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1. Introduction

Approximate density functional theory (DFT) has
over the past decade emerged as a tangible and versatile
computational method. It has been employed suc-
cessfully to obtain thermochemical data, molecular
structures, force fields and frequencies, assignments of
NMR, photoelectron, ESR, and UV spectra, transi-
tion-state structures, as well as activation barriers, di-
pole moments, and other one-electron properties. Thus,
approximate DFT is now applied to many problems
previously covered exclusively by ab initio Hartree—
Fock (HF) and post-HF methods. The recently ac-
quired popularity of approximate DFT stems in large
measure from its computational expedience which
makes it amenable to large-size or real-life molecules
at a fraction of the time required for HF or post-HF
calculations. More importantly, perhaps, is the fact that
expectation values derived from approximate DFT in
most cases are better in line with experiment than re-
sults obtained from HF calculations. This is in par-
ticular the case for systems involving transition metals.

It is the primary objective of this review to assess the
accuracy of approximate DFT by evaluating DFT re-
sults from calculations on a number of molecular
properties. Emphasis will further be given to a com-
parison with the degree of accuracy obtained by HF and
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post-HF methods. Approximate DFT has over the past
decade benefited immensely from a number of inno-
vative implementations as well as the development of
new and more refined approximations to DFT. These
new developments will also be reviewed.

The basic notion in DFT, that the energy of an
electronic system can be expressed in terms of its
density, is almost as old as quantum mechanics and
dates back to the early work by Thomas,!* Fermi,'®
Dirac,'® and Wigner.'®8 The theory by Thomas and
Fermi is a true density function(al) theory since all parts
of the energy, kinetic as well as electrostatic, are ex-
pressed in terms of the electron density. The Thom-
as—Fermi method, although highly approximate, has
been applied!df widely in atomic physics as a concep-
tually useful and computationally expedient model.

The Hartree-Fock-Slater or Xa method was one of
the first DFT-based schemes to be use in studies on
systems with more than one atom. The X« theory has
its origin in solid-state physics. The method emerged
from the work of J. C. Slater?® who in 1951 proposed
to represent the exchange—correlation potential by a
function which is proportional to the '/; power of the
electron density. This approximation evolved out of the
need to develop techniques that were able to handle
solids within a reasonable time frame. DFT-based
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Figure 1. (a) The Farmi hole function 53%(¥,, s) as a function
of the interelectronic distance s. (b) The Coulomb hole function
52(¥,, s) as a function of the interelectronic distance s.

methods have been predominant in solid-state physics
since the pioneering work by Slater? and Gaspar.?
Slater has given a vivid account of how the X« me-
thod evolved during the 1950’s and 1960’s, with refer-
ence to numerous applications up to 1974.

The Thomas~Fermi method and the Xa scheme were
at the time of their inceptions considered as useful
models based on the notion that the energy of an
electronic system can be expressed in terms of its
density. A formal proof of this notion came in 1964
when it was shown by Hohenberg® and Kohn that the
ground-state energy of an electronic system is uniquely
defined by its density, although the exact functional
dependence of the energy on density remains unknown.
This important theorem has later been extended by
Levy.®® Of further importance was the deviation by
Kohn* and Sham of a set of one-electron equations from
which one in principle could obtain the exact electron
density and thus the total energy. The work of Ho-
henberg, Kohn, and Sham has rekindled much interest
in methods where the energy is expressed in terms of
the density. In particular the equations by Kohn and
Sham have served as a starting point for new approx-
imate DF methods. These schemes can now be con-
sidered as approximations to a rigorous theory rather
than just models. An account of the formal develop-
ments in DFT since 1964 can be found in several im-
portant proceedings® and monographs® as well as
shorter overview articles.” The application of DFT to
solid-state physics® has been reviewed by a number of
authors.

Quantitative quantum mechanical calculations on
molecular systems have traditionally been carried out
by HF or post-HF methods, with the first molecular ab
initio HF-calculations dating back to the late 1950’s. On
the other hand, molecular calculations based on DFT
did not emerge before the late 1960’s. Much of the
initial pioneering DFT work in chemistry has already
been reviewed.®!° The focal point of the present ac-
count is on more recent applications of DFT to mo-
lecular systems. Thus calculations on solids and sur-
faces will not be covered here. Recent reviews on ap-
plications to solids® can be found elsewhere.

We shall begin by an overview of approximate DFT,
emphasizing in particular the computational aspects as
well as newer theoretical developments. The exposition
will be based on the hole—correlation function which is
one of the few concepts transcending the boundaries
between traditional ab initio methods and DF formu-
lations. The second past covers calculations on mo-
lecular properties with the accent on expectation values
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derived from energy differences. The objective here is
to evaluate the accuracy of approximate DF theories for
each property. We shall in particular assess the quan-
titative improvements one might obtain by resorting to
newer and more refined approximations. It is not the
intention to review all published DFT-based calcula-
tions on molecular systems, although reference will be
given to a representative cross section of applications.
We shall finally point to some fundamental difficulties
in approximate DFT which will need to be addressed
in the future.

II. Q@General Theory
A. The Kohn-Sham Equation

The total energy of an n-electron system can be
written® without approximations as

Ey = -hE [ o)V ) dF, +

Zy p(®1)p(E,)
Zf«—-—;—(fdfw EVPY 3%, dF, +
) Baomr ™It A ) g T AR dE

E,. 1)

The first term in eq 1 represents the kinetic energy of
n noninteracting!! electrons with the same density p(7;)
= 3 .¢:(7))¢;(F;) as the actual system of interacting
electrons. The second term accounts for the electron-
nucleus attraction and the third term for the Coulomb
interaction between the two charge distributions p(¥,)
and p(¥,). The last term contains the exchange-corre-
lation energy, E,.. The exchange—correlation energy can
be expressed in tems of the spherically averaged ex-
change—correlation hole functions!!1213 52Y'(§,, s) as

p1(®)pY" (¥4, 5)
Exc = TZ-41/2 f i‘—s——‘—— dis?ds  (2)
v
where the spin indices ¥ and 4’ both run over a-spin
as well as 8-spin and s = |F, - Fy|.

The one-electron orbitals, {¢;(¥,); i = 1, n}, of eq 1 are
solutions to the set of one-electron Kohn—-Sham equa-

tions*
p(E)
f — dfp +
£y -y

ch]¢i(i"1) = hxs ¢:i(F)) = ¢¢i(¥,) (3)

Zy
Vit T +
[ A ARy F

where the exchange-correlation potential V¢ is given
as the functional derivative of Exc with respect to the
density*

Vxclp] = 6Exclp]/dp0 (4)

The hole function " (¥, s) contains all information
about exchange and correlation between the interacting
electrons as well as the influence!!® of correlation on the
kinetic energy. The interpretation of 57" (¥,, s) is that
an electron at ¥, to a larger or smaller extent will ex-
clude other electrons from approaching within a dis-
tance s. The extent of exclusion or screening increases
with the magnitude of 57”'(¥,, s). Examples of the hole
function are shown in Figure 1 for y = ¥/, part a, as well
as y # v/, part b. The intricate function, 51" (¥, s), can
in practice!* only be obtained from an exact solution
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to the Schrodinger equation of our n-electron system.
The set of one-electron Kohn—-Sham equations is as a
consequence of limited value for exact!* solutions to
many-electron systems. They form, however, the
starting point for an approximate treatment in which
pYY (¥, s) is replaced by model hole functions. The
form of the exact hole function p}”'(¥,, s) is not known
in detail. Nevertheless, a number of properties of
pYY (¥, s) can be deduced from general considera-
tions.!213 Thus, it is readily shown!® that the spherically
averaged (Coulomb) hole-correlation functions, 5" (¥;,
s), with ¥ = v/, have the following properties

4r f pY"(F,, s)s2 ds = 0 (5a)

whereas the corresponding (Fermi) functions 5)¥(¥,, s),
with v = v/, satisfy the normalization condition

dr f BYY(Fy, s)s?ds = 1 (5b)

Further, for the Fermi contributions
pYY(¥), 0) = pY(¥)) (5¢)

The two Coulomb functions p24(¥,, 0) and p5%(%,, 0) are
in general considered to be smaller than 5]”(¥,, 0), al-
though different from zero. They cannot be related to
p](%,) in a simple way.

The model hole functions are in general® constructed
in such a way that the constraints given in eqs 5a—c are
satisfied. Thus, the Fermi function of Figure 1a with
¥ = v’ is seen to satisfy the constraints of eqs 5b,c,
whereas the Coulomb function of Figure 1b with v =
v’ satisfies eq 5a. We shall in the following briefly
review some of the models that have found more ex-
tensive applications in electronic structure calculations
on atoms and molecules.

