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/ . Introduction 

Recent years have witnessed explosive and mutually 
stimulating advances in experimental and theoretical 
techniques for probing the mechanisms of electron-
transfer kinetics and related chemical processes.1"6 

Against the background of the widespread success of 
the traditional adiabatic Marcus-Hush7,8 theory, at­
tention is being increasingly directed toward problems 
of long-range electron transfer in which indirect cou­
pling of local donor and acceptor sites is mediated by 
the electronic properties of the intervening materi­
al 3b,6,»-39 Thus, while the overall kinetic mechanism 
may involve a number of dynamical factors (both nu­
clear and electronic),40,41 and while the electronic and 
nuclear manifolds may be strongly coupled,42 there is 
an increasing interest in the details of the donor/ ac­
ceptor coupling per se. This interest cuts across all 
branches of chemistry and includes inorganic, organic, 
and biochemical systems. Electronic coupling is clearly 
a crucial factor in intramolecular electron transfer over 
10's of angstroms, such as occurs in protein- and por-
phyrin-based systems,15-18,25,33-36 but its dynamical in­
fluence is also significant for redox partners in much 
closer contact, as exemplified by the bimolecular reac­
tions of small transition-metal complexes2,3,43-46 and 
other molecular species.41,47 

The intellectual excitement generated by the above 
considerations has been enhanced by the recognition 
that the donor/acceptor interactions crucial to elec­
tron-transfer kinetics are also of central importance in 
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a larger context which includes photoelectron (PES) 
and electron transmission (ETS) spectroscopy,31,32 

triplet energy transfer,120 and long-range coupling of 
electron spins.36,48 A broad array of modern electronic 
structural techniques has allowed important progress 
toward the goal of a unified theoretical approach en­
compassing a broad range of situations including intra-
and intermolecular coupling, electronically saturated 
and unsaturated bridging groups, and ground and 
electronically excited states.22-45,47-51 Electronic mod­
ulation due to the long-range influence of the sur­
rounding medium may also be included.41,49-51 As the 
impact of electronic factors on the elucidation of elec­
tron-transfer mechanisms continues to expand, one in­
creasingly encounters reference to the terminology of 
electronic mechanisms and pathways (e.g., "through-
space" (TS) and "through-bond" (TB) coupling,13,23 and 
"superexchange" of the "hole" and "electron" type11,12), 
and to the possibility of interference among them (both 
constructive and destructive).5,6c,6d,11,12,26,27,31,32,44d 

The specific focus of this review is to survey recent 
progress in the application of theoretical and compu­
tational techniques of quantum chemistry to the elu­
cidation of electronic factors controlling donor/acceptor 
interactions in electron-transfer reactions. The ex­
perimental data which provides the impetus for most 
of the theoretical work addressed here pertains pre-
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dominantly to condensed-phase systems involving dis­
ordered (Le., nonperiodic) media. For the most part we 
shall be able to deal with models based on discrete 
molecular clusters (either large molecules or supermo-
lecules) consisting of localized donor, acceptor, and in­
tervening bridging sites. We shall confine our attention 
to cases of relatively weakly interacting donor/acceptor 
systems where, indeed, the occurrence of localized states 
may be safely assumed. The recent review of solid-state 
electron-transfer processes by Mikkelsen and Ratner6 

dealt also with situations of more extended electronic 
states which may be important in periodic environ­
ments. As much as possible, the present review will deal 
with purely electronic aspects of electron transfer, al­
though attention will be drawn to vibronic factors42 as 
deemed necessary. 

The overall goal of the review is to provide a unified 
picture of the combined capabilities of modern quan­
tum chemistry in yielding accurate quantitative mea­
sures of the strength of electronic coupling and at the 
same time providing compact models for understanding 
the coupling in terms of the concepts of molecular 
bonding and electronic structure. The review should 
thus serve to complement other recent reviews which 
have dealt with electron-transfer kinetics on a broader 
basis.2'3'4"-5 

The remainder of the paper is organized as follows. 
A brief sketch of the kinetic and spectroscopic back­
ground is given in section II so as to provide a focused 
context for the electronic structural considerations. In 
section III a number of theories for donor/acceptor 
coupling are presented in terms of suitably defined 
electronic states and their constituent orbitals. The 
various direct and indirect coupling pathways are dis­
cussed in terms of many-electron or effective one-par­
ticles ("electron" or "hole") models. Specific aspects of 
computational implementation are dealt with in section 
IV. Results for a set of illustrative applications are 
given in section V, and conclusions are summarized in 
section VI. 

/ / . Kinetic and Spectroscopic Context 

Electron-transfer processes are conveniently discussed 
in terms of suitable electronic wave functions, ^M(XJ), 
within the Born-Oppenheimer framework, in which tne 
wave functions and corresponding electronic Hamilto-
nian, Htl(\Xq\), depend parametrically on the nuclear 
coordinates, IX,}.2,3,8,42 We consider the transition be­
tween an initial electronic state of a system, ^1, in which 
an electron can be said to be localized in a donor region 
(D), and a final state, \f/t, in which an electron has in 
effect been transferred from the donor region to a 
spatially distinct "acceptor" region (A). We defer until 
the next section the question as to how literally such 
a process can be taken as an actual "one-electron 
process" (i.e., one in which all but one of the electrons 
in the whole system are passive in the course of the 
process). The various contributions to the transfer 
dynamics from the nuclear and electronic degrees of 
freedom may be described by suitable classical, semi-
classical, or quantum mechanical theories.2,3'6,62'53 For 
electron-transfer processes occurring in dissipative 
condensed-phase media, the dynamics can often be cast 
as a chemical kinetic process characterized by a rate 
constant, /eet,

26,29 as in eq 1 

D--B-A -^* D-B-A- (la) 

D"-L + L'-A -* D--L-I/-A - ^ D-L-L'-A" — 
D-L + L'-A" (lb) 

Equation 1 distinguishes schematically two types of 
electron-transfer process: an intramolecular (or uni-
molecular) process in which the reacting sites are con­
sidered to be chemically bound (generally through co-
valent links to an intervening bridge, B), and an in-
termolecular (or bimolecular) process in which separate 
reactants come into contact, forming a bimolecular 
encounter complex, which then reacts, eventually 
yielding separate product species. In order to facilitate 
comparison of the two types of process, we represent 
each reactant in the bimolecular case as having a 
localized D or A site and a complementary moiety, L 
or L' (the notation L and L' is employed in a very 
general and schematic sense, although in the case of 
transition-metal complexes, one may make the obvious 
identification with "ligand"). 

In spite of the superficially sharp distinction between 
the processes of eqs la and lb, the differences in 
practice may tend to be blurred. Effective electronic 
overlap between D and A does not necessarily require 
covalent bonding between reactants,43"45 and superex-
change models of the TB type may be applied to more 
general situations provided that the space between 
donor and acceptor sites is spanned by sequences of 
overlapping orbitals. Furthermore, the multiplicity of 
approach geometries expected in a bimolecular process 
can have its counterpart in the intramolecular process, 
if the molecule has accessible low-frequency confor­
mational degrees of freedom.290,54,56 A unified view of 
eqs la and lb is possible if the encounter complex is 
taken as a "supermolecule", in which case the L-L ' 
aggregate corresponds formally to the bridge B. 

The kinetic bottleneck in eq 1 may or may not involve 
the electron hop from D to A, depending on the com­
petition between the dynamics of the electronic ma­
nifold and that of the nuclear modes (e.g., translational 
or orientational diffusion involving the solute or solvent 
molecules).40 Thus a comprehensive treatment of the 
kinetics must involve the dynamics of all the manifolds. 
Nevertheless, for the purpose of illustrating the role of 
the electronic coupling of donor and acceptor we first 
consider thermally activated electron transfer and adopt 
a conventional transition-state model2,3,5,7,8 

Kt = "eff<eirn exp(-E*/khT) (2) 

where the three prefactors denote, respectively, the 
effective frequency for motion along the reaction co­
ordinate (Q), the electronic transmission factor, and the 
nuclear tunneling factor, and where E* is the activation 
energy. In the case of an intermolecular process (eq lb), 
it is generally assumed (in the absence of diffusional 
bottlenecks) that the concentration of the encounter 
complex, D'-L-L'-A, is related to that of the separate 
reactants by a preequilibrium constant.3* 

The quantities appearing in eq 2 may be understood 
in terms of the energy profiles presented in Figure 1. 
We adopt a standard diabatic representation in which 
the initial and final electronic states are by construction 
taken as the valence bond structures corresponding, 
respectively, to the reactants and products of the re-
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(a) 

Figure 1. Diabatic energy profiles for ^ (V1), \f/{ (V1), and an 
intermediate charge-transfer state (VCT), as a function of the 
electron-transfer reaction coordinate Q. The equilibrium values 
of Q for \pi and if, and the transition state for thermal electron 
transfer are given, respectively, by QJ, Qf, and Q*. The reorg­
anization energy, Ex, is the sum of the reaction energy AE (taken 
as positive for an exothermic process), and the optical (IT) ex­
citation energy, Efp. The diabatic activation energy for thermal 
electron transfer is E*, and the vertical separation between Vj 
= Vf and VCT at Q* is E(^. The corresponding vertical charge-
transfer energies at Q? are Efcr (from V1) and ECT (from Vf). 

action.2,43,44 The diabatic representation is not diagonal 
with respect to the electronic Hamiltonian; i.e., in 
general 

H* s Wil#e#f> S /tftfe^f d r * 0 (3) 

(where we introduce standard bra and ket notation), in 
contrast to the adiabatic representation, where by 
definition, Het is diagonal (in the remainder of this re­
view, the subscript el is suppressed). For orthogonal 
^i and î f, where 

Si( • <<Wf> = 0 (4) 

Ha is the so-called electron-transfer integral (the more 
general case,2,5'30,38,43,66 where Si{ ^ 0 is dealt with in 
section III). 

Each diabatic state has an associated potential energy 
function for nuclear motion: 

V,({X,|) • M{X,))|ff|MX,|)> s = i ' f ( 5 ) 

In the simplest diabatic model the JX9) dependence of 
\p, is suppressed and \ps (s = i or f) is evaluated for some 
convenient set of \Xq\, (e.g., the equilibrium values). A 
coordinate of particular significance in the present 
discussion is the reaction coordinate Q which connects 
the minima of the reactant (V1) and product (Vf) wells. 
In the case illustrated in Figure I,2,3,7,8 the intersection 
of V1 and Vf at Q* defines the diabatic activation energy 
E* for thermal electron transfer. More complex situa­
tions may arise, of course, in the case of multidimen­
sional configuration spaces (e.g., gated control of the 
kinetics).54,56 

The occurrence of thermal electron transfer at the 
diabatic crossing is a manifestation of Franck-Condon 
control of electronic processes (the nuclear kinetic en­
ergy is the same before and after the transition).7,8 For 
optical electron transfer, generally referred to as in-
tervalence transfer (IT), the same Franck-Condon 
control causes the most probable process to be the 
vertical one corresponding to £fT and occurring at the 
equilibrium geometry (Qf) of ^1 (see Figure l).8b,S7 In 
general, the reaction coordinate Q has contributions 

SUDDEN 
e-TRANSFER 
(NON-ADIABATIC) 

(b) 

REACTANTS ( y , ) _ ^ 
D'-B'A ^ -

GRADUAL 
e-TRANSFER 
(ADIABATIC) 

PR0DUCTS(v f) 
D B A ' 

Figure 2. Schematic depiction of the limits of (a) weak (nona-
diabatic) and (b) strong (adiabatic) coupling, illustrated for the 
case of intramolecular electron transfer (eq la). The assignment 
of nonadiabatic and adiabatic limits is based on the assumption 
of no dynamical involvement of solvent in the rate-determining 
step (cf. ref 40). 

from vibrational modes of the reactants and also from 
the polarization models of the surrounding medium.7,8,50 

The transfer integral (Hi{) is of central importance 
in the present review, providing a compact link between 
the electronic structural details of the donor/acceptor 
interactions and the overall rate (for thermal) or in­
tensity (for optical) of the electron-transfer process.2A6,8b 

In the diabatic representation adopted here, we assume 
that the magnitude of Hi{ dominates that of the elec­
tronic matrix elements associated with the nuclear 
momentum and kinetic energy operators (the nonadi­
abatic coupling terms).2 This situation usually pertains, 
if as described above, ̂  and ^f are chosen to correspond 
to single valence bond structures which by their nature 
are little affected by changes in nuclear coordinates (the 
nuclear operators of course, yield zero matrix elements 
in the limit where the ipk are defined to be totally in­
dependent of (X9)). In cases where Hit in the diabatic 
representation does turn out to be very small or zero 
(e.g., because of symmetry), then one must include the 
nonadiabatic coupling terms.58 

In cases of weakly interacting systems, the diabatic 
representation provides a very convenient zeroth-order 
basis set. However, in general it is also useful to ex­
amine the energies in the adiabatic representation, in 
which H is diagonal.2,5,43,44 The avoided crossing relative 
to the diabatic crossing (at Q*) becomes increasingly 
pronounced as the magnitude of Hif increases. As de­
picted in Figure 2, we find a transition from "sudden" 
electron transfer in the nonadiabatic Franck-Condon 
regime (where the coupling is weak) to the adiabatic 
regime in which the electron transfer occurs more 
"gradually" with progress along the reaction coordinate. 
The "cuspy" nature of the energy curves tends to convey 
a distinctive character to electron-transfer reactions in 
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weakly interacting systems, whereas for stronger cou­
pling, the smooth profile of the adiabatic energy curve 
for electron transfer resembles that for other classes of 
thermal reactions.43d 

The avoided crossing leads to a correction to the 
diabatic estimate for the activation energy. In a simple 
harmonic model, the correction is simply -|Hif|.

3,5 

However, when the solvent dominates the reaction co­
ordinate, the correction is expected to have a more 
complex form and to be smaller in magnitude if the 
influence of the electronic polarization response of the 
solvent and the transfer integral Hif are included in a 
fully self-consistent manner. In this approach, intro­
duced recently by Kim and Hynes,50 the wave functions 
are allowed to vary with Q in contrast to the traditional 
approximate model based on fixed diabatic wave 
functions. A related approach has been advocated by 
Knapp and Fischer.59 

Useful insight into the role of the transfer integral in 
thermal electron transfer in cases where nuclear tun­
neling may be neglected is provided by the semiclassical 
Landau-Zener model,60 in which the electronic trans­
mission coefficient /ceJ is given as2'3,53 

Kel = 2P0/(1 + P0) (6) 

where the probability P0 for a transition from the initial 
state (Vi) to the final state (Vf) diabatic energy surface 
on a single passage of the system through the crossing 
region is given by 

P0 = 1 - exp(-27r7) (7) 

and where in the harmonic limit where Vj(Q) and Vf(Q) 
have the same curvature 

27T7 = WfaW/hvAkBTEjV* (8) 

The quantity Ex in eq 8 is the reorganization energy(
3,7'8 

which is equal to the sum of £fT and the exothermicity 
AJB (see Figure 1). For a thermoneutral exchange pro­
cess (AE = 0), we have2,3,6,53 

Ex s 4£* (9) 

The treatment of Kim and Hynes80 leads to more com­
plex relationships between Ex and E* and also has im­
plications for the formulation of the surface hopping 
probability, P0. 

When H^ is sufficiently small in magnitude, the ex­
ponential of eq 5 can be expanded and truncated after 
the linear term, yielding the nonadiabatic limit in which 
Kti is proportional to 

Ktl - 2\Hif\W*/hvef([kBTEx]W (10) 

In the other limit, in which 2iry » 1, then Kei « 1, and 
the reaction becomes adiabatic. In this limit, in cases 
where solvent polarization dominates the reaction co­
ordinate, the dynamical bottleneck controlling the rate 
constant may switch from the inertial crossing of the 
barrier (as in the transition-state model) to the diffu-
sional dynamics of the solvent motion.40 The transfer 
integral also plays a key role in more complicated sit­
uations in which electron-transfer dynamics cannot 
necessarily be characterized by a conventional rate 
constant, as discussed, for example, by Joachim,28 

Reimers and Hush,29 and Kosloff and Ratner.26 These 
analyses have yielded a number of interesting predic­
tions which await experimental confirmation in suitably 
designed materials. 

We have discussed the manner in which the transfer 
integral Hif helps to control the thermal electron-
transfer rate constant, ket. In favorable situations, 
values of Hif may accordingly be inferred from exper­
imental values for k^.2^ In a similar vein, the intensity 
of the optical electron transfer process (the vertical 
excitation characterized as Efc in Figure 1) can be re­
lated to the magnitude of H^ in terms of the transition 
moment, Ju0P = ('AIIMI'AI). where <5 is the electronic dipole 
operator.8b-57 An approximate expression for j2op, based 
on first-order perturbation theory (and thus restricted 
to small ratios, Hxi/E\T), is given by81" 

l/Vl = elffBl/Srr (H) 

where f is the effective donor/acceptor separation 
distance, assumed to be related to dipole moment ex­
pectation values by 

r = \Un ~ ferl/en (12> 

and where e is the electronic charge and n is the number 
of electrons in the system. Hush has derived the fol­
lowing expression, consistent with eq 11, which allows 
Hif to be estimated directly from optical data:3b 

|ffif| (cm"1) = [(2.06 x 10-2)/fHwiwAP^)1 / ' (13) 

where f is in angstroms, where Cn^ is the molar ex­
tinction coefficient, and P108x and Ai>1/2 (in cm-1) are the 
maximum frequency and half-width of the optical ab­
sorption spectrum. 

