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/. Introduction 

A. An Atom in a Molecule as an Open Quantum 
System 

The role of physics in chemistry is to predict what 
can be observed and to provide an understanding of 
these observations. The dominant operational concept 
of chemistry is that of an atom in a molecule with a 
determinable and characteristic set of properties. Thus 
the physics of chemistry is necessarily the physics of 
an atom in a molecule, that is of an open system, one 
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which is free to exchange charge and momentum with 
neighboring atoms. To extend the predictions of 
physics to the domain of chemistry it is therefore, 
necessary to generalize quantum mechanics to a sub­
system of a total system. Such a generalization is in­
deed possible, but only if the open system satisfies a 
particular boundary condition. When this condition is 
met, one obtains a definition of an atom in a molecule 
and a prediction of its properties. Inseparable from the 
quantum definition of an atom in a molecule is the 
definition of the bonds which link the atoms to yield 
a molecular structure. In essence, the quantum de­
scription of an open system recovers the molecular 
structure hypothesis—that a molecule is a collection of 
atoms each with a characteristic set of properties, that 
are linked by a network of bonds. The emergence of 
this hypothesis from 19th century experimental chem­
istry is thus seen as having been an inevitable conse­
quence of physics. 

B. Outline of the Theory and Its Applications 

It is the purpose of this article to review the deriva­
tion of the quantum mechanics of an open system and 
to illustrate its use in the development and application 
of a theory of atoms in molecules.1 The article begins 
with a review of the generalization of quantum me­
chanics that leads to the definition of an open system 
and to a prediction of its properties.1-3 This generali­
zation is accomplished through an extension of 
Schwinger's principle of stationary action,4 an extension 
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which is possible only if a certain boundary condition 
is satisfied. The boundary condition demands that the 
flux in the gradient vector field of the charge density 
p(r) vanish at every point of the surface S(Q,r) which 
bounds an open system ft. That is, the surface is one 
of zero flux in Vp.5 As a consequence of the boundary 

Vp(r)-n(r) = 0 V r G S(fl,r) (1) 

being stated in terms of a property of the electronic 
charge density, quantum subsystems are defined in real 
space. Because of the dominant topological property 
of a molecular charge distribution—that it exhibits 
maxima at the positions of the nuclei—the boundary 
condition leads to the partitioning of a molecular system 
into a set of disjoint spatial regions, each region con­
taining in general, a single nucleus. These regions are 
identified with the chemical atoms. The properties of 
the gradient vector field also contain the information 
needed for a definition of molecular structure and its 
stability,6 by using the mathematics of qualitative dy­
namics. The result is a theory of atoms, bonds, struc­
ture, and structural stability. 

It is a primary purpose of this paper to demonstrate 
that quantum mechanics predicts the properties of 
atoms in molecules just as it predicts the properties of 
the total system. Following the review of the general­
ization of quantum mechanics to an open system which 
yields a definition of an atom and its properties, exam­
ples of the application of the resulting theory of atoms 
in molecules to chemical problems are presented. These 
examples are chosen to illustrate the principal features 
of the theory: 

(a) The demonstration that each atom makes an ad­
ditive contribution to the average value of every prop­
erty of a molecular system. This is the principle un­
derlying the cornerstone of chemistry—that atoms and 
functional groupings of atoms make recognizeable 
contributions to the total properties of a system. One 
predicts the properties of some total system in terms 
of the properties of the functional groups it contains 
and conversely, one confirms the presence of a given 
group in a molecule through the observation of its 
characteristic properties. In those limiting situations 
wherein a group is essentially the same in two different 
systems, one obtains a so-called additivity scheme for 
the total properties, for in this case the atomic con­
tributions as well as being additive are transferable 
between molecules. It will be shown that the methyl 
and methylene groups as defined by the theory of atoms 
in molecules predict the additivity of the energy which 
is experimentally observed in normal hydrocarbons. 
The deviations in this additivity which are found for 
small cyclic molecules and which serve as the experi­
mental definition of strain energy are also predicted by 
theory. The recovery of these experimentally mea-
sureable properties of atoms in molecules by the atoms 
of theory confirms that they are the atoms of chemistry. 

(b) The definition of bonds, molecular structure, and 
structural stability as determined by the gradient vector 
field of the charge density is exemplified in a number 
of systems, including those whose charge distributions 
are accessible to experimental measurement. The im­
portance of distinguishing between molecular geometry 
and the generic concept of molecular structure is il­
lustrated and discussed, and it is shown that a theory 
of molecular structure is obtained without recourse to 

the Born-Oppenheimer approximation. 
Second only to the molecular structure hypothesis in 

the ordering, understanding, and predicting of chemical 
events is the Lewis model of the electron pair.7 This 
model and its associated models of molecular geometry 
and chemical reactivity find physical expression in the 
topological properties of the Laplacian of the electronic 
charge density.8,9 This scalar field, defined by the 
second derivatives of the electronic charge density, 
determines where electronic charge is locally concen­
trated and depleted, and it plays a dominant role 
throughout the theory of atoms in molecules. Thus the 
review also illustrates the following: 

(c) The recovery of the Lewis model of the electron 
pair in terms of the topological properties of the La­
placian of the charge density and the use of the La­
placian to predict molecular geometries and chemical 
reactivity. 

(d) The ability of the Laplacian of the charge density, 
when used in conjunction with the definition of a 
chemical bond and the local mechanics governing the 
charge density as afforded by theory, to yield a classi­
fication of atomic interactions. This classification 
scheme is directly applicable to experimentally mea­
sured charge distributions. 

/ / . The Quantum Mechanics of an Open System 

A. The Need for a Quantum Description of an 
Open System 

It is a postulate of quantum mechanics that every­
thing that can be known about a system is contained 
in the state function ^ . The value of a physical quan­
tity is obtained through the action of a corresponding 
operator on ^ . Thus quantum mechanics is concerned 
with observables, the linear Hermitian operators asso­
ciated with the physical properties of a system, and 
their equations of motion. The theorems of quantum 
mechanics that yield relationships between various 
observables, such as the virial and Ehrenfest theorems, 
are derived from the Heisenberg equation of motion. 
Questions we have about a quantum system are there­
fore, answered in terms of the values and equations of 
motion for the relevant physical observables. These 
values and relationships refer to the total system. The 
use of the atomic concept in our attempts to understand 
and predict the properties of molecules and solids, 
however, requires answers of a more regional nature and 
it would appear that to find chemistry within the 
framework of quantum mechanics one must find a way 
of determining the observables and their properties for 
pieces of a system. How is one to choose the pieces? 
Is there one or are there many ways of partitioning a 
system into pieces in such a way that quantum me­
chanics predicts their properties? If there is an answer 
to this problem then the necessary information must 
be contained in the state function ^ , for V tells us 
everything we can know about a system. 

Therefore, the question, "Are there atoms in mole­
cules?" requires the asking of two equally important 
questions: (a) Does the state function predict a unique 
partitioning into subsystems? (b) Does quantum me­
chanics provide a complete description of the subsys­
tems so defined? To answer questions a and b one must 
turn to a development of physics that introduces the 



Quantum Theory of Molecular Structure Chemical Reviews, 1991, Vol. 91, No. S 895 

quantum observables and their equations of motion in 
a nonarbitrary way, as opposed to one based on what 
would be an arbitrary extension of the correspondence 
principle. Such is Schwinger's principle of stationary 
action.4 It replaces the conventional array of assump­
tions based on classical Hamiltonian dynamics and the 
correspondence principle with a single quantum dy­
namical principle. The approach is also a very general 
one, one that enables the asking of questions a and b. 

B. The Action Principle in Quantum Mechanics 
and Schwinger's Principle of Stationary Action 

In 1933 Dirac published a paper entitled "The Lan­
grangian in quantum Mechanics". After presenting a 
discussion as to why the Langrangian formulation of 
classical mechanics could be considered to be more 
fundamental than the approach based on the Hamil­
tonian theory, Dirac went on to say, "For these reasons 
it would seem desirable to take up the question of what 
corresponds in the quantum theory to the Lagrangian 
method of classical mechanics." 

A knowledge of the transformation function or tran­
sition amplitude (qaMQnM suffices to determine the 
dynamical behavior of a system with time, since it re­
lates that state function ^(qr2,t2) at time t2 to that at 
time ti according to10 

(<7r2>*2l*> = V(QaJ2) = J(QaMQnM ^Qn*(QnJi) 
(2) 

The symbol qn is used to denote the complete set of 
commuting position operators for the particles at time 
tx and qrl, their eigenvalues. Dirac was the inventor of 
transformation theory and through repeated use of the 
multiplicative law of transformation functions he was 
able to express the function connecting states at times 
J1 and t2 by a sequence of transformation functions for 
times intermediate between the initial and final times. 
Taken to the limit of the successive intermediate times 
differing only infinitesimally one from the next, the 
multiplicative law yields a product of all the transfor­
mation functions associated with the successive infi-
tesimal increments of time. Dirac then stated that the 
transformation function associated wth the time dis­
placement from t to t + At corresponds to exp[(i/h)L 
dt], where the Lagrangian L was to be considered as a 
function of the coordinates at time t and the coordinates 
at time t + dt, rather than of the coordinates and ve­
locities. The transformation function then becomes 
exp[(i/h)W] where W, the action integral equal to JL 
dt between the limits tlsnd t2, is interpreted as the sum 
over all the individual coordinate-dependent terms in 
the succession of values of t. With this construct Dirac 
was able to answer the question of what in quantum 
mechanics corresponds to the classical principle of 
stationary action. 

Feynman built on this work and in 194810 it culmi­
nated in his path integral formulation of quantum 
mechanics. In the classical limit considered by Dirac, 
only one trajectory connects the system at time J1 to 
that at time t2 and he limited his discussion to this case. 
What Feynman did was to consider all the trajectories 
or paths that connect the states at the initial and final 
times, since he wished to obtain the corresponding 
quantum limit. Each path has its own value for the 

action W and all the values of exp[(i/h)W] must be 
added together to obtain the total transition amplitude. 
Thus the expression for the transition amplitude be­
tween the states \qn) and \qr2) is the sum of the ele­
mentary contributions, one from each trajectory passing 
between qrl at time J1 and §rt at time t2. Each of these 
contributions has the same modulus, but its phase is 
the classical action integral (l/h) SL dt for the path. 
This is expressed as 

(QaMQnM = Ci-/N) f expj(i/ft) § \ dt^6qr(t) 

The differential 8qr(t) indicates that one must integrate 
over all paths connecting qrl at t1 and q^ at t2 and I/N 
is a normalizing factor.11 

Schwinger's quantum action principle put forth in 
19514 is also concerned with the determination of the 
transformation function. A statement of this principle 
is 

^(qaMQnM = d/ fi)(qr2,t2\^i2\Qn,h) = 

(i/h)(qr2,t2\5ft
h£[t] AtIqnJ1) (3) 

where W12 is the action integral operator and JL is the 
Lagrange function operator. Equation 3 is a differential 
statement of Feynman's path integral formulation, and 
while Schwinger developed it independently, it can be 
obtained as a consequence of Feynman's principle (see 
for example, Yourgrau and Mandelstam11). The action 
principles afford conceptual advantages in formulating 
the laws of quantum mechanics and represent more 
than alternative formulations of the laws of quantum 
mechanics. In fact, they may provide the real founda­
tion of quantum mechanics and thus of physical theo­
ry.12 

The quantum action principle (eq 3) embodies 
Schwinger's postulate that if variations are effected in 
a quantum mechanical system, the corresponding 
change in the transformation function between the 
eigenstates \qT\M and \qr2,t2) is (i/h) times the matrix 
element of the variation of the action integral W12 
connecting the two states. The action integral operator 
W12 is defined as 

W12= ChZ[t]dt (4) 

where £[t] is an invariant Hermitian function of the 
field V and its first derivatives. The principle of sta­
tionary action is obtained from eq 3 by noting that an 
infinitesimal unitary transformation can also be used 
to obtain a differential characterization of a transfor­
mation function. The operator U 

U=I- {U/h)G (5) 

and its inverse 

U-1 = 1 + {U/h)G (6) 

where e denotes an infinitesimal real quantity and G 
is a linear Hermitian operator, induce infinitesimal 
unitary transformations. In what follows, eG will be 
represented by the infinitesimal unitary operator F, 
where F is referred to as the generator of the trans­
formation. The infinitesimal transformation induced 
on an observable a is defined to be4 

Sa = a-a' = (i(/h)[G,a] = (i/h)[F,a] (7) 
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and the same transformation when applied to the as­
sociated state vector yields 

8\a) = \a') - \a) = -ii/h)F\a) (8) 

The effect of altering the two commuting sets of posi­
tion operators at times tx and t2 in the transformation 
function (q^MVln^i) m t o Qn ~ sQn and Qfi - Sq^2 by the 
action of the two infinitesimal generating operators P(t{) 
and P(t2) is given by 

^(Qr2<h\Qrhti) ~ (&Qr2>h\Qrl,tl) + (Qr2yt2[5qrl,ti) = 

(,i/h)(qr2,t2\F(h) - F(ti)\qri,h) O) 

If the parameters of a system are not altered, then the 
variations of the action integral in eq 3 arises only from 
infinitesimal changes of the sets of commuting observ-
ables at the two times 1̂ and t2. However, by eq 9, such 
a transformation is characterized in terms of the gen­
erators of infinitesimal unitary transformations F(^1) 
and P(t2) acting on the two eigenvectors. Thus by 
comparing eqs 3 and 9 one obtains for such variations 
the result 

SW12 = P(t2) - Pd1) (10) 

which is the operator principle of stationary action. It 
states that the action integral operator is unaltered by 
infinitesimal variations in state functions between the 
times J1 and t2, being affected only by the action of 
generators at the two time endpoints. 

In the principle of stationary action, the variation of 
the action integral does not vanish as it does in Ham­
ilton's principle, but instead equals the difference in the 
effects of infinitesimal generators acting at the two time 
endpoints. This result requires that the variation of the 
action integral appearing in eqs 3 and 10 be generalized 
to include the variations of the state functions and of 
the time at the time endpoints. The principle of sta­
tionary action then implies the equation of motion of 
the systems as obtained in Hamilton's principle, and 
the endpoint variations define the generators of the 
infinitesimal canonical transformations which induce 
changes in the dynamical properties of the system. In 
this way a single dynamical principle recovers not only 
the equation of motion, but also defines the observables, 
their equations of motion, and the Heisenberg com­
mutation relations. 

This generalized variation of the action integral may 
be illustrated and its analogy with the corresponding 
classical principle made clear by expressing the La-
grangian operator in terms of the commuting set of 
position operators qrt and their time derivatives. A 
summary of the more complete discussion given in ref 
1 is presented here. The action integral operator is 

W12= Ch£(qrt,q-rt,t) dt (11) 

To first order in the infinitesimals, the required gen­
eralization of the action integral reduces to the change 
in JL along the varied path between the unvaried time 
endpoints and the unvaried integrand times the varia­
tion in the time at the two time endpoints.13 That is 

5W12 - Chl{qH,tiH,t) dt + 2« r t^ r t,t)«t|{; (12) 

After using an integration by parts to rid the resulting 
variation in £ of the variations 5(jrt, one obtains the 
result 

5W12 - $\d£/dqn) - d(d£/dq-rt)/dt}6qrt dt + 

P(t2) - F(I1) (13) 

where the generators are defined in terms of the vari­
ations in qr and the time at the time endpoints, and 
following a Legendre transform of £ they may be ex­
pressed as 

Fit) = \(d£/d$rt)Aqrt - H(Qrt,d£/dq-n)5t\ (14) 

The symbol Aqrt denotes the complete change in the 
coordinate operator 

A<?r« = 5<7rt + §nbt (15) 

A comparison of eq 13 with the principle of stationary 
action, eq 10, yields the equation of motion: 

5£/dqrt = d(d£/dU/dt (16) 

since satisfaction of this principle requires that the 
quantity under the time integral multiplied by the ar­
bitrary variations 8qrt must vanish, as it does in the 
restricted variation of the action integral where one sets 
5W12 = 0. 

The generator defined in eq 14 is composed of two 
parts: the temporal generator -Hdt yields the Heisen­
berg equation of motion for an observable a when used 
in eq 7, while the generator (d£/dqrt)8qrt is the generator 
of purely spatial changes.1,13 The use of this latter 
generator in eq 7 to induce^ infinitesimal changes in the 
operators 5qrt and pH = d£/dqrt yields the Heisenberg 
commutation relations.1,13 Thus the principle of sta­
tionary action provides a complete description of a 
quantum dynamical system. The demonstration that 
this principle applies to a properly bounded subsystem 
of some total system is sufficient to establish the 
quantum mechanics of a subsystem. 

A number of alternative expressions of the principle 
of stationary action will prove useful in its application 
to a subsystem. The first is a restatement of eq 10 to 
give 

8W12= fh(dF/dt)dt (17) 

By dividing both sides of this equation by t2 - tt and 
subjecting the result to the limit At -* 0, one obtains 
an expression for the principle of stationary action in 
terms of a variation of the Lagrange function 

8£[t] = dF/dt (18) 

This result can be equivalently expressed, by using 
Heisenberg's equation for dF/dt, as 

8£[t] = (i/h)[H,F] (19) 

where it is understood that the variation in £ is effected 
by the action of the infinitesimal generator P. Equation 
19 is the operational statement of the principle of sta­
tionary action.1 It determines the equations of motion 
for the observables and the related theorems, such as 
the Ehrenfest and virial theorems, which determine the 
mechanics of a given system. 

C. Atomic Principle of Stationary Action 

The generalization of the principle of stationary ac­
tion to a subsystem is necessarily stated in the coor­
dinate basis, as the boundary condition is defined in real 
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space and the Schrodinger representation of the state 
vector is employed in what follows. 

The action integral W12[*] for the total system is 

W«[*] = f'2X[*,*] dt = 

j"'dt J*dr L[*,V*,*,£] (20) 

where the Lagrangian integral X[*,t] is obtained by the 
integration of the Lagrangian density over the coordi­
nates of all the particles in the system. In the absence 
of external fields, the Lagrangian density for the system 
of many particles interacting via a many-particle po­
tential energy operator V is 

L[*,V*,*,t] = (ift/2)(*** - 4""*) -
(h2/2m) L1-V1-**.V1-* - V*** (21) 

The variation to first-order of this action integral with 
respect to the independent variables * and ** and with 
5* and 5** = 0 at the time endpoints, yields for the 
extrenum condition that 5W12 = 0, Schrodinger's 
equations 

ih* = H* and -ih4>* = HV* (22) 

where the Hamiltonian H is given by 

H - -(ft2/2m)E,V2 - E . - E o W h - Xj)"1 + 
EEe2Qr, - rjl)"1 + ELe2Z0Z^X1, - X3I)-

1 (23) 
Kj a<$ 

Terms of the form V**'nS* appear in an integral over 
the surface of the system when an integration by parts 
is used to rid the variation in W12 of terms of the form 
6V*. Thus to obtain eqs 22 as the Euler equations in 
the variation of the action integral requires that one 
either demand that S* vanish on the boundaries of the 
system at infinity or, that the state function satisfies 
the so-called natural boundary conditions, that V**n 
= 0 and V**«n = 0 on the same infinite boundaries. 

The Lagrangian density and the integrals it defines 
exhibit an important property at the point of variation 
where Schrodinger's equations hold, i.e., where SW12 = 
0. Denoting by L0 the Lagrangian density obtained at 
the point of variation, one has, using eqs 22, 

L0 = -(ri2/4m)E,(**V?** + *V2** + 2V,**.V;*} 
(24) 

This can be further simplified by using the following 
identity which relates the kinetic energy as it appears 
in Schrodinger's equation with that appearing in the 
Lagrangian 

-(ri2/4m)E,-(**V2* + *V?**| = 
(*/2m)E,-V,-**'V,* - (ri2/4m)E,V2(***) (25) 

Thus at the point of variation, the Lagrangian density 
reduces to a sum of single-particle Laplacian operators 
acting on * * * Integration of this quantity over the 

L0 = -(ft2/4m)E,V2(***) (26) 

coordinates of the particles causes it to vanish since the 
integration reduces to surface integrals of V**»n and 
V*'n. Thus the Lagrangian integral at any time t and 
its associated action integral for any time interval At, 
for a quantum mechanical system described by 
Schrodinger's equation, must vanish. Because of the 

single-particle nature of the operator in eq 26, one can 
define a related single-particle density £°(r,t). This 
is accomplished by a summation over the spins of all 
the electrons, followed by an integration over all coor­
dinates but those of one electron, a process denoted by 
the symbol / d / . When this result is multiplied by N, 
the number of electrons in the system, this is the same 
procedure used to obtain the charge density p(r,t) from 
***. The density obtained in this manner is 

£°(r,t) = fdr'L0 = -(ft2/4mN)V2p(r,t) (27) 

Because of the natural boundary condition that ** V-
*.n and *V**«n vanish on the boundaries of the sys­
tem at infinity, the vanishing of the Lagrangian integral 
X°[*,t] can be taken to be a consequence of the van­
ishing of the flux in the gradient vector field of the 
charge density at the infinite boundary of the system, 
since 

£°[9,t] = -(h2/4mN) J*drV2p(r,t) = 

-(h2/4mN)^dS(r,t)Vp(r,t)-n(r,t) - 0 (28) 

In anticipation of the identification of a quantum 
subsystem with an atom, the subsystem Lagrangian and 
action integrals are referred to as atomic integrals. The 
atomic Langrangian integral is obtained from the La­
grangian density in eq 21 by the summing of all spins 
and integration over the coordinates of all electrons but 
one, followed by the integration of the final electronic 
coordinate, denoted by r, over the basin of the atom Q, 
as indicated in eq 29. Correspondingly, the atomic 

JC[*,Q,t] = fdr fdT'L(*,V*,*,t) (29) 

action integral is 

W12[¥,0] = Chdt£[*,Q,t] (30) 
Jt1 

It is clear from eq 28 that at the point of variation where 
eq 26 is obtained, the atomic Lagrangian and action 
integrals will also vanish, as a consequence of the zero 
flux surface condition (eq 1). It is a consequence of this 
equivalence in properties of £°[V,t] and £°[&,Q£] that 
the action integrals for the total system and each of the 
atoms which comprise it have similar variational 
properties. 