B. Local Density Approximations

The homogeneous electron gas has been particularly
instrumental!®®15 in fostering useful approximate ex-
pressions for the exchange—correlation energy. The
exchange-correlation energy for the homogeneous
electron gas can be written as

EWRA = EPA + ERPA )

The first term, representing the exchange energy, has
the form

EWPA = -9/40,(3/4x1E [T @E)I2 dFy ()
Y

where the electron gas value for the exchange scale
factor a,, is 2/;. The exact exchange energy in the
Kohn-Sham theory is simply E,. corresponding to a
single determinantal wave function constructed from
the exact Kohn—Sham orbitals. The second term, rep-
resenting the correlation energy, has the form

ERA = [ oyF)elot®) pf®)] dF,  (8)

where ¢.[pf,08] represents the correlation energy per
electron in a gas with the spin densities pf and p{. The
specific correlation energy, ¢.[0§,0%], is not known ana-
lytically. However, approximations!3?! of increasing
accuracy have been developed. Most recently!® Vosko,
Wilk, and Nusair have used Padé interpolations to fit
¢.[0%,08] from accurate calculation on the homogeneous
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TABLE 1. Atomic Exchange Energies (au)

exact®  LDA? GCe Becke®  Kress* TZ
He -1.026 -0.884 -1.074 -1.025 -1.023 -1.017
Ne -12.11 -11.03 -12.18 -12.14 -12.14 -12.14
Ar -30.19 -27.86 -30.08 -30.15 -30.16 -30.19
Kr -93.89 -88.62 -93.32 -93.87 -03.81 -93.97
Xe -179.2 -170.6 -177.9 -179.0 -178.8 -179.1

sFrom HF calculations. ®From LDA calculations using eq 7
with a,, = 2/5. “Using eq 9 with g(x?) given by ref 20. ¢Using eq
9 with g(x”) given by ref 23d. ¢Using eq 9 with g(x?) given by ref
23e. /Using eq 9 with g(x”) given by ref 19.

TABLE I1. Errors® in Correlation Energies Determined
from Various Density Functional Methods (au)

exact LDA® CS** SPP» PD*d  Bso*

He 0.0420 0.07 -0.0004 0.017 0.003  0.000
Be 0.094 0.131 -0.0014 0.022 0.001 -0.002
C 0.156  0.203 0.005 0.020 0.009  0.007
N 018  0.241 0.001 0.015 0.017 0.013
Ne 0.387  0.359 0.012 -0.001 0.008  0.001

¢The difference is given by ES*® - ES., “Reference 26b.
*Reference 24. Reference 25. ¢Reference 11.

electron gas due to Ceperley!’ and Alder. The repre-
sentation of the exchange—correlation energy by eq 6
has been coined!®® the local density approximation
(LDA).

Simplified versions of LDA were known! long before
the formal development of DFT. Of particular im-
portance is the Hartree-Fock-Slater, or Xa, method
developed by Slater? and others.!® This method retains
only the exchange part (see eq 7) of the total expression
for the exchange—correlation energy given in eq 6 and
adopts in many cases values for the exchange scaling
factor that differs!®®® somewhat from ?/,.

The exchange~correlation hole functions for the ho-
mogeneous electron gas satisfy the general constrains
given in eq 5 and can thus be used as models for cal-
culations on atoms and molecules by substituting the
corresponding (inhomogeneous) electron densities into
the expression for the exchange-correlation energy in
eq 6. Table I compares, for the noble gas atoms, the
exchange energy calculated by the LDA method ac-
cording to eq 7 (ae; = %/3) with the exact exchange
energy from Hartree-Fock (HF) calculations. The LDA
values are seen to be between 3-10% too small which
in absolute terms amounts to more than 10 kJ/mol ()
for Xe.

Table II compares, again for a number of atoms,
correlation energies calculated by LDA according to eq
7 with experiment. The LDA is seen to overestimate
correlation energies by 100%. However, the correlation
error is smaller in absolute terms then the corre-
sponding exchange error. We shall in the next section
discuss ways in which one might improve upon the LDA
expression for the exchange—correlation energy.

€. Nonlocai Extensions to LDA

The exchange part of the Fermi hole function for the
homogeneous electron gas is given by

PXL(Fy, ) = pY(F1)9[[sin (kes) — kes-cos(kes)]?/ (kﬁ)(e]
9)
where k; = [67201(8))]/3; v = a, 8. It is characteristic

for the exchange hole function of the homogeneous
electron gas (Figure 2) that it has its principle maximum
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Figure 2. Spherically averaged hole correlation functions p1p(¥,,
s) and pY(¥,, s) for the HF and HFS methods, respectively. Here
s is the interelectronic distance and , is the distance of the ref-
erence electron from the nuclei. (a) Hydrogen atom with r, =
0.5 au. (b) Hydrogen atom with r; = 3.0 au.

at s = 0 for all positions, ¥,, of the reference electron.
Thus, the maximum exclusion or screening is always
near the reference electron. This is also the case for the
exact exchange hole, p1jir(¥,, s), in molecules and atoms
(see Figure 2a) with the notable exceptions!® where F,
is positioned at the border between two core shells or
in the exponential tail of the valence density. For the
latter two cases the function p}}p(¥,, s) has, for clear
physical reasons,!® its maximum at larger values of s as
shown in Figure 2b. Thus, pY(¥,, s) has in those cases
a qualitative incorrect behavior.

It is possible, as shown by Becke? and others,®?! to
model the exchange hole function in such a way that
it has the correct qualitative behavior for all positions
of ¥, in finite systems. The corresponding exchange—
energy expression is given by

E, = E{PA + E}C (10)

where the so-called nonlocal correction EX" takes the
form

EY = T (g0)oi@))¥* dF,  (11a)
Y

with g(x”) being a function of the dimensionless pa-
rameter

X" = |VeY(F)I/ [p1(F))Y? (11b)

The expression for Eg can also be derived from di-

mensional arguments.?? It contains the gradient of
p](¥,) which clearly is a measure for the inhomogeneity
of the electron density in finite systems. It is for this
reason often referred to as the inhomogeneous gradient
correction to EXPA. A number of different functional
forms for g(x") have been proposed.?® Table I displays
atomic exchange energies calculated according to eq 9
for various forms of g(x*). The inclusion of the nonlocal
correction, EYL, is seen to bring the calculated exchange
energies in line with the exact values within 0.2 au. The
recent form for g(x?) suggested by Becke?* is of par-
ticular interest since it has the correct asymptotic be-
havior for ¥, positioned in the exponential tail of the
valence density.

The LDA overestimates, as illustrated in Table II, the
correlation energies by 100%. Stoll et al. have shown
that the major part of the error comes from correlation
between electrons of the same spin, which in finite
systems is much smaller than in the homogeneous
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SCHEME 1

Approximate density

functionai theories

for exchange and correiation
-

HFS
Local exchange

L DA LDA: Same local exchange functional
ae HFS + local correlation funclional
of lhe homogensous electron gas
Ref : 13b,15,16,24

HFS: Local exchange funcllonal
of the homogeneous eleciron gas
Ref : 2,18

Local sxchange +
local correlation

LDA/NL: Same local exchange and
LDA/N L corrsletion funcilonal as LDA + non-

local corractions to exchange and
corralation

Ref : 18-23 (non-local exchange)

Local exchange +
local corralalion +
non-local corrections Ret : 25-26 (non.local correlailon)

electron gas. They suggested to replace E5°A of eq 8
by

E§PP = fpl(i"l)ec[p‘f(i"l), pi(¥))] dF, -

S Pt @)1, pfE)] dF - [ s @Deloi(E), 0] dFy
(12

in which correlation between electrons of the same spin
has been eliminated altogether so that contribution to
the exchange~correlation energy from electrons of the
same spin is given solely by the exchange part. The
correlation energies calculated by EZF® is seen to be in
error by less than 10% (Table II). The shortcomings
of EEPA has alternatively been dealt with by considering
inhomogeneous gradient corrections,?2 in analogy to
the exchange energy, as well as specific shapes!!»% and
constrains?<e of the Coulomb hole function p2(%,, s).
The accuracy of these correlation—energy functional are
impressive as indicated in Table II. Savin? et al. as well
as Clementi3®? et al. have assessed some of the pro-
posed correlation density functions in molecular cal-
culations. The different approximate DF theories for
exchange and correlation are summarized in Scheme I.

D. Approximate Density Functional Approaches
with Exact Exchange

It would seem that one could eliminate the predom-
inant error in the LDA approach by simply calculating
the exchange part exactly using the Hartree~Fock me-
thod. In this case the exchange-correlation energy is
given by

EYEL0A = EYF +ELDA (13)

This expression has some merits for atoms,? but it is
in fact rather inadequate for molecules.?3°

The HF method lacks by definition correlation, and
in molecules, one has to add two types of correlation
contributions to EXF in order to obtain an adequate
exchange~correlation energy. The first type describes
the correlated movement of electrons at short intere-
lectronic distances. It is often referred to as dynamic
correlation.3! This type of correlation is well repre-
sented? by EXPA. The second category, called near
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SCHEME 11

Approximate density
functionai theories
for correiation only

—

LDA HFs+ E 'E:“ : Exact sxchange wilh
HF+E local correlation functional. No
C near dsgeneracy correlallon
Raf : 30,33b,34

N LDA E:g¢ E:;M : Calculates exact exchange
D and nm-degunusﬁy correlation
E xc tE5¢ from Umiled CI (E §2). Lo

Adds dynamic cunFillon (E ¢ 9

Ref : 27,33s-d.36

degeneracy correlation, is largely a correction to ESF.
This correction is required since the molecular HF hole
function, 5)7r(¥,, 8), is too diffuse? as a function of the
interelectronic distance s for certain positions of ¥;, in
particular in the limit of bond dissociation.®? Thus near
degeneracy correlation has largely the effect of com-
pacting the total hole—correlation function. The term
ELP* does not contain near degeneracy correlation.!!
Molecular calculations based on eq 13 have as a con-
sequent many of the deficiencies exhibited by the HF
method. In fact, calculated bond energies based on eq
13 differ®® in many cases considerably from experi-
mental values.