As noted above, a number of additional spectroscopic 
probes of the transfer integral H$ are available, and we 
shall make specific reference to these in the remainder 
of the review. 

/ / / . Theoretical Models for the Transfer 
Integral 

A. Characterization of States 

In section II, adopting a conventional two-state 
Landau-Zener model, we have seen the central kinetic 
role played by the electron-transfer integral, Hif, which 
couples initial M) and final M) diabatic states. Here 
we pursue the detailed formulation of models for Hif. 
After first reviewing expressions defined in terms of 
generic states, we shall then turn to the specific char­
acterization of the states so as to understand the man­
ner in which H^ captures the electronic details of donor 
and acceptor interactions, as mediated by the presence 
of molecular "bridges" (see eq 1). In the two-state 
model, it is assumed that all the dynamics may be 
satisfactorily treated by a single pair of electronic states 
over the relevant range of coordinate values (of course, 
for an adiabatic process a single (adiabatic) state 
suffices by definition). Of particular importance is the 
range of the reaction coordinates Q between Qf and Qf 
(Figure 1). However, variations with respect to other 
nuclear coordinates (orthogonal to Q) must frequently 
be considered as discussed below. Within the two-state 
framework one may, of course, employ as large an 
auxiliary basis set as necessary to yield appropriate 
representation of the two-state space of interest. This 
space may be expressed either in terms of a stationary 
(adiabatic) or nonstationary (diabatic) pair of states. 
While the Landau-Zener model in eqs 7 and 8 is dis-
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played in a diabatic two-state basis, one should note 
that it can equally well be represented in the corre­
sponding adiabatic basis.2 

We adopt the following notation for the two-state 
model. The diabatic states (the valence bond structures 
corresponding to reactants and products) are denoted 
^i = ^1 and rpf- f̂) while the adiabatic states are labeled 
^i and ypl- The two bases are related by the transfor­
mation p 

Vu = T.tfp,u " = 1 or 2 (14) 
S 

î i and ^l a r e orthonormal, whereas ^f and \$ are not 
orthogonal in general. The basis for expanding diabatic 
functions is denoted |x) 

tf = 5 X/C& s = 1 or 2 (15) 

Correspondingly, the adiabatic functions are given in 
this basis by the transformation 

Ca = Cdp (16) 

The set |xi is taken as orthonormal and its members are 
assumed to correspond to fixed charge distributions 
(Le., independent of nuclear coordinates, fxg}). However, 
it is important to note that ^f and tp\ (and hence also 
/fif) may depend on \Xq) through the \Xq) dependence 
of the mixing coefficients Cf,. We also note that \p\ and 
^l depend on \Xq\ through the \Xq\ dependence of both 
the Cf, and the psu. 

For clarity below, we reserve the fixed subscripts i 
and f for the diabatic states, whereas j,s and u are 
variable subscripts. Furthermore, we note that the 
Schrodinger Hamiltonian and the associated wave 
functions (î 's and x's) involve in general the full num­
ber of electrons (n) in the reactive system. As a first 
approximation, the x/s defined above may be taken as 
a set related by various one-particle excitations (electron 
or hole, as discussed below). In more general situations 
one might allow many-electron relaxation to accompany 
the primitive one-particle transfers, e.g., by including 
virtual many-particle excitations or by adopting distinct 
basis sets (say, (x}| and (xji) to reflect state-specific re­
laxation effects associated with the initial (̂ 1) and final 
(̂ f) diabatic states. Distinct bases might also be 
adopted if one employed different zeroth-order Ham-
iltonians (channel Hamiltonians, H1 and H*)59,61 to de­
fine ^j and f̂. The use of "one-particle" language in­
troduced above suggests that effective one-particle 
models may be projected out of the full n-electron 
model, a subject dealt with in section III.D. 

In employing the two-state model, one assumes that 
the diabatic and adiabatic states essentially coincide in 
the vicinity of the initial (Qf) and final (Qf) equilibrium 
configurations: 

ltt « l f W i Q-QT (17a) 

*g « * W , Q~Qf (17b) 

While this is generally a reasonable assumption for 
ground-state thermal processes,2 it may not be for 
photoinitiated processes in which one may prepare in­
itial states which are superpositions of two or more 
adiabatic states, over and above whatever adiabatic 
state (or states) may be necessary to characterize the 
final state of the process.33-36 In this situation, or in the 
general case where a high density of molecular elec­

tronic states renders a two-state model inadequate, one 
must have recourse to more general dynamical models 
than the Landau-Zener model. The reader is referred 
to a number of discussions of such models in the Ht-
erature.24f'26,28,29,42,62 An obvious example of a multistate 
effect is provided by the situation in which some in­
termediate diabatic state is sufficiently low in energy 
that the kinetic process involves a residence of finite 
duration in this state in the course of the overall elec­
tron transfer.26,29,36b'c'42 When energy separations are 
large relative to off-diagonal coupling elements and 
reorganization energies, then intermediate states enter 
only as virtual states (x;) which contribute to the overall 
electron transfer integral, H^. Vibronic effects associ­
ated with such states may be eliminated by the use of 
the Condon approximation and the closure relation for 
vibrational wave functions42 (see also ref 27d). 

The formulation of a discrete electronic model re­
quires the definition of a "system" in terms of a mo­
lecular or supermolecular species (as depicted in eq 1) 
whose electrons are treated explicitly. For condensed-
phase processes, the energetic and dynamical influence 
of the longer range environment may be simulated by 
a variety of devices,24,25,330,41,49"61 some of which are 
discussed below. It is noteworthy that statistical me­
chanical treatments employing path integral techniques 
are now capable of treating the long-range influence of 
a thermally disordered medium on electronic structure 
in a self-consistent manner, although so far the appli­
cations are limited to a single electronic degree of 
freedom.61 

One has great flexibility in defining the components 
of the molecule or supermolecule representing the re­
active system. The intervening material between the 
donor (D) and acceptor (A) sites may be characterized 
by a single aggregate bridge (B) or may be subdivided 
into a number of subunits, Bm. This decomposition is 
especially useful when the "bridge" is actuaUy composed 
of nonbonded units in contact (e.g., the L and I / units 
in eq lb)44*1 or when it consists of a number of chemi-
cally meaningful moieties linked by covalent bonds (e.g., 
methylene groups in an alkyl chain).22-27,31,32 It is often 
convenient to identify the index of a basis function, x;> 
with a particular site in situations where the overall 
electron transfer from donor to acceptor sites is ana­
lyzed in terms of a sequence of virtual intermediate 
states. In this approach (the essence of superexchange 
coupling), basis states Xi, X;+i O- = 1 to m), and xm+2 
may, for example, represent zeroth-order (virtual) states 
in which an electron is located, respectively on the do­
nor site (xi), the / h of m bridge sites (x,+i), and the 
acceptor site (xm+2)> with the remaining electrons con­
fined to an (n - l)-electron core. An analogous notation 
may be employed for the complementary superex­
change process in which a hole passes from the acceptor 
site to the donor site. These ideas will be elaborated 
below, after establishing the correspondence between 
many-electron states and one-electron orbitals. 

B. Two-State Models 

We review a number of relationships within the 
two-state framework, which will be employed in sub­
sequent sections. The correspondence between diabatic 
and adiabatic two-state models arises from the secular 
determinant (with the assumption that SlS = 0): 
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|H - E*l\ = 0 (18) 

where 

H - («: S) 
and where E* is the energy eigenvalue and 1 is the unit 
matrix. Except as noted, all quantities are assumed to 
refer to an arbitrary value of Q. We also assume real 
quantities. If the transformation p (eq 16) is expressed 
as 

P = (C0B11 ^A (20) 
I sin T) cos r| / 

then the adiabatic eigenvalues are given by24f 

E\ = Ha + Hi( tan r? (21a) 

E\ = H{{ - ̂  tan TJ (21b) 

and 
tan 2V = 2ffif/(ffii - Hn) (22) 

(note that eq 2 of ref 24f should involve tan ri instead 
of cot ri). 

These equations allow the parameters of the adiabatic 
representation (p, Ex, and E2) to be specified in terms 
of the elements of the diabatic Hamiltonian.5,24g Con­
versely, the elements of H (eq 19) may be obtained from 
the adiabatic quantities; e.g., we find that 

tfif = (1/2)(E! - Ef) sin 1r\ (23) 

where sin 2t? is given by -2(p11)(p12).
28a,b (We denote the 

adiabatic splitting by AE
a = E\ - E2). This equation, 

which is exact for a two-state problem, also offers a 
useful device for approximating an effective transfer 
integral in situations where two adiabatic states are 
dominated by two basis functions and are well sepa­
rated from other adiabatic states.26,28 In this case, the 
coefficients of the dominant functions may be used to 
approximate the value of TJ according to eq 20 after any 
necessary orthogonalization and renormalization have 
been carried out. 

If Si( 7* 0 (cf. eq 4) then the effective Hamiltonian 
matrix, H', for the two-state dynamical process is re­
placed by 

- • M f e : 2 f %£) <*> 
This matrix may be derived as a generalization of the 
orthogonal two-state model employed by Zener.60" It 
may also be derived in a dynamic context, where the 
time-dependent Schroedinger equation is represented 
by a nonorthogonal two-state basis.61 If in addition, ipi 
and \p{ are defined as eigenfunctions of zeroth-order 
channel Hamiltonians H and H*, respectively, then the 
elements of H' may be written in terms of the operators 
V* and V*, which are defined by 

H = Hi+Vf = Ht+Vi (25) 

The off-diagonal elements of the overlap-adapted H 
matrix (i.e., H') have the proper invariance with respect 
to the zero of energy.43" However, H' is seen to be 
non-Hermitian for H^ ̂  Hg. In a more general vibronic 
framework, any discrepancy in electronic energy for a 

radiationless process would be compensated by energy 
flow between electronic and vibrational manifolds. 
Within a purely electronic framework, the desired 
Hermitian behavior (necessary to satisfy the require­
ments of detailed balance) may be achieved by various 
devices, including orthogonalization of ^i and <Af, or 
simply replacing HH and Hn in Hfi and H^, respectively, 
by an average value3*56 (e.g., the arithmetic or geometric 
mean or the value at the crossing). In the limit of small 
Sjf, symmetric (Lowdin)63 orthogonalization yields (via 
Taylor expansion) 

Hif = Hn s Htt - StfCffa + H„)/2 (26) 

accurate through second order in off-diagonal elements 
(Sjf and /fjf). .H if is the generalized transfer integral for 
the case of nonorthogonal diabatic states. In the re­
mainder of the paper the "prime" on H' will be included 
only when the distinction between H and H' is of spe­
cific interest. 

Equations 18-23 give the exact (variational) two-state 
results. When \Ha - Hff| » |Hif| (or equivalently, sin 
Tj as r\ and tan 2r\ ~ 2r\) then the adiabatic energies and 
coefficients are well approximated, respectively, by 
second- and first-order Rayleigh-Schrodinger pertur­
bation theory (RSPT): 

ft a; fc + (H1(Z(Hn - Hn) ft (27) 

Msih+iHa/iHtt-Hdfi (28) 

The optical transition moment between these two states 

iws (mm) (29) 
is then equivalent to eq 11, under the assumption that 
?if s < îlM|̂ f) may be neglected (the form of eq 11 is, 
of course, applicable to any value of Q such that the 
requirements of perturbation theory are satisfied). The 
effective donor/acceptor separation r (eq 11) may be 
evaluated by a suitable interatomic distance, based on 
the atomic coordinates of the reactive system. 

With the exact two-state model fully specified, we 
now turn to the more challenging task of defining an 
effective two-state model and a corresponding two-state 
H matrix, projected on a space of m + 2 zeroth order 
basis functions, x;- If good zeroth order candidates for 
\pi and \pt are identified (say Xi = "Ai and xm+2 ** ft)> then 
a number of methods based either on time-independent 
or time-dependent perturbation theory may be em­
ployed to calculate effective values of Hif.

26,29 These 
results are generally valid when the energies of the 
"intermediate states", x;+i 0 = I - '") . are well separated 
from those of states Xi and xm+2 (i-e-» by gaps large 
relative to the coupling elements H,*,;' ^ k). 

Joachim has attempted to define an effective two-
state Hamiltonian using a nonperturbative time-de­
pendent procedure applicable in cases where the adia­
batic states are dominated by two basis functions (say 
Xi and Xm+2. a s discussed above):28 

ft = C11X1 + Cm+2,lXm+2 + ... (30a) 

</1 = C12Xl + Cm+2,2Xm+2 + - (3°D) 

When these coefficients form a nearly orthonormal pair 
of vectors; i.e. 

E CJ11CJ0 s 5UV u,v = 1 or 2 (31) 
;=landm+2 
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Joachim's effective (2 X 2)-Hamiltonian matrix ap­
proaches tha t defined by Larsson (e.g., see the ex­
pression for Hg in eq 23) for use in situations where the 
two-state approximation is valid. However, when in­
termediate states begin to come into near resonance 
with xi or xm+2> then discontinuities may arise in Joa­
chim's procedure.28 Reimers and Hush have argued 
tha t no effective two-state model is valid in this case 
and have offered an alternative definition of the ef­
fective transfer integral.29 (One should carefully dis­
t inguish two different senses in which the term 
"resonance" is employed here: resonance between donor 
and acceptor levels (at the crossing, H„ = Hff) and 
resonance between donor (or acceptor) levels and in­
termediate ("bridge'') levels. This usage differs some­
what from the dynamically based definition of reso­
nance adopted by Joachim). Further perspective on the 
two-state model has been obtained by Kosloff and 
Ratner through a comparison of results based on 
time-independent and t ime-dependent perturbation 
theory, and also nonperturbative t ime-dependent dy­
namics involving a four-state model with provision for 
damping.26 

C. Perturbative Approaches 

We now consider specific results for effective two-
state transfer integrals based on perturbation theory 
(RSPT) and related techniques. A superscript "(n)" 
denotes n-th order quantities (i.e., those including terms 
through n-th order in the coupling elements Hjk = 
<X;|H|x*>, j ?* k, where H is the full system Hamilto-
nian). For simplicity we assume initially tha t the cou­
pling among m + 2 zeroth-order functions, Xj> is gov­
erned by a t ight-binding approximation; i.e., only 
nearest neighbor coupling elements have non-zero 
values, where ;' = k ± 1 (see comments about the def­
inition of basis states at the end of section III.A). The 
tight-binding assumption, of course, includes neglect of 
"direct" coupling, i.e., H l m + 2 = 0 for m > 1). The as­
sumption that bridge-mediated superexchange coupling 
will always dominate direct coupling is not always 
justified, and in general it is of interest to ascertain how 
the two types of coupling interfere with each other30,32 

(i.e., constructively or destructively). These matters are 
considered below. Finally, we define Ef = <Xj|H|x;) 
(i.e., if the x; are taken as eigenfunctions of some ef­
fective H l 0 ) , then the first-order energies H]f are zero, 
where H = H<°> + #<»). 

1. A Single Bridge State (m - 1) 

a. Resonant Case. We first consider resonant elec­
tron transfer (Ef = Ef, with \Hj2/(Ef - Ef )\ « 1, j 
= 1 and 3), and employ RSPT, obtaining the following 
first-order approximations for \p{ and \[/{: 

tf" = Xi + (H12/ AE<°>)x2 (32a) 

W = X3 + (H32/AE«»)X2 (32b) 

where AE<0) = Ef - Ef = Ef - Ef = -E£T (Figure 1). 
Accordingly, we find 

H<2> = (2H12H32/AE<0))(1 + E2
0>/2AE<°>) (33) 

Hf = Hf = Ef (34) 

and 

SjP = H12H32Z(AEW)* 

Hence from eq 24 we obtain 

(H | f)
2 = H12H32/AE<°> 

(35) 

(36) 

Note that this derivation for the resonant case does not 
require H 1 2 = H32 . Note also tha t the leading (i.e., 
second-order) term in H '^ involves only the zeroth-order 
diagonal elements of HeJ (Hf?' and Hf). 

