₃)₂ is also isolated as a byproduct in the reaction of the hydride and trifluoroethylene.¹¹⁹ PtFPh(PPh₃)₂ is produced, albeit in low yields, from the reaction of PtClPh(PPh₃)₂ with silver fluoride in methanol;¹³ an analogous preparation of PtFMe(PPh₃)₂ has been described.²¹

Some intriguing chemistry of the latter complex has been reported: upon reaction with $V(NSiMe_3)$ -(OSiMe₃)₃, quantitative elimination of FSiMe₃ and formation of a nitride-bridged complex occurs (eq 10).²¹

Analogous condensation reactions yield rhodium(I) and iridium(I) nitride-bridged complexes $(R_3SiO)_3V(\mu-N)$ - $M(CO)(PPh_3)_2$; for a range of anionic X ligands in $MX(CO)(PPh_3)_2$, only the fluoro, methoxy, and acetato derivatives from sufficiently strong Si-X bonds to drive the reaction.²² Related syntheses of vanadium-rhenium²⁰ and diiridium²³ nitride-bridged complexes suggest that this condensation reaction represents a good general route to main group atom bridged transition-metal compounds and illustrate the utility of metal fluorides in synthetic schemes. Note, however, that not all MF-(SiR₃) species eliminate FSiR₃ under ambient conditions; examples of such d⁶ complexes have been isolated and characterized (see section V).

V. Fluoro Complexes of d⁶ Metal Centers

The stability and variety of six-coordinate d⁶ organometallic complexes suggest that a range of d⁶ transition-metal carbonyl and phosphine fluorides should be possible; indeed examples of such 18-electron organometallic fluorides are known for almost all of the group 6–9 transition metals (Table V). In these compounds, the fluoro ligand is frequently found trans to a strong π -acceptor, such as nitrosyl or carbonyl, as is observed for the d⁸ organometallic fluorides.

A. Chromium(0), Molybdenum(0), and Tungsten(0)

The trans geometry is noted for $CrF(NO)(dppe)_2$, prepared by reduction of the corresponding chromium-(I) cation: this chromium(0) complex has the shortest M-F distance yet determined by X-ray crystallography.¹²⁰ Analogous molybdenum(0) and tungsten(0) nitrosyl fluorides are prepared in good yield by substitution of NO for the diazenido ligand in MF-(NNH)(dppe)₂;¹²¹ MoF(NO)(dppe)₂ is also isolated in low yield from the reaction of $MoH_4(dppe)_2$ and (NO)-PF₆.¹²² Related carbonyl-substituted tungsten complexes $WF(NO)(CO)_2L_2$ have been prepared for L = $P(O^{i}Pr)_{3}$ by reaction of $[W(NO)(CO)_{3}[P(O^{i}Pr)_{3}]_{2}][PF_{6}]$ and either KF or NaH¹²³ and for L = PPh₃ by displacement of the weakly coordinating perchlorate ion in $W(OClO_3)(NO)(CO)_2(PPh_3)_2$ using NBu_4F .¹²⁴ The $L = PPh_3$ compound is proposed to possess a trans,trans structure on the basis of spectroscopic data and comparison with the heavier halide derivatives, WX-(NO)(CO)₂(PPh₃)₂.¹²⁴ This geometry places the halide ligand cis to the carbonyls and trans to the nitrosyl, resulting in almost no change in ν_{CO} with variation of the halide, but large variation in ν_{NO} (1606 cm⁻¹ for X = F, 1624 cm⁻¹ for X = Cl, 1613 cm⁻¹ for X = Br, 1618 cm^{-1} for X = I) which does not appear to follow any simple trend.¹²⁴ Small amounts of WF(NO)(CO)₂- $(PPh_3)_2$ and the diffuoro complex $WF_2(NO)_2(PPh_3)_2$ are observed upon decomposition of solutions of [W- $(NO)(CO)_3(PPh_3)_2][PF_6]$, prepared from $W(CO)_4$ - $(PPh_3)_2$ plus $(NO)PF_6$; similarly, reaction of $(NO)PF_6$ and $Mo(CO)_4(PPh_3)_2$ produces $MoF_2(NO)_2(PPh_3)_2$.¹²⁴

B. Manganese(I) and Rhenlum(I)

One example of a manganese(I) phosphine fluoro complex, $MnF(CO)_3(PPh_3)_2$, has been reported as a byproduct isolated in the preparation of $[Mn(CO)_5-(PPh_3)][BF_4]$.¹²⁵ The related rhenium(I) fluoride, $ReF(CO)_3(PPh_3)_2$, is readily prepared by substitution of F⁻ for a weakly coordinated ligand by using PPNF (eq 11).²⁰ ReF(CO)_3(PPh_3)_2 is significantly more labile

with respect to substitution of both the fluoro and carbonyl ligands than its chloro analogue.²⁰ In this regard it is interesting to note that while the pentacarbonyl complexes $MX(CO)_5$ of the heavier halides are

	starting material	reagent(s)	refe
		NaDU	190
Vor (NO)(dppe) ₂	$[Orr(NO)(appe)_2][Dr_4]$	Nadria NO	120
Mor(NO)(appe) ₂	$MoF(ININFI)(appe)_2$		121
	$M_{4}(O_{0})$ (DDF)	$(NO)PF_6$	122
$MOF_2(NO)_2(PPn_3)_2$	$\frac{MO(CU)_4(PFR_8)_2}{MD_2(NO)(CO)(DDL)}$	$(NO)PF_6$	124
$WFBr(NO)_2(PPh_3)_2$	$WBr(NO)(CO)_2(PPh_3)_2$	(NO)PF ₆	124
$WF(NO)(CO)_2[P(OPr)_3]_2$	$[W(NO)(CO)_{3}[P(O'Pr)_{3}]_{2}][PF_{6}]$	KF or NaH	123
$WF(NO)(CO)_2(PPh_3)_2$	$W(OCIO_3)(NO)(CO)_2(PPh_3)_2$	NBu ₄ F	124
WF(NO)(dppe) ₂	WF(NNH)(dppe) ₂	NO	121
$WF_2(NO)_2(PPh_3)_2$	$[W(NO)(CO)_3(PPh_3)_2][PF_6]$	decomposition	124
$MnF(CO)_3(PPh_3)_2$	$Mn_2(CO)_6(PPh_8)_2$	(i) Na/Hg; (ii) HBF_4	125
$\operatorname{ReF}(\operatorname{CO})_{3}\operatorname{L}_{2}; L = \operatorname{PPh}_{3};$	$ReCl(CO)_{3}(PPh_{3})_{2}$	(i) AgOTf ; (ii) (PPN) F	20
$L = SbPh_3; L_2 = tmeda, bipy, dppe$	$\text{ReBr}(\text{CO})_{3}\text{L}_{2}$	AgHF ₂	44,126
ReFCp(NO)(CO)	Re(FBF ₃)Cp(NO)(CO)	TASF	129
[ReF(NO)(CO)(tacn)]F	$[ReMe(NO)(CO)(tacn)][BF_4]$	HF	130
$[ReF(NO)(CO)(PPh_{s})_{s}][BF_{4}]$	$ReH_2(NO)(PPh_3)_3$	HBF4, CO	127
$[ReF(NO)(CO)(PPh_3)_3][ClO_4]$	$[\text{ReF(NO)(CO)(PPh_3)_3}][\text{BF}_4]$	NaClO	127
$ReFH(NO)(CO)(PPh_3)_2$	$[ReF(NO)(CO)(PPh_3)_3][BF_4]$	NaBH	127
	ReFH(NO)(PPha)a	co	128
ReFH(NO)(CN-p-tol)(PPh_)	ReFH(NO)(PPha)a	p-tolNC	128
ReFH(NO)(PPh_)	[ReH(MeOH)(NO)(PPh_)][ClO_]	KF-2H ₀ O	128
$ReF(OMe)(NO)(CO)(PPh_)$	$[\text{ReF}(\text{NO})(\text{CO})(\text{PPb}_{a})_{a}][\text{BF}_{a}]$	NaOMe	127
$BeF_{\alpha}(NO)(CO)(PPh_{\alpha})$	$[ReF(NO)(CO)(PPb_{a})_{a}][BF_{a}]$	KF	127
$\mathbf{F}_{\alpha} \mathbf{F}_{\alpha}(\mathbf{r}_{\alpha}) = \mathbf{F}_{\alpha}(\mathbf{r}_{\alpha}) + \mathbf{F}_{\alpha}(\mathbf{r}_{\alpha}) $	$\mathbf{Fe}(\mathbf{SiMe}_{\mathbf{CH}} = \mathbf{CH}_{\mathbf{CH}}) \mathbf{Cp}(\mathbf{CO})$	HE OF HEE	191
$F_{\alpha}F(D)(DD)$	$Fe(Gime_2OII - OII_2)Op(OO)_2$ FeFOr(CO)	PhCl(DDh)	199
Ferop(CO)(rrng) [Fer(CNMe)(drne)][Pr]	$[E_0 \mathbf{H}(\mathbf{CNM}_0)(\mathbf{d}_{\mathbf{PP}})] = 1$	oridation	100
$[\mathbf{F}_{4}] = \mathbf{F}_{1}(\mathbf{M}_{4}) (\mathbf{O}) (\mathbf{D}_{4}) (\mathbf{D}_{4}) = \mathbf{I}_{1}$	$[ren(CNMe)(appe)_2][Dr_4]$		139
$[\Gamma e_2 \Gamma (SIVIe)_2 (CO)_4 (\Gamma VIe_3)_2][\Gamma \Gamma_6]$	$Fe_2(Sivie)_2(CO)_4(Fivie_3)_2$	$Agrr_{6}$	140
$Rur Cp(CO)(PCy_{g})$	$RuClCp(CO)(PCy_3)$	(i) AgO11; (ii) (PPN)F (i) NULE: (ii) $A = OO$	137
$Rur CpL_2; L = Prn_3;$	$RuClCp(PPn_3)_2$	(1) $N\Pi_4F$; (11) Ag_2CO_3	104
$L = AsPn_3, SDPn_3; L_2 = (PPn_3)(AsPn_3)$	RuHCpL ₂	HF A X CO	130
$[Ruf(CO)L_2]X; L = dppm, X = BF_4, PF_6; L = dppe, X = BF_4$	RuCl ₂ L ₂	AgX,CU	138
$[\mathrm{Ru}_{2}\mathrm{F}_{3}(\mathrm{PMe}_{2}\mathrm{Ph})_{6}]^{+}$	$[RuH(cod)(PMe_2Ph)_3][PF_6]$	HF	141
$OsF(CO)_2(N=NPh)(PPh_3)_2$	$[Os(NNPh)(CO)_2(PPh_3)_2][PF_6]$	NEt₄F	142
$RhFCl(COPh)(PPh_3)_2$	RhCl(PPh ₃) ₃	PhCOF	143
$FhFX_2(CO)(PPh_3)_2; X = Cl;$	$RhCl(CO)(PPh_3)_2$	SF ₅ Cl	148
X = Cl, Br, I, SCN	$RhF(CO)(PPh_3)_2$	X_2	149
$IrFHX(CO)L_2$; X = Cl, L = PMe ₃ PPh ₃ ;	IrCl(CO)L ₂	HĊOF	110
$X = Cl, Br, I, L = PPh_8$	$IrX(CO)(PPh_3)_2$	HF	145
$IrFH(SiR_{3})(CO)(PPh_{3})_{2}; SiR_{3} = SiPh_{3}, SiMeCl_{2},$	IrF(CO)(PPh ₃) ₂	HSiR ₃	150
Si(OEt), SiF,		5	
IrFH.(CN-p-tol)(AsPh.)	IrH ₂ (CN-p-tol)(AsPh ₂) ₂	HF	156
IrFCIMe(CO)(PPh ₂) ₂	IrCl(OTf)Me(CO)(PPh_)	NEt.F	151
IrFIMe(CO)(PPh_)	IrF(CO)(PPh _a) _a	MeI	90
$IrF(O_{0})(CO)L_{0}$: L = PMePho, PEtPho, PPho	IrF(CO)L _o	O ₂	66.68.74.91.97
$I_{r}F(1, 2_{r}O_{r}C_{r}C_{r}C_{r})(CO)(PPh_{o})_{o}$	$IrF(CO)(PPh_a)_a$	12-0.0.01	97
$I_{r}FC_{l}(CO)(PPh_{o})$	IrF(CO)(PPh_)	SF-CI	148
IrFL(CO)(PPh.).	$I_r F(CO)(PPh_a)$	L.	66.97
$I_{1} = C(SO(C + 1))(CO)(PPL)$	$I_{\mathbf{r}}(CO)(\mathbf{PPh})$	FSO.C.H.	144
$I_{1} = V(SE_{10}) (DE_{1}) (CO) (I = I_{3})_{2}$	$I = \mathbf{V}(C \cap)(\mathbf{PE}_{+})$	SE	147
$\frac{117}{11} \frac{100}{100} 100$	$I_{\mathbf{F}}(\mathbf{C})(\mathbf{F}_{\mathbf{G}})_{2}$	DF	147
$[IIF(O(SF_2)(OO)(FE_{3})_{2}][DF_{4}]$	$IFCI(SFg)(CO)(FEig)_2$		147
$[Ir(COF)(CO)_2(FEt_3)_2]X; X = Dr_4, Fr_6$	$[Ir(CO)_3(FEt_3)_2]\Lambda$	Aer ₂	140
[IrF[(C ₄ (COOMe) ₄](COCH ₂ CH ₂ CH ₂)(PPh ₃) ₂	not reported	not reported	157
$[IrF(\eta^2 - NH - NC_{\theta}H_{\theta} - 2 - Br)(CO)(PPh_{\theta})_{\theta}]^+$	IrF(CO)(PPh ₃) ₃	(2-BrC ₆ H₄N₂)BF₄	154
$[IrF(n^2-NH=NC_{e}H_{3}X)(CO)(PPh_{3})_{2}]^{+}; X = 2-F, 4-F.$	IrH(CO)(PPh _a) ₃	(XC,HAN)BFA, air	155
2-CF. 4-Me. 2-NO ₂	· · · · · · · ·		-
IrF(n ² -NNC ₀ H ₀ -2-Br)(CO)(PPh ₀)	$[IrF(n^2-NH=NC_{e}H_{e}-2-Br)(CO)(PPh_{e})]^+$	NEts or NaOH or NaOAc	154
$PtF_{a}Cl_{a}(PPh_{a})_{a}$	Pt(PhCH=CHPh)(PPh_)	CF.CCl=CCl.	158
$PtF_{a}Cl_{a}(PPh_{a})$	Pt(PhCH=CHPh)(PPh.)	CF,CCI-CCI	158
· ·• 2~•2/* · 113/2	PtCl(SF.)(PPh.)	CH ₂ Cl ₂ or acetone	148

readily prepared,^{107,108} the analogous fluoro complexes still remain elusive (see section II), perhaps due to related ligand lability. The fluoro complexes $\text{ReF}(\text{CO})_3\text{L}_2$ where L = SbPh₃ or L₂ = tmeda, bipy, or dppe are prepared in good yield from the rhenium bromide plus silver bifluoride.^{44,126}