The generalized variation of the atomic action inte­
gral in the manner outlined in eq 12, and including a 
variation of the surface bounding the atom, yields the 
atomic statements of the quantum action principle and 
principle of stationary action, if one imposes a particular 
variational constraint. This constraint amounts to 
delimiting the class of possible subsystems to those 
which satisfy the zero flux surface condition given in 
eq 1. As detailed in ref 1 and 2 this constraint is im­
posed by demanding the fulfillment of the condition 
given in eq 31. 

5|jVp(r,; t)dr = 0 (31) 

To impose the variational constraint given in eq 31 
and thereby define a particular class of open system, 
one must vary the surface of the subsystem. This re­
quirement necessarily leads to the relaxation of the 
usual variational constraint that 5* vanish at all 
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boundaries of the system and at the time endpoints, the 
constraint imposed on the variation of the action inte­
gral in Hamilton's principle to obtain the equations of 
motion. Thus the variation of V in the atomic action 
integral with the necessary retention of 8V on the 
boundaries and hence at the time endpoints neces­
sarily leads to the generalization of the variation of the 
action integral that yields Schwinger's principle of 
stationary action. 

Such a generalized variation of the atomic action in­
tegral given in eq 30 is detailed elsewhere1,2 and the 
result is 

8Wn[V,Q] = pdt£dS(Q,r)(ih/2) 

5*j(r)-n(r) + cc - J dr' (8S/8t)V*8V + 

cc + a h/2)fdr J d-r'VHV + cc! (32) 

The quantity j is the vector current and it is defined 
as 

j(r) = (h/2mi) f dr'(V*V¥ - VV*V) (33) 

Its variation 6+j(r) as it appears in eq 32 is 

5*j(r) = (h /2mi) § dr'(V*8VV - VV*8V) (34) 

This term is obtained by combining the surface term 
arising from the variations with respect to V*, with the 
surface term arising from the imposition of the varia­
tional constraint (eq 31). Thus the variation of the 
surface of the subsystem together with the restriction 
that the subsystem be bounded by a zero flux surface 
causes the quantum mechanical current density j to 
appear in the variation of the action integral, a term 
whose presence is a necessary requirement for the de­
scription of the properties of an open system.1 

By proceeding as before, the variations in the state 
function are replaced by operators which act as gen­
erators of infinitesimal unitary transformations. That 
is, 8V=(H^h)FV where F is an infinitesimal Hermitian 
operator (F = tG). Introducing the notion of generators 
into the result for the variation of the atomic action 
integral yields 

AW12[V1Q] = F(QJ2) - F(QJ1) - £'dt^dS(fi.r) 

\(8S/8t)pF - [(l/2)(JF(r) + cc)]-n(r)\ (35) 

The result is expressed in terms of property averages 
for N electrons, so AW - N8W. The atomic averages 
of the generator at the time endpoints F(Q,t) and the 
corresponding property density pF &re defined as 

F(Q,t) = CdrpF(r,t) = 

(N/2) J dr J dT'\**H + (FV)*V\ = (F)n (36) 

and 

PF(r,t) = (N/2) fdr'^FV + (FV)*V\ (37) 

The contribution to the current density for the ob­
servable F is 

JP(r,t) = (Nh/2mi)j'dT' \V*V(FV) - (VV*)FV\ 

(38) 

In the case that F is a vector, JF is a second-rank tensor. 
To reexpress the result given for AW in eq 35 in the 

form analogous to eq 17, we need the Heisenberg 
equation of motion for F(Q,t). This is obtained by using 
eq 22 for Schrodinger's equation of motion to give 

dF(Q,t)/dt = (l/2)\(i/h){[HJ])u + cc} + 
tfdS(Q,r){(SS/dt)P¥(r) - [(l/2)(JF(r) + cc)]-n(r)} 

(39) 

Comparison of this expression with that for the change 
in action in eq 35 shows that the terms subtracted from 
the endpoint averages of the generator are just those 
which account for the surface contributions to this 
difference, integrated over the time-like surface con­
necting the two time endpoints. Thus what remains is 
the difference in the values of the generator at the two 
time endpoints averaged over the interior of the sub­
system, the essence of the principle of stationary action. 
The change in the atomic action integral can be ex­
pressed entirely in terms of the interior averages of the 
generator as 

AW12[V1Q]= Chdt{(i/h)([H,F])a + cc\/2 (40) 
•Jtx 

a result equivalent to the statements of stationary ac­
tion obtained for the total system, eq 17. The principle 
of stationary action for a subsystem can be expressed 
for an infinitesimal time interval in terms of a variation 
of the Lagrangian integral, as given in eq 19 for the total 
system. For the atomic Lagrangian this statement is 

8£[V,Q,t] = (l/2){(i/h)([H,F])a + cc} (41) 

For stationary state, the Lagrangian integral, apart 
from the presence of a Lagrange multiplier to insure 
normalization of \p, reduces to the energy functional 
used by Schrodinger14 in the derivation of the station­
ary-state wave equation. For an atom in a molecule in 
a stationary state this energy functional is 

S[i,Q] = 
j * d r fdr'Kh2/2m)EiV^*-V^ + (V+X)^} (42) 

where V denotes the full many-electron potential energy 
operator, and X, the variational constraint on the nor­
malization of \p, is identified with -E, the negative of 
the total energy. The atomic statement of the sta­
tionary action in terms of this functional is1,3 

8§[+,Q] = -(l/2)\(i/h)([Hf])a + cc} (43) 

The derivation of the principle of stationary action 
for an atom in a molecule in the time-dependent case 
or in a stationary state, or in the presence of an elec­
tromagnetic field,15 yields the corresponding 
Schrodinger equation of motion for the total system, 
identifies the observables with the variations of the 
state function, defines their average values, and gives 
their equations of motion. The statements of the at­
omic principle of stationary action as expressed in terms 
of variations in X[VjQ] and 9[\f/,Q] are variational 
statements of Heisenberg's equation of motion and of 
the hypervirial theorem for a generator F, respectively. 
They yield the theorems and relations governing the 
mechanics of an atom in a molecule. Because of the 
variational derivation of these atomic statements of the 
principle of stationary action, they are satisfied by the 
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same class of approximate wave functions, RHF and 
UHF, as satisfy the derived theorems, such as the 
generalized Hellmann-Feynman and hypervirial theo­
rems, for a total system. The reader is referred to 
Epstein's book on the variational method in quantum 
chemistry for a discussion of the validity of these 
theorems for a total system.168 

Equations 40-42 represent a generalization of quan­
tum mechanics. They enable one to obtain a quantum 
mechanical description of the properties of any region 
of space bounded by a surface of zero flux in the gra­
dient vector field of the charge density. In this sense, 
the mechanics of a total system is obtained as a special 
case of these more general equations. 

D. Open Systems and Fluxes in Vector Currents 

Corresponding to eq 35 for the variation in W12[
1^A], 

the subsystem projection of the variation of the energy 
functional for a stationary state is equal to the infini­
tesimal flux in the current density through the surface 
of the subsystem, eq 44. 

mtfl] = -(l/2)[^dS(fi,r)jF(r)-n(r) + ccj (44) 

The same surface integral appears in the subsystem 
statement of the hypervirial theorem16b (the stationary 
state analogue of eq 39) 

{(i/n)<lM#/W>ii + cc} = 
*dS(n,r)jF(r).n(r) + ccj (45) | / « 

and because of the dependence of the both quantities 
on the current flux one obtains the atomic statement 
of the principle of stationary action for a stationary 
state as given in eq 43. This principle forms the basis 
for the discussion of the mechanics of an atom in a 
molecule. 

The nonvanishing of the flux of a quantum mechan­
ical current is what distinguishes the mechanics of a 
subsystem from that of the total system in a stationary 
state. The flux in the current density will vanish 
through any surface on which \p satisfies the natural 
boundary condition, V^-n = 0, a condition which is 
satisfied by a system with boundaries at infinity. Thus 
for a total system the energy is stationary in the usual 
sense, b§[\p] = 0, and the usual form of the hypervirial 
theorem is obtained with the vanishing of the commu­
tator average 

MHfW) = o (46) 

Equation 46 is a consequence of the Hermitian property 
of H, a property not enjoyed by a subsystem. The 
difference between the average of the Hamiltonian and 
its Hermitian conjugate equals the flux in the current 
density through the surface bounding the system.2 

When an observable G does not possess a sharp value 
in a stationary state, i.e., its commutator with H does 
not vanish, there is a nonvanishing current whose net 
outflow from any infinitesimal region is determined by 
the corresponding commutator 

V-J0 = (i/h)t*[H,GW (47) 

The energy is not stationary over a volume fi in such 
a situation, its change being determined by the flux of 
the current of G through the surface, eq 44, or equiva­

lent^, by the average of the commutator, eq 43. From 
this discussion it is clear that H retains the property 
of a Hermiticity over a subsystem in the case 

(V#(Cty) dr = CHt*(Gt) dr 
Ja Ja 

only when H and G commute. 
In summary, a subsystem is an open system, free to 

exchange charge and momentum with its environment. 
Thus the current density j G for any observable G is of 
particular importance in the mechanics of a subsystem, 
since a nonvanishing flux in this current implies a 
fluctuation in the subsystem average value of the 
property G. Because of the presence of the surface term 
in eq 45, the hypervirial theorem for a subsystem leads 
to important physical results which have no counterpart 
for the total system. 

E. Consequences of the Zero Flux Boundary 
Condition 

The fundamental result of the theory, as contained 
in eq 40 for a time-dependent system and in eq 43 for 
a stationary state, is that the properties of a region of 
space bounded by a surface of zero flux in the gradient 
vector field of the charge density are predicted by 
quantum mechanics. These are the only physically 
realizable quantum subsystems defined by the action 
principle.1,2 The question still to be answered is 
whether such regions exist and whether they correspond 
to the atoms of chemistry. Affirmative answers to these 
questions are obtained as a consequence of the principal 
topological property exhibited by the electronic charge 
distribution—that in general, it exhibits local maxima 
only at the positions of the nuclei. This is illustrated 
in Figure 1 by the charge density for the molecule SF6 
which exhibits behavior that is typical of the vast ma­
jority of systems. Shown is a plot of the trajectories 
traced out by the gradient vectors of the charge density, 
each vector originating at infinity. Every trajectory or 
gradient path terminates at a nucleus and this behavior 
is found in all three dimensions. The nuclei are the 
attractors of the gradient vector field of the charge 
density and the result is a partitioning of the total space 
of a system into a set of disjointed mononuclear regions 
or basins, a basin being the open region of space trav­
ersed by all of the trajectories of Vp terminating at a 
given attractor. This is a partitioning into atoms where 
an atom is defined as the union of an attractor and its 
basin.1,6 It is clear from the figure that each such region 
is bounded by a zero flux surface in Vp and that its 
properties are therefore, predicted by quantum me­
chanics. 

Every trajectory of Vp originates and terminates at 
a critical point in this field, a point where Vp = 0. A 
critical point, with coordinate rc, is characterized by the 
number of zero eigenvalues of the associated Hessian 
matrix, the matrix of second derivatives of p(rc) which 
determines its rank a, and the algebraic sum of their 
signs which determine its signature X. The local max­
ima, as found at the positions of the nuclei, behave 
topologically as do (a,\) = (3,-3) critical points.6 There 
is a (3,-1) critical point between sulfur and each fluorine 
nucleus, but not between the fluorines themselves. The 
eigenvectors associated with the two negative eigenva­
lues of such a critical point generate a set of gradient 
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Figure 1. Displays of the charge density in the form of a relief (upper) and contour maps (left-hand side) and of the gradient vector 
field of the charge density (right-hand side) for a symmetry plane containing the sulfur and four of the fluorine nuclei in SF6. The 
(3,-1) critical points (dots) are indicated on the lower diagrams. The upper gradient vector field map shows only those trajectories 
which originate at infinity and terminate at the nuclei whose positions are denoted by crosses. The property of a nucleus to act as 
an attractor in this field leads to a disjoint partitioning of space into a set of atomic basins each of which is bounded by a zero flux 
surface (eq 1). The lower diagram also shows (in bold) the pair of gradient paths which originate at each (3,-1) critical point (where 
Vp = 0) and define the atomic interaction lines, and the pair of gradient paths of the set of paths which terminate at each critical 
point and define the intersection of the interatomic surface with this plane. The molecular graph consists of S octahedrally linked 
by bond paths to six F nuclei. The outer contour of the charge density equals 0.001 au. The succeeding contours increase in value 
in the order 2 x 10", 4 X 10", 8 x 10" with n beginning at -3 and increasing by unity. The same set of contours is used throughout 
the paper. 

paths all of which terminate at the critical point and 
define a two-dimensional manifold in three-dimensional 
space—an interatomic surface, Figure 1. Each atom is 
bounded by one or more such surfaces, which are clearly 
zero flux surfaces, since Vp is tangent to a trajectory 
at any point on the surface. 

The positive eigenvalue of a (3,-1) critical point de­
fines a unique pair of eigenvectors each of which ori­
ginates at the critical point and terminates at a neigh­
boring nucleus. They define a line linking the nuclei 
whose basins share a interatomic surface and along 
which the charge density is a maximum with respect 
to any neighboring line. Such a line is called an atomic 
interaction line,8 Figure 1. The presence of such a line 
linking two nuclei in a molecule which exists in a min­
imum energy geometry implies that the two atoms are 
bonded to one another and in this instance the line is 
called a bond path.817 This topic is expanded upon in 
section V, which presents the development of the theory 
of molecular structure. 

The discussion of the general topological properties 
of the charge distribution has served to demonstrate 
that the application of the boundary condition for the 

definition of a quantum subsystem yields a partitioning 
of a molecule or solid into a set of basins each with a 
single nuclear attractor, a partitioning into atoms. In 
the great majority of cases, the nuclei are the sole at-
tractors of a charge density. Quantum mechanics states 
that the properties of a total system are determined by 
the properties of these individual forms and the success 
of the atomic concept in the classification and predic­
tion of chemical knowledge is accounted for by this 
congruence in a dominant physical form and its pre­
dicted quantum mechanical consequences. It is possible 
in some systems however, to observe local maxima in 
the charge density without the presence of a nuclear 
attractor.18,19 In such cases the zero flux boundary 
condition is still satisfied and quantum mechanics 
identifies such nonnuclear attractors or pseudoatoms 
as haveing a definable set of properties which contribute 
to the properties of the total system. Examples of such 
pseudoatoms are found in clusters of group I atoms. 
The quantum theory of structure describes these sys­
tems as consisting of positively charged atomic cores 
with very localized charge distributions bound by an 
intermeshed network of negatively charged pseudoa-
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toms. The pseudoatoms are regions of very diffuse and 
loosely bound electronic charge density. The atomic 
cores are not linked to one another directly, but only 
through intervening pseudoatoms which form a con­
nected network throughout the cluster. The absolute 
value of p at a maximum in a pseudoatom and the ex­
tent by which it exceeds the values of p at neighboring 
critical points is extraordinarily small and, in accord­
ance with the uncertainty principle, the electron density 
of the pseudoatoms is loosely bound and unconfined 
with a very low kinetic energy per electron. It is the 
pseudoatoms which are responsible for the binding and 
for the conducting properties of these systems.19 

These examples illustrate the ability of the quantum 
theory of structure to always identify those components 
of a system that are responsible for determining its 
properties at the atomic level, and we now pursue the 
development of the mechanics of an atom in a molecule. 

/ / / . Definition of Atomic Properties 

A. Variational Derivation of Atomic Force and 
Vlrial Theorems 

The present discussion will be limited to systems in 
stationary states. The derivations of the same theorems 
for the general time dependent case can be found in ref 
1 and 2. The atomic statement of the principle of 
stationary action, eq 43, yields a variational derivation 
of the hypervirial theorem for any observable F, a de­
rivation which applies only to a region of space Q 
bounded by a surface satisfying the condition of zero 
flux in the gradient vector field of the charge density 
(eq 1). This principle will be used to obtain a varia­
tional definition of the force acting on an atom in a 
molecule and of the atomic virial theorem. The deriv­
ations will illustrate the important point that the def­
inition of an atomic property follows directly from the 
atomic statement of stationary action. A full discussion 
appears in ref 1. 

The Hamiltonian is taken to be the many-electron, 
fixed-nucleus Hamiltonian given in eq 23. The symbol 
V will be used to denote the complete potential energy 
operator, the sum of the electron-nuclear Vew elec­
tron-electron V66, and nuclear-nuclear Vnn potential 
energy operators 

V = Ven + Vee + Vm (48) 

The commutator of this Hamiltonian and the momen­
tum operator of a single electron is equal to ihVV. 

The method of obtaining the subsystem average of 
the commutator and hence of the force acting on the 
atom (2 is determined by the definition of the functional 
S[\f/,Q] via eq 43. It has been demonstrated that the 
mode of integration used in the definition of the sub­
system functional ff[^,Q] (eq 42) is the only one which 
leads to a physically realizable boundary condition.1 

Because of eq 43, this same mode of integration (see eq 
36) defines the atomic average of the commutator and 
thus of the atomic force, F(Q) 

(N^WZh)MHJ1W)n + cc} = 
Nfdr^ JTdT^n-V1V)I//! = F(Q) (49) 

The result is multiplied by N, the total number of 
electrons, in the definition of an atomic property. The 

mode of integration indicated by 2VJ* dr'^*^ as used in 
this definition of an atomic average is the same as that 
employed in the definition of the electronic charge 
density, p(r). It implies a summation over all spins and 
an integration of the spatial coordinations of all electron 
but one. From this point on the subscript "1" will be 
dropped from the coordinates of the electron whose 
coordinates are integrated only over Q and all single-
particle, unlabeled coordinates and operators will refer 
to this electron. 

The corresponding variation of S[\[t,Q], subject to the 
constraint which gives rise to the zero flux boundary 
condition (eq 1) is given by the surface integral in eq 
50 

(AT/2)|^dS(fi,r)jp(r).n(r) + ccj = 

-^dS(fi,r)ff(r).n(r) (50) 

where <f (r) is the quantum mechanical stress tensor. It 
is defined as 

ff(r) = (Nh2/4m) J d r l V ^ * ) ^ + 
,̂*VV^ - Vî Vtf* - V^V^*) (51) 

a result which may be expressed in terms of the one-
electron density matrix T(1) as 

?(r) = 
(ft2/4/n){(W + VV) - (VV + VV)}r(1)(r,rO|r-^ 

(52) 

The stress tensor is a symmetric dyadic. It has the 
dimensions of pressure, force/unit area, or equivalently 
of an energy density. The quantum stress tensor plays 
a dominant role in the description of the mechanical 
properties of an atom in a molecule and in the local 
mechanics of the charge density. 

Combining eqs 49 and 50 yields eq 53, the atomic 
force law for a stationary state1,20 

F(Q) = -^dS(fl ,r)a(r) .n(r) (53) 

The force may be equivalently expressed by using 
Gauss's theorem as an integration of the force density 
-V-If(T) over the basin of the atom 

F(Q) = Nf dr fdrW-VV)* = - J*drV-ff(r) (54) 

Equation 53 has a classical analogue which states that 
the force exerted on the matter contained in a region 
0 is equal to the negative of the pressure acting on each 
element of the surface bounding the region. A local 
form of the force law is readily obtained from the time 
derivative of the current density, and for a stationary 
state the result is 

F(r) = Nj*dT'iH-VV¥ = -V-ff(r) (55) 

which is clearly the differential form of the integrated 
force law in eq 54. The integrated and differential force 
laws have a number of important consequences which 
are now explored. 

The potential energy operator V whose gradient is 
averaged in eq 49 and 55 is the many-particle operator 
defined in eq 48. The operator -VV, eq 56, is the force 
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exerted at the position r of electron 1 by all of the other 
electrons and the nuclei in the system, each of the other 
particles being held fixed in some arbitrary configura­
tion (V s V1 and r = T1) 

V1V = E^e2V1(Ir1 - XJ)-1 -Ee2V1(Ir1 - ^ ) " 1 = 

2V 7 ( r i " X«) 1 2V ( r i " *j) iw 
- ^ ^ i r T ^ P ^ ^ i r T ^ ^ 

The integration implied by dr' in eq 55 averages this 
force on the electron at r over the motions (i.e., posi­
tions) of all of the remaining particles in the system, 
and the result is the force density F(r), the force ex­
erted on the electron at r by the average distribution 
of the remaining particles in the total system. Inte­
gration of this force density over the basin of the atom 
Q then yields the average electronic or Ehrenfest force 
exerted on the atom in the system. Even though the 
force operator -V V involves the coordinates of all the 
particles in the system, and includes their mutual in­
teraction, the mode of integration employed in eq 55 
yields a corresponding density in real space whose in­
tegration over an atom with a boundary defined in real 
space yields the force acting on the atom (eq 54). 