An alternate route to the result in eq 36 is to obtain 
the adiabatic states \p\ and ^2 by using degenerate 
second-order perturbation theory. For a symmetric 
situation, where H1 1 = H33 and H12 = H32, we may write 

W 2 ) ( 0 ) = (Xi ± Xs)/V2 (37) 

Adding the first-order correction due to X2 yields a 
splitting of the second-order adiabatic energies: 

(AE»)(2) = 2(H12H32/AE<°>) (38) 

and 

Hf = (AE»)<2>/2 = H12H32/AE<°> (39) 

In the case where H12 ^ H32, eqs 37-39 still describe 
the effective two-state model at the point of minimum 
energy separation, but this point does not coincide with 
the crossing point of the diabatic surfaces, H11 and Hff. 
This distinction also arises in the context of the par­
titioning method,64 which is closely related to the 
present RSPT approach, as seen below in section II-
I.C.2. 

b. Nonresonant Case. We now consider the nonre-
sonant situation, where all three zeroth-order energies 
are well separated relative to the magnitudes of H13 and 
H23. Second-order RSPT yields approximate adiabatic 
states: 

(̂ )OO = X1 + (H12ZA^)X2 + (H12H23Z AE^ AE^)Xz 
(40a) 

(^)<2) = 

X3 + (H32/AEg2I)X2 - (H32H21)Z(AE®AE[0DX1 (40b) 

where 
AE(O,) = E(0) _ £jp) 

In terms of Figure 1, AEf2\ AEf3', and AEf2
] correspond, 

respectively, to -E l
C T , AE, and - E c T . I t is straightfor­

wardly demonstrated that , as required for adiabatic 
states, Hf2 = ((^) ( 2 ) |H|( \^) ( 2 )) and the corresponding 
S12 are exactly zero, based on the present model. We 
obtain the effective value of H^ by evaluating the optical 
transition moment 

m = ((W(2)m(4i){2)) (41) 

and equating it to the two-state result in eq 11, re­
placing EfT = -(H11 - Hff) there by -AE^ ' . Equations 
40 and 41 yield (through second order), aside from a 
phase factor of ± 1 , 

|(M?g)(2)| = erH12H 32 

AEf2) + AE3
0J 

2(AEi03>)(AEi°2>)(AE3
0
2>) 

(42) 

where f = IJi33 - Ji11I/ne (we take #,-* = 0 for ; ^ k, where 
M,* = <X,|/u|x*))- In obtaining eq 42 we also assume for 
simplicity (see below) tha t Ju22 = ( l /2) ( j2 u + M33)-
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Equating the right hand sides of eqs 11 and 42, and also 
equating the r in each equation, we obtain 

Hf = H|f
2> = H12H23[H/2)(1/AE<® + l/AE^)] = 

H12H32/AE<?f (43) 

where 

AE^ = 2(AEi?AE$)/(AEi°2? + AE3?) (43a) 

Thus AE$f has the standard form of a reduced energy 
difference. Although the present derivation is not valid 
for the resonant or near-resonant case, we note, nev­
ertheless, that AE^ becomes equal to AE<0) for the re­
sonant case (see eq 32) when E p and E3

0) are equated. 
If the constraint of (JiI11 + Ji33)/ 2 = Ix22 is relaxed, but 
with the assumption that the three centroids, fyj/ne, 
j' - 1 to 3, are collinear (with ji22/ne lying between the 
other two), then 1/AE^ may be generalized as 

VAE<?f = 
Agjg/12 + AE3

0^32 

AEiM 2 * 
(44) 

where the weighting factors are given by fi2 = |#22 -
juu|/ner and f32 = |ju33 - t22\/ner (note that /12 + /32 = 
1). The result given in eq 43a for m = 1 may be 
straightforwardly generalized to higher m; e.g., for m 
= 2, assuming that the Jikk form a colinear grid of 
uniformly spaced points, we find 

(AE$)2 = 
3AE12AE11AE,, AE, I3LLU42L ^43 

AE12AE13 + AE13AE42 + AE42AE43 
(43b) 

If the nonorthogonal first-order expressions for ^1 and 
f̂ (obtained by truncating the second-order terms in 

eq 37) are applied to the present nonresonant case, then 
the result given by eq 43 is obtained provided that the 
Sjfffff and SfjHjj terms in eq 24 are replaced by the mean 
value SJf(H11 + Hff)/2. which in the present context is 
given by Slf(Ef + Ef)/2. 

As a final observation, we note that the second-order 
adiabatic wave functions given in eq 42 yield the correct 
effective Hlf according to the prescription of Joachim 
and Larsson (see eq 23 and the discussion in connection 
with eqs 30 and 31) provided that sin 2t\ «= 2r\ is taken 
as the arithmetic mean of the X3 coefficient in eq 40a 
and the negative of the Xi coefficient in eq 42b. 

The results obtained in eqs 36, 39, and 43 are in 
general agreement with those presented else­
where.2'22'24-29 Some differences of a factor of 2 may be 
attributed to the fact that the nonorthogonality effects 
(S i{ j± 0), included in the present derivation, were not 
included in the earlier analyses. The device of em­
ploying the adiabatic transition dipole to define Hf was 
also employed in ref 27a, but nonorthogonality effects 
were apparently neglected. 

Note that the result for resonant transfer (eqs 36 and 
39) refers to thermal transfer at Q*(H§), whereas the 
nonresonant result eq (43) would refer, for example, to 
optical transfer occurring at Qf or Qf(HJf"). For a har­
monic thermoneutral system (AE = 0) where the CT 
state has the same curvature as the diabatic curves and 
is centered at Q* (see Figure 1), we find6*1 

m/m -1 
/ EJ2 y 
\ECT - EX/2J < 1 (45) 

with Q, although for typical energy parameters, the 
effect is modest (i.e., the ratio is >0.9 for ECT > 2Ex; 
for simplicity here and in the following, we suppress the 
double dagger in E|;T (Figure I)). 

2. Lowdin Partitioning Method 

Larsson24,25 has employed the Lowdin partitioning 
method64 to rearrange the secular determinant for a 
Hamiltonian matrix of dimension m+2 

| H - E 1 | = 0 (46) 

(where E is the energy eigenvalue and 1 is the unit 
matrix) to an equivalent form 

H^E)-E H^E) 

iJfiCE) Hn(E)-E 
= 0 (47) 

where H is an effective energy-dependent two-state 
Hamiltonian matrix with respect to the two basis 
functions of primary interest (here, Xi and Xm+2>-
Larsson has used this technique to define an effective 
two-state Hamiltonian for a number of resonant elec­
tron-transfer processes. For example, taking the case 
of a single bridge (m = 1), assigned the zeroth-order 
state function X2> we have at resonance24a,36b_c 

H^E) = Hff(E) = Hn - (Hi2)2/(H22 - E) = 
#ff- (H2f)

2/(H22- E) (48) 

Hi{(E) —H12H2(Z(H22 - E) (49) 

It is apparent that the crossing of the effective surfaces, 
H11 and Hff, as in eq 48, does not coincide with the 
crossing of the original diabatic surfaces, Hu and Hff, 
unless H12 = Ht2, as noted in ref 36b. 

If \p\0) and \pf' (i.e., Xi and X3) interact only weakly 
(the direct interaction, H13, is assumed negligible) and 
are well separated from X2 m energy (i.e., IH11 - H22| = 
|Hff - H22| are large in comparison with H12 and Hf2), 
then we may to good approximation replace E in H11(E) 
and Hff(E) by its zeroth-order value H11 = Hff or by a 
mean value if H11 ^ Hff (see above). The E appearing 
in H11(E) may then be replaced either by H11 or H11 (for 
cases of weak coupling, the two choices are expected to 
yield very similar values). The former choice yields an 
expression equivalent to eqs 36 and 29 (recall that H11 
- H22 is equated to AE12). Adopting the latter choice, 
where the energy argument of H11 has in turn been as­
signed a zeroth-order value, we obtain the following 
effective transfer integral: 

Hf = H-Md = -H12H2(Z(H22 - H11) (50) 

This offers an interesting example of how H11 may vary 

Note that the sign as well as the magnitude of Hf is 
significant since the sign controls the nature of the 
interference when multiple coupling pathways are in­
volved. The sign of H^ in the partitioning approach is 
incorrect in some of the previous literature although no 
conclusions are affected since interference effects were 
not dealt with. 

For the general resonant case involving m bridge 
states (with the usual nearest neighbor tight-binding 
approximation), Larsson obtains248 (with sign corrected) 

Hf = (H12/AE$)(Tff (H;-+w+2/AEfJ+2))(Hm+1,m+2) 

(51) 
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where m ^ 2 and where a factor occurs for each of the 
(m + 1) nearest neighbor interactions in the assumed 
linear sequence and where it is assumed that each such 
factor is small relative to unity. The same perturbation 
result has been obtained by Beratan et al.27 and by 
Ratner,26b using, respectively, time-independent and 
time-dependent (propagator) techniques. These tech­
niques are all straightforwardly extended to cases in 
which each bridging unit has several electronic states, 
thereby generalizing each factor in eq 51 into a super­
position of competing pathways (e.g., "electron" vs 
"hole" transfer ,26b,27e if a particular bridge has accessible 
both occupied and unoccupied orbitals, as discussed 
below). For simplicity, the energy denominators in eq 
51 are based on zeroth-order energies. However, they 
could also incorporate second-order energy corrections 
by replacing Ef' with the analogue of H^ (see eqs 48 and 
50). 

In nonresonant cases (i.e., H^ ^ Hs), the specification 
of E in eq 47 involves additional ambiguities.29b We 
have already seen (section III.C.l) how the transition 
dipole may be employed in defining effective energy 
denominators in such situations. 

3. The McConnell Model and Its Generalization22" 

An alternative to the above treatment of resonant 
transfer in the m-bridge case was offered by McConnell. 
In this approach, one considers the m-bridge unit to be 
a single bridge possessing m locally excited states xj+i, 
j - 1 through m, reserving as usual, Xi and xm+2 f°r the 
donor and acceptor states. Diagonalization of the mxm 
bridge block of the Hamiltonian matrix H, yields ei-
genfunctions (^f) and eigenvalues (Ef) 

<tfW?> = M? 

# = LX;+lCJ» = 1-771 

(52) 

(53) 

(Larsson's partitioning approach also employs the ei-
genfunctions of the bridge units.) Using standard 
RSPT, we then obtain22b the following expression for 
the splitting of the adiabatic states (AE* = 2HJf), ob­
tained from the mixing of the bridge eigenfunctions 
with the zeroth-order adiabatic states x± = (1/V2)(xi 
± Xm+2): 

^ = E%-E^2E{XlimmHlXm+2) 
+ " .-1 Ef)-Ef 

(54a) 

From the expansion in eq 53 we obtain the equivalent 
expression 

m 

AE« = 2(H12ifm+1,m+2) E (CIY(C*+Uy/(E{*-Ef) 

(54b) 

where E\ is the energy of both x+ and x- since direct 
coupling (H1n+2) is assumed negligible. For uniformity 
of notation in eq 54b we employ (Cf,)' = Cf_u, since the 
CB matrix defined in eq 53 only involves the set X2 to 
Xm+1-

McConnell originally derived this expression for the 
special case in which all bridge basis functions were 
equivalent (differing only in spatial origin), with T = 
#12 = #m+i,m+2> with t = Hj+Ij+2, j = 1 to m -1, and with 
the constant (positive) excitation energy, D = -AEf)+1 

for j - 1-m. For consistency with the notation defined 
in Figure 1, we denote McConnell's energy D by EQ^. 
In the limit \t/ECT\ « 1, the result 

(55) 

is obtained by expanding l/(E\- Ef) in a Taylor series 
and collecting the leading terms arising under the 
tight-binding approximation 

1 1 
(Ef-Ef) (-ECT-Ef) 

W E (Ef/ECTn-l)v (56) 
P-O 

where the eigenvalues Ef, s = 1 to m, are related to the 
Ef by a constant energy shift which references them to 
the degenerate zeroth-order energy level of the bridge, 
(E*)0 = ĵO)11 y = 1 to m: 

Ef = Ef- CEB)<°> (56a) 

In terms of ECT, (EB)i0) may be reexpressed as 
(£B)<0) = E^0) + £C T ( 5 6 b ) 

The simple form of eq 55, equivalent to the more 
general expression eq 51 in the present limit of m 
equivalent bridge orbitals, has a number of interesting 
implications which we examine below. Here we point 
out a generalization of eq 55 which immediately sug­
gests itself if one focuses on its derivation via eq 56. 
Relaxing the requirement of tight binding among 
equivalent bridge orbitals, we define a mean energy 
denominator, JSpr, on the basis of the (positive) quan­
tities -AEf]+I, j -ltom. From the properties of the 
Schrodinger matrix equation (eq 57), where H^ = 

H B C B = CB#5 ( 5 7 ) 

•Hj+i,*+i.~ SjkEcr (j,k = \ to m), and where the eigen­
values EB aredefined analogously to eq 56a, with .ECT 
replaced by ECT, we find 

E Cf8(Ef )?Cl = !(HB)1,* (58) 

with ;', k = 1 to m. While for the tight-binding case the 
first non-zero term corresponds to p = m - 1, in the 
more general case of coupling within the bridge, but 
with the bridge still coupled to the donor and acceptor 
groups only via the "terminal" states, X2 and Xm+v re­
spectively, we have 

AE1 m m+l 
E(-1)P7F \* (59) 

where the coupling element, H2
9Jn+1 is given by 

m+i = f(HB)' Hm (59a) 

Equation 59 may be useful if the concept of a mean 
energy denominator seems suitable (i.e., a relatively 
tight cluster of excited states well separated from E^ 
= E®+2) and if convergence of the infinite series is rapid. 
The form of eq 59 readily lends itself to an interpre­
tation in terms of a superposition of paths which may 
be displayed as the various terms arising from the ex­
pansion of (HB)P over the range of p, thus yielding a 



776 Chemical Reviews, 1991, Vol. 91, No. 5 Newton 

"electron' 
transfer '<-<>} / " " • • # " • " $ : - " - - - • • . . 

$ - tf 
transfer (l-«- r )J - - - .,_ . ^ . . 

Figure 3. Schematic orbital representation of bridge-mediated 
superexchange of the "electron" (top, left to right) and "hole" 
(bottom, right to left) type, illustrated for the case of intermo-
lecular electron transfer between two metal/ligand (M/L) com­
plexes (see eq lb). 

picture analogous to that developed by Ratner.26b 

Equation 59 may be further generalized if the donor/ 
acceptor coupling to the bridge is not limited to the 
terminal states X2 and Xm+i-

Alternative schemes for analyzing the contributions 
to Hi{ (represented as the adiabatic energy splitting, 
AE*, in a one-electron model applied to photoelectron 
spectra) have been implemented by Heilbronner and 
Schmelzer65 (an additive perturbative model) and 
Paddon-Row, Wong, and Jordan (a nonperturbative, 
procedure involving sequential "turning-on" of indi­
vidual coupling terms).66 Other nonperturbative ap­
proaches are dealt with in refs 28 and 29. 

D. Derivation of One-Electron Models 

/. Orbital Wave Functions 

The expressions for H^ developed in the previous 
section (III.C) are defined in terms of a generic set of 
basis functions, xj, which in general may be taken as 
many-electron states associated with the chosen en­
counter complex for the process of interest. Since we 
are interested in "one electron (or hole) transfer 
processes", we anticipate that ultimately one can treat 
the processes in terms of an effective one-particle 
model, either an independent-particle model or a 
mean-field model such as given by Hartree-Fock the­
ory. Here we establish some connections between the 
many-electron and one-electron pictures, adopting for 
ease of discussion, an independent-particle model. We 
define the many-electron basis functions as antisym-
metrized n-electron configurations Xj - a(nj}0£); i.e., 
Slater determinants generated by the operation of the 
antisymmetrizer, a, on orbital configurations, (1IJj(^), 
where the occupied orbital sets <tj, are based on the 
following orbital space, assumed for simplicity to be 
orthonormal: <£D» donor; <j>A, acceptor; {0(), occupied 
bridge orbitals, I - 1, n - 1; \4>'}, unoccupied bridge 
orbitals, I = 1, p. Superexchange is commonly subdi­
vided into processes corresponding to "electron" 
transfer, in which an electron transfers from </>D to 4>A 
by making use of available unoccupied orbitals (0*), 
and "hole" transfer, in which a hole moves from 4>A to 
</>D by passing through the manifold of filled orbitals 
(\4>i\, as illustrated in Figure 3). Even though both 
mechanisms can be cast as one-particle processes, it is 
convenient to treat them separately. 

a. "Electron'' Transfer. Using the above orbitals we 
specify orthogonal basis states, x* as follows: 

X1 = W = afoJiU) 
*-i 

(60a) 

Xp+2 = #0 ) = a(<f>AU<t>i) (60b) 
k-i 

Xj+i = a(<p'jll 4>i) ;' = 1 to p (60c) 

We then construct \p-x and ft as 
p+2 

41=ZCjiXj (61a) 
;'-i 

p+2 

41= ICj/Xi (61b) 

where the column vectors Cf and Cf are assumed to be 
orthogonal. Since all the x's in eq 60 have a common 
(n - l)-electron core 

TCO «a(ft <t>i) (62) 

we may reexpress ^f and f̂ as single determinants in 
which the occupied orbital outside the core is written, 
respectively, as 

<t>b = CU0D + ECj+liid>j* + Cp+2ii0A (63a) 
;'-i 

and 

4>% = CVD + ZCl+1JtJ* + Cp+2iftf>A (63b) 
. 7 - 1 

(note that (4>ji\<t>%) =0) . In the weakly interacting 
systems of interest here, the effective donor (</>D) and 
acceptor (0A) orbitals are expected to be somewhat 
delocalized versions of the zeroth-order orbitals (<fo and 
</>A). Since ^f and \f/e

( are thus single determinants dif­
fering only in the occupation of a single orbital we may 
write 

m m \ ) = (<t>b\h\<i>%) (64) 

if H can be approximated as an independent-particle 
operator, H1 = Zq-ih(rq)> where h is an effective one-
electron Hamiltonian. 

b. Hole Transfer. The hole analysis is quite analo­
gous to that for electron transfer, with the same two 
primary basis functions 

