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with large and structurally complex unit cells.2 A series 
of tungsten oxides,3 i.e., monophosphate and di
phosphate tungsten bronzes, possess crystal and elec
tronic properties quite similar to those of the molyb
denum oxides. In understanding the physical properties 
of such complex molybdenum and tungsten oxide sys
tems, it is necessary to have a few guidelines by which 
to single out the parts of their crystal structures and 
chemical bonding essential for the description of their 
electronic properties.4 

Solid-state materials are classified according to how 
their electrical resistivities p vary as a function of tem
perature T. Metals and semiconductors have positive 
and negative slopes in their p vs T plots as shown in 1.1 
and 1.2, respectively. For certain compounds, their 
metallic states are stable only in a certain region of 
temperature. Thus a metal may become a semicon
ductor (1.3) or a superconductor (1.4) when the tem
perature is lowered. In understanding such phase 

l . i 1.2 

T 
1.3 1.4 

transitions of solid-state materials, it is crucial to know 
their electronic structures. The electronic structure of 
a molecule is characterized by discrete energy levels 
(1.5), and that of a solid by energy bands (1.6). Each 
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1. Introduction 

Binary and ternary molybdenum oxides have become 
a subject of numerous experimental and theoretical 
studies due largely to the fact that most of them are 
low-dimensional metals and consequently exhibit in
teresting physical properties associated with their 
electronic instabilities.1 Red bronzes A033MoO3 (A = 
Li, K, Rb, Cs, Tl) are semiconductors, while the blue 
bronzes A03MoO3 (A = K, Rb, Tl), the purple bronzes 
A09Mo6O17 (A = Li, Na, K) and TlMo6O17, the Magneli 
phases Mo4O11 and Mo8O23, and the rare-earth bronze 
La2Mo2O7 are all metals at room temperature. AU these 
oxides contain molybdenum-oxygen (Mo-O) layers 
made up of edge- and corner-sharing MoO6 octahedra, 

E _ i 

— 

— 

- D 
D 
D 

1.5 1.6 

rectangular box of 1.6 represents a continuously allowed 
region of energy (i.e., an energy band). As illustrated 
in 1.7, any given energy band consists of N discrete 
levels, where N is the total number of unit cells in a 
solid. Because N — «>, all energy levels falling within 
a band are allowed. In a one-electron band picture, 
electron-electron repulsion is neglected so that each 
band level can be filled with two electrons. Therefore, 
a semiconductor (or insulator) contains only completely 
filled and completely empty bands (1.8), so an energy 
gap (i.e., band gap Eg) exists between the highest oc
cupied and the lowest unoccupied band levels. (An 
insulator is a semiconductor with a large band gap, and 
a metal-semiconductor transition 1.3 is commonly re
ferred to as a metal-insulator transition.) A metal has 
at least one partially filled band (1.9), so there is no 
energy gap between the highest occupied level (i.e., the 
Fermi level e{) and the lowest unoccupied level. Thus 
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in understanding the electrical properties of solids, it 
is necessary to know how their electronic band struc
tures are determined. 

W ET ti 
1.7 1.8 1.9 

Low-dimensional metals often possess electronic 
instabilities toward a metal-insulator transition (see 
1.3), which occur when the Fermi surfaces of their 
partially filled bands are nested.4,5 For most molyb
denum and tungsten oxides examined in the present 
review, the average d-electron count on transition metal 
is less than d1. This means that, in those oxides with 
several nonequivalent transition-metal atoms per unit 
cell, only a limited number of transition-metal atoms 
can have d electrons and consequently become re
sponsible for their metallic properties. In discussing 
the structural and electronic properties of the molyb
denum and tungsten oxides, therefore, one needs to 
analyze4 how the transition-metal atoms possessing d 
electrons can be identified on the basis of their crystal 
structures, which d orbitals of such transition-metal 
atoms contribute to form the highest-occupied bands, 
what kinds of dispersion relations and Fermi surfaces 
those bands have, and how the Fermi surfaces are re
lated to their electronic instabilities. In the present 
review, we discuss theoretical, conceptual and practical 
aspects of those questions and show that the electronic 
properties of such low-dimensional molybdenum and 
tungsten oxides can be readily understood by analyzing 
how the nature of their highest occupied bands is re
lated to the crystal structures. 

The electronic structures of the low-dimensional 
transition-metal oxides discussed in the present review 
are all obtained on the basis of extended Hiickel6 tight 
binding (EHTB) band calculations.7 With this semi-
empirical method, total energy differences are approx
imated by orbital energy differences, so that this me
thod does not allow reliable geometry optimization but 
describes low-lying excitations of metallic states rea
sonably well. In addition, the nature of the partially 
filled bands of the transition-metal oxides reponsible 
for their metallic properties does not strongly depend 
upon the atomic parameters used in the EHTB calcu
lations, as will be shown in some detail in terms of 
orbital interaction analyses. Consequently, for the 
transition-metal oxides with known crystal structures, 
EHTB calculations have been invaluable in studying 
the properties of their metallic states.4 

The present review is organized as follows: Theo
retical developments necessary for our discussion of the 
low-dimensional transition-metal oxides are given in 
Chapters 2-7. Fundamental concepts of electronic and 
vibrational energy bands are discussed in Chapters 2 
and 3, respectively, on the basis of one-dimensional 
examples. Chapter 4 discusses how to deal with the 
electronic structures of two- and three-dimensional 
crystal systems. Fermi surfaces and electronic insta
bilities associated with partially filled bands are exam
ined in Chapters 5 and 6, respectively. Chapter 7 de
scribes various computational aspects of electronic band 
structure calculations. After a brief survey of typical 
structural patterns of the low-dimensional transition-

metal oxides in Chapter 8, we examine their electronic 
properties in Chapters 9-16. Important findings of this 
review are summarized in Chapter 17. 

2. Electronic Band Structure 

In the present section, we discuss how the electronic 
band structures of solids come about by considering 
one-dimensional (ID) systems as examples. Though 
based upon ID systems, theoretical concepts introduced 
in this section are readily applicable to two-dimensional 
(2D) or three-dimensional (3D) systems, as will be 
shown in later sections. 

2.1 Formation of Energy Band 

Let us consider a ID lattice 2.1 with repeat distance 
a, where each unit cell (represented by a dot) contains 
a set of atomic orbitals (AO's) (xi, x* •••> XMI- An AO 

2.1 

X11 (M = 1.2,..., M) located at the n-th unit cell is written 
as Xpir - na). To determine the electronic energy bands 
arising from such AO's, one defines the Bloch orbital 
(BO) </>„ for each AO x„ as follows: 

^1Sh) = N-VtZexpdknah^r - no) (2.1) 
n 

where N refers to the number of unit cells in a crys
talline solid under consideration. The exact expression 
of each BO <t>Jh) depends on the value of the wave 
vector k because the coefficient exp(ifena) for xM(r - na), 
which is introduced to satisfy the periodic boundary 
condition, varies with k. The coefficient expdkna) is 
a periodic function of k, so only those k values of the 
region 

-ir/a <k<v/a (2.2) 

may be used to construct the BO's <£„(£). The impor
tance of the BO's lies with the fact that the crystal 
orbitals (CO's) ^ (i = 1, 2,..., AO for 2.1 are constructed 
as linear combinations of the BO's: 

M 
Uk) = LC^k^k) 

» 1 - 1 

(2.3) 

The energies e,-(A) of the CO's Uk) are eigenvalues 
associated with the effective Hamiltonian Hett: 

H* Uk) - et(k) Uk) (2.4) 

The requirement that de^k) IdC1Jk) = 0 for n = 1, 2, 
...,Af leads to the M X Af secular determinant 

\HJk) " ei(*)S„,<*)| - 0 (2.5) 

where the matrix elements H1JJi) and S1JJk) are defined 
as 

HJk) = <4>„(fe)|H«ff|<Mfe)> (2.6) 

and 
SJk) - <*„(*)|*,(*)> (2.7) 

The allowed energy region for each CO ^1 can be 
determined by solving eq 2.5 for a mesh of fe-points 
covering the region -TT/O < k < ir/a. Because of the 
relationship, e^k) = e,(-fe), one needs to solve eq 2.5 for 
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a mesh of ^-points covering only the region 0 < k < -ir/a. 
By the use of eq 2.1, the matrix elements HJk) and 
SJk) are expressed as 

HJk) = <x»|tfeff|x,to> + L[exp(ikna){Xli(r) 

[H^x.ir-na)) + Gxp(-ikna)(xtt(r-na)\H6B\xr(r))] 
(2.8) 

and 

SJk) = <x»|x,(r)> + f[exp(ifena)<xM(r) 

\X,(r-na)) + exp(-ikna){Xll(r-na)\xr(r))] (2.9) 

In the ra-th nearest neighbor approximation, the terms 
of eq 2.8 and 2.9 with indices greater than n are trun
cated. The choice of an appropriate n value depends 
upon whether or not the integrals such as <Xu-
(r)|#eff|x,,('"-na)> and (X1Ar)|X,(^K»)> are negligible. It 
should be clear from this discussion that energy band 
calculations for solids are quite similar to energy level 
calculations for molecules. For solids, however, the 
secular determinant needs to be solved for a set of 
different k points covering the region 0 < k < via. 

2.2 Orbital Interactions in Solids8 

We now examine the essence of the energy band 
formalism described in the previous section from the 
viewpoint of orbital interaction. Let us consider the ID 
system 2.2 which has one AO x on each site. Since each 

x 
X(r+a) x (0 X(r-a) \ 

« • »- i—*z 

h-0-H.K-/8-H 

2.2 

unit cell has only one AO, the BO <f>(k) is identical with 
the CO \p(k). From eq 2.5, one obtains 

e(k) = 
H(k) 

S(k) 

Canadall and Whangbo 

TABLE 2.1. Bloch Orbital Coefficient, for a ID Chain 
k point exp(ikna) 

r = o (i)" 
X « tla (-1)" 

into a band of width 4|0|, as depicted in 2.4. 

a — / 
I 
W 

I 
2.4 

Although there are in principle an infinite number 
of k values to consider, the essence of the band dis
persion given by eq 2.12 can be shown by examining 
only two special k points (Le., k - O and ir/a). As listed 
in Table 2.1, the coeffcients exp(ifcnct) = (1)" at k = O 
(Le., D, but expdkna) = (-l)n at k = ir/a (Le., X). This 
simply means that the BO at T is obtained by repeating 
the AO's with an identical sign, while the BO at X is 
obtained by repeating the AO's with alternating signs. 
This is shown in 2.5 for the case when x is an s orbital. 

2.5 

Note that the BO's at T and X refer to the maximum 
bonding and antibonding interactions possible for the 
ID system. Therefore the s-orbital band should have 
a dispersion relation as shown in 2.3. (Hereafter, px, 
Py. Pz> &xW< ^z1I d„, dyz, and dxy orbitals will be simply 
referred to as x, y, z, x^y2, «2, xz, yz, and xy orbitals, 
respectively). When x is an x orbital, the BO's at T and 
X are given by 2.6 so that the x-orbital band will have 
a dispersion relation as shown in 2.3. When x is a z 
orbital, the BO's at T and X are given by 2.7. In 

(2.10) *x(0 

a + 2(8 cos ka + 

1 + 2S cos ka + 
(2.11) 

%W 

where a is the Coulomb integral, a = (xWI^ ' lxW). 
/3 is the nearest neighbor resonance integral, /3 = (x-
(r)\Hett\x(r-a)), and S is the nearest neighbor overlap 
integral, S = <x('")|x('̂ a)>- When the overlap integrals 
are neglected within the first nearest neighbor ap
proximation, eq 2.11 is simplified as 

e(k) = a + 2(8 cos ka (2.12) 

The dispersion relation of the band given by eq 2.12 is 
shown in 2.3. Within the approximations introduced 

-a-zQ 

« + 2/0-

above, the bandwidth W is given by W = 4|/8|. In other 
words, the energy level of the AO x (Le-, «) is spread 

2.6 

<̂ (r) o © o @ o ® o ® 

4>Z(X) 022>@20C«©@20 

2.7 

contrast to the cases of 2.5 and 2.6, the maximum 
bonding and antibonding interactions of the z orbital 
band occur at X and T, respectively. Therefore, the 
dispersion relation of the z-orbital band follows the 
pattern of 2.8. In addition, the width of the z-orbital 
band should be greater than that of either the s- or 
x-orbital band because the a overlap between adjacent 
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z orbitals is larger in magnitude than either the ir-
overlap between adjacent x orbitals or the a overlap 
between adjacent s orbitals. Thus, for ID systems, 
consideration of orbital arrangements at T and X pro
vides essential clues to the dispersion patterns and the 
bandwidths. 

2.3 Band Gap and Symmetry Lowering 

As a more complex example, we examine the ID 
system 2.9 in which a unit cell contains two atoms with 
one AO each. If the overlap integrals are neglected, 

Xfir) X^r) X1Cr-O) x(r-a) 

—• —• • =»-

K P1 H - P2 -H- P1 H 
2.9 

eq 2.5 for the lattice 2.9 becomes 

H11(H) - ef.k) H1^k) 

H21(k) H22(Jk) - ei(k) 
= 0 (2.13) 

Given the Coulomb integrals of the AO's Xi and xi as 
O1 and a2, respectively, and the first nearest neighbor 
resonance integrals as defined in 2.9, the matrix ele
ments H11Ak) are written as 

H„(k) = a„ 0» - 1,2) (2.14) 

Hw{k) = H21*{k) = (S1 + /S2 exp(-ifca) (2.15) 

Equation 2.15 is obtained by the first nearest neighbor 
approximation. By the use of these matrix elements 
in eq 2.13, we obtain the following expression for e,(fe) 
ej(fc) = (O1 + a2)/2 ± 

K«i - «2)2/4 + OJ1
2 + &2 + 20A cos fca)]1/2 (2.16) 

A special case of interest for the above equation is de
fined in case I: 

case I CK1 = a2 = a < O 
ft = ^2 = 0 < O (2.17) 

for which eq 2.16 is rewritten as 
et{k) • a ± 2/3 cos (ka/2) (2.18) 

Case I is identical with 2.2 except that its unit cell is 
doubled in size with respect to 2.2. Each dimer unit of 
2.9 has the bonding and antibonding levels at a + /3 and 
a - /3, respectively, as depicted in 2.10. The dispersion 

ot-p— 0 - @ 

a + 0— O-O 
2.10 

relation of eq 2.18, shown in 2.11, is simply obtained by 
folding the dispersion curve of 2.3 at the midpoint along 
k = O -* k - ir/a (It is important to notice that the 
repeat distance of 2.9 for case I is twice that of 2.2). In 

•*p~ 

— a 

a+20 — 

2.11 
general, when a unit cell size increases n times without 
lowering the symmetry of the lattice, the resulting band 

dispersion is folded n times. This is illustrated in 2.12 
for n = 4. 

2.12 

To describe the essence of the band dispersion rela
tion of 2.11, the orbitals xM (M = 1. 2) may now be as
sumed to be s orbitals. The BO's 0; {i - 1, 2) at r are 
shown in 2.13. The CO's fo (i - 1, 2) at r are linear 

*,(r) IO - I O IO 

tyr) I • 

*,(r) io 

%(r) 10 

Oi • 

2.13 

0 1 0 

0 IO 

2.14 

Ol • 

O i O 

0 IO 

O 

O 

0 

combinations of 0;. As shown in 2.14, ̂ 1(D is bonding, 
but ^2(D is antibonding, within a unit cell and between 

lMD <* 0X(D + 0,(D 

*,(D a 0,(D - 0,(D (2.19) 

unit cells. Namely, ^1(D is a bonding combination of 
the dimer bonding orbitals, and ^2(D is an antibonding 
combination of the dimer antibonding orbitals. The 
BO's 0,' at X are shown in 2.15, and the corresponding 
CO's i/'i are given as linear combinations. As depicted 

^1(X) a 0j(X) + 0,(X) 

UX) « 0!(X) - 0,(X) (2.20) 

in 2.16, ^1(X) is bonding within a unit cell but anti-
bonding between unit cells while ^2(X) is antibonding 
within a unit cell but bonding between unit cells. That 

*,(*) IO 

*<*) 

IO 

Oi • 

2.15 

*,W IO O I® 

O 

IO O I 

%(x) IO ® I @ O IO © I 

2.16 

is, ^1(X) is an antibonding combination of the dimer 
bonding orbitals, but ^2(X) is a bonding combination 
of the dimer antibonding orbitals. Consequently, ^1(X) 
and ^2(X) are nonbonding in nature. This can also be 
shown in terms of their linear combinations 

^+(X) « ^1(X) + ^2(X) 

^.(X) a ^1(X) - ^2(X) (2.21) 

As illustrated in 2.17, ̂ +(X) has orbital character only 
on the first atom sites, and ^_(X) only on the second 
atom sites. Therefore, ^+(X) and ^.(X) are each non-
bonding in nature. 
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t(x) \Q • \® • iO 

tw Oi Oi 
2.17 

We are now ready to consider two examples for which 
eq 2.16 leads to a band gap. One typical case is shown 
in case II: 
case II (Xi = Ot2 = a <0 

/S1 < 0 < /S2 < O (2.22) 

That is, the resonance integral is greater in magnitude 
within a unit cell than between unit cells, while the two 
atoms of a unit cell are equivalent. A very common 

2.18 

situation leading to case II is a dimerization distortion 
2.18. For case II, eq 2.16 is simplified as 

e,(fe) = a ± [ft2 + /32
2 + 2(S1(S2 cos ka]1'2 (2.23) 

which has the dispersion relation shown in 2.19. Case 
II produces two bands of width 2|/S2| separated by a 

«-0,-4-

«+/3,+/%-

«-<*-0,+/% 

r x 
2.19 

band gap of 2OS2 - (S1). In other words, the dimer levels 
a + (S1 and a - (S1 are each spread into bands of width 
2|(S2|. The occurrence of band gap in 2.19 can be easily 
explained in terms of the CO's ^j(X) shown in 2.16: 
When the intraunit resonance integral becomes larger 
(and the interunit resonance integral becomes smaller) 
in magnitude, ^1(X) is lowered in energy but ^2(X) is 
raised (see 2.20). Another case leading to a band gap 

%(x) 

2.20 

from eq 2.16 is given in case III: 
case III Ct1 < a < a2 < 0 

/J1 = /32 = /3 < 0 (2.24) 

This situation occurs when two atoms of a unit cell are 
made nonequivalent. For case III, eq 2.16 becomes 

et(k) = 
(ax + a2)/2 ± Ka1 - a2)2/4 + 4/32 cos2(fea/2)]1/2 

(2.25) 

The dispersion relation of this equation is shown in 2.21, 
where D = (at - a2)2/4 + 4/32, and the two bands are 
separated by a band gap of a2 - av When |ax - a2| » 

(<v ««)/«+VB" • 

(O7+O4Ve-Vo 

<-o. 