The hole function, p%,(¥,, s), of (eq 9) does not suf-
fer®® from the same deficiencies as p2g(¥,, s) for large
s. It is thus not necessary to apply near degeneracy
corrections to EXPA of eq 7 and this is also the case?
if use is made of the gradient-corrected exchange en-
ergy, E,, of eq 10. Molecular calculations in which both
exchange and correlation are treated by LDA afford3?
for this reason better bond energies and bond distances
than calculations based on EYEL1PA, We shall illustrate
this point further in section IIL

Several authors®¥% have attempted to overcome the
inadequacies of EYEPA by evaluating the exchange
energy and the near degeneracy correlation energy as
the total exchange—correlation energy, EYR, from a
proper dissociation wave function.?® The total ex-
change—correlation energy, EYR P4, is thus obtained by
adding EXPA according to

EYRLDA = END+ EiPA (14)

This is a very promising,® if somewhat involved, ap-
proach. The theoretical justification for combining EY2
and EXPA has been assessed recently by Savin.% A
summary of the different density functional methods
in which exchange is evaluated exactly is given in
Scheme II.

E. Practical Impiementations

The self-consistent (SCF) version of DFT, as formu-
lated by Kohn and Sham,* necessitates the solution of
the Kohn-Sham equation given in eq 3. This is ac-
complished in practice by deriving the potential Vi
from an approximate expression, Exc, for the exact
exchange~correlation energy, Exc. The corresponding
approximate Kohn and Sham equation reads

(V2 + Un(E) + Vo(E) + Vxc@E)IiF,) =
hxs®i(¥))= ¢¢;(F,) (15a)
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where
Vn(E) = )}"_mAZf T (15b)
and
Ve(#) = -pﬁ{)— d¥, (15c¢)
)= ¥
whereas

Vxcle@®)] = [8Exclp(E)]]/[0p(F)]  (15d)

The set of solutions, {¢,(F,), i = 1, n}, to eq 15a affords
the electron density from which several expectation
values can be evaluated, including the total energy.

It is customary in practical implementations to ex-
pand ¢;(F,) in terms of a known (basis) set of functions,
{xx(F1), k = 1 M}, as

k=M
¢i(F) = El Cirxa(¥) (16)

The problem of solving the differential equation of eq
15a is now transformed into finding a set of eigenvectors
{Cit» & = 1, n; k = 1,M} and corresponding eigenfunc-
tions from the secular equation

w=M
Z [Fvu - eI:Sm] = 0, v=1,M (173)
u=1
with
F, = @ )hgsx, @) df,  (17b)
and
S, = f xv(F)xu(E,) dF, (17¢)

In the earliest implementation applied to molecular
problems, Johnson®” used scattered-plane waves as a
basis, and the exchange—correlation energy was repre-
sented by eq 7. This SW-Xa method employed in
addition an (muffin-tin) approximation®” to the Cou-
lomb potential of eq 15¢ according to which V(%)) is
replaced by a sum of spherical potentials around each
atom. This approximation is well suited for solids for
which the SW-Xa method® originally was developed.
However, it is less appropriate in molecules where the
potential around each atom might be far from spherical.
The SW-Xa method is computationally expedient
compared to standard ab initio techniques and has been
used with considerable success!” to elucidate the elec-
tronic structure in complexes and clusters of transition
metals. However, the use of the muffin-tin approxi-
mation precludes accurate calculations of total energies.
The method has for this reason not been successful®®
in studies involving molecular structures and bond en-
ergies.

The first implementations of self-consistent DFT,
without recourse to the muffin-tin approximations, are
due to Ellis and Painter,** Baerends! et al., Sambe and
Felton,*? Dunlap* et al., as well as Gunnarson* et al.
Other implementations*® and refinements have also
appeared more recently. The accurate representation
of V¢(¥,) is in general accomplished by fitting the mo-
lecular density to a set of one-center auxiliary func-
tiong#l4346adée £ (§.), as
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p(F) =~ La,f,(¥) (18)
"

from which V(¥,) can now be evaluated expediently
by analytical*! or numerical‘* integration as

£,(F)
Vo®) ~ Za, f - dF, (19)

¥y — Fyl

The matrix elements F,, and S,, can subsequently be
obtained from numerical integration*®*¢ as

F,= §xv<fk)ﬁxsx“<mw<m (20)

where W(¥,) is a weight factor.4%4¢ The extensive use
of numerical integration is amiable to modern vector
machines.*”*® However, care must be exercised in order
to calculate total energies accurately. This requirement
has been met by the development of special algor-
ithms*54° as well as new accurate integration schemes.*
The adaptation of procedures based on numerical in-
tegration techniques makes it easy to deal even with
complicated expressions for the potential, Vxc(¥,). The
often intricate form of the potential Vxc(¥;) precludes
on the other hand a direct analytical evaluation of F,,.
However, this problem can be side-stepped by fitting*
Vxc(F,) to a set of auxiliary functions such as

vXC(i:l) = angn(i:l) (21)

with the help of numerical integration techniques.$ A
substitution of eq 21 and eq 19 into eq 17a now allows
for an analytical evaluation*®*® of F,. The analytical
procedure has the merit that advantage can be made
of techniques already employed in ab initio methods.
It also ensures accurate total energies in a relatively
straightforward way. However, the price one must pay
is the introduction of several sets of auxiliary functions.

A unique approach has lately been taken by Becke®
in which eq 15a is solved directly without basis sets.
This approach, which seems promising, was first applied
to diatomic molecules®®® and more recently to poly-
atomics.5%* Alternative schemes have recently been
proposed for diatomics.5!

The various SCF schemes based on DFT are attrac-
tive alternatives to conventional ab initio methods in
studies on large-size molecules since the computational
effort increases as n® with the number of electrons, n,
as opposed to n* for the HF method or n® for configu-
ration—interaction techniques. The scope of density
functional based methods has further been enhanced
to include pseudopotentials,? relativistic effects,’® as
well as energy gradients of use in geometry optimiza-
tion.#%¢54 The existing program packages*’*® are still
not as user friendly, or readily available,” as their ab
initio counterparts and much development work re-
mains to be done. Information about the various im-
plementations is given in Scheme II1.

I111. Assessment of Approximate Density
Functional Theory

We have in the previous sections discussed approx-
imate expressions for the exchange—correlation energy.
The expressions can in general be justified by referring
to global properties of the spherically averaged hole—
correlation function. They are in addition given in

Zlegler

SCHEME 111

Methodology based on '
Approximate DFT

MS-Xo :  Makes use of pertial weves s basls (37).
MS-X0. ]} Reletively fest. Good for | ond
1966 snergles (10). Totel snergles unrelisble (39).

No g Y op Full use of y.

Hae relstivietic extension (33f). Makes use ol muffin-tin
PP (38). Developed by K.H. @3n.
DVM: Makes uss of numaerical stomic orbltale or STO's.
Avolds muffin-tin epproximation by fit of denelty (45a).

2

DVM le total gles (76d). R (53e).
Numerical g of matrix by Dlop
1970 Integretion (40). Developed by Ellle end Painter (40).

| Extensive Improvements by Delley (OMol-program) Including
new Intagrefion scheme (48c) end geometry optimization.

HFS-LCAO: Makes use of STO's. Accurets patenttsie (41).

HFS- Full use of Y. (53a,b). Highly
vectorized (47). Accurete total snergles (4¢). Geometry

LCAO optimization (54c). Accurets numerical Integretion (46b).
Many suxillary property progrems . Pssudopotentisie (52e.d),

1873 Embadding procedures (78h). Energy d: sitlon schama

(72). Developed by Basrends, Snijdere, Revensek, Vernoolje end
te Velde (41,53,47.48d)

LCMTO !.CIITO: mf. uu. of .mu"h.":' u:l;ul- oe besls.
1974 Herrle end Jonse (44).

LCGTO-LSD: Makes use of GTO's. Fit of exchange-correlslion
LCGTO- ond [ (43). Ansly of metrix
LSD

(4gb). gles. ¥
(54b,h). Strongly vectorized (48b). Fire! devetoped by Sambe
(42) ee well ee Duniep (43). Extensive Improvements by
1978 Salehub (DMon-progrem) end Andzalm (48b)
(DGauss-progrem) as well ee RSsch (74s). Also work by
Pederson (45e) end Peinter (45d)

NUMOL

]

NUMOL: Unique basie set fres progrem (50s,e). Accurste
numerical integretion (48e). Efficien| generstion of

by +

¥ O

1982 Developed by Becke (50 ).
PL-DFT: Makes use of plens waves end pseudo palsniisls.
PL-DFT Sceles as N with number of slectrone. Greste potentiisl. Developed

1988 by Teler (691)

terms of the electron density in the spirit of DFT. The
explicit dependence of the exchange correlation energy
on the electron density renders approximate DFT
considerable computational expediency with a wide
range of applications. It remains, however, to be seen
how well theoretical values based on approximate DFT
calculations compare with experimental data and results
from ab initio methods. This section is concerned with
the quality of numerical results obtained by approxi-
mate DFT. It will in particular be of interest to es-
tablish whether the approximate representation of Exc
is adequate for properties involving energy differences
such as bond energies, molecular structures, ionization
potentials and excitation energies. We shall in addition
try to assess the different levels of approximate DFT
and the kind of improvements one might obtain by
resorting to more refined theories.