X1 = $0 ) = a(0Dff 0,) (65a) 
Te-I 

Xn+1 = t/40) = a(4,Ali<t>i) (65b) 
Te-I 

and with n - 1 "hole" basis functions 

X;+i = a(AD0AIl0( ;' = 1 to n - 1 (65c) 

For convenience below we convert the basis functions 
X, to "canonical form" by suitable orbital permutations. 
This form is obtained by the following procedure. 
Define a reference (n + l)-electron state 

X(n+1) = aiwMfr) 
(»i 

(66) 

and obtain the (n + 1) functions x) (differing by at most 
a phase factor of -1 from the original x/s) by cyclic 
permutations of the orbitals in x(n+1) until the orbital 
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in which the hole is to be created becomes the first 
member of the antisymmetrized orbital product corre­
sponding to x(n+1). In the x' basis we then write 

n+l 

n+l 

M'ZqtXj (67b) 
and once again, these multideterminantal expressions 
may be recast as single-determinant states defined in 
terms of sets (respectively, <t>\ and <t>{, k - 1 to n + 1) 
obtained as transformations of the original set of (n + 
1) orbitals consisting of 0D, 0A, and |0;|: 

^ = a(fl0D (68a) 

tf = a(fl4>i) (68b) 

Relative to x(n+1)» each of these states is characterized 
by a "hole" orbital defined as follows: 

*W» = ^j 1 + 1 = Cfe0A + Z ) C ^ j + Ckijfh (69a) 

and 

<t>m = 4>Ui = C ^ A + LCjV1^ + CS+U0D (69b) 

(note that the orbitals 0;- on the right hand sides of eq 
69 are the hole orbitals by which the corresponding 
Xf+i's on the right hand sides of eq 67 differ from x(n+1))-
Ir the column vectors C}1 and Cf defined in eq 67 are 
taken as orthonormal, then the hole orbitals 0h(i) and 
ĥ(f) a r e a i s o orthonormal. Since the 0/s are spin-or-

bitals, many of the CL11 and Cj+lif will be zero by spin 
orthogonality; e.g., if the bridge contains m doubly filled 
bridge orbitals (i.e., n - 1 = 2m) then only the m 0/s 
of the same spin as 0D and 0A

 wiW yield non-zero 
coefficients. In analogy with comments made regarding 
the effective donor (0D) and acceptor (0A) orbitals for 
electron transfer (eq 63), we observe that the effective 
hole orbitals 0h(i) and 0h(f) are, respectively, the some­
what delocalized versions of the zeroth-order hole or­
bitals of xi (i.e., 0A) and xn+i (i-e., 0D)-

As in the case of fae and i/'f, we see that since fa and 
$ differ only by the location of a single hole orbital 
(defined relative to x<n+1)), we have the hole counterpart 
of eq 64 

(^ |H |^ ) = <0h(i)|/i|0h(f)> (70) 

The fact that (according to the present model) 0h(i) and 
0h(f) are mutually orthogonal holes relative to the 
function x"+1 implies that there must be an (n - I)-
electron core, 0^ i ' common to both fah and </f. Thus 
we may write 

ttf = a(0h^<S;ei)) (71a) 

and 

tf = afoWtyfe") (71b) 

revealing the important result that in hole transfer, the 
hole orbital (relative to x(n+1)) in one state (fah or $) is 
the occupied orbital (over and above fa^i?) m the other 
state. Thus for both the electron- and the hole-transfer 
processes one may defined a one-electron model in 

which a passive (n - l)-electron core is common to both 
states. 

The preceding analysis is, of course, dependent on the 
assumption of a compact orthonormal basis of states 
and orbitals common to both initial and final states, and 
on the assumed orthogonality of the vectors Cf and C* 
and the vectors Cj1 and Cf. The resulting single-de­
terminant form for fa and fa arises from the restriction 
of x bases to sets whose members are related by one-
particle excitations. The question remains as to how 
realistic these conditions are in practice. It may be 
noted that they are obeyed exactly at the level of 
Koopmans' theorem67 (KT), when the n-electron system 
is described in terms of the orbitals of the SCF func­
tions for the corresponding (n + I)- or (n - l)-electron 
problem.32 We defer this topic until section IV. 

Detailed studies of metallocene/metallocenium 
electron-exchange systems4^ in which the expansion 
coefficients C in eqs 63, 68, and 69 are obtained by a 
corresponding orbital analysis68 of SCF calculations at 
the INDO level,69 give excellent quantitative support 
for the validity the one-particle models inferred on the 
basis of the above arguments. The effective electron 
(eq 63) and hole (eq 69) orbitals were found to corre­
spond, respectively, to the canonical highest occupied 
orbital (HOMO) of the reductant species and the can­
onical lowest unoccupied orbital (LUMO) of the oxidant 
species in the reaction, as expected from the above 
analysis. The corresponding orbital analysis also dem­
onstrated the near invariance (departures of less than 
10%, based on overlap integrals as discussed in section 
III.E.l) of the (n - l)-electron cores (fa^,^) associated 
with fa and fa. The ferrocene and cobaltocene systems 
were found to correspond to essentially pure limiting 
cases of electron and hole transfer, respectively. On the 
other hand, in cases where both mechanisms are si­
multaneously operative, thereby involving electron/hole 
pairs within the bridge manifold, then rigorous con­
densation of multideterminantal states to single-de­
terminant ones (the crux of the above analysis) cannot 
in general be carried out, and the validity of an effective 
one-particle model is less clear. Nevertheless, in the 
limit of weak coupling of 0D and 0A with bridge orbitals, 
one may still to good approximation define single-de­
terminant initial and final states which can be parti­
tioned into an (n - l)-electron core and an effective 
donor/acceptor orbital pair, thus justifying the use of 
a one-particle model. In this case, the effective donor 
and acceptor orbitals involve mixing of 0D and 0A with 
both occupied and unoccupied bridge orbitals. In terms 
of the schematic pathways depicted in Figure 3, this 
more general situation would entail hybrid virtual 
transfers between the filled orbital of one ligand (L) and 
the empty orbital of the other (i.e., the creation or de­
struction of electron/hole pairs). 

2. McConnell's Superexchange Model 

In McConnell's model for electronic coupling,221" the 
adiabatic energy splitting was given by second-order 
RSPT (eq 54a), assuming at the outset a one-electron 
model. We may arrive at his result, in somewhat more 
general form, by first taking eq 54a as referring to a 
many-electron representation involving the independ­
ent-particle Hamiltonian Hj defined following eq 64. 
If the x/ are taken as the single-determinant basis 
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functions defined in eq 60 or 65, we note that the bridge 
eigenfunctions \pf (eq 53) are also single determinants. 
(The reasoning is the same as tha t employed in section 
III.D.1.) We then obtain straightforwardly the following 
orbital counterparts of eq 54a for the case of electron 
and hole transfer 

P/<<M>#;><<*>;I>#/ 
AEt = 2 E 

> 

A " «D " <; 

AEl •4 
-{<t>n\h\<t>j)(<l>j\h\<i>x) 

- ( « D " «y) 

(72) 

(73) 

where the t) and «; are the eigenvalues (with respect to 
the operator h) of the bridge orbitals, 0* and <pj, re­
spectively, and where tD = {(t>o\h\<j>D) = «A a n d *j > €D 
> tj. To emphasize the importance of signs we include 
separately, the two compensating minus signs which 
appear, respectively, in the numerator and denominator, 
when eq 73 is derived from eq 54a. The minus sign in 
the numerator arises from the permutational symmetry 
of the single-determinant wave functions, as noted by 
Richardson and Taube.1 0 Given the definition of H1, 
the orbital energy denominators in eqs 72 and 73 are 
equivalent to the many-electron quantities E^ - Ef in 
eq 54. Note tha t Ef - E^ is a positive excitation en­
ergy, for both the "hole" and "electron" cases, and the 
minus sign in the denominator of eq 73 arises since cD 

The relative signs of AEl a r j d AEf1 depend on the 
details of the orbitals. Let us consider, for example, a 
bridge consisting of a sequence of m equivalent bridging 
units, Bk, k = 1 to m, each possessing a bonding (r)k) and 
an antibonding (vl) orbital. Models based on such local 
bonding and /o r antibonding orbitals have been em­
ployed in a number of previous studies of bridge-me­
diated coupling.13,27a,32a The orbital eigenfunctions of 
the bridge, {<£,) and \<t>J], are expanded, respectively, in 
the 1) and rf bases. We consider initially the case where 
either the electron or hole pathway is dominant, and 
neglect mixing between {77} and \rj*\ sets. Adopting the 
usual t ight-binding approximation, and proceeding 
analogously to McConnell,22b we obtain 

AEi 
\ ~«CT / V - 4 C T / 

/<0Dl%l><qmW0A>' 

V €CT / V 6CT/ 

(74a) 

(74b) 

where t* = <»?J|/i|r?*+i> a n d t = (vk\h\vk+i), k = ltom 
- 1, and where the positive orbital excitation energies 
are given by «CT = <i»J|%*> - «D and «cr = «D - <%!%*>> 
k = 1 to m. Because of the assumed equivalence of the 
bridge sites, the parameters t, t*, «CT>

 a ° d «CT
 a r e m" 

dependent of k. 
In order to understand the expected sign behavior of 

AEa as m is varied we must now consider the nodal 
structure of the orbitals (0D, </>A, \r\\. and |TJ*)) and adopt 
a phase convention. In McConnell 's original applica­
tion,2213 the coupling corresponded to superexchange of 
the "electron" type (AEl), a n d e a c n virtual orbital r\*k 
was taken as a 3d<5 orbital (i.e., one symmetric with 
respect to reflection in the xy plane through its origin, 

SCHEMEI 

O 
4>D 

..O 
Ht-, 

O 
1I* 

O ...O 
Tl*+ i •A 

S C H E M E U 

O ... Q 0 O ... O 
$D Ttf-1 n* n*+ i •A 

S C H E M E D I 

O ... O O O ... O 
<I>D n*-i n* n* + i ^A 

where the z axis coincides with the D /A vector). Thus 
for the purpose of displaying local orbital symmetry 
with respect to the z axis, the orbitals may be repre­
sented schematically as in Scheme I. Note that Scheme 
I and also Schemes II and III employ a common phase 
convention for the local orbitals: The nodeless orbitals 
are all assigned positive phase, while for the anti-sym­
metric J)* functions in Scheme II, the right-most lobes 
are taken as positive. These phases, which are of course 
arbitrary, do not imply particular linear combinations 
of the local orbitals. They are chosen solely to facilitate 
the following discussion. Since all orbitals in Scheme 
I have the same phase, it is reasonable to assume tha t 
all the finite coupling elements (i.e., off-diagonal matrix 
elements of h) are negative. However, in the present 
case, in contrast to McConnell 's example, the chosen 
antibonding nature of the 77* functions is consistent 
with to the nodal structure in Scheme II. For the 
situation represented by Scheme II, eq 74a may be 
rewritten as 

(T*)2 /VY""1 

*CT V € C T / 
AS? = 2 — I — 

*CT 
(-D m-1 (75) 

where t* is assumed to be positive, since the overlap­
ping lobes of adjacent orbitals have opposite phases, 
and T* = (nm\h\<t>k) = - < 0 D I % * I > -

Turning now to the case of "hole"-type superex­
change, involving localized bridge orbitals which are 
bonding in character, in Scheme III, we adopt the same 
modal structure and orbital phases as in Scheme I. All 
coupling elements consistent with Scheme III are ex­
pected to be negative, since they involve overlap of 
lobes with the same phase, and accordingly we obtain 
from eq 74b: 

AER = 2 - ^ I — 
eCT V«CT/ 

- 1 •>"•-! ("I) (76) 

The salient result of the foregoing analysis is that 
both AEl a n d AEl n a v e the same sign (all the sign in­
formation is contained in the common factor, (-l)m _ 1). 

We emphasize once again tha t the orbital phases in 
Schemes I—III were assigned arbitrarily. However, our 
conclusions are of course independent of convention 
adopted. 

a. Interference between Electron and Hole Path­
ways. We now consider the simultaneous presence of 
electron and hole coupling (see also the earlier discus-
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sion in section III.D.l).26,278 For the case of a single 
bridge unit (m = 1), we have 

I (T*)2 T>\ 
AE* = AE*t + AEf1 = 2 -^- + — I (77) 

V «CT
 eCT/ 

Thus the two pathways are seen to interfere construc­
tively. For a consistent treatment when m > 1, one 
must take account of rr-v* mixing (i.e., (»?*|^|'7A±I> as 
well as mixing within the ij and JJ* manifolds). A de­
tailed analysis has been carried out by Onuchic and 
Beratan,27* demonstrating that the splitting (AEa) may 
still be represented as an overall product of factors 
arising from each "in series" link in the sequence, but 
now each of the (m -1) factors (c.f., eqs 75 and 76) has 
the "parallel" structure of eq 77. 

b. Dependence on m. When the bridge units are 
defined as above in terms of local bonding or anti-
bonding units, we find that both the electron (eq 75) 
and the hole (eq 76) pathways predict an alternation 
of sign with m, consistent with the trends predicted 
earlier by Paddon-Row13 and Verhoeven and Pasman70 

on the basis of HOMO and LUMO arguments, which 
are generally found to track the trends given by the full 
bonding or antibonding manifolds provided that per­
turbation theory is applicable. Note that these sign 
effects are observables and not a manifestation of ar­
bitrary phase factors (i.e., the energy of the symmetric 
state (E+, eq 54a lies, respectively, below or above that 
of the antisymmetric state El, for m even or odd). 

A notable feature of eqs 75 and 76 is the exponential 
decay of the magnitude, irrespective of whether or not 
sign alternation occurs.m Pronounced departures from 
this behavior (e.g., fall-off as an inverse power of 
m)4a,27c,29,7i a r e eXpected as bridge states begin to ap­
proach the donor/acceptor levels (in contrast to the 
assumptions, |T"*|, \t*\ « ecT, \T\, \t\ « eCT» which un­
derlie the derivation of eqs 75 and 76 and their various 
generalizations). Departures from simple exponential 
behavior may also occur in cases where the tight-bind­
ing approximation must be relaxed. 

When a single pathway is dominant (i.e., either 
electron or hole), the decay of AE* magnitude per 
bridging unit, denoted t (employing the notation of ref 
27, not to be confused with the subscripted e's demoting 
eigenvalues in the preceding discussion), may be written 
according to eqs 76 and 77 as 

«e = I'*ACTI (78a) 

or 

«h = I*/«CTI C7Sb) 

(in the more general case, a decay parameter of the type 
t = te + eh may be defined278). These may be converted 
into measures of distance dependence of Hi{ = AE*/2 
provided one can define an effective donor/acceptor 
separation r (e.g., as in eqs 11-13) as a function of bridge 
size. For example, we may define r = r0 + mAr, where 
r0 is a nearest neighbor contact distance of donor and 
acceptor in the absence of the bridge, and Ar is the 
effective size of each bridge unit. While Ar may be 
equated with the projection of the "length" of the bridge 
unit onto the straight-line vector between donor and 
acceptor, it may sometimes be more meaningful (con­
sidering the "through-bond" (TB) nature of superex-

change coupling) to define Ar in terms of the actual 
bond lengths for the TB sequence pertinent to the 
pathway being modeled. At any rate we may write 

Hi{(r) = H^r0) expH0/2) (r - r0)] (79) 

where 
0/2 = -(Im)/Ar (80) 

and where t denotes either ? or eh (eq 78). The notation 
/8/2 reflects the fact that distance dependence is fre­
quently defined in terms of H^, which is proportional 
to the nonadiabatic rate constant3 (see section II). 

Beratan and Hopfield72 have suggested that the use 
of purely electronic expressions like eqs 75 and 76 may 
be problematical for very long distance transfer since 
the validity of the separation of nuclear and electronic 
degrees of freedom which underlies the Born-Oppen-
heimer18-2 approximation may be questionable in this 
limit. However, Freed73 has noted difficulties with their 
analysis (see related dynamical studies of Kotler et 
al.).74 

3. Direct vs Superexchange Pathways 

It is generally assumed that bridge electronic mani­
folds are sufficiently accessible to render nearest 
neighbor (tight-binding) superexchange pathways com­
petitive with more direct pathways. On the other hand, 
in the most general situation (e.g., as represented by eq 
59), one may consider a superposition of all possible 
m-th order pathways, summed over all values of m, 
where m is the number of virtual transfers involving 
bridge states. For this purpose one may generalize the 
transfer integrals, T and t, from fixed, nearest neighbor 
quantities (as in eq 55), to the variable quantities t(r) 
and T(r). Assuming for simplicity that t(r) and T(r) 
are identical, and that r0 = Ar (cf., eqs 79 and 80), and 
writing 

t(r) = t(Ar) exp(-(^/2)(r - Ar)) (81) 

where ^/2 refers to direct, through-space (TS) overlap, 
we find that superexchange (as given by eq 55) domi­
nates direct exchange provided2,45" 

t(Ar)/ECT > exp(-(^/2)(Ar)) (82) 

The original quantities t and T (e.g., as in eq 55) are 
given by t = t(Ar) and T = T(Ar) in this simplified 
illustrative model. In a similar fashion, the TS coupling 
of 0o and 0A m a v ° e represented by an equation 
analogous to eq 81. 