Several rhenium(I) fluoro complexes containing nitrosyl ligands have been reported, including the difluoride $\text{ReF}_2(\text{NO})(\text{CO})(\text{PPh}_3)_2^{127}$ and hydrido compounds such as $\text{ReFH}(\text{NO})(\text{CO})(\text{PPh}_3)_2^{.127,128}$ The cyclopentadienyl derivative ReFCp(NO)(CO) can be synthesized by displacement of the tetrafluoroborate ion from $\text{Re}(\text{FBF}_3)\text{Cp}(\text{NO})(\text{CO})$ by using TASF.¹²⁹ The cationic rhenium(I) triaza derivative [ReF(NO)(CO)- (tacn)]F and its heavier halide analogues [ReX(NO)-(CO)(tacn)]X are all prepared simply by addition of aqueous HX to a cationic rhenium methyl complex [ReMe(NO)(CO)(tacn)][BF₄].¹³⁰ Comparison of IR spectra for the series shows that ν_{CO} and ν_{NO} decrease respectively in the order F (1970, 1720 cm⁻¹) > Cl (1950, 1710 cm⁻¹) > Br (1940, 1700 cm⁻¹) > I (1935, 1700 cm⁻¹),¹³⁰ consistent with σ -donor ability in the order F < Cl < Br < I, paralleling decreasing electronegativity and increasing polarizability. This spectroscopic trend is opposite that observed for the Vaska's derivatives (section IV) and can be understood by considering that the tripodal tacn ligand requires coordination of the halide cis to CO and NO, decreasing the importance of π -bonding effects relative to those in the square-planar systems with trans CO and X ligands.

C. Iron(II), Ruthenium(II), and Osmium(II)

An iron(II) cyclopentadienyl fluoro complex FeFCp- $(CO)_2$ is isolated in good yield from the reaction of a vinylsilyl derivative, Fe(SiMe₂CH=CH₂)Cp(CO)₂, and HF or HBF₄;¹³¹ however, this fluoride is not readily prepared by simple halide metathesis¹³² despite the stability and ubiquity of the $[FeCp(CO)_2]$ fragment. The related FeFCp(CO)(PPh₃) has been very briefly mentioned.¹³³ The ruthenium complex RuFCp(PPh₃)₂ is the reported product of reaction of the chloride and NH₄F plus Ag₂CO₃ in methanol.¹³⁴ The ¹H NMR spectrum for this fluoride shows the cyclopentadienyl protons at δ 4.56, substantially shifted from the chloride at δ 4.01, with no observed coupling to the ¹⁹F atom, whose resonance itself is not observed.¹³⁴ Lack of ¹⁹F NMR signals is a phenomenon not uncommonly noted for metal fluoro complexes.¹³⁵ Related arsine and stibine cyclopentadienyl ruthenium(II) fluorides, RuFCp(SbPh₃)₂, RuFCp(AsPh₃)₂, and RuFCp-(AsPh₃)(PPh₃), have been reported.¹³⁶ Preparation of a carbonyl-substituted derivative, $RuFCp(CO)(PCy_3)$, is possible via reaction of the chloride with silver triflate and then (PPN)F.137

Bis(chelating phosphine) fluoro complexes of ruthenium, $[RuF(CO)L_2]X$ where L = dppm or dppe, have been reported and possess cationic octahedral ruthenium(II) centers in which the fluoro ligand is trans to CO.¹³⁸ Electrochemical oxidation of [FeH(CNMe)-(dppe)₂][BF₄] in THF/[NBu₄][BF₄] allows the electrosynthesis of a related iron(II) isonitrile complex, [FeF(CNMe)(dppe)₂][BF₄].¹³⁹ Chemical oxidation of an iron(I) dimer Fe₂(SMe)₂(CO)₄(PMe₃)₂ by AgPF₆ produces $[Fe_2F(SMe)_2(CO)_4(PMe_3)_2][PF_6]$, which is proposed to have one fluoro and two methylthiolato bridges.¹⁴⁰ A related trifluoro-bridged diruthenium cation $[Ru_2F_3(PMe_2Ph)_6]^+$ has also been reported.¹⁴¹ One example of an organometallic osmium fluoro complex, OsF(CO)₂(NNPh)(PPh₃)₂ prepared by addition of NEt_4F to $[Os(NNPh)(CO)_2(PPh_3)_2][PF_6]$, has been described.142

D. Rhodium(III), Iridium(III), and Platinum(IV)

A variety of d⁶ rhodium(III) and iridium(III) fluorides has been prepared, principally by oxidation of d⁸ starting materials. An attempt to prepare Ph¹⁸F via RhCl(PPh₃)₃-promoted decarbonylation of the labeled benzoyl fluoride produced Rh¹⁸FCl(COPh)(PPh₃)₂.¹⁴³ Similarly, IrFCl(SO₂C₁₀H₇)(CO)(PPh₃)₂ is obtained from the attempted desulfonation of naphthalenesulfonyl fluoride by Vaska's chloride.¹⁴⁴ In contrast to these reactions, formyl fluoride is decarbonylated by IrCl(CO)L₂, producing HF adducts IrFHCl(CO)L₂.¹¹⁰ The triphenylphosphine-substituted adducts IrFHX-(CO)(PPh₃)₂ where X = Cl or Br have also been prepared by addition of HF to the d⁸ halides.¹⁴⁵

Novel fluoro complexes have been prepared via addition of hypervalent main-group fluorides to rhodium(I) and iridium(I). For example, XeF₂ formally adds two fluorines across an iridium-carbonyl bond of [Ir- $(CO)_3(PEt_3)_2$]⁺, generating the unusual fluoroformyl ligand in the product [IrF(COF)(CO)₂(PEt₃)₂]⁺ (eq 12).¹⁴⁶ Oxidative addition of an S-F bond of SF₄ to

 $IrX(CO)(PEt_3)_2$ (X = Cl, Br, I) affords $IrFX(SF_3)$ -(CO)(PEt₃)₂, in which the fluoride is trans to carbon monoxide (eq 13).¹⁴⁷ ¹⁹F and ³¹P NMR studies show

$$X \xrightarrow{PEt_3} X \xrightarrow{SF_4} OC_{m} \xrightarrow{F_3} F_3$$

$$Y \xrightarrow{PEt_3} F_4$$

$$Y \xrightarrow{PEt_3} F_5$$

that the three fluorines attached to the sulfur atom are inequivalent at low temperatures, resulting in inequivalent PEt₃ ligands; at higher temperatures, this molecule undergoes an as yet unidentified fluxional process involving the fluorines of the SF₃ ligand.¹⁴⁷ In a somewhat different pattern, reactions of SF₅Cl with MCl(CO)(PPh₃)₂ produce the d⁶ dichlorofluoro complexes MFCl₂(CO)(PPh₃)₂ (M = Rh, Ir).¹⁴⁸ Such MFX₂(CO)(PPh₃)₂ compounds can be more generally prepared by addition of X₂ to the d⁸ fluorides.^{66,97,149}

Oxidative additions of a variety of other small molecules to IrF(CO)(PPh₃)₂ produce iridium(III) fluorides. Substituted silanes yield IrFH(SiR₃)(CO)(PPh₃)₂ derivatives;¹⁵⁰ tetrachloro-o-quinone produces a catecholate complex $IrF(1,2-O_2C_6Cl_4)(CO)(\dot{P}Ph_3)_2$,⁹⁷ and methyl iodide yields $IrFIMe(CO)(\dot{P}Ph_3)_2$.⁹⁰ The analogous methyl chloride complex, IrFClMe(CO)(PPh₃)₂, has been prepared by substitution of fluoride for triflate.¹⁵¹ The iridium(I) fluoro complexes $IrF(CO)L_2$ where L = PPh₃, PMePh₂, or PEtPh₂ reversibly add O_2 to form IrF(O_2)(CO)L₂.^{66,68,74,91,92,97} For the heavier halide IrX-(O_2)(CO)(PPh₃)₂ complexes, X-ray crystallographic studies show the O-O distance increases in the order Cl $(1.30 \text{ Å})^{152} < Br (1.36 \text{ Å})^{91} < I (1.51 \text{ Å}),^{153}$ indicating that the iridium(III) center is most electron-releasing for X = I and less so for X = Br or Cl. Note that the electron richness at the metal centers in d⁶ complexes is found to follow the order F < Cl < Br < I in several cases, paralleling decreasing electronegativity and increasing polarizability, hence increasing σ -donor ability. This trend is opposite that observed for the iridium(I) Vaska's derivatives (section IV) and can be understood by considering the cis arrangement of X and CO in the roughly octahedral $IrX(O_2)(CO)(PPh_3)_2$ which decreases the importance of π -bonding effects relative to those in the square-planar $IrX(CO)(PPh_3)_2$ systems. As discussed in section IV, a variety of adducts of MF- $(CO)(PPh_3)_2$ with electron-withdrawing ligands such as TCNE, MeOOCC=CCOOMe, and SO_2 have been reported and can be considered as iridium(III) oxidative addition products.

Ortho-metallated aryldiazene iridium(III) fluoro cations $[IrF(\mu^2-NH=NC_6H_3R)(CO)(PPh_3)_2]^+$ are the ultimate products obtained from the oxidative addition of aryldiazonium tetrafluoroborates to IrF(CO)- $(PPh_3)_2^{154}$ or $IrH(CO)(PPh_3)_3^{,155}$ in the latter case, the iridium center abstracts fluoride from the BF_4^- counterion.¹⁵⁵ Deprotonation of the diazene ligand yielding a diazenato fluoro complex has been reported in one case.¹⁵⁴ Reaction of the trihydridoiridium(III) isonitrile complex $IrH_3(CN-p-tol)(AsPh_3)_2$ with HF results in

	starting material	reagent(s)	refs
[VFCp(CO) ₈][PEt ₄ /Na]	[VICp(CO)][PEt]	NaF	180
[MoF(HCCPh)(dppe) ₂ [BF ₄]	MoH ₄ (dppe) ₂	HBF₄, PhC≕CH	169
$[MoF(CO)_2(dppe)_2][PF_6]$	$M_0(CO)_2(dppe)_2$	(NO)PF6, CH2Cl2	44,172,173
	$[Mo_2F(CO)_4(dppe)_4][PF_6]_3$	NEt F	172
$[MoF(CO)_2(dppe)_2]X; X = BPh_4, ClO_4$	$[M_0F(CO)_2(dppe)_2][PF_6]$	NaBPh ₄ or LiClO ₄	172
$[MoF(CO)_2(S_2CNEt_2)_2][NEt_4]$	$M_0(CO)_2(S_2CNEt_2)_2$	NEt ₄ F	160
$[M_0F(CO)_2(S_2CNC_4H_4)_2][NEt_4]$	$M_0(CO)_3(S_2CNC_4H_4)_2$	NEtF	161
MoF(NNH)(dppe) ₂	$[MoF(NNH_2)(dppe)_2][BF_4]$	K ₂ CO ₃ or NEt ₃ or NaOMe	121, 174
MoF(NNCMe=CHCOMe)(dppe) ₂	$[MoF(NN - CMeCH_2COMe)(dppe)_2][BF_4]$	NaOMe	175
MoFBr(NHO)(dppe)2 ^a	MoF(NO)(dppe) ₂	PhCOBr	122
$[MoF(NHO)(dppe)_2]X; X = BF_4, PF_6$	MoF(NO)(dppe) ₂	HX	122
[MoF(NHO)(dppe) ₂][PF ₆]	$[Mo(NO)(dppe)_2]_2$	HPF	122
	MoH ₄ (dppe) ₂	NOP	122
[MoF(NHO)(dppe) ₂]I ₃	[MoF(NHO)(dppe),][PFe]	I,	122
$MoF_2(dppe)_2$	MoH ₄ (dppe) ₂	H BF₄	169
$[Mo_2F(CO)]$ $(dppe)_{4}][PF_{8}]_{3}$	Mo(CO) ₂ (dppe) ₂	(NO)PF ₆ , MeNO ₂	172
[WF(CHCH ₂ Ph)(dppe) ₂][BF ₄]	$WH_2(C = CPh)_2(dppe)_2$	HBF,	170
$[WF(CO)_2(S_2CNR_2)_2][NEt_4]; R = Me, Et$	$W(CO)_2(S_2CNR_2)_2$	NEt	160
$[WF(CO)_2(S_2CNC_4H_4)_2][NEt_4]$	$W(CO)_3(S_2CNC_4H_4)_2$	NEt F	161
$[WF(CO)_{2}(bipy)L][BF_{4}]; L = dppm, dppe$	$[W(CO)_2(bipy)_2][BF_4]_2$	L	171
$[WF(CO)_{3}(tacn)][PF_{6}]$	$W(CO)_{3}(tacn)$	(i) HF, air; (ii) NaPF ₆	163
[WF(CO) ₃ (Me ₃ tacn)][PF ₆]	$W(CO)_{8}(Me_{3}tacn)$	(i) HF, air; (ii) NaPF ₆	164
$WF(CO)_{3}(\eta^{3}-NR_{2}C_{6}H_{4}-2-N=CHC_{6}F_{4}); R = H, Me$	W(CO) ₃ (NCEt) ₃	1,2-NR ₂ C ₆ H ₄ N=CHC ₆ F ₅	165
$WF(CO)_{3}(\eta^{3}-NMe_{2}CH_{2}CH_{2}N=CHC_{6}F_{4})$	$W(CO)_3(NCEt)_3$	1,2-NR ₂ CH ₂ CH ₂ N=CHČ ₆ F ₆	166
$WF(CO)_3(\eta^3-NMe_2CH_2CH_2N=CHC_6H_4)$	$WCl(CO)_{3}(\eta^{3}-NMe_{2}CH_{2}CH_{2}N=CHC_{6}H_{4})$	KF-2H ₂ O	166
$WF(CO)_3(\eta^3-NHRCH_2CH_2N=CHC_6H_4); R = H, Ph$	not reported	not reported	167,168
WF(NNH)(dppe) ₂	$[WF(NNH_2)(dppe)_2][BF_4]$	K ₂ CO ₃ or NEt ₃	121
WF(NNCMe=CHCOMe)(dppe) ₂	[WF(NN=CMeCH ₂ COMe)(dppe) ₂ [BF ₄]	NaOMe	175
$WF[NNCX=C(CN)Y](dppe)_2; X = H, Y = CN,$	[WF(NNH ₂)(dppe) ₂][BF ₄]	$ClCX = C(CN)Y, NEt_3$	178
COOEt; X = Cl, Y = CN			
$WF[NNC_{6}H_{3}-2,4-(NO_{2})_{2}](dppe)_{2}$	$[WF(NNH_2)(dppe)_2][BF_4]$	$FC_{6}H_{3}$ -2,4-(NO ₂) ₂ , K ₂ CO ₃	179
$[WF(dppe)_2]_2(\mu-NNCH_2CH_2NN)$	$[WF(NN - CH_2)(dppe)_2][BF_4]$	reduction	176,177
$[TcF_2(diars)_2]^+$	TcO4	HF, diars	182
^a Addition of HBr present in PhCOBr.			