2.21 

|(8|, each band of 2.21 has a width of 4(8VIa1 - a2\. The 
occurrence of a band gap for case III is easily explained 

in terms of the CO's ^+(X) and ^-(X) shown in 2.17: 
When the Coulomb integral of Xi is lowered (and that 
of X2 is raised) in energy, ^+(X) is stabilized but ^_(X) 
is destabilized as depicted in 2.22. This leads to a band 
gap of a2 - Ot1. 

tW _ ± 

Either case II or case III results from case I by an 
appropriate perturbation. The essential outcome of 
such a perturbation, which lowers the symmetry of the 
lattice, is to open an energy gap in the middle of the 
band as depicted in 2.23. This band splitting becomes 
important when the band is half-filled, because the 
band gap opening at the Fermi level lowers the elec
tronic energy of the half-filled system (see 2.24). The 

D 
i 

.D 
I 

ii, m 

2.23 2.24 

dimerization 2.18 in a half-filled band system provides 
a situation appropriate for 2.24. In general, when a unit 
cell size is increased n-fold by a distortion or an external 
potential (which introduces nonequivalent lattice sites), 
the band is split into n subbands. This is illustrated 
for n = 4 in 2.25, which can be easily explained on the 
basis of the folded band dispersion shown in 2.12, be
cause symmetry lowering will split the degeneracies at 
r (k = O) and X (k = ir/4a) thereby introducing band 
gaps. Consequently, a ID system having a partially 
filled band of occupancy 1/n or (n - l)/n is likely to 
undergo a distortion which increases the unit cell size 
n times (see 2.26 and 2.27). This general phenomenon 
is known as a Peierls distortion or a 2kf distortion (see 
sections 6.1 and 6.2). 

JZI 

2.25 

tl 

:• :• 
2.26 

JZI 
Jm 

JJ 113 
2.27 

2.4 Dispersion Patterns of the t2g-Block Bands 

Low-dimensional transition-metal oxides have a 
crystal structure constructed from MO6 octahedra via 
corner- or edge-sharing. In describing the d-block band 
structures of those compounds, it is important to know 
how the metal d orbitals interact directly or indirectly 
through the p-orbitals of the bridging oxygen atoms. 
For a regular MO6 octahedron, the metal d orbitals are 
split into the t^- and eg-block levels as shown in 2.28. 

.= t. H 

' S 

2.28 
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Between the metal and the oxygen atoms, the t^-levels 
have ir-type antibonding interactions while the e?-levels 
have (T-type antibonding interactions. Due to high ox
idation states of the metal atoms in those oxides, only 
the d-block bands arising from the t^-levels may be
come filled. Thus we consider only their t2g-block 
bands. 

For a regular MO6 shown in 2.29, the equatorial and 
axial oxygen atoms may be referred to as 0«, and O81, 
respectively. For the coordinate system used in 2.29, 

A X- U 
2.34 

oxygen atom orbitals may be suppressed except for 
those of the bridging oxygen atoms. The BO's of the 
metal xz orbital at T and X are given in 2.35. The 
bridging oxygen atom orbital that can overlap with the 
adjacent xz orbital is the x orbital. The BO's of the x 
orbital at T and X are shown in 2.36. Due to the large 

QQ& 

x*-f XZ 

2.29 

the t^-block levels arise from the x^-y2, xz, and yz or
bitals. The x2-?2 orbital does not interact with the O8x 
atoms (2.30), but it does with the O8, atoms (2.31). If 

L; < ^ \ A U 

2.30 2.31 

the antibonding interaction in each M-O64 bond is de
noted by the symbol (Y4), where the subscript t indi
cates that the oxygen of the M-O bond is a terminal 
ligand, then the x*-y2 level has 4(Y1) interactions. The 
xz and yz orbitals each make 2(Y1) interactions with the 
O8x atoms (2.32). With the O64 atoms, the xz and yz 

U 

orbitals interact as shown in 2.33. Unlike in 2.31 and 
2.32, each M - O N bond of 2.33 is not contained in the 
d-orbital plane, so the M-O84 bond of 2.33 has a weaker 
antibonding. The presence of such an antibonding 

9—9 

XZ 

U 

interaction in each M-O8,, bond may be denoted by (yt). 
Then the xz and yz levels each have 2(Yt) + 4(yt) in
teractions. These two levels are degenerate with the 
x2-y2 level, so that 2(yt) antibonding interactions are 
equal in magnitude to one (Y1) antibonding interaction. 

2.4.1 Corner-Sharing Octahedral Chain8* 

As an example to illustrate how W-block bands are 
constructed, we examine the corner-snaring MO6 octa
hedral chain 2.34. To simplify our presentation, all 

*;n 

*xw 

W 

xz ' 

2.35 

2.36 

distances involved, direct metal-metal interactions are 
negligible, and so are direct interactions between the 
bridging oxygen atoms. Therefore, as shown in 2.37 by 
dashed lines, the BO energies of the xz and x orbitals 
are each dispersionless. At T, $„ and <t>x do not overlap 

4> 

rXZ 

r x 
2.37 

due to their different symmetry, while at X they do to 
give rise to the CO's ^ ( X ) and ^x(X) shown in 2.38. 

%z(x) §g-g-J£U* 

%(x) 

2.38 

Between the metal and the bridging oxygen atoms, 
\px(X) has the maximum bonding interactions while 
^xt(X) has the maximum antibonding interactions. 
Thus the xz- and x-orbital bands have the dispersion 
relations shown by the solid lines in 2.37. The dis
persion relations for the yz- and y-orbital bands of the 
MO6 chain are similarly described. The BO's of the 
metal x^y2 orbital at T and X are shown in 2.39. The 
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Wr) 

^.M) V - / 
2.39 

x*-y2 orbitals are 6-orbitals with respect to the chain 
axis, and therefore do not interact with any orbitals of 
the bridging oxygen atoms. Thus the BO's 4>^-^ are the 
CO's themselves, so the x^-y2 band is dispersionless as 
shown in 2.40. 

***** 

r x 
2.40 

As in the case of the t^-block levels of a regular MO6 

octahedron, the occurrence of antibonding interaction 
between the metal d orbital and the bridging oxygen 
p orbital may be denoted by the symbol (Yb) or (yb) 
(depending upon whether or not the M-O bond is 
contained in the metal d-orbital plane), where the 
subscript b indicates that the oxygen of the M-O bond 
is a bridging ligand. The absence of an oxygen p orbital 
at the bridging position may then be represented by the 
symbol (N) and by a dot in orbital diagrams. According 
to these (Y1,), (yb), and (N) notations, the essence of the 
dispersion relations of the xz, yz, and x2-?2 block bands 
can be summarized as in Table 2.2. Figure 2.1 shows 
the dispersion relations of the t^-block bands calculated 
for an ideal MOOK chain (with Mo-O = 1.96 A). As 
expected, the x2-y2 band is almost dispersionless. The 
x2-^2 band at T and X is characterized by 4(Y1) inter
actions. The degenerate xz and yz bands are charac
terized by 2(Y1) interactions at T, but by 2(Y4) + 2(Yb) 
interactions at X. Since the flat x2-y2 band lies ap
proximately in the middle of the xz and yz bands, two 
(Y4) interactions are approximately equal in magnitude 
to one (Yb) interaction. This relationship between (Yb) 
and (Yt) is not necessarily applicable to systems more 
complicated in structure than the MoO6 chain. In 
general, the magnitudes of the antibonding interactions 
between the metal d and the oxygen p orbitals satisfy 
the following relationships: 

(Yb) as 2(yb) 

(Y1) as 2(yt) (2.26) 
In the applications to be discussed later, we deal mostly 
with the (Yb) and (yb) interactions associated with 
bridging oxygen ligands. To simplify our notations, the 
(Yb) and (yb) interactions will be referred to as the (Y) 
and (y) interactions, respectively. There are two typical 
cases of corner-sharing between two MO6 octahedra, i.e., 
2.41 and 2.42. All possible phase relationships between 

r l (1 

2.41 

L, 

2.42 

'L7 

-10.0 -. 

Figure 2.1. Dispersion relations of the X^- block bands calculated 
for a corner-sharing MoO6 chain. 

TABLE 2.2. Antibonding Contributions of the Oxygen p 
Orbitals of the Mo-O-Mo Bridges in the t^-Block Bands of 
the MOj Chain 

band 
xz, yz 
x2-yi 

V 
(N) 
(N) 

k points 
X 

(Yb) 
(N) 

the adjacent t^-block levels of 2.41 and 2.42 are shown 
in 2.43 and 2.44, respectively. As will be shown later, 

xz 1(N) 

yz ^ o — ^ O W ^O-i- i 

xV 

XZ 

(N) 

2.43 

) 
(N) 

(Y) 

(N) 

@ OO 

yz 

x*-y* 

(N) 

4fc> 
^P A* (Y) 

2.44 

the dispersion relations of the W-block bands of low-
dimensional metal oxides are readily explained by sim
ply analyzing whether or not the bridging oxygen p 
orbitals mix with their adjacent metal d orbitals [i.e., 
by counting the number of (Y), (y), and (N) interac
tions]. 

2.4.2 Edge-Sharing Octahedral Chain8* 

We now examine the t^-block bands of the edge-
sharing MO4 octahedral chain 2.45. The metal-metal 
distances through the shared edges are short, so direct 
metal-metal interactions can become strong. There-

2.45 
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fore, the dispersion relations of the Wblock bands for 
the edge-sharing chain 2.45 are slightly more complex 
than those for the corner-sharing chain 2.34. With the 
coordinate system chosen, the tr-band of 2.45 is con
structed from the x2-^ orbitals. The BO's of the metal 
x^-y2 orbital at T and X are shown in 2.46. Since the 

x*-y* 

Wx) 
L1 

2.46 

overlap between adjacent x2-y2 orbitals is strong, the 
BO of x^y2 is dispersive as shown by the dashed line 
in 2.47. 4>xi.y2(T) and <t>xi.yi(X) interact with the 

bridging oxygen orbitals <l>y(T) and 4>X(X) (see 2.48), 
respectively. Thus the CO of x2-y2, x̂a_yS, is raised in 

2.48 

energy with respect to the BO of x2-y2, in 2.47. The 
7r-band of 2.45 is derived from the xz orbitals. The BO's 
of xz at T and X are shown in 2.49. 4>XZ(T) is metal-

• ^ 

<f> (X) 
xz 

/ \ / \ h4 c 
U 

/ \ / \ / \ / 

2.49 

metal antibonding, while 4>„(X) is metal-metal bond
ing. Thus <t>xt(k) varies as shown by the dashed line in 
2.50. <t>xt(T) does not interact with any bridging oxygen 

xz -

r x 
2.50 
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-8-01 W 

C 
(U 

-10.6 

Figure 2.2. Dispersion relations of the t̂ -block bands calculated 
for an edge-sharing MoO1 chain. 

atom orbitals, while 4>„(X) interacts with 4>Z(X) shown 
in 2.51. Thus the CO of xz, $„{k), is raised in energy 

L, 
2.51 

with respect to <t>xt(k), as k varies from T to X. Con
sequently, the xz band has a narrow bandwidth (2.50). 
The 5-band of 2.45 is constructed from the yz orbitals. 
The BO's of yz at T and X are shown in 2.52. Because 

L, 

2.52 

of the 5-orbital nature of yz, the BO <t>yt(k) is disper-
sionless as shown by the dashed line in 2.53. 4>yz(T) 

4> 

r x 
2.53 

interacts with the bridging oxygen orbital <t>z(T) shown 
in 2.54, but <t>yt(X) does not interact with any bridging 
oxygen orbitals. Therefore the CO of yz, ^yl(k), is 

L, 
2.54 

raised in energy as k varies from X to T. The width of 
the 5-band is determined solely by the metal-bridging 
oxygen interactions. In contrast, the width of the TT-
band is governed by two opposing effects, i.e., the 
metal-metal and the metal-bridging oxygen interac
tions. Consequently, the ir-band becomes narrower 
than the 5-band in the edge-sharing MO4 chain 2.45. 
Figure 2.2 shows the dispersion relations of the Wblock 
bands calculated for an ideal MoO4 chain (with Mo-O 
= 1.96 A). 
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When BO's are well separated in energy, the resulting 
CO's are well separated as well. In such cases, the 
essential aspects of band dispersion relations can be 
easily described by analyzing the nodal properties of the 
CO's at T and X. A more complex situation results 
when two BO's overlap in energy, as depicted by the 
dashed lines in 2.55. If these BO's can interact by 
symmetry along T -* X, the intended crossing of the 
dashed curves are avoided by orbital mixing thereby 
leading to two bands (represented by solid lines in 2.55) 
separated by a band gap. As a result, the two bands 
possess different orbital character before and after the 
intended crossing region. If the BO's do not interact 
by symmetry, the resulting bands cross as shown in 2.56. 

r x r x 
2.55 2.56 

3. Vibrational Band Structure9 

The vibrational energy levels of molecules are discrete 
while those of solids form energy bands. This situation 
is analogous to the difference in the electronic structures 
of molecules and solids. In the present section, we 
discuss how vibrational energy bands (i.e., phonon 
bands) are determined on the basis of a ID chain and 
show that band formation and band gap occurrence for 
vibrational energies are quite similar to those for elec
tronic energies. 

3.1 Formation of Energy Bands 

First, we note that a dimer 3.1 with atom mass M and 
stretching force constant / has the allowed vibrational 
frequency w = V2f/M and the energy hu/2ir. Allowed 
vibrational frequencies of a solid are a function of wave 
vector k, as are electronic energy levels. To simplify 

M M 

f 

3.1 

our discussion, we assume that the atoms of the ID 
chain vibrate only along the chain direction (i.e., long
itudinal vibration). For the monoatomic chain 3.2, the 
displacement function Un<i at the n-th lattice site rep
resents the displacement of an atom i with mass Mit at 
a certain time t, from the equilibrium position. For 

UnJ Un+1J 

3.2 

vibrational energy bands, those displacement functions 
Uni have a role similar to the one that AO's play in 
constructing electronic band structures. Atoms at the 
lattice sites vibrate with frequency «, and such vibra-

Canadell and Whangbo 

tions satisfy the periodic boundary condition. Therefore 
[/„,- is written as 

UnJ - U1
0Wi)-1'2 exp(ifcna) exp(-iwt) (3.1) 

where U° is a constant, and the exptikna) term ensures 
that the displacement Un<i satisfies the translational 
symmetry of the ID chain. As in section 2, the values 
of wave vector k to consider may be confined to -it/a 
< k < ir/a. The vibrations are governed by a certain 
potential V, so each displacement function Un_,- satisfies 
the equation of motion given by 

m ; 

where 

**-.(»,/) = d*V/8UnJU1 mj 

(3.2a) 

(3.2b) 

Equation 3.2 eventually leads to the secular determi
nant 

\Dij(k) - «»(A)5y| = 0 (3.3) 

where the matrix element Dtj(k) is given by 

Dij(k) = (MiMj)1Z2T. *nsndJ) exp[»*(m - n)a] (3.4) 
m 

The dimension of the secular determinant is equal to 
the number of atoms per unit cell. 

Consider the monoatomic chain 3.3 with one atom (of 
mass AO per unit cell and force constant / between 
nearest neighbor atoms. We drop the index i in Un<i 

M M M 

f f 
3.3 

since there is one atom per unit cell, so eq 3.3 leads to 
the expression 

w2(k) = D(k) (3.5) 

Within the first nearest neighbor approximation, the 
potential V may be given as a harmonic function: 

V= Ef(Un-Un+1)
2/2 (3.6) 

Since <*>„,„ = 2/ and Q^n+1 = S n ^ 1 = -/, D(k) is written 
as 
D(k) = (1/M)[2f - f exp(-ifeo) - / exp(ifca)] = 

(4f/M)sm2(ka/2) (3.7) 

From eqs 3.5 and 3.7, we obtain 

«(*) = \/4//Afsin(fca/2) (3.8) 

The dispersion relation of eq 3.8 is shown in 3.4, which 
reveals that the allowed vibrational frequencies range 
from 0 to V4f/M. It is of interest to examine what 

}-J<flM 

o -

vibrational motions of the chain these two extreme cases 
correspond to. Imagine that, at a certain time t, an 
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atom of the reference site (i.e., n = 0) is displaced as 
shown in 3.5. At that instant, the vibration Bloch 

3.5 

functions at T and X are then obtained by repeating 
the displacement vector of the reference cell with a 
common sign and with alternating signs, respectively 
(see 3.6). Clearly, in <t>(T), all atoms move in one di-

<t>{r) — . . — 

*V0 
3.6 

rection without either shortening or lengthening any 
interatomic distances. That is, 4>(r) describes a 
translation and does not involve any vibration, so the 
vibrational frequency for <t>(T) is zero. On the other 
hand, 0(X) involves all atoms in stretching and 
squeezing every nearest neighbor interatomic contacts. 
Therefore, 0(X) describes the atom displacements as
sociated with the highest possible vibrational frequency 
for the chain 3.3. 