4. Use of Koopmans' Theorem 

Going beyond the naive independent particle model, 
a more sophisticated approach for defining a one-par­
ticle model is provided by Koopman's Theorem (KT),67 

which involves self-consistent field (SCF) approxima­
tions to the many-electron problem. According to KT, 
the one-electron energies of the occupied orbitals of an 
n-electron system provide the ionization energies in the 
frozen orbital limit (i.e., not allowing final state relax­
ation of the ions). This approach is also applicable to 
cases of electron attachment, in which case the orbital 
energies of the unoccupied orbitals give the electron 
affinities in the same frozen orbital limit. Accordingly, 
in the case of symmetric systems (at Q*), the splittings 
(AE8) of the adiabatic energies, E% and Ei (see eq 54a) 
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for the corresponding (n - I)- and (n + l)-electron 
systems may be approximated by the splittings of the 
appropriate one-electron energies obtained from the 
n-electron SCF calculations. Paddon-Row and Jordan 
have exploited this device in ab initio studies of a wide 
variety of spacer groups.32 In applications to PES and 
ETS analysis, calculations are generally based on the 
equilibrium structure of the neutral system. However, 
when the focus is on electron-transfer processes, the 
calculations could just as well be executed at the tran­
sition state structure (Q*). At any rate, H^, is not ex­
pected in general to depend strongly on Q, (examples 
are noted in section IV.B). 

E. Many-Electron Effects 

So far we have considered direct and superexchange 
coupling primarily in a one-electron framework; Le., we 
have defined the many-electron matrix elements, H^ in 
terms of orbital matrix elements with respect to an 
independent-particle Hamiltonian or the frozen-orbital 
equivalent implicit in the use of Koopmans' theorem.67 

We note here some specific consequences of full 
many-electron behavior. 

1. Electronic Relaxation Effects 

Fully flexible models for fa and fa would include 
charge-state-specific relaxation effects which would 
take one beyond the limited framework (section III.D.l) 
in which a single compact set of occupied and unoccu­
pied orbitals was used to describe both initial and final 
states. An example of this is provided by the Har-
tree-Fock model. Because of the nonlinear structure 
of the Hartree-Fock effective Schrodinger equation, 
distinct, symmetry-broken solutions are obtained for 
fax and fa- in weakly coupled systems, even when the 
nuclear framework for the transition state reflects 
symmetry equivalent of the donor and acceptor moie-
ties.30*38,43,44,66 In such a situation, one may attempt to 
"soak up" the many-electron effects in an electronic 
Franck-Condon factor, Sf""1', which reflects the de­
parture of the (n - l)-electron cores of fa and fa from 
rigorous invariance under the fa -*• \p{ process.*3"1'44,78 

Thus one may generalize the form of eqs 64 and 70 to 
read 

ffif - ^DASIr1' (83) 
Studies by Newton et al.43di44 have shown that Sj"_1) is 
typically close to unity (generally >0.9), as noted in 
section III.D.l. 

The electronic relaxation inherent in the symmetry-
broken solutions (relative to the symmetry-constrained 
SCF level) may be considered to be a physically 
meaningful electron correlation effect, which is typical 
of many weakly interacting systems. We emphasize 
that Hi( as obtained from symmetry-broken wave 
functions corresponds to an energy splitting AE* based 
on 2-configuration (adiabatic) wave functions. While 
such 2-configuration wave functions may be obtained 
directly in a fully self-consistent manner,841" taking due 
account of nonorthogonality,84" applications to date for 
electron-transfer processes have obtained fa and fa from 
independent SCF calculations. 

As a final cautionary comment, we note that sym­
metry breaking may be viewed as an artifact of the SCF 
model, and one must recognize that for some molecular 

situations (including cases of relatively strong coupling), 
it may not provide a physically useful representation.76 

It would of course, be desirable, to incorporate more 
electron correlation into fa and fa, especially when the 
calculations involve very weak coupling of donor and 
acceptor. However, recognition of the fact that H$ may 
be expressed as the energy splitting (AE*) of two states 
which to a reasonable approximation differ by a one-
electron excitation may help to explain why SCF cal­
culations have been so useful in evaluating Hv. At­
tempts to incorporate electron correlation into sym­
metry-broken SCF wave functions using a multico-
nfiguration SCF approach have recently been reported 
by Braga, Broo, and Larsson.24e 

2. Direct vs Double Exchange 

Even in the absence of the type of state-specific re­
laxation noted above, it is still of interest to examine 
the consequences of the two-electron part of the Ham­
iltonian. Thus if we write 

H = £h(rq) + £e 2 / | r q -rq,\ (84) 
Q q<q' 

the "direct" matrix element is given by 

Hf = (fa°\H\fa*) = (4>D\h\d>A)+ U(DA)]U) - (DJ|/A)| 

(85) 

where fa0) and \f/\0) are the single determinant states 
introduced in eqs 60a and 60b based on orthonormal 
orbitals 0D, <£A, and occupied bridge orbitals fa, I - 1 
to n - 1, and where in standard notation 

(ab\cd) = J^(l)<Ml)(l/r12)0c*(2)<M2) (86) 

Thus in addition to the one-electron TS term we also 
find a two-electron contribution. The first two-electron 
term can be neglected if direct <t>u/fa\. overlap is neg­
ligible. However, the second term, £?_1(D£|/A), is es­
sentially the same as the "double exchange" term, 
tf?f°

uble, discussed by Halpern and Orgel22a and others.10 

Like the direct term, it involves no virtual intermediate 
states. It can be described10,22" as a mechanism in­
volving a superposition of concerted processes associ­
ated with each occupied orbital of the bridge. The fth 
such process involves an electron being passed from </>D 
to fa in concert with another electron being passed from 
4>i to 4>A- A more transparent expression for #ff

ouble is 
obtained by expanding the fa in a localized basis of p 
atomic orbitals, r)h (analogous to what was done in 
connection with eq 74), 

p 

fa = E7«i>* (87a) 
k 

tfdouble ~ £(D*|*'A) Pue (87b) 
M' 

« (Dl|pA)Plp (87c) 

and 
n-l 

Pw = £7*i7*'i (87d) 

where it is assumed that (DljpA) is the dominant 
two-electron integral, involving the terminal atomic 
orbitals of the bridge, ^1 and i)p. 
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Thus the double exchange is approximately given by 
a Coulombic integral whose fall-off with distance r is 
expected to go as 1/r", where x depends on the multi­
polar nature of the nearest neighbor charge distribu­
tions, (0D)(»7I) and (J?P)(0A), and the bond order between 
the bridge termini (expected to fall off as 1/r). While 
for some electronic structure models, the neglect of 
d̂ouble m a y ke justified (e.g., in the context of the 

semiempirical INDO method),44*1 it is not at all clear in 
general under what circumstances the magnitude of the 
double exchange term will be negligible compared to 
that of the superexchange terms. Even if jf$ou°le is not 
negligible, it may still be possible to cast Ha as an ef­
fective one-electron matrix element. At any rate, one 
should note the qualitative distinction between (<£D|-
h\<t>A) and Hff

ouble: the former involves long-range TS 
overlap, while the long-range TS coupling in the latter 
involves Coulombic interaction between local charge 
distributions. 

In an interesting analysis of long-range coupling, 
Bertrand has shown77 that additional exchange con­
tributions (denoted as "multiple exchange" terms) arise 
from the one-electron part of H (eq 84) if the orbitals 
4>i are not mutually orthonormal. 

3. Relationship of One- and Two-Electron Exchange 

The general formulation of superexchange coupling 
of donor and acceptor sites provides a number of com­
pact relationships between the one-electron coupling 
of interest in electron transfer kinetics and the two-
electron coupling of localized unpaired spins (i.e., the 
Heisenberg exchange coupling, generally denoted by the 
coefficient Jab, where a and b are the orbitals containing 
the coupled electrons).2^'78 These relationships provide 
important self-consistency tests which are of consid­
erable importance, since experimental one- and two-
electron exchange data is available for several systems 
of interest; e.g., comparisons of electron transfer and 
triplet energy transfer;120 and comparisons of photoin-
itiated electron transfer in bacterial photosynthetic 
systems, and related splitting of final singlet and triplet 
states.38,48 For example, consider the following scheme 
involving orbitals 0a, </>b, and <£<.: 

<t>\4>U1 -^* 0 M 0 2 - ^ 0i*8*J (88) 
GW OA,*) ( W 

We find (when RSPT is valid) that 

âc = —J*b (89) 

where 2Jab and 2Jac give the singlet/triplet splittings 
for the ab and ac orbital pairs in \{/* and \p{, respectively, 
where t^ governs the one-electron superexchange cou­
pling of orbitals b and c, AEyx is the mean energy 
change for the electron transfer occurring in the singlet 
and triplet manifolds. Using the partitioning method,64 

Marcus has obtained36b,c the following refinement of eq 
89: 

the " a b 

Jac = Sl-JS (90) 
(1AE60)(

3AS1J 
where distinct singlet and triplet AEyx values are now 
incorporated. We note that the mechanisms implicit 
in eqs 89 and 90 ignore the possibility of "hole" path­

ways involving occupied orbitals of the acceptor species 
in the electron-transfer process. Redi and Hopfield 
have suggested79 that the two-electron superexchange 
might be dominated by 8̂0 (i.e., direct coupling of 0a and 
4>c) instead of the indirect coupling of <t>a and <j>c via <t>y, 
which is involved in eqs 89 and 90. However, this latter 
coupling seems more likely to predominate. 

/ V. Computational Aspects 

We summarize the various computational electronic 
structure approaches employed in evaluating the elec­
tron-transfer integral, H$, and in analyzing the calcu­
lated results. 

A. One-Electron Models 

There are several one-electron models for evaluating 
Htf, each of which is capable of including the long-range 
influence of the medium. 

1. Orbital Approaches 

Studies along the lines initiated by Kuznetsov et al.49 

and based on ls-type donor and acceptor orbitals in­
teracting with a point charge in a dielectric continuum, 
have suggested the possibility of an appreciable Q-de-
pendent modulation of donor and acceptor wave func­
tions arising from the orientational polarization of the 
solvent, an effect which becomes increasingly significant 
as the donor/acceptor separation is extended. This 
effect is likely to be quite modest if the relevant charged 
species in the model are surrounded by finite cavities 
of low dielectric constant. The recent model of Kim and 
Hynes,50 which includes the influence of electronic as 
well as orientational polarization, suggests rather small 
(;S20%) modulation of Hi{ by the medium for short-
range electron transfer when realistic cavities are em­
ployed. 

2. Path Integral Approaches 

Generalized free-energy computer simulations based 
on discretized Feynman path integral techniques have 
been used to evaluate Ha (from energy splittings, AEa) 
for a ruthenium-modified myoglobin system, assuming 
a frozen geometry for the environment61" and for the 
thermally equilibrated aqueous Fe2+/Fe3+ exchange 
reaction (in the latter work, similar results were also 
obtained by using a discrete basis set).51b-d 

3. Phenomenological Tunneling Models 

Finally, we note a number of phenomenological 
one-electron tunneling models,5,11*'39'* including a recent 
approach by Brooks et al.,39 in which calculated (KT) 
electron affinities of amino acid units are employed in 
modeling the effective potential for electron tunneling 
in protein systems. 

B. Many-Electron Models 

/. Independent-Particle Models 

Tight-binding models have been employed in study­
ing the electron transmission capabilities of various 
hydrocarbon spacer groups.13,27,70 Beratan and co­
workers have combined this approach with the impo­
sition of periodic potentials and the specification of 
donor and acceptor sites by suitable boundary condi-
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tions to investigate the dependence of transfer integral 
on the number of bridging unite in the limit when donor 
and acceptor coupling with the bridge is weak.27 They 
have obtained a number of closed form expressions 
comparing different types of bridging unit (including 
multiple-path interference effects)270 and find inter­
esting qualitative trends which invite more qualitative 
follow-up studies. The approach generally yields Hi( 
directly in terms of diabatic states (characterized as 
one-electron orbital states), although the energy split­
ting of adiabatic states may also be obtained.27" The 
direct evaluation of H$ may be implemented either for 
thermal (resonant) or optical electron transfer.278 

Extended Huckel theory (EHT)81 has been employed 
by Larson,248'11'258'8'45 Joachim,28b'28c and Siddarth and 
Marcus378 in evaluating Hi{ from energy splittings for 
a number of organic, inorganic, and bioinorganic sys­
tems. The use of EHT with the partitioning approach64 

in many of these applications is advantageous for very 
large systems since the effective transfer integrals of 
small magnitude may be obtained with greater precision 
in comparison with results obtained from the solution 
of the full secular equation. However, there may be loss 
of accuracy due to the perturbative nature of the ap­
proach. 

In solving the EHT secular equation (whether exactly 
or via the partitioning method64), the full overlap matrix 
is generally retained.28b'c'37'81 In Larsson's applications, 
the overlap integrals are employed as usual in evalu­
ating the off-diagonal Hamiltonian matrix elements;81 

however, the overlap matrix appearing in the secular 
equation has generally been replaced by the unit ma­
trix 24a,b,25a,e,45a 

It is important to recognize that the independent-
particle models discussed here are generic ones which 
do not offer a unique prescription for the specification 
of parameters. Hence when assessing the various ap­
plications it is difficult to ascertain what controls the 
location of donor and acceptor levels relative to bridge 
levels. The necessary parameters are not in general 
fitted to data directly related to the electron-transfer 
systems of interest, and are based primarily on em­
pirical values for atomic or molecular transition ener­
gies. These comments apply also to the CNDO/S82 and 
IND033b,33c,34,69 methods discussed later. 

2. Self-Consistent Field Methods 

a. Semiempirical Methods. The semiempirical 
CNDO/S82 and INDO,33b'c'34'69 and related25d'33a'35 

methods have been exploited by several groups in es­
timating H*, either from evaluating adiabatic energy 
splittings,24<^b~e'29c'44b~d or from direct calculations based 
on symmetry-broken SCF calculations for ^1 and ̂ f.441"1 

Comparisons between Hi{ values based on INDO and 
ab initio results for a set of model redox systems in­
dicate agreement to within ~20%.44e The INDO ap­
proach69 has also been employed by Richardson and 
Taube10 in evaluating Hit for optical (IT) processes in 
mixed-valence inorganic binuclear complexes. 

b. Ab Initio Models. Ab initio SCF techniques have 
been used to evaluate Hi( for electron transfer in a 
number of ionic species, including metal diatomics,66 

organic systems,24"'30,388 and transition-metal complex-
eg38b,43 J1n^ 0ther inorganic systems.47 These studies all 
exploited the properties of symmetry-broken SCF so­

lutions for weakly coupled systems although compari­
sons were also made with results based on delocalized 
representations and on isolated fragment wave func­
tions. The computational consequences of nonorthog-
onality associated with symmetry-broken SCF models 
for ^, and \p( were dealt with through the use of bior-
thogonal transformations of the occupied orbitals in fy 
and f̂.68'83 

For positively charged systems, the basis-set depen­
dence of the calculated H^ values is found to be modest 
if reasonably flexible molecular valence basis sets are 
employed (i.e., of at least split valence quality). For the 
case of radical anions,30,47 sensitivity of Hu magnitude 
to basis set can be appreciable,30 both for through-space 
(TS) and through-bond (TB) components, and it is 
generally desirable to include spatially diffuse functions 
in the basis (such functions may also be significant for 
TS coupling in positively charged systems). 

Caution is necessary in dealing with model anion 
species within the Hartree-Fock framework, since their 
energies may lie above those of the corresponding 
neutral systems (in contrast to the situation for the 
actual condensed-phase anionic systems which are being 
modeled). In such cases, unlimited expansion of the 
basis set would cause the excess electron to leak away 
if an unrestricted Hartree-Fock (UHF) wave function 
is employed. Similar problems have been dealt with in 
molecular orbital treatments of resonances in electron 
transmission spectroscopy (ETS).84 

Paddon-Row and Jordan have evaluated energy 
splittings for n-electron hydrocarbon radical ions using 
Koopmans' theorem, based on the corresponding (n ± 
l)-electron closed-shell neutral systems (see section 
III.D.4).32 The comments above regarding basis set 
sensitivity also apply to the KT results, especially in 
cases of unbound anions (Le., negative electron affini­
ty).84 

Mikkelsen and co-workers41 have developed an ab 
initio approach which includes the influence of a self-
consistently polarized dielectric continuum on Hi{. 
Solvent modulation effects are modest when realistic 
cavities are employed for the discrete supermolecular 
species. These results, which are based on equilibrium 
solvent polarization, also suggest that H^ will not vary 
strongly with the solvent component of the reaction 
coordinate, Q, at least for the types of supermolecule 
clusters dealt with in reported applications. Hn has also 
been found rather insensitive to variations in intramo­
lecular components of Q.38*.431' Pronounced sensitivity 
is observed with respect to certain other coordinates 
(those "perpendicular" to Q), as discussed in section V. 

Aside from problems of accuracy associated with 
basis set or electron correlation effects in the applica­
tions of many-electron SCF methods, there are prob­
lems of precision due to numerical differencing, which 
become increasingly significant with increasing size of 
the system and weakness of the coupling. (This applies 
both to energy splittings (A£a) and to direct evaluation 
of if if from symmetry-broken ^1 and \pt wave functions.) 
Thus numerically reliable evaluation of couplings 
strength for systems with, say, 50-100 electrons be­
comes extremely demanding computationally when H^ 
magnitudes are ;S10 cm"1. 