The direct evaluation of the average value of this 
operator requires the information contained in the 
two-electron density matrix, yet according to eq 53 and 
55, this force, in both its differential and integrated 
forms, is determined by the stress tensor which requires 
only the one-electron density matrix for its evaluation. 
One can view eq 55 as a statement that the forces acting 
on a particle arising from the electrostatic interactions 
between the particles and describable in terms of the 
gradient of a potential energy operator are balanced by 
a force -V-Jf, which is purely quantum in origin. The 
virial of the Ehrenfest force, which determines the po­
tential energy of the electrons, is also describable in 
terms of the stress tensor ?, and thus the mechanics 
of a quantum system is determined by the information 
contained in the one-electron density matrix. 

An atomic surface for an atom Q is the union of some 
number of interatomic surfaces denoted by S(fi|fi',r), 
there being one such surface for each bonded neighbor 
Q'. Thus the force acting on an atom is given in eq 54 
can be expressed as a sum of surface terms 

F(Q) = -E n V n^dS(n | f i ' , rRr ) .n ( r ) (57) 

The sum in this equation runs over the surfaces shared 
with atoms bonded to Q, the atoms linked to Q by at­
omic interaction lines. This expression for the force 
acting on an atom provides the physical basis for the 
model in which a molecule is viewed as a set of inter­
acting atoms. It isolates, through the definition of 
structure, the set of atomic interactions which deter­
mines the force acting on each atom in a molecule for 
any configuration of the nuclei. 

We now consider the use of the virial operator r-p in 
the atomic statement of the principle of stationary ac­
tion eq 43, to obtain the atomic statement of the virial 
theorem. The virial theorem may be obtained by a 
scaling of the electronic coordinates,21 and the use of 
the virial operator as the generator of an infinitesimal 
unitary transformation is indeed equivalent to a scaling 
of the electronic coordinate r.1,2 

Bader 

Multiplication of the commutator average appearing 
in eq 45 by N/2 for F = r«p yields the result 
(N/2)\(i/h)(UH,r-f>U)a + cc\ = 

2N j d r J'dT/(-ft2/4m)|^*VV + (Vty*)lM + 

NfdrJdT^*(-i-VVfy = 2T(Q) + *Vb(fl) (58) 

The first term is twice the average electronic kinetic 
energy of the atom T(Q) expressed in terms of the usual 
Laplacian operator. The second term, arising from the 
commutator and labeled 1Vy1(Q), is the integrated av­
erage of the virial of the Ehrenfest force acting on an 
electron in the basin of the atom 

0Vb(G) = N Jdr JdT'^(-r-VV)^ (59) 

Starting from the identity given in eq 25 one may 
define two kinetic energy densities both of which in­
tegrate to the average kinetic energy when integrated 
over all space. Thus 

-(ft2/4m)iVj'dT'^*VV + IAVV*} = 

(h2/2m)NJ'dT'V^*-V^ - (ft2/4m)JVj*dT'V2(<^) 

(60) 

Equation 60 may be expressed in symbols as 
K(r) = G(r) + L(r) (61) 

Integration of the final coordinate r in eq 61 over a 
region of space Q yields 

CK(T) dr = f G(r) dr - (h2/4m) fv-Vp(r) dr 
Ja Ja Ja 

(62) 

or 

K(Q) = G(Q) - (ft2/4m)^dS(Q)Vp(r)-n(r) = 
G(Q) + L(Q) (63) 

Because of the zero flux surface condition (eq 1) the 
term L(Q) vanishes when the integration in eq 63 is 
carried out over an atomic basin. Thus for a quantum 
subsystem 

K(Q) = G(Q) = T(Q) (64) 

as found for the total system and T(Q) is a well-defined 
quantity. 

The variation in S[\p,Q] caused by the generator f-p 
is given by the surface integral in eq 65 

(iV/2)j^dS(fi,r)jr.p.n(r) + ccj = 

-(Nh2/4m)\^dS(Q,r) J*dr'[\fr*V(r.V^) -

VrA*(r-Vi£) + ^V(r-V^) - V^(r-V^*)]-n(r)j = 

-^dS(n,r)r-ff(r).n(r) -

(h2/4m)^dS(Q,r)Vp(r)-n(r) (65) 

where the final line is obtained through the use of the 
identity V(r-Vi/') = V^ + r-VV^. The negative of the 
first term on the right-hand side of eq 65 is labeled 
°VS(Q) and is the virial of the Ehrenfest forces exerted 
on the surface of the atom. The quantity of-n is the 
outwardly directed force per unit area of surface and 
r-y-n is the virial of this force 
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V8(Q) = y*dS(fl,r)r.?(r).n(r) (66) 

The second term in eq 65 is L(Q) as defined in eq 63. 
Equating the commutator and surface results followed 
by some rearranging of terms yields 

-2T(Q) = 4Vb(O) + V8(O) + L(Q) (67) 

Since the atom Q is bounded by a surface of zero flux, 
L(Q) = 0 and one obtains the atomic statement of the 
virial theorem 

-2T(O) = Vb(n) + V8(B) (68) 

or 

-2T(Q) = V(Q) (69) 

where V(B), the sum of the surface and basin terms, 
is the total virial for the atom. While the partitioning 
of the virial into basin and surface contributions is 
dependent upon the choice of region (an origin can 
always be found which causes the surface virial to 
vanish), the value of the total virial V(B) is, as evident 
from its equality with twice the kinetic energy, inde­
pendent of this choice. 

Equation 69 is identical in form with the virial 
theorem for a total system—the negative of twice the 
average kinetic energy of the electrons, equals the virial 
of the forces exerted on them. It is worthwhile here to 
summarize the ways in which this result is dependent 
upon the zero flux boundary condition (eq 1): (a) The 
use of the principle of stationary action to obtain a 
variational derivation of this theorem is restricted to 
a region satisfying eq 1. (b) Satisfaction of eq 1 insures 
the vanishing of the term L(B) which arises from the 
surface flux of the current density j^p. (c) The van­
ishing of L(B) is also necessary for the kinetic energy 
T(Q) to be well defined. There is no statement corre­
sponding to eq 69, variational or otherwise, for a sub­
system with arbitrary boundaries. 

For a stationary state, a local statement of the virial 
theorem can be obtained by using the identity 

V-(r-S) = TrS + r-V-ef (70) 

The trace of the stress tensor is given in terms of the 
kinetic energy densities defined in eq 63 by 

Tr5(r) = -K(r) - G(r) (71) 

or equivalently as 

Tra(r) = -2G(r) - L(r) (72) 

and substituting this final result into eq 70 and rear­
ranging yields 

-2G(r) = -r-V-ff + V-(r-ff) - (h2/4m)V2
P(r) (73) 

For a stationary state the local virial -r-V-JT equals the 
virial of the Ehrenfest force density F(r) as can be seen 
by taking the virial of eq 55: 

r-F(r) = /v 'J 'dT'f (-r-VVty = -r-V-ff (74) 

Thus the local statement of the virial theorem is term 
for term, the differential form of the integrated theorem 
in eq 67. Because of this correspondence, one can define 
the density corresponding to the total virial V(Q) as and 

V(r) = -r-V-ff + V-(r-ff) (75) 

the local form of the virial theorem can be written as 

(ft2/4m)V2p(r) = 2G(r) + V(r) (76) 

The kinetic energy density G(r) is necessarily positive 
and eq 76 demonstrates that in those regions where 
electronic charge is locally concentrated, i.e., where the 
Laplacian of the charge density is negative, the elec­
tronic potential energy density V(r) is in local excess 
over the ratio of 2:1 for the average value of T to V in 
the virial theorem. Equation 76 is unique in relating 
a property of the electronic charge density to the local 
components of the total energy. It will be used exten­
sively in the characterization of bonding and in the 
prediction of the mechanisms of generalized Lewis 
acid-base reactions. 

From eq 75 it is clear that the virial of the electronic 
forces, which is the electronic potential energy, is totally 
determined by the stress tensor cf* and hence by the 
one-electron density matrix. The atomic statement of 
the virial theorem provides the basis for the definition 
of the energy of an atom in a molecule. 

B. Energy of an Atom in a Molecule 

The method of averaging an operator over the state 
function to obtain the corresponding atomic average is 
dictated by the mode of integration defined by the 
atomic statement of the principle of stationary action: 
summation over all spins and integration over the 
spatial coordinates of all electrons but the one whose 
coordinates appear in generator and which are inte­
grated over the atomic basin. This imparts a basic 
one-electron nature to an atomic property, as each is 
determined by the integration of a corresponding 
property density over the basin of the atom, as previ­
ously indicated in eqs 36 and 37 for the determination 
of the atomic averages of the generator F. This remains 
true even for many-electron operators, as illustrated in 
eqs 54 and 55 for the atomic force F(Q) and in eqs 59 
and 74 for the electronic potential energy density, the 
virial of the Ehrenfest force. 

The most important consequence of the definition of 
an atomic property is that the average value of an ob­
servable for the total system (A) is given by the sum 
of its atomic contributions A(B). Equation 77 is true 

(A) = LnA(B) (77) 

for both one-particle and two-particle operators. It 
states that each atom makes an additive contribution 
to the value of every property for a total system. This 
is the principle underlying the cornerstone of 
chemistry—that atoms and functional groupings of 
atoms make recognizable contributions to the total 
properties of a system. In practice, we recognize a 
group and predict its effect upon the static and reactive 
properties of a system in terms of a set of properties 
assigned to the group. In the limiting case of a group 
being essentially the same in two different systems, one 
obtains a so-called additivity scheme for the total 
properties, for in this case the atomic contributions as 
well as being additive in the sense of eq 77 are trans­
ferable between molecules. 

Even a property not represented by a linear Hermi-
tian operator can be expressed as a sum of atomic 
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contributions, as in eq 77. The polarizability of a 
molecule for example, which is determined by the 
first-order response of the charge density to an electric 
field, is not directly expressible as an average over a 
corresponding operator. This is not to say however, that 
the polarizability cannot be expressed as an additive 
atomic property, as is indeed done empirically. The 
atomic contributions to the molecular polarizability and 
magnetic susceptibility are defined and discussed in refs 
15 and 22. 

The theory of atoms in molecules is founded upon 
two important observations that resulted from the 
study of molecular charge distributions.5 First, the 
atoms of theory are the most transferable pieces of a 
system that can be defined in real space and which 
exhaust the space of the system. They therefore, 
maximize the transfer of atomic information between 
molecules at the level of the charge density. Second and 
most important, the constancy in the average values of 
an atom's observables, including its contribution to the 
total energy of a system, is found to be directly deter­
mined by the constancy in its distribution of charge. As 
a consequence of this observation and eq 77, when the 
distribution of charge over an atom is the same in two 
different molecules, i.e., when the atom or some func­
tional grouping of atoms is the same in the real space 
of two different systems, then it makes the same con­
tribution to the total energy in both systems. It is 
because of the direct relationship between the spatial 
form of an atom and its properties that we are able to 
identify them in different systems. Thus whether the 
form of an atom changes by a little or by a lot, its energy 
and other properties change by corresponding amounts. 
This observation has obvious consequences for density 
functional theory and these have been discussed in ref 
23. 

Along with the discovery that the most transferable 
atomic unit of the charge density is a region of space 
bounded by a zero flux surface5 was the observation 
that when the charge density was nearly unchanged 
over such a fragment in two different systems, the ki­
netic energy density exhibited a corresponding degree 
of transferability. Thus transferability of the distri­
bution of charge over an atom leads to a corresponding 
constancy in its kinetic energy. If one postulated the 
existence of the virial theorem for such an atom, then 
this observation implies that when the charge distri­
bution of an atom is identical in two different systems, 
the atom will contribute identical amounts to the total 
energies of both systems. This postulate has been 
proven true by the atomic statement of stationary ac­
tion, and the atomic virial theorem yields the definition 
of an energy in an atom. 

The electronic energy of an atom in a molecule, the 
quantity E6(Q), is defined as 

E6(Q) = T(Q) + <V(Q) (78) 

Because of the atomic virial theorem (eq 69), the atomic 
energy E6(Q) satisfies the following relationships which 
are the direct analogues of the all space results: 

E6(Q) = -T(Q) = (1/2MQ) (79) 

Because of eq 69 and the vanishing of the Laplacian of 
the charge density over an atomic basin, the following 
identities hold: 

E6(Q) = -K(Q) = -G(Q) - (1/2) f 7V<r(r)dT (80) 

It is to be emphasized, that all of the above relation­
ships, together with the atomic statements of the virial 
theorem (eq 79) remain true when Q refers to the total 
system. It is in this sense that an atom is a quantum 
subsystem. 

From its definition it is clear that like other atomic 
properties, the sum of the energies of the atoms in a 
system equals the total electronic energy E6: 

Ee = E0EM = T + Y (81) 

and when there are no forces acting on any of the nuclei 
in the system, this sum equals the total molecular en­
ergy E as obtained by averaging the Hamiltonian in eq 
23. 

As emphasized above, it is the energy E6(Q) defined 
in terms of the virial theorem that possesses the prop­
erty of paralleling the constancy exhibited by the charge 
distribution of an atom when it is transferred between 
systems. This theorem equates the electronic potential 
energy to the virial of the Ehrenfest forces acting on the 
electrons in the basin of the atom, and it is this step 
which makes possible the partitioning of the total 
energy into a sum of atomic contributions. It is the 
potential energy of interaction between particles and 
eventually between subsystems that is the stumbling 
block to obtaining an nonarbitrary and physical par­
titioning of a total energy. How, for example, does one 
partition the energies of repulsion between pairs of 
electrons and between pairs of nuclei appearing in the 
Hamiltonian in eq 23? As discussed in detail in refs 1 
and 2, the use of the virial to define a potential energy 
overcomes this difficulty. A force is local, and as il­
lustrated in eq 55, it is possible to define the force ex­
erted on an electron by all of the other particles in the 
system, a result that is given deeper physical signifi­
cance by the fact that the same force is expressible in 
terms of the quantum stress tensor. By taking the virial 
of this force density, one obtains a local potential energy 
density (eq 75) one which is also expressible locally in 
terms of the stress tensor. Thus the definition of the 
energy of an atom proceeds not through a spatial par­
titioning of the Hamiltonian, which would violate the 
indistinguishability of the electrons, or of the elements 
of the abstract Hilbert space on which the Hamiltonian 
acts, but rather through a partitioning of the Hamil­
tonian into a sum of effective one-electron contributions 
by using the virial operator.1'2 In summary, forces un­
like energies, are local and by defining the potential 
energy in terms of the virial of a force, one obtains a 
local expression for the potential energy. All of the 
expressions are obtained directly from quantum me­
chanics and it is not necessary to rationalize or justify 
the resulting equations or their consequences. The 
above discussion is simply to make clear how physics 
does provide an answer to a long standing problem. 

IV. Transferability of Atomic Properties 

A. Energy AddttlvHy in Normal Hydrocarbons 

The above discussion emphasized that the use of the 
zero flux surface for the definition of an atom or 
functional grouping of atoms maximizes the extent of 
the transferability of its properties between systems, 
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a characteristic essential to the role of the atomic con­
cept in chemistry. By defining a group and its prop­
erties and thereby enabling one to determine the effect 
of its presence on the properties of another group, the 
theory of atoms in molecules parallels the most im­
portant of all chemical codifiers, the substituent effect. 
Studies have illustrated the ability of the theory to 
quantify and make understandable the effects of a 
range of substituents on the properties of the ethyl, 
formyl, and phenyl groups,24,25 for example. It is the 
purpose of the present discussion to explore the limiting 
case where a group is transferable with little or no 
change in its properties and correspondingly, its per­
turbation of the remainder of the system is minimized. 

It is possible to experimentally measure the energy 
of an atom in a molecule as an additive contribution to 
the molecule's heat of formation in those instances 
where a class of molecules exhibits an additivity scheme 
for the energy. Essential to the theoretical prediction 
and understanding of this experimental observation is 
the property of the atoms expressed in eq 77 that their 
properties, including their energies, be additive to yield 
the total property value for a molecule. It is demon­
strated here that the energies of the methyl and 
methylene groups as defined by theory, predict the 
additivity and transferability of the group energies as 
is observed experimentally in normal hydrocarbon 
molecules. Their properties also predict and account 
for the deviations in this additivity scheme that are 
observed for small cyclic molecules, deviations which 
serve to define the strain energy. The ultimate test of 
any theory is its ability to predict what can be exper­
imentally measured. By appealing to the limiting case 
of near transferability of atomic properties, one can 
demonstrate that the atoms of theory are the atoms of 
chemistry.26"28 

The study of the molar volumes of the normal hy­
drocarbons by Kopp in 1855 provided the earliest ex­
ample of the additivity of group properties. The ex­
perimentally determined heats of formation for the 
same homologous series of molecules, CH3(CH2)mCH3, 
also obey a group additivity scheme.29-32 It is possible 
to fit the experimental heats of formation for this series, 
beginning with m = 0, with the expression 

AHf° (298) • 2A + mB (82) 

where A is the contribution from the methyl group and 
B that from the methylene group. The generally ac­
cepted values for A and B at 25 0C are -10.12 and -4.93 
kcal/mol, respectively. The group enthalpy corrections 
from 298 to 0 K are additive for the n-alkanes,33 as are 
the group zero point energy corrections.34 Thus the 
calculated energies of the vibrationaless molecules in 
their equilibrium geometries should exhibit the same 
additivity of the energy as represented by eq 82 and the 
additivity is indeed mirrored by the single determi-
nantal SCF energies at both the 6-3lG*/6-31G* and 
6-3lG**/6-31G* levels of approximation. The calcu­
lated molecular energies E for the n-alkanes satisfy the 
relationship 

E = 2JE(CH3) + mE(CU2) (83) 

The quantity E(CH3) is one-half the energy of ethane, 
equal to -39.61912 au, and E(CH2) is the energy in­
crement per methylene group equal to -39.037 79 au, 
when the 6-3lG**/6-31G* calculated results were used. 

Figure 2. Contours of the charge density for the minimum energy 
geometries of the pentane (top) and hexane (bottom) molecules 
in the plane containing the carbon nuclei and the two terminal 
methyl protons. The projected positions of the out-of-plane 
symmetrically equivalent pairs of protons are indicated by open 
crosses. The central maps are for a (perpendicular) symmetry 
plane containing the C and H nuclei of the central methylene 
group in pentane (left-hand side) and for one of two equivalent 
such groups in hexane (right-hand side). The bond paths are 
shown, as are the positions of the interatomic surfaces. The 
position of out-of-plane nuclei are indicated by open crosses. The 
contour displays of the charge distributions of the methyl and 
corresponding methylene groups are superimposable on one an­
other. 

These group values fit the calculated energies to within 
± 0.00014 au, an average deviation smaller than the 
experimental one. The calculated results indicate that 
the corrections to the energy arising from the correla­
tion of the electronic motions, a contribution neglected 
in a single determinantal calculation, should also obey 
a group additivity scheme. This indeed appears to be 
the case, as is demonstrated and discussed later. 

The distributions of charge for the five- and six-
carbon members are illustrated in Figure 2 in the form 
of contour maps of p. The maps show the bond paths 
linking the nuclei and indicate the intersection of the 
interatomic surfaces with the plane of the diagram. The 
diagrams show qualitatively what the atomic properties 
will demonstrate quantitatively: that the methyl and 
methylene groups in this series of molecules are 
transferable with little change in their form and, hence, 
with little change in their properties. 

The physical properties of the n-alkanes indicate that 
the molecules are nonpolar and this is reflected in the 
small magnitudes of the net charges of the carbon and 
hydrogen atoms and of the molecular moments. Hy­
drogen is slightly more electronegative than carbon in 
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saturated hydrocarbons, and the order of group elec­
tron-withdrawing ability in hydrocarbons without geo­
metric strain is H > CH3 > CH2 > CH > C. In ethane, 
methyl is bonded to methyl while in the other molecules 
of the n-alkanes it is bonded to methylene from which 
it withdraws charge. To within the accuracy of the 
numerical integrations of the atomic properties (which 
in general are ±0.001e and ±1 kcal/mol), one finds (see 
refs 1,27 or 28) the energy and population of the methyl 
group to be constant when it is bonded to a methylene 
group. Thus the methyl group is essentially the same 
in all the members of the homologous series past ethane. 
This transferable methyl group is more stable relative 
to methyl in ethane by an amount AE = -10.5 ± 0.5 
kcal/mol and its electron population is greater by an 
amount AN - 0.0175e. 

The charge and energy gained by the methyl group 
is taken from the methylene group. What is remarka­
ble, and what accounts for the additivity observed in 
this series of molecules, is that the energy gained by 
methyl is equal to the energy lost by methylene. In 
propane, where the methylene group transfers charge 
to two methyl groups, its energy relative to the incre­
ment in eq 83 is B(CH2) - IAE, and its net charge is 
(necessarily) +2AAT where AE and AiV the quantities 
defined above for the methyl group. Thus the energy 
as well as the charge is conserved relative to the group 
energies defined in eq 83. In butane, a methylene group 
is bonded to a single methyl group and correspondingly 
its energy is B(CH2) - AE and its net charge is +AN. 
The corresponding methylene groups in pentane and 
hexane, those bonded to a single methyl group, have the 
same energies and net charges as a methylene group in 
butane. Thus the charge transfer to methyl is damped 
by a single methylene group, and the central methylene 
group in pentane and the two such groups in hexane 
(see Figure 2) should have a zero net charge and an 
energy equal to the increment AE(CH2). This is what 
is found to within the uncertainties in the integrated 
values, their calculated net charges being 0.0005 ± 
0.0002e and the maximum deviation on the energy from 
the standard value being within the integration error 
of ~ 1 kcal/mol. (It should be kept in mind that the 
total energy of a methylene group is ~ 25 X 103 kcal/ 
mol). Therefore, methylene groups bonded only to 
other methylenes, as found in pentane, hexane, and all 
succeeding members of the series possess a zero net 
charge and contribute the standard increment E(CH2) 
to the total energy of the molecule. The underlying 
reason for the observation of additivity in this series of 
molecules is the fact that the change in energy for a 
change in population, the quantity AE/AN, is the same 
for both the methyl and methylene groups. The small 
amount of charge shifted from methylene to methyl 
makes the same contribution to the total energy. 