3.2 Band Gap and Symmetry Lowering 

A slightly more complicated example is the chain 3.7, 
which has two atoms per unit cell. The most general 
situation for 3.7 results when the atoms 1 and 2 have 
different masses and also when the force constants for 
the atoms in a unit cell and between unit cells are 

n + i 

M1 M, M1 MP 

where n = M1Af2Z(Mi + M2). 
A particularly simple example for eq 3.12 is given by 

case I Mi = M2- M 
fi-h-f (3.13) 

which is equivalent to 3.3 except that the unit cell size 
is doubled in case I. That is, the chain 3.7 for case I 
is obtained by repeating dimer units 3.1. For case I, eq 
3.12 is simplified as 

MuHk) = 2/[l ± cos(fca/2)] (3.14) 

which has the dispersion relation shown in 3.8, a folded 
version of 3.4. We now examine the essence of the 

Fm-

0 — 

~(2flM 

band dispersion given by eq 3.14 by supposing that, at 
a certain time t, the atoms of the reference cell (Le., n 
= 0) are each displaced as indicated in 3.5. Then, at 
that instant, the vibrational Bloch functions 0; (i = 1, 
2) at T are given by 3.9, and the vibrational crystal 
functions ^ at T are obtained as in-phase and out-of-
phase combinations of 0,- as shown in 3.10. ^i(r) in-

0,(0 

02(r) 

%r) 

3.9 

3.7 

different. Within the first nearest neighbor approxi
mation, the harmonic potential for 3.7 is given by 

V = ZUi(Un11 - t/„,2)
2 + /2((7„.li2 - UnXn/2 (3.9) 

n 

Since there are two atoms per unit cell, the secular 
determinant (eq 3.3) is written as 

Z)11(Jk) - a>\k) Z)ia(*) 
Dn(H) D22(K) a\k) = 0 (3.10) 

From eq 3.9, it is found that $„„(1,1) • *„„(2,2) = fx 
+ /2, *„,„(1,2) = -A, and $„,„.!(1:2) = *nM1{2,l) = -J2. 
Consequently, the matrix elements Dy(«) are written 
as 

DuVi) - (/1 + /2) /M1 (i = 1, 2) 

D12(k) = D21Hk) - -U1 + h 6XpHkO))ZiJM1M2 

(3.11) 

From eqs 3.10 and 3.11, the wave vector dependence of 
a) is expressed as 

wHk) = (/1 + /2) 
l ± V16/i/2M2 sin2 V 

U1 + Z2)
2M1. 

(ka/2) 

M 2
-

(3.12) 

^n 
3.10 

volves no vibration, and its frequency is zero. Tp2[T) 
involves all atoms in stretching and squeezing all 
nearest neighbor contacts, and therefore describes the 
highest frequency vibration. If we apply the same 
reasoning, the "two" vibrational states of the dimer 3.1 
can be represented as in 3.11 and 3.12. The former 

3.11 3.12 
shows no vibration, and the latter shows a stretching 
vibration. It is clear that ^1(T) and ^2(r) are in-phase 
combinations of the dimer vibrations 3.11 and 3.12, 
respectively. The vibrational Bloch functions 0,- at X 
are given by 3.13, and their in-phase and out-of-phase 
combinations lead to the vibrational crystal functions 
\pi shown in 3.14. ^1(X) and ̂ 2(X) are out-of-phase 

%W 

tyx) 

W) 

-+— ^+^ -4-
-» 4-

I • a l l • I 
I * ' I " ' I 

3.13 

I a • I • . I 

•+— *—h^ — f 
3.14 
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combinations of the dimer vibrations 3.11 and 3.12, 
respectively. It is noted that the vibration involves only 
the atoms between unit cells in ^1 (X), but only those 
within each unit in ^2(X). For case I, ^i(X) and ^2(X) 
are degenerate, and their frequency is equal to that of 
an isolated dimer, i.e., w = V2f/M. The chain 3.7 for 
case I (or, equivalently, the chain 3.3) is constructed by 
repeating the dimer units. Therefore, the dimer vi
brational level (i.e., w = V2f/Af) spreads into a band 
of width V4f/M as a result of forming the chain (see 
3.15). Since ^i(X) and ^2(X) 8 ^ degenerate, their 

-fifti* 
fif/M-

3.15 

in-phase and out-of-phase combinations, shown in 3.16, 
are equally valid descriptions. This is so because the 

%00 

too 

• • 1 • • 

• • » • 

3.16 

dimer vibration 3.17 is equivalent to 3.18, 3.19, or 3.20: 
Both atoms move simultaneously in 3.17 and 3.18 but 
only one moves in 3.19 and 3.20 with a displacement 
twice that found for 3.17 and 3.18. 

3.17 3.18 

3.19 3.20 

One example of eq 3.12 leading to a band gap is de
fined in case II: 
case II 

for which eq 3.12 becomes 

M1 = M2 = M 
h>f>h (3.15) 

MwHk) = (Zi + Z2) 1± t W 2 sin2 (ka/2) 

(Zi+ Z2)
2 

(3.16) 

As shown in 3.21, the dispersion relation of eq 3.16 leads 
to two separate bands. The band gap occurrence at 

Mw)M -

X can be easily explained in terms of the vibrational 
crystal functions ^j(X) shown in 3.14. As depicted in 
3.22, the frequency for ^1(X) is lowered as the inter-
dimer force constant decreases (/2 < /) while the fre
quency for ^2(X) is raised as the intradimer force con
stant increases (Zi > Z)-

A(X) 

VJ(X) 

3.22 

Another example of eq 3.12 leading to a band gap is 
defined in case III: 
case III M1 > M > M2 

Zi=Z2 = Z (3.17) 

for which eq 3.12 is rewritten as 

t«*Hk) = Z 1± f 4M2 

M1M2 
sin2 (ka/2) (3.18) 

The dispersion relation of this equation is depicted in 
3.23. The band gap occurrence in 3.23 is readily ex
plained on the basis of the vibrational crystal functions 
shown in 3.16. As depicted in 3.24, ^+(X) is lowered 

tt7M -

o-» 

in frequency as the mass of the atom 1 increases, while 
vMX) is raised in frequency as the mass of the atom 2 
decreases. 

Vt(X) 

A vibrational energy band is called an acoustic band 
when its frequency decreases to zero as the wave vector 
approaches T, and an optical band otherwise. For ex
ample, the lower and upper bands of 3.21 or 3.23 are 
acoustic and optical bands, respectively. 

4. Band Structure and Reciprocal Space 

The basic concepts of electronic band structures were 
introduced in section 2 by taking ID chains as exam
ples. We now extend those concepts to 2D and 3D 
crystalline solids. For this purpose, the concepts of 
direct and reciprocal lattices10 of a given solid are ex
amined. Since electronic structures of centered 2D and 
3D systems can be analyzed in terms of several different 
unit cells, we also discuss how different unit cell choices 
influence orbital analyses of the resulting band struc
tures. Finally, we consider the concept of electronic 
density of states. 

4.1 Electronic Structures of Multidimensional 
Systems 

As an example of a 2D system, let us consider the 
rectangular lattice 4.1. An AO x located at the (ma, 
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~ * — • — • — » ~ 

- • — t — - • — # — 

4.1 

nb) site is written as x(* - ma - nb), so the BO <t> re
sulting from x is expressed as 

4>(ka>k\>) s 

N-1Z2L £exp(ifcama) exp{ikhnb) x(r - ma - nb) 
m n 

(4.1) 
where the two independent wave vectors ka and kb are 
necessary to allow all possible phase relationships be
tween the AO's x along the a and b directions, respec
tively. The coefficients exp(ifeama) and exp(ifebn6) are 
periodic functions of ka and fcb, respectively, so only the 
wave vectors (ka, kb) falling in the following region: 

-ic/a <ka< ir/a 

-w/b <kh< r/b (4.2) 

may be used in constructing the BO's. The wave vec
tors of equation 4.2 define the first Brillouin zone (FBZ) 
(see 4.2) of the 2D lattice 4.1. In 4.2, r = (0,0), X • 

M 

4.2 

(*/a, 0), y - (0, v/b), and M= (*/o, r/b). When the 
overlap integrals are neglected within the first nearest 
neighbor approximation, the energy associated with the 
BO </>(ka, &b) is given by 

e(kv kh) = MMb)IH-V(Mb)) = 
a + 20, cos kaa + 20b cos khb (4.3) 

where 0, and 0b are the nearest neighbor resonance 
integrals along the a and b directions, respectively: 0a 
= (XWIH-1Ix(M)) and0b = <xW|ffeff|x(r-b)>. The 
wave vector dependence of e(ka, kh) is often probed by 
plotting e(ka, feb) as a function of (ka, kh) along several 
lines of the FBZ, e.g., r — X-* M-^ Y-* T. 

Diagram 4.3 shows the e(ka, feb) vs (ka, feb) plot based 
upon eq 4.3 under the assumption that 0a < 0b < 0 (i.e,, 
the interaction along the a direction is stronger in 
magnitude than that along the b direction). The main 

-01-2(4 + 0,) 

- a +1(0, *P„) 

features of this band dispersion can be readily shown 
in terms of orbital interactions at a limited number of 
specific k points. The values of the coefficients exp-
(ikama) and exp(ifebnb) at T, X, Y, and M are listed in 
Table 4.1. Under the assumption that x is an s orbital, 
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TABLE 4.1. Bloch Orbital Coefficients for a 2D Lattice 

k point exp(ifeama) exp(ikbnb) 
T - (O1 0) 
X = (T/C, 0) 
Y - (0, w/b) 
M - (w/a, T/b) 

(IV" (D" 
H ) m (1)" 
(D" (-1)" 
(-1)» (-1)» 

the phase relationships between the AO's at those k 
points are illustrated in 4.4-4.7. At T, the AO's repeat 

O O O O 

ro o O O 

O O O O 
4.4 

O O O O 

O O O O 
4.6 

O © O © 

XO © O © 

O © O © 
4.5 

O 0 O © 

W© O © O 

O O © 
4.7 

with a common sign along the a and 6 directions (4.4). 
At X, the AO's repeat with alternating signs along the 
a direction but with a common sign along the b direc
tion (4.5). At Y, the AO's repeat with a same sign along 
the a direction but with alternating signs along the b 
direction (4.6). At Af, the AO's repeat with alternating 
signs along the a and b directions (4.7). On the basis 
of 4.3-4.7, it is easy to explain the band dispersion 
relations of 4.3: For example, the energy e(ka, kh) is 
lowest at r because this point allows bonding arrange
ments of the AO's for every nearest neighbor along the 
a and b directions. Along T -*• X, the energy e(ka, kh) 
increases because the nearest neighbor interaction along 
the a direction changes gradually from bonding to an-
tibonding. Extension of our discussion to a 3D system 
is straightforward. As an example, consider the 3D 
orthorhombic lattice 4.8. Now an AO x located at a 

^a 
4.8 

lattice site (ma, nb, pc) (m, n,p = integers) is given by 
X(P - ma - nb - pc), and the corresponding BO by 
<t>(ka,kh,kc) • N-1^2LLL exp(ifcama) exp(£fcbnb) 

m n P 

exptikjjtfxir - ma - nb - pc) (4.4) 
where the three independent wave vectors ka, kb, and 
kc are needed to describe all possible phase relationships 
between the AO's along the a, b, and c directions, re
spectively. Due to the periodic nature of the coefficients 
exp(ifca,ma), exp(i"fcbnb), and exptffecpc), only the wave 
vectors (ka, feb, kc) in the following region may be used 
in constructing the BO's: 

-w/a < ka< IT/a 

-it/b <kh< ic/b 

—K/C < kc < x/c 

(4.5) 
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TABLE 4.2. Bloch Orbital Coefficient* for a 3D Lattice 
k point exp((feama) ex.p{ikbnb) exp(ikcpc) 

r - (0, 0, 0) (l)m (1)" (1)" 
X = (ir/a, 0, 0) (-1)" (1)" (1)" 
y = (o, T/6 , 0) (i)» (-D- (i)" 
Z = (0, 0, r/c) (l)m (1)" (-1)" 

These wave vectors define the FBZ (4.9) of the 3D 
lattice 4.8. In 4.9, T = (0, 0, 0), X = (x/a, 0, 0), Y = 

/ 

^ 

I 

r 
r x 

-7 
X 

4.9 

(0, ir/b, 0), and Z = (0, 0, ir/c). When the overlap 
integrals are neglected within the first nearest neighbor 
approximation, the energy e(ka, kh, k<) of the BO <f>(kit 
^b. *c) is given by 

«(*., Ab. K) - MAa-Me)IH -Wa-Mc)) -
a + 2/9, cos Aaa + 2/9b cos Abfc+ 2/9c cos kcc (4.6) 

where /9C is the nearest neighbor resonance integral 
along the c direction: /9C - <x(J*)|#efflx(i-c)). The 
width of the band given by eq 4.6 is 4(|j8a| + |/9b| + |/9C|). 
As in the cases of ID and 2D systems, dispersion rela
tions for 3D systems can be easily explained by knowing 
the coefficients exp(iA,ma), exp(iAbn6), and exp{ikj)c) 
at a limited number of specific k points such as r, X, 
Y, and Z, which are summarized in Table 4.2. 

4.2 Direct and Reciprocal Lattices10 

To extend our descriptions of electronic band struc
tures to general 3D systems, it is convenient to intro
duce the concepts of the direct and reciprocal lattices. 
For a general 3D lattice with repeat vectors a, b, and 
c, the positions of lattice sites (ma, nb, pc) can be 
represented as vectors R 

R = ma + nb + pc (4.7) 
A set of these vectors is often called the direct lattice. 
For a given direct lattice, its reciprocal lattice is defined 
as a set of vectors K satisfying the relationship 

exp(K-R) = 1 (4.8) 

Then any vector K of the reciprocal lattice is expressed 
as 

K = /na* + nb* + pc* (4.9) 

where a*, b*, and c* are the so-called reciprocal vectors. 
For the orthorhombic lattice 4.8, the lengths of a*, b*, 
and c* are given by 2ir/a, 2ir/b, and 27r/c, respectively, 
and their directions are along a, b, and c, respectively. 

Let us consider a direct lattice generated by three 
repeat vectors a, b, and c which are not necessarily 
orthogonal to each other, as shown in 4.10, where the 

0 
a 

4.10 

Canadell and Whangbo 

volume V of the parallelepiped defined by the three 
vectors a, b, and c is given by V = a • b X c. Then the 
reciprocal lattice vectors a*, b*, and c* are given as 
follows: 

a* = (2TT/V) b X C 

b* = (2*/V) c X a (4.10) 

c* = (2ir/V) a x b 

The lengths and directions of the vectors b X c, c X a, 
and a X b of eq 4.10 are easily determined. For exam
ple, the vector a X b has the length equal to the area 
of the parallelogram defined by the vectors a and b and 
has the direction perpendicular to both a and b, as 
shown in 4.11. The positive direction of a X b is ob-

a*b 

b 

4.11 

tained according to the right-handed screw convention: 
rotate a around the axis of a X b toward b as if to 
advance a right-handed screw. Then the screw-ad
vancing direction is the positive direction of a X b. 

It is convenient to express a general position, k, of 
the reciprocal space (i.e., the space defined by the re
ciprocal lattice vectors K) in units of the reciprocal 
vectors, that is 

k = xa* + vb* + ZC* (4.11) 

where x, y, and 2 are dimensionless numbers. Then, for 
any general 3D lattice, the term exp(ik«R) can be 
written as 

exp(ik'R) = exp(t*fcama) exp(ikhnb) exipiik^c) (4.12) 

where fca = x{2v/a), kb = y(2v/b), and kc = z(2ir/c). 
Therefore, the 3D wave vectors (fea, kb, kc) introduced 
to construct the BO's of a 3D orthorhombic lattice are 
also valid for any other nonorthorhombic lattice. The 
wave vector k is often represented by (x, y, z). Thus 
for the FBZ 4.9, T = (0, 0, 0), X = (1/2, 0, 0), Y = (0, 
1/2, 0), and Z = (0, 0,1/2). The primitive unit cell of 
reciprocal space defined by equation 4.13 contains all 

-1 /2 < x < 1/2 

-1/2 < y < 1/2 (4.13) 

-1 /2 < z < 1/2 

wave vectors needed for constructing the BO's. This 
primitive cell of reciprocal space may now be referred 
to as the first primitive zone (FPZ). For orthorhombic 
lattices, the FPZ is identical with the FBZ. This is not 
the case for other lattices, as will be discussed later. 