A. Bond Energy Calculations

We shall begin our assessment of DFT-based meth-
ods by considering the calculation of bond dissociation
energies. Results from this type of calculation should
provide a clear indication of how well approximate DFT
can account for molecular energetics. Of particular
interest are the results obtained from the field of or-
ganometallic chemistry where the dearth of reliable
experimental data is felt strongly. Accurate theoretical
data in this area could afford a much needed supple-
ment to the sparse available experimental data on
metal-ligand bond energies, necessary for a rational
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TABLE II1. Bond Dissociation Energies (eV) for Diatomic Molecules

expt® HF® HFS§® LDA¢ LDA - NLe HF + LC/ HF - PD# HF - PD + LC*
B, 3.1 0.9 3.9 3.9 3.2 1.2 13 1.6
C,; 6.3 0.8 6.2 7.3 6.0 2.0 2.3 3.5
N, 9.9 5.7 9.3 11.6 10.3 74 7.3 9.3
0, 5.2 13 7.1 7.6 6.1 2.2 2.9 3.7
F, 1.7 -14 3.2 34 2.2 -0.7 0.7 14

3 Reference 50a. ®Hartree-Fock calculations.’® ¢Hartree-Fock-Slater calculations®®#ab with a,, = 0.7. ILDA calculations!!® with a,, =
0.66d. ¢LDA calculations!! plus nonlocal corrections to exchange? and correlation.?® /Calculations3 based on HF as well as local corre-
lation.?% £Calculations™ based on a proper dissociation wave function. * Calculations® based on a proper dissociation wave function with

local correlation correction.3%

TABLE IV. First Metal-Carbonyl Dissociation Energy® in
a Number of Metal Carbonyls

molecule HFS® LSD?®

LSD/NL¢ expt’

Cr(CO),q 278 276 147 162
Mo(CO), 226 226 119 126
W(CO), 247 249 142 166
Ni(CO), 194 192 106 104

3 All energies are kd/mol. V. Tschinke, unpublished results.
¢Reference 58.

approach to the synthesis of new transition-metal com-
plexes.

Table III compares bond energies calculated by var-
ious methods with experiment for a number of homo-
nuclear diatomic molecules. The Hartree~-Fock scheme
(HF) is seen to underestimate the bond energies uni-
formly. The discrepancy is especially large for the
sample of multiple-bonded molecules considered here.
The disagreement is less pronounced for species with
a single a-bond.®b€2 It is by now very well known why
the HF scheme represents 7-bonds so poorly.552b32
Basically,?® the molecular hole-correlation function
pihr(E,, 8) differs considerably from its atomic count-
erpart for certain ¥, where it is too diffuse as a function
of the interelectronic distance s.

The bond energies calculated by the HFS me-
thod,*3%b in which E,, is represented by EXPA of eq 7
and o, taken to be 0.7, are on the other hand in rea-
sonable accord with experiment. The success of the
HFS scheme can be attributed®® to the fact that 527 (¥,,
s) changes little in the transition from atoms to mole-
cule. We note that the HFS scheme tends to overes-
timate bond energies slightly. It is important in bond
energy calculations to carry out spin-polarized calcu-
lations on the atoms, as pointed out by Dunlap*® et al.

The HFS scheme lacks correlation between electrons
of different spins. This type of correlation is introduced
in the LDA energy expression of eq 6. It follows from
Table III that the LDA method affords even larger
bond energies than the HFS scheme. The LDA method
adds correlation between electrons of different spins to
the HFS energy expression. Correlation between
electrons of different spins is roughly proportional to
the number of spin-paired electrons. This type of
correlation is as a consequence more important (sta-
bilizing) in the molecule than in the constituting atoms
since the molecule in most cases have more spin-paired
electrons than the constituting atoms. The correlation
term EL° will as a result increase the bond energy
compared to the HFS method. The tendency of either
HFS or LDA to overbind is underlined further in Table
IV where we present theoretical values® for the first CO
dissociation energy in a number of metal carbonyls.
Both HFS and LDA are seen to overestimate the M—CO

bond strengths by nearly 100%. A deviation of this
magnitude is clearly unacceptable in reactivity studies.
In fact, it seemed in the last part of the 70’s and the
early part of the 80’s as if approximate density func-
tional methods would be unable to deal with chemical
energetics.

This situation was changed by the development of
gradient-based corrections due to Becke,?*d Perdew,?
and others.?® Thus, adding the nonlocal exchange?3d
and correlations?® corrections to the LDA energy ex-
pressions improves considerably the agreement between
theory and experiment (Tables III and IV). The largest
effect comes from the nonlocal correction to the ex-
change, whereas the influence of the nonlocal correc-
tions to the correlation term is rather modest. The
influence of the nonlocal exchange correction, EY" is
important in the tail of the valence density where the
local exchange hole incorrectly has its maximum around
the reference electron rather than at larger values!® of
the interelectron distance s. This error is corrected in
the nonlocal theory by EX“ which tends to lower the
total energy: On bond formation, parts of the valence
tail disappear as the two atoms are brought together.
The term EYC is as a consequence more important
(stabilizing) in the constituting atoms than in the com-
bined molecule. Thus, the overall influence of EY" on
the bond energy is to reduce it in magnitude (Tables
III and IV). The nonlocal correction is also important
in the regions between two core shells. Contributions
to the bond energy from these regions are crucial if the
bond formation involves promotion of electron density
from s-type orbital sto p-type orbitals.192%

Also presented in Table III are bond energies based
on calculations (HF+LC) in which EZP* has been added
to EXF according to eq 13. As mentioned previously,
the ELXPA term only includes dynamic correlation, it
does not correct for the near-degeneracy errors intro-
duced by HF. Thus, bond energies based on EXF +
EEPA suffer from the same deficiencies as bond energies
evaluated by the HF method.

The near degeneracy error can be corrected by in-
troducing a limited proper dissociation configuration
interaction (PD). It follows from Table III that the
results based on HF+PD+LC are of nearly the same
quality as those obtained from the LDA calculations
with nonlocal corrections (LDA-NL). The combination
of limited CI with correlation corrections derived from
approximate density functional expressions is attractive
from both a theoretical and practical point of view. It
allows one to treat a number of electronic systems in
which more than one determinantal wave function is
required even in a zero order. Examples of such sys-
tems include spin and space multiplets as well as
transition states of symmetry forbidden reactions. This
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TABLE V. A Comparison of Bond Distances (A) from HF
and HFS Calculations with Experiment

Ziegier

TABLE V1. Bond Lengths (A) for Some Diatomic
Molecules

A-B HF HFS expt

Fe-C,, 2.047¢ 17748 1.807
Fe-C, 1.874¢ 1.798¢  1.827
Fe(CyHy), Fe-C 1.88° 1.60¢ 1.65

HCo(CO), Co-Cy, 2.02¢ 1.75% 1.764
Co-C,, 1.96° 1.779 1.818

sReference 64a. ®Reference 64b. ©Reference 64c. 9 Reference
66a. *Reference 66b. /Reference 66c¢.

Fe(CO);

kind of systems is not well represented’” by the HFS
and LDA methods or their nonlocal extensions. It is
further able to take the dynamic correlation into ac-
count in a economical and efficient way through EEPA
or similar expression.3®> An ab initio description®! of
dynamic correlation requires a substantial amount of
configurations for small systems and is virtually out of
reach for larger size molecules. The HF+PD+LC me-
thod has been pioneered by Clementi,3% Savin,’% and
others.®

It seems at the present time that the LDA method
augmented with nonlocal exchange and correlation
corrections (LDA-NL) represents the most efficient and
accurate method for the evaluation of bond energies
within the density functional framework. Calculations
on metal carbonyls,® binuclear metal complexes,® alkyl
and hydride complexes,® as well as complexes con-
taining M-L bonds for a number of different ligands,®!
have shown that LDA-NL afford metal-ligand and
metal-metal bond energies of nearly chemical accuracy
(£5 Kcal mol™). Becke®d® has recently carried out
accurate basis set free calculations on the bond energy
in a number of smaller molecules. Calculations in which
relativistic effects are taken into account®® have also
appeared .84

B. Molecular Structures

It has in recent years been possible to determine
molecular structures by theoretical methods with in-
creasing accuracy. Of particular importance in this
development has been the implementation®263¢ of au-
tomated®® procedures based on analytical expres-
siong®d- for the energy gradient. It is now routine®?
to carry out geometry optimizations of organic mole-
cules based on HF or correlated ab initio methods with
an accuracy of £0.02 A, or better, for bond distances.
The application of ab initio methods, in particular on
the HF level, has been less successful in the area of
transition-metal chemistry.8 This is illustrated by
Table V where metal-carbon distances calculated by
the HF method® with large basis sets are displayed for
three representative organometallic molecules. The
metal-carbon bond distances calculated by the HF
method are seen to be too long by up to 0.2 A. The
method gives in addition, in the case of Fe(CO);, a large
difference of 0.2 A between axial and equatorial bonds,
which is not observed experimentally. The inability of
the HF method to supply reliable structural data for
transition-metal complexes can, as in the case of bond
energies, be traced back to the near degeneracy error
as discussed by Liithi et al.%¢ The deficiency of the HF
method can be removed by configuration interaction
methods.® However, such methods are costly and less
amenable to automated geometry optimization proce-

LDA-NL/ LDA-NL/
expt® HF® HFS® LDA‘ Xe X

B, 159 160 1.60 1.62 1.62
C, 124 1256 124 124 1.25 1.25
N, 110 106 109 1.09 1.10 1.10
0, 121 115 120 120 1.23 1.22
F, 141 132 138 138 1.44 1.41

%Reference 50a. ®Reference 43. °Calculations from ref 50a
based on eq 1la with a,, = 0.7. 4Calculations from ref 11c based
on eq 13 with a,, = 2/3. *Calculations from ref 11¢ based on LDA
with nonlocal exchange corrections.2¥ /Calculations from ref 11¢
based on LDA with nonlocal exchange®4 and correlation® correc-
tions.