It is to be emphasized that the energies assigned to 
the methyl and methylene groups are independently 
determined by the theory of atoms in molecules. The 
fact that this assignment leads to an energy for the 
transferable methylene group equal to the value E(CH2) 
in eq 83, an equation which mirrors the experimental 
additivity of the energy eq 82, confirms that the theo­
retically defined atoms are responsible for the experi­
mentally measured increments to the heat of formation, 
and that quantum mechanics predicts the properties 

of atoms in molecules just as it does the properties of 
the total molecule. It is a straightforward matter to use 
quantum mechanics to relate a spectroscopically de­
termined energy to the theoretically defined difference 
in energy between two states of a system. In a less 
direct, but no less rigorous manner, quantum mechanics 
also relates the difference in the experimentally de­
termined heats of formation of butane and pentane to 
the corresponding theoretically defined energy of the 
methylene group. 

The additivity of the energy in the n-alkanes is ob­
tained in spite of small differences in group properties, 
differences which necessarily result from a change in 
the nature of the bonded neighbor. Thus there are two 
kinds of methyl groups: the one unique to ethane and 
the transferable methyl group which is bonded to a 
methylene group. There are three kinds of methylene 
groups: the one unique to propane and two transferable 
forms, one bonded to a methyl and the other bonded 
only to other methylene groups. Other properties of 
these groups exhibit the same pattern of transferable 
values as do their energies and populations. This has 
been illustrated1'28 for the atomic first moments, the 
atomic volumes, and the atomic contributions to the 
electronic correlation energy as determined by density 
functional theory. This latter result indicates that each 
of the transferable methyl and methylene groups should 
make a characteristic and essentially constant contri­
bution to the total correlation energy of a normal hy­
drocarbon molecule, a result anticipated on the basis 
of the ability of the SCF calculations to recover the 
experimental additivity of the energy. It has also been 
demonstrated that the methyl and methylene groups 
contribute characteristic contributions to the mean 
molecular polarizabilities of normal hydrocarbons.35 

It must be considered remarkable that a methyl 
group with a total energy in excess of 25000 kcal/mol, 
can be transferred between molecules—in reality and 
in theory—with changes in its energy of approximately 
1 kcal/mol. It is still more remarkable when it is re­
alized that the individual contributions to the energy 
of a carbon atom change by 2-5000 thousand kcal/mol 
between members of the series.1,23,27 

B. Origin of Strain Energy in Cyclic 
Hydrocarbons 

The hybridization model predicts that the smaller 
bond angles found in a molecule with angular strain 
should result in an increase in the p character of the 
strained C-C bonds and hence in an increase in the s 
character of the associated C-H bonds.36 Orbital 
models relate an increase in electronegativity of a car­
bon atom relative to that of a bonded hydrogen to an 
increase in the s character of its bonding hybrid orbital. 
Thus it follows that the presence of geometric strain in 
a hydrocarbon molecule should result in an increase in 
the electronegativity of carbon relative to hydrogen. In 
their classic study of strain in the cyclopropane mole­
cule, Coulson and Moffitt37 emphasized this point by 
showing that the bond lengths and bond angles of the 
methylene group in cyclopropane resemble those for 
ethylene. The argument for an increase in electroneg­
ativity with increasing s character is based on energy, 
an s electron being more tightly bound than a p elec­
tron. The theory of atoms in molecules shows that the 



Quantum Theory of Molecular Structure Chemical Reviews, 1991, Vol. 91, No. 5 907 

electronegativity of a carbon atom does indeed increase 
and its energy decreases as the extent of geometric 
strain increases. 

Relative to its population in the standard methylene 
group, each hydrogen in cyclopropane transfers 0.045e 
to carbon, reducing the net charge on the carbon atom 
from +0.196e to +0.106e. While this charge transfer 
leads to an increase of 15.6 kcal/mol in the stability of 
the carbon atom, it results in a decrease of 12.5 kcal/ 
mol in the stability of each hydrogen atom. Thus the 
methylene group in cyclopropane is calculated to be 9.4 
kcal/mol less stable than the standard transferable 
methylene group. This yields a total strain energy for 
the molecule three times this or 28.2 kcal/mol, in good 
agreement with the generally accepted value based on 
the experimental heats of formation of 27.5 kcal/mol. 
The methylene group in cyclopropane is more stable 
than the same group in ethylene by only 2.1 kcal/mol. 
In terms of the charge transfer within the group and 
its energy, it resembles more closely the ethylene frag­
ment (where q(C) = +0.08Oe) than it does the standard 
methylene group. 

In the less strained cyclobutane, the transfer of charge 
from hydrogen to carbon relative to the populations in 
the standard methylene group is reduced to 0.014e for 
axial H and 0.012e for the other and the charge on 
carbon is +0.17Oe. The hydrogens are destabilized by 
9.0 kcal/mol, and the carbon stabilized by only 2.5 
kcal/mol, to give an energy increase of 6.5 kcal/mol for 
each methylene group. This yields a predicted strain 
energy of 26.1 kcal/mol, a value which again is in 
agreement with the experimental value of 26.5 kcal/ 
mol. Experimentally, the heat of formation of cyclo-
hexane is found to be six times the heat of formation 
of the standard methylene group and to possess no 
strain energy. An axial hydrogen in this molecule is 
calculated to possess 0.007 more electrons, (N (H) = 
1.099e) and be more stable by 1.6 kcal/mol than an 
equatorial hydrogen. The atomic populations and en­
ergies of a methylene group in cyclohexane differ little 
from their values in the standard group and the energy 
of the group differs by only 0.0001 au or 0.06 kcal/mol 
from the standard value. Thus in agreement with ex­
periment, cyclohexane is predicted to be strain free 
when its energy is compared with six times the energy 
of the standard methylene group. The reader is referred 
to ref 27 for further examples of the relation between 
increasing strain energy and an increasing degree of 
charge transfer from H to C in bicyclic systems and the 
propellane molecules. The few examples discussed here 
are introduced to emphasize that the strain energies 
calculated for cyclopropane and cyclobutane, and the 
predicted absence of strain in cyclohexane, all of which 
are in agreement with experiment, are predicted by the 
theory of atoms in molecules. The energy of the 
standard transferable methylene group, as defined by 
the zero flux boundary condition and as found in the 
pentane and hexane molecules, serves as the basis for 
the determination of these results. Not only does theory 
predict the transferability of atoms and groupings of 
atoms without change, it also correctly predicts the 
measured changes in their energies when these groups 
are perturbed. 

While the excellence of the agreement of the relative 
energies of the methylene group in the cyclic molecules 

with the measured strain energies may be to some ex­
tent due to the fortuitous cancellation of errors in the 
contributions not specifically considered, namely the 
correlation energy, the zero point energy, and A(AH1

0) 
between 0 and 298 K, the nature of the results leaves 
no doubt as to the correctness of the interpretation that 
has been given: the atoms of theory recover the ex­
perimentally measured properties of atoms in mole­
cules. 

V. Molecular Structure and Structural Stability 

A. The Notion of Structure in Chemistry 

The essential understanding and original intent as­
sociated with the notion of structure in chemistry is that 
it be a generic property of a system. Structure implies 
the existence of a particular network of bonds which 
was presumed to persist over a range of nuclear dis­
placements until some geometrical parameter attained 
a critical value at which point bonds were assumed to 
be broken and/or formed to yield a new structure. 
However, the word "structure" has over the years ac­
quired a duality of meanings. This has occurred for two 
reasons. The first was a result of our inability to un­
ambiguously assign a network of bonds to a given sys­
tem. The second was a result of our ever-increasing 
ability to experimentally measure the geometrical pa­
rameters which characterize the minimum energy nu­
clear configuration of a system within the Born-Op-
penheimer model. 

It is most important to distinguish clearly between 
molecular geometry and the original intent and use of 
the notion of structure in the molecular structure hy­
pothesis. Geometry is a nongeneric property since any 
infinitesimal change in a set of nuclear coordinates, 
denoted collectively by X, results in a different geom­
etry. Molecular structure, on the other hand, was as­
sumed to be a generic property of a system. Any con­
figuration of the nuclei X' in the neighborhood of a 
given configuration X, while it has a different geometry, 
should possess the same structure, that is, the same 
nuclei should be linked by the same network of bonds 
in both X and X'. Difficulties ascribed to the notion 
of molecular suutructure are the inabilities to assign a 
single geometrical structure, average or otherwise, to 
rotation or inversion-related isomers, to a molecule in 
an excited vibrational state, or to a molecule in a 
"floppy" state wherein the nuclear excursions cover a 
wide range of geometrical parameters. In reality these 
are shortcomings of attempts to impose the classical 
idea of a geometry on a quantum system. The nuclei, 
like the electrons, cannot be localized in space and in­
stead are described by a corresponding distribution 
function. The definition of structure proposed here 
recognizes this essential point and associates a molec­
ular structure with an open neighborhood of nuclear 
configuration space, with a corresponding average being 
taken over the nuclear distribution function. 

It has been shown6 that the topological properties of 
a system's charge distribution enable one to assign a 
molecular graph to each point X in the nuclear con­
figuration space of a system. This assignment corre­
sponds to defining a unique network of atomic inter­
action lines to each molecular geometry. The charge 
distribution can be obtained from a wave function be-
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yond the Born-Oppenheimer approximation by the 
generator coordinate method for example, to yield a 
wave function which, while no longer associated with 
a specific geometry, is associated with a specific struc­
ture.81" A molecular structure is then defined as an 
equivalence class of molecular graphs. This definition 
associates a given structure with an open neighborhood 
of the most probable nuclear geometry, and removes the 
need of invoking the Born-Oppenheimer approximation 
for the justification or rationalization of structure in a 
molecular system.6 By defining all possible structures 
for a given system, the theory shows that a change in 
structure must be an abrupt and discontinuous process, 
one which is described in terms of the mathematical 
theory of dynamical systems and their stabilities. The 
reader is referred to the original papers6 or to ref 1 for 
full discussions of this aspect of the theory. 

B. Molecular Graphs 

The principal topological properties of an electronic 
charge distribution—maxima, which are topologically 
homeomorphic to (3,-3) critical points at the positions 
of the nuclei and (3,-1) critical points between atoms 
whose basins share a common surface—were introduced 
in section HE. The first of these critical points defines 
an atom and its basin while the second defines the 
interatomic surface and atomic interaction line. The 
nuclei of two atoms which share a common interatomic 
surface are linked by a line along which the charge 
density is a maximum with respect to any neighboring 
line. 

The existence of a (3,-1) critical point and its asso­
ciated atomic interaction line indicates that electronic 
charge density is accumulated between the nuclei that 
are so linked. This is made clear by reference to the 
displays of the charge density for such a critical point, 
as given in Figure 1 for example, and particularly in 
Figure 3, which emphasizes the fact that the charge 
density is a maximum in an interatomic surface at the 
position of the critical point. This is the point where 
the atomic interaction line intersects the interatomic 
surface and charge is so accumulated between the nuclei 
along the length of this line. Both theory and obser­
vation concur that the accumulation of electronic charge 
between a pair of nuclei is a necessary condition if two 
atoms are to be bonded to one another.1 This accu­
mulation of charge is also a sufficient condition when 
the forces on the nuclei are balanced and the system 
possess a minimum energy equilibrium internuclear 
separation. Thus the presence of an atomic interaction 
line in such an equilibrium geometry satisfies both the 
necessary and sufficient conditions that the atoms be 
bonded to one another. In this case the line of maxi­
mum charge density linking the nuclei is called a "bond 
path" and the (3,-1) critical point referred to as a "bond 
critical point".8,17 

For a given configuration X of the nuclei, a 
"molecular graph" is defined as the union of the closures 
of the bond paths or atomic interaction lines. Picto-
rially the molecular graph is the network of bond paths 
linking pairs of neighboring nuclear attractors. The 
molecular graph isolates the pair-wise interactions 
present in an assembly of atoms which dominate and 
characterize the properties of the system be it at 
equilibrium or in a state of change. 

Bader 

Figure 3. Relief and contour maps of the charge density and 
a display of the associated gradient vector field for the plane 
containing the C-C interatomic surface in ethene i.e., the plane 
bisecting and perpendicular to the C-C bond path. In this plane 
the (3,-1) critical point appears as a two-dimensional attractor. 
Note the elliptical nature of the contours with the major axis 
perpendicular to the plane containing the nuclei. (The projected 
positions of the nuclei on this plane are indicated by open crosses.) 
This property of a charge distribution is measured by the bond 
ellipticity (section VI.A). The less rapid rate of falloff in p in the 
"*•" plane is reflected in a corresponding paucity of trajectories 
in the display of the gradient vector field of p. 

A molecular graph is the direct result of the principal 
topological properties of a system's charge distribution: 
that local maxima, (3,-3) critical points, occur at the 
positions of the nuclei thereby defining the atoms, and 
that pairs of trajectories which originate at (3,-1) critical 
points are found to link certain, but not all pairs of 
nuclei in a molecule. The network of bond paths thus 
obtained is found to coincide with the network gener­
ated by linking together those pairs of atoms which are 
assumed to be bonded to one another on the basis of 
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Figure 4. Molecular graphs for hydrocarbons. Bond critical 
points are denoted by black dots. 

chemical considerations. Molecular graphs for a sam­
pling of hydrocarbon molecules in equilibrium geome­
tries are illustrated in Figure 4. The existence and 
position of a bond or (3,-1) critical point in this and 
other figures is indicated by a black dot. The recovery 
of a chemical structure in terms of a property of the 
system's charge distribution is a most remarkable and 
important result. The representation of a chemical 
structure by an assumed network of lines has evolved 

through a synthesis of observations on elemental com­
bination and models of how atoms combine, particularly 
models of chemical valency. A great deal of chemical 
knowledge goes into the formulation of a chemical 
structure and, correspondly, the same information is 
successfully and succinctly summarized by such struc­
tures. The demonstration that a molecular structure 
can be faithfully mapped onto a molecular graph im­
parts new information to them—that nuclei joined by 
a line in the structure are linked by a line through space 
along which electronic charge density, the glue of cu-
huemistry, is maximally accumulated. Finding the 
physical basis for a molecular strcture also leads to a 
broadening of the concept—that the dominant inter­
actions between atoms, by they attractive or repulsive, 
have a common physical representation. This is not an 
entirely surprising result since the ever present nuclear 
excursions from an equilibrium separation between a 
pair of atoms force a sampling of these same portions 
of a potential surface even though the atoms are con­
sidered to be bonded to one another. It is in answer 
to the closely related questions of what is meant by the 
making and breaking of chemical bonds that leads one 
to consider the most important extension of the mo­
lecular structure concept. As discussed in the following 
section, the dynamic behavior of the molecular graphs 
as caused by the relative motions of the nuclei forms 
the basis for the definition of structural stability and 
the analytical description of the mechanisms of struc­
ture change. 

It is to be stressed that a bond path is not to be 
understood as representing a "bond". The presence of 
a bond path linking a pair of nuclei implies that the 
corresponding atoms are bonded to one another. As 
demonstrated later, the interaction can be characterized 
and classified in terms of the properties of the charge 
density at its associated (3,-1) critical point. The 
complete description of the interaction, however, re­
quires the evaluation of operators over the associated 
interatomic surface. We continue the identification of 
the elements of molecular structure with the topological 
properties of the remaining stable critical points, (3,+l) 
and (3,+3) critical points. 

These remaining critical points of rank three occur 
as consequences of particular geometrical arrangements 
of bond paths and they define the remaining elements 
of molecular structure—rings and cages. If the bond 
paths are linked so as to form a ring of bonded atoms, 
as found in the cyclic and bicyclic molecules shown in 
Figure 4 for example, then a (3,+l) critical point is 
found in the interior of the ring. The eigenvectors as­
sociated with the two positive eigenvalues of the Hes­
sian matrix of p at this critical point generate an infinite 
set of gradient paths which originate at the critical point 
and define a surface, called the ring surface. This be­
havior is illustrated by the gradient paths in the 
bridging plane of the diborane molecule as shown in 
Figure 5. All of the trajectories, which originate at the 
critical point at the center of the ring of nuclei, the 
(3,+l) or ring critical point, terminate at the ring nuclei, 
but for the set of single trajectories each of which ter­
minates at one of the bond critical points whose bond 
paths form the perimeter of the ring. These bond paths 
are noticeably inwardly curved away from the geome­
trical perimeter of the ring, a behavior characteristic 
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Figure 5. Display of the gradient vector field of the charge density 
in the plane of the bridging hydrogen atoms in diborane. The 
two protons (on the horizontal axis) are linked by bond paths to 
two boron nuclei to form a ring. The ring surface is defined by 
the trajectories which originate at the central ring critical point 
and terminate at the ring nuclei and the four bond critical points. 
The four latter trajectories define the boundaries of the atomic 
basins within the perimeter of the ring. 

of systems which are electron deficient The remaining 
eigenvalue of a ring critical point, its single negative 
eigenvalue, generates a pair of gradient paths which 
terminate at the critical point and define a unique axis 
perpendicular to the ring surface at the critical point. 
In diborane this axis is perpendicular to the plane 
shown in Figure 5. It represents the intersection of the 
boundaries of the basins of the hydrogen and boron 
atoms forming the ring. A ring, as an element of the 
structure, is defined as part of a molecular graph which 
bounds a ring surface. 

If the bond paths are so arranged as to enclose the 
interior of a molecule with ring surfaces then a (3,+3) 
or cage critical point is found in the interior of the 
resulting cage. Cage structures are illustrated in Figure 
4. The charge density is a local minimum at a cage 
critical point. Trajectories only originate at such a 
critical point and terminate at nuclei, and at bond and 
ring critical points, thereby defining a bounded region 
of space. A cage, as the final element of molecular 
structure, is a part of a molecular graph which contains 
at least two rings, such that the union of the ring sur­
faces bounds a region of R3 which contains a (3,+3) 
critical point. 

C. A Theory of Molecular Structure 

The ideas underlying the definition of structure and 
structural stability are first introduced in a qualitative 
manner with the aid of examples. The basic idea makes 
use of an equivalence relationship of gradient vector 
fields of the charge density as a function of nuclear 
configurations X, equivalent vector fields possessing the 
same molecular graph. The reader is referred to ref 1 
for a full discussion. 

Consider the thermal isomerization of HCN to the 
isocyanide, CNH. The gradient vector fields of the 
charge density, the fields Vp(r,X) and the associated 

Figure 6. Displays of the gradient vector field of the charge 
density for points along the reaction path for the conversion of 
HCN to CNH. The first three gradient vector fields are hc-
meomorphic and define equivalent molecular graphs and the 
stable structure HCN. Similarly, the final three maps are also 
homeomorphic and define equivalent molecular graphs for the 
stable structure CNH. These two stable structural regimes are 
separated by an unstable conflict structure. 

molecular graphs for points X in nuclear configuration 
space along the reaction coordinate are illustrated in 
Figure 6. The transition state occurs between values 
of the parameter 6 = 12.1 and 72.4°. The gradient 
vector fields of all configurations up to the transition 
state are equivalent—the gradient paths for one con­
figuration X can be mapped onto those for another— 
and they all have the same molecular graph corre­
sponding to the structure H-C-N. This molecular 
graph is obtained for any and all arbitrary displace­
ments of the nuclei in the vicinity of the equilibrium 
geometry of HCN. The structure denoted by one of the 
equivalent molecular graphs is a stable structure, as it 
occurs throughout an open region of nuclear configu­
ration space. The gradient vector fields obtained after 
passage of the system through the transition state, while 
belonging to a single equivalence class, are not equiv­
alent to those which preceded the transition state. They 
correspond to the new structure C-N-H, which is also 
a stable structure, since it also persists for arbitrary 
nuclear motions. At some point in the neighborhood 
of the transition state there is an abrupt and discon­
tinuous change in structure, from H-C-N to C-N-H, 
as a result of the system passing through a configuration 
Xc for which the gradient vector field and molecular 
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Figure 7. Diagram a is the conflict structure for the transfer of 
a hydrogen from C to N in the isomerization of HCN displayed 
in Figure 6. Diagrams b, c, and d illustrate the three possible types 
of conflict structures: (b) in CH6

+ the bond path of one (3,-1) 
intersects the surface manifold of another such critical point, the 
same instability as found in a; (c) the unique ring axis of a (3,+l) 
critical point intersects the surface manifold of another such 
critical point in a structure of [l.l.l]propellane which neighbors 
the energetically stable structure; (d) the unique ring axis of a 
(3,+l) critical point intersects the bond path of a (3,-1) critical 
point in protonated cyclopropane. 

graph are structurally unstable, i.e. they exist for but 
one configuration on the reaction path. The structure 
corresponds to one in which the bond path from the 
hydrogen does not terminate at either the carbon or the 
nitrogen nucleus, but rather at the (3,-1) or bond critical 
point of the C-N bond path. This arrangement of bond 
paths, illustrated in Figure 7, is unstable as it corre­
sponds to the two-dimensional manifold of the bond 
critical point acting as an attractor in three-dimensional 
space. Such an intersection of manifolds of two (3,-1) 
critical points is mathematically unstable and is termed 
a conflict catastrophe, as the two attractors are in 
competition for a line of maximum charge density, the 
bond path to the proton. There are three such possible 
unstable intersections of manifolds of critical points in 
the charge density, and they are illustrated in Figure 
7. 