Our notations for BO's and their related expressions 
are considerably simplified by the use of k and R. An 
AO xM located at R is given by xM(' "R)- Therefore, the 
BO 4>M is written as 

*„(k) = -T=L exp(tk • R)x„(r - R) (4.14) 

and the CO's ^1 are given as linear combinations of the 
BO's <*>„ 

Wk) = LC„;(k) *„(k) (4.15) 
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The energies e^k) of the CO's ̂ (k) are eigenvalues 
associated with /feff 

H<%(k) = e,(kWk) (4-16) 

which leads to the secular determinant 
|ff„(k) - ej(k)S„.(k)| = 0 (4.17) 

The matrix elements H^Qs) and S^Ck) are then ex
pressed as 
H119Ck) - <*„<k)|H*|0,(k)> 

- <X»W|H,aIXr(r)> + E[exp(-ik.R)<x,(r-R) 

|H*ff|x,(r)> + exp(*.R)<x,(r)|H*«|x.(r-R)>] (4.18) 

and 
S„(k) = <0,(k)|*,(k)> 

- <x»(r)|x,(r)> + E[exp(-ik.R)<x„(r-R) 
|x,(r)> + exp&.B)(xM(r)|x,(r-B)>] (4.19) 

4.3 Unit Cell Choice and Band Dispersion 

Let us consider the body-centered 2D lattice shown 
in 4.12 as a practical example. For a unit cell, one 

4.12 

might choose the primitive cell defined by the nonor-
thogonal repeat vectors a and b. Diagram 4.13 shows 
the reciprocal vectors a* and b* corresponding to a and 
b, which are obtained according to equation 4.10 after 
adding a unit vector (c) at the origin along the a X b 
direction. Diagram 4.14 shows the reciprocal lattice 

4.13 

generated by the vectors a* and b*, where the paral
lelogram represents the FPZ, T = (0, 0), X = (1/2,0), 
Y = (0,1/2), and M = (1/2, 1/2). The FBZ of the 

(*V) 

.(a*o) 

4.14 

reciprocal lattice 4.14, shown in 4.15, is obtained as the 
smallest region around the origin enclosed by planes 
bisecting every straight line that connects the origin to 
its neighbor sites (Le., the Wigner-Seitz cell). Obvi

ously, the FPZ and the FBZ have the same area. The 
wave vectors of either the FPZ or the FBZ are equally 
valid in constructing the BO's and CO's. 

4.15 

As a unit cell of the body-centered 2D lattice 4.12, one 
may choose the body-centered cell defined by the or
thogonal vector a' and b'. The area of the unit cell 
defined by a' and b' is twice that defined by a and b. 
The reciprocal lattice generated by a'* and b'* is shown 
in 4.16, where the rectagular box around the origin is 
the FPZ. In this case, the FBZ is identical with the 

(o,b*) («**•) 
• • • 

r M' 

r'. \x' '(o*.o) 

4.16 

FPZ. In units of a'* and b'*, T = (0,0), X' = (1/2,0), 
Y = (0,1/2), and M' = (1/2,1/2). For the purpose of 
comparison, the FPZ of 4.14, the FBZ of 4.15, and the 
FPZ of 4.16 are combined together in 4.17. The FPZ 

4.17 

area of 4.16 is half that of 4.14, because the area of the 
real space unit cell defined by a' and b' is twice that 
defined by a and b. In 4.16, the T' — X' and T' — Y' 
directions are equal to the a' and b' directions, re
spectively. In 4.14 and 4.15, the T -*• X direction is 
equal to the a' direction, but the T-* Y direction is not 
identical with the b'direction. The Y'point of 4.16 is 
equivalent to the point (-0.25, 0.5) in units of a* and 
b* in 4.14. 

We now examine subtle differences in BO construc
tions arising from different choices of unit cells. To 
simplify our discussion, each lattice site of the 2D lattice 
4.12 is assumed to have one s orbital. The body-cen
tered unit cell consists of a dimeric unit, so each unit 
cell has dimer bonding and antibonding levels (4.18 and 
4.19, respectively). To clarify our discussion in the 

O © 
o-

4.18 4.19 
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following, the BO's constructed from the primitive and 
body-centered cells will be represented by <t>(k) and 
<f>'(k'), respectively. In addition, the BO's 0'(k') con
structed from the dimer bonding and antibonding levels 
will be denoted by <£i'(k') and 02'(kO, respectively. The 
BO's <t>(T) and <t>(M) are shown in 4.20 (see Chart 4.1). 
Inspection of their nodal properties show that <f>(T) and 
(J)(M) are equivalent to <£i'(r") and ^1'(M), respectively. 
The BO's <t>(X) and 4>(Y) are shown in 4.21 (Chart 4.1), 
and are identical with <£2'(r") and <£2'(M), respectively. 
With the body-centered unit cell, the BO's 4>i'(Y) and 
<t>i'(Y) generated from the dimer bonding and anti-
bonding levels are shown in 4.22 (Chart 4.1). These 
levels are degenerate and are obtained as linear com
binations of two degenerate BO's </>(k) constructed for 
k = (0.25, 0.5) and (-0.25, 0.5). The BO's M(X) and 
4>2'(X) are shown in 4.23 (Chart 4.1) and are obtained 
as linear combinations of two degenerate BO's <p(k) 
constructed for k = (0.25,0) and k = (-0.25,0). As can 
be seen from the above examples, it is important to note 
that orbital phase relationships given by wave vector 
points such as T, X, Y, and M depend on how unit cell 
repeat vectors are chosen. Consequently, to analyze the 
nature and strength of interactions along a certain real 

space direction for a given crystal, one needs to select 
a proper wave vector direction, which depends upon the 
reciprocal vectors associated with the chosen unit cell 
repeat vectors. 

As a second example concerning the choice of recip
rocal unit cell, we consider a 2D hexagonal lattice gen
erated by the two vectors a and b shown in 4.24. The 

4.24 

reciprocal lattice, the FPZ (parallelogram) and the FBZ 
(regular hexagon) are shown in 4.25, where L = (1/3, 
1/3). The band dispersion relations of a 2D hexagonal 
system are typically shown by plotting e(k) along the 
edges of the triangle of the FBZ defined by the three 
points T, X, and L. (The X, L, and Af points are often 

(a*b*) 

4.25 

referred to as M, K, and K', respectively.) According 
to eq 4.8, e(k + K) = e(k). In 4.25, M' = (-0.5, 0.5) = 
(0.5, 0.5) - (1.0, 0.0) = M - (1.0, 0.0) so that e(M) = 
e(M). Since e(M) = e(X) by symmetry, e(M) = e(X). 
Therefore the band dispersion along L -*• M is equiv
alent to that along L-- X. Thus the band dispersion 
relation of a 2D hexagonal system can be examined by 
plotting e(k) along T--X and T--M. In band orbital 
analysis, the use of the T-- M line is more convenient 
than that of T -*• L -- X because it provides an easier 
representation of orbital phase changes. An example 
of a 2D hexagonal lattice is the graphite layer 4.26, 
which has two carbon atoms per unit cell. Let us 

4.26 

consider only the bands resulting from the T and x* 
orbitals (shown as projection views perpendicular to the 
layer in 4.27) of each unit cell. The BO's <h(k) and 

4.27 

<£2(k) (resulting from TT and ir* orbitals, respectively) at 
r are shown in 4.28, those at X in 4.29, and those at Af 
in 4.30. In 4.28-4.30 (Chart 4.2) the BO's are classified 
as symmetric (S) or antisymmetric (A) with respect to 
the horizontal mirror plane. As shown in 4.31, the 4>i(k) 
and 02(k) levels do not cross along T-* X but they do 
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CHART 4.2 

4.30 

along T-- M, thereby leading to the degeneracy at L. 
Since the graphite layer has two ir electrons per unit 
cell, the resulting bands become half filled. 

O 
IT 

• e. 

r L 

4.31 

10 

M 

4.4 Density of States 

There are an infinite number of k points in the FPZ 
of reciprocal space. For a given energy band ef(k), it 
is practically impossible to examine e,(k) for all k in the 
FPZ. For simplicity, one may plot e,(k) vs k along 
several directions of k (e.g., r -*• X, T -*• Y and T -*• 
Z) so as to estimate the width of the band along those 
directions. In reciprocal space, all k points of the FPZ 
represent equally allowed states. Of course, it is pos
sible that by symmetry several different k values may 
lead to a same energy value for e,(k). For example, in 
the hexagonal FBZ of 4.25, the points X, Y, and Af' all 
lead to an identical set of e;(k) values. Provided that 
the energies of a given band are calculated for a fine 
mesh of k points covering the FBZ or FPZ, therefore, 
the energy levels of the band do not necessarily have 
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the same probabilities thereby leading to the concept 
known as the density of states (DOS), n(e). The DOS 
value n(e) refers to the probability of the energy level 
e. Thus n(e) is nonzero within the allowed energy re
gion of a band, and vanishes in the forbidden energy 
region. Since a band can accommodate two electrons 
per unit cell, the n,(e) values of a given band i satisfy 
the normalization condition 

f n;(e) de = 2 (4.20) 

The electronic structures of solids may be discussed 
solely on the basis of their DOS values. In such an 
approach, the band orbital information is completely 
absent. Details of DOS calculations are described later. 
For the moment, it is sufficient to observe typical 
patterns of ID and 2D lattice. As shown in 4.32, the 
DOS values of a ID band peak at the bottom and the 
top of the band. For a 2D square lattice with equal 
magnitudes of interaction along the a and b directions, 
the DOS values peak in the middle of the band as 
shown in 4.33. The DOS shape for a 3D lattice depends 
upon the nature of the lattice, but high DOS values 
generally occur in the middle of the band. An impor
tant DOS value in describing the physical properties 
of metals is the DOS value at the Fermi level, i.e., n(ej). 

4.32 4.33 

5. Partially Filled Bands 

5.1. Fermi Surface11 

To examine the concept of Fermi surface, we consider 
the band dispersion relation of eq 4.3 for a 2D lattice 
4.1. Diagrams 5.1a-5.1e (Chart 5.1) show the band 
dispersion relations along T -*• X-*• M — Y -• T for 
cases a (ft < ft, - 0), b 08. < ft, < 0), c (ft, < -ft, < 0), 
d (ft, » ft, < 0), and e 03a = -ft, < 0), respectively. There 
is no interaction along the b direction in case a, so that 
the band is dispersionless along T-* Y and X-*-M. In 
cases b and c, the interaction along the b direction is 
weaker in magnitude than that along the a direction. 
In cases d and e, the interactions along the a and b 
directions are equally strong. The dashed lines of 
5.1a-5.1e refer to the Fermi level appropriate for when 
the band is half filled. For a partially filled band, wave 
vectors in a certain region of the FPZ lead to occupied 
band levels (Le., levels below the Fermi level), and wave 
vectors in the remaining region of the FPZ lead to 
unoccupied band levels (i.e., levels above the Fermi 
level). For simplicity, wave vectors leading to occupied 
and unoccupied levels of a partially filled band may be 
referred to as occupied and unoccupied wave vectors, 
respectively. The occupied and unoccupied wave vec
tors of the FPZ for 5.1a-5.1e are shown in 5.2a-5.2e 
(Chart 5.2), respectively, where the occupied wave 
vectors are shown by shading. Since all k points of the 
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FPZ are equally allowed, the occupied region in each 
of 5.2a-5.2e is one half the area of the FPZ. For a 
completely filled band, all the wave vectors of the FPZ 
are occupied. Diagrams 5.2f and 5.2g show the occupied 
and unoccupied wave vectors of case d when the band 
is less-than-half and more-than-half filled, respectively. 

The boundary surfaces dividing the occupied and 
unoccupied wave vectors are known as Fermi surfaces. 
Thus a Fermi surface occurs as a surface in a 3D band 
description, a line in a 2D band description, and a point 
in a ID band description. The wave vectors lying on 
the Fermi surface are called the Fermi vectors, which 
are denoted by kf. Thus the Fermi surfaces of 5.2a-5.2g 

are given by 5.3a-5.3g (Chart 5.3), respectively. The 
Fermi surfaces of 5.3a-5.3c each consist of isolated lines, 
and hence are ID Fermi surfaces. The Fermi surfaces 
of 5.3d-5.3g are closed loops, and therefore define 2D 
Fermi surfaces. (For 5.3e and 5.3g, the Fermi surface 
patterns of the FPZ need to be repeated in reciprocal 
space to recognize their closed loops.) Carriers of metals 
are those electrons at the Fermi level. When a certain 
wave vector direction does not cross a Fermi surface 
(e.g., r - • Y in 5.3a), there are no electrons at the Fermi 
level having momentum along that direction, so that the 
system is not metallic along that direction. Therefore 
the Fermi surfaces of 5.3a-5.3c refer to ID metals with 
metallic properties along the a direction, while those 
of 5.3d-5.3g represent 2D metals. Fermi surfaces re
sulting from less-than-half and more-than-half filled 
bands are often referred to as electron and hole Fermi 
surfaces, respectively. For example, the Fermi surfaces 
of 5.3f and 5.3g (see also 5.2f and 5.2g) are electron and 
hole Fermi surfaces, respectively. 

We now generalize our discussion of Fermi surface. 
With the ID representation (eq 2.12), the Fermi surface 
of a half-filled band is given by two k points (±0.25 a* 
or, equivalently, ±kf) as shown in 5.4. With the 2D 

-dlM all 

5.4 

representation (eq 4.3), the Fermi surface of the half-
filled ID metal for /8a < /3b = 0 is given by two lines 
perpendicular to T -* X, as already seen from 5.3a. 
With the 3D representation (eq 4.6), the Fermi surface 
of the half-filled ID band for 0, < /Sb = 0C = 0 is given 
by two parallel planes, Le., (±0.25, y, z), perpendicular 
to T -»• X (see 5.5). Likewise, the 2D Fermi surface 

/M*T A J_ ...A-V. i 

? 
/ 

-e 
X 

7 
5.5 

of 5.3f will be given by a cylinder in the 3D repre
sentation (j8a = ft, < jSc = 0 with eq 4.6) as shown in 5.6. 

5.2 Fermi Surface Nesting45 

In addition to the dimensionality of metallic prop
erties, Fermi surfaces are also important in explaining 
the electronic instabilities of partially filled band sys
tems. When a piece of a Fermi surface can be trans
lated by a vector q and superimposed on another piece 
of the Fermi surface, the Fermi surface is said to be 
nested by the vector q. Since the Fermi surface of 5.3a 
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consists of two parallel lines, it is nested by an infinite 
number of wave vectors, two examples of which are 
shown in 5.7, In discussing Fermi surface nesting, it 

5.7 

is important to consider Fermi surfaces in the entire 
reciprocal space, which is achieved by repeating the 
Fermi surface pattern of the FPZ in reciprocal space. 
For example, the Fermi surface of 5.3b is repeated once 
along r -»• Y to generate 5.8. Then it is evident that 

the Fermi surface of 5.8 is nested by the vector q shown. 
The Fermi surface of 5.3d is a square. Thus when this 
pattern is repeated in reciprocal space, one finds that 
the Fermi surface contains two sets of parallel lines 
orthogonal to each other (see 5.9). Consequently, a 

Nr 

\ r' / \ / 

5.9 

large number of nesting vectors are possible as in the 
case of 5.7. 

As slightly more complicated examples of Fermi 
surface nesting, consider the two partially filled ID 
bands shown in 5.10 and 5.11. In 5.10 the two bands 

r 
5.11 

have an identical slope along T--X but opposite slopes 
along r -* y. In 5.11 the two bands have a same slope 
along r -* X as well as along T-* Y. Then the Fermi 
surfaces resulting from the two bands of 5.10 and 5.11 
are each found to have four separate pieces as shown 
in 5.12 and 5.13, respectively. In 5.12 and 5.13, the 

5.12 5.13 

inner two pieces of the Fermi surface result from the 
upper band, and the outer two pieces from the lower 
band. In 5.12 or 5.13, there are two pairs of nested 
pieces with an identical nesting vector. The importance 
of Fermi surface nesting lies with the fact that a metallic 
system with a nested Fermi surface possesses electronic 
instability and therefore is likely to undergo a metal-
insulator phase transition. The latter opens a band gap 
at the Fermi level thereby destroying the Fermi surface. 
This topic is discussed in detail in the next section. 

6. Electronic States Derived from a Metallic 
State 

In discussing metal-insulator and metal-super
conductor transitions, it is convenient to describe the 
insulating and the superconducting states as a conse
quence of perturbation on the metallic state. In the 
following we first examine why Fermi surface nesting 
is likely to induce a metal-insulator transition from the 
viewpoint of band orbital mixing. Then we discuss how 
the phenomenon of electron localization may be un
derstood and also how a superconducting state can be 
described in terms of band orbital mixing. 

6.1 Orbital Mixing and Fermi Surface 
Nesting48"-12 

A metallic state predicted by one-electron band the
ory (i.e., a normal metallic state) is not stable when its 
Fermi surface is nested, and becomes susceptible to a 
metal-insulator transition under a suitable perturba
tion. We now examine the nature of the nonmetallic 
states that are derived from a normal metallic state 
upon mixing its occupied and unoccupied band levels. 
For simplicity, consider the 2D representation of a 
nested Fermi surface shown in 6.1, where the vector q 
is one of many possible nesting vectors. To simplify 

W-
\ x V 

6.1 

our notations, the occupied and unoccupied wave vec
tors are denoted by k and k', respectively. Each unit 
cell will be assumed to contain one AO x, so the BO's 
0 defined in eq 4.14 are the CO's as well. Suppose we 
choose the k and k' values to satisfy the relationship 

q = k - k' (6.1) 

The orbitals 0(k) and <t>(k') are eigenfunctions of the 
unperturbed Hamiltonian H0. If a certain perturbation 
H' is introduced, these orbitals may not be eigenfunc-
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tions of H° + H' anymore, so that they interact to give 
modified orbitals Mk) and Mk') 

Mk) - 0(k) + T^(k') (6.2) 

^ k ' ) oc -y0(k) + ^kO 

where 7 is a mixing coefficient. These orbital mixings 
are possible when the interaction matrix elements (</>-
(k)|tf IMkO) are nonzero. If the k and k' values are 
chosen from the Fermi surface, Mk) and Mk') are de
generate (6.2), and nondegenerate otherwise (6.3). The 

4>(k) <P(k') 

H° H'* H1 

6.2 

H' 
6.3 

• * « * • « ' 

energy difference between Mk) and Mk') become 
smaller as k approaches the Fermi surface. 