Finally, we note successful applications of discrete 
variable local exchange techniques (DV-Xa) in calcu-
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lating ir-ir energy splittings in "molecular metals".86 

3. Excited-State Electron Transfer 

The definition of excited diabatic initial (^) and final 
(̂ f) states involves a judicious mixture of physical 
criteria and intuitive input.39 For ground-state pro­
cesses the SCF model generally yields satisfactory re­
sults, either directly through charge-localized solutions 
or indirectly through calculated energy splittings based 
on delocalized solutions. For excited-state processes, 
the SCF approach is not generally applicable unless the 
state of interest happens to be the orthogonal by virtue 
of symmetry or otherwise weakly coupled to lower-lying 
states. An alternative is to obtain Hit from energy 
splittings based on configuration interaction (CI) esti­
mates for adiabatic states25b or to obtain ^ and ^f by 
suitable constrained CI calculations.331'^35 For example, 
in the case of porphyrin systems, this might involve CI 
calculations of excited diabatic states based on the 
4-orbital frontier model86 in which excitations are lim­
ited to specified local or charge-transfer contributions.39 

Another consideration in the formulation of initial 
and final excited states relates to the dynamics of the 
medium surrounding the molecular aggregate. Whereas 
in the isolated aggregate, a charge-transfer component, 
for example, might be coherently coupled to some other 
component of an initial state, if the charge-transfer 
component were sufficiently strongly coupled to the 
medium, this would render the coupling incoherent, 
thus effectively eliminating it as a component of the 
initial state.33c 

A number of model studies of photoinitiated electron 
transfer among the chromophores in the bacteria pho-
tosynthetic (BPS) system have been carried out on the 
basis of orbital wave functions obtained at the 7r-only 
(PPP) or all-valence (CNDO or INDO) levels.26b-33-35 

Estimates of Hit between pairs of chromophores have 
been obtained from one-electron matrix elements based 
on localized highest occupied and lowest unoccupied 
molecular orbitals of the respective chromophores.338,34 

Plato et al. exploited the assumed proportionality be­
tween overlap (Sif) and coupling element (Hi{).

34 

Scherer and Fisher employed configuration interaction 
calculations for the excited states of the photosynthetic 
hexamer (i.e., the six primary porphyrin-based chro­
mophores) in inferring Hi{ values.330 In this study, ef­
fective localized orbitals and states were inferred from 
the delocalized orbitals and states obtained in the full 
hexamer calculations. 

Larsson has attempted to estimate Hi{ for the BPS 
system as an energy splitting based directly on calcu­
lated CNDO/S CI energies.25b He has also employed 
similar CNDO/S-based CI techniques to characterize 
the coupling for photoinitiated electron transfer in­
volving 7r-electron donor and acceptor interactions 
mediated by norbornyl bridging units.240 As discussed 
by Larsson240 and also Reimers et al.,68 there is some 
uncertainty as to the roles of electronic as opposed to 
nuclear momentum coupling in these electron-transfer 
processes. 

C. Calculation of Energy Splittings 

The evaluation of H^ as one-half the adiabatic energy 
splitting (AE*) presupposes that one is located at the 
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transition state (where Q = Q*); i.e., on the surface of 
intersection of the diabatic energy surfaces in the ef­
fective two-state model (see comment following eqs 39 
and 49), or alternatively, at the region of closest ap­
proach of the corresponding adiabatic energy surfaces. 
A symmetry relation between donor and acceptor will 
define the transition surface, but one generally desires 
the minimum energy point on this "seam". Koga and 
Morokuma have developed a gradient-based scheme for 
locating such a point.87 Alternatively, one may obtain 
an approximate result by interpolating between initial 
(Qf) and final (Q*) equilibrium structures.38* 

In the absence of symmetry one may still be able to 
approach the minimum energy point on the Q* surface 
if enough information about the potential energy sur­
faces is available, (e.g., by using a full gradient me­
thod).87 If the energy as a function of location on the 
transition surface (Q*) is quite flat, then configurational 
averaging of H^ over this surface may be necessary.290 

If one happens not to be located on the transition 
surface (Q = Q*), for some assumed structure of the 
supermolecule employed in the calculation, then one 
may attempt to move to Q*, by varying judiciously 
chosen coordinates of the supermolecule.241^25* A related 
approach is to add external perturbations, e.g., an 
electric field simulated by point charges, thereby in­
corporating in effect the contributions of the sur­
rounding medium to the reaction coordinate, Q, and to 
the relative energies of the states with respect to Q.240-250" 
These external degrees of freedom can be "tuned" until 
the vertical energy separation of the two adiabatic states 
\p\ and ^2 is minimized. In this sense the desired 
avoided crossing is attained. While an ad hoc procedure 
of this type is often a useful computational device, it 
may be expected to be susceptible to artifacts in cases 
where H^ is quite sensitive to electric field effects (e.g., 
by modulation of the contributions of "hole" and 
"electron" superexchange). Available tests suggest that 
such sensitivity may frequently be minor.388,41 A final 
device, easily implemented when using independent-
particle models, is to artificially alter the values of the 
diagonal matrix elements (<fo|ri|0D> and <4>AW<£A) until 
the desired avoided crossing of orbital energy is 
achieved.24a'28b,37 

If Q T* Q*, but close enough so that the two-state 
model is valid, then AE*(Q), and hence Hn(Q), may be 
evaluated by exploiting the approach discussed in sec­
tion III.B, in connection with eqs 23 and 30.26b,!28 One 
may also calculate H11 directly from ^1 and ^f, for Q 5* 
Q*,38 but then one must deal with ambiguities in the 
definition of Hn, as discussed following eq 24. 

D. Degenerate or Nearly Degenerate States 

While most kinetic models for electron transfer are 
based on the assumption of a two-state model, in 
practice one is frequently dealing with a two-level 
system involving degenerate or nearly degenerate states. 
The degeneracy may arise from spatial or spin coor-
dinates.43d,43e While such situations potentially raise 
questions about quantum interference effects, in prac­
tice the kinetics is often treated as the superposition 
of all the various state-to-state processes arising from 
the two levels.43"1'44,88 Alternatively, for weak-coupling 
situations, one may define an effective two-state model, 
employing, for example, an rms value of Hi{ based on 



784 Chemical Reviews, 1991, Vol. 91, No. 5 Newton 

all the possible processes.44,458 Kestner, Logan, and 
Jortner2 have discussed the requirements on state 
widths and separations for maintaining the validity of 
the "golden rule" rate constant. 

E. Analysis of Calculated Transfer Integrals 

Evaluationm of H^ from orbital wave functions gen­
erally obscures the role of individual direct, double, and 
superexchange contributions.2,6,43'44 This information 
is implicitly contained in the degree of derealization 
of the calculated ^1 and <f>{, and the MO's which com­
prise them. A number of ab hoc techniques have been 
introduced in attempts to decompose the calculated 
overall transfer integrals. For energy splitting ap­
proaches which by construction employ one-electron 
models (e.g., an independent-particle model or the 
Koopmans' theorem67 approach), one procedure has 
been to transform the effective one-electron Hamilto-
nian to a symmetrized basis of local bonding, anti-
bonding, and lone pair orbitals. If donor and acceptor 
levels are well separated from bridge levels, then sec­
ond-order RSPT allows an additive partitioning of 
bridge orbital contributions to A£*, and hence, to H11.

65 

In an alternative, nonperturbative approach, the cou­
pling elements between local bridge and donor/acceptor 
levels may be "turned on" in a sequential manner, re­
vealing the evolution of the value of the splitting at each 
stage of the sequence.66 This approach may yield useful 
insight, although it does not provide a unique additive 
decomposition since the results can depend appreciably 
on the order in which contributions are "turned on". 

In more general situations, in which a one-electron 
model is not strictly imposed, an effective one-electron 
model may nevertheless be obtained44*1 by subjecting 
fi and \pf to corresponding orbital transformations.68 

This simultaneously leads to the definition of effective 
donor and acceptor orbitals, 4>v and 4>A, and a maximally 
invariant core (see eq 83), as discussed specifically in 
connecting with metallocene systems in section III.D.l. 
This analysis is free of any preconceived notions about 
the nature of <fo> 4>A, and the core, yielding an essentially 
variational result44" from an unbiased application of the 
corresponding orbital method68 to the entire occupied 
n-electron manifold of ^, and f̂. The corresponding 
orbital method thus plays a crucial role both in the 
evaluation and in the interpretive analysis of Hif. 

V. Computational Results 

The preceding sections have dealt with a number of 
theoretical models for donor/acceptor coupling and 
with various computational approaches for imple­
menting these models so as to provide numerical results 
which may be used either to test the simple theories or 
to make direct comparison with experimentally deter­
mined transfer integrals. We illustrate some of these 
results, focusing on studies which help to characterize 
the dependence of transfer integral magnitude on geo­
metrical and electronic structural factors. 

A. Variation of Hn with D/A Separation 

Among the geometrical factors which control the 
magnitude of the transfer integral, the most critical are 

expected to be those which affect the distance sepa­
rating donor and acceptor groups, either the direct 
through-space (TS) distance, or the effective distance 
involving indirect through-bond (TB) coupling, and the 
dependence of the transfer integral on such distances 
provides a particularly interesting point of contact be­
tween theory and experiment. We emphasize that there 
are in general a number of sources of distance depen­
dence in the electron-transfer process.6bi18 Thus the 
distance dependence of H$, dealt with here, is distinct 
from that of the overall rate constant &et (e.g., eq 2) or 
oscillator strengths (for optical transfer), or even from 
that Kel (eq 10), as a result of the distance dependence 
of the reorganization energy, Ex (see Figure 1). 

7. Intramolecular Transfer 

In considering the donor-bridge-acceptor complex, 
DBmA, where the bridge is taken as a sequence of m 
subunits, we note that when simple superexchange 
models (e.g., eq 55) are valid, the overall coupling is 
conveniently factored into contributions involving the 
coupling of the bridge with D and A (T2ZD) and other 
contributions involving coupling within the bridge (t/ 
Ecr). Of course, these latter contributions also reflect 
the influence of D and A through the energy gap, .Z?CT-
Furthermore, the donor and acceptor orbitals on D and 
A, respectively, determine which portion of the bridge 
electronic manifold is involved in the transfer. Nev­
ertheless, we may expect that the variation of transfer 
integral with bridge length will not depend strongly on 
many of the details of the D and A groups, with the 
most important factors being the properties local to the 
points of attachment to the bridge. This situation is 
particularly useful in theoretical studies, since it allows 
complicated D and A groups of interest to be mean­
ingfully replaced by smaller model groups, provided 
that these groups do not appreciably alter the energetics 
or other aspects of the electronic manifolds primarily 
responsible for coupling with the bridge. 

We consider the distance dependence associated with 
five different homologous bridge types, as displayed in 
Table I. Even though the coupling in all five cases is 
dominated by TB interactions, it is still convenient to 
characterize the variation with number of bridge units 
in terms of the direct, center-to-center D/A separation 
distance (rc) since in all cases, the DBmA sequences are 
roughly linear in shape. In Table I the dependence of 
Hi{ on rc is expressed in terms of mean exponential 
decay parameters 3, where /3 is defined by the best fit 
to the form given by eq 79. To within estimated un­
certainty, the experimentally based Hit values exhibit 
pure exponential decay. While the calculated H^ values 
conform reasonably well to the exponential form, we 
note that they exhibit modest systematic departures 
from this limiting behavior. Defining a local decay 
parameter, j8(rc), which by construction yields the exact 
Hn results according to eq 79, we find 0(rc) for the EHT 
data of ref 37a generally to increase with rc (variations 
of up to ~30% relative to the mean) over the range of 
rc values dealt with, while the ab initio data for the 
norbornyl spacers (see also Table II) yields a small 
decrease in /3(rc) (within 10% of the mean). 

One could undertake an alternative analysis in terms 
of the number of bonds (nb) linking D and A in the 
shortest TB path.llb,32b,32c The decay parameter defined 
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TABLE I. Distance Dependence of Hu 

bridging groups 

edge-fused cyclohexyl rings' 
spiro-linked cyclobutyl rings (1(0)' 

peptide-linked proline groups' 
edge-fused norbornyl groups (2(0)' 

trans-linked olefin groups (polyene)p 

observed 
Saturated Bridge 
1.0 (th)"* 
0.8 (op)* 

0.6 (thy 
0.6 (op)m 

Unsaturated Bridge 
0.2 (op)« 

2, A-i° 

calculated 

0.9 (th,EHT)« 
0.9 (th,EHT)« 
1.3 (op.tb)'1 

0.7 (th.EHT)** 
0.5 (th.EHT)' 
1.0 (th,SCF/KT)" 
1.0 (th,CNDO/SCI)° 

0.2 (th.EHT)'' 
0.3 (op.CNDO)* 
0.3-0.4 (th.CNDO)' 

dr„/dnb, A
6 

1.2 
1.1 

1.0 
1.3 

1.2 

"The distance dependence of Hv is characterized by the mean decay coefficient /3, defined in terms of the effective center-to-center 
separation, rc, of the D and A groups, and evaluated by fitting Hu values to the exponential form given by eq 79. The listed j5 values are 
based on the indicated drc/dnb values together with the appropriate experimental or calculated Hif values. Due to some uncertainty in the 
determination of rc (and hence also, drc/dnb), some of the 5 values given here differ slightly from the original literature values (the uncer­
tainty is especially pronounced in the case of norbornyl spacers, as indicated by a consideration of refs 14, 24c, and 32a); th and op denote, 
respectively, thermal and optical electron transfer. The calculated th and op results are based, respectively, on energy splittings (AE*) and 
transition moments. 6The quantity drc/dnb is the mean change in rc per change in number (nb) of framework bonds, where rcb is counted 
along the most direct covalent sequence connecting donor and acceptor. CD = 4-biphenylyl anion radical, A = 2-naphthyl. ''Reference l ib. 
'Extended Huckel theory (EHT)81 results from ref 37a. The partitioning technique64 yielded the same 8 values as the results from full 
diagonalization, except for the cyclohexyl case, where the respective results are 1.0 and 0.9. 'D = Ru(NH3)I

+, A - Ru(NH3)I
+. Here nb - 2 

+ 21. 'Reference 9a. **tb" here stands for the tight-binding method of ref 27a, which employed a periodic bridge potential. 1D = Os-
(NH^^-isonicotinyl, A = Ru(NH3)J

+. 'Reference 18. *A value of 1.1 A"1 based on EHT calculations for a peptide-linked bridge was 
reported in refs 25a and 25c for the thermal electron-transfer process, but apparently260 for the case of a a-electron donor, in contrast to the 
T-type donors (see footnote i) dealt with in refs 18 and 37a. According to ref 25a, transfer is much more facile for i-type donors, but no 3 
value was presented for the x case. 'D - edge-fused dimethoxynapththyl anion radical; A = dicyanovinyl. Here nb = 2 + 21. "Reference 
14. "Ab initio KT results32b,32c based on a neutral closed shell with the same type of norbornyl bridge as employed in the experimental 
study, but with edge-fused ethylenic D and A groups. The KT splittings are based on the ethylenic r* orbitals and employed an STO-3G 
basis (see Table II).89 "Based on thermal electron-transfer process occurring between excited states of the neutral system.2*1 PD = Ru-
(NH3)r-pyridyl; A = Ru(NH3)

3+-pyridyl. 'Reference 21. 'Reference 28c. 'Reference 29c. 

in this manner, /3„b, would be related to /3 through the 
expression 

&,„ = (|5)(drc/dnb) 

when the quantities given in the last column of Table 
I are used. 

The overall agreement between observed and calcu­
lated results in Table I is reasonably good (of course, 
the analysis of the experimental data also involves 
theory, since it requires a detailed model for the rate 
constant). While the decay parameter for the unsatu­
rated bridge is significantly smaller than those for the 
saturated bridges, we also find considerable variation 
in /5 among the four different examples of the latter 
type. Similar trends are found in terms of /8„b (see 
above) since the various drc/dnb values cover a rather 
small range (~1.0 to 1.3 A per bond). 

The variation in /3 values among the saturated bridges 
in part reflects corresponding variations in the effective 
energy denominators (see eq 55); e.g., with the exception 
of the cyclohexyl bridge case, the EHT 0 values decrease 
monotonically with the mean energy denominators 
given in ref 37a. Variations among the saturated 
bridges are hardly surprising, since they represent 
considerable diversity in bonding, including angle strain, 
topology, and even degree of a bond character, if the 
partial double bond character associated with the amide 
linkages in the polyproline bridges is taken into account 
(furthermore, the peptide carbonyl groups provide 
relatively low-lying excited bridge states). 