The conflict mechanism represents one way in which 
a stable structure can be changed into another and it 
occurs by passage of the system through a catastrophe 
point Xc, a configuration of the nuclei for which the 
associated gradient vector field of the charge density 
is unstable to nuclear motions. There is only one other 
type of possible instability of a gradient vector field, and 
it is termed a bifurcation catastrophe. It is illustrated 
by the opening of the ring structure in cyclopropane, 
as shown in Figure 8. The change in p which accom­
panies an extension of a C-C bond causes the (3,+l) or 
ring critical point to migrate toward the (3,-1) or bond 
critical point of the extended bond. The charge density 
in the plane of the ring has a positive curvature at the 
ring critical point and a negative curvature at the bond 
critical point, the axes for both curvatures lying along 
a common C2 axis. For some particular extension of the 
C-C separation, the two critical points coalesce to form 
a single, new critical point and the gradient vector field 
undergoes an abrupt change into one which is no longer 
equivalent to those which preceded it. At coalescence, 
the original positive and negative curvatures lying on 
the C2 axis must vanish and the result is a critical point 
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Figure 8. Relief maps of the charge density and displays of their 
associated gradient vector fields for the opening of a three-
membered ring. Structure C is at, or close to, the bifurcation 
catastrophe point wherein a degenerate critical point is formed 
between the two carbons of the extended bond by the coalescence 
of the ring and bond critical points. 

of rank two, a degenerate critical point. Such a critical 
point is mathematically unstable with respect to the 
changes in p caused by nuclear motions. It exists only 
for this one configuration of the nuclei along the reac­
tion coordinate. Further extension of the C-C separa­
tion causes the unstable critical point vanish, the C-C 
bond has been broken and the ring structure has been 
transformed into the open structure. These changes are 
summarized by the profiles of p along the direction of 
approach of the two critical points shown in Figure 9. 

The discussion so far has demonstrated that the 
definition of structure is inextricably bound up with the 
definition of structural stability. The result of applying 
the equivalence relationship to the field Vp(r;X) is a 
partitioning of nuclear configuration space R^ into a 
finite number of nonoverlapping regions, each of which 
is characterized by a unique molecular structure. These 
structurally stable, open regions are separated by 
boundaries, hypersurfaces in the space R^. A point on 
a boundary possesses a structure which is different from 
but transitional to the structures characteristic of either 
of the regions it separates. Since a boundary is of di­
mension less than i?Q, arbitrary motions of the nuclei 
will carry a point on the boundary into neighboring 
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Figure 9. Profiles of the charge density along the indicated 2-fold 
axis for the opening of a three-membered ring, an example of a 
fold catastrophe. 

stable structural regions and its structure will undergo 
corresponding changes. The boundaries are the loci of 
the structurally unstable configurations of a system. In 
general, the trajectory representing the motion of a 
system point in R^ will carry it from one stable struc­
tural region through a boundary to a neighboring stable 
structural region. The result is an abrupt and discon­
tinuous change in structure as illustrated in the above 
examples. A change in structure is catastrophic and for 
this reason the set of unstable structures is called the 
catastrophe set. A point in a structurally stable region 
of nuclear configuration space is termed a "regular 
point", and a point on one of the structurally unstable 
boundaries is termed a "catastrophe point". 

A knowledge of the stable structural regions and their 
boundaries as defined by the catastrophe set enables 
one to construct a structure diagram, a diagram which 
determines all possible structures and all mechanisms 
of structural change for a given chemical system. Figure 
10 is a two-dimensional cross section of the structure 
diagram for an ABC system. (The reason for the par­
ticular form shown there is justified in terms of catas­
trophe theory, see ref 6.) The letters may stand for 
atoms or functional groupings of atoms. The full lines, 
denoting the catastrophe set, partition nuclear config­
uration space into its structural regions. The hypo-
cycloid portion denotes the loci of the bifurcation ca­
tastrophes, of the type illustrated in Figure 8, and the 
three semiaxes, the loci of the conflict catastrophes, as 
illustrated in Figure 7. 

We now give a concise mathematical development of 
the ideas of structure outlined and illustrated above. 
The resulting theory of molecular structure is obtained 
by the application of a general mathematical theory of 
structural stability. This work has evolved under the 
general headings of differential topology and qualitative 
dynamics, a theory of dynamical systems and their 
stabilities. Contributions of particular importance to 
the present work are the theory of elementary catas­
trophes as developed by Thom38 and the general 
statement of the theorem of structural stability given 
by Palis and Smale.39 The possibility of using the 
theory of elementary catastrophes to describe changes 
in molecular structres was first pointed out by Collard 
and Hall.40 

Bader 

i 

Figure 10. Two-dimensional display of the structure diagram 
for an A-B-C system. It details all possible stable structures for 
this system together with the mechanisms for structural change 
via unstable transitional structures. The form of this diagram 
is determined by the unfolding of the elliptic umbilic catastrophe.6 

The ideas are to be applied to the dynamics of the 
gradient vector field of the charge density as caused by 
the motions of the nuclei. It should be recalled that the 
study of the gradient vector field of the charge density 
has its basis in quantum mechanics for it is in terms of 
this field that the boundary condition for an open 
quantum sustem is stated. 

The equivalence relation of vector fields over R3 is 
defined as follows: two vector fields v and v' over R3 

are said to be equivalent if and only if there exists a 
homeomorphism, i.e., a bijective and bicontinuous 
mapping of R3 into R3, which maps the trajectories of 
v onto the trajectories of v7. By applying this definition 
to the gradient vector fields Vp(r,X), X G R^, one ob­
tains an equivalence relation operating in the nuclear 
configuration space R^ which states: two nuclear con­
figurations X and X' E R^ are equivalent if and only 
if their associated gradient vector fields Vp(r,X) and 
Vp(r,X') are equivalent. We further say that the nu­
clear configuration X G R^ is structurally stable if X 
is an interior point of its equivalence class. In other 
words, one can always find a neighborhood V of a 
structurally stable configuration X, such that V is to­
tally contained in the equivalence class of X. All con­
figurations in V possess the same molecular graph as 
does the stable configuration X. 

Indeed for any point X' of V one can find a homeo­
morphism, ha', which maps the gradient paths of Vp-
(r,X) into those of Vp(r,X'). It is easily seen that 
through Jin/ a critical point of type (o>,<r) in p(r,X) is 
mapped onto a critical point of the same type in p(r,X'). 
Moreover, a gradient path connecting a pair of critical 
points (rc, rc') in p(r,X) is transformed into a corre­
sponding path of Vp(r,X'), which connects the images 
of rc and rc'. Since the distance between X' and X can 
be made arbitrarily small, and since all nuclear con­
figurations in V are equivalent, one finds that the mo­
lecular graphs associated with the points of V consist 
of the same number of bond paths linking the same 
nuclei. These molecular graphs represent a single 
structure, and the maximal neighborhood which is 
contained in the equivalence class of X is called the 
structural region associated with X. 

An equivalence relation for molecular graphs is de­
fined as follows: two molecular graphs are equivalent 
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if and only if they are associated with two points of the 
same structural region. An equivalence class of mo­
lecular graphs is called a molecular structure. It is then 
seen that a unique molecular structure is associated 
with a given structural region and that molecular 
structure, as defined above through the equivalence of 
molecular graphs, necessarily fulfills the requirement 
of being generic. 

The application of the notion of structural stability 
to the topological study of the molecular charge dis­
tribution leads to a partitioning of the nuclear config­
uration space into a finite number, I of non-overlapping 
regions, the structural regions, Wit i = 1,..., I each of 
which is characterized by a unique molecular structure. 
These structural regions form a dense open subset of 
the nuclear configuration space, i.e. 

[UW1] =i?Q (84) 
i - l 

where the symbol A denotes the closure of the set A and 
U denotes the set-theoretic union. A point which be­
longs to the union of the Wt belongs to some structural 
region and is called a regular point. A nuclear config­
uration belonging to the complementary of the set of 
regular points is called a catastrophe point. The ca­
tastrophe set, C, is the collection of all structurally 
unstable points of nuclear configuration space. Let 8W1 
denote the boundary of the structural region Wt. Since 
Uf.iWi is dense in R^, we have 

C = U (dWi) (85) 
i » l 

i.e. the catastrophe set is the union of the boundaries 
of all the I structural regions W1-. Equation 85 denotes 
the catastrophe set C as the loci of structural changes. 
Indeed, according to eq 85, a catastrophe point Y G C 
belongs to 8W1, for some i G U t\- Any neighbour­
hood of V in Ffi thus has nonempty intersections with 
Wi and at least one structural region Wj, with ;' ^ i. 
Consequently, the slightest displacement of the system 
from the nuclear configuration Y will cause the mo­
lecular graph to change from the graph associated with 
y to one which represents either the structure over Wt 
or that over Wj. Thus, the molecular graph associated 
with a catastrophe point denotes a discontinuous 
change in structural which results from a continuous 
variation in the set of control parameters, the nuclear 
coordinates. 

The partitioning of nuclear configuration space ob­
tained as a result of the definition of molecular struc­
ture leads to the concept of a structure diagram. The 
space R^ is partitioned into a finite number of structural 
regions with their boundaries, as defined by the ca­
tastrophe set, denoting the configurations of unstable 
structures. This information constitutes a system's 
structure diagram, a diagram which determines all 
possible structures and all mechanisms of structural 
change for a given chemical system. 

By appealing to the theorem of structural stability 
of Palis and Smale39 one can show that only two kinds 
of structural instabilities or catastrophe points can arise 
and that there are therefore, only two basic mechanisms 
for structural change in a chemical system. 

Palis and Smale's theorem of structural stability 
when used to describe structural changes in molecular 
system predicts a configuration X G #Q to be struc­

turally stable if p(r,X) has a finite number of critical 
point such that: (a) each critical point is nondegenerate, 
and (b) the stable and unstable manifolds of any pair 
of critical points intersect transversely. 

The immediate consequence of the theorem is that 
a structural instability can be established through one 
of two possible mechanisms which correspond to the 
bifurcation and conflict catastrophes previously de­
scribed. A change in molecular structure can only be 
caused by the formation of a degenerate critical point 
in the electronic charge distribution or by the attain­
ment of an unstable intersection of the submanifolds 
of bond and ring critical points, as described above. 

Thom38 has developed a classification of elementary 
catastrophes based upon their codimension, the di­
mension of the control (nuclear) space and their corank, 
the number of behavior coordinates for which only third 
or higher order terms appear in the Taylor series ex-
pension of p in the neighborhood of a degenerate critical 
point. The latter are called the essential variables and 
for each catastrophe type, Thom gives a function / of 
the essential variables, whose unfolding from the origin 
of control space describes all possible deformations 
which the function can undergo. It has been shown that 
this theory correctly predicts all of the stable structures 
and the intervening catastrophe sets in the neighbor­
hood of a catastrophe point in nuclear configuration 
space which arise from the presence of a degenerate 
critical point in the electronic charge density.1,6 That 
is, Thorn's theory correctly predicts the form of the 
structure diagram in the neighborhood of a catastrophe 
point. 

VI. Applications of the Quantum Theory of 
Molecular Structure 

A. Bond Order, Bond Path Angle, Bond 
Elliplictty, and Structural Stability 

The properties of a given structure are usefully 
characterized in terms of the properties of the charge 
density at the (3,-1) or bond critical points. For bonds 
between a given pair of atoms one may define a bond 
order whose value is determined by pb, the value of the 
charge density at the bond critical point.41-43 The ex­
tent of charge accumulation in the interatomic surface 
and along the bond path increases with the assumed 
number of electron pair bonds and this increase is 
faithfully monitored by the value of p^ The Pb values 
of the C-C bonds in hydrocarbons can be fitted to an 
expression to obtain bond orders of 1.0,1.6, 2.0, and 3.0 
for ethane, benzene, ethylene, and acetylene, respec­
tively.43 In a hydrogen bond AH-BX, obtained when 
an acid AH binds to a base atom B of a base BX, the 
value of Pb is relatively small and only slightly greater 
than the sum of the unperturbed densities of the H and 
B atoms of the acid and base molecules at the degree 
of penetration found in the dimer. The strength of the 
hydrogen bond is found to parallel this degree of pen­
etration of the van der Waals envelopes of the acid and 
base molecules and to exhibit an increase with an in­
crease in Pb-44"46 The variation of Pb with the equilib­
rium internuclear separation Re has also been investi­
gated.47 Particularly useful relationships between pb 
and R. have been developed by Boyd and co-work-
ers.46,46'48'49 A related property is the bonded radius of 
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an atom, the distance from the nucleus to the associated 
bond critical point, a quantity closely paralleling the 
relative electronegativity of two bonded atoms.50-62 

Boyd and co-workers have used this quantity in the 
classification of bonds in diatomic hydrides and mixed 
halides of Al, Si, and P.53'54 

A bond path, unless dictated to be so by symmetry, 
is not necessarily coincident with the internuclear axis 
and when it is not, the bond path length Rb is greater 
than the internuclear separation Re. Such bent bond 
paths are present in those systems where classical 
structural arguments predict the presence of strain such 
as in the small ring hydrocarbons.17,43,47 In these in­
stances the bond paths in general, are outwardly bent 
from the geometrical perimeter of the ring, as illustrated 
by the molecular graphs for ring structures in Figure 
4. In molecules which are electron deficient, such as 
the boranes, the bond paths linking the bridging hy­
drogen atoms are strongly bent toward the interior of 
the ring so as to maximize the binding from a minimum 
amount of electron density (see Figure 5). Wiberg and 
co-workers have shown that the presence of bent bond 
paths is more prevelant than anticipated and that the 
degree of bending is a useful parameter in under­
standing structural effects in molecules. This property 
of bond paths is, however, more usefully catalogued by 
using the idea of a bond path angle rather than of the 
bond path length. The bond path angle, ab, is the angle 
subtended at a nucleus by the pair bond paths linking 
it to the two nuclei which define the corresponding 
geometrical bond angle ae.

43 The difference Aa = ab 
- ae provides a measure of the degree of relaxation of 
the charge density away from the geometrical con­
straints imposed by the nuclear framework. In general, 
for a strained molecule Aa > 0 and in these cases the 
bonds are less strained than the geometrical angles ae 
would suggest. In cyclopropane for example, the bond 
path angle exceeds the 60° C-C-C bond angle by 18.8°. 
Wiberg and Murcko66 have discussed the significance 
of the Aa values found in H2O, H2S, NH3, and PH3 
while Wiberg and Breneman56 have found large negative 
values for Aa for the H-C-X angle in a variety of 
methyl derivatives CH3X when X is more electronega­
tive than C, and positive values when X is less elec­
tronegative. They have related these changes in Aa to 
both steric and electronic effects. Wiberg and Laidig,57 

in a study of the origin of the rotational barriers adja­
cent to double bonds have used the bond path angle to 
determine the degree of p character in the bonds to a 
carbonyl carbon. They find the angle opposite the more 
electronegative atom to have the larger bond angle and 
the orbital directed to it has high p character. The 
geometrical angles do not reflect the anticipated 
changes in hybridization that are revealed through the 
study of the bond path angles. 

The charge density along a bond path attains its 
minimum value at the bond critical point and the as­
sociated curvature or eigenvalue of the Hessian of p at 
r„ X3, is thus positive. The charge density in an in­
teratomic surface on the other hand, attains its maxi­
mum value at the bond critical point and the two as­
sociated curvatures of p at rc, X1 and X2, those directed 
along axes perpendicular to the bond path, are thus 
negative. In a bond with cylindrical symmetry, these 
two negative curvatures of p at the bond critical point 

are of equal magnitude. However, if electronic charge 
is preferentially accumulated in a given plane along the 
bond path (as it is for a bond with x-character, for 
example), then the rate of falloff in p is less along the 
axis lying in this plane than along the one perpendicular 
to it, and the magnitude of the corresponding curvature 
of p is smaller. If X2 is the curvature of smallest mag­
nitude, then the qantity e = [X1/X2 - 1], the ellipticity 
of the bond, provides a measure of the extent to which 
charge is preferentially accumulated in a given plane.41 

The axis of the curvature X2, the major axis, determines 
the relative orientation of this plane within the molecule 
(see Figure 3). The ellipticities of the C-C bonds in 
ethane, benzene, and ethylene are 0.0, 0.23, and 0.45, 
respectively, for densities calculated from basis sets 
containing proper polarizing functions and the major 
axis of the ellipticity in each of the latter two molecules 
is perpendicular to the plane of the nuclei. The bond 
ellipticities faithfully recover the anticipated conse­
quences of the conjugation and hyperconjugation 
models of electron derealization.41 

The chemistry of a three-membered ring is very much 
a consequence of the high concentration of charge in 
the interior of the ring relative to that along its bond 
paths, a fact which is reflected in substantial bond el­
lipticities.41,58 The values of pr, the value of the charge 
density at a ring critical point, is generally only slightly 
less than, and in some cases almost equal to, the values 
of Pb f°r the peripheral bonds in the case of a three-
membered ring of carbon atoms. In four-membered and 
larger rings of carbon atoms the values of pr are con­
siderably smaller, as the geometrical distance between 
the bond and ring critical points is greater than in a 
three-membered ring. Because electronic charge is 
concentrated to an appreciable extent over the entire 
surface of a three-membered ring, the rate of falloff in 
the charge density from its maximum value along the 
bond path toward the interior of the ring is much less 
than its rate of decline in directions perpendicular to 
the ring surface. Thus the C-C bonds have substantial 
ellipticities, and their major axes lie in the plane of the 
ring. The ellipticity of a C-C bond in cyclopropane is 
actually slightly greater than that for the "double bond" 
in ethylene, indicating that the extent to which charge 
is preferentially accumulated in the plane of the ring 
is greater than that accumulated in the 7r-plane of 
ethylene. This property accounts for the well-docu­
mented ability of three-membered rings to act as an 
unsaturated system with the charge distribution in the 
plane of the ring exhibiting properties characteristic of 
a 7r-like system, one that is able to conjugate with a 
neighboring unsaturated system. Such conjugation is 
illustrated by the interaction of the cyclopropyl group 
with the (formally) vacant 2p orbital in CH2

+. The 
major axis of the ellipticity induced in the C-CH2 bond 
has an overlap of 0.97 with the corresponding axes of 
the neighboring C-C bonds of the cyclopropyl group. 
(The overlap is determined simply by taking the scalar 
product of the eigenvectors defining the major axes of 
the two bond critical points.) Such conjugating ability 
of the cyclopropyl group is rationalized by using mo­
lecular orbital models through the choice of a particular 
set of orbitals, the so-called Walsh orbitals. Theory 
shows that the "ir-like" nature of a three-membered ring 
is a property of its total charge distribution, one that 
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results from the proximity of its ring and bond critical 
points. Understanding the physical basis of this effect 
enables one to predict its appearance and consequences 
in other systems. 

Cremer and Kraka69,60 and Cremer and Gauss61 have 
used these properties of the density together with those 
of the Laplacian distribution to great advantage to 
obtain a predictive understanding of the structure and 
reactivity of three-membered ring systems. The im­
portant role of the concentration and derealization of 
electronic charge in the surface of these structures is 
brought to the fore through the introduction of the 
concept of (x-aromaticity. The continuous change in the 
nature of the interaction of a substituent X with an 
ethylene fragment from one yielding a regular three-
membered ring structure to one yielding a ir-complex, 
i.e., a conflict structure, is monitored through the 
changes in the corresponding molecular graphs as the 
electron-donor ability of X is increased. The changes 
in structure induced by the resulting perturbations of 
the charge density are as predicted by the structure 
diagram for a three-membered ring system Figure 10 
with the 7r-complex being identified with the conflict 
structure obtained when the bond path from X ter­
minates at the C-C bond critical point. The reader is 
referred to the original papers for a detailed discussion 
of the results and of the manner in which they may be 
applied to the prediction of the chemistry of three-
membered ring systems. 