replacement of one of the hydrides by fluoride to yield $IrFH_2(CN-p-tol)(AsPh_3)_2$.¹⁵⁸ Fluoro- and chloroiridium(III) metallacyclecarbene derivatives, $IrX[C_4-(COOMe)_4](COCH_2CH_2CH_2)(PPh_3)_2$, have recently been reported.¹⁵⁷

A high-valent platinum fluoride $PtF_2Cl_2(PPh_3)_2$ is the reported product of two processes: the reaction of trichloro-3,3,3-trifluoropropene with $Pt(PhCH=CH-Ph)(PPh_3)_2^{158}$ and the decomposition of $PtCl(SF_5)-(PPh_3)_2$ in dichloromethane or acetone.¹⁴⁸ It is interesting that this platinum(IV) compound and the ruthenium(II) complexes $RuFCpL_2$ described earlier constitute the only reported examples of d⁶ organometallic fluorides containing phosphine, arsine, or stibine ligands which do not also contain at least one strong π -acceptor ligand. Although not included in the specific purview of this review, $PtFMe_2(\eta^3 NMe_2CH_2CH_2-2-N=CHC_6F_4)$ constitutes an additional example of a platinum(IV) fluoride, again without a strong π -acceptor ligand.¹⁵⁹

VI. Fluoro Complexes of d⁴ Metal Centers

A variety of molybdenum(II) and tungsten(II) fluoro compounds containing carbonyl and phosphine ligands has been reported. They are listed in Table VI along with one vanadium(I) carbonyl fluoride and one technetium(III) arsine fluoro complex.

A. Molybdenum(II) and Tungsten(II)

Addition of F^- to the netural d⁴ carbonyl compounds $M(CO)_n(S_2CNR_2)_2$ (M = Mo, W; n = 2 or 3) results in formation of seven-coordinate 18-electron anionic fluoro

derivatives $[MF(CO)_2(S_2CNR_2)_2]^{-.160,161}$ Analogous reactions of Cl⁻, Br⁻, and l⁻ and these carbonyls have also been examined (eq 14). When S_2CNR_2 is pyrrole-N-

carbodithioate, the seven-coordinate adducts are stable solids for X = F, Cl, and Br.¹⁶¹ However, when S₂CNR₂ is the diethyldithiocarbamate ligand, a more electronreleasing ligand than pyrrole-N-carbodithioate, the structurally characterized fluoride [MoF(CO)₂-(S₂CNEt₂)₂][NEt₄] is the only isolable member of the series;^{180,161} for X = Cl or Br, equilibrium formation of [MoX(CO)₂(S₂CNEt₂)₂]⁻ from Mo(CO)₂(S₂CNEt₂)₂ and the halide ion is observed in dichloromethane solution¹⁶² and no adduct is found for X = I.¹⁸⁰ NMR, infrared, and electronic absorption spectra for these series of halide compounds have been reported;^{180,161} however, no simple correlation of the spectral data with the nature of the halide ligand is found.

Seven-coordinate tungsten(II) fluoro complexes containing triazacyclononane ligands, $[WF(CO)_3(tacn)]^+$ and $[WF(CO)_3(Me_3tacn)]^+$, are prepared from the corresponding neutral tungsten(0) compounds by air oxidation in the presence of aqueous HF (eq 15).^{163,164}

Figure 3. Hydrogen-bonding of δ -valerolactam to a tungsten(II) fluoro complex.

Comparison of the infrared spectra for the series of halide compounds $[WX(CO)_3(Me_3tacn)]^+$ shows an increase in each of the three strong ν_{CO} bands in the order X = F (1985, 1895, 1855 cm⁻¹) < Cl (1990, 1910, 1865 cm⁻¹) < Br (2000, 1930, 1895 cm⁻¹) < I (2101, 1950, 1895 cm⁻¹).¹⁶⁴ The origins of this trend, which is opposite to that observed for the analogous molybdenum complexes $[MoX(CO)_3(Me_3tacn)]^+$ (X = Cl, Br, I), are not understood,¹⁶⁴ and no simple trend is observed in the IR spectra of $[WX(CO)_3(tacn)]^+$ (X = F, Br, I).¹⁶³

Related seven-coordinate tungsten(II) tricarbonyl fluoro compounds containing chelating unsymmetrical Schiff base ligands have been prepared either by oxidative addition of ligand C-F bonds to tungsten(0) compounds¹⁶⁵ or by metathesis of fluoride for chloride¹⁶⁶ and have been the subject of ¹⁸³W NMR¹⁶⁷ and X-ray structural^{185,166} studies. Surprisingly, the presence of water fails to shift the fluoride/chloride competition equilibrium in this system as is observed for Rh(I) (Section IV); the tungsten(II) chloro complex reacts quantitatively with KF-2H₂O to yield the fluoro analogue. The possible use of these compounds as transition-metal-based reagents for molecular recognition, due to their ability to bind organic substrates via, in part, hydrogen-bonding with the metal fluoride (Figure 3), has been discussed.¹⁶⁸

Several of the compounds listed in Table VI are the products of fluoride abstraction from BF_4^- or PF_6^- ions. These are often quite complex reactions, combining F⁻ abstraction with protonation, ligand addition, or redox chemistry. For example, the addition of $HBF_4^-OEt_2$ to $MoH_4(dppe)_2$ in the presence of phenylacetylene yields the structurally characterized cationic fluoro complex $[MoF(HCCPh)(dppe)_2]^+$.¹⁶⁹ A tungsten carbene fluoro complex $[WF(CHCH_2Ph)(dppe)_2][BF_4]$ is produced by reaction of a tungsten diacetylide dihydride $WH_2(C=C-Ph)_2(dppe)_2$ with HBF_4 .¹⁷⁰ In these cases, the fluoride ion comes from an added reagent, HBF_4 . Alternatively, the fluoride ion may come from the counterion in a stable starting metal complex, as in the reaction of *cis*- $[W(CO)_2(bipy)_2][BF_4]_2$ and L = dppm or dppe to produce $[WF(CO)_2(bipy)L][BF_4].^{171}$

The molybdenum(0) compound $Mo(CO)_2(dppe)_2$ reacts with (NO)PF₆, a powerful oxidant, to yield molybdenum(II) products with terminal or bridging fluoro ligands, depending on the solvent (Scheme IV).^{44,172} Subsequent addition of fluoride to the fluoro-bridged complex results in complete conversion to [MoF-(CO)₂(dppe)₂][PF₆],¹⁷² which has been structurally characterized.¹⁷³

Reaction of (NO)PF₆ and MoH₄(dppe)₂ afforded two products in which net reduction of the metal center has occurred: the molybdenum(0) compound MoF(NO)-(dppe)₂ (section V) and (MoF(NHO)(dppe)₂]⁺, a rare example of a compound containing a nitroxyl ligand.¹²² The latter compound is also produced by the reaction SCHEME IV

 $\left[\mathsf{Mo}_2(\mathsf{F})(\mathsf{CO})_4(\mathsf{dppe})_4\right]^{3+}$

of $[Mo(NO)(dppe)_2]_2$ and HPF_6 .¹²² More straightforward formation of the nitroxyl fluoro compound is observed upon protonation of the nitrosyl ligand of $MoF(NO)(dppe)_2$.¹²² The fluoride ion in $[MoF(NHO)(dppe)_2]^+$ is readily displaced by chloride, bromide, or iodide upon reaction with an alkali metal halide salt in acetone.¹²²

Diazenido complexes of molybdenum(II) and tungsten(II) with supporting dppe and fluoro ligands have been prepared from cationic hydrazido or diazoalkane fluoro complexes as part of studies focused on the chemistry of nitrogen-containing ligands relevant to nitrogen fixation. For example, deprotonation of $[MF(NNH_2)(dppe)_2]^+$ (M = Mo, W) (section VII) by potassium carbonate, triethylamine, or sodium methoxide yields MF(NNH)(dppe)₂.^{121,174} Analogous reactions of $[MF(NN=CMeCH_2COMe)(dppe)_2]^+$ (M = Mo, W) (section VII) and sodium methoxide produce MF-(NNCMe=CHCOMe)(dppe)₂.¹⁷⁵ One-electron reduction of the diazomethane complex $[WF(NN=CH_2) (dppe)_2$ ⁺ (section VII) results in formation of [WF- $(dppe)_{2}_{2}(\mu-NNCH_{2}CH_{2}NN)$, presumably via coupling of two [WF(NNCH₂)(dppe)₂][•] units to produce the carbon-carbon bond.^{176,177} Reactions of [WF- $(NNH_2)(dppe)_2]^+$ with chlorinated (poly)cyanoalkanes¹⁷⁸ or 2.4-dinitrofluorobenzene¹⁷⁹ in the presence of triethylamine yield neutral diazenido fluoro complexes, $WF(NNR)(dppe)_2$.

B. Other Systems

The vanadium(I) ion, $[VFCp(CO)_3]^-$, prepared by metathesis of fluoride for iodide, has been examined as part of a study on the influence of halide ligands on metal shielding in low-valent vanadium complexes.¹⁸⁰ For the series of d⁴ compounds $[VXCp(CO)_3]^-$, the ⁵¹V NMR spectral data show a normal halogen dependence³⁴ of the metal shielding, F (δ +417) < Cl (δ -515) < Br (δ -578) < I (δ -742).¹⁸⁰ In contrast, the related d⁴ molybdenum anions, [MoX(CO)₂(S₂CNEt₂)₂]⁻, exhibit an inverse halogen dependence of the metal shielding by ⁹⁵Mo NMR spectroscopy for X = F (δ +125) and Cl (δ +315).¹⁸¹

The technetium cation $[TcF_2(diars)_2]^+$ has been prepared as one of a series of halide complexes, $[^{99m}TcX_2(diars)_2]^+$, for evaluation and comparison as myocardial imaging agents.¹⁸² This compound is generated in saline solutions from a mixture of pertechnetate, hydrofluoric acid, ethanol, and the diars ligand.¹⁸²

VII. Fluoro Complexes of d² Metal Centers

Fluoro complexes containing phosphine ligands attached to d^2 metal centers, molybdenum(IV), tung-