We now examine how the electron density distribu
tions of Mk) and Mk') differ from those of the un
modified orbitals Mk) and Mk'). The electron density 
distributions associated with Mk) and Mk') are given 
by 

Mk)**(k) a Mk)**(k) + Y2Mk')tf>*(k') + Ap 

Mk'ty*(k') a 7ty(k)**(k) + Mk')tf>*(k') - Ap (6.3) 

where 
Ap = 7[M-(k)Mk') + Mk)M*(k')] (6.4) 

If we expand M*(k)Mk') and Mk)***') using eq 4.14 
and keep only the diagonal terms x(* ~ R) X*(r _ R). 
it can be shown that 

Ap oc £ cos (q-R) xO" " R) X*(r - R) (6.5) 
R 

Therefore, with respect to Mk) or Mk'), Mk) and Mk') 
each have density wave character whose periodicity in 
real space is governed by the term cos (q-R). According 
to eqs 6.3 and 6.4, Mk) leads to density accumulation 
where Mk') has density depletion, and vice versa. If 
the density distribution arising from Mk) or Mk') is 
represented by a straight line, then the density accu
mulation and depletion associated with Mk) and MkO 
occur as a wave form as shown in 6.4, where shaded and 
unshaded half waves represent density accumulation 
and depletion, respectively. 

^(k)Mk') 

6.4 

Suppose that the orbital mixings defined in eq 6.2 are 
carried out for all occupied k of the FPZ under the 
condition q = k - k' to obtain sets of modified orbitals 
IMk)J and IMk')) from sets of unmodified orbitals (Mk)) 

and !MkO)- The normal metallic state is one in which 
all the Mk) orbitals are doubly occupied (6.5). Then 
as illustrated in 6.6 for a ID chain, each site has no 
magnetic moment and has an identical amount of 
charge. A charge density wave (CDW) state occurs 

4>(k) 4><k') 

-K-
6.5 

It It 
—•— 

It —•— If 
-•— 

6.6 

when the Mk) orbitals are doubly occupied (6.7). As 
illustrated in 6.8 for a ID chain, a CDW state has no 
local magnetic moment but charge densities on atomic 
sites which vary in a wave manner. When Mk) and 

Hk) Hk1) 

- t f - > — 
6.7 

6.8 

MkO are each singly occupied by up-spin and down-spin 
electrons (6.9), respectively, a spin density wave (SDW) 
state results. As shown in 6.10 for ID chain, the SDW 
state has a local magnetic moment at atomic sites but 
the total charge density on each atomic site is identical. 

Hk) Hk1) 

6.9 

U 
—•— 

Il 
—•— 

t l 
—•-

tl 

6.10 

Unless Mk) and Mk') are degenerate, which occurs 
when k is on the Fermi surface, the mixing of the 
unoccupied orbital MkO into the occupied level Mk) 
has an energy-raising effect, although it can be more 
than compensated by the energy lowering associated 
with the interaction energy (Mk)|#1MkO). Thus the 
orbital mixing between Mk) and MkO becomes more 
favorable as the energy difference between them de
creases, i.e., when the k value approaches the Fermi 
surface. The orbital mixing lifts the degeneracy be
tween Mk) and Mk') when k is on the Fermi surface 
(6.2) and increases the energy difference between Mk) 
and MkO when k does not lie on the Fermi surface (6.3). 
As illustrated in 6.11 for a partially filled ID band 
system, the orbital mixing between Mk) and Mk') 
changes their energies in the vicinity of the Fermi level 
most significantly and opens a band gap at the Fermi 
level. In 6.11 the band gap is given by 2A, where A = 

Tl" 
2A 

•w/o -kf 0 kf xla 

6.11 
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(4Ck)IHWkO) evaluated for k = kf. When there exists 
a Fermi surface nesting, the favorable orbital mixing 
can be achieved for a large region of k values in the 
vicinity of the Fermi surface. This explains why a metal 
with nested Fermi surface is susceptible toward a phase 
transition that leads to orbital mixing between the levels 
around the Fermi level thereby creating a band gap. 

By definition, Fermi surfaces disappear when a band 
gap opens at the Fermi level. So far in our discussion, 
a complete Fermi surface nesting (e.g., 6.1) has been 
assumed. In such a case, all the Fermi surface is re
moved by an appropriate orbital mixing. In certain 
cases, a Fermi surface nesting may be incomplete, as 
illustrated in 6.12, if some parts of the Fermi surface 
have different curvatures. In this case, only the nested 

6.12 

Y 

I"' X 

6.13 

/ 

<o 
n 
CO 

6.14 6.15 

portion of the surface is removed by orbital mixing as 
illustrated in 6.13 and 6.14, so that the unnested portion 
is left as small Fermi surface pockets as shown in 6.15.4 

Since 6.15 has Fermi surfaces, it represents a metallic 
state as well. Compared with 6.12, 6.15 has a smaller 
Fermi surface area and hence a smaller number of 
carriers (i.e., those electrons at the Fermi level). Sup
pose that a phase transition induced by temperature 
lowering gives rise to the Fermi surface change 6.12 -* 
6.15. Such a phase transition is likely to exhibit a re
sistivity vs temperature plot as shown in 6.16. However, 
if a Fermi surface nesting is complete, 1.3 will be ob
served. 

p 

— T 

6.16 

6.2 CDW Instability5 

So far we have implicitly assumed that a band level 
below ef is completely filled (i.e., occupancy of 1), and 
that above e{ is completely empty (i.e., occupancy of 0). 
This picture is valid for all levels when T = O, but only 
for the levels lying outside the vicinity of the Fermi level 
(e.g., e < e{ - 4kBT and e > e( + 4kBT, where kB is the 
Boltzmann constant) when T > 0. For the levels lying 
close to the Fermi level (e.g., e{ - 4kBT <e<e{ + 4kBT), 
whose orbital mixing plays a crucial role in lowering the 
energy of a metal with nested Fermi surface, thereby 
leading to a metal-insulator transition, their orbital 
occupancy f (e) at nonzero temperature is given by the 
Fermi-Dirac distribution function 

f(e) = 1/[1 + exp[(e - e{)/kBT)] (6.6) 
Thus, f(e) < 1 for e < ef, and f(e) > 0 for e > ef. For 
example, in the vicinity of the Fermi level of 6.1, the 

occupancy of <j>(k) is less than 1, and that of </>(k') is 
larger than 0 (at T > 0). Consequently, the energy gain 
resulting from the orbital mixing between 4>(k) and 
#(k') is maximum at T = 0 and decreases as T is raised. 
Thus, only when T is lowered below a certain temper
ature does the energy gain associated with the orbital 
mixing become substantial enough to cause a metal-
insulator transition. 

Metal-insulator transition arising from a CDW in
stability is not abrupt, but typically undergoes a series 
of steps.1* This process can be illustrated by considering 
a ID metal as composed of weakly interacting chains. 
At a high temperature, each chain has no tendency for 
CDW formation, so all chains have uniform density 
distributions, as illustrated by straight lines in 6.17a. 
Below a certain temperature T1D, each chain has a 
tendency for CDW formation. As depicted in 6.17b, 

H 11-

6.17c 

6.17b 

• W W / W W 

VNAAAAAAA 

,AAAAAAAA/ 

6.17d 

a CDW is formed and destroyed dynamically at many 
parts of each chain, and CDW formation in one chain 
is independent of those in other chains. The average 
length of a CDW segment (i.e., coherence length) is £a. 
At a certain temperature Tx below T1D, CDW segments 
among different chains begin to order along the inter
chain direction as shown in 6.17c, where | b is the co
herence length along the interchain direction. Finally, 
at a certain temperature Tc below Tx, CDW formation 
in each chain is complete and CDW's among different 
chains are ordered, as shwon in 6.17d. Therefore, a 
long-range order sets in. The coherence lengths £a and 
£b increase gradually upon lowering the temperature as 
the extents of long-range order along the intra- and 
interchain directions increase. These coherence lengths 
become infinite when a long-range order is complete in 
both directions. 

The temperature dependence of CDW formation in 
real space, discussed above, is deduced typically from 
single-crystal X-ray diffraction measurements.1* At T 
> T1D, the diffraction pattern of a ID metal shows only 
Bragg peaks, as shown in 6.18a. AtTxK T < T10, the 
diffraction pattern shows diffuse lines (or sheets in 3D 
representation) perpendicular to the fea direction, which 
are located at ±2k{ from the rows of the Bragg peaks, 
as shown in 6.18b. The thickness of the diffuse line is 
given by S,'1. At Tc < T < Tx, the diffuse lines are 
transformed into diffuse spots (or rods in 3D repre
sentation) centered at (2k{, qb) and its equivalent pos
itions, as shown in 6.18c. The thickness of a diffuse spot 
along the fca and &b-directions is given by £a

-1 and £b_1> 
respectively. Below T<TC,& long-range order sets in 
so that the diffuse spots are converted into superlattice 
spots, as shown in 6.18d. The diffuse spot thicknesses 
along the intra- and interchain directions are inversely 
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proportional to the coherence lengths £a and £b> re
spectively. Thus the diffuse spots become smaller as 
the extent of long-range order along the two directions 
increases, and eventually become superlattice spots 
after a long-range order sets in along both directions. 

The perturbation causing the CDW state associated 
with a nesting vector q is a lattice vibration with the 
wave vector q. When the CDW state is formed, the 
lattice distorts so that the lattice vibration of wave 
vector q is softened. Consequently, the vibrational 
energy band shows a frequency lowering in the vicinity 
of the nesting value q as shown in 6.19, which is known 
as the Kohn anomaly.81,13 For a Fermi surface con-

u(k) 

o q itla 

6.19 

sisting of parallel lines (in 2D representation) as in 6.1, 
an infinite number of nesting vectors q are present. 
However, only one specific q value is likely to be 
adopted by the partially filled band system because 
distortion induces lattice strain. Thus the chosen q 
value is the one that leads to an optimum energy low
ering for the system by balancing the electronic energy 
gain and the lattice strain. When CDW vectors q are 
integer fractions (i.e., 1/2,1/3,1/4, etc.) of reciprocal 
lattice vectors, the CDWs are said to be commensurate. 
Otherwise, they are called incommensurate. 

6.3 Electron Localization14 

As discussed in section 6.1, new electronic states such 
as CDW and SDW are derived from a normal metallic 
state as a consequence of orbital mixing between the 
occupied and unoccupied levels in the vicinity of the 
Fermi level. The perturbation causing a CDW state is 
lattice vibration, as already discussed. The perturbation 
inducing an SDW state is the on-site electron-electron 
repulsion U, which may be understood by discussing 
the relative energies of the low- and high-spin states of 
a dimer. Consider a dimer with one orbital and one 

Canadell and Whangbo 

electron on each atomic site (6.20), the MO's of which 
are expressed as 

*i = (X1 + X2)/\/2 

+2 = (X1 " X2)/\/2 (6.7) 

provided that the overlap integral (X1Ix2) is neglected. 

x, X2 

6.20 

Then, the energies of these orbitals are given by ex = 
a + 0 and e2 = a - /3, where /3 is the resonance integral 
(X1I^

9Ix2)- With two electrons, one may construct the 
low-spin state 6.21 or the high-spin state 6.22. In a 

T — +. + ** 
2\P\ 
- 1 -4f- *, -4- *, 

6.21 6.22 

one-electron picture, in which electron-electron re
pulsion is neglected, the low-spin state is always more 
stable than the high-spin state. However, this is not 
necessarily the case when electron-electron repulsion 
is taken into consideration. To simplify our discussion, 
we neglect all repulsion integrals but the on-site re
pulsion U = (X1X1Ix1X1) = (X2X2Ix2X2)- Then, in any 
electronic state, an atomic site with the up- and 
down-spin electron densities n\ and nj, respectively, 
contributes the amount of repulsion given by n\n\U}2 

The on-site charge densities associated with the low-
spin (6.21) and high-spin (6.22) states are depicted in 
6.23 and 6.24, respectively. In terms of the on-site 

M Jf 1 t 
» * * • 
n\ = n\ = //* n t r / _nl = o 

6.23 6.24 

repulsion, the low-spin state is less stable than the 
high-spin by (7/2. In terms of the orbital energies, 
however, the low-spin state is more stable than the 
high-spin state by 2|/3|, which is equal to W/2, where 
W is the bandwidth (see 2.4) of the corresponding ID 
chain 2.1. Therefore, when electron-electron repulsion 
is taken into consideration, the high-spin state becomes 
more stable if U > W. In general, for a solid in which 
U > W, the total energy can be lowered by introducing 
spin polarization on each lattice site (i.e., nt ^ "I) 
because it reduces the contribution of on-site repulsion 
to the total energy. This situation is realized in an SDW 
state discussed in section 6.1 (see 6.10). A CDW or an 
SDW state constructed from a completely nested Fermi 
surface has a band gap, and therefore is an insulating 
state. A phase transition from a metallic state to an 
insulating state is sometimes referred to as electron 
localization. 

So far our discussion has been limited to those elec
tronic states that originate from a normal metallic state 
and is therefore appropriate when the on-site repulsion 
is small compared with the band width (i.e., W> U). 
When U » W, electrons are localized on lattice sites. 
Consider the ID lattice 6.25a that has one orbital and 
one electron per site, a typical half-filled band system. 

6.25a 6.25b 
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When U » W, favorable electronic states are those in 
which each site has one electron with either up or down 
spin. All these states are insulating in nature, because 
electron hopping from one site to another leads to a 
situation in which two electrons reside on a single site 
thereby causing on-site repulsion (see 6.25b). Such 
insulating states resulting from partially filled bands 
are referred to as Mott-Hubbard localized states. Di
agrams 6.26 and 6.27 represent ferromagnetic and an-
tiferromagnetic arrangements of spins, respectively. 

! ! 1 1 1 ! 6.26 

I I ! I ! I 6.28 
These two states have a long-range order. The spin 
arrangement of 6.28 is an example with no long-range 
order. Within the one-electron band picture, the fer
romagnetic state 6.26 is represented by the electronic 
structure that results when all the band levels are singly 
occupied with an identical spin, as depicted in 6.29, 
which is a solid-state analogue of the dimer high-spin 
state 6.22. If one neglects electron-electron repulsion 
terms except for the on-site and the nearest neighbor 
intersite Coulomb repulsions, the electronic energies of 
the three states 6.26-6.28 are identical. Consequently, 
the high-spin band filling scheme 6.29 may be used to 
represent any localized electronic state arising from a 
half-filled band. This high-spin band filling scheme 

6.29 

is useful. For instance, if a quarter-filled band system 
adopts a low-spin band filling (i.e., each band level is 
occupied by up- and down-spin electrons), as shown in 
2.26, it is susceptible to a tetramerization. However, 
when this system adopts a high-spin band filling, it 
would undergo a dimerization instead of tetramerization 
because band gap opening at the Fermi level can be 
achieved only by a dimerization (see 6.30).8b In ID 

6.30 

systems, the distortion (e.g., 2.26) arising from a low-
spin band filling (U < W) is called a 2kt distortion, since 
the nesting vector is given by q = k{ - (-k{) = 2kt. The 
distortion arising from a high-spin band filling (U > W) 
(e.g., 6.30) is referred to as a 4k{ distortion.5' 

For a half-filled metallic system, the low-spin band 
filling 6.31 is appropriate since U < W in such a case. 

F 
6.31 

The energies for the low-lying excited states of the 
metallic state 6.31 are well described by the band orbital 
energy differences in the vicinity of the Fermi level. In 
contrast, it is difficult to describe the energies for the 
low-lying excited states of a Mott-Hubbard localized 
state (e.g., the energy differences between the states 
6.26-6.28) within a band electronic structure theory, 
because this theory is based upon the assumption that 
electrons are delocalized throughout the lattice. 
Localized electronic systems are typically examined in 
terms of model Hamiltonians (e.g., spin and Hubbard 
Hamiltonians) designed to study their low-lying excited 
states.14b 

In addition to Mott-Hubbard localization, there is 
another common source of electron localization, which 
arises when a lattice is under a random potential (e.g., 
a random distribution of alkali-metal ions in alkali-
metal containing transition-metal oxides). For a metal, 
a practical consequence of a random potential is to open 
a band gap at the Fermi level. Insulating states induced 
by random potentials are referred to as Anderson 
localized states.16 

6.4 Superconducting State16,17 

When the temperature is lowered, a metal may be
come susceptible to another type of electronic insta
bility, i.e., formation of a superconducting state. For 
a metal to become superconducting, it should avoid the 
electronic instability toward a metal-insulator transition 
leading to a CDW or an SDW state. In general, the 
Fermi surface of a ID metal is well-nested, so a ID 
metal rarely undergoes a metal-superconductor tran
sition. From the viewpoint of one-electron band theory, 
a superconducting state also involves orbital mixing 
among band levels above and below the Fermi level. 
However, the way this orbital mixing comes about is 
quite different from that discussed for CDW and SDW 
states. 

Charge carriers of a superconducting state are not 
individual electrons as in a normal metallic state, but 
pairs of electrons (called Cooper pairs) having opposite 
momenta (i.e., opposite wave vectors). Thus, Cooper 
pairs are described by product functions <j>(k)<p(-k) and 
<j>(k')<p{-k'), where k and k' refer to occupied and 
unoccupied wave vectors of a normal metallic state, 
respectively.6b'16 The energy lowering that brings about 
superconductivity is induced by the interaction of an 
occupied pair function <j>(k)4>(-k) with an unoccupied 
pair function <Mk')<M-k'), i.e., ((f>(k)^(-k)\H](t>(k')4>(-
k')>, where the perturbation H' causing this mixing is 
electron-phonon interaction in traditional supercon
ductors described by the BCS theory.17 As a conse
quence of the interaction between the pair functions, 
the character of the unoccupied pair function is mixed 
into that of the occupied pair function. In this indirect 
way, a superconducting state incorporates unoccupied 
orbital character into the occupied orbital character. 
Interactions between the pair functions <t>(k)<t>(-k) and 
4>(k')4>(-k') introduce an energy gap at the Fermi level, 
as do the interactions between <f>(k) and <j>(k') informing 
CDW and SDW states. It should be recalled that 
charge carriers of a superconducting state are Cooper 
pairs. A superconducting energy gap prevents Cooper 
pairs from breaking up when there is no excitation en
ergy greater than the gap. The latter is a few multiples 
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of kBTc at absolute zero temperature, where Tc is the 
superconducting transition temperature, and gradually 
decreases to zero at Tc. 