The finite, albeit small, value of /3 found for the 
polyene bridge reflects the influence of bond length 
alternation and can be contrasted with the asymptotic 

value of zero inferred in ref 28c when the bond alter­
nation is suppressed.24f 

All the data in Table I pertains to transfer of ir-type 
electrons; i.e., the donor and acceptor orbitals have ir 
symmetry, defined with respect to the bond vectors 
associated with the bonds Unking the D and A groups 
to the bridge. For two cases closely related to those of 
Table I, Larsson has compared TB transfer integrals 
for a- and x-type electron transfer. For NH2 groups 
linked by trans-staggered alkane chains, he obtains at 
the EHT level /5 = 1.2 A-1 for x transfer (cf., 0 = 0.9 A"1 

for the cyclohexyl systems in Table I) L while a much 
weaker decay is found for a transfer (/3 = 0.4 A"1).24*1 

Similar trends were found at the CNDO/S and ab initio 
levels. Treating the polyglycine spacer at the EHT 
level, Larsson found facile 7r-electron transfer (no /3 
value was presented), compared with_ less efficient <r 
transfer, which was characterized by /3 « 1.1 A"1.28"'260 

According to the McConnell model (see discussion in 
section III.D.2), where m may be identified with nb in 
the present discussion, one expects an alternation in the 
sign or Hi{ (or equivalently, AE*) as the number of 
bonds (nb) changes from odd to even. This effect has 
been referred to as the "parity rule".13 Sign alternation 
consistent with the parity rule has been observed by 
Larsson for the alkane chains referred to above. How­
ever, in ref 37a, no occurrence of such alternation is 
evident in the cases where both even and odd numbers 
of bonds are involved (i.e., the cyclohexyl and the 
polyproline spacers). 

Except for the cyclohexyl- and proline-based bridges, 
the experimental decay parameters are based on optical 
(IT) transfer integrals, whereas most of the calculated 
results are for thermal transfer integrals, being based 
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on energy splittings (AJS"). The results for the unsat­
urated bridge, obtained from a CNDO-based electronic 
structure model, indicate similar decay parameters for 
the thermal and optical processes.290 This similarity 
reflects the fact that, barring specific instances of 
near-resonance between D/A and B levels, transfer in­
tegrals are not expected to vary appreciably with 
progress along the reaction coordinate Q. This result 
may be understood in terms of eq 45. Other examples 
of minor Q dependence of H,f have been noted, both for 
short-range molecular38,43b and longer range solvent 
components of Q.80 

The extended Hiickel theory (EHT)81 calculations378 

reported in Table I yield very similar results, whether 
from the solution of the full secular equation or from 
the perturbative partitioning method,64 indicating that 
the D and A levels are reasonably well separated from 
bridge levels relative to the magnitudes of local coupling 
elements. The EHT transfer integrals are dominated 
by the unoccupied bridge orbitals (mean gaps with re­
spect to its D and A levels being ~2 eV), thus implying 
a predominant superexchange mechanism of the 
"electron" type.37 For the case of the dithia spire-linked 
cyclobutyl ring bridges (1(0), this result is opposite to 
the conclusion of a study based on the assumption of 
tight binding and a periodic bridge potential, which 
yielded coupling dominated by "hole" transfer.27* 

(NH3I5Ru2- S ^ K Z C S - 3 4 R U ( N H 3 I 5 

These divergent results from rather similar independent 
particle models underscore the importance of striving 
for systematic and objective criteria for selecting critical 
parameters in generic semiempirical orbital methods, 
especially for cases of transition-metal ions where pa­
rameters controlling D/A-bridge gaps may be quite 
sensitive to oxidation state. 

Another critical feature of the spiro bridge system is 
the stereoelectronic aspect of the D/A-bridge linkage, 
as discussed below. 

While simple theories seem capable of accounting for 
the decay of transfer integrals with distance in a rea­
sonably quantitative manner, it should be noted that 
the absolute magnitudes of the calculated transfer in­
tegrals (reflecting the influence of D- and A-bridge 
coupling as well as intrabridge coupling), are in rather 
erratic agreement with observed values, varying from 
the latter by factors ranging from ~0.2 to ~50. 

For the case of the norbornyl spacer, we provide more 
detailed information in Table II, comparing H^ esti­
mates inferred from the experimental optical data14 for 
the radical anion system 2(0 with experimental and 
theoretical AE8/2 values for the radical anion states of 
the related norbornyl-bridged diene systems.32b,32c 

0^f^CCNN 

° M e 1 .1-3 

2 ( 0 

TABLE II. Comparison of Koopmans' Theorem (KT) 
Energy Splittings and Observed Transfer Integrals for 
Norbornyl Spacers" 

AE*/2, e V 
electron 

number of <r attachment ionization 
bonds in TB path (,nb)

b tftf, eVc KT* obs' KT* oba« 
4 (0.30 ±0.04) 0.42 0.40 0.49 044 
6 (0.11 ± 0.02) 0.11 0.13 0.17 0.16 
8 (0.06 ±0.02) 0.033 0.065 
10 0.0095 0.032 
12 0.0029 0.015 
0, A""1 0.6 ±0.2 1.0 0.9 0.7 0.8 
(3(10, 12)//3(4,6)'' 0.9 0.8 

"See footnote n of Table I. 'Refers to the number of a bonds in 
the shortest through-bond (TB) path connecting D and A groups. 
For compound 2(0, this number is given by 2 + 21. ' Inferred from 
optical data for 2(1).H For purposes of comparison with calculated 
results for related norbornyl systems," we have arbitrarily scaled 
the original data14 to give an exact match for nb = 6. The unsealed 
values are 0.16 ± 0.02, 0.06 ± 0.01, and 0.03 ± 0.01 eV, respective­
ly. d AE* is the energy splitting of the symmetric and antisymme­
tric ion states obtained from the neutral diene by electron attach­
ment or ionization. 'KT splittings320 based on orbitals of pre­
dominantly T* (electron attachment) and r (ionization) character. 
'Reference 97. ' Reference 98. * £ is a mean value over the whole 
range of nb values. Note that £ as defined here is distinct from, 
but essentially proportional to, the 0's defined in ref 32. 'This ra­
tio gives a measure of the gradual decrease of local /3 values (0(rc)) 
over the range nb = 4 to nb = 12 (0(t, j) is based on the splittings 
from nb = i and nh = j); /3(i, i + 2) appears to have converged at nh 
« I0.32c Because of experimental uncertainty, no meaningful /3 
variation can be inferred from the optical Hu data. 

is provided as well. The theoretical results are KT 
estimates based on ab initio (STO-3G89) SCF results for 
the associated neutral closed-shell systems. The ob­
served and calculated AE*/2 values are in good agree­
ment for both the radical anions and cations. The /? 
values based on observed and calculated AE8 values are 
in good agreement, with values for the radical anions 
somewhat larger than those for the radical cations. 
Recent experimental data for the cyclohexyl bridge 
system (Table I) has yielded /5's for the radical cation 
and radical anion processes that are nearly identical. 
The /3 value based on the diene radical anion energy 
splittings (AE8) is appreciably greater than the (5 value 
inferred from the optical data for the 2(0 systems. The 
local ̂ r0) values based on KT energies exhibit a modest 
decrease with increasing bridge length over the range 
nb = 4 to nb = 12 (~10% and 20%, for the electron 
attachment and ionization processes, respectively), and 
appear to converge at ~ n b = 10.32c Recent basis set 
comparisons reveal that /3(rc) variations for the elec­
tron-attachment process are more pronounced with 
more flexible basis sets (a decrease of ~30% for the 
3-21G91 basis, compared with the 10% decrease noted 
above for the STO-3G89 basis).320 

2. Calculated Through-Space Coupling 

So as to provide a point of reference, we list in Table 
III some calculated decay parameters (3d, eq 81) for 
D/A through-space (TS) coupling. As noted by Cave 
et al.,56 the TS decay can be reliably estimated from a 
knowledge of the asymptotic form of the donor orbital 
involved in the process of interest: 

<t>D(r) ~ exp[-(2mEip/ri2)1/2r] (91) 

Comparison with the corresponding radical cation states where m is the electron mass and Eu> is the ionization 
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TABLE III. Calculated Through-Space (TS) Distance 
Dependence of the Transfer Integral 

donor/ acceptor ft, A"1" 

Fe2VFe8+ 5.0,4 5.3' 
H20/(H20)1+ 4.6,", 4.8« 
group II M/M1+ 2.5-3.2' 

* ft is the mean value of ft obtained by fitting the calculated 
data to the form given by eq 81. 'Reference 51b (one-electron ef­
fective potential model). cNewton, M. D. Unpublished material 
(ab initio SCF). The corresponding TS value when ligands were 
simulated by a point-charge crystal field is 4.2 A"1.43a,b * Reference 
45a (ab initio SCF). The corresponding through-bond (TB) esti­
mate for $ (where H2O and H2O

1+ interact through a chain of H2O 
molecules) is 2.4 A-1 (ref 45a). 'Reference 43b (ab initio SCF). 
Here, the TS interacting H20's are complexed to Fe ions 
(Fe2+(H2O)-(H2O)Fe3+). /Reference 56 (ab initio SCF). 

energy associated with removal of an electron from 0Q. 
Thus /3d is obtained as twice the coefficient of r in eq 
91. The j5's dominated by TB coupling (Tables I and 
II) are appreciably smaller than the sample presented 
in Table III, demonstrating how electronic screening 
due to bridge orbitals serves to reduce the effective 
ionization energies associated with D and A orbitals. 
For the case of the norbornyl spacer, even for the 
shortest bridge studied (nb = 4), the TS contribution 
to the transfer integral is estimated to be <2%.®° For 
H20/H20+ coupling, the TS ,3d value is seen to be ~2 
times the "TB" value (the notation "TB" is used here 
since significant overlap occurs between nearest neigh­
bor water molecules, even though no covalent links are 
present). 

B. Stereoelectronic Effects 

Aside from the basic topology of the DBA system and 
the effective D/A separation distance, there are a 
number of structural degrees of freedom involving the 
bridge, the D/A groups, or their linkage with the bridge, 
whose variation can have an appreciable effect on or­
bital overlap, thereby leading to stereoelectronic mod­
ulation of Hi{. 

/. Trans vs Cis Bridge Configurations 

In the case of saturated hydrocarbon spacers it has 
been noted that trans configurations of D and A groups 
with respect to the spacer yield larger coupling than for 
isomeric situations involving cis configurations, as in­
ferred from the corresponding electron-transfer rate 
constants.90 The trends observed for the rate constants 
are reproduced by corresponding KT energy split­
tings;32'' e.g., for the 6-cr-bond norbornyl-bridging system 
(2(2)), the ratio of (AE8)2 for the all-trans case compared 
with the case involving one cis linkage, is ~ 12, whereas 
for the 8-ff-bond case, comparing the all-trans structure 
and one with two cis linkages, the ratio is ~18. These 
trends have been rationalized by Paddon-Row in terms 
of the orbital coefficients of the terminal atomic orbitals 
of the molecular orbitals of the bridge nearest to the 
band gap.13 

2. The Torsional Mode of the 4,4-Blpyrldlne Bridge 

The electronic coupling of Ru2+ and Ru3+ ions me­
diated by a 4,4-linked bipyridine (bpy) bridge is, not 
surprisingly, quite sensitive to the torsion angle about 
the C-C bond joining the two pyridyl groups. Some 
results for planar and perpendicular conformations are 

TABLE IV. Calculated Torsion-Angle Dependence of Hu 
for the 4,4-Bipyridine (bpy) Bridge0 

torsion symmetry " t f ' c m 

angle, deg of </>D and 4>K thermal6 optical0 

, ir-ir 742O3 476« 
O J 148(V 460 (obs)' 

1 JT'-TT' 10" 

I S-i 1Of 
90 IT-TT' # 

20" 

"The D/A groups, Ru(NH3)|+/3+, are complexed to the pyridyl 
nitrogen atoms, and these latter atoms and the Ru atoms are taken 
as lying along the z axis. For the planar (D2),) case (0°), bpy lies in 
the xz plane, whereas for the twisted (Du) case, the pyridyl rings 
He respectively, in the xz and yz planes. The ir-type Ru 4d orbitals 
(xz and yz) are either parallel (T') or perpendicular M to their 
pyridyl ligands, while S corresponds to 4d i r These symmetry des­
ignations are employed in classifying the orbital interaction types 
for the planar and twisted conformations. b Based on two-state 
energy splitting (AE*). cBased on transition moment. "Reference 
28b (EHT). 'Reference 29c (CNDO). Reference 29c also reports 
estimated thermal Hy values in the range 214-443 cm-1, based on 
various effective two-state and more general models for Hif. 
/Reference 25d (CNDO). 'References 21 and 29c. 

given in Table IV. For the planar conformation (0°), 
the 7r-type overlap is considerably more effective than 
for the symmetries spanned by the other 4d t̂ g orbitals 
(here ir corresponds to 4dyi, if bpy lies in the xz plane, 
with the Ru atoms aligned along the z axis). The cal­
culated optical Hit value29c is in good agreement with 
the observed value21 (corrected290 for effects of non-
planarity). For the 90° twisted conformation, where the 
two pyridyl rings lie, respectively, in the xz (donor end) 
and yz (acceptor end) planes, the local 7r-type 4d or­
bitals (respectively 4dyz and 4d«) are orthogonal, and 
the dominant pathway (which departs slightly from 
being thermoneutral) involves coupling of two 4dyi Ru 
orbitals, which are, respectively, of the ir type (with 
respect to the pyridine at the donor end) and x' type 
(at the acceptor end). The notation ir' denotes an in-
plane x-type interaction with the pyridine o- orbitals. 
In view of this involvement of bridging a orbitals, it is 
perhaps not surprising (cf. Table I), that the twisted 
conformation yields much weaker superexchange cou­
pling than that found for the planar structure. How­
ever, there are other cases of 90° twisted bridges which 
exhibit efficient superexchange coupling. We now cite 
two examples involving rigid spiro-linked spacers. 

3. Bridge Based on Spirononane 

Farazdel et al.38a considered symmetrical electron 
exchange for a radical cation (3) formed by fusing two 
pyrrole rings to the respective outer edges of spiro no-
nane (two spiro-linked cyclopentyl rings), and then 
removing one electron from the resulting Ci3N2H14 
species, yielding charge-localized C2u equilibrium 
structures (3a and 3b) which are related by a mirror 
plane, and a D2^ transition-state structure. 

In contrast to the above case of the twisted Ru-
bpy-Ru, where the two ir-type orbitals are orthogonal, 
the effective D and A orbitals in the present case both 
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transform as bx in D2^ symmetry (i.e., antisymmetric 
in both planes containing the 2-fold axis), and a sub­
stantial transfer integral is obtained from diabatic SCF 
wave functions obtained with either a minimal (STO-
3G)89 basis (280 cm"1) or an extended (3-21G)91 basis 
(360 cm"1). The large coupling is noteworthy since the 
central atom has no basis functions tranforming as bj. 
Hence, the superexchange pathways must involve direct 
coupling between nonbonded methylene groups. 

4. Spiro-Linked Cyclobutyl Bridges 

In the spiro-linked cyclobutyl bridge systems (l(m)), 
facile coupling is provided by the totally symmetric 
manifold of the saturated bridge, both for odd and even 
numbers of spacers. Previous models have assumed9b,27a 

that the Ru atoms lie on the 2-fold axis of the bridge, 
thereby leaving no mechanism for coupling of the active 
Ru orbitals (x-type t2g 4d orbitals) and the totally 
symmetric bridge orbitals. Recently, Hush et al.92 have 
pointed out that sulfur bonded to two alkyl groups and 
a Ru ion has a strong preference for a local pyramidal 
geometry,93 and thus the two Ru atoms are expected to 
lie well off the 2-fold axis in the complexes under 
present discussion. This structural situation has the 
important stereoelectronic consequence of facilitating 
effective coupling between the local ir orbitals of Ru 
(defined relative to the Ru-S axis) and the totally 
symmetric orbitals of the bridge. 