TABLE VII. Fluoro Complexes of d² Metal Centers

	starting material	reagent(s)	refs
MoF(N)(dppe) ₂	$[M_0F(NH)(dppe)_2][BF_4]$	reduction	189
[MoF(NH)(dppe) ₂][BF ₄]	MoN(N ₃)(dppe) ₂	(i) HF; (ii) HBF₄	186
	MoH ₄ (dppe) ₂	HBF ₄ , N ₃ -	169
$[MoF(O)(dppe)_{o}][BF_{A}]$	MoH ₄ (dppe) ₂	HBF, HO or SO	169
$[MoF(S)(dppe)_{2}][BF_{4}]$	MoH ₄ (dppe) ₂	HBF, H,S or SO	169
[MoF(NNH ₀)(dppe) ₀][BF ₄]	Mo(N _a) _a (dppe) _a	HBF	194.195
	MoF(NNH)(dppe) ₂	HBF	121
	MoH ₄ (dppe) ₂	HBF, N ₂	169
[MoF(NNH ₂)(dppe) ₂][BF ₈]	$Mo(N_2)_2(dppe)_2$	(NO)PF. MeOH	122
[MoF(NNH ₂)(triphos)(PPh ₃)][BF ₄]	$Mo(N_2)_2(triphos)(PPh_3)$	HBF ₄ or [PHPh ₈][BF ₄]	190-193
$[MoF(NN=CHR)(dppe)_2][BF_4]; R = H, Me, Et, Ph,$	[MoF(NNH ₂)(dppe) ₂][BF ₄]	RCHO	196,200
CH ₂ Ph, CH=CHCH ₃ , CH=CHPh			•
$[MoF(NN=CHC_{e}H_{4}-4-X)(dppe)_{2}][BF_{4}]; X = OMe, Cl$	$M_0(N_2)_2(dppe)_2$	(i) HBF ₄ ; (ii) 4-XC _e H ₄ CHO	201
$[M_0F(NN)=CR_0](dppe)_0][BF_4]; CR_2 = CMe_2,$	[MoF(NNH _o)(dppe) _o][BF ₄]	R,CO	196.200
		-	
$O(CH_2 CH_2 CH_2 CH_2), CMeCH_2 COMe$	IN- (OU) (SOU OU DDL) HDE I	MOH ELO	000
$[MOF(SUH_2UH_2PPH_2)_2(UEt_2)][DF_4]$	$[Mo(OH)_2(SCH_2CH_2PPh_2)_2][BF_4]_2$	MeOn, Et ₂ O	208
$MOF_4(PPR_3)_2$	$Mof_4(UU)_2$	rrn ₃ UDF	00 195
$[MO_2(\mu-r)_3\Pi_4(rMer\Pi_2)_6][Dr_4]$	$MOR_4(FMEFR_2)_4$	N-DDL N-DE	100
$[MO_2(\mu-F)_3H_4(PMern_2)_6]X; X = Drn_4, PF_6$	$[MO_2(\mu-F)_3\Pi_4(PMeP\Pi_2)_6][DF_4]$		100 104
$[WFH_2(H_2O)(PMe_3)_4]F$	$WH(CH_2PMe_2)(PMe_3)_4$		183,184
	$WF_2H_2(PMe_3)_4$		100,104
$[WFH_2(H_2U)(PMe_3)_4][PF_6]$	$WH (CH_2PMe_2)(PMe_3)_4$		103,104
$WF(COH_2COOMe)(dppe)_2$ $WF(COH_Db)(CO)(dppe)_2$	$WH_2(C=CCOOMe)_2(appe)_2$		170
$WF(COH_2FH)(CO)_2(appe)$	$[W(OUR_2 rn)(OU)_2(appe)][Dr_4]$		200
$[WF(ND)(appe)_2][DF_4]^2$	$[W(NI)(N_3)(appe)_2] \cup [W(N_1)(dppe)_2] \cup [W(N_1)$	(I) LIOME; (II) HF	107 100
[WF(INING ₂)(dppe) ₂][DF ₄]	$W(1N_2)_2(appe)_2$		190,190
	$WF(NNH)(appe)_2$	ndr ₄	121
	$[WF[NNRCh=C(CN)_2](appe)_2][DF_4]$	HEACA (CO)	204
$[WF(NNH)(DM_{2})][FF_{6}]$	$[W(OI)(ININI_2)(appe)_2][FF_6]$		197
$[WF(NNNIQ)(FMe_2FD)_4][DF_4]^{*}$	$W(1N_2)_2(\Gamma Me_2\Gamma n)_4$ WF(NNOU-C(ON))(dc)	ПГ UDF	199
$[WF[NNHCH=C(CN)_2](appe)_2][Dr_4]$	$WF[NNCH=C(CN)_2](appe)_2$		204
$[WF(NNHC_6\Pi_3^2,2,4^{-}(NO_2)_2](appe)_2]\Lambda$	wr $[ININC_6\Pi_3 - 2, 4 - (INO_2)_2](appe)_2$	HCI OF CF3COOH	170
$[WF(NN=OHD)(dependent)][DF_4]$			100 000
$[WF(NN=OR)(appe)_2][DF_4]; R = Et, FR, C_8R_4-2-OR,$	$[WF(ININI_2)(appe)_2][DF_4]$	KCHU	190,202
$U_{10}\Pi_{0}^{-2} - U\Pi$	W(N) (dense)		901
$[WF(NN=CHC_{g}H_4^{-4}-A)(uppe)_2][DF_4]; A = H, Me,$	w (142)2(appe)2	(i) HBF_4 ; (ii) 4- $\operatorname{AC}_6\operatorname{H}_4$ CHO	201
INIME2, UME, CI, INO2	INF(NINU)(dens) HDF 1	MCOCH COM	175 100
$[WF(NN=OMeOH_2OMe)(appe)_2][DF_4]$	$[WF(NNCM_{4})(appe)_{2}][DF_{4}]$	MeCOCH2COMe	175
[WF(ININ=CMeCH ₂ COMe)(dppe) ₂]Cl	WF (ININCIMECICOME)(uppe) ₂	нсі	175
[WF(NNCOCH ₂ CH ₂ CO](dppe) ₂][BF ₄]	$[WF(NNH_2)(dppe)_2][BF_4]$	ClCOCH ₂ CH ₂ COCl	203
$WF_2H_2(PMe_3)_4$	$[WFH_2(H_2O)(PMe_3)_4]F$	KH	183,184
	$WH(CH_2PMe_2)(PMe_3)_3$	(i) HBF ₄ ; (ii) KH	183,184
$[W_2F_2(dppe)_4(\mu-NNHCH_2CH_2NHN)]Br_2$	[WF(NNCH ₂)(dppe)][BF ₄]	(i) reduction; (ii) HBr	176
$[ReF(CCH_2^tBu)(dppe)_2][BF_4]$	ReCl(C=CH ^t Bu)(dppe) ₂	HBF₄	206
$[ReFMe_2(NHPh)(PMe_3)_2][BF_4]$	$Re(NPh)Me_3(PMe_3)_2$	HBF ₄	207
$[ReFH(O)[PPh(CH_2CH_2CH_2PCy_2)_2][SbF_6]$	$[\text{ReH}_{6}[\text{PPh}(\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{PCy}_{2})_{2}][\text{SbF}_{6}]$	1:2 acetone/benzene	210
$[\operatorname{ReF}_3(O)(\operatorname{PPh}_3)]_n$	KReO ₄	HF, PPh ₃	209
ADE - from action of UE on horseilizate class			

sten(IV), and rhenium(V), are listed in Table VII. As might be expected for the combination of a relatively high-valent metal center and a strong π -acid, d² fluoro compounds possessing carbonyl ligands are rare; only one such example appears in Table VII, a tungsten alkylidyne fluoride compound. Additionally, there are two reported examples of formally d² metal fluoro compounds containing only carbonyl ligands, MoF₄-(CO)₂⁵⁰ and MoF₄(CO)₃⁵¹ (section II), however, these species are incompletely characterized.

Reaction of metal hydrido derivatives and HF, HPF₆, or HBF₄ can yield fluoro compounds. For example, the tungsten(II) compound WH(CH₂PMe₂)(PMe₃)₄ reacts with aqueous HF or HPF₆ to yield [WFH₂(H₂O)-(PMe₃)₄]⁺ with F⁻ or PF₆⁻ as the counterion.^{183,184} The fluoride salt [WFH₂(H₂O)(PMe₃)₄]F, which has been structurally characterized by X-ray crystallography, undergoes reaction with potassium hydride to yield a neutral difluoro dihydrido complex, WF₂H₂(PMe₃)₄, which can readily revert to the aquo cation upon addition of H₂O (Scheme V).^{183,184} In methanol-d₄,

SCHEME V

 $[WFH_2(H_2O)(PMe_3)_4]F$ shows two distinct ¹⁹F NMR resonances consistent with its formulation as a fluoride salt of a monofluoro cation; however, its ¹⁹F NMR spectrum in THF- d_8 shows only a single peak at the same chemical shift as that of WF₂H₂(PMe₃)₄, suggesting facile interconversion of these two species.¹⁸⁴

The molybdenum(IV) hydrido phosphine complex $MoH_4(PMePh_2)_4$ reacts with methanolic HBF₄ to form a structurally characterized bimetallic trifluoro-bridged complex, $[Mo_2(\mu-F)_3H_4(PMePh_2)_6]^+$, which retains two hydrido ligands per metal.¹⁸⁵ In contrast, reaction of $MoH_4(dppe)_2$ and HBF₄-OEt₂ in the presence of various small molecules results in loss of all four hydrido ligands to yield complexes of formula $[MoFY(dppe)_2]^+$ where Y is a dianionic oxo, imido, sulfido, or hydrazido ligand

SCHEME VI

(Scheme VI).¹⁶⁹ The imido fluoro complex [MoF- $(NH)(dppe)_2$]⁺ has previously been prepared by reaction of MoN(N₃)(dppe)₂ and aqueous HF, followed by addition of HBF₄.¹⁸⁶ The analogous tungsten imido fluoride, [WF(NH)(dppe)₂]⁺, has been isolated from the reaction of [W(NH)(N₃)(dppe)₂]⁺ with lithium methoxide followed by addition of aqueous HF.¹⁸⁷

Reaction of $[MoF(NH)(dppe)_2]^+$ or the related chloro, bromo, iodo, and methoxy derivatives and base ultimately yields ammonia. In the case of the halide ligands, these reactions are reported to proceed through initial deprotonation of the imido group, followed by loss of halide to yield a common intermediate, [Mo- $(N)(dppe)_2$ ^{+.186} The acidity of the imido group in trans- $[MoX(NH)(dppe)_2]^+$ is found to decrease in the order X = I, Br, Cl > F > OMe;¹⁸⁶ an analogous acidity trend is observed for $[WX(NH)(dppe)_2]^+$.¹⁶⁸ In the molybdenum system, this effect is attributed to increasing π -bonding between the X ligand and the metal along the series due both to the inability of fluoride and methoxide to accept π -electron density from the metal center compared with the heavier halides and to the π -electron-donating capability of the fluoro and methoxy ligands;¹⁸⁶ it is also consistent with the irreversible reduction potentials of these compounds which indicate that the ease of reduction follows the order I (-2.00 V)> Br (-2.02 V) > Cl (-2.09 V) > F (-2.51 V) > OMe (-2.62 V).¹⁸⁹ Subsequent loss of halide from the proposed intermediate $MoX(N)(dppe)_2$ occurs rapidly in methanol solution for the chloro, bromo, and iodo derivatives, but slowly enough from the fluoro derivative $MoF(N)(dppe)_2$ to allow spectroscopic detection,¹⁸⁶ suggesting that fluoride forms the strongest bond to molybdenum(IV) in this system. $MoF(N)(dppe)_2$ has also been observed as the major product of the electrochemical reduction of $[MoF(NH)(dppe)_2]^+$.¹⁸⁹

Molybdenum and tungsten hydrazido cations containing fluoro ligands are prepared by the reactions of neutral molybdenum(0) or tungsten(0) dinitrogen complexes and tetrafluoroboric acid, either as an aqueous solution or in the anhydrous forms HBF₄·OEt₂ or [PHPh₃][BF₄] (eq 16).¹⁹⁰⁻¹⁹⁶ The acidities of [MoX-(NNH₂)(dppe)₂]⁺ for X = F, Br have been compared and fit the trend described above for the imido complexes, with the hydrazido ligand of the fluoro derivative more acidic than that of the bromo.¹⁷⁴ The hydrazido fluoro complexes, [MF(NNH₂)(dppe)₂]⁺, can

also be obtained for M = Mo, W upon protonation of the corresponding diazenido complexes¹²¹ (section VI) or for M = Mo in low yield on reaction of HBF₄·OEt₂ and MoH₄(dppe)₂ under an N₂ atmosphere;¹⁶⁹ [MoF-(NNH₂)(dppe)₂]⁺ has been structurally characterized with BF₄⁻ as its counterion.¹⁹⁴ The PF₆⁻ salt of this cation is the major, though unexpected, product isolated from the reaction of Mo(N₂)₂(dppe)₂ and NOPF₆.¹²² Similarly, [WF(NNH₂)(dppe)₂][PF₆] is the unexpected product of the reaction of [W(OH)(NNH₂)(dppe)₂][PF₆] and HFeCo₂(CO)₁₂.¹⁹⁷

 $Mo(N_2)_2(triphos)(PPh_3)$ reacts with HBF₄ to produce [MoF(NNH₂)(triphos)(PPh₃)]⁺, in contrast to its reactions with HX (X = Cl, Br, I) and H₂SO₄ to yield ammonia and free dinitrogen;^{190–193} the isolation of the fluoro hydrazido complex has been attributed to lack of lability of the coordinated fluoride in this species compared with the other halides.^{191,198} The identity of the phosphine ligands can also affect the course of the protonation reaction; addition of anhydrous HBF₄ to $M(N_2)_2(PMe_2Ph)_4$ (M = Mo, W) produces ammonia without the detectable intermediacy of a hydrazido complex.¹⁹⁵ Note, however, that the tungsten hydrazido complex, [WF(NNH₂)(PMe₂Ph)₄]⁺, can be isolated from the reaction of W(N₂)₂(PMe₂Ph)₄ and methanolic HF.¹⁹⁹

In studies focused principally on chemistry of the nitrogen-containing ligand, molybdenum and tungsten diazoalkane fluoro complexes have been prepared by reactions of hydrazido ligands with aldehydes^{196,200–202} ketones,^{175,196,200} and succinyl dichloride²⁰³ and by protonation of diazenido complexes (section VI).^{175,176,179,204} The structures of two of these diazenido fluoro complexes, [WF(NN=CMeCH₂COMe)(dppe)₂][BF₄] and [WF[NNCOCH₂CH₂CO](dppe)₂][BF₄], have been determined by X-ray crystallography.^{196,203} Reduction of [WF[NNHCH=C(CN)₂](dppe)₂]⁺ under N₂ results in regeneration of the hydrazido complex, [WF(NNH₂)-(dppe)₂]⁺, accompanied by release of 5-amino-4-cyanopyrazole.²⁰⁴

Tungsten and rhenium alkylidyne complexes can be prepared which formally contain d² metal centers but are closely related to octahedral d⁶ compounds with strong π -acid ligands. Addition of F⁻ to the cationic alkylidyne compound [W(CCH₂Ph)(CO)₂(dppe)]⁺ yields WF(CCH₂Ph)(CO)₂(dppe);²⁰⁵ WF(CCH₂COOMe)-(dppe)₂ is prepared by reaction of WH₂(C=C-COOMe)₂(dppe)₂ and HBF₄.¹⁷⁰ Protonation of the vinylidene complex ReCl(C=CH⁴Bu)(dppe)₂ by HBF₄ yields [ReF(CCH₂⁴Bu)(dppe)₂][BF₄].²⁰⁶ A rhenium(V) amido fluoro compound [ReFMe₂(NHPh)(PMe₃)₂]-[BF₄] is isolated upon reaction of Re(NPh)Me₃(PMe₃)₂ and aqueous HBF₄.²⁰⁷

Three of the compounds listed in Table VII have been characterized only by elemental analysis. Unstable $[MoF(OEt_2)(SCH_2CH_2PPh_2)_2][BF_4]$ is reported as the product of decomposition upon attempted recrystallization of a compound formulated as $[Mo(OH)_2-(SCH_2CH_2PPh_2)_2][BF_4]_2$, prepared by reaction of a

TABLE VIII. Fluoro Complexes of d^{*} Metal Centers

	starting material	reagent(s)	refs	
NbF ₅ (diars)	NbF5	diars	213	
$[TaF_4(PBu_3)_2][TaF_6]$	TaF ₅	PBu ₈	214	
WFCl(O)(CH ^t Bu)(PEt ₃) ₂	$WCl_2(O)(CH^tBu)(PEt_3)_2$	TlBF ₄ , PEt ₃	215	
$[WFH(NNH_2)(dppe)_2][BF_4]_2$	not reported	not reported	216	
$WF_{6}L$; L = PMe_{3} , PEt_{3} , $AsMe_{3}$	WF ₆	L	211,212	

TiF(TPP)