For traditional superconductors, Cooper pair forma
tion is induced by electron-phonon interaction:17 As 
depicted in 6.32, a moving electron causes a slight, 
momentary lattice deformation around itself. The 
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deformation affects the motion of a second electron 
(moving in the opposite direction) in the wake of the 
first in such a way that, effectively, the two electrons 
move as an entity as if bound together by an attractive 
force. The extent of electron-phonon coupling is 
measured by the electron-phonon coupling constant X. 
The superconducting transition temperature Tc and the 
coupling constant X are governed by the expression1715 

Tc a e exp I -Li±±) (6.8) 

where 6 is the Debye temperature and n* is the effective 
Coulomb pseudopotential of the order of 0.1. Among 
the factors affecting the magnitude of Tc in eq 6.8, the 
most important one is the electron-phonon coupling 
constant X: In general, Tc increases with increasing X. 
For a lattice with atoms of mass M and with a vibra
tional band effective for electron-phonon coupling, the 
constant X is given by17b 

X = 1 n(ef)(P) 

M(w2> " M(w2) 
(6.9) 

where (P) is the square of the electron-phonon inter
action element averaged over the Fermi surface, and 
(w2) is the square of the phonon frequency averaged 
over the vibrational band. The Af<«2) term has the 
dimension of a force constant, so a large X results when 
the lattice has a low-frequency phonon spectrum (i.e., 
soft phonons arising from vibrations with shallow po
tential wells). Therefore, when the lattice is soft toward 
the low-frequency phonons crucial for superconductiv
ity, the electron-phonon coupling constant X is large, 
thereby raising the Tc.

18 

Certainly, for a superconducting state to occur, the 
energy increase associated with the introduction of 
unoccupied orbital character should be smaller than the 
energy gain resulting from interaction among Cooper 
pair functions. Depending upon the nature and 
strength of the perturbations causing orbital mixing, a 
normal metallic state with nested Fermi surface may 
lead to a superconducting state when the temperature 
is lowered if CDW or SDW formation associated with 
the nesting can be prevented. Such a case occurs when 
the interaction matrix elements ((p(k)\H]4>(k')) re
sponsible for CDW or SDW formation are small com
pared with the interaction matrix elements (<p(k)<t>(-
k)\H]4>(k')(f>(-k')) that cause a superconducting state. 

When the relative stabilities of CDW, SDW, and su
perconducting states are similar, preference of one state 
over the other is delicately balanced by a change in 
temperature and pressure.19 

7. Computational Aspects?0 

7.1 Band Dispersion Relation 

A study of the electronic band structure of a given 
solid requires solving the appropriate secular deter
minant (eq 4.17) for a set of k points. To obtain a 
dispersion relation for a band ^(k) along a specific 
direction of reciprocal space, one needs to calculate its 
energy e,(k) at a number of k points covering that di
rection. This is illustrated in 7.1 for a band of a ID 
system, where the empty circles refer to the calculated 
energies at the chosen k values. The dispersion relation 

is then obtained by connecting those calculated energy 
values, as shown by the solid line in 7.1. A complicated 
situation arises when two bands overlap in energy as 
shown in 7.2. If the symmetries of the two band levels 
differ at all k points along T -* X, the two band dis
persion curves cross as indicated in 7.2. However, if the 
two bands have an identical symmetry along T -* X, 
crossing of the dispersion curves is not possible so that 
there result in two narrower bands as illustrated in 7.3. 
To determine whether 7.2 or 7.3 is correct, one may 
calculate the e,(k) values for a fine mesh of k points in 
the vicinity of the crossing (or intended crossing) point. 

For computational purposes, the meaning of an en
ergy band needs to be examined further. Suppose that 
dispersion relations for a 2D lattice are calculated along 
a series of parallel wave vector directions T-+X,A — 
B,C-*D, etc., as illustrated in 7.4. For simplicity, it 

7.4 

may be assumed that there are two energy bands, and 
their dispersion curves cross only along r -*• X, as il
lustrated in 7.5-7.7. Then the energy surfaces of e,(k), 

e(k) 

r X A B C D 
7.5 7.6 7.7 
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as a function of k, are given as depicted in 7.8. This 
r x 

e(k) X 

V 
7.8 

diagram describes a situation where two energy surfaces 
touch at one k point along T-- X. From the viewpoint 
of energy surfaces, it is more reasonable to consider the 
lower energy surface of 7.8 as one band and the upper 
surface as another band. Therefore, when band dis
persions cross as in 7.5, one may classify the bands as 
shown in 7.9 in terms of the lower band (represented 
by the thick, solid line) and the upper band (repre
sented by the thin, solid line). This classification is 

r x 

7.9 

convenient in calculating Fermi surfaces of partially 
filled bands. 

7.2 Fermi Level 

We now discuss how the Fermi level of a partially 
filled band can be determined by considering a 2D 
square lattice, for which the FPZ is a square in recip
rocal space. As indicated in 7.10, only the wave vectors 
in the shaded triangle are necessary to consider because 
the wave vectors of the remaining part of the FPZ are 
related to those of the shaded triangle by symmetry. 

Y M 

r x 

7.10 

To examine the e;(k) vs k relationship for the k values 
of the shaded triangle, a set of L points \klt k2,..., kj) 
may be evenly distributed to cover the shaded triangle, 
as shown in 7.11 or 7.12 with a set of 10 k points. In 

M M 

7.11 7.12 

7.11 the k points avoid the boundary lines T -*• X and 
X-* M, while in 7.12 they do not. For a set of evenly 
distributed k points, each k point represents all the k 
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values in the small square surrounding that point. 
Depending upon where the k point lies, it may represent 
only a fraction of the little square. For instance, each 
k point of 7.11 lying on the T--M line represents half 
the little square. Thus we define the weight of W, of 
each k, points such that W1- is proportional to the area 
k, represents and satisfies the normalization condition 

EWi = I (7.1) 
1-1 

For example, in 7.12, the weights of the k points (0,0), 
(1/2, 0), (1/3, 0), and (1/3, 1/6) have the ratios 
1/8:1/4:1/2:1. 

When the crystal orbitals ^„(k) are generated on the 
basis of a set of AO's (xi, X2> —> XM! P e r u r u t ceU> o n e 

obtains a set of M orbital energies fe^k,), e2(k,), —> 
e^k,)! for each k; point. Each band level e„(k;) has its 
probability of occurrence pn(k;) (see below), so there are 
a set of probabilities fpi(k,), p2(k,),..., p^k,)} to consider 
for each k( point. Since the weight of the k; point is 
Wit one obtains 

p„(ki) = Wi (n = 1, 2 M) (7.2) 

The probability p„(k;) has the meaning that a doubly 
occupied crystal orbital ^„(kj) accounts for 2p„(k;) 
electrons. If band calculations are performed for the 
L points of the set Ik1, k2,..., kLj, one obtains MxL 
band levels and their probabilities 
Ie1(^), e2(k,) e^k,)} (i = 1, 2 L) (7.3) 

!Pi(kt), p2(k,),..., P^k1)) (i = 1, 2 L) (7.4) 

The MxL band levels of eq 7.3 may now be rearranged 
in ascending order of energy. This ordered set of M X 
L levels may be simply written as 

Ie1, e2,..., eM, eM+1 em eMxL\ (7.5) 

The MxL probabilities of eq 7.4 may also be arranged 
as in the orbital energy sequence of eq 7.5 to give the 
ordered set of M X L probabilities, which may be 
written as 

|Pi» Pi PM> PM+I P2W» •••> Pmi) (7-6) 

As already mentioned, each doubly occupied level ei of 
eq 7.5 would account for 2p,- electrons. Therefore if a 
unit cell contains Ntat electrons, then one can easily find 
the energy level emax that satisfies the constraint 

max 
Z2pi = Niot (7.7) 
i - i 

Then, e ^ is the highest occupied band level, i.e., the 
Fermi level e(. 

It is important to note the difference between the two 
k point choices such as 7.11 and 7.12. Given an identical 
number of k points to evenly distribute, the mesh 
avoiding k points on the FPZ boundaries (e.g., 7.11) has 
a smaller square area to represent around each k point 
compared with the mesh including k points on the FPZ 
boundaries (e.g., 7.12). Thus, the former set provides 
a more accurate description if calculations involve av
eraging certain physical properties over the k points of 
the FPZ. Obviously, if calculations require information 
about the k points on the FPZ boundaries (e.g., Fermi 
surface), one must choose a k point mesh including the 
boundary points. 
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7.3 Density of States 

Given the sets of the ordered orbital energies and 
their probabilities given by eqs 7.5 and 7.6, respectively, 
the DOS curves, Le., n(e) as a function of energy e, can 
be obtained by replacing each calculated level with a 
Gaussian function. For example, consider an energy 
level e,- which has the probability p, as shown in 7.13. 

g. (e) 

7.13 

A 
7.14 

This discrete level at e, may be replaced by the Gaus
sian function g,(e) centered at e, shown in 7.14 

§i(e) = 
1 

VxS 
Pi exp im (7.8) 

where 5 is a constant to be chosen according to the size 
of the k points mesh. The Gaussian function gt(e) be
comes flatter as <5 increases, and satisfies the normali
zation condition 

f gi(e) de = Pi 
»/—oo 

(7.9) 

The DOS, n(e), at any given energy e is then obtained 
by summing contributions from all gaussian functions 
gi(e), i.e. 

Me) = L 2gi(e) 
;»i 

(7.10) 

where the factor of 2 is introduced because each level 
can be occupied by two electrons. The quality of n(e) 
is improved by using a small value of 6 with a large set 
of k points. In terms of n(e), the electronic energy Ee]sc 
of a system is written as 

n(e)e de (7.11) 

Suppose one calculates the gross population of an 
atom A, Q\(ei), and the overlap population between 
atoms A and B, Pf&(ei)> o n the basis of the band level 
e; alone (one of the M X L levels in eq 7.5), assuming 
that this level is doubly occupied. Then by analogy with 
eqs 7.8 and 7.10, one might define the DOS-weighted 
gross and overlap populations as follows:20,21 

and 

QA(C) = Zgt(e)QA(ed 
i 

^AB(e) - £&(e)PAB(e,-) 

(7.12) 

(7.13) 

Equation 7.12 defines the so-called local (or projected) 
DOS of atom A, nA(e), which satisfies the normalization 
condition 

"(e) = E nA(e) 
all A 

(7.14) 

Equation 7.13 defines the crystal orbital overlap pop
ulation.21 The gross population of atom A, QA, and the 
overlap population between atoms A and B, PAB> of a 
solid are then written as 

and 

QA= P'QA(e)de (7.15) 

J5AB= fPja(e)de (7.16) 
%J — 00 

7.4 Fermi Surface 
We examine how to calculate a Fermi surface first by 

considering a 2D system as an example. To make our 
discussion general, this 2D system will be assumed to 
be neither hexagonal nor orthorhombic, so that the FBZ 
and FPZ are given by a hexagon (7.15) and a paralle
logram (7.16), respectively. Suppose the n-th band is 

7.15 7.16 

partially filled. With a set of k points \kx, k2,..., kL\ 
covering one half the FBZ or the FPZ (indicated by 
shading in 7.15 and 7.16), the Fermi level e{ can be 
determined. Given the n-th band energies e„(k,) cal
culated for this set of k points one can generate an 
analytical expression of e„(k) as a function of k by a 2D 
cubic spline fitting procedure.22 For this fitting purpose 
the FPZ is more useful than the FBZ because the for
mer provides a much simpler set of evenly distributed 
k points to calculate their weights. Once an analytical 
expression of e„(k) and the Fermi level e{ are obtained, 
it is easy to find the Fermi vector kf, for which e„(kf) 
= ef, along any wave vector direction desired (see 7.17). 

e(k) 
- e, 

i 

7.17 

To present a Fermi surface as a contour in reciprocal 
space, one needs to find a large number of kf values. 
This is achieved by examining the dispersion relations 
of the band e„(k) along several sets of parallel wave 
vector lines dividing the FPZ. This is illustrated with 
two sets of parallel wave vector lines in 7.18, where the 
kf points found are represented by heavy dots. If one 
applies a finer mesh of parallel wave vector lines, more 
kf points are found. Then, the Fermi surface is given 
by the contour line connecting those kf points as shown 
by the solid line in 7.18. 

7.18 

A 3D representation of a Fermi surface can be ob
tained by determining the cross sections of the Fermi 
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surface on a series of parallel wave vector planes di
viding the FPZ. This is illustrated in 7.19 with three 
parallel wave vector planes (x, y, 0), (x, y, 0.25), and (x, 
y, 0.5). One may carry out a similar analysis by 

ZL 
7Z (Ky, o.5) 

7.19a 

2 (KY, 0.25) 

7.19b 

/ <zj£> / < *•>&00> 

7.19c 

choosing another set of parallel wave vector planes, e.g., 
(0, y, z), (0.25, y, z), and (0.5, y, z). Then the shape of 
a Fermi surface is obtained by combining all these cross 
sections. For example, a 3D Fermi surface of spherical 
shape centered at T may then be represented in terms 
of two different sets of 2D contours as shown in 7.20. 

'VL 
7.20 

8. Structural Patterns of Low-Dlmenslonal 
Molybdenum Oxides and Their Related Tungsten 
Oxides23 

In describing the electronic structures of low-dimen
sional molybdenum oxides and their related tungsten 
oxides, it is crucial to know how their crystal structures 
are built from MO6 (M = Mo, W) octahedra. The 
crystal structures of these materials may be viewed as 
constructed from corner-shared octahedral chains. It 
is convenient to classify these materials according to 
whether the corner-shared chains are straight or zigzag. 

8.1 Straight Octahedral Chains as Building 
Blocks 

The single octahedral chain 8.1a may be represented 
by its side- and top-projection views 8.1b and 8.1c, re
spectively. Then 8.2a and 8.2b represent the side- and 
top-projection views of a double octahedral chain, which 
results from the corner-sharing of two single octahedral 
chains. The double chain 8.2 is converted to "eclipsed" 

1U 
X X 

3> 

2U 

8.1a 8.1b 8.1c 8.2a 8.2b 

and "staggered" hump-double chains 8.3a and 8.4a, 
respectively, by adding hump octahedra (shaded oc
tahedra). The top-projection views of 8.3a and 8.4a can 
be shown by 8.3b and 8.4b, respectively. Similarly, the 

top-projection view of the hump-quadruple chain 8.5a 
is given by 8.5b. 

'L 
x 

'L 

8.3a 8.3b 

'L 

x 

8.4b 

'L 

8.5a 8.5b 

Edge-sharing of straight octahedral chains leads to 
important structural patterns, which we show by em
ploying top-projection views. The double chains 8.2 
may be edge-shared to form the quadruple chain 8.6 or 
the M2O7 layer 8.7. The latter is found in La2Mo2O7.

23 

L 

8.6 8.7 

By edge-sharing the eclipsed and staggered hump-
double chains (8.3 and 8.4, respectively), we obtain the 
(MO3)(J layers 8.8 and 8.9, respectively. The (M03)6 

8.8 8.9 

layer 8.8 is found in red bronze K033M0O3,24 and the 
layer 8.9 in Cs0-26MoO3.

26 Blue bronze K03MoO3
26 

contains the (MO3)i0 layer 8.10, which is obtained from 
the staggered hump-quadruple chains 8.5 by edge-
sharing. 

8.10 
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Corner-sharing of straight multiple octahedral chains 
leads to perovskite-type layers (i.e., those with only 
corner-sharing among MO6 octahedra). For example, 
the quadruple chains 8.11 can be condensed by cor
ner-sharing to form the layer 8.12, where the adjacent 
quadruple chains are joined in such a way that the first 
octahedron of one quadruple unit is condensed with the 
third octahedron of its adjacent quadruple unit. This 

"U 
X 

<D<1>04> 
8.11 

(13)-condensation can be carried out for any multiple 
octahedral chains to form perovskite-type layers of 
varying thickness. Thus the (13)-condensation of 
quintuple chain 8.13a gives rise to the perovskite-type 
layer 8.13b. 

8.12 

8.13b 

<D<D<I><N> 
8.13a 

In Mo8O2S
27 the perovskite-type layers 8.12 are linked 

by the quadruple chains 8.6 (shaded) as shown in 8.14, 
while in Mo9O26

27* the perovskite-type layers 8.13b are 
linked by the quadruple chains 8.6. In diphosphate 

8.14 

tungsten bronzes (DPTB's),3,28 the perovskite-type 
layers [derived from the (13)-condensation of multiple 
octahedral chains] are linked by the diphosphate units 
P2O7 (8.15a). A single diphosphate unit may be rep
resented by two tetrahedra sharing a corner (8.15b). In 

/ 

Sl 
8.15a 8.15b 

DPTB's the diphosphate units (shown by shading) link 
adjacent perovskite-type layers as shown in 8.16. A 

top-projection view of a DPTB is shown in 8.17, where 
each filled triangle represents a diphosphate unit. 

8.17 

8.2 Zigzag Octahedral Chains as Building 
Blocks 

The quadruple octahedral unit 8.18 is obtained by 
sharing the equatorial oxygen atoms of MO6. As shown 

u L 
8.18 

in 8.19a, these units may be repeated along one direc
tion (i.e., the y-direction in 8.19a) by corner-sharing to 
form a chain. The projection view of 8.19a along the 
chain direction can be given by 8.19b, where shaded and 
unshaded octahedra indicate those closer to and farther 
away from the viewer, respectively. With this con-

8.19a 

'L 
8.19b 

vention, the step-layer 8.20a represents the perspective 
view 8.20b. The width of a step-layer increases with 

*L 
8.20a 

8.20b 

the length of a multiple octahedral unit. For example, 
the sextuple units 8.21 lead to the step-chain 8.22. 