5. Linkage of D and A to Cyclohexane-Based Bridges 

The first entry in Table I deals wtih aromatic D and 
A groups bonded to cyclohexane-based bridging groups 
by single equatorial C-C bonds. From examination of 
the experimental rate constants for thermal electron 
transfer in the radical axion systems,uwo it is clear that 
the strength of TB coupling depends on the configu­
ration of the D-B and D-A attachment (equatorial (eq) 
vs axial (ax)) and on the conformation of the D and A 
aromatic groups about the single-bond linkages to the 
bridge. Model calculations30 for the following process: 

H2C
--CgHiO — CH2 —* H2C-CgHiO-CH2" (92) 

where C6Hi0 is a 1,4-substituted cyclohexane in the 
chair conformation, have yielded the results summa­
rized in Figure 4 (see also the discussions in refs 12a and 
12b). Figure 4 parts a and b refer, respectively, to cases 
of diequatorial (eq.eq) and diaxial (ax,ax) CH2 sub-
stituents, and display the total conformational energy 
and the transfer integral for a range of torsional angles 
associated with the transition-state "seam" (i.e., where 
Q = Q*). The stereoelectronic effects are striking. For 
the eq,eq configuration, the maximum in Hi{ (denoted 
if{J,,eq) coincides with the conformational minimum in 
the total energy, whereas for the ax,ax case, the maxi­
mum in the asymmetric H-f'" curve coincides with the 
conformational maximum energy. To obtain more re­
alistic conformational energetics, molecular mechanics 
(MM) calculations were carried out30 for cyclohexanes 
1,4-substituted (eq.eq and ax.ax) with the actual aro­
matic D and A groups employed in the experiments 
(respectively, 4-biphenylyl and 2-naphthyl groups). The 
eq.eq minimum remained at 0,0 while the ax,ax mini­
mum was found at ~55°,±55°. These results are thus 
in qualitative accord (on a relative basis) with the ex­
perimentally inferred Hi{ magnitudes, which are found 

( W 
T — I — i — I — I — I — r 

' u I i I i I ' 

(90.-90)T(30,-30)| (30,-30)1 (90,-90) 

(60-60) (0-0) (60-60) 

Figure 4. Calculated diabatic energy V(V=V1 = Vt) and transfer 
integral if if for 1,4-dimethylene cyclohexane radical anion at Q*, 
as a function of the torsional angles (S) of the terminal methylene 
groups (the cyclohexane ring has a chair conformation): (a) 
diequatorial and (b) diaxial configuration. As indicated in the 
conformational projection, 6 = 0 corresponds to coplanarity of 
the terminal CH2 group and the CH bond belonging to the ad­
jacent carbon atom (adapted from Figure 1 of ref 30; copyright 
1986 American Chemical Society). 

to yield ratios of ~ 1.2-1.7 for (Hff^/Hf-**)2. Theory 
and experiment are also in accord in predicting less 
effective coupling for the hybrid (ax,eq) isomeric sys­
tems.30 

C. Control of Transfer Integral Magnitude by 
Llgand/Fleld Mixing 

Electron exchange between transition-metal com­
plexes in contact may be analyzed in terms of a DBA 
model in which the metal ions take the role of the D 
and A groups, and the set of ligands (L), or the subset 
of them which occupy the region between the metal 
ions, collectively constitute the bridge (B). In terms 

MLf + ML<f+1>+ — ML<f+1>+ + MUn
+ (93) 

of the superexchange model represented by eq 55, we 
expect the overall transfer integral to depend on both 
the ligand/field mixing within each reactant (D/B and 
A/ B coupling) and on the coupling between contact 
ligand/ligand pairs created when the two reactants 
come together. 

/. ML™ Systems 

Stereoelectronic effects may lead to interesting cou­
pling between the D/B and A/B interactions and the 
intrabridge interactions. For example, comparing the 
two octahedral complexes, Fe(H20)6

+/3+ and Co-
(NH3)§

+/3+, w e find44b o n t h e b a s i s o f I N D o SCF cal­
culations (employing the spectroscopic version devel­
oped by Zerner et al.69b~d), that for 7r-type transfer (i.e., 
involving the t2g Fe 3d orbitals), the transfer integral 
magnitude is greatest for an interpenetrating (face-to-
face) approach of the reactants along a common 3-fold 
axis, whereas for er-type transfer (involving eg Co or­
bitals), Hif is maximized for an apex-to-apex approach 
along a common 4-fold axis. These results are illus-
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TABLE V. Calculated Dependence of Hu on Encounter 
Geometry in Bimolecular Electron Exchange" 

orientation6 Hu, cm~lc r ^ , Ad 

ir-Electron Exchange:' Fe(H2O)2+Z3+ 

face-to-face 40 5.3 
edge-to-edge 21 6.4 
apex-to-apex 17 7.4 

^-Electron Exchange:' Co(NH3)^3+ 

face-to-face 74 5.8 
edge-to-edge 120 6.9 
apex-to-apex 580 7.0 

"Reference 95. These RHF values (see footnote c), differ some­
what from earlier values*"1 based on the unrestricted Hartree Fock 
(UHF) method. ' The three indicated orientations correspond to 
approach geometries in which the two octahedral reactants, have, 
respectively, a common 3-, 2-, and 4-fold axis. cThe Ha are ob­
tained from calculated splittings (AE') on the basis of restricted 
Hartree Fock (RHF) INDO**"* SCF wave functions for the 
[(MLg)2+(MLg)3+] supermolecule complex. In general, a number of 
low-lying supermolecule electronic configurations are possible due 
to the spatial and spin degeneracy of the separate reactants. The 
listed Hu values correspond to those supermolecule states which 
yield Htf values of greatest magnitude. "Metal/metal separations 
for reactants at van der Waals contact for each orientation. 
'Exchange of a t^-type electron. 'Exchange of an e,-type electron, 
based on low-spin states of Co2+(2E,) and Co3+(1Ai,). 

trated in Table V, which underscores the fact that the 
donor/acceptor separation distance, is not a generally 
reliable index of Hi{ magnitude. 

a. Spin-Orbit Coupling Effects. There is another 
twist to the story for the Co(NH3)e

+/3+ exchange. The 
data in Table V refer to low-spin states of the two ox­
idation states, whereas the ground state of Co(NH3)I

+ 

is high-spin. A recent study440 based on ab initio es­
timates of high-spin/low-spin energy separations led to 
the conclusion that the observed kinetics involves 
spin/orbit mixing in the ground electronic state. At­
tenuation due to this spin/orbit coupling reduces the 
effective Hi{ values by a factor of ~10~2 (relative to the 
low-spin values in Table V) and yields an estimate of 
~10 - 4 for Kej (see eq 2). This latter estimate is within 
2 orders of magnitude of estimates94 based on experi­
mental data («e( £ 10"2). The spin/orbit mixing just 
discussed may be viewed as a key ingredient of a gen­
eralized superexchange mechanism in which initial and 
final states with high-spin reductants (i.e., Co(NH3)6

2+) 
are coupled through a series of virtual excitations in­
volving not only local charge-transfer steps but also 
high-spin/low-spin interconversions. The Q depen­
dence of the multiplet splitting energies, and hence of 
the spin/orbit coupling strength, provides a modest but 
interesting contribution to non-Condon behavior of 
Hif.44* 

b. Charge-Transfer Pathways. It is found that the 
charge-transfer superexchange mechanism for both 
Co(NH3)I

+Z3+
 a n d Fe(H2O)I+Z3+ complexes is predom­

inantly of the "hole" type (Figure 3), since the H2O and 
NH3 ligands provide high-lying occupied orbitals, but 
no accessible unoccupied orbitals. Ab initio studies for 
a series of model ML2+-LM3+ systems (M = Fe,Co,Ru; 
L = H2O1NH3) in the "apex-to-apex" configuration have 
demonstrated quantitatively the dominance of a hole 
mechanism in terms of the covalency parameter X which 
defines the antibonding ligand/field mixing between M 
and L orbitals.43d By using Hi{ and X values based on 
the ab initio SCF results (X was inferred from the 
coefficients of the donor (</>D) and acceptor (tf>A) orbit­

als), the following expression was found to give an ex­
cellent fit to the calculated results: 

Hi{ = \2hLL (94) 

where hLi, is a mean effective intrabridge transfer in­
tegral coupling the ligands in contact, common to all 
the systems studied and determined by least-squares 
fitting to have a magnitude of 5000 cm-1. Equation 94 
is equivalent to the standard perturbation theory result, 
e.g., eq 55, where X represents T/ECT and hLL corre­
sponds to t. 

For an apex-to-apex approach of the model ML 
reactants, the primary contact involves H - H interac­
tions, and the success of eq 93 in fitting the calculated 
data suggests that the primary role of X is to specify the 
degree of delocalization of <£D and 0A fr°m *n e metal 
center onto the ligand hydrogen atoms. In the case of 
the face-to-face approach, however, where mode ab in­
itio studies employed an Fe(H20)3

+/Fe(H20)3+ super­
molecule cluster,431" the complexes are in much more 
intimate contact (rMM = 5.3 A), and the above X cor­
relation (eq 94) only accounts for about half the total 
if if magnitude, thus implicating other superexchange 
pathways, including 0—H and 0—0 coupling, and 
perhaps even some Fe-O or Fe-Fe contributions.43"1 

Unfortunately, there is no unique straightforward way 
to decompose calculated transfer integrals based on 
variational (SCF) many-electron wave functions into 
individual direct and superexchange pathways. It is 
true that comparable estimates of if jf were obtained 
from calculations based on point-charge crystal-field 
models438 (or in the limit when the ligands are totally 
absent) and from calculations for the Fe(H20)3

+/Fe-
(H2O)3+ supermolecules including all the ligand elec­
trons explicitly, thus indicating that in the absence of 
the full influence of the ligand field, effective direct 
(TS) coupling is possible. However, the available evi­
dence indicates that the Fe 3d orbitals (including radial 
as well as angular extent) and the transfer integral 
which depends on them, are strongly affected by lig­
and/field mixing (e.g., the magnitude of H^ is reduced 
by a factor of ~3 when the model Fe(H2O)3 reactants 
are replaced by Fe(H3O)6 complexes),98 and thus there 
is no compelling evidence that direct Fe-Fe coupling 
is a dominant factor when the full ligand manifold is 
included. 

The one-electron model of Chandler et al.,51b_d em­
ploying a radial effective potential for the redox elec­
tron, and either a discrete basis or a thermally averaged 
path-integral approach, has yielded a sizable transfer 
integral for the aqueous Fe2+/Fe3+ system (~120 cm-1 

for a 5.5 A Fe-Fe separation), which is found to be 
rather insensitive to the presence of solvent. This result 
appears to imply an essentially direct coupling mech­
anism, in contrast to the results based on conventional 
orbitals models (as discussed above). While the one-
electron model is in principle capable of including an 
"electron" superexchange contribution (through delo­
calization of the redox orbitals), by its nature it pre­
cludes the possibility of the "hole" transfer found so 
important in the orbital models. 

2. Cp2M
0"+ Systems 

Electron exchange involving metallocene/metalloce-
nium redox pairs (Cp2M/(Cp2M)1+, where Cp s cyclo-
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TABLE VI. Calculated and Experimental H1, Values for 
Cp1M

0''1* Electron Exchange 

Hif' c m " ' r-

M-FeW* M-Co(T)* "figf 
orientation" calcd' exp calcd' exp molc A'' 

Intermolecular 

?r 1Si 35/ 9?n »5' i:? us 
C2* 27 222 -3.8 5.29 
Dy1 11 27 -1.7 5.92 

Intramolecular 
C2* 1050 £600» 2100 SHOO* 5.14" 

° The four orientations listed for intermolecular exchange corre­
spond, respectively, to axial, perpendicular, size-by-side (dis­
placed), and side-by-side approach geometries (ref 44d). The one 
intramolecular case corresponds to a trans conformation of the two 
Cp2M moieties with respect to the covalent bond which links them. 
6 S and T refer to the symmetry (in pseudodiatomic notation) of the 
redox active orbital. c Calculated intermolecular energy, including 
electrostatic, induction, and dispersion terms (ref 44d). ^ M / M 
separation for reactants in contact. 'Reference 44d. The compar­
ison with the observed values is based on orientations with lowest 
intermolecular energies. 'Reference 46 (based on thermal kinetic 
data). 'Reference 96 (based on optical (IT) data). "Based on the 
trans-bimetallocenium structure.44*1 

pentadienyl) offers interesting contrasts in superex-
change coupling, as a result of the following "selection 
rules". Adopting a pseudodiatomic model for Cp2M, 
where the 5-fold axis coincides with the z axis, and a 
zeroth-order bonding model based on the M2+ and 
(Cp)2" species, we may classify the metal d orbitals as 
oAd;i), ir-(dxe>dyj), and 5g(d.,2_y»,dxy)> while the 2px ma­
nifold of the Cp rings yields a ir^ and a S8 pair (re­
spectively filled and empty for (Cp)2). Accordingly, the 
ligand/field mixing for M = Fe, where the redox active 
orbital is of 5g symmetry can only yield "electron"-type 
superexchange (involving the empty zeroth-order 5g 
ligand orbitals), whereas for M = Co, the redox active 
iTg orbital lead to a "hole"-type mechanism. The results 
for Hjf obtained44"1 at the spectroscopic INDO level,69b~d 

using charge-localized SCF diabatic states (see section 
IV.B.2), are summarized in Table VI. Important points 
to note are the following: (1) The H$ magnitudes vary 
widely with approach geometry, spanning the nonadi-
abatic and adiabatic regimes, and in a manner not 
correlated with the M-M separation. (2) The magni­
tudes of Hjf for M = Co, are uniformly greater than for 
M = Fe, reflecting the difference in coupling mechanism 
noted above and the more efficient M-L overlap in the 
irg manifold compared with the bs manifold. (3) The H^ 
values associated with the lowest intermolecular ener­
gies bracket the values inferred from experimental 
data.46 In addition, the calculated values for the co-
valently linked bimetallocene systems are consistent 
with lower limits obtained from experimental optical 
(IT) data.96 

VI. Concluding Remarks 

We have reviewed recent theoretical efforts to char­
acterize the nature of donor/acceptor interactions in 
electron-transfer processes. When the energy levels of 
the system make appropriate the identification of an 
effective two-state model, the D/A coupling is com­
pactly represented by the transfer integral, Hit, which 
couples the two states (initial and final) and which may 
be related directly to the electronic transmission factor 

Newton 

governing the electron-transfer rate constant. In ad­
dition to its direct relationship to kinetics, if if may also 
be placed in a larger context of D/A interactions, which 
includes the splitting of photoelectron and electron-
transmission spectroscopy, and the two-electron cou­
pling associated with localized spins and triplet energy 
transfer. This broader context provides greater insights 
into the nature of if if, and also offers important cross-
relations and self-consistency checks which help in the 
evaluation and interpretation of ifif magnitudes. 

Several routes are available for formulating the 
transfer integral. Perturbative techniques, when ap­
plicable (both stationary and dynamical), lead to a 
number of compact analytical forms displaying the 
breakdown of H^ into various direct and indirect (i.e., 
superexchange) pathways. The overall pattern includes 
linear superpositions of "parallel" pathways, which may 
interfere with each other destructively or constructively, 
together with sequential pathways involving primitive 
hops "in series". In spite of their great potential for 
yielding interpretive insight, the perturbative ap­
proaches so far have been implemented with rather 
primitive electronic structural models. In contrast, 
sophisticated many-electron variational techniques 
(SCF and CI) have been applied in calculating H^ 
magnitudes for a number of complex molecular systems. 
While such calculations seem capable of yielding results 
with useful accuracy, a continuing disadvantage is that 
the ease of interpreting the results decreases with in­
creasing sophistication of the electronic structure model. 
Furthermore, due to the differencing inherent in most 
of these approaches, numerical accuracy rapidly be­
comes a significant problem in cases of very weak cou­
pling. 

We have noted various situations in which an effec­
tive one-electron model for H^ emerges from a general 
many-electron framework, so that the many-electron 
transfer integral may be represented as the matrix el­
ement of an effective one-electron Hamiltonian which 
couples a well-defined donor and acceptor orbital. In 
a few cases, it has been possible to extract such a one-
electron model from many-electron SCF results, dem­
onstrating that all but one of the system electrons reside 
in a nearly invariant core which serves both initial and 
final states. 

While large-scale SCF techniques are routinely being 
used to define ground-state diabatic or adiabatic states, 
the general situation from formulating initial and final 
states governing excited-state electron-transfer reactions 
(e.g., those initiated by photoexcitation) is much less 
well under control, although a number of interesting 
(but ad hoc) approaches based on configuration inter­
action have been employed. 

Among areas deserving of concerted attention in the 
future, we emphasize the need for a more systematic 
formulation of the electronic states involved in ground-
and excited-state electron transfer (including an as­
sessment of the importance of electron correlation), and 
for a more comprehensive perspective on the validity 
of the Condon approximation. The two goals are, of 
course, interrelated. In establishing a computational 
procedure for defining electronic states (e.g., in terms 
of some discrete molecular cluster), it is essential to 
know which degrees of freedom of the system (both 
electronic and nuclear) are sufficiently important that 
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they must be explicitly included in the initial Hamil-
tonian defining the system wave function, and which 
may be safely ignored or included more indirectly (e.g., 
via reaction field terms arising from a polarizable di­
electric medium). In addition to understanding how 
wave functions, and hence, H^, vary with the reaction 
coordinate Q (necessary for meaningful comparison of 
thermal and optical data), it is important to explore the 
sensitivity of results for a given value of Q (i.e., a hy-
persurface) to values of the various coordinates 
"perpendicular" to Q, especially those associated with 
large-amplitude notion, which may therefore require 
averaging of Q over these coordinates. With regard to 
the electron correlation problem, the appropriateness 
of using symmetry-broken SCF solutions to define 
variationally the diabatic charge-localized states (fa and 
fa), required further investigation. The symmetry 
breaking may be thought of as an aspect of electron 
correlation (relative to the symmetric solutions) which 
arises from legitimate physical sources (the predomi­
nance of local self-trapping ("solvation") over dereal­
ization energy in situations of weak coupling. However, 
SCF symmetry breaking in other contexts has unde­
sirable artifactual aspects. 

Clearly an important goal is to combine the comple­
mentary advantages of several promising avenues into 
a unified approach for studying the energetics and dy­
namics of electron transfer in a complex polar medium. 
These avenues include the many-electron electronic 
structure techniques for molecular clusters, techniques 
such as the path-integral method, which allow the de­
tailed modulation of the wave function by a disordered 
electronic medium (but so far limited to one-electron 
models), and a variety of dynamical models and simu­
lation techniques which can treat nonadiabatic as well 
as adiabatic electronic processes and which give im­
portant perspective on the validity of simple kinetic 
models based on effective two-state models. 
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