CrCl₃(thf)₃

starting material

[Cr(NO)(NCMe)5][BF4]2

[Cr(NO)(CN^tBu)₅][PF₆]₂

TABLE IX. Odd Electron Metal Fluoro Complexes

TiF(TPP)(PBu ₃)
$CrF_{3}L$; L = triphos, $P(CH_{2}CH_{2}PPh_{2})_{3}$, $CMe(CH_{2}AsMe_{2})_{3}$
[CrF(NO)(dppe) ₂][BF ₄]
[CrF(NO)(dppe) ₂][PF ₂]
$M_{0_9}F_9(OR)_4(PMe_9)_9$; $OR = O^4Pr$, O'Bu
MoF(CO) _o (dppe) _o
CoF ₀ (PMe ₀ Ph) ₀

molybdenum(VI) dioxo compound, $Mo(O_2)$ -(SCH₂CH₂PPh₂)₂, and HBF₄.²⁰⁶ A molybdenum fluoro compound, MoF₄(PPh₃)₂, is the reported product of the reaction of MoF₄(CO)₂ and triphenylphosphine.⁵¹ Attempts to synthesize the fluoro analogue of ReCl₃-(O)(PPh₃)₂ from potassium perrhenate, triphenylphosphine, and HF in refluxing ethanol have produced a material formulated as a fluoro-bridged polymer [ReF₃(O)(PPh₃)]_n.²⁰⁹

A related rhenium oxo fluoro complex, [ReFH(O)-[PPh(CH₂CH₂CH₂PCy₂)₂][SbF₆], has recently been reported to form upon reflux of [ReH₆[PPh-(CH₂CH₂CH₂PCy₂)₂][SbF₆] in a 1:2 acetone/benzene solution.²¹⁰

VIII. Fluoro Complexes of d^o Metal Centers

Fluoro compounds of niobium, tantalum, and tungsten in their maximum oxidation states containing phosphine or arsine ligands can be prepared (Table VIII). Tungsten hexafluoride reacts with $L = PMe_3^{211}$ PEt₃,²¹² and AsMe₃²¹² to produce seven-coordinate complexes of formula WF₆(L) which have been characterized by ¹⁹F NMR spectroscopy. Each compound shows a single resonance in its ¹⁹F NMR spectrum, indicating that a fluxional process equilibrates the six fluoro ligands.^{211,212} Phosphorus-fluorine coupling and ¹⁸³W satellites are resolved only for the PMe₃ adduct, which is fluxional down to -85 °C.²¹¹ The PEt_3 and AsMe₃ complexes have been shown to undergo respective slow and fast exchange with free ligand.²¹² Niobium pentafluoride is reported to react with diars to form an analogous seven-coordinate complex, NbF_5 (diars).²¹³ In contrast, reaction of TaF₅ and 1 equiv of tributylphosphine affords a salt, $[TaF_4(PBu_3)_2][TaF_6]$, identified by ¹⁹F NMR spectroscopy.²¹⁴

High-valent metal complexes can readily abstract Ffrom counterions such as BF_4 or PF_6 to produce fluoro derivatives. One d⁰ fluoro phosphine compound, WFCl(O)(CH^tBu)(PEt₃)₂, has been prepared by this method upon reaction of TlBF₄ or AgPF₆ and WCl₂-(O)(CH^tBu)(PEt₃)₂.²¹⁵ Spectral data, but not details of preparation, for an additional tungsten(VI) phosphine fluoride, [WFH(NNH₂)(depe)₂][BF₄]₂, have been reported.²¹⁶

IX. Odd-Electron Metal Fluoro Complexes

Only a limited number of odd-electron fluoro compounds containing carbonyl, phosphine, or arsine ligands have been described (Table IX). This is con-

 $Mo_4F_2(O^iPr)_{10}$ or $Mo_4(\mu$ -F) $_4(O^iBu)_8$ PMe $_8$ 222,223 $Mo(CO)_2(dppe)_2$ F⁻, oxidation 29 CoF_2 PMe $_2Ph$ 221

TABLE X. Structural Studies of Metal Fluoro Complexes

reagent(s)

(i) AgF; (ii) L

PBu₈

dppe

dppe

	MF _{terminal} , Å	ref
CrF(NO)(dppe) ₂	1.880 (5)	120
$[MoF(NNH_2)(dppe)_2][BF_4]$	1.992 (8)	194
$[MoF(OtBu)_2(PMe_3)]_2$	1.983 (6)	222
[MoF(HCCPh)(dppe) ₂][BF ₄]	1.981 (4)	169
$[MoF(CO)_2(dppe)_2][PF_6]$	2.035 (6)	173
$[MoF(CO)_2(S_2CNEt_2)_2][NEt_4]$	2.055 (3)	160
$[WFH_2(H_2O)(PMe_8)_4]F$	2.08 (1)	183
[WF(NN-CMeCH ₂ COMe)(dppe) ₂][BF ₄]	2.019 (14)	196
[WF{NNCOCH ₂ CH ₂ CO](dppe) ₂][BF ₄]	not reported	203
$WF(CO)_{3}(\eta^{3}-NH_{2}C_{6}H_{4}-2-N-CHC_{6}F_{4})$	2.032 (4)	165
$WF(CO)_{s}(\eta^{3}-NMe_{2}C_{6}H_{4}-2-N=CHC_{6}F_{4})$	2.037 (2)	166
$[\text{ReF}(\text{CCH}_2^{\dagger}\text{Bu})(\text{dppe})_2][\text{BF}_4]$	2.134 (4)	206
$[ReF(NO)(CO)(PPh_8)_3][ClO_4]$	1.973 (13)	127
ReF(CO) ₃ (tmeda)	2.039 (4)	126
$[IrF(COF)(CO)_2(PEt_3)_2][BF_4]$	1.998 (3)	146
$[IrF(\eta^2-NH=NC_6H_3-4-F)(CO)(PPh_8)_2][BF_3OH]$	2.08 (1)	155
$[IrF(\eta^2-NH=NC_6H_3-2-CF_3)(CO)(PPh_3)_2][BF_4]$	2.21 (4)	155
$PtF[CH(CF_3)_2](PPh_3)_2$	2.03 (1)	115
$[PtF(PEt_3)_3][BF_4]$	2.043 (7)	117
CuF(PPh ₂) ₃	2.026 (2)	60

- <u> </u>		MF _{terminal} , Å	MF _{bridge} , Å	MFM, deg	ref
$\frac{[Mo_2(\mu_2-F)_3H_4-}{(PMePh_2)_2][BF_4]}$			2.161 (27) ^a	97.7 (6) ^a	185
$Mn_{s}(\mu_{2}-F)(\mu_{3}-OEt)_{2}-$			1. 9 5 (3)ª	93 (1)	53
$[Mn(CO)_3]_4(\mu_3-F)_2-$ $(\mu_3-OH)_3$			2.052 (3) ^b	102.4 (1) ^b	12
$[\operatorname{Re}(\operatorname{CO})_{5}](\mu_{2}-F)-$ $[\operatorname{Re}F_{5}]$	Re(I)		2.17 (4)ª	140.4 (1 9)ª	40
1 02	Re(V)	1.84 (6)ª	1.97 (3)ª	140.4 (19)ª	
$[\operatorname{Re}(\operatorname{CO})_{2}]_{4}(\mu_{3}-F)_{4}$. ,		2.200 (5)ª	103.8 (11)ª	43
$[RuF(CO)_{8}]_{4}(\mu_{2}-F)_{4}$		1.99 (7)ª	2.04 (7) ^a	145°	47

^aAverage of two or more crystallographically independent values. ^bAverage of MnF/MnO and MnFMn/MnOMn due to disordered structure.

sistent with the general emphasis organometallic chemistry has placed on diamagnetic compounds due to the power of NMR spectroscopy as a tool for characterizing organic fragments in these species.

One d¹ complex has been reported; TiF(PBu₃)(TPP) has been prepared by addition of tributylphosphine to TiF(TPP) and characterized by ESR and UV-visible spectroscopy.²¹⁷ Paramagnetic d³ compounds, CrF₃L, where L = triphos (P(CH₂CH₂PPh₂)₃) or CMe-(CH₂AsMe₂)₃, have been synthesized by treatment of CrCl₃(THF)₃ with silver fluoride followed by addition of tridentate phosphine or arsine ligands and characterized by a variety of physicochemical techniques.²¹⁸ Examples of d⁵ phosphine fluorides have been reported; reactions of the chromium(I) salts [Cr(NO)-(NCMe)₄][BF₄]₂ and [Cr(NO)(CN^tBu)₅][PF₆]₂ with dppe result in displacement of the nitrile and isonitrile

refs

217

218

120

219

TABLE XI. Selected NMR Data for Metal Fluoro Complexes

compd	solvent	δ(¹⁹ F) ^a	δ(¹⁹ F) ^b	δ(³¹ P) ^a	δ(³¹ P) ^b	J _{PF}	ref
$[T_{a}F_{4}(PBu_{3})_{2}]^{+}$	CH ₂ Cl ₂	389.0°	+64			70	214
[MoF(CO) ₂ (dppe) ₂] ⁺	CD_2Cl_2	189.5 ^d	-266			28	172
•	CDCl.			-47.5°	+48	27	172
[MoF(NNH ₀)(dppe) ₀] ⁺	MeOH or CH ₂ Cl ₂	-160.1	-160	-94.7*	+46	32	121.192
	not reported	88.1 ⁱ	-152			30	194
[MoF(NN=CHEt)(dppe)]+	CD ₂ Cl ₂	50.3 ⁱ	-114			30	196.200
$[Mo_{\bullet}F(CO)_{*}(dppe)_{*}]^{8+}$	CDCl.	62.4 ^d	-139	-56.5 ^e	+56	•••	172
$M_{0}F_{0}(O^{i}Pr)_{i}(PMe_{0})_{0}$	toluene-d.	-99.2/	-99	-10.0 ^h	-10	116 (² J), 35 (³ J)	223
MosFe(O ^t Bu) (PMes)	toluene-de	-93.5/	-94	-10.3 ^h	-10	119 (² . <i>J</i>), 43 (³ . <i>J</i>)	222
$[Mo_{2}(\mu - F)_{2}H_{4}(PMePh_{2})_{2}]^{+}$	CDCl	-228/	-228	50.8 ^h	+51	35	185
WF(CCH ₂ COOMe)(dppe)	CD.Cl.	-141.0/	-141			35	170
[WF(CHCH_Ph)(dppe)_] ⁺	CD ₂ Cl	-97 3/	-97			34	170
$WF(CO)_{*}(n^{3} \cdot NH_{*}C_{*}H_{*}2 \cdot N \rightarrow CHC_{*}F_{*})$	acetone-d.	-226.0/	-226			••	165
$WF(NNCH=C(CN)_1(dnne)_1$	not reported	157 7	-158?				178
$WF[NNCH=C(CN)(COOFt)](dppe)_2$	not reported	176 2	-176?				179
$WF[NNC_H_2 2 4 (NO_1)](dppe)_2$	CD.Cl.	-173.9/	-174	-34 54	-35	40	179
$(WF(NNH_{1})(dppa)_{1})^{+}$	MOH or CH.CL	-179.9/	-179	-105.9#	136	41	191 109
$[WF(NNHCH 94_(NO))](dppe)]$		-121.0/	-174	-100.2°	-30	40	121,192
$[WFU(UO)(DM_{2})]^{+}$	CD_2CI_2	-131.0	-101	-70.0 01.7	-30	44 50 <i>Cl</i>	194
$[WF\Pi_2(\Pi_2 O)(FWIe_3)_4]$	CD ₃ CN	-239.5	-101	-13.0, -01.1	-70, -04	50, 04	104
		-243.0"	-190	-13.0, -16.0	-15, -16	10	104
WFU(U)($(CH^{\prime}Bu)(PEt_3)_2$		220	-226	23.1" 19 5 - 15 5 ^l	+23	49	215
$WF_2H_2(PMe_3)_4$	C ₆ D ₆	-231.4~	-203	-12.5, -15.5'	-15, -18	80, 51	184
WF ₆ (PMe ₃)	CH ₃ CN	-135.5"	+135			73	211
	SO ₂	-137.4"	+137			73	211
$WF_6(PEt_3)$	SO ₂	148.5	+149				212
WF ₆ (AsMe ₃)	SO ₂	148.7/	+149				212
$[\text{ReFMe}_2(\text{NHPh})(\text{PMe}_3)_2]^+$	acetone-d ₆	-167.6/	-168	-26.7"	-27	57	207
[FeF(CNMe)(dppe) ₂]	CD_2Cl_2	-554.4	-554?			22	139
$[RuF(CO)(dppe)_2]^+$	MeNO ₂	-400	-400	-42.7	-43	17	138
$RhF(CO)(PPh_3)_2$	CD_2Cl_2	-169.4	-170	24.9 ⁿ	+25		87
	CDCl ₃	-270⁄	-270?	25.2 ⁿ	+25	21	83
	CHCl ₃	271 ^m	-271	115.1 ⁿ	+26	22	71
	CHCl ₈			-23.3°	+23		84
$RhF(C_2F_4)(PPh_3)_2$	$DMSO-d_6$	-152	-152				87
	CD ₃ CN	-158/	-158				87
	acetone-d ₆	-169.5	-170				87
	CD_2Cl_2			35.6 ^h	+36		87
$IrF(CO)(PPh_3)_2$	CHCl ₃	254 ^m	-254			30	71
	C ₀ H ₆			-24.4 ^e	+24	20	78
$IrFCl(SF_3)(CO)(PEt_3)_2$	CD_2Cl_2	-336.9°	-337?	7.6, 0.3ª	+8, 0?	31, 36	147
$IrFBr(SF_3)(CO)(PEt_3)_2$	CD_2Cl_2	-344.1°	-344?	3.6, -3.6°	+4, -4?	32, 37	147
$IrFI(SF_3)(CO)(PEt_3)_2$	CD_2Cl_2	-356.2°	-356?	-1.7, -8.7°	-2, -9?	33, 38	147
$[IrFCl(SF_2)(CO)(PEt_3)_2]^+$	CD_2Cl_2	-360.9°	-361?	8.1°	+8?	33	147
$[IrF(COF)(CO)_{2}(PEt_{2})_{2}]^{+}$	not reported	-394.6 ^j	-395?	2.9 ^h	+3	32	146
NisF(OMe)Meg(PMeg)g	toluene-d.	422 ^m	-422	7.2 ^p	+7?	55	109
NisF(NMes)Mes(PMes)	toluene-d.	467 ^m	-467	11.1 ^p	+11?	63	109
NiaFCIMea(PMea)a	toluene-d.	394 ^m	-394	6.4 ^p	+6?	151	109
NioFoMeo(PMea)o	toluene-d.	378m	-378	5.3 ^p	+5?	49, 156	109
$[PdF(PEt_{a})_{a}]^{+}$	CHCl	255 ^m	-255	010		29, 160	71
[PtF(PEt_)]+	acetone	252 ^m	-252	115.8. 141.6 ⁿ	+251	32, 140	71
[PtF(PMe,Ph),]+	acetone	257m	-257	, • ••••	·, •	34, 150	71
[PtF(PPh_)]+	acetone	232 ^m	-232	114.7. 138.2 ⁿ	+26 $+3$	39, 139	71
$[PtF(PEt_a)]$	CHCl. or acetone	2607	-260	119 3 141 04	+22.0	30, 158	71
$[PtF(PEt_{0})][P(OPh)]]^{+}$	CHCl. or acetone	266m	-266	110.0. 82.9"	+31, +58	30, 246	71
$C_{11}F(PPh_{-})$	CD.OD	0 6m	-10	7 09	+13	70	60
Cur (I I Hg/g	00300	2.0	10	1.0.	110		~