MAE
X 103
20

c-C C-H C-0 C-S C-N C-P

HFs I HF

Figure 3. Mean absolute errors from HFS and HF calculations
on bond distances (A).

dures based on analytical expressions.

Early HFS calculations*®4385% on bond distances in
diatomic molecules gave quite encouraging results
(Table VI). They indicated that methods based on
approximate DFT might be quite accurate for geometry
optimizations. Thus, both HFS and LDA are seen to
give bond distances in better accord with experiment
than HF (Table VI). The HFS and LDA schemes af-
ford in most cases quite similar results. However, there
are examples, such as Li, and Na,, in which LDA is in
much better agreement with experiment than HFS.
The simple HFS method is further seen to afford rea-
sonable estimates® for the metal-carbon distances in
Table V. The HFS method appears to underestimate
metal-ligand bond distances by up to 0.05 A. This
situation is apparently not improved significantly by
resorting to LDA calculations.’® The inclusion of
nonlocal correction to the exchange term?d (LDA-
NL/X) tends to elongate the bond,!!* whereas the
nonlocal correction to correlation® seems!! to shorten
the bonds. Much work is still required in order to
evaluate the influence of nonlocal corrections on geo-
metrical parameters.

Approximate density functional methods have, how-
ever, in spite of the encouraging results of Tables V and
VI not been used to the same degree as the HF method
in geometry optimizations. This is primarily because
geometry optimizations by the HFS method until re-
cently were carried out with a laborious point by point
tracing of the potential surface as a function of the
nuclear coordinates, The HF programs have on the
other hand utilized automated procedures based on
analytical expressions for the energy gradients for a long
time.

This situation has now changed with the derivations
of analytical expressions for the energy gradients within
the density functional formalism® and their imple-
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mentation3bch8% and integration into general purpose
programs.47¢45£50f Numerous calculations on molecular
structures have appeared over the past few years 575566
Figure 3 summarizes the experience®%d gained from
calculations on organic molecules. It follows from
Figure 3 that the bond distances from HF'S calculations
are in at least as good agreement with experiment as
the bond distances calculated by the HF method. The
errors range, in the HFS case, from 0.01 A for C-N and
C-P bonds to 0.005 A in C-C and C-O bonds. The
HFS method seems in particular to fare well for double
and triple bonds. The error range for bond angles
calculated by the HFS method is 1-2°. Very recent
calculations by Andzelm®® and Pederson®® indicate
that geometrical parameters optimized by LDA are of
the same quality as parameters optimized by the MP2
ab initio method®e for organic molecules. Dixon®* has
carried out a comprehensive study of fluorinated al-
kanes and silanes. Calculations® on some 30 inorganic
molecules of main group elements revealed a deviation
of 0.01 A for bond distances and 1° for bond angles.
The errors in calculated HFS and LDA metal-metal
and metal-ligand bond distances of transition-metal
complexes are as large as 0.05 A. However, this error
is still smaller than the deviations encountered in HF
calculations. It remains to be seen whether more ad-
vanced theories, in which nonlocal corrections are taken
into account, will be able to supply more accurate
geometrical parameters for transition-metal complexes.

C. Potential Energy Surfaces and
Conformational Analysis

There have been a number of HFS or LDA studies
on the relative stability of isomers and conformers.
These include the relative energies of eclipsed and
staggered conformations in Fe(CyH;),,8 CzHg;690 as well
as a number of binuclear metal complexes,’® Confor-
mational energy differences seem®e to be well repre-
sented by HFS or LDA. The energetics for different
coordination modes of ligands complexed to transition
metals have been studied for phosphaalkene,”® F, and
H,," alkenes and alkynes,’'*d BH,,"l¢ 0,,74 X, CX,
(X = 0,8, Se, Te),"'8 carbocycles,’} as well as H.™'? A
special energy decomposition scheme has been de-
vised’24971¢ which breaks down the coordination energy
of a ligand into steric and electronic factors. This
scheme makes it possible to explain interaction energies
as well as conformational preference of a ligand in terms
of well-established chemical concepts. As examples, the
decomposition analysis is able to provide estimates of
the respective contributions from the ¢, 7, and é com-
ponents in binuclear complexes®™ with multiple bonds:
1a, the relative importance of donation and backdo-
nation in transition-metal complexes of unsaturated
ligands™ such as olefins; 1b, the contributions™® to the
protonation energy; le, from the pure electrostatic in-
teraction of the proton as well as the charge rear-
rangement following the formation of the protonated
complex.

P ran

1a 1b 1
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The HF method represents conformational energies of
saturated systems, such as rotation barriers in alkanes,
quite well. It is not likely that HFS or LDA will afford
substantially different results for this type of systems.
However, examples are known among unsaturated
systems in which HF- and LDT-based methods differ.
Thus, HF%¢ finds HCo(CO), of C,, symmetry, with
hydrogen in an equatorial position, to be more stable
than the experimental observed C,, structure where
hydrogen is in the axial position. On the other hand,
HFS%¢ finds the Cj, structure to be the more stable
conformation.

Salahub, 87368 Rgch,®8™ Dunlap,”#" Delley,58® and
Baerends’ have studied the structure of metal clusters
and their interaction with atoms and small molecules.
These investigations include studies on the geometrical
and electronic structure of small naked metal clus-
terst8h.78a,80d a3 we]l as their interaction with
CO,77'79°’8°"d'73°’75’ 0) 2,80g,73b hydrogen,69"d"3b'73d and al-
kaline atoms.” Of particular interest has been the
metal-metal bond strength and electronic structure of
M; (M = Cr, Mo, W)8a7% where DFT-based methods
have proven more accurate then standard ab initio
techniques. Cluster calculations have also been applied
to simulate scattering from surfaces’ as well as inter-
faces.’®88d Studies have further been carried out on
polymers™ such as trans-polyacetylene <8¢ and po-
lysilane.8® Ravenek™h has developed an embedding
method for calculation in which small clusters are used
to simulate surfaces or larger aggregates.

D. Transition-State Structures and Reaction
Profiles

The complete characterization of a chemical reaction
requires the full determination of the potential energy
surface for the reaction system as a function of the
nuclear coordinates. In the classical transition-state
theory this requirement is reduced to a determination
of the surface around the reactant(s), the product(s),
the transition state (saddle point), and the lowest en-
ergy pathway connecting them.

The first determination of a transition-state structure
based on approximate DFT has appeared recently. Fan
and Ziegler® studied the isomerization reaction CHsNC
— CH4,CN. The energy barrier for the process has been
determined experimentally®! with high accuracy as 38.4
kcal mol™!. The barrier calculated by the HFS method
is 40.8 kcal mol™!. The best ab initio calculation®? based
on SDQ-MBPT(4) with 107 configurations gave a bar-
rier of 41 kcal mol™l. More calculations are clearly
needed to provide a full assessment of how well ap-
proximate DFT methods represent transition-state
structures and activation barriers. Such calculations
should not only involve other types of reactions but also
more accurate approximate DFT methods than the
simple HFS scheme.

A number of reaction profiles®48 for key steps in
processes catalyzed by transition-metal complexes have
been traced approximately by a linear transit procedure.
A complete analysis®687348 hag been provided for all
the steps in the hydroformylation process catalyzed by
HCo(CO),. This analysis presents in addition a critical
evaluation®66 of HF studies carried out on the same
process. It is concluded®-$® that the HF method, which
in transition-metal systems represents bond energies
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Figure 4. Reaction profile for the migration of a methyl group
in CH3Co(CO), to a cis CO ligand to form CH3(0)CCo(CO)s.
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Figure 5. Reaction profile for the oxidative addition of CH, to
the rhodium center in Cp(CO)Rh.

and geometries poorly, is inadequate for reactivity
studies involving transition-metal complexes. Figure
4 displays as an example the reaction profile%¢ for the
methyl migration reaction 2a — 2b which is a key step
in the hydroformylation process. The profile in Figure
4 seems to agree with available experimental®®" data.
Also given in 2a and 2b are the optimized structures
of the two species created when the HFS method is
used. 6

1.10

2a 2b

Another example involves the activation of the C-H
bond in methane® by the coordinatively unsaturated
CpIr(CO) and CpRh(CO) complexes (Figure 5). This
reaction, 3a — 3b, could serve as an important step in
the functionalization of methane to more valuable

Ziegler

chemicals. The reaction profiles of Figure 5 reproduce
many of the observed trends®® including a low activa-
tion barrier and a tendency for iridium to activate the
C-H bond more readily than rhodium. The first stage
of the reaction is represented by the formation of a
weak methane adduct, 3a, followed by the formation
of a transition state, 3¢, with an elongated C-H bond,
and finally the hydrido alkyl product, 3b. Also shown

3c

in 3a, 3b, and 3c are the optimized structures of the
three species using the HFS method.®

E. Molecular Force Fields

The construction of molecular harmonic force fields
from experimental data (based on infrared and Raman
spectroscopy) have benefited considerably over the past
decade from new developments in computational
chemistry. Thus, Pulay® has with his force method,
in which force fields and vibrational frequencies are
evaluated from a numerical differentiation of analytical
energy gradient calculated by ab initio methods, been
able to study a number of small molecules. The studies
by Pulay have more recently been augmented by in-
vestigations in which the second derivatives®® of the
total energy with respect to nuclear displacements were
calculated analytically.