It was shown that the opening of a ring structure 
resulted from the coalescence of the ring and a bond 
critical point, the positive curvature of the ring point 
annihilating the in-plane negative curvature A2 of the 
bond point to yield a zero curvature characteristic of 
an unstable or degenerate critical point, Figures 8 and 
9. The decrease in the magnitude of X2 and its eventual 
disappearance means the ellipticity of the bond which 
is to be broken increases dramatically and becomes 
infinite at the geometry of the bifurcation point. Thus 
a structure possessing a bond with an unusually large 
ellipticity is potentially unstable. The two equivalent 
ring bonds of the cyclopropylcarbinyl cation, C4H7

+, 
provide an example of this behavior.58 The two long 
bonds of the three-membered ring of this are of order 
0.6 and exhibit ellipticities equal to 6.7. Their corre­
sponding paths are very inwardly curved and their bond 
path length exceeds the internuclear separation by 0.20 
A. The structure verges on instability since either of 
the bond critical points of the long bonds can be an­
nihilated by coalescence with the ring critical point. 
The curvature of p at the ring critical point which lies 
almost on the line joining the two bond critical points, 
is close to zero and correspondingly, the associated 
negative curvature, X2, of each of the neighboring bond 
critical points is equally small in magnitude. As an­
ticipated for long bonds, the positive curvature of p 
along their bond paths is relatively large, as is the 
second and parallel positive curvature of p at the ring 
critical point. The values of p at the bond and ring 
critical points differ by only 0.001 au. Thus there is a 
nearly flat-bottomed trough in the distribution of 
charge linking these three critical points and little en­
ergy is required to cause a migration of the ring point 
along the trough to coalesce with a bond point and yield 
a ring-opened structure. It is a general observation that 

little energy is required for the nuclear motions which 
result in a migration of a critical point along an axis 
associated with vanishing by small curvature of the 
charge density. Thus the energy surface in the neigh­
borhood of this structure is very flat for such a motion 
of the nuclei and the open structure differs from it in 
energy by less than a kcal/mol.68 

Further examples of potentially unstable structures 
being revealed through exceptionally high bond ellip­
ticities are provided by the propellanes, particularly 
[2.1.1]propellane, structure 21 in Figure 4. The 
bridgehead bond critical point and each of the ring 
critical points of the two three-membered rings in this 
molecule are separated by only 0.07 A and the value of 
pb = 0.197 au exceeds that of pr by only 0.001 au. The 
close proximity and nearly equal values for the bond 
and ring critical points results in a near zero value for 
the curvature of the density at the bond critical point 
in the direction of the three-membered ring critical 
points. The result is a very large ellipticity, equal to 
7.21, for the bridgehead bond in this molecule. The 
bridgehead bonds in both [2.2.1]- and [2.1.1]propellane 
are predicted to be the most susceptible to rupture by 
the bifurcation mechanism and both molecules readily 
undergo polymerization at 50 K. The bifurcation ca­
tastrophe undergone by the [l.l.ljpropellane molecule 
has been used to illustrate the mathematical modeling 
of a structural instability.1,6 Bachrach62 has shown that 
[l.l.l]propellane with the bridgehead carbons replaced 
with phosphorus atoms possesses a relatively large P-P 
separation of 2.485 A and no bridgehead bond path. It 
is a cage structure. In the dication obtained by the 
removal of two electrons from antibonding HOMO, this 
distance is reduced to 2.181 A and a bridgehead bond 
path is present. The structure however, is close to an 
instability as the ring critical points are extremely close 
in value and position to these same properties of the 
bridgehead bond critical point. 

These properties of a charge distribution have been 
applied to a study of the position of the equilibrium 
dinorcaradiene ^ [10]annulene as a function of the 
substituents R.63 While X-ray diffraction studies yield 
the geometries of the relevant species, and in particular 
the C1-C6 internuclear separation, they do not enable 
one to determine whether or not carbons Cl and C6 are 
bonded to one another and hence to determine which 
of the two structures is the correct one for a given set 
of substituents R and R'. Gatti63 et al. determined the 

R. .R' Rjv,R' 

10 2 

topological properties of the theoretically determined 
charge distributions at the experimentally measured 
geometries for combinations of substituents R and R' 
= CN, CH3, H, and F yielding C1-C6 separations 
ranging from 1.543 A for R = R' = CN to 2.269 A for 
R = R' = F. The study determined which of the sys­
tems possesses a C1-C6 bond. The dimethyl derivative 
in one of the two crystallographically distinct unit cells 
and with a C1-C6 separation of 1.770 A is the last 
member of the series to possess the [10]annulene 
structure. The bond order of the C1-C6 bond and the 
separation between its critical point and the ring critical 
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point of the three-membered ring undergo a continuous 
decrease and, correspondingly, the C1-C6 bond ellip-
ticity exhibits a continuous increase through the series 
of molecules until the bond is ruptured. A display of 
the gradient vector field of the next member in the 
plane of the three-membered ring, which possesses a 
C1-C6 separation only slightly greater at 1.783 A, in­
dicated that this separation is past the geometry of the 
bifurcation point created by the coalescence of the ring 
and bond critical point, as both critical points are ab­
sent from the display. 

It has been shown68 that the topological theory of 
molecular structure can also be used to treat in an un­
ambiguous manner the corresponding problem of de­
termining whether or not homoaromatic conjugation is 
present in a given system, a property which is also de­
termined by the properties particular to a cyclopropyl 
ring. Further applications have been made by Cremer 
et al.64 to 1,2-dihydroborete and by Barzaghi and Gatti 
to the homotropylium cation65 and to a number of re­
lated hydrocarbons, all of which potentially have six 
ir-electrons and which differ by the number of basal 
carbon atoms and the formal charge.86 The latter study 
considered the relative importance of mobius aromat­
icity and homoaromaticity as a source of stabilization 
in these compounds. The topological parameters sup­
ported the conclusion that the mobius aromaticity 
rather than homoaromaticity is the principal stabilizing 
interaction in the compounds studied. The topological 
parameters of the charge density have been used by 
Cremer and Schmidt67 in a direct determination of the 
degree of electron derealization in the compound bi-
cyclo[6.2.0]decapentaene. They concluded that the 
compound is weakly aromatic with the charge being 
delocalized primarily over the periphery of the ring 
system, as opposed to its separate derealization over 
each ring to result in an antiaromatic destabilization. 

Ritchie et al.68 have used the parameters of p\, to 
assign structures and properties to the bonds for three 
states of the C4 system using correlated densities in 
their analysis. They conclude that there is bond path 
between the inverted sp2 carbon atoms in the rhombus 
geometry of the 1A8 state, which is predicted to be 
marginally more stable than the linear geometry of the 
32K" state. The charge density at the corresponding 
bond critical point, however, exhibits a very large el-
lipticity, equal to 24, and the structure is clearly 
unstable with respect to any motion which increases the 
distance between these two carbon nuclei. 

The above applications of the theory have demon­
strated that the properties of the charge density at the 
bond critical points, together with the related concept 
of structural stability, enable one to determine the 
presence or absence of the predicted electronic effects 
of orbital theories and, when found to be present, to 
translate these predictions into observable consequence 
in the charge distribution. An excellent further example 
is provided by the application of the theory of atoms 
in molecules to one of the problems most intensively 
studied by orbital theories, that of the regiostereo and 
chemoselectivity that is observed in pericyclic reactions. 
Gatti et al.69 have provided a detailed analysis of the 
properties of the structures at number of stationary 
points along the synchronous and nonsynchronous 
pathways of the thermal cycloaddition of two ethylenes 

and of the Diels-Alder addition of ethylene to buta­
diene. This analysis is significantly aided by the ability 
of the theory to determine for the first time the points 
on the potential energy surface where the new C-C 
bonds are first formed. 

Most of the above applications of the theory have also 
included a tabulation and discussion of the value of the 
Laplacian of the charge density at the bond critical 
point, the quantity V2P1,. The present discussion of this 
quantity, which is invaluable in providing a classifica­
tion of chemical bonding, is presented in the section 
dealing with the properties of the Laplacian distribution 
function. 

The topological analysis of the charge density can be 
applied directly to an experimentally measured charge 
distribution and this is being increasingly done by ex­
perimentalists. Some time ago Stewart708 pointed out 
that one can obtain a direct mapping of the electrostatic 
potential, electric force field, electric field gradient, 
gradient of the charge density, and the Laplacian of the 
charge density from X-ray structure factors. Stewart70b 

has recently located and identified all of the critical 
points in the unit cells of paramagnetic (298 K) and 
antiferromagnetic (11 K) phases OfMnF2 from charge 
densities obtained from X-ray data. AU of the Mn-F 
and F-F bonded interactions are determined. Ozerov 
and co-workers71 have measured the properties of p at 
the experimentally determined bond critical points in 
a number of crystals, including crystals of ethane, 
ethylene, and acetylene, and classified the bonding 
accordingly. Destro et al.72 have performed careful 
low-temperature measurements on crystals of glycine 
and alanine. These data have been used to obtain a 
classification of the bonding in these crystals73 by using 
the topological parameters of p. In particular, they find 
the hydrogen-bonded proton to be linked to the acid 
by a bond with a relatively large value of pb and with 
V2Pb < O and to the base by a bond with a relatively low 
value for pb and with V2pb > O, as predicted by theory. 
Downs74 has determined the Laplacian distribution of 
a crystal of BeO and confirms the ionic nature of this 
substance. 

Guo et al.75 have extended the topological analysis to 
the densities derived from local density, self-consistent 
field, discrete variational Xa calculations. They have 
applied the technique to a study of various approaches 
of H2 to a Ni4 tetrahedron and are able to determine 
not only the new bonds formed to the hydrogen but also 
determine that in the face and bridge approach these 
bonds are formed at the expense of breaking Ni-Ni 
bonds, a process which accounts for the enhanced mo­
bility of H in a metal. 

Orbital models of atomic properties may also be re­
lated to the theory. Slee76 has used a Taylor series 
expansion of the charge density about the bond critical 
point to determine the effect of substituents on the 
position of the bond critical point and to predict the 
accompanying shift in the interatomic surface and the 
ensuing changes in the atomic populations. He was able 
to show that the trends found in the position and 
properties of the bond critical point can be understood 
in terms of perturbational molecular orbital methods. 
The effects of fluoro substitution in the ethyl, vinyl, and 
carbonyl groups are used to illustrate the model. Rit­
chie77" has used the topological parameters of the charge 
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density to analyze the effects of vinyl and allylic fluorine 
substitution in isobutylene. He is able to show that a 
vinylic fluorine acts as a o--acceptor by electron transfer 
into the C-F bond and as a x-repeller by polarization 
of the adjacent ir-bond while an allylic fluorine acts as 
a ir-attractor. Ritchie and Bachrach77b have assigned 
structures and determined bond and atomic properties 
for a series of 23 organolithium compounds. The Li 
atoms are found to exhibit coordination numbers 
ranging from one to four but no bond paths linking one 
Li atom to another are observed. In another study, 
Ritchie et al.77c have used the theory to determine the 
structure of the diaminoguanidinium cation. Rather 
than the anticipated internal hydrogen bonds, a base 
nitrogen in this structure is linked to the nitrogen 
bearing two hydrogens by a curved bond path. Ba-
chrach finds that the values of pb for bonds to phos­
phorus provide excellent measures of bond order and 
bond length in the phosphines, phosphoalkanes, and 
phosphoalkynes,™ as well as in phosphirane and 
phosphetane.77* These papers provide good examples 
of how structures and properties throughout a series of 
compounds can be systematically characterized in terms 
of parameters which summarize the important physical 
features of the observable charge density. 

A number of papers have recently appeared, all of 
which use the theory to assign a structure and charac­
terize the interactions in systems with unusual bonding. 
Tang78" has assigned structures to 7r-bonded hydrogen 
complexes of HF with acetylene, ethylene, and benzene, 
and also with cyclopropane. In the benzene complex, 
the H is linked to all six carbon nuclei by bond paths 
which exhibit large in-plane ellipticities. The complexes 
with acetylene and ethylene possess conflict structures. 
Lammertsma and Leszczynsk78b found the topological 
properties of p to provide a concise description of the 
structure present in digallane, Ga2H4, clearly delineating 
the ionic nature of the linkage of Ga+ to the covalently 
bonded hydrido-bridged anion GaH4". Cioslowski,780 in 
a theoretical investigation of the lowest energy geome­
tries of Li2C2O2, finds each Li to be bonded to an oxygen 
and a carbon in a bicyclic structure which is the most 
stable structure next to the linear one. Cioslowski™ 
has also investigated the behavior of the nonnuclear 
attractors found in Li2 as a function of the internuclear 
separation using Thorn's catastrophe theory.38 He finds 
this system to exhibit two cusp and two-fold catastro­
phes. Bachrach and Ritchie78* have used the connec­
tivity determined by the molecular graph and the values 
of Pb a n d V2pb for the bonds to Li in a study of the 
coordination effects in organolithium compounds. With 
the sole exception of lithioacetamide, the Li is found 
to be linked to both the carbanion carbon and to the 
oxygen of the amide group to yield a cyclic structure. 
A discussion and comparison of the C-Li and O-Li 
interactions is also given. 

B. Atomic Populations and Moments 

The average electron population N[Q) of atom fl is 
obtained by an integration of p(r) over the basin of the 
atom. The charge on atom Q with nuclear charge Zn, 
q(fi), is given by Zn - N(Q). The atomic first moment 
is obtained by weighting the basin integration of p(r) 
by rn, the electronic position vector with the nucleus 
of atom Q as origin. Atomic populations and moments 

have been determined in many systems and no attempt 
is made to list them here. Instead we review some of 
the applications of charges and moments that have been 
made to specific problems. 

The contribution to an atom's population from or-
bitals of ir-symmetry or pseudo-7r-symmetry found in 
systems with axial or planar symmetry, respectively, is 
easily determined by the separate integration of their 
corresponding densities over an atomic basin.79 The 
resulting a- and ^-populations are frequently found to 
undergo opposing polarizations. Examples of this in a 
familiar context are provided by the Huckel x-popula-
tions predicted for a system of conjugated double bonds 
as compared to the total atomic populations as deter­
mined by theory. The x-populations of the carbon 
atoms in the allyl80 and pentadienyl cations, starting 
from a terminal carbon atom, are 0.48 and 0.97 in allyl 
and 0.63,1.00, and 0.61 for pentadienyl. These values 
are very similar to the predicted Huckel populations of 
1/2 and 1 for allyl and 2/3,1, and 2/3 for pentadienyl. 
However, the atoms with the smallest ir-populations 
bear the smallest net positive charges because of an 
opposing polarization of the ex-density. The net charges 
on the atoms in the same order as the x-populations 
given above are +0.09 and +0.22 for allyl and +0.09, 
+0.16, and +0.01 for pentadienyl. Thus atomic net 
charges cannot be assigned on the basis of Huckel ir-
populations as is done in models based on an assumed 
relationship between the x-density at a carbon nucleus 
and the 13C chemical shift observed in nuclear magnetic 
resonance spectra. 

As pointed out by Libit and Hoffmann,81 arguing on 
the basis of orbital models, polarization of the x-density 
is of particular importance when an unsaturated system 
is bonded to a x-electron donor or abstractor group. 
This is illustrated by the polarization of the atomic 
7r-densities of the carbonyl group as caused by a sub-
stituent X bonded to carbon of the carbonyl group in 
the substituted formyl compounds HXC=O.24 A x-
donating group cases the x-population of the oxygen 
atom, rather than that of the carbon atom, to increase 
while a ^-withdrawing group causes the x-population 
of oxygen to decrease relative to that found for X = H. 
Examples of opposing polarizations of the a- and x-
density distributions which result in an alternation in 
the corresponding atomic populations are provided by 
the substituted benzenes.25 The amino group, for ex­
ample, is x-donating and, as in the substituted carbo-
nyls, the polarization of the ir-density in the bonds to 
the carbon atom bearing the substituent causes its ir-
populations to decrease and that of the atoms attached 
to it, the ortho carbon atoms, to increase. This effect 
alternates around the ring, producing the pattern of 
charge increase at ortho and para carbon atoms and its 
decrease at the meta atoms characteristic of ortho-para 
directing groups. The (!-populations change in just the 
opposite way with the a-charge becoming more negative 
at the meta carbon atoms. The nitro group is x-electron 
withdrawing and thus the x-population of the carbon 
bearing the substituent is increased and the accompa­
nying alternation causes corresponding increases at the 
meta position and decreases at the ortho and para 
positions, as is characteristic of meta directing groups. 
The cr-populations again change in just the opposite 
way. The amino group increases the x-population of 
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the phenyl group by 0.084 e and activates the ring to­
ward electrophilic aromatic substitution relative to 
benzene, while the nitro group decreases the ir popu­
lation by 0.099 e and deactivates the ring. 

The ir-donating/withdrawing ability of a substitent 
X in the substituted phenyls Ph-X is found to be the 
same as that observed in the substituted formyl deriv­
atives, XHC=O. The effect of most of the same group 
of substituents on the charge distribution and moment 
of the ethyl group has also been studied.24 The ordering 
of the total charge withdrawal by X is found to be the 
same in all three series of molecules. 

Information corresponding to the ^-populations of 
the orbital model is recovered in the quadrupole po­
larization of the atomic charge densities, a property of 
the total charge density. A quadrupolar polarization 
of an atomic density along the z axis obtained by 
weighting the basis integration of p(r) by the operator 
(3z2 - r2), has the form of a dz2 orbital, a removal of 
charge from a plane and its concentration in an axial 
direction perpendicular to the plane. In benzene and 
ethylene, with the z axis perpendicular to the plane 
containing the nuclei, QZZ(C) = -3.34 and -3.38 au, re­
spectively, corresponding to the presence of a single 
ir-electron. With z taken as the internuclear axis in 
acetylene, Q218(C) is large and positive, equal to +4.14 
au corresponding to a torus-like concentration of w-
density about the z axis as reflected in the negative 
values for Q„(C) = Qyy(C) = -2.07 au. In the planar 
methyl cation molecule with a nearly vacant pT orbital, 
Qzz(C) = +1.22 au and the carbon atom appears as an 
oblate spheroid.26 The quadrupolar polarizations of the 
ortho and para carbon atoms of substituted benzenes 
vary linearly with their atomic 7r-populations.25 In 
forming a hydrogen bond, the quadrupolar polarizations 
of the hydrogen atom and of the base atom B along 
their axis of approach are both decreased in magnitude, 
corresponding in the orbital model to a a- to x-pro-
motion of their atomic densities.44 Wiberg et al.82 have 
determined the a- and x-populations of the atoms in 
benzene and the azines in a study of 7r-electron der­
ealization. 

Wiberg and Laidig57 also determined the charges and 
energies of the atoms in their study of the rotational 
barriers in esters and amides. Their results leave in 
doubt the resonance model of the origin of the barrier 
in these molecules. The same failure of the classical 
resonance model applies to the understanding of the 
relative acid strengths of esters compared to ketones838 

and of carboxylic acids compared to alcohols.831" A study 
of the atomic charges in these systems and their cor­
responding anions shows that it is the inductive effect 
of the carbonyl group rather than a charge transfer to 
the carbonyl oxygen as anticipated on the basis of the 
resonance model that is responsible for the difference 
in acidities of the pairs of species. Wiberg and Brene-
man have presented an extensive investigation of the 
effect of substituents on the atomic properties of 
methyl56 and n- and tert-butyl84" derivatives. The at­
omic charges and the net charge induced on the methyl 
group are in good accord with the electronegativities of 
the substituents. Shi and Boyd84b are conducting an 
extensive theoretical investigation of the SN2 reaction 
for a wide range of nucleophiles N - and leaving groups 
X in the reaction 

N- + CH3-X — CH3-N + X-

As well as determining the energies of reaction and 
activation by using a high level of theory, the changes 
in the charge distribution between reactants, transition 
state, and products are monitored by the properties of 
p at the bond critical points and the charges on the 
atoms. The effects of electron correlation are found to 
be important in determining the geometry of and the 
atomic charges in the transition state. The values of 
pb of the C-X bond and of the charge on X in the 
transition state are shown to be determined primarily 
by the position of the transition state along the reaction 
coordinate. Cao et al.840 have used a large basis set to 
calculate the minimum energy geometries, atomic 
properties, and bond parameters for a set of 18 acyclic 
and cyclic molecules containing N-N bonds. A bond 
order based on the value of Pb for the N-N bond is given 
and found to yield useful correlations with observed 
properties. The N-N bond in N2O4 for example, is 
found to be 0.58. (The charge on F when combined 
with N is mistakenly reported as -1.4 rather than -0.4.) 

Streitwieser and co-workers independently developed 
a method of defining an atomic charge which is also 
based upon a spatial partitioning of the electronic 
charge density. In their method, the density is first 
integrated in a direction perpendicular to a given plane. 
The resulting two-dimensional distribution is then 
partitioned by its two gradient paths which terminate 
at a (2,0) critical point, the two-dimensional analogues 
uof an interatomic surface, and a (3,-1) critical point. 
The resulting populations are referred to as integrated 
projection populations. These authors have noted that 
such populations are computationally easier to deter­
mine than are the atomic populations of theory. They 
have also shown that the projected populations form 
approximations to and recover the trends in the values 
exhibited by the atomic populations. The method of 
integrated electron populations has been applied to a 
wide range of chemical problems.86 

Stutchbury and Cooper87 have used atomic popula­
tions to study the acidities and basicities of aliphatic 
alcohols and amines. The gas-phase ordering of the 
acidities of alcohols and amines is the opposite of that 
anticipated on the basis of the operation of the induc­
tive electron release from a methyl group in the reac-
tant, the acidity and basicity both increasing with in­
creasing methyl substitution. Corresponding results are 
obtained for substituted carbonium ions, their stability 
increasing with increasing methyl substitution. The 
atomic populations of the carbonium ions and their 
neutral counterparts have also been determined26 and 
the same set of observations explains the observed re­
sults in all three systems. These observations are (1) 
Methyl substitution does not cause significant changes 
in atomic charges in the neutral saturated molecules. 
(2) The replacement of H by methyl in the anions and 
cations does cause significant changes in the atomic 
populations and always corresponds to a dispersal of 
the excess charge over the hydrogens of the methyl 
groups. (3) The hydrogen atoms of a methyl group may 
act very effectively as either a sink or a source of 
electronic charge. 