^a Signals for fluoro ligands and phosphine ligands as reported with positive chemical shifts upfield or downfield of reference substance ($\delta = 0$) as indicated in notes below. ^b¹⁹F and ³¹P NMR data converted to single scales with positive chemical shifts downfield relative to CFCl₃ ($\delta = 0$) and downfield relative to external 85% H₃PO₄ ($\delta = 0$), respectively; question marks indicate best guess based on information available in literature citations. ^cUpfield, F₂. ^dUpfield, CF₃COOH. ^cUpfield, 85% H₃PO₄. ^fDownfield, CFCl₃. ^dDownfield, P(OMe)₃. ^hDownfield, 85% H₃PO₄. ⁱUpfield, C₈H₅CF₃. ^jDirection of chemical shifts not indicated, CFCl₃. ^hDownfield, (CF₃)₂CO. ^fDownfield, P(OMe)₃. ^mUpfield, CFCl₃. ⁿUpfield, P(OMe)₃. ^oReference not reported. ^pDirection of chemical shifts not indicated, 85% H₃PO₄. ^qUpfield, PPh₃.

ligands by the chelating phosphine and abstraction of F^- from the counterion to produce a common cation $[CrF(NO)(dppe)_2]^+$ in low yield.^{120,219} The related neutral chromium(I) carbonyl fluoride, $CrF(CO)_5$, has been generated by electrochemical oxidation of $[CrF-(CO)_5]^-$ (section II).²⁹ In the same report, MoF(CO)₂. (dppe)₂ is described as the product of controlled-potential electrolysis of Mo(CO)₂(dppe)₂ in the presence of $F^{-,29,220}$ Only one d⁷ fluoro complex has been reported; CoF₂(PMe₂Ph)₃ is prepared by addition of dimethylphenylphosphine to CoF₂.²²¹ A trigonal-bipy-

ramidal structure has been proposed based on the ESR spectrum of this compound. In contrast to the unreactive chloro and bromo analogues, $CoF_2(PMe_2Ph)_3$ undergoes adduct formation with dioxygen at low temperatures.²²¹

In addition to the paramagnetic odd-electron compounds described above, diamagnetic molybdenum-(III)-molybdenum(III) triply bonded complexes of formula $Mo_2F_2(OR)_4(PMe_3)_2$ (OR = O^tBu, OⁱPr) have been prepared by addition of trimethylphosphine to $Mo_4F_4(O^tBu)_8$ or $Mo_4F_2(O^iPr)_{10}$.^{222,223} Spectral charac-

TABLE XII. Spectral and Electrochemical Data for MX(CO)(PPh₂)₂

halogen	υ _{CO} , cm ^{-1 a}		λ _{max} ,	nm ⁶	E _{1/2} , V ^c	
	$\overline{M} = Rh$	M = Ir	$\overline{M} = Rh$	M = Ir	M = Rh	$M = I_1$
F	1971	1957	358	427	-2.34	-2.55
Cl	1980	1965	367	439	-2.05	-2.22
Br	1980	1966	369	443	-2.00	-2.07
I	1981	1967	372	451	-1.88	-1.96
^a From	ref 64. ^b	From ref	80. 'Fron	n ref 89.		

terization of both compounds has been reported, and a crystal structure of the tert-butoxide dimer shows all ligands terminally attached to the two molybdenum atoms.^{222,223} These are the first examples of compounds containing fluoro ligands attached to a Mo=Mo unit.223

X. Comments and Conclusions

This review describes the considerable variety of transition-metal fluoro compounds containing carbonyl. phosphine, arsine, and stibine ligands reported in the literature. Included are a number of stable low-valent organometallic fluorides, a class of compounds frequently assumed to be inaccessible on the basis of hard/soft acid/base predictions. A wide range of metal/ligand environments can support fluoro ligands. In fact, fluoro complexes are more stable in many instances than the corresponding heavier halogen analogues. Tables II-IX provide a comprehensive survey of the methods used to prepare metal fluoro complexes. Although a number of these syntheses appear to involve a large measure of serendipity, rational routes for the introduction of fluoro ligands are available. Particularly promising is the facile displacement of weakly coordinating ligands by fluoride; in several systems, net metathesis of fluoride for chloride is accomplished cleanly and in good yield via abstraction of Cl⁻ by AgOTf or AgBF₄ followed by addition of a fluoride reagent soluble in organic solvents (e.g., TASF or (PPN)F).

From the compounds and chemistry described in this review, several features emerge concerning the reactivity of the transition-metal fluoro compounds containing carbonyl, phosphine, arsine, and stilbine ligands. The combination of soft low-valent transition-metal centers and hard fluoride ions can produce unusual compounds with new reactivity patterns (e.g., $RhF(PCy_3)_2$). Fluoride appears to promote ligand-substitution lability at metal centers; this effect, combined with the stability of metal fluorine bonds, suggests promise for the use of organometallic fluoro compounds as catalysts and reagents in aprotic media. Fluoro ligands can also be useful sites for reaction chemistry; the propensity of Fto form hydrogen bonds to hydroxylic compounds and the extremely strong Si-F bond can be used in synthetic schemes to prepare transition-metal compounds not accessible from chloro, bromo, or iodo starting materials. Overall, the fluoride ion clearly has a useful place in the repertoire of ligands available for the modification of organometallic compounds; its introduction into organometallic systems (e.g., clusters) can be expected to lead to new and interesting chemistry.

XI. Acknowledgments

N.M.D. wishes to thank the Air Force Office of Scientific Research, Air Force Systems Command, USAF, Grant No. AFOSR-87-0362, for support. N.W.H. thanks Research Corporation, the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the University of South Alabama Research Committee.

XII. Abbreviations

- bipy 2.2'-bipyridine
- tmeda N, N, N', N'-tetramethylethylenediamine
- 1,4,7-triazacyclononane tacn
- Me₃-N,N',N"-trimethyl-1,4,7-triazacyclononane tacn
- dmpe 1,2-bis(dimethylphosphino)ethane
- depe 1,2-bis(diethylphosphino)ethane
- dppm 1,2-bis(diphenylphosphino)methane
- dppe 1,2-bis(diphenylphosphino)ethane
- dippe 1.2-bis(diisopropylphosphino)ethane
- 1.2-bis(diisopropylphosphino)propane dippp
- triphos bis[(diphenylphosphino)ethyl]phenylphosphine
- diars 1,2-bis(dimethylarsino)benzene
- η^2 -cyclooctene C_8H_{14}
- cod η^4 -1,5-cyclooctadiene
- η^5 -cyclopentadienyl Ср
- OTf trifluoromethanesulfonate (triflate)
- TPP tetraphenylporphyrin
- TCNE tetracyanoethylene
- PPN bis(triphenylphosphine)iminium
- tris(dimethylamino)sulfonium difluorotri-TASF methylsilicate

XIII. References and Notes

- (1) Parshall, G. W. Homogeneous Catalysis; Wiley: New York, 1980
- (2) Fumagalli, A.; Martinengo, S.; Galli, D.; Allevi, C.; Ciani, G.; Sironi, A. Inorg. Chem. 1990, 29, 1408-1413.
 (3) Sulfab, Y.; Basolo, F.; Rheingold, A. L. Organometallics 1989, 8, 2139-2143.
- (4)
- 8, 2139-2143.
 (a) Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper and Row: New York, 1983; pp 146-147; pp A39-A40; p A90. (b) Toiman, C. A. Chem. Rev. 1977, 77, 313-348.
 (a) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533-3539.
 (b) Pearson, R. G. J. Chem. Ed. 1968, 45, 581-587; 643-648.
 (c) Ahrland, S.; Chatt, J.; Davies, N. R. Quart. Rev. (London) (5)
- (c) Anriand, S.; Chau, J.; Davies, N. R. Quart. Rev. (London) 1958, 12, 265-276.
 (d) Crabtree, R. H. The Organometallic Chemistry of the Tran-sition Metals; Wiley: New York, 1988; p 7.
 (7) See, for example: Shriver, D. F. The Manipulation of Air-information of Air-
- senstive Compounds; Krieger: Malaber, FL, 1982; Chapter 6, and references therein.
- Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper and Row: New York, 1983; p 268. (8)
- (9) For example, samples of (PPN)F prepared by literature procedures^{10,32} are always found to contain substantial amounts of either methanol or PPN[HF₂], depending on the conditions of preparation: Schomber, B. M.; Doherty, N. M. Unpublished results. Similarly, attempts to dehydrate tet-ra-n-butylammonium fluoride result in formation of the tetra-n-butylammonium bifluoride accompanied by olefin elimination and formation of the tri-n-butylamine.
- (10) Martinsen, A.; Songstad, J. Acta Chem. Scand. A 1977, 31, 645-650.
- (11) Sharma, R. K.; Fry, J. L. J. Org. Chem. 1983, 48, 2112-2114.
 (12) Horn, E.; Snow, M. R.; Zeleny, P. C. Aust. J. Chem. 1980, 33, 1659-1665.
- (13) Coulson, D. R. J. Am. Chem. Soc. 1976, 98, 3111-3119.
 (14) This is not commonly appreciated. For example, Collman et This is not commonly appreciated. For example, Collman et al. state that "Few organotransition-metal fluorides are known." Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science: Mill Valley, CA, 1987; p 58.
 These are not discussed here. For examples, see: Jordan, R. F. J. Organomet. Chem. 1985, 294, 321-326.
 (a) The positive downfield convention is suggested for all nuclei. Becker, E. D. High Resolution NMR, 2nd ed.; Academic: New York, 1980; p 58. (b) Values for ¹⁹F NMR

chemical shifts of other reference substances relative to CFCl₃ were taken from Gordon and Ford (Gordon, A. J.; Ford, R. A. The Chemist's Companion; Wiley: New York, 1972; pp 288-290). (c) Values for ³¹P NMR chemical shifts of other

- 1. The only of the second se (17)1145-1147. (f) Janik, T.; Bernard, K.; Churchill, M.; Atwood, J. D. J. Organomet. Chem. 1987, 323, 247-259.
- (18) Araghizadeh, F.; Branan, D. M.; Hoffman, N. W.; Jones, J. H.; McElroy, E. A.; Miller, N. C.; Ramage, D. L.; Salazar, A. B.; Young, S. H. *Inorg. Chem.* 1988, 27, 3752-3755.
 (19) Branan, D. M.; Hoffman, N. W.; McElroy, E. A.; Miller, N. C.; Ramage, D. L.; Schott, A. F.; Young, S. H. *Inorg. Chem.* 1987, 26, 2915-2917.
 (20) W. W. De heaven by N. D. heim, M. L. Luco, C. L.
- (20) Hoffman, N. W.; Prokopuk, N.; Robbins, M. J.; Jones, C. J.; Doherty, N. M., submitted to Inorg. Chem.
- (21) Doherty, N. M.; Critchlow, S. C. J. Am. Chem. Soc. 1987, 109, 7**906-**7908
- Jones, C. M.; Chan, D. M.-T.; Doherty, N. M.; Calabrese, J. (22)C., manuscript in preparation.
- Jones, C. M.; Glueck, D.; Bergman, R. G.; Doherty, N. M. (23)Unpublished results.
- (24) Bruce, D. M.; Holloway, J. H. Trans. Met. Chem. 1978, 3, 317-220.
- (25) Misra, S. N.; Venkatasubramanian, K. Bull. Chem. Soc. Jpn. 1988, 61, 4482-4484.