Calculations of frequencies and force fields on the
Hartree—Fock level of theory are now carried out almost
routinely®? although the basis sets employed in calcu-
lations on large-size molecules often are somewhat re-
stricted as the computational effort in HF calculations
increases as M* with the number of basis functions M.
Frequency and force field calculations in which corre-
lated ab initio methods have been employed are still
restricted to small-size molecules and the evaluation of
first and, in particular, second derivatives of the energy
by such methods are rather demanding.

Table VII displays vibrational frequencies for a
number of diatomic molecules. It is clear that HF differ
significantly from experiment in particular for the =-
bonded systems C,, CO, and N,. The failure of HF in
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TABLE VII. Harmonic Frequencies (cm™') for Diatomics

HF HFS LDA LDA/NL MP2 exptf
C, 1970° 1870 1880* 1830 1855
N, 2730 2380¢ 2380*  2330° 2173 2358
CO 2430 2170¢ 211¥ 2170
AuH 1875 2305¢ 2241
Ay,  165°  201° 191

% Yoshimine, M.; McLean, A. D. Int. J. Quantum Chem. 1967,
S1,313. ®Lee, Y. E.; Ermler, W. C.; Pitzer, K. S.; McLean, A. D. J.
Chem. Phys. 1979, 70, 293. Hay, P. J., Wadt, W. R.; Kahn, L. R.;
Bobrowicz, F. W. J. Chem. Phys. 1978, 70, 293. 4Reference 50a.
¢Reference 60d. /Reference 62. #Huber, K. P.; Herzberg, G.; Mo-
lecular Spectra and Molecular Structure; Van Nostrand Reinhold;
New York, 1979. °Reference 11c. * LDA with nonlocal corrections
to exchange? and correlation.?

C,, CO, and N illustrates once again the inadequacy
of HF in multibonded systems due to the inherent
near-degeneracy error.%%b This error is to a large de-
gree eliminated by MP2,82 in which electron correlation
is taken approximately into account. The MP2 method
brings the calculated frequencies in much closer
agreement with experiment (Table VII). The HFS
scheme is seen on the whole to give a good represent-
ation of the frequencies, even for the two transition-
metal systems AuH and Au,. The introduction of dy-
namic correlation (LDA) does not significantly change
the theoretical results. Few data are available on the
way in which nonlocal (LDA/NL) corrections to ex-
change® and correlation? influence frequencies. The
few available data''® points to a rather modest influence
(Table VII).

DFT-based methods have in spite of the encouraging
results presented in Table VII not been used to nearly
the same degree in frequency calculations as the HF
scheme. This is primarily so because frequencies ob-
tained from DFT calculations were calculated from a
laborious point by point tracing of the potential energy
surface as a function of the nuclear coordinates, whereas
ab initio programs,®? as already mentioned, utilize
powerful automated procedures based on analytical
expressions for the first® (and second®®) energy de-
rivatives.

The recent implementations of energy derivatives®b<c
within the DFT frame work makes it now tractable®45
to evaluate frequencies from a numerical differentiation
of the energy gradients in the spirit of Pulay’s force
method.# Harmonic frequencies calculated by the HF,
MP2, and HFS methods for H,0, H,S, NH,, PH,, CH,,
SiH,, and C,H, are in Table VIII compared to experi-
mental data, with deviation between calculated and
experimental values given in parentheses. It is evident
from Table VIII that the harmonic frequencies obtained
by the HFS method?®® are somewhat too small com-
pared to experiment, whereas the HF method afford too
high values. The average percentage deviation of the
harmonic frequencies calculated by the HFS method
varies from 1.9% in the case of HyO to 9.3% for SiH,.
The corresponding deviation of the HF results are for
all molecules except SiH, higher. The mean absolute
deviation of all frequencies listed in Table VIII is 5.0%
in the HFS case as opposed to 9% in the HF case. The
LDA method afford,®" for the same sample of points,
frequencies quite close to those obtained by HFS.852
The frequencies calculated by the MP2 method has a
mean absolute deviation of 4% and are thus slightly
better than the DFT results. Salahub®P et al. have
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TABLE VIII. Frequencies Obtained by HFS, HF, and
Experiment®

mol symmetry HFS HF? MP2¢ expt
a; 3814 (-18)° 4070 (238)° 3772 (-60) 38324
H,0 a) 1590 (-58) 1826 (178) 1737 (89) 1648
b, 3877 (66) 4188 (245) 3916 (-27) 3943
a, 2631 (-91) 2918 (196) 2797 (75) 2722¢
H,S a, 1178 (-37) 1368 (153) 1279 (64) 1215
b, 2644 (-89) 2930 (197) 2824 (91) 2733
a; 3314 (-192) 3690 (184) 3504 (-2) 3506/
NH; a; 953 (-69) 1207 (185) 1166 (64) 1022
e 3468 (-109) 3823 (246) 3659 (82) 3577
e 1564 (-127) 1849 (158) 1852 (161) 1691
a; 2313 (-139) 2666 (214) 2510 (58) 2452
PH, a; 950 (-91) 1143 (102) 1079 (38) 1041
e 2329 (-128) 2602 (145) 2526 (69) 2457
e 1088 (66) 1278 (124) 1181 (27) 1154
a; 2951 (-186) 3197 (60) 3115 (-22) 3137
CH, e 1467 (-100) 1703 (136) 1649 (38) 1567
ty 3102 (-56) 3302 (144) 3257 (99) 3158
ty 1236 (~121) 1488 (131) 1418 (61) 1357
a; 2187 (-190) 2233 (-144) 2323 (-14) 2377
SiH, e 905 (-70) 1052 (77) 1005 (30) 975
ty 2217 (-102) 2385 (66) 2337 (18) 2319
ty 777 (-168) 1016 (71) 956 (11) 945
a, 3063 (-90) 3344 (191) 3231 (78) 3153*
a, 1647 (-8) 1856 (201) 1724 (69) 1655
a, 1348 (-22) 1499 (129) 1424 (54) 1370
a, 972 (-72) 1155 (111) 1083 (39) 1044
by, 3138 (-94) 3394 (162) 3297 (65) 3232
C,H, by, 1209 (-36) 1353 (108) 1265 (20) 1245
by 908 (61) 1095 (126) 980 (11) 969
byg 879 (-80) 1099 (140) 931 (-28) 959
by, 3170 (-64) 3420 (186) 3323 (89) 3234
bay 814 (-29) 897 (54) 873 (30) 843

by, 3041 (-106) 3321 (174) 3222 (75) 3147
ba, 1399 (-74) 1610 (137) 1523 (50) 1473

¢The unit is cm™. *HF/6-31G* calculations. See ref 62.
¢Deviations from harmonic experimental values are given in the
parentheses. ¢Strey, G. J. Mol. Spectrosc. 1967, 24, 87. ¢Allen, H.
C., Jr,; Plyler, E. K. J. Chem. Phys. 1956, 25, 1132. /Duncan, J.L.;
Mills, L. M. Spectrosc. Acta 1964, 20, 523. #Levin, I. W.; King, W.
T. J. Chem. Phys. 1962, 37, 1375. *Duncan, J. L.; McKean, D. C.;
Mallison, P. D. J. Mol. Spectrosc. 1973, 45, 221.

calculated frequencies for the same sample of molecules
given in Table VIII. Their results are surprisingly
similar to the HFS frequencies (£30 cm™).

The data in Tables VII and VIII would indicate that
DFT-based methods on the whole are able to furnish
relatively accurate harmonic frequencies. They should
thus over the next decade be able to supply valuable
information about molecular force fields, in particular
for transition-metal complexes and metal clusters. In
fact, Salahub®®? et al. have quite recently obtained
frequencies for organic molecules interacting with metal
clusters. This type of calculations can provide crucial
information in connection with studies of chemisorp-
tion.