Cooper and Allan88 have shown how the densities 
obtained from spin-coupled wavefunctions may be 
partitioned according to the zero flux boundary con-
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dition. Such functions faithfully reproduce the changes 
in charge density which accompany the formation of 
chemical bonds from separated reactants and the me­
thod was applied to a study of the changes in the atomic 
properties which accompany bond formation in LiH 
and BH. Changes in atomic energy, atomic population, 
and atomic moments have been used in a study of hy­
drogen-bond formation,44 in the reactivity of substituted 
benzenes25 and the energetics of their protonation89 and 
in the formation of the Lewis adducts between HCN 
and NgF+, Ng = Kr and Xe.90 

Cooper and Stutchbury91" have shown that the elec­
trostatic potential maps calculated by a distributed 
multipole moment method using the atomic monopole, 
dipole, and quadrupole moments can be successfully 
used to predict the conformations of hydrogen bonded 
van der Waals complexes formed with hydrogen 
fluoride. Breneman91b has shown that one can construct 
the electrostatic map for a molecule using a standard 
transferable set of group moments calculated from 
statistically averaged multipole moments of the atoms 
of theory. The field predicted in this manner is encoded 
on the 0.002 au envelope of the charge density. 

Through the use of the quantum definition of an 
atom and its properties, one can relate any chemical 
property or change to its atomic contributions and to 
any accompanying change in structure. Recent exam­
ples of such applications which make full use of the 
theory are a discussion of the origin of rotation and 
inversion barriers by Bader et al.,92* an investigation of 
the importance of resonance stabilization in the allyl 
anion and cation by Wiberg et al.,92b and work by 
Glaser92c on the relation of the thermal stability of 
diazonium cations to the properties of the C-N linkage 
as determined by the variation in the atomic and bond 
properties observed in a series of such cations. All three 
of these investigations draw into question classical 
models of the related phenomena: the changes in the 
charge distribution accompanying the internal rotation 
in ethane are not consistent with the model of Pauli-like 
exchange repulsions between localized C-H bond or-
bitals;92a little stabilization of the allyl anion can be 
attributed to electron derealization or resonance;921" and 
Glaser920 shows how the Lewis resonance structures can 
be reinterpreted to bring their anticipated consequences 
into line with the observed properties of the charge 
distribution as brought to the fore by the theory of 
atoms in molecules. Ritchie and Bachrach92d have used 
the atomic population on hydrogen, the bond path an­
gle, and the values of pb and V2pb in a discussion of the 
acidity of cubane relative to that of strained and un­
strained hydrocarbons. The atomic population N(H) 
and V2pb (C-H) are found to yield a better correlation 
with both observed and calculated deprotonation en­
thalpies than does the J (13C-H) coupling constant. 

VII. Properties of the Laplaclan of the 
Electronic Charge Density 

A full discussion of the Laplacian of the electronic 
charge density and its use in models of molecular ge­
ometry and reactivity is given in ref 1. These same 
topics are the subject of a recent review.93 The present 
discussion is therefore, limited to an overview of the role 
which this function plays throughout the theory and of 
the physical basis it provides for the models based on 

the electron pair concept of Lewis.7 

A. Role of the Laplacian in the Theory of 
Molecular Structure 

The Laplacian of the charge density appears as an 
energy density in the theory, that is as L(r), the quan­
tity 

L(r) = -(ft2/4m)V2p(r) (86) 

The integral of L(r) over an atom Q to yield L(Q) van-

L(Q) = CL(T) dr = (-ft2/4m) f V2p(r) dr = 
Ja Ja 

(-h2/4m)^dS(Q,r)VP(r)-n(r) = 0 (87) 

ishes because of the zero flux boundary condition (eq 
1) which defines an atom in a molecule. The demon­
stration that an atom is an open quantum subsystem 
is obtained by a variation of Schrodinger's energy 
functional 9[\p,Q] for a stationary state and by a vari­
ation of the action integral for a time-dependent system. 
In each case the zero flux boundary condition is intro­
duced by imposing the variational constraint that 

6L(Q) = d\ (Vp( r ) dri= 0 
\Jn I 

at every stage of the variation. The possibility of in­
troducing the constraint in this manner is a conse­
quence of the property of the functionals S[\p,Q] and 
JC[V,Q], that at the point of variation where the ap­
propriate Schrodinger equation is satisfied, they both 
reduce to an integral of the density L(r). The property 
given in eq 87 is common for an atom and for the total 
system and it is this property which endows them with 
similar variational properties, thereby making possible 
the generalization of the principle of stationary action 
to an atom in a molecule. 

The two kinetic energy densities K(r) and G(r) differ 
by L(r) (eq 63) and it is because L(Q) vanishes for an 
atom that T(Q), the electronic kinetic energy of an 
atom, is well defined (eq 64). It was demonstrated in 
section III that the density L(r) appears in the local 
expression for the virial theorem. This is an important 
result, since it relates a property of the charge density 
to the local contributions to the energy, and it is re­
peated here as eq 88. The electronic potential energy 

(ft2/4m)V2p(r) = 2G(r) + V(r) (88) 

density V(I*), the virial of the forces exerted on the 
electrons, eqs 68 and 75, and the electronic kinetic en­
ergy density G(r) (eq 61) define the electronic energy 
density Ee(r) 

E,(r) = G(T) + V(T) (89) 

Because L(Q) vanishes for an atom, integration of eq 
88 over the basin of an atom yields the atomic virial 
theorem 

2T(Q) = -V(Q) (90) 

and as a consequence, the electronic energy of an atom 
in a molecule satisfies the following identities: 

E9(Q)' CEe(r)dT = -T(Q) = (l/2)<V(Q) (91) 
Ja 

It is a property of the Laplacian of a scalar function, 
such as the charge density p(r), that it determines where 
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the function is locally concentrated, where V2p(r) < 0, 
and locally depleted, where V2p(r) > 0.94 Electronic 
charge is concentrated in those regions of space where 
the Laplacian of the charge density is negative. The 
expressions "local charge concentrations" and "local 
charge depletions* will refer to maxima and minima in 
the function -V2p(r), extrema which are to be distin­
guished from local maxima and minima in the charge 
density itself. This property of the Laplacian can be 
used to determine the dominant contributions to the 
local energy of the electronic charge distribution by 
using the local expression for the virial theorem. 

The potential energy density "Vfr) is everywhere 
negative, while the kinetic energy density is everywhere 
positive. Thus the sign of the Laplacian of the charge 
density determines, via eq 88, which of these two con­
tributions to the total energy is in excess over their 
average virial ration of 2:1. In regions of space where 
the Laplacian is negative and electronic charge is 
concentrated, the potential energy dominates the local 
total electronic energy Ee(r) and the local virial rela­
tionship. Where the Laplacian is positive and elec­
tronic charge is locally depleted, the kinetic energy is 
in local excess. 

An energy density is dimensionally equivalent to a 
force per unit area or a pressure. Thus the Laplacian 
may alternatively be viewed as a measure of the pres­
sure exerted uon the electronic charge density relative 
to the value of zero required to satisfy a local statement 
of the virial theorem, i.e., *V(r) + 2G(r) = 0. In regions 
where the Laplacian is negative, the charge density is 
tightly bound and compressed above its average dis­
tribution. In regions where the Laplacian is positive, 
the charge density is expanded relative to its average 
distribution, the pressure is positive and the kinetic 
energy of the electrons is dominant. 

B. Laplacian of the Charge Density and the 
Lewis Electron Pair Model 

Neither the electronic charge density nor the elec­
tronic pair density offer any evidence of the localized 
bonded and nonbonded pairs of electrons evoked in the 
Lewis model of electronic structure. The relatively 
simple topology exhibited by the charge density has 
already been described and while it accounts for the 
elements of molecular structure, it does not offer any 
suggestion of the existence of spatially localized pairs 
of electrons. The extent to which electrons are spatially 
localized is determined by the pair density, a distribu­
tion function whose properties are dominated by the 
so-called Fermi hole.5 An electron can only go where 
its hole goes and thus an electron is localized to a given 
region of space only if its Fermi hole is correspondingly 
localized.96 The Fermi hole is very localized for motion 
of an electron in the immediate vicinity of a nucleus. 
It is possible to define a core radius within which the 
contained Fermi correlation is maximized for one a and 
one /3 electron and the result is a region of space from 
which essentially all other electrons of both spins are 
excluded to yield a localized pair of electrons. The 
fluctuation in the average population of such a region 
of space is minimized when the contained Fermi cor­
relation is maximized.96 Such physical localization of 
electronic charge is not a general phenomenon, but is 
found in atomic cores and within the atomic boundaries 

of ionic systems, such as the Na and Cl atoms in NaCl. 
In the atoms of these systems, the contained Fermi 
correlation approaches its limiting value, which is the 
negative of the average electron population, and the 
electrons are in excess of 90% localized within the 
separate atomic basins.1,93,96 What one does not find 
the pair population to predict are bonded or nonbonded 
pairs of valence electrons as envisaged by the Lewis 
model or as represented by individual localized orbitals. 

The electron pairs of Lewis and the associated models 
of geometry and reactivity find physical expression in 
the topology of the Laplacian of the charge distribution. 
The Laplacian distribution recovers the electronic shell 
model of an atom by exhibiting a corresponding number 
of pairs of shells of charge concentration and charge 
depletion.5,8,97,98 For a spherical-free atom, the outer 
or valence shell of charge concentration, the VSCC, 
contains a sphere over whose surface electronic charge 
is maximally and uniformly concentrated. Upon en­
tering into chemical combination, this valence shell of 
charge concentration is distorted and maxima, minima, 
and saddles appear on the sphere of charge concentra­
tion. The maxima correspond in number, location, and 
size to the localized pairs of electrons assumed in the 
Lewis model. The VSEPR model of molecular geom­
etry99 is a direct extension of the Lewis model and it 
predicts the geometries of closed-shell molecules about 
some central atom which contains from two to seven 
pairs of electrons in its valence shell. AU of the prop­
erties postulated in this model for bonded and non-
bonded pairs of electrons are recovered by the maxima 
in the valence shell of charge concentration of the 
central atom and the Laplacian of the charge density 
provides a physical basis for this most successful of 
models of molecular geometry.9^93,100 This mapping of 
the topology of the V2p onto the Lewis model is illus­
trated in Figure 11 for the molecule ClF3 whose T-
shaped geometry can be deduced as a consequence of 
the behavior of the maxima in the VSCC of the Cl 
atom—the most stable geometry being the one which 
maximizes the separations between the maxima. It has 
been shown that positioning an electron at the critical 
point corresponding to a maximum in the Laplacian 
distribution maximally localizes its Fermi hole.100 

The discussion so far has focused on the properties 
of the local charge concentrations of the Laplacian 
distribution and on how they recover the Lewis and 
VSEPR models of electron pairs. The Lewis model, 
however, encompasses chemical reactivity as well, 
through the concept of a generalized acid-base reaction. 
Complementary to the local maxima in the VSCC of an 
atom for the discussion of reactivity are its local min­
ima. A local charge concentration is a Lewis base or a 
nucleophile, while a local charge depletion is a Lewis 
acid or an electrophile. A chemical reaction corresponds 
to the combination of a "lump" in the VSCC of the base 
combining with the "hole" in the VSCC of the acid. In 
terms of the local virial theorem (eq 88) the reaction 
of a nucleophile with an electrophile is a reaction of a 
region with excess potential energy on the base atom 
with a region of excess kinetic energy on the acid atom. 
The accompanying rearrangement of the charge is such 
that at every stage of the reaction L(Q) remains equal 
to zero for each atom. Thus reductions in the magni­
tudes of the local concentrations or depletions of charge 
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Figure 11. A display of the negative of the Laplacian distribution 
for ClF3. The equatorial plane (top) shows the presence of two 
nonbonded and one bonded concentration of charge in the valence 
shell charge concentration of the Cl atom. (Note the presence 
of three quantum shells for Cl and of two such shells for F.) The 
plane containing the two axial as well as the equatorial F atoms 
exhibit three bonded charge concentrations in the VSCC of Cl 
and another view of the (3,-1) critical point which appears as a 
saddle point in -V2p between the two nonbonded charge con­
centrations in the upper diagram. The Cl atom in ClF3 exhibits 
two nonbonded and three smaller bonded charge concentrations 
in its VSCC. 

requires opposing changes in other parts of the atom 
to satisfy the constraint on its charge distribution as 
given in eq 87. 

The positions of the local charge concentration and 
depletion together with their magnitudes, are deter­
mined by the positions of the corresponding critical 
points in the VSCCs of the respective base and acid 
atoms. This information enables one to predict posi­
tions of attack within a molecule and the geometries of 
approach of the reactants. For example, a keto oxygen 
in the formamide molecule has two large nonbonded 
charge concentrations in the plane of the nuclei (V2p 
• -6.25 and -6.30 au) while the nitrogen atom exhibits 
two such maxima of lesser magnitude (V2p = -2.14 au) 
above and below this plane. On the basis of this in­
formation one correctly predicts that the formamide 
molecule will preferentially protonate at the keto oxy­
gen,101 specifically at the position of the largest of the 
two charge concentrations and in the plane of the 
nuclei. There are holes in the VSCC of a carbonyl 
carbon and they determine the position of nucleophilic 
attack at this atom. These holes are above and below 
the plane of the nuclei of the keto grouping and the 
corresponding critical point for a number of ketones are 
positioned to form angles of 110° ± 1 with respect to 
the C=O bond axis. This is the angle of attack pre­
dicted for the approach of a nucleophile to a carbonyl 
carbon.102 
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Similar predictions have been made for the Michael 
addition reaction, specifically for the nucleophilic attack 
of an unsaturated carbon in acrylic acid, CH2=CH— 
CO2H, and methyl acrylic acid.103 The properties of the 
Laplacian distribution correctly predict that the attack 
occurs at the terminal carbon of the methylene group, 
the carbon of the unsubstituted acid being most re­
active, and that the approach of the nucleophile will be 
from above or below the plane of the nuclei along a line 
forming an angle of 115° with the C=C bond axis, the 
latter prediction being in agreement with calculations 
of the potential energy surface for this reaction. Bader 
and Chang25 have given a discussion of the use of the 
Laplacian distribution in the prediction of the sites of 
electrophilic attack in a series of substituted benzenes. 

Electrostatic potential maps have been used to make 
predictions similar to these.104 Such maps, however, do 
not in general reveal the location of the sites of nu­
cleophilic attack,105 as the maps are determined by only 
the classical part of the potential. The local virial 
theorem (eq 88), which along with the kinetic energy 
density, determines the sign of the Laplacian of the 
charge density, involves the full quantum potential. 
The potential energy density 0V(T) (eq 75) contains the 
virial of the Ehrenfest force (eq 54) the force exerted 
on the electronic charge at a point in space (eqs 55 and 
56). The classical electrostatic force is one component 
of this total force. 

The Laplacian distribution has been used to predict 
the structures of a large number of hydrogen-bonded 
complexes by aligning the (3,+3) critical point, a local 
charge depletion on the nonbonded side of the proton 
in the acid HF, with the (3,-3) critical point of the base, 
a local concentration of charge, for which -V2p attains 
its large value.106 With only a few exceptions, the ge­
ometries of the complexes predicted in the SCF calcu­
lations (which agree with experiment where comparison 
is possible) are those predicted by the properties of the 
Laplacian as outlined above. Figure 12 illustrates the 
Laplacian distribution for three of the bases involved 
in this study. They form an interesting set, as the Lewis 
model of localized pairs fails for two of these molecules. 
The Laplacian, since it is model independent and in­
stead reflects the properties of the charge distribution, 
correctly predicts the observed structures of the com­
plexes. The oxygen in NNO possesses a torus of charge 
concentration (which appears as two maxima in the 
plane shown in Figure 12) for which -V2p = 5.63 au, 
while the single nonbonded charge concentration on the 
terminal N has a magnitude of 2.90 au. (This ar­
rangement of nonbonded charges, as does that for the 
bonded charge concentrations, agrees with the Lewis 
model, :N:::N::6:.) The Laplacian predicts the proton 
to bond with the oxygen and to form a bent structure 
with a bond angle of 103.1° compared to the calculated 
value of 104.4°. Contrary to the Lewis model, the ox­
ygen in SCO exhibits only a single nonbonded maxi­
mum which is colinear with the internuclear axis. This 
maximum is also the largest of the charge concentra­
tions in this molecule and one thus predicts a linear 
complex SCO-HF, as is both observed and calculated. 
In OCO, the nonbonded charge concentration on each 
O forms a torus about the molecular axis, in corre­
spondence with the Lewis model. The value of -V2p for 
the torus, which forms an angle with the internuclear 
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Figure 12. Relief maps of -V2p for axial planes of N2O, SCO and 
CO2. Note the presence of three quantum shells on sulfur. 

axis of 149°, is 4.74 au. As is clear from the display of 
the Laplacian for OCO, however, each oxygen atom is 
capped by a nonbonded charge concentration which is 
of almost constant value and the value of -V2p in the 
VSCC of oxygen on the internuclear axis equals 4.72 au. 
The properties of the Laplacian are thus consistent with 
the experimental result of a floppy complex with a bond 
angle within the range of 180° ± 30. The calculated 
equilibrium structure is found to be linear, but its en­
ergy differs from that of a secondary bent structure with 
a bond angle of 165° by only 0.1 kcal/mol. 

Tang et al.107 have observed remarkably linear cor­
relations between the magnitudes of the nonbonded 
charge concentration (the magnitude of the Laplacian 
at a (3,-3) critical point in -V2p) on the nitrogen atom 
and the gas-phase basicity for the series of methyl 
amines NH3^Men, n - 0-3, and for a set of cyano and 
pyridine compounds. Clearly, the size of a charge 
concentration or charge depletion as determined by the 
Laplacian of the charge density provides a measure of 

the propensity of a given center toward reaction through 
a series of related compounds. 

Aray and Murgich108 have demonstrated a direct re­
lationship between the maxima in the VSCC of a ni­
trogen atom and the components of the electric field 
gradient at the same nucleus in a series of nitriles. The 
largest diagonal component of the electric field gradient 
tensor was found to be determined by the combined 
effect of the bonded and nonbonded charge concen­
trations in the VSCC of nitrogen along the C-N axis. 
This work demonstrates that this tensor can be inter­
preted directly in terms of a property of the observable 
charge distribution and removes the necessity of in­
voking orbital models in the interpretation of this im­
portant quantity. 

C. Classification of Atomic Interactions 

The gradient vector field of the charge density iden­
tifies the set of atomic interactions within a molecule. 
These interactions, which define the molecular struc­
ture, can be characterized in terms of the properties of 
the Laplacian of the charge density. The local ex­
pression of the virial theorem (eq 88) relates the sign 
of the Laplacian of p to the relative magnitudes of the 
local contributions of the potential and kinetic energy 
densities to their virial theorem averages. By mapping 
those regions where Vp2 < 0, the regions where elec­
tronic charge is concentrated, one is mapping those 
regions where the potential energy density makes its 
dominant contributions to the lowering of the total 
energy of the system. 

As discussed in section ILE, the interaction of two 
atoms leads to the formation of a critical point in the 
charge density at which the Hessian of p has one pos­
itive eigenvalue labeled X3 and two negative eigenvalues 
labeled X1 and X2, implying that p exhibits one positive 
and two negative curvatures at the point rc. Since the 
two perpendicular curvatures of p, whose eigenvectors 
define the interatomic surface, are negative, the charge 
density is a maximum at rc in the interatomic surface 
and charge is locally concentrated there with respect 
to points in the surface. The curvature of p along the 
interaction line is positive, charge density is locally 
depleted at rc relative to neighboring points along the 
line and p is a minimum at rc along this line. Thus the 
formation of a chemical bond and its associated in­
teratomic surface is the result of a competition be­
tween the perpendicular contractions of p towards the 
bond path which lead to a concentration or compres­
sion of charge along this line and the parallel expan­
sion of p away from the surface which leads to its 
separate concentration in each of the atomic basins. 
The sign of the Laplacian of p at the bond critical point, 
the quantity V2p(rc), determines which of the two 
competing effects is dominant and because of the ap­
pearance of V2p(rc) in the local expression for the virial 
theorem (eq 88) its sign also serves to summarize the 
essential mechanical characteristics of the interaction 
which creates the critical point. There is therefore, an 
intimate link between the topological properties of p(r) 
and its Laplacian, the trace of the Hessian of p, and 
through the properties of the Laplacian one may begin 
to bridge the gap between the form of the charge dis­
tribution and the mechanics which govern it. The 
reader is referred to ref 1 for a full discussion and for 
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Figure 13. Relief maps of -V2p for N2 and NaCl and contour maps for the same axial planes with negative values of the Laplacian, 
the regions where electronic charge is concentrated, given by the solid contours. In N2, a shared interaction, the VSCCs of both atoms 
are joined by a concentration of charge in the internuclear region. In NaCl, the Laplacian distributions retain their atomic-like nature, 
with Cl exhibiting three quantum shells and Na two, as anticipated for a system in which nearly one electronic charge is transferred 
from one atom to the other. Note the polarization of the VSCC on Cl toward the Na. In N2 the nuclei are bound by the shared concentration 
of charge (eq 88). In NaCl the nuclei are bound by the charge concentration localized within the VSCC of the Cl atom. 

numerical and pictorial illustrations. 
When V2p(rc) < 0 and is large in magnitude, elec­

tronic charge is concentrated in the internuclear region 
as a result of the dominance of the perpendicular con­
tractions of p toward the interaction line, or equivalently 
in these bound systems, toward the bond path. The 
result is a sharing of electronic charge by both nuclei, 
as is found for interactions usually characterized as 
covalent or polar and they shall be referred to as 
"shared interactions". In shared interactions, as exem­
plified for N2 in Figure 13, the region of space over 
which the Laplacian is negative and which contains the 
interatomic critical point, is contiguous over the valence 
regions of both atoms and the VSCCs of the two atoms 
form one continuous region of charge concentration. 
The interaction is dominated by the lowering of the 
potential energy associated with the formation of the 
(3,-1) critical point. In a shared interaction, the nuclei 
are bound as a consequence of the lowering of the po­
tential energy associated with the concentration of 
electronic charge shared between the nuclei (eq 88). 
This concentration of electronic charge in the intera­
tomic surface is reflected in relatively large values of 
p(rc), the value of p at the (3,-1) critical point, for 
molecules with shared interactions and the ratio of the 
perpendicular contractions of p to its parallel expansion, 
as measured by the ratio IX1ZX3I, is greater than unity.1,8 

The second limiting type of atomic interaction is that 
occurring between closed-shell systems, such as found 
in noble gas repulsive states, in ionic bonds, in hydrogen 
bonds, and in van der Waals molecules. One anticipates 
that such interactions will be dominated by the re­
quirements of the Pauli exclusion principle. Thus for 

closed-shell interactions, P(T0) is relatively low in value 
and the value of V2p(rc) is positive.8 The sign of the 
Laplacian is determined by the positive curvature of p 
along the interaction line, as the exclusion principle 
leads to a relative depletion of charge in the interatomic 
surface. These interactions are dominated by the con­
traction of charge away from the interatomic surface 
toward each of the nuclei. The Laplacian of p is positive 
over the entire region of interaction and the kinetic 
energy contribution to the virial from this region is 
greater than the contribution from the potential energy. 
The spatial display of the Laplacian of p given in Figure 
13 for NaCl is atomic-like for this example of a 
closed-shell interaction. The regions where the Lapla­
cian is negative are, aside from small polarization ef­
fects, identical in form with those of a free atom or ion. 
Thus the spatial regions where the potential energy 
dominates the kinetic energy are confined separately 
to each atom, reflecting the contraction of the charge 
toward each nucleus, away from the region of the in­
teratomic surface. The ratio IX1ZX3I < 1 in all the ex­
amples of closed-shell interactions.8 

The almost complete interatomic transfer of one 
electronic charge found for ionic systems such as NaCl 
is verified by the nodal structure of the corresponding 
Laplacian maps. The cations Li+, Na+, and K+ all lack 
the outer nodes associated with the valence density 
distribution of the isolated atom. Thus Li in LiCl has 
but one negative region rather than two, Na in NaCl 
has two rather than three, and K in KF has three rather 
than four. 