L 
8.21 

8.16 8.22 
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Figure 8.1. Perspective view of two adjacent Mo«Oi7 layers of 
K0.9M06O17. The c axis is perpendicular to the layer and the a 
axis is perpendicular to the plane of the figure (derived from ref 
If). 

(Q) (b) 
Figure 8.2. Perspective views of the crystal structures of the 
Magneli phases: (a) 7-Mo4On and (b) Jj-Mo4On (derived from 
ref If). 

Important layer patterns are obtained by corner-
sharing of step-chains. For instance, (13)-condensation 
of the step-chains 8.19b provides the step-layer 8.23a, 
the perspective view of which is given by 8.23b. The 

8.23a 

8.23b 

step-layer 8.23 is found in monophosphate tungsten 
bronzes (MPTB's)3-29 such as (PCWWOa^WC^® and 
J M P O J ) 4 ( W O M W O J ) 4 (A - alkali metal).31 Likewise, 
(13)-condensation of the step-chains 8.22 leads to the 
step-layer 8.24, which is found in the Magneli phases 
7- and 77-Mo4O11

32 as well as the MPTB's such as (P-
02)4(W03)6(W03)6

33 and Ax(P02)4(W03)6(W03)6.31b 
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Two variations of step-chain condensation are shown 
in 8.25 and 8.26. The step-layer 8.25, found in lithium 
purple bronze Li09Mo6O17,

34 is obtained from the step-
chains 8.19 by applying (H)- and (13)-condensations. 
As indicated, this step layer consists of four nonequiv-
alent metal atoms. In the step-layer 8.26, the step-
chains 8.19 and 8.20 alternate and they are joined by 
(12)-condensation. It is important to note that the 
step-layer 8.26 is hexagonal in symmetry, which be
comes clear when the layer is viewed along the direction 
perpendicular to the layer (indicated by the arrow in 
8.26). This will be discussed later. 

' 1I 

IV 

8.25 

8.26 

In actual compounds containing the step-layers, the 
surfaces of these layers are capped with MoO4 or PO4 
tetrahedra. For instance, as schematically shown in 
Figure 8.1, the surfaces of the step-layers 8.26 in purple 
bronze K09Mo6O17

36 are capped with MoO4 tetrahedra 
such that the resulting Mo8O17 layers are separated by 
potassium cations. As shown in Figures 8.2a and 8.2b, 
respectively, the step-layers 8.24 are linked by MoO4 
tetrahedra in y- and Ij-Mo4O11, respectively.32 The 
step-chain planes are parallel in adjacent step-layers for 
r;-Mo4O11, but this is not the case for 7-Mo4O11. With 
the notation used for the MPTB's (POJ ) 4 (WO 3 UWO 3 ) , 
(p, q - integers), Mo4O11 is written as (Mo02)4(Mo-
03)6(Mo03)6. In the MPTB's, the step-layers made up 
of WO6 octahedra are linked by PO4 tetrahedra.29 

9. Red Bronzes 

Red bronzes A033MoO3 (A = K, Rb, Cs, Tl) consist 
of isolated layers of composition MoO3 (8.8), and the 
A+ cations lie in between these layers. ,38 Hence they 
can be referred to as 2D red bronzes to distinguish from 
Li033MoO3

37 red bronze which has a 3D structure (see 
section 16). AU these bronzes are found to be semi
conductors.36*'38 On the basis of structural considera
tions, it was proposed39 that the 2D red bronze K033-
MoO3 is not a regular semiconductor (i.e., one that has 
no partially filled bands in a one-electron picture) but 
a Mott insulator14 (i.e., a semiconductor despite the 
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- 9 . 2 -

-21 -9.6 

/a 
-10.0 

Figure 9.1. Bottom portion of the t̂ -block bands of the real 
MoeOig layer. In units of the reciprocal vectors a*, b*, and c*, 
the points T, Y, and Z are defined as T = (0, 0), Y = (6*/2,0), 
and Z = (0, c*/2). 

presence of partially filled bands in a one-electron 
picture). However, magnetic susceptibility and ESR 
studies suggest that the 2D red bronzes have delocalized 
d electrons and have very little spin density.368*40 These 
findings are not consistent with the proposal that the 
2D red bronzes are Mott insulators. 

The repeat unit of the MoO3 slabs in 2D red bronzes 
contains six octahedra (Mo6O18, see 8.3 and 8.8), and 
hence there are two electrons to fill the bottom portion 
of the t2g-block bands. Shown in Figure 9.1 are the 
dispersion relations calculated41 for the bottom portion 
of the t2g-block bands of Tl0-33MoO3.

368 The lowest band 
a is separated by an indirect gap of about 0.12 eV from 
the next band c. In addition, as will be seen later, these 
bands are as dispersive as those calculated for other 
bronzes exhibiting metallic properties. Since the Mott 
insulators are characterized by partially filled narrow 
bands, the 2D red bronzes cannot be Mott insulators 
but regular semiconductors. This conclusion is con
sistent with several observations: the optical reflectivity 
of the red bronze K0-33MoO3 suggests a band gap of 0.5 
eV,388 and the temperature dependence of the resistivity 
in Cs033MoO3

381' and Tl033MoO3
368 indicates a band gap 

of 0.24 and 0.52 eV, respectively. 

9.1 Distortion and Lowest Lying t2g-Block 
Levels4 

In order to understand why an energy gap exists 
between bands a and c of the Mo6O18 layer 8.8, it is 
necessary to analyze the nature of the bands. This task 
is considerably simplified by studying the different 
types of distortion present in the octahedra of the 
Mo6O18 layer. The W-block levels of a regular MoO6 
octahedron have antibonding combinations between 
molybdenum 4d and oxygen 2p orbitals. Therefore an 
Mo-O shortening raises any t^-block level if this level 
has an antibonding combination of Mo and O orbitals 
along the shortened Mo-O bond. Consequently, a 
distortion in which one Mo-O bond is shortened (see 
9.1) leaves one t^ level (i.e., xy, which is the 6 orbital 
with respect to the shortened Mo-O bond axis) unaf
fected, but raises the remaining two levels (i.e., xz and 
yz, which are the ir orbitals with respect to the short
ened Mo-O bond axis). On the other hand, all three 
t2g-block levels are raised by a distortion in which two 
or more Mo-O bonds are shortened (see 9.2). Thus 
inspection of the nature and extent of distortion in 
MoO6 octahedra allows us to predict which MoO6 oc
tahedra of a given molybdenum oxide would have d 

O 

2(W-

W 

6(NJ-

^ N C / 

^ ) / ^A 
--'•'a 

r Y 
(a) 

Figure 9.2. (a) xz bands of the ideal Mo4Oi8 chains and (b) 
bottom portion of the t̂ -block bands of the real Mo<Oi8 chains. 

9.1 9.2 
xz 

xy 

U 
xy yz xz 

electrons and what kinds of d-block bands the oxide is 
likely to have.4 Shown in 9.3 and 9.4 are the various 
Mo-O bond lengths found in the Mo6O18 layers of 
Tl033MoO3.

368 The hump octahedra have two strong 
2.334 

O-Mo—0 bond alternations (i.e., distortion type 9.2), 
while only one strong O-Mo—0 alternation occurs in 
the chain octahedra (i.e., distortion type 9.1). Thus, the 
tjg-block levels of the hump octahedra are high in en
ergy. The strong alternation in the chain octahedra 
occurs in a direction perpendicular to the chain direc
tion, so that only the d orbital that is S with respect to 
this direction will remain low in energy. This orbital, 
xz with the axis shown in 9.4, makes ir-type overlap with 
the oxygen p orbital along the chain axis. Thus, it is 
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sufficient to consider the xz bands of the Mo4O18 chain 
8.2a in describing the low-lying d-block bands of the 
Mo6O18 layer.41 

9.2 Intrachain Interactions 

In discussing the bottom d-block bands of the Mo4O18 
chains present in the Mo6O18 layer, it is convenient to 
first examine the xz bands of the ideal Mo4O18 chain 
8.2a in which all MoO6 octahedra are regular. These 
bands are shown in Figure 9.2a.41 The cluster orbitals 
relevant for band orbital construction are shown in 9.5, 
where dots are used to indicate the absence of oxygen 
p orbital. For simplicity, the p orbitals of the nons-

9.5a 9.5b 

9.5c 9.5d 

hared oxygen atoms are not shown in 9.5. The energy 
ordering of these four levels is simply obtained by 
counting the number of dots [i.e., (N)-type interactions 
of 2.43 or 2.44] in the cluster orbitals, as shown in 9.6. 

UN). 

4!N) 

— d 

— — bjC 

— a 

9.6 

Band a at T has the nodal pattern of 9.7. Bands a 
and b at Y have the nodal patterns 9.8 and 9.9, re
spectively. Band c at T has the nodal pattern of 9.10. 
As discussed in section 2.4, the d-block band levels of 
a crystal structure obtained by sharing octahedral 
corners are raised in energy when the orbitals of the 
bridging ligand atoms are allowed by symmetry to mix 
with the metal d orbitals. There are three different 
types of oxygen bridges in the Mo4O18 chain 8.2a: 
Within a four Mo atom unit cell, two oxygen atom 
bridges are parallel (II) to the chain but the other two 
are perpendicular (1) to the chain. Between adjacent 
unit cells, there are two oxygen bridges parallel to the 
chain. The metal bridging-ligand antibonding inter
actions present in the orbitals of bands a-d at T and 
Y are summarized in Table 9.1. It is clear from this 
table and 9.8-9.10 that bands a and b at Y, and band 
c at r , are all degenerate. Likewise, bands c and d at 
Y, and band b at T, are all degenerate. 

As can be seen from 9.4, there exists a bond length 
alternation of the type Mo-O-Mo-O-Mo along the real 
Mo4O18 chain (i.e., 2.069, 2.069,1.887,1.887 A), which 
therefore lifts the degeneracy between 9.8 and 9.9 (see 
Figure 9.2b). Since the long distances are associated 
with the presence of the hump octahedra, the lower 

TABLE 9.1. Antibonding Contributions of the Oxygen p 
Orbitals of the Mo-O-Mo Bridges in the xz-Block Bands of 
the MO4OK chains" 

band 
a 
a 
b 
b 
C 

C 

d 
d 

unit 
cell 

orbital 

9.5a 
9.5a 
9.5b 
9.5b 
9.5c 
9.5c 
9.5d 
9.5d 

• The presence of the 

wave 
vector 
point 

r 
Y 

r 
y 

r 
y 

r 
Y 

within a 
unit cell 
Il 

(N) 
(N) 
(Y) 
(Y) 
(N) 
(N) 
(Y) 
(Y) 

J. 
(N) 
(N) 
(N) 
(N) 
(Y) 
(Y) 
(Y) 
(Y) 

antibonding contribution 

between 
unit cells 

(N) 
(Y) 
(Y) 
(N) 
(N) 
(Y) 
(Y) 
(N) 

is indicated by 
the symbol (Y), and the absence of it by the symbol (N). 

9.7 9.8 

9.9 9.10 

energy orbital is given by 9.11a, and the higher energy 
one by 9.11b. Band orbital 9.11a is built from the 

9.11a 9.11b 
cluster orbital 9.5b and belongs to band b of the Mo4O18 
ideal chain, while 9.11b is built from the cluster orbital 
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9.5a and belongs to band a in the ideal Mo4O18 chain. 
Therefore, in the real Mo4O18 chain, there is an avoided 
crossing between bands a and b, as illustrated in 9.12. 

The short Mo-O bonds (1.882 A) in the Mo-O-Mo 
linkages of 9.3 perpendicular to the chain are compa
rable to the short Mo-O bonds (1.887 A) of 9.4 along 
the chain. Thus the extent of antibonding in 9.9 and 
9.10 of the real Mo4O18 chain are comparable. There
fore, when the Mo4O18 chain distorts from ideal to the 
real structure, band a at Y is lowered, while both band 
b at y and band c at T are raised. This is why, as shown 
in Figure 9.2b, the real Mo4O18 chain has a band gap.41 

9.3 Interchain Interactions 

We now examine how the t^-block bands of the real 
Mo4O18 chain are shifted in energy by the interchain 
interactions in the Mo6O18 layer. Comparison of Figures 
9.1 and 9.2b shows that band a remains unchanged in 
energy along r -*• Y but is lowered in energy along T 
-* Z. Band c is shifted downward in energy along T -*• 
Y but is raised in energy along r -»• Z. When viewed 
along the chain, band orbitals 9.7-9.9 are represented 
by 9.13, and band orbital 9.10 by 9.14. With such 

9.13 9.14 

representations, bands a and b of Figure 9.1 at T are 
described by 9.15, while band c of Figure 9.1 at r is 
described by 9.16. Note from 9.15 and 9.16 that the 

9.15 

9.16 

p orbital of each external oxygen atom of one Mo4O18 
chain is located along the nodal plane of the xz orbital 
of the adjacent Mo4O18 chain. Thus, no strong direct 
interchain interactions are expected in the Mo6O18 layer. 
The essential orbital patterns of 9.15 and 9.16 around 
the hump MoO6 octahedra are given by 9.17 and 9.18, 
respectively. Since the d-block levels of the hump 

(a) (b) 
Figure 9.3. Correlation of the dispersion relations of an Mo6OiS 
layer band (solid lines) with those of the corresponding Mo4Oi8 
chain band (dashed lines) for the cases when the interchain orbital 
patterns at T are given by 9.17 in a and by 9.18 in b. 

9.17 9.18 

octahedra are higher lying in energy, they act as ac
ceptor orbitals, i.e., they combine in-phase with the 
chain d-block levels if allowed by symmetry. As illus
trated in 9.19 and 9.20, respectively, the symmetry of 
9.17 does not allow such a mixing but that of 9.18 does. 

9.19 9.20 

When this mixing occurs, the oxygen p orbital contri
bution of the inner two oxygen atoms of 9.18 decreases 
(because the p orbital is located close to the nodal plane 
of the xz orbital of the hump octahedron) thereby 
further lowering the band orbital energy. 

Along T -* Z (i.e., the interchain direction) the rela
tive orbital phases between adjacent chains must 
change from in-phase to out-of-phase or vice versa. 
Therefore, bands with the orbital patterns 9.17 and 9.18 
at r gradually pick up the orbital patterns of 9.18 and 
9.17, respectively. Consequently, along T -* Z, bands 
of the type 9.17 at T will be lowered in energy but bands 
of the type 9.18 at r will be raised in energy. Along r 
- • Y, all bands retain the orbital patterns around the 
hump octahedra. Therefore, the whole band of the 
Mo6O18 layer will be lowered with respect to that of the 
Mo4O18 chain if the orbital pattern at T is 9.18 while 
the band remains unshifted if the orbital pattern at T 
is 9.17. Figures 9.3a and 9.3b show how the band dis
persion relations of the Mo6O18 layer (solid lines) are 
related to those of the Mo4O18 chain (dashed lines) for 
the cases when the interchain orbital patterns at T are 
given by 9.17 and 9.18, respectively. As shown in Figure 
9.4, whether there is a band gap between bands a and 
c or not depends critically on the relative strengths of 
the intrachain distortion effect (AE t̂™) and the inter
chain interaction effect (AE1n^,). The Mo-O distances 
associated with the antibonding interactions in band 
a at Y and band c at T are substantially different. For 
an isolated, real Mo4O18 chain, the Mo-O bonds engaged 
in antibonding interactions are 2.069 and 2.084 A for 
band a at Y, but 1.882 and 2.084 A for band c at I\ Due 
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Figure 9.4. Dispersion relations of the Mo6Oi8 layer bands a 
and c (solid lines) vs the corresponding Mo4Oi8 chain bands 
(dashed lines). 

Figure 9.5. Bottom portion of the t^-block bands calculated for 
the Mo6Oi8 layer of CsaaMoOs. The wave vectors T, Y, and Z 
are defined as T = (O, O), Y = (6*/2, O), and Z « (0, c*/2). 

to the interchain interactions, the antibonding inter
action of the Mo-O = 2.084 A bond is removed in band 
c at T but retained in band a at Y in the Mo4Oi6 layer. 
Although this makes smaller the energy difference be
tween band c at T and band a at Y, (i.e., the band gap), 
band c at T still should lie above band a at Y in the 
Mo6O18 layer because the intrachain antibonding of 
band c at T is associated with a much shorter Mo-O 
bond (i.e., 1.882 A). Comparison of Figures 9.1 and 9.2b 
shows that the strength of the intrachain distortion is 
about twice that of the interchain interaction. This 
leads to a band gap between bands a and c of the 
Mo4O18 layer, and consequently to the semiconducting 
properties of 2D red bronzes. 

9.4 Crystal Symmetry and Band Gap 

The above analysis makes it clear that although the 
hump octahedra do not participate in the lower t^-block 
bands of the 2D red bronzes, they play an extremely 
important role in determining their electronic structures 
by imposing a strong intrachain distortion. Another 
example showing the importance of these hump oc
tahedra is provided by the cesium molybdenum bronze 
Cs0-26MoO3,

28 which is closely related to the 2D red 
bronze Cs033MoO3.

3815 As discussed in section 8, the 
crystal structure of these two bronzes differ in the way 
the hump octahedra are distributed. A033MoO3 con
tains MoO3 layers 8.8 while Cs0-2SMoO3 contains MoO3 
layers 8.9. This leads to slightly different distortions 
of the Mo4O18 chains of the MoO3 slabs. Since in 
Cs0-2SMoO3 the hump octahedra are added to the 
Mo4O18 chains in a zigzag way (8.4), the resulting 
Mo6O24 chains have a symmetry element of 2-fold screw 
rotation. 