The use of DFT in studies on molecular force fields
would be greatly enhanced by the employment of ana-
lytical second derivatives. Expressions® for the second
and third derivatives can be derive in a manner®® quite
similar to that employed for HF theory. However, a
practical implementation of second derivatives within
DFT has not yet been achieved. ‘

F. Ionization Potentlais

Photoelectron spectroscopy (PES) emerged in the
early 70’s as a new and exciting technique with direct
bearings on molecular orbital energies. It is thus not
surprising that PES has served as a testing ground for
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TABLE IX. Ionization Energies (eV)

HFS*  LDA®  LDA/NL®  expt®
N, 1460 1505 15.24 15.60
16.6 16.95 16.81 16.98
co 1281  13.50 13.85 14.01
16.71 17.17 17.01 16.53
F, 1478 15.02 15.34 15.70
1808 1835 18.58 18.98
H,0 1203 1255 12.59 12.62
1395  14.46 14.60 14.75
NH, 1006 1062 10.76 10.88
1559  15.98 16.37 16.0
CH, 1318 1361 14.01 14.35
2120 2150 22.00 23.00
CH, 1014  10.60 10.56 10.51
1184 1222 1275 12.85

¢ Turner, D. W. Molecular Photoelectron Spectroscopy; Wiley:
New York, 1980. ®Reference 29d.

new and increasingly sophisticated theoretical methods
including DFT-based schemes. In fact, one of the first
successful applications of the HFS method in chemistry
involved the assignment of photoelectron spectra. The
early work based on the SW-Xa method has been re-
viewed by Connolly!® and Case,'®® whereas Baerends®’
has reviewed work on HFS calculations without the
muffin-tin approximation.

Table IX displays the first and second ionization
potential for a number of smaller molecules. The HFS
method underestimates?®®<4 in general ionization po-
tentials for systems where the molecule has a closed-
shell structure and the ion has a single unpaired elec-
tron. Introduction of dynamic correlation by resorting
to LDA is seen (Table IX) to increase the calculated
ionization potentials and thus close the gap between
theory and experiment. The increase in the calculated
jonization energy due to EXP can readily be understood
when we recall that correlation will stabilize the mole-
cule relative to the ion since the former has one addi-
tional pair of electrons with opposite spins. A number
of HFS calculations on ionization potentials have been
carried out in the closed-shell formalism (R-HFS), al-
though the ion has one open shell. R-HFS affords a
better agreement with experiment than unrestricted
calculations (U-HFS) since the ion is of higher energy
in R-HFS compared to U-HFS. However from a the-
oretical point of view, one should always apply the
unrestricted formalism to open-shell systems in DFT
methods.

The nonlocal corrections to exchange are seen to
bring about a small but significant improvement of the
theoretical ionization potentials (Table IX). The in-
fluence of Becke’s exchange correction has been studied
elsewhere.2%8<d [t is, in particular, important for ion-
izations out of orbitals with a substantial contribution
from atomic s-type orbitals.

There have been several recent applications of ap-
proximate DFT to photoelectron spectroscopy**®#” in-
cluding some in which relativistic effects®® have been
taken into account. An extensive investigation?d
combining the calculation of bond distances and PE-
spectra involves the binuclear complexes M,(0,CR),
and M,CL,(PR;), (M = Cr, Mo, W) with a quadruple
metal-metal bond. Their PE spectra (see Figure 6)
reveal three bonds (A, B, and C) corresponding to an
ionization out of the 8, 7, and ¢ metal-metal bonding
orbitals with the B band being considerably more broad
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Figure 6. Schematic representation for the energy of the
quadruple-bonded binuclear complex M,L,, in its ground state
and first three ion states, corresponding to ionization out of the
8, p, and d bonding orbitals, as a function of the metal-metal bond
distance Ryny and schematic representation of the three first PE
bands A, B, and C with their vibrational shapes.

than either A or C. The assignment of A, B, and C has
been controversial.”™d Approximate DFT calcula-
tions™d assign A, B, and C to 4, , and o, respectively.
The potential energy surfaces in Figure 6 were, in ad-
dition, able to explain the broad feature of B in terms
of a large change in the Ry equilibrium distance for
the =-ion state.

Noodleman and Baerends® have revealed some un-
physical features of DFT-based methods in connection
with calculations on ionizations involving noninteracting
symmetry-equivalent localized orbitals. As an example
consider symtriazine (4) with three symmetry-equiva-
lent nitrogen lone pairs, l,.. The ionization can be

£

’ X
T,

considered as localized with the electron hole confined
entirely to one of the lone pairs, say /,. Alternatively,
one might consider the ionization to be delocalized with
the electron hole spread over symmetrized combinations
of l,, transforming as a,’ or €’ in the Dy, point group.
The localized hole state of the ion has usually a lower
energy than the delocalized hole state in ab initio the-
ory, as one might expect from physical arguments.
DFT-based methods finds by contrast that the delo-
calized hole state is of lower energy than its localized
counterpart. This unphysical result can be traced to
an inadequate description of 572(¥,, s) in the delocalized
case which leads to spurious self-interaction terms for
the electrons. Noodleman and Baerends® have shown
that one should apply the localized description in con-
nection with approximate DFT calculations on ioniza-
tions out of localized and noninteracting symmetry-
equivalent orbitals representing lone pairs or core shells.
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G. Multiplets, Excitation Energles, and Near
Degeneracles

We have previously seen how most approximate
DFT-based methods incorporate the exchange energy
expression for the homogeneous electron gas into Exc
and the total energy. The particular form for EXPA has

EWPA =
~9/4ay,[3/4m1 [ {[o3E)]YS + [o8E)IY dF, (22)

a number of features which makes it difficult to eval-
uate space and spin multiplets in an unambiguous way
within approximate density functional theory. The
problem can be illustrated® by considering the electron
configuration (a)!(b)! from which we can construct four
determinantal wave functions

++ -- +- -+
D,=labl D;=l|ab| Dy=|ab] D,=|ab|

The configuration gives rise to one triplet and one
singlet with the spin eigenfunctions represented by

i¥ =D, v = \/1/2{D3 + Dy}
gl\I’ = Dz(l)q’ = v 1/2{D3 - D4}

A substitution of p$(¥;) and pé(¥,) for the four spin
states into EXP? affords the rather unphysical result
ERPAGY) = EYPAG, W) = EXPAGY) = ERPAGW). Thus
one of the triplet components, 2, ¥, is seen to have an
exchange energy that differs from the two other com-
ponent and is equal to the singlet }¥. Ziegler5™ et al.
have shown that this apparent paradox can be resolved
by realizing that EXPA only is applicable’™ to a single
determinantal wave function. Thus exchange energies
for multiplets represented by linear combinations of
determinants must be evaluated indirectly by Slater’s
sum rules. For the case at hand D, and D, afford di-
rectly the exchange energy for the triplets

EWPA(triplet) = EXPA(D,) = EYPA(D,)  (23a)

The determinants D; and D, are equal mixtures of a
triplet and a singlet. It follows thus from Slater’s sum
rules that

EYPAD,) = 1/2E%PA(triplet) + 1/2E%PA(singlet)
(23Db)

which allows us to determine the singlet exchange en-
ergy as

EYPA(singlet) = 2E¥PA(D,) - EYPAD,) (23c)

Consider next the general case of a configuration
which gives rise to a number of space and spin multi-
plets. Let the exchange energy of all different deter-
minants, D;, corresponding to the configuration be given
as EYPA(D;) and let the exchange energies of the cor-
responding multiplets, M;, be given by EXPA(M,). The
two sets of energies are related by

ERPAD) = TC,ERAM) (24)

where the coefficients C;; in most cases are given by
group theory. The procedure for calculating multiplet
energies by Slater’s sum rules is now to invert the set
of equations in eq 24 to

E¥PAM,)) = ZAERPAD) (25)
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TABLE X. Calculated Triplet (Ey) and Singlet (Eg)
Transition Energies (eV)

compd transition E, Epw E, Egw

H,CO 2b,—2b, 318 321° 3.70°  3.50°
CH, r—n 457 460 745 18
CH; 1b,—2, 331 322 505 59
co 56 — 27 581 63 799 84
N, 30,—1r, 17.83 81 9.13 93
N, 2, —1r, 1068 1.1 1234 128

sFor reference to experimental and theoretical values see ref
57b. All calculations are based on the HFS method.

TABLE XI1. Singlet Excitation® Energies for Tetrahedral
d® Oxo Complexes in Electronvolts

MnO Cr0* \'[ Ra
transition E, E 2= E, Ez=® E, Ej2=

t, — 2e 248 227 330 332 451 4.58
4t,—2 396 347 458 4,53 571 5.58
t) — 5ty 415 399 490 486 6.15 6.15

¢ Reference 108b.

A detailed discussion of the conditions under which eq
24 can be inverted into eq 25 has been given else-
where.?™ Triplet and singlet excitation energies eval-
uated according to the procedure outlined above are
given in Table X for a number of small molecules. The
agreement with experiment is in general quite good.
Slater’s sum rules have also been applied by Von
Barth®! and Gunnarsson® to evaluate atomic multiplets.
Alternative procedures for calculation of multiplet
splittings within approximate DFT have been develx
oped by Dunlap.%

The HFS scheme has been used extensively to cal-
culate excitation energies and many of the applications
have been reviewed.!° An indication of the high accu-
racy usually obtained by approximate DFT methods is
given in Table XI. This table presents HFS calculation
on the three first excitations in the tetrahedral d° oxo
complexes MnO,", CrO,*, and VO3 In particular the
electronic spectrum of MnO, has served as an acid test
for new theoretical methods. It should be mentioned-
that HF and post-HF methods so far have failed to
calculate the excitation energies of MnO,~ with near
quantitative accuracy. Buijse®® and Baerends have re-
cently analyzed the error sources in HF calculations on
MnO,~.