A hydrogen bond results from the interaction of two 
closed-shell systems, and the properties of p at the as-
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sociated bond critical point reflect all of the charac­
teristics associated with such interactions: a low value 
for p(rc) and V2PCr0) > 0. The same characteristics, with 
even smaller values of p(rc), are found for the bond to 
hydrogen formed in a van der Waals complex of an acid 
such as HF or HCl with an inert gas atom. A hydrogen 
bond, which includes the van der Waals complexes, is 
defined to be one in which a hydrogen atom is bound 
to the acid fragment by a shared interaction, p(rc) large 
and V2p(rc) < 0, and to the base by a closed-shell in­
teraction, p(rc) small and V2p(rc) > 0. These are the 
very characteristics exhibited by the experimentally 
determined charge density at the bond critical points 
for the bond paths linking a proton in crystals of amino 
acids.73 

The kinetic energy density G(r) (eqs 60 and 61) is 
expressible in terms of three contributions along or­
thogonal axes. The relative values of the component 
parallel to the internuclear axis (Gn) and one of the 
components perpendicular to this axis (G1) faithfully 
reflect the values of the corresponding curvatures of p 
at rc. For the shared interactions, GjJr0) > G11(T1), while 
just the reverse situation is found for the closed-shell 
interactions. In addition, as anticipated on the basis 
of the local virial theorem (eq 88) the kinetic energy per 
electronic charge, the ratio G(t^/p(r,), is less than unity 
for the shared interactions and greater than unity for 
the closed-shell interactions. Thus when the positive 
curvature of p is large and dominated by the contraction 
of the charge toward the nuclei, the kinetic energy per 
electron is absolutely large and the value of its parallel 
component exceeds that of a perpendicular component. 
In the shared interactions, the accumulation of charge 
in the internuclear region leads to a softening of the 
gradients of p and of the corresponding curvature of p 
along the interaction line, and the parallel component 
of G(r) is correspondingly less than its perpendicular 
components. The dominance of these latter compo­
nents again mirror the corresponding dominance of the 
perpendicular contractions of p toward the bond axis 
in shared interactions. Because of the concentration 
of charge and the concomitant negative values of the 
Laplacian of p over the same region, the potential en­
ergy is dominant and the kinetic energy per electron is 
absolutely small. 

The same observations regarding the behavior of the 
parallel and perpendicular components of the kinetic 
energy and their relation to the gradients and curva­
tures of p in molecular systems were first made by 
Bader and Preston109 for the molecules H2 and He2. 
They studied the spatial properties of G(r) and K(r) 
and their relation to L(r). The differing behavior of 
G(r) in the binding region of a bound and an unbound 
system is made very clear by comparing the plots of this 
function they give for H2 and He2. The correlation of 
the local behavior of the kinetic energy density with the 
gradients and curvatures of p are partially accounted 
for by theory through eq 88. When V2p(r) > 0 and the 
Laplacian is dominated by the positive curvature of p 
(contraction of p toward each nucleus), the larger con­
tribution to the Laplacian comes from the kinetic 
energy—and by observation, primarily from its parallel 
component. Correspondingly, when the Laplacian of 
p is negative and p is concentrated as a result of con­
tractions perpendicular to the bond path, not only does 

the potential energy make the dominant contribution 
to the virial but one observes the perpendicular com­
ponents of G(r) to dominate its parallel component. 
Thus one concldes that the kinetic energy dominates 
the contributions to the virial and to the energy in re­
gions of space where its parallel component is dominant. 
This occurs in regions where V2p(r) > 0. Conversely, 
in regions where the perpendicular components to G(r) 
are largest, the potential energy makes the major con­
tribution to the virial and to the energy of the system. 

Extraordinarily small values of G(rc)/p(rc), of the 
order of 0.03 au, are exhibited by the nonnuclear 
maxima, the pseudoatoms, in the metallic clusters of 
Li and Na atoms referred to in section ILE. The same 
small values of kinetic energy per electron are reflected 
in the ratio of the average values of T(Sl) to iV(fi) for 
the pseudoatoms and, in accordance with the Heisen-
berg uncertainty principle, they indicate that the charge 
density of the pseudoatoms is loosely bound and un-
confined. The Laplacian distributions for these clusters 
show the metal atoms to be missing their outer charge 
concentrations, indicating that they are present pri­
marily as ionic cores. The charge density of the cores 
is highly localized as indicated by values in excess of 
90% for the contained Fermi correlation. The charge 
on the pseudoatoms, however, is very delocalized with 
values for the contained Fermi correlation being only 
30% of that required for complete localization. Aside 
from the inner shell charge concentrations of the met­
allic cores, the negative values of the Laplacian dis­
tribution are confined within the boundaries of the 
pseudoatoms. The value of V2p(rc) is positive at the 
bond critical point linking a pseudoatom to a metallic 
core, but negative at a critical point linking two pseu­
doatoms. The properties of p at the critical point 
linking two pseudoatoms are characteristic of a weak, 
shared interaction: p(rc) = 0.0056 au, V2p(rc), = -2.6 
x 10"4 au, and G(rc)/p(rc) = 0.10 au. The ionic cores 
are linked to one another through the pseudoatoms and 
the study of these clusters gives a model of group I 
metals consisting of positively charged metal atoms with 
very localized charge distributions immersed in and 
bound by an intermeshed network of negatively charged 
pseudoatoms. Metallic binding is a result of the low­
ering of the potential energy associated with the charge 
concentrations of the valence density and these con­
centrations are confined within the boundaries of the 
pseudoatoms. These same charge concentrations have 
a very low kinetic energy per electron, and the potential 
energy lowering associated with the formation of the 
pseudoatoms is obtained without a large accompanying 
increase in the kinetic energy. As a consequence, the 
electron density of the pseudoatoms should be mobile 
under the influence of an electric field. The quantum 
mechanical current for a core density is simply the 
diamagnetic current circulating around the nucleus and 
the metal atoms in these clusters will not contribute 
appreciably to the electrical conduction. It is the highly 
delocalized density of the network of pseudoatoms 
which is responsible for the binding in a metallic system 
and for its conducting properties. 

The examples so far considered have demonstrated 
the existence of two extremes of atomic interactions, 
one set being the opposite of the other in terms of the 
regions of charge concentrations and depletions and the 



Quantum Theory of Molecular Structure Chemical Reviews, 1991, Vol. 91, No. 5 925 

associated mechanical consequences. The whole spec­
trum of possible interactions lying between these two 
limiting extremes are found to occur for interactions 
that do and do not involve interatomic charge transfer. 
Some examples are given here but the reader is referred 
to ref 1 for a full discussion. 

The C-O interaction of a carbonyl group, for example, 
is characterized by a transfer of charge of the order of 
1.3 e from carbon to oxygen. Transfer of the order of 
one electronic charge or more does not imply the 
presence of an ionic interaction. The charge distribu­
tions and the properties of the atoms in the carbonyl 
group do not begin to approach those of closed-shell 
systems, a fact reflected in the properties of p at the 
bond critical point. The first observation for C=O 
interaction is that while V2p(rc) is large in this case, the 
value of p(rc) is also large in value, much greater than 
the values associated with the closed-shell or ionic limit. 
This in turn is a result of the large magnitude of the 
curvatures of p at rc, values which are much larger than 
those for the closed-shell limit, but comparable to those 
for the shared limit. They reflect the large stresses that 
are present in the interatomic charge distribution, 
stresses which lead to a large accumulation of charge 
in the interatomic surface and to the formation of a 
concentration of charge on the electronegative side of 
the interatomic surface and to a corresponding deple­
tion of charge on the electropositive side. The large 
positive curvature, X3, found for the C-O bond domi­
nates the interaction and the properties of the bond. 
Such a bond is perturbed only slightly by substitution 
of a hydrogen, in formaldehyde, for example.76'77 When 
X3 is low in value, as for an ethylenic bond, atomic 
substitution can more readily lead to a shift in the in­
teratomic surface, corresponding to a transfer of charge 
across the surface to a change in the physical charac­
teristics of the bond. 

The atomic interactions in C=O are clearly inter­
mediate in character: there is a large accumulation of 
charge in the interatomic surface resulting from the 
considerable contractions of p toward the bond path, 
but the interaction is dominated by the still larger 
positive stress in p along the interaction line, giving a 
tight distribution with a large kinetic energy per elec­
tron. The ability to summarize the details of the me­
chanics of an interaction in terms of the properties of 
p at rc and the properties of the atoms whose nuclei are 
linked by the associated interaction line precludes the 
need to assign oversimplifying labels to describe the 
interaction. It is however, important to realize that the 
parameters which summarize an interaction do exhibit 
a continuous spectrum of values, linking limiting situ­
ations that can be classified as snared and closed-shell 
interactions. 

It is also possible to observe behavior transitional 
between shared and closed-shell interactions in the 
absence of charge transfer. In the homonuclear series 
B2 - • F2 both p(rc) and |V2p(rc)| increase to a maximum 
at N2 and decrease to minimum values at F2. Their 
behavior parallels the binding energies of these mole­
cules, as it does the occupation of the lxu bonding or­
bital (fully occupied at N2) and of the lirg antibonding 
orbital (fully occupied at F2). Occupation of the lxg 
orbital leads to an increase in the localization of the 
charge on each atom and this has the expected conse­

quences on the properties of p at rc; namely a decrease 
in p(rc) and an increase in the positive curvature X3 and 
hence in V2p(rc). In F2, the contraction of p toward each 
nucleus dominates the interaction and the VSCC of 
each F atom is localized in a near-spherical atomic-like 
shell, as is typical of the closed-shell limit. The char­
acteristics of p at rc for F2 are intermediate between 
those for O2 and Ne2.

8 The ratio of the perpendicular 
to parallel kinetic energy contributions at rc is 0.751, 
a value, while less than unit as typical of closed-shell 
interactions, is considerably greater than the value for 
Ne2. 

Both the charge density and the pair density of the 
electrons of a F atom are very localized within its basin. 
There is only a 7% exchange of the electrons of a F 
atom in F2 with the electrons on the neighboring atom. 
Thus the strong potential field exerted on the valence 
electrons in a fluorine atom, while providing the major 
source of binding in fluorides via charge transfer to the 
fluorine atom, is also the cause of the weak binding 
found in the F2 molecule. 

There is no suggestion that the atomic interaction in 
the F2 molecule is at the closed-shell limit. It is how­
ever, demonstrated that the binding in this molecule 
is qualitatively different from that found in N2 and that 
the differences are made quantitative by the properties 
of each system at the critical point in its charge density 
that is formed as a consequence of the interaction of 
the two atoms. 

Frenking et al.110a have used the properties of the 
charge density at its critical points and the Laplacian 
distribution in a study of the binding of helium in singly 
and doubly charged first-row diatomic cations. Bart-
lett110b has also appealed to the properties of the La­
placian of the charge density in a general discussion of 
the bonding in helium containing compounds. Preston 
et al.90 and Frenking et al.111 have used the properties 
of the charge density in conjunction with those of its 
Laplacian distribution in a study of the bonding to 
noble gas atoms in positively charged species. Alcami 
et al.112 have used the Laplacian of the charge density 
to classify the interactions found in the complexes 
formed between the lithium ion and a number azines. 
Azines containing neighboring nitrogen atoms are found 
in general, to form a bonded ring structure with the 
lithium ion. The properties of the Laplacian distribu­
tion clearly demonstrate the closed-shell nature of these 
interactions and make clear the dominance of the 
electrostatic potential in determining their properties. 

The electrostatic and virial theorems, coupled with 
the properties of the Laplacian of the charge density, 
also enable one to classify a given atomic interaction 
as beloning to a bound or unbound state. The regions 
of charge concentration as defined by the Laplacian can 
be used in conjunction with the electrostatic theorem 
to determine whether the forces on the nuclei will be 
attractive or repulsive. The electronic charge in these 
same regions makes the dominant stabilizing contri­
butions to the potential and total energies of the system 
and in this way the Laplacian provides a link between 
the force and the energy. The reader is referred to ref 
1 for this discussion. 

Cremer and Kraka42,113 relabel an atomic interaction 
line as an MED (for maximum electron density) and 
state that a covalent bond exists between two atoms 
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when their nuclei are linked by an MED and when the 
energy density 2?e(r) defined in eq 89, which they relabel 
H(r), is negative in value at the position of the asso­
ciated (3,-1) critical point. Using eq 88, one finds that 
H(r) = -K{r), the kinetic energy density defined in eqs 
60 and 61, and the behavior of this quantity in both the 
shared and closed-shell limits of atomic interactions has 
been previously discussed.109 Their definition and its 
accompanying discussion in terms of charge accumu­
lation in the internuclear region as determined by a 
density difference distribution, implies directly or in­
directly, that the bonding between two atoms linked by 
an atomic interaction line for which H(rc) > 0, as found 
in ionic and hydrogen-bonded systems, for example, 
differs in some fundamental way. 

This definition ignores the property that all bonded 
interactions have in common: two atoms are bonded 
if their nuclei are linked by an atomic interaction line 
in a minimum energy geometry, that is if they are 
linked by a bond path. The presence of such a line 
demonstrates the accumulation of charge between the 
nuclei in an absolute sense, and not relative to some 
arbitrary reference distribution. The observed range 
of properties exhibited by this line and its associated 
interatomic surface accounts for the observed diversity 
in chemical bonding. This same unified view of chem­
ical bonding is what Lewis considered to be one of the 
major accomplishments of his electron pair model:7 

"However, according to the theory which I am now 
presenting, it is not necessary to consider the two ex­
treme types of chemical combination, corresponding to 
the polar and the very nonpolar compounds, as different 
in kind, but only different in degree." The different 
degrees of polarity were represented by the unequal or 
equal sharing of the electron pair between the "kernels" 
of the two atoms, corresponding to the localization of 
the charge concentration responsible for the binding 
within the basin of a single atom as in an ionic bond, 
or to its sharing between the basins of both atoms as 
in a covalent bond. The quantum theory of molecular 
structure through its ability to explicitly define inter­
atomic interactions and their stability, broadens this 
concept still further, by demonstrating that all atomic 
interactions, both bound and unbound, have a common 
basis in the form they impart to the electronic charge 
distribution. The energetic and other mechanical con­
sequences of this form are predicted and made under­
standable by theory.1 

VII. Conclusions 

A fundamental principle of physics yields a unified 
theory of atoms, bonds, structure, and structural sta­
bility, in addition to providing predictive models of 
molecular geometry and chemical reactivity. It is to be 
emphasized that the theory of atoms in molecules 
evolved because it followed the necessary dictum of 
paralleling experiment in the recovery of observational 
concepts. It will continue to grow only if it proves useful 
in the study of the properties of all forms of matter. 
Eberhart et al.114 evoke a similar requirement in their 
development of a chemistry of cohesion and adhesion 
within and between materials in their bulk state. They 
deem as necessary for this development an appropriate 
representation of a bond and a measure for the com­
petition for bond formation in network, ionic, covalent, 

metallic, and van der Waals solids. Since the present 
theory of structure is based on the properties of the 
total charge density, these authors argue that it should 
be generalizable to different types of bonding in dif­
ferent classes of materials, and in particular to the 
description of bonding in condensed matter systems. 
Consequently, they have applied the topological aspects 
of the theory to an analysis of the charge densities of 
metals obtained using both the layer Korringa-Kohn-
Rostaker method115,116 and the local density functional 
cluster method.117,118 It is to be noted that the zero flux 
boundary condition for a quantum subsystem (eq 1) 
corresponds to the conventional Wigner-Seitz cell in 
an elemental solid and they find that the occurrence of 
bond paths in both the fee and bcc (face-centered and 
body-centered cubic) structures constrains the distri­
bution of charge throughout this cell. The reader is 
referred to the paper for the extensive list of problems 
the authors are able to treat in this initial development 
of a chemistry of cohesion and adhesion. Among these, 
is the demonstration of relationships between the bulk 
properties of a metal and local properties of the charge 
density together with the important observation that 
in systems where the formation of a bond path to a 
second neighbor is not possible, the fee structure is 
favored over the bcc structure. 

Since physics predicts what can be observed, it should 
be possible to construct a molecule by using theory in 
the same manner that this is done in the laboratory, 
from pieces of other molecules. Chemists do not begin 
a synthesis starting with beakers full of nuclei and 
electrons, the step corresponding to the theoretical 
synthesis of a molecule starting with the correct Ham-
iltonian. The first step toward the development of the 
theoretical synthesis of a molecule, large or small, in a 
manner which parallels experiment, is the identification 
of the pieces, that is, the atoms and functional groups 
of chemistry, that the chemist uses to plan and execute 
a synthesis. With the theory of atoms in molecules this 
step is complete and what remains is to discover how 
to put the pieces together. 

To do this it will be necessary to extend the quantum 
mechanics of an open system to include a prediction of 
how the properties of subsystem change when it is 
subjected to a changed environment, i.e., to develop a 
perturbation theory for an atom in a molecule. How­
ever, one does not have to await this extension of the 
theory to build a molecule from group fragments in all 
cases. As emphasized throughout this article, the theory 
of atoms in molecules enables one to take advantage of 
the most important postulate of the molecular structure 
hypothesis; that atoms and functional groupings of 
atoms exhibit characteristic and measureable sets of 
properties that vary between relatively narrow limits. 
There are many systems of interest, particularly bio­
logical macromolecules, that are composed of repeating 
structural units. Therefore, it is possible in these cases 
to construct a molecule from the atoms of theory and 
predict their properties with acceptably small errors 
even though one is not at the limit of nearly perfect 
transferability, as found in the hydrocarbons and dis­
cussed in section IV.A, for example. 

It has been demonstrated119 that it is possible to 
synthesize a tripeptide from fragments defined in sim­
pler systems and that the properties predicted for the 
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synthesized molecule, as obtained by summing the 
corresponding properties of the atoms in each fragment, 
are in excellent agreement with those obtained in a 
direct calculation. The energy of glycylglycine con­
structed from glycylamine and formylglycine for exam­
ple, is predicted to within 3 kcal/mol of the calculated 
value. Other atomic properties such as multipole mo­
ments, volumes, and extrema in the Laplacian distri­
bution are predicted with correspondingly small errors. 
The synthesis requires the matching of the C-N in­
teratomic surfaces from two peptide fragments, a pro­
cedure which results in the prediction of the C-N bond 
length in the dipeptide as the sum of the bonded radii 
of the C and N atoms. In general peptide bond lengths 
are reproduced to within 0.001 A by this method. 

A most important advantage that the theoretical 
synthesis has over the experimental one is that it is not 
necessary to completely reproduce the whole of a large 
system. If interest is centered on a portion of a large 
molecule, an active site for example, just that portion 
of the molecule is synthesized, the outer interatomic 
surfaces of the end fragments being left exposed. The 
properties of a subsystem are determined by the shape 
of its bounding surface. It is not necessary that it be 
coupled to another fragment. 

The ability to construct a molecule from functional 
groups will bring the theory of atoms in molecules into 
complete parallel with experiment and fulfill the pur­
pose of the theory. 
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