- 1988, 61, 4482-4484.
 (26) Holloway, J. H.; Senior, J. B.; Szary, A. C. J. Chem. Soc., Dalton Trans. 1987, 741-745.
 (27) Hewitt, A. J.; Holloway, J. H.; Peacock, R. D.; Raynor, J. B.; Wilson, I. L. J. Chem. Soc., Dalton Trans. 1976, 579-583.
 (28) Kemmitt, R. D. W.; Peacock, R. D.; Wilson, I. L. J. Chem. Soc., Chem. Commun. 1968, 772-773.
 (29) Bagchi, R. N.; Bond, A. M.; Colton, R.; Luscombe, D. L.; Moir, J. E. J. Am. Chem. Soc. 1986, 108, 3352-3358.
- Moir, J. E. J. Am. Chem. Soc. 1986, 108, 3352-3358. Alyea, E. C.; Malek, A.; Malito, J. Inorg. Chim. Acta 1985, 101, 147-150. (30)
- Cihonski, J. L.; Levenson, R. A. Inorg. Chem. 1975, 14, (31)
- 1717 1720(32) Douglas, W.; Ruff, J. K. J. Organomet. Chem. 1974, 65,
- 65-69. White, S. F.; Farona, M. F. J. Organomet. Chem. 1972, 37, (33) 119-125.
- (34) Dechter, J. J. Prog. Inorg. Chem. 1982, 29, 285-385; 1985, 33, 393-507
- O'Donnell, T. A.; Phillips, K. A.; Waugh, A. B. Inorg. Chem. 1973, 12, 1435-1437.
- O'Donnell, T. A.; Phillips, K. A. Inorg. Chem. 1972, 11, (36)2563 - 2565
- Bruce, D. M.; Holloway, J. H.; Russell, D. R. J. Chem. Soc., (37)Chem. Commun. 1973, 321-322
- (38) Bruce, D. M.; Holloway, J. H.; Russell, D. R. J. Chem. Soc., Dalton Trans. 1978, 1627-1631.
- Bruce, D. M.; Hewitt, A. J.; Holloway, J. H.; Peacock, R. D.; Wilson, I. L. J. Chem. Soc., Dalton Trans. 1976, 2230–2235. Bruce, D. M.; Holloway, J. H.; Russell, D. R. J. Chem. Soc., Dalton Trans. 1978, 64–67. (39)
- (40)
- Misra, S. N. Indian J. Chem., Sect. A 1979, 17A, 101-102. (41)
- (42) Rash, K.; Beck, W. Chem. Ber. 1985, 118, 3830–3848.
 (43) Horn, E.; Snow, M. R. Aust. J. Chem. 1981, 34, 737–743.
 (44) Horn, E.; Wimmer, F. L.; Snow, M. R. Inorg. Synth. 1989, 26,
- 81 85(45) Chaudhuri, M. K.; Kaschani, M. M.; Winkler, D. J. Organo-
- (46) Wimmer, F. L.; Snow, M. R. Aust. J. Chem. 1978, 31, 267 - 278
- (47) Marshall, C. J.; Peacock, R. D.; Russell, D. R.; Wilson, I. L. (4) Marshan, C. S., Feacock, R. D., Russen, D. R., Wilson, I. L. J. Chem. Soc., Chem. Commun. 1970, 1643-1644.
 (48) Sharp, D. W. A. Proc. Chem. Soc. 1960, 317-318.
 (49) Misra, S. N. Indian J. Chem., Sect. A 1981, 19A, 1191-1193.
 (50) O'Donnell, T. A.; Phillips, K. A. Inorg. Chem. 1970, 9,

- 611-2614
- (51) O'Donnell, T. A.; Phillips, K. A. Inorg. Chem. 1973, 12, 1437-1438
- (52) Cihonski, J. L.; Levenson, R. A. Inorg. Chim. Acta 1976, 18, 215-218
- (53) Abel, E. W.; Towle, I. O. H.; Cameron, T. S.; Cordes, R. E. J. Chem. Soc., Dalton Trans. 1979, 1943-1949.

- (54) Johnson, B. F. G.; Lewis, J.; Nicholls, J. N.; Paga, J.; Raithby, P. R.; Rosales, M. J.; McPartlin, M.; Clegg, W. J. Chem. Soc., Dalton Trans. 1983, 277-190.
- (55) (a) Van Leirsburg, D. A.; DeKock, C. W. J. Phys. Chem. 1974, 78, 134-142. (b) DeKock, C. W.; Van Leirsburg, D. A. J. Am. Chem. Soc. 1972, 94, 3235-3237. (c) Besnainou, S.; Whitter, J. L. J. Am. Chem. Soc. 1978, 100, 3692-3698.
- Campen, A. K.; Mahmoud, K. A.; Rest, A. J.; Willis, P. A. J. Chem. Soc., Dalton Trans. 1990, 2817-2823. (56)
- (57) Dombek, B. D. J. Am. Chem. Soc. 1981, 103, 6508-6510. Foster, M. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1971, 93, (58)4924-4926.
- (59) Corderman, R. R.; Beauchamp, J. L. Inorg. Chem. 1977, 16. 3135-3139.
- (60) Gulliver, D. J.; Levason, W.; Webster, M. Inorg. Chim. Acta 1981, 52, 153-159.
- Jardine, F. H.; Rule, L.; Vohra, A. G. J. Chem. Soc., A 1970, (61)238-240.
- (62) Hardt, H. D.; Stoll, H.-J. Z. Anorg. Allg. Chem. 1981, 480, 193 - 198
- (63) Muetterties, E. L.; Alegranti, C. W. J. Am. Chem. Soc. 1972, 94, 6386-6391.
- Vaska, L.; Peone, J., Jr. J. Chem. Soc., Chem. Comm. 1971, (64) 418-419.
- Vaska, L.; Peone, J., Jr. Inorg. Synth. 1974, 15, 64-68. (65)
- (66) Reed, C. A.; Roper, W. R. J. Chem. Soc., Dalton Trans. 1973, 1370-1375.
- Clark, G. R.; Reed, C. A.; Roper, W. R.; Skelton, B. W.; Waters, T. N. J. Chem. Soc., Chem. Commun. 1971, 758-759. (67)
- Fitzgerald, R. J.; Sakkab, N. Y.; Strange, R. S.; Narutis, V. (68) P. Inorg. Chem. 1973, 12, 1081-1086.
- (69) Grinberg, A. A.; Singh, M. M.; Varshavskii, Yu. S. Russ. J. Inorg. Chem. 1968, 13, 1399-1401.
 (70) Varshavskii, Yu. S.; Singh, M. M.; Buzina, N. A. Russ. J. Inorg. Chem. 1971, 16, 1372-1376.
 (71) Cairns, M. A.; Dixon, K. R.; McFarland, J. J. J. Chem. Soc., Defent Terms 1975, 1150, 1154.
- Dalton Trans. 1975, 1159–1164. (72) Middleton, W. J. Org. Synth. 1986, 64, 221–224
- (73) Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am. Chem. Soc. 1990, 112, 7221-7229.
- (74) McAuliffe, C. A.; Pollock, R. J. J. Organomet. Chem. 1974, 77, 265-268
- (75) Goswami, K.; Singh, M. M. J. Ind. Chem. Soc. 1979, 56, 477–482
- (76) McAuliffe, C. A.; Pollock, R. J. J. Organomet. Chem. 1974, 69, C13.
- (77) Forster, D. Inorg. Chem. 1972, 11, 1686-1687.
 (78) Williams, A. F.; Bhaduri, S.; Maddock, A. G. J. Chem. Soc., Dalton Trans. 1975, 1958-1962.

- (81) (a) Geoffroy, G. L.; Isci, H.; Litrenti, J.; Mason, W. R. Inorg. Chem. 1977, 16, 1950–1955. (b) Geoffroy, G. L.; Wrighton, M. S.; Hammond, G. S.; Gray, H. B. J. Am. Chem. Soc. 1974, 96, 3105-3108.
- (82) Note, however, that descriptions of bonding and electronic structure based on IR agruments should be employed cautiously, in part because the IR frequencies reported for a given compound can vary widely. Values of ν_{CO} reported for Nujol mulls of $MX(CO)(PPh_s)_2$ do not follow as clear a trend and for IrF(CO)(PPh₂)₂ alone there are four different sets of ν_{CO} values reported. ^{65–67,69,70}
- (83) Colquhoun, I. J.; McFarlane, W. J. Mag. Res. 1982, 46, 525-528.
- (84) Rüger, C.; Mehlhoen, A.; Schwetlick, K. Z. Chem. 1974, 14, 196–197.
- (85) van Gaal, H. L. M.; van den Bekerom, F. L. A. J. Organomet. Chem. 1977, 134, 237-248.
 (86) Fryzuk, M. D.; Piers, W. E. Polyhedron 1988, 7, 1001-1014.
- (87) Burch, R. R.; Harlow, R. L.; Ittel, S. D. Organometallics 1987, 6, 982<mark>-9</mark>87.
- Drago, R. S. Physical Methods in Chemistry; Saunders: (88) Philadelphia, PA, 1977; pp 283-288. (89) Schiavon, G.; Zecch, S.; Pilloni, G.; Martelli, M. J. Inorg.
- Nucl. Chem. 1977, 39, 115–117.
 (90) Kubota, M.; Kiefer, G. W.; Ishikawa, R. M.; Bencala, K. E. Inorg. Chim. Acta 1972, 7, 195–202.
- (91) Vaska, L.; Chen, L. S.; Sennoff, C. V. Science 1971, 174,
- 587-589. (92) Klevan, L.; Peone, J., Jr.; Madan, S. K. J. Chem. Ed. 1973, 50, 670-675 and references therein.
- 50, 670-675 and references therein.
 Flemming, F.; Unverferth, K.; Schwetlick, K. J. Prakt. Chem.
 1975, 317, 455-462.
 Strohmeier, W.; Onoda, T. Z. Naturforsch., B: Anorg. Chem.,
 Org. Chem. 1969, 24B, 515-519. (93)
- (94)

- (95) Collman, J. P.; Cawse, J. N.; Kang, J. W. Inorg. Chem. 1969, 8. 2574–2579.
- (96) Collman, J. P.; Kubota, M.; Vastine, F. D.; Sun, J. Y.; Kang, J. W. J. Am. Chem. Soc. 1968, 90, 5430-5437.
 (97) Burke, N. E.; Singhal, A.; Hintz, M. J.; Ley, J. A.; Hui, H.; Smith, L. R.; Blake, D. M. J. Am. Chem. Soc. 1979, 101, 74–79.
- (98) Blackburn, S. N.; Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. J. Organomet. Chem. 1980, 192, 329-338.
- (99) Spencer, A. J. Organomet. Chem. 1980, 194, 113-123.
- (100) Kubota, M.; Chappell, T. G.; Powers, S. P. Inorg. Chem. 1979, 12, 3615-3618.
- (101) McAuliffe, C. A.; Pollock, R. J. J. Organomet. Chem. 1974, 74, 463-469.
- (102) van Gaal, H. L. M.; van den Bekerom, F. L. A.; Verlaan, J. P. J. J. Organomet. Chem. 1976, 114, C35-C37.
 (103) McNaughton, J. L.; Mortimer, C. T.; Burgess, J.; Hacker, M. J.; Kemmitt, R. D. W. J. Organomet. Chem. 1974, 71, 000 (2000) 287-290.
- (104) Mortimer, C. T.; McNaughton, J. L.; Burgess, J.; Hacker, M. J.; Kemmitt, R. D. W. J. Organomet. Chem. 1973, 47, 439-441.
- (105) Baddley, W. H. J. Am. Chem. Soc. 1968, 90, 3705-3710.
 (106) Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501-2508.
- (107) Park, S.; Roundhill, D. M. Inorg. Chem. 1989, 28, 2905-2906. (108) Capka, M.; Hetflejs, J. Collect. Czech. Chem. Commun. 1975,
- 40, 2073-2083.
- (109) Klein, H. F.; Karsch, H. H. Chem. Ber. 1973, 106, 2438-2454.
- (110) Doyle, G. J. Organomet. Chem. 1982, 224, 355-362.
- (111) Kemmitt, R. D. W.; Peacock, R. D.; Stocks, J. J. Chem. Soc., A. 1**97**1, 846-849.
- (112) McAvoy, J.; Moss, K. C.; Sharp, D. W. A. J. Chem. Soc. 1965, 1376-1379.
- (113) Poorly characterized platinum(II) fluorides of formula Pt-(F)₂(CO)₂(L)₂ are reported to form via high-pressure carbo-nylation of this material.¹¹²
- Clemens, J.; Green, M.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1973, 1620–1625.
- (115) Howard, J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1973, 1840–1843. (116) Boeré, R. T. Personal communication.
- (117) Russell, D. R.; Mazid, M. A.; Tucker, P. A. J. Chem. Soc., Dalton Trans. 1980, 1737-1742.
- (118) Dixon, K. R.; McFarland, J. J. J. Chem. Soc., Chem. Commun. 1972, 1274-1275. (119) Clark, H. C.; Tsang, W. S. J. Am. Chem. Soc. 1967, 89,
- 529-533.
- (120) Clamp, S.; Connelly, N. G.; Taylor, G. E.; Louttit, T. S. J. Chem. Soc., Dalton Trans. 1980, 2162-2169.
 (121) Chatt, J.; Pearman, A. J.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1976, 1520-1524.
 (122) Tatsumi, T.; Sekizawa, K.; Tominaga, H. Bull. Chem. Soc. Jpn. 1980, 53, 2297-2303.
 (123) Kundal B.; Barke, H. Z. Naturforsch. B: Chem. Sci. 1987.

- (123) Kundel, P.; Berke, H. Z. Naturforsch., B: Chem. Sci. 1987, 42B, 995–999.
- (124) Hillhouse, G. L.; Haymore, B. L. Inorg. Chem. 1987, 26, 1876-1885.
- (125) Drew, D.; Darensbourg, D. J.; Darensbourg, M. Y. Inorg. Chem. 1975, 14, 1579-1584.
- (126) Horn, E.; Snow, M. R. Aust. J. Chem. 1984, 37, 35-45.
 (127) Cameron, T. S.; Grundy, K. R.; Robertson, K. N. Inorg. Chem. 1982, 21, 4149-4155.
- (128) Chen, J. Y.; Grundy, K. R.; Robertson, K. N. Can. J. Chem. 1989, 67, 1187–1192.
- (a) Gladysz, J. A. Personal communication. (b) Rai-Chau-dhuri, A.; Seidel, M. J.; Lichtenberger, D. L. Manuscript in (129)preparation.
- Pomp, C.; Wieghardt, K. Inorg. Chem. 1988, 27, 3796-3804.
 (a) Malisch, W.; Panster, P. Chem. Ber. 1975, 108, 2554-2573.
 (b) Malisch, W.; Panster, P. J. Organomet. Chem. 1974, 64, (131) 5-C9
- (132) Hong, D. M.; Doherty, N. M. Unpublished results.
- (133) Kuhlmann, E. J.; Alexander, J. J. Inorg. Chim. Acta 1979, 34, 97 - 209
- (134) Bruce, M. I.; Gardner, R. C. F.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1976, 81-89.
- (135) Note, however, that we isolate a apparent hydroxyl-contain-(135) Note, however, that we isolate a apparent hydroxyl-containing derivative as the major product from the reaction of RuClCp(PPh₃)₂ with NH₄F and Ag₂CO₃ in methanol: Jones, C. M.; Doherty, N. M. Unpublished results.
 (136) (a) Rao, K. M.; Mishra, L.; Agarwala, U. C. Indian J. Chem., Sect. A 1987, 26A, 755-758. (b) Rao, K. M.; Mishra, L.; Agarwala, U. C. Polyhedron 1986, 5, 1491-1497.
 (137) Hoffman, N. W. Unpublished results.
 (138) Smith, G.; Cole-Hamilton, D. J.; Gregory, A. C.; Gooden, N. G. Polyhedron 1982, 1, 97-103.