There are cases other than multiplets in which the
description of an electronic system requires more than
one determinant, even at the lowest level of approxi-
mation. Examples include weakly interacting subunits,
as encountered in dissociating bonds or magnetic-cou-
pled metal centers, as well as avoided crossings of po-
tential energy surfaces for states of the same symmetry
in which the highest occupied and lowest unoccupied
orbitals are of nearly the same energy. Dunlap?® has
developed a method in which avoided crossings of po-
tential energy surfaces can be taken into account. The
method has been applied to C,, Si,, Ni,, as well as
several small cluster systems. The method can also be
applied to bond dissociations as illustrated®™® by a
calculation on H,. Noodleman® et al. have developed
a method to describe the magnetic coupling between
weakly interacting metal centers. This method, which
is based on spin-projection techniques, has been applied
to several metal dimers®® as well as ferredoxin.?d It
can potentially also be applied to bond dissociations.
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TABLE XII. Adiabatic Electron Affinities, Comparisons
between Theoretical and Experimental Values

molecule HFec CISD* EM°® HFS’¢ LDA®* LDA/NL® expt

CN 293 370 415 278 3.25 3.51 3.82¢
BO 141 235 297 1256 196 2.33 3.1¢

2.2/
OCN 228 321 - 283 3.19 3.35 3.6%
N, 089 215 - 212 250 2.65 2.7
NO, 151 2.00 1.02 143 1.90 2.32

4 Calculations!® with extensive basis sets. °Calculations with
basis set similar to that of ref 101. ¢Calculations on radical were
unrestricted. ¢Berkowitz, J.; Chupka, W. A.; Walker, T. A. J.
Chem. Phys. 1969, 50, 1497. *Srivastava, R. D.; Uy, W. A,; Farber,
M. Trans. Faraday Soc. 1971, 67, 2941. /Gaines, A. F.; Page, F. M.
Trans. Faraday Soc. 1966, 62, 3086. ¢ Wight, C. A.; Beauchamp, J.
L. J. Phys. Chem. 1980, 84, 2503. " Jackson, R. L.; Pellerite, M. J.;
Brauman, J. I. J. Am. Chem. Soc. 1981, 103, 1802. {Woo, S. B.;
Helmy, E. M.; Mauk, P. H.; Paszek, A. P. Phys. Rev. A 1981, 24,
1380.

The treatment of multiplets, avoided crossings, and
weakly interacting systems within the framework of
approximate DFT are still incomplete in spite of the
progress described above. Much work remains to be
done in this area which is emerging into one of the most
challenging fields in approximate DFT.

H. Electron Affinity

Electron affinity, EA, plays, together with ionization
energy, a key role in the theory of chemical reactivity
developed by Parr® and Pearson. This theory, which
is discussed by Parr S is an extension of Pearsons® or-
iginal concept of hardness and softness. The extension
is based on DFT.

The adiabatic electron affinity, EA,;, from the process

A+e —A -EAy (26)

is difficult to evaluate theoretically for molecules. One
has to evaluate the equilibrium geometries of A and A-
as well as the energy difference between A and A~ in
their respective ground-state conformations. The cal-
culation of molecular electron affinities by approximate
DFT has been carried out extensively by Gutsev® et
al. We compare in Table XII calculated EAigovalues
with experiment. The comparison includes!® HFS,
LDA, as well as LDA with nonlocal exchange correc-
tions?*d (LSD/NL). Also included are results!®! based
on HF, configuration interaction with all single and
doubles (RCISD), as well as the equation of motion
approach!®? (EOM). Several experimental EA,4 values
have been published for each of the molecules in Table
XII, covering quite a range. The experimental data
selected represents what currently is considered to
represent the best estimates. Flexible basis sets are
crucial' in theoretical evaluations of EA,4 and all
calculations were carried out with extensive basis sets.

1t follows from Table XII that HF and HFS, in which
correlation between electrons of different spins are
absent, underestimate EA,y. This is understandable as
the lack of correlation is more crucial (destabilizing) for
the negative ions A~ than the neutral species. This is
so since A~ has one more pair of electrons than A. Thus
the exclusion of correlation will underestimate the en-
ergy gap between A and A-. The explicit inclusion of
electron correlation greatly improves the theoretical
results both in the case of the ab initio methods (CISD,
EOM) as well as in the case of the DFT-based LDA

Ziegler

scheme. The addition of nonlocal exchange correc-
tion?d to LDA (LDA/NL) is seen further to bring the
theoretical results in line with experiment. It seems
clear that approximate DFT calculations on EA,, re-
quires the inclusion of both electron correlation and
nonlocal correction. However, at that level of approx-
imate DFT the calculated results are comparable in
quality to ab initio values based on extensive configu-
ration interaction (CISD and EOM). Approximate
DFT has also been used to calculate atomic electron
affinities.

I. Miscelianeous

We shall finish our assessment by a brief discussion
of DFT calculations on expectation values which pri-
marily depend on the one-electron density, p(¥,), or the
one-electron density matrix, p(¥,,¥,"). We will refer to
these expectation values as one-electron properties.

The approximate Kohn-Sham equation (eq 15a) af-
fords a set of one-electron orbitals {¢;(¥,), i = 1, n} from
which one can calculate the approximate electron den-
sity as

B(F,) = ‘:Z':am)a,-(fl) @7)

The approximate electron density 5(¥,) will approach
the exact density p.(¥,) as Vxclo(¥,)] of eq 15d ap-
proaches the exact Kohn-Sham potential, Vxc. Thus
the exact Kohn—Sham orbitals {¢;(¥,), i = 1, n} represent
the optimal set of one-electron functions from which
one can construct the one-electron density from eq 27.
It is even possible, as we shall see shortly, that the
approximate Kohn-Sham orbitals {¢;(¥,), { = 1, n} via
eq 27 afford a densitg p(¥,) which is closer to p,,(i"h)Fthan
the HF density, pHF(¥,), given by pHF(¥)) = Y7 (¥))-
oFF(E,).

The one-electron density matrix, p(¥,,%,’), is not
readily obtained from (approximate) DFT. It is cus-
tomary to make use of the approximate expression

i=n

p(FE)) = ?1 $:(E1);(¥) (28)

applicable for a single determinantal wave function
constructed from the set of orbitals {$,(¥,),i = 1, n}, We
note that 5(¥,,F,’) will differ from the exact one-electron
density matrix even if {¢;(¥,), i = 1, n} represents the
true set of Kohn-Sham orbitals, It is not clear a priori
whether 5(¥,,F,’) constructed from approximate Kohn-
Sham orbitals according to eq 28 will be more appro-
priate than the HF one-electron density matrix, pyp-
(FE1) = o F)ol™ ().

There have been a number of DFT-based calculations
on one-electron properties including parameters from
NMR!191% g d ESR%< gpectroscopy, electric-field gra-
dients!% and other Mossbauer parameters,!® dipole
moments,?1%7 dipole moment derivatives,’197 UV in-
tensities,!% optical activity,!® diamagnetic properties,!1©
and polarizabilities.107¢111

It is not as yet clear from the many DFT-based cal-
culations on one-electron properties whether the one-
electron matrix 5 (¥,,F,’) of eq 28, which is constructed
from approximate Kohn—-Sham orbitals, in fact is more
adequate than pyp(¥,,¥,’) from ordinary HF theory. It
seems, however, quite evident that the electron density
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TABLE XIII. Calculated Dipole Moment (x,) and
Polarizability (ayy, ayy, a;,) of H;O (All Units in Atomic
Units)

LDA® HF* Cr CEPA-14 expt®
He 0.721 0.787  0.785 0.723 0.728
Qyy 9.403 7.83 9.02 9.59 9.26
oy 10.15 9.10 9.84 9.81 10.01
Qg 9.75 8.36 9.33 9.64 9.62

sReference 107c. ®Dyke, T. R.; Muenter, J. S. J. Chem. Phys.
1978, 59, 3125. ¢Kirchhoff, W. H.; Lide, D. R. Natl. Stand. Ref.
Data. Ser. Natl. Bur. Stand. 1967, 10. 4Clough, S. A.; Beers, Y.;
Klein, G. P.; Rothman, L. S. J. Chem. Phys. 1973, 59, 2254.

TABLE XIV. Calculated Dipole Moments in Debye

molecule LDAs LDA/NL® HF? expt?
CcO -0.174 -0.153 0.33 -0.11
CS 2.107 2.014 1.26 1.98
LiH 5.65 5.74 5.77 5.83
HF 1.86 1.80 1.98 1.82

SFan, L.; Ziegler, T. to be submitted for publication. ®Reference
62.

from approximate DFT (eq 27) in most cases is more
adequate than the HF density, pHF(¥,). Table XIII
presents calculations!?’® on the dipole moment and
polarizability of H,O with extensive basis sets. It fol-
lows that LDA affords results in much better accord
with experiment than HF. In fact, the LDA values
agree as well with experiment as the CEPA-1 results in
which electron correlation is taken into account by
configuration interaction. Polarizabilities in close
agreement with experiment have been obtained!! from
HFS calculations on a number of small molecules. Not
much data is available on how nonlocal corrections in-
fluence the calculated electron density. The calculated
dipole moments in Table XIV seem to indicate that the
inclusion of nonlocal corrections to exchange®d and
correlation? has a small but important influence on the
calculated dipole moments.

Much work still needs to be done before it is possible
to assess the quality of one-electron properties calcu-
lated by approximate DFT. It is, however, encouraging
that dipole moments and polarizabilities are accurately
represented. This would indicate that in addition to
accurate vibrational frequencies one will also be able
to calculate accurate IR and Raman intensities.
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