- (139) Amelia, M.; Lenos, N. D. A.; Pombeiro, A. J. J. Organomet. Chem. 1987, 332, C17-C20.
- (140) Mathieu, R.; Poilblanc, R.; Lemoine, P.; Gross, M. J. Organomet. Chem. 1979, 165, 243-252.
 (141) Ashworth, T. V.; Nolte, M. J.; Singleton, E. J. Chem. Soc., Chem. Commun. 1977, 936-937.
- (142) Haymore, B. L.; Ibers, J. A. Inorg. Chem. 1975, 14,
- 2784-2795 (143) Ehrenkaufer, R. E.; MacGregor, R. R.; Wolf, A. P. J. Org. Chem. 1982, 47, 2489–2491.

- Chem. 1952, 47, 2459-2491.
 (144) Blum, J.; Scharf, G. J. Org. Chem. 1970, 35, 1895-1899.
 (145) Vaska, L. J. Am. Chem. Soc. 1966, 88, 5325-5327.
 (146) Blake, A. J.; Cockman, R. W.; Ebsworth, E. A. V.; Holloway, J. H. J. Chem. Soc., Chem. Commun. 1988, 529-530.
 (147) Cockman, R. W.; Ebsworth, E. A. V.; Holloway, J. H. J. Am. Chem. Soc. 1987, 109, 2194-2195.
 (148) Kemmitt, R. D. W.; Peacock, R. D.; Stocks, J. J. Chem. Soc., Chem. Commun. 1969, 554.
- (146) Reminut, N. D. W., Feature, R. D., Stocks, S. J. Chem. Soc., Chem. Commun. 1969, 554.
 (149) Singh, M. M.; Varshavskii, Yu. S. Russ. J. Inorg. Chem. 1969,
- 14, 1278-1280
- (150) Blackburn, S. N.; Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. J. Chem. Res., Synop. 1980, 170–171.
 (151) Strope, D.; Shriver, D. F. Inorg. Chem. 1974, 13, 2652–2655.
- (152) La Placa, S. J.; Ibers, J. A. J. Am. Chem. Soc. 1965, 87, 2581-2586.
- (153) McGinnety, J. A.; Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6, 2243-2250.
 (154) Gilchrist, A. B.; Sutton, D. J. Chem. Soc., Dalton Trans. 1977, 677-682.
- (155) (a) Angoletta, M.; Bellon, P. L.; Manassero, M.; Sansoni, M., Gazz. Chim. Ital. 1977, 107, 441-442. (b) Carroll, J. A.; Cobbledick, R. E.; Einstein, F. W. B.; Farrell, N.; Sutton, D.; Vogel, P. L. Inorg. Chem. 1977, 16, 2462-2469. (c) Carroll, J. A.; Sutton, D.; Xiaoheng, Z. J. Organomet. Chem. 1982, 244, 72-86. 244, 73-86.
- (156) Araneo, A.; Napoletano, T.; Fantucci, P. J. Organomet. Chem. 1972, 42, 471-476. O'Connor, J. M.; Pu, L.; Woolard, S.; Chadha, R. K. J. Am.
- Chem. Soc. 1**990**, 112, 6731–6732
- (158) Bland, W. J.; Kemmitt, R. D. W. J. Chem. Soc., A 1969, 2062-2065.
- (159) Anderson, C. M.; Puddephatt, R. J.; Ferguson, G.; Lough, A. J. J. Chem. Soc., Chem. Commun. 1989, 1297-1298. Numerous Werner-type d⁶ fluorides are also known to be stable in the absence of π -acceptor (e.g., cobalt(III) fluoro coordi-nation complexes: Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley: New York, 1988; pp 733-734.)
- (160) Burgmayer, S. J. N.; Templeton, J. L. Inorg. Chem. 1985, 24, 2224-2230.
- (161) Herrick, R. S.; Templeton, J. L. Inorg. Chem. 1986, 25, 1270-1276.
- (162) Templeton, J. L.; Burgmayer, S. J. N. Organometallics 1982, , 1007–1008.
- (163) Schreiber, P.; Wieghardt, K.; Flörke, U.; Haupt, H. J. Z. Naturforsch., B: Chem. Sci. 1987, 42B, 1391-1397.
- (164) Backes-Dahmann, G.; Wieghardt, K. Inorg. Chem. 1985, 24, 4049-4054
- (165) Richmond, T. G.; Osterberg, C. E.; Arif, A. M. J. Am. Chem.
- Soc. 1987, 109, 8091-8092.
 (166) Osterberg, C. E.; King, M. A.; Arif, A. M.; Richmond, T. G. Angew. Chem. 1990, 102, 960-961.
- (167) Benn, R.; Rufińska, A.; King, M. A.; Osterberg, C. E.; Richmond, T. G. J. Organomet. Chem. 1989, 376, 359-366.
 (168) Osterberg, C. E.; Arif, A. M.; Richmond, T. G. J. Am. Chem. Soc. 1988, 110, 6903-6904.
- (169) Ellis, R.; Henderson, R. A.; Hills, A.; Hughes, D. L. J. Organomet. Chem. 1987, 333, C6-C10.
 (170) Hills A.; Hurber D. L. K. Chen, Chem. 1987, 333, C6-C10.
- (170) Hills, A.; Hughes, D. L.; Kashef, N.; Richards, R. L.; Lemos, M. A. N. D. A.; Pombeiro, A. J. L. J. Organomet. Chem. 1988, 350, C4-C7.
- Connor, J. A.; James, E. J.; Overton, C.; Errington, R. J.; Folting, K.; Huffman, J. C.; Walshe, J. M. A.; Head, R. A. J. Chem. Soc., Dalton Trans. 1986, 511-515. (171)
- (172) Snow, M. R.; Wimmer, F. L. Aust. J. Chem. 1976, 29, 2349–2361.
- (173) Chandler, T.; Kriek, G. R.; Greenaway, A. M.; Enemark, J. H. Cryst. Struct. Comm. 1980, 9, 557-562.
- (174) Lane, J. D.; Henderson, R. A. J. Chem. Soc., Dalton Trans. 1986, 2155–2163.
- 1562-1568.
- (176) Pickett, C. J.; Tolhurst, J. E.; Copenhaver, A.; George, T. A.; Lester, R. K. J. Chem. Soc., Chem. Commun. 1982, 1071-1072. (177) Pickett, C. J.; Ryder, K. S. J. Chem. Soc., Chem. Commun.
- 1988, 1362-1364.

Transition-Metal Fluoro Compounds

- (178) Colquhoun, H. M.; Crease, A. E.; Taylor, S. A.; Williams, D. J. J. Chem. Soc., Dalton Trans. 1988, 2781-2786.
 (179) Colquhoun, H. M. J. Chem. Res., Synop. 1979, 325.
 (180) Talay, R.; Rehder, D. Inorg. Chim. Acta 1983, 77, L175-L176.
 (181) Young, C. G.; Enemark, J. H. Aust. J. Chem. 1986, 39, 997-1006.

- 997-1006.
 (182) Deutsch, E.; Glavan, K. A.; Sodd, V. J.; Nishiyama, H.; Ferguson, D. L.; Lukes, S. J. J. Nucl. Med. 1981, 22, 897-907.
 (183) Green, M. L. H.; Parkin, G.; Mingqin, C.; Prout, K. J. Chem. Soc., Chem. Commun. 1984, 1400-1402.
 (184) Green, M. L. H.; Parkin, G.; Mingqin, C.; Prout, K. J. Chem. Soc., Dalton Trans. 1986, 2227-2236.
 (185) Crabtree, R. E.; Hlatky, G. G.; Holt, E. M. J. Am. Chem. Soc., 1983, 105, 7302-7306.

- 1983, 105, 7302-7306. (186) Henderson, R. A.; Davies, G.; Dilworth, J. R.; Thorneley, R.

- (186) Henderson, K. A.; Davies, G.; Dilworth, J. K.; Inorneley, K. N. F. J. Chem. Soc., Dalton Trans. 1981, 40-50.
 (187) Bevan, P. C.; Chatt, J.; Dilworth, J. R.; Henderson, R. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1982, 821-824.
 (188) Henderson, R. A. J. Chem. Soc., Dalton Trans. 1983, 51-60.
 (189) Mohammed, M. Y.; Pickett, C. J. J. Chem. Soc., Chem. Commun. 1988, 1119-1121.
 (190) (a) Baumann, J. A.; Bossard, G. E.; George, T. A.; Howell, D. B.; Koczan I., M.; Lester, R. K.; Noddings, C. M. Inorg.
- B.; Koczan, L. M.; Lester, R. K.; Noddings, C. M. Inorg. Chem. 1985, 24, 3568-3578. (b) Bossard, G. E.; George, T. A.;
- Chem. 1985, 24, 3568-3578. (b) Bossard, G. E.; George, T. A.; Lester, R. K. Inorg. Chim. Acta 1982, 64, L227-L228.
 (191) Bossard, G. E.; George, T. A.; Howell, D. B.; Lester, R. K. Chem. Uses Molybdenum, Proc. Int. Conf., 4th 1982, 71-73.
 (192) Chatt, J.; Fakley, M. E.; Richards, R. L.; Mason, J.; Stenhouse, I. A. J. Chem. Res., Synop. 1979, 322-323.
 (193) George, T. A. Curr. Perspect. Nitrogen Fixation, Proc. Int. Swmp. 4th 1981, 29-25.
- (193) George, T. A. Curr. Perspect. Nitrogen Fixation, Proc. Int. Symp., 4th 1981, 22-25.
 (194) Hidai, M.; Kodama, T.; Sato, M.; Harakawa, M.; Uchida, Y. Inorg. Chem. 1976, 15, 2694-2697.
 (195) Chatt, J.; Pearman, A. J.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1977, 1852-1860.
 (196) Hidai, M.; Mizobe, Y.; Sato, M.; Kodama, T.; Uchida, Y. J. Am. Chem. Soc. 1978, 100, 5740-5748.
 (197) Imaeda, M.; Nishihara, H.; Nakano, K.; Ichida, H.; Kobaya-shi, A.; Saito, T.; Sasaki, Y. Inorg. Chem. 1985, 24, 1246-1250.
 (198) Bossard, G. E.; George, T. A.; Howell, D. B.; Koczan, L. M.; Lester, R. K. Inorg. Chem. 1983, 22, 1968-1970.
 (199) Chatt, J.; Pearman, A. J.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1978, 1766-1776.
 (200) Hidai, M.; Mizobe, Y.; Uchida, Y. J. Am. Chem. Soc. 1976, 98, 7824-7825.

- (201) Mizobe, Y.; Ono, R.; Uchida, Y.; Hidai, M.; Tezuka, M.; Moue, S.; Tsuchiya, A. J. Organomet. Chem. 1981, 204, 377-385.

- (202) Bossard, G. E.; George, T. A.; Lester, R. K.; Tisdale, R. C.; Turcotte, R. L. Inorg. Chem. 1985, 24, 1129-1132.
 (203) Iwanami, K.; Mizobe, Y.; Takahashi, T.; Kodama, T.; Uchida, Y.; Hidai, M. Bull. Chem. Soc. Jpn. 1981, 54, 1773-1776.
 (204) Colquhoun, H. M.; Crease, A. E.; Taylor, S. A. J. Chem. Soc., Chem. Commun. 1982, 1150.
- (204) Colquhoun, H. M.; Crease, A. E.; Taylor, S. A. J. Chem. Soc., Chem. Commun. 1983, 1158-1159.
 (205) Birdwhistell, K. R.; Tonker, T. L.; Templeton, J. L. J. Am. Chem. Soc. 1985, 107, 4474-4483.
 (206) Pombeiro, A. J. L.; Hills, A.; Hughes, D. L.; Richards, R. L. J. Organomet. Chem. 1988, 352, C5-C7.
 (207) Chiu, K. W.; Wong, W.-K.; Wilkinson, G.; Galas, A. M.; Hursthouse, M. B. Polyhedron 1982, 1, 31-36.
 (208) Chatt, J.; Dilworth, J. R.; Schmutz, J. A.; Zubieta, J. A. J. Chem. Soc. Dalton Trans 1979, 1595-1599.

- Chem. Soc., Dalton Trans. 1979, 1595–1599.
 (209) Chatt, J.; Dilworth, J. R.; Leigh, G. J.; Gupta, V. D. J. Chem.
- Soc., A. 1971, 2631–2639.
 (210) Kim, Y.; Gallucci, J.; Wojcicki, A. J. Am. Chem. Soc. 1990,
- 112, 8600-8602. (211) Tebbe, F. N.; Muetterties, E. L. Inorg. Chem. 1968. 7.
- 172-174.
- (212) Brownstein, S.; Christian, B. H.; Latremouille, G.; Stiegel, A. Can. J. Chem. 1976, 54, 2343-2348.
- (213) Clark, R. J. H.; Kepert, D. L.; Nyholm, R. S. J. Chem. Soc. 1965, 2877-2883.
- (214) Il'in, E. G.; Ignatov, M. E.; Buslaev, Y. A. Koord. Khim. 1979, , 949–951.
- (215) Wengrovius, J. H.; Schrock, R. R. Organometallics 1982, 1, 148-155.
- (216) Bakar, M. A.; Hughes, D. L.; Hussain, W.; Leigh, G. J.; MacDonald, C. J.; Ali, H. M. J. Chem. Soc., Dalton Trans.

- MacDonald, C. J.; All, H. M. J. Chem. Soc., Datton Irans. 1988, 2545-2553.
 (217) Latour, J. M.; Marchon, J. C.; Nakajima, M. J. Am. Chem. Soc. 1979, 101, 3974-3976.
 (218) Gray, L. R.; Hale, A. L.; Levason, W.; McCullough, F. P.; Webster, M. J. Chem. Soc., Dalton Trans. 1984, 47-53.
 (219) Wigley, D. E.; Walton, R. A. Inorg. Chem. 1983, 22, 3138-3143.
- (220) $MoF(CO)_2(dppe)_2$ is reported to be "identified by infrared spectrum and comparison of other properties of an authentic sample",²⁹ however, the reference cited as describing the ausample ;" however, the reference cited as describing the authentic sample is concerned with the synthesis and characterization of cationic [MoF(CO)₂(dppe)₂]^{+.12}
 (221) Drago, R. S.; Stahlbush, J. R.; Kitko, D. J.; Breese, J. J. Am. Chem. Soc. 1980, 102, 1884–1889.
 (222) Chisholm, M. H.; Clark, D. L.; Huffman, J. C. Polyhedron 1985, 4, 1203–1211.

- Chisholm, M. H.; Clark, D. L.; Errington, R. J.; Folting, K.; Huffman, J. C. Inorg. Chem. 1988, 27, 2071-2084. (223)