Figure 9.5 shows the dispersion relations calculated42 

for the lower t^-block bands of the Mo6O18 layer of 
Cso,25Mo03. The essential difference between Figures 
9.5 (Cso.2SMo03) and 9.1 (Ao-33MoO3) is that the bands 
are paired up at Y in the former but not in the latter. 
This difference, essential for the semiconducting 
properties of A033MoO3, originates from the fact that 
the distortions in the Mo4O18 chains of Cs0-2SMoO3 have 
the 2-fold screw rotation axis which makes orbitals 9.8 
and 9.9 equivalent. 

Figures 9.1 and 9.5 show that the layer 8.8 leads to 
a band gap but the layer 8.9 does not. From the view
point of the electronic energy stabilization associated 
with a band gap opening, therefore, Cs0-33MoO3 (which 
has two electrons to fill the t^-block bands) would be 
expected to adopt the layer structure 8.8 instead of 8.9, 
as found experimentally. To obtain a cesium bronze 
CsxMoO3 with the layer structure 8.9, it would be nec
essary to have less than two electrons to fill the bands, 
thereby removing the possibility of electronic energy 
stabilization by a band gap opening at the zone edge. 
That is, a cesium bronze CSj(MoO3 with layer structure 
8.9 would be more accessible for x smaller than 1/3. 
This is consistent with the original observation of x =* 
0.25 by Mumme and Watts and may be one of the 
reasons why their phase has not been reproduced so far. 
Figure 9.5 suggests that any cesium molybdenum 
bronze CsxMoO3 (x < 1/3) consisting of MoO3 layers 
8.9 would be a pseudo-ID metal and hence would ex
hibit a CDW phenomenon. 
10. Blue Bronzes 

Blue bronzes An3MoO3 (A = K, Rb, Tl) are layered 
type materials.26,4*1 Early studies showed that the po
tassium blue bronze is metallic44 and exhibits a met
al-semiconductor transition at Tp =* 180 K.45 Later 
studies noticed that the electrical conductivity in the 
plane of the layers is quite anisotropic.46 On the basis 
of optical reflectivity data, it was suggested that the 
potassium blue bronze is a quasi-lD metal above Tp and 
the metal-semiconductor transition is of a Peierls 
type.47 Evidence for the CDW in the blue bronze was 
found by an X-ray diffuse-scattering study.48 Subse
quent X-ray,49 neutron60 and electron diffraction51 

studies confirmed this finding. The wave vector com
ponent qb of the CDW is incommensurate at room 
temperature (i.e., qb 2* 0.726*), where b is the repeat 
distance along the crystallographic b axis. A number 
of studies have shown that qb gradually increases at low 
temperatures and approaches the commensurate value 
0.75b*.48-64 Similar results have been found for the 
rubidium and thallium blue bronzes.la-c-56-56 Nonlinear 
electrical conductivity attributed to sliding of the CDW 
have been found for the blue bronzes at temperatures 
below 183 K.67 

As discussed in section 8, blue bronzes contain 
Mo10O30 layes 10.1. In the C-centered monoclinic cell,26 

each Mo10O30 layer is contained in a plane defined by 
the two orthogonal vectors b and 2d, where 2d = 2c + 
a. As shown in 10.1 each Mo10O30 layer can be described 
in terms of either the two orthogonal vectors b and 2d 
or the two primitive nonorthogonal vectors b and d', 
where d' = d + b/2. As clearly seen in 10.1 the centered 
nature of the lattice is brought about by the arrange
ment of the hump octahedra (shaded in 10.1b) along 
the d direction of the layer. 
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With the formal oxidation states of Mo6+, O2", and 
A+, there are three electrons to fill the t^-block bands 
of the Mo10O30 layers. In the following, we examine how 
the nature of the bottom t^-block bands of the blue 
bronze is related to its crystal structure. The results 
of electronic structure calculations58 described below are 
based upon the primitive unit cell (see the discussion 
of section 4.3). 

10.1 Orbital Patterns of the Bottom d-Block 
Bands 

Since there are 10 MoO6 octahedra per repeat unit 
in a Mo10O30 layer of the blue bronze, there are 30 
t2g-block bands and only the bottom portion of these 

10.2b 

bands is filled. Thus our analysis is simplified by 
considering the ideal distortions of the different oc-

X 

kb 

10.4e 10.4f 

10.4g 10.4h 

tahedra of the layer. Shown in 10.2 are the Mo-O bond 
lengths found in the K0-3MoO3 structure.28 The hump 
octahedra have two strong 0"-Mo-O alternations so 
that their t^ levels will be high in energy and will not 
contribute to the bottom d-block bands. AU other oc
tahedra have one strong O—Mo-0 alternation perpen
dicular to the b direction. As a consequence, only the 
xz orbital of the nonhump octahedra (i.e., those of the 
Mo8O34 chain 10.3) will remain low in energy and thus 
will lead to the low-lying d-block bands of the Mo10O30 
layer. 

In order to understand the bottom part of the band 
structure of the real Mo8O34 chain 10.3, it is convenient 
to first consider the xz bands of the ideal Mo8O34 chain. 
The cluster orbitals needed to build the xz CO's are 
shown in 10.4 (Chart 10.1). Just as in the case of the 
2D red bronzes, the energy ordering of these eight levels 
can be obtained by counting the number of dots [i.e., 
(N)-type interactions]. The result is shown in 10.5. 

4(N)- — 

8(N)-

— h 

— 9 
— dj 

• — cj 

— b 
— a 

10.5 

10.3 
The CO's at T and Y generated by the cluster orbital 
10.4a have the nodal patterns 10.6 and 10.7, respec-
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r Y 

Figure 10.1. xz bands of the ideal MOSOM chain 10.3. 

tively. The numbers of (N)-type interactions per unit 
cell in 10.6 and 10.7 are 14 and 10, respectively. 
Namely, the number of (N)-type interactions in the 
CO's is the same as that in the initial cluster orbital at 
Y but increases by four at T. This stems from the 

10.6 

10.7 

antisymmetric character of the cluster orbital 10.4a with 
respect to the horizontal symmetry plane. Conse
quently, the same is expected from the CO's obtained 
from the cluster orbitals 10.4b-d. The cluster orbitals 
10.4e-h are symmetric with respect to the horizontal 
symmetry plane so that, in the CO's derived from any 
of those cluster orbitals, the number of (N)-type in
teractions is the same as that in the initial cluster or
bital at r but increases by four at Y. Simple application 
of these counting rules leads to the schematic band 
structure shown in Figure 10.1. 

In understanding the evolution of the CDW vector 
Qj, of the blue bronze with temperature, it is important 
to note from Figure 10.1 that band c at T (10.9) is de-

Figure 10.2. Bottom portion of the t^-block bands of the real 
MOJOM chain. 

generate with bands a and e at Y (10.7 and 10.8, re
spectively). As in the case of CS0.25M0O3, there is a 

10.8 

10.9 

2-fold screw rotation axis along the Mo8O34 chain di
rection (see 8.5a and 10.2). Consequently, the degen
eracies at y should be retained in the band structure 
of the real Mo8O34 chain (Figure 10.2). In any of the 
CO's 10.7-10.9, there are four antibonding Mo-O-Mo 
type interactions [i.e., 4(Y)] per unit cell. As shown in 
10.2, the Mo-O distances associated with the Mo-O-Mo 
bridges of both 10.7 and 10.8 are (1.873/1.873), 
(1.952/1.952), (1.897/1.897), and (1.964/1.964). In 10.9 
the four antibonding interactions are identical and are 
associated with the Mo-O distances (1.896/1.979). The 
short and long Mo-O distances involved in 10.7 or 10.8 
are similar to those involved in 10.9. This is why, as 
shown in Figure 10.2, band c at T and bands a and e 
at y differ only slightly in energy (i.e., about 0.05 eV). 

10.2 Interchain Interactions 
As shown in section 9.2, the effect of the interchain 

interactions can be predicted by examining the phase 
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Figure 10.3. Bottom portion of the d-block bands calculated 
for a real MoioOao slab of the blue bronze along the T — X and 
T -• Y directions of the FPZ defined by the vectors d' and b (see 
10.1b). T = (0, 0), X = (d'*/2, 0), and Y = (0, 6*/2), where d' 
= d + b/2 (see the discussion of section 4.3). The dashed line 
refers to the Fermi level. 

Y' 

(a) (b) (C) 

Figure 10.4. Fermi surfaces associated with the two partially 
filled d-block bands of a real M010O30 slab: (a) Fermi surface of 
the first band, where the wave vectors of the shaded and un
shaded regions lead to occupied and unoccupied band levels, 
respectively, (b) Fermi surface of the second band, and (c) nesting 
of the Fermi surfaces of the first and second bands. 

relation between the xz orbital of adjacent chains at the 
hump level in the CO's at T: If the orbital patterns 
around the hump octahedron are given by 10.10 and 
10.11, the effects of the interchain interactions are de
scribed by Figure 9.3, parts a and b, respectively. 

10.10 10.11 
When viewed along the chain, band orbitals a, b, and 
c at T in Figure 10.1 are described by 10.12,10.13, and 

10.14, respectively. Consequently, band a will behave 
as in Figure 9.3a, but bands b and c as in Figure 9.3b. 
Thus, the band dispersion relations of the Mo10O30 layer 
(solid lines) are related to those of the Mo8O34 chain 
(dashed line), as schematically shown in 10.15. 

10.14 

interchain intrachain 

10.15 

Two results of the above analysis are important to 
note: First, along r -»• X (i.e., the interchain direction), 
band a goes downward in energy while bands b and c 
go upward. Second, the bottom of band c lies near the 
top of band a in the Mo8O34 chain so that the bottom 
of band c lies below the top of band a in the Mo10O30 
layer. Figure 10.3 shows the calculated band structure 
for the real Mo10O30 layer of blue bronze.58 From Fig
ures 10.3 and 10.2, it is seen that the interchain inter
actions keep the energy difference between bands b and 
c at T almost constant but decrease that between bands 
c (or b) and a at T. Bearing in mind the discussion of 
section 4.3 and the avoided nature of some of the 
crossings in 10.15, the agreement between the calculated 
and schematic band structures is excellent. 

10.3 Fermi Surfaces and Nesting 

With three electrons per unit cell, the Fermi level cuts 
the two lowest d-block bands. The Fermi surfaces 
calculated58 for the first and second bands of Figure 10.3 
are shown in Figure 10.4, parts a and b, respectively. 
These two Fermi surfaces are open so that the blue 
bronze is predicted to be a ID metal in agreement with 
experiment. Due to the interchain interactions, the 
Fermi surfaces of the two bands are curved. The two 
bands have opposite senses of curvature in their Fermi 
surfaces, as proposed by Pouget et al.,53b because, as 
discussed in the previous section, one band is lowered 
in energy but the other is raised in energy along the 
interchain direction (r -* X). The two Fermi surfaces 
can be combined together as in Figure 10.4c. The upper 
Fermi surface of the first band is nested to the lower 
Fermi surface of the second band by the wave vector 
qb = 0.756*, and so is the lower Fermi surface of the first 
band to the upper Fermi surface of the second band. 
This explains why the blue bronze has only one CDW 
and undergoes a metal-semiconductor transition. 

The Fermi level of Figure 10.3 is calculated to be only 
0.012 eV below the bottom of the third band. This 
feature of the band electronic structure is crucial to 
explain the temperature dependence of <?(,, as shown by 
Pouget et al.63b Because of the small energy difference, 
thermal excitation of electrons can occur from the first 
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Figure 10.5. Wblock bands for the Mo2O7
6- slab of La2Mo2O7, 

where T - (0,0), X - (a*/2,0), and Z • (0, c*/2). The dashed 
line refers to the Fermi level. 

and second bands to the bottom portion of the third 
one. This thermal excitation, which increases with 
temperature, shrinks the occupied region of wave vec
tors in both Fermi surfaces. As a consequence, the two 
pieces of the Fermi surface of either the first and the 
second bands come closer to each other. Thus, the qb 

value of the CDW should decrease upon increasing 
temperatures as observed. 

10.4 Interchain Interactions and Nesting In 
La2Mo2O7 

Low-dimensional metallic compounds necessarily 
present stronger orbital interactions along a certain 
crystal direction and weaker interactions along the other 
directions. The latter can play an important role in 
determining the shape of the Fermi surfaces and hence 
its possible nesting vectors. For instance, the slopes of 
the two lower bands of the blue bronze along the in
terchain direction are similar in magnitude but opposite 
in sign. This is why the blue bronze exhibits a single 
CDW with nesting vector close to 0.756*. An interesting 
contrast with the blue bronze is provided by rare-earth 
molybdenum bronze La2Mo2O7,59 which is a layered 
material with La3+ cations sandwiched in between 
Mo2O7

6" layers 8.7. ̂  La2Mo2O7 is metallic down to 125 
K, below which it undergoes a phase transition. This 
transition is also detected by magnetic susceptibility 
measurements.23 According to the formal oxidations 
of (La3+J2(Mo2O7

6"), each molybdenum is in the oxida
tion state Mo4+ (d2). In each Mo2O10 cluster 10.16 of 
La2Mo2O7, the Mo-Mo distance across the shared edge 
is 2.478 A, which is compatible with the Mo-Mo dis
tance associated with a double bond between Mo at
oms.60 The bottom six d-block orbitals of an Mo2O10 

m 
10.16 

cluster,61 derived primarily from the t ^ levels of each 
metal ion, consist of bonding orbitals <r+ (10.17a), ir+ 

(10.18a), and 5+ (10.19a) and antibonding orbitals <x_ 
(10.17b), TT. (10.18b), and 5. (10.19b). Only the metal 
d orbitals are shown in 10.17-10.19 for simplicity. 

The bottom six d-block bands calculated for a 2D 
Mo2O7

6" slab61 are shown in Figure 10.5. These bands 

®gz> s ^ e£k C|D 

10.17a 10.17b 

10.18a 10.18b 

10.19a 10.19b 

are largely represented by the bottom six d-block or
bitals of each Mo2O10 cluster shown in 10.17-10.19, and 
their energy ordering is determined by the metal-metal 
interaction in the cluster. Along the chain direction T 
-* Z, the a bands (<r+ and (x_) are flat whereas the ir 
bands (ir+ and TT_) have a substantial dispersion as do 
the 5 bands (S1 and S2). This is expected because both 
the 7T and S orbitals make strong rr-type overlaps with 
the p orbitals of the shared "axial" oxygen atoms along 
the chain direction while the a orbitals do not overlap 
with any orbitals of the shared "axial" oxygen. The ir 
and 6 bands are much less dispersive along the inter
chain direction T-* X than along the chain direction 
T -*• Z, but the opposite is the case with the a bands. 

In each Mo2O10 cluster, the <r+, <r_, x+ , and it. bands 
have the metal character of the <7+, <r_, x+, and ir_ or
bitals, respectively. The S1 and 52 bands have the metal 
character of 5+ and 6. orbitals, respectively, along T -»• 
Z. Along r -»• X, however, the S1 and S2 bands at X 
have the metal character of the b. and S+ orbitals, re
spectively. This switch of the orbital character is caused 
by the p orbitals of the shared "equatorial" oxygen 
atoms, whose participation in bonding depends upon 
the wave vector. The S1 and S2 bands at T have the 
orbital characters of 10.20a and 10.20b, respectively, but 
those at X have the orbital characters of 10.21a and 
10.21b, respectively. When the oxygen p orbitals are 

10.20b 

10.21a 

m <E> 

SD 

m 

10.21b 
allowed by symmetry to interact with the metal d or
bitals, the former make an antibonding contribution to 
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Figure 10.6. Combined Fermi surfaces for the Mo2O?6" slab of 
La2Mo2O7. 

the d-block levels, thereby raising their energies. Band 
x+ at T has the orbital character 10.22a. Along T-* X 
the antibonding contributions due to the equatorially 
shared oxygens is lost (10.22b). Consequently, band x+ 
is lowered in energy along r -* X, as is S1. With four 
d electrons to fill the d-block bands of Figure 10.5, the 
(T+ band is completely filled and the ir+ and S1 bands 
are partially filled. 

10.22a 10.22b 

The Fermi surfaces associated with the two partially 
filled bands of Figure 10.5 are shown in Figure 10.6, 
which consists of four separated curved lines along the 
direction perpendicular to the chains, as in the case of 
blue bronze. Thus, La2Mo2O7 is a pseudo-ID metal 
with the best conductivity along the c direction (Le., the 
chain direction).61,62 However, there is an important 
difference from the blue bronze. The curvatures of the 
two upper lines (or the two lower ones) have the same 
sign in La2Mo2O7 but opposite signs in blue bronze. 
Given the combined Fermi surfaces such as those in 
Figure 10.6, it is possible to consider nesting between 
two different bands (interband nesting) or within each 
band (intraband nesting). The first leads to a single 
nesting vector, and the second to two separate nesting 
vectors. However, the tendency to form a CDW is 
stronger as the area of the nested Fermi surface in
creases. The interband nesting in the Fermi surface of 
Figure 10.6 joins both the upper two and the lower two 
lines by a common vector q =* (0, 0.27c*) so that the 
interband nesting would be more important than the 
intraband nesting in La2Mo2O7. It should be noted that 
the curvatures of the upper and lower two lines are 
slightly different in the region of the T -* Z line so that 
some metallic character could remain after the CDW 
formation. According to this discussion it is likely that 
La2Mo2O7 has CDW with wave vector q =* (0, 0.27c*), 
and that such CDW is responsible for the phase tran
sition at 125 K.23 

Another important feature of the band structure of 
Figure 10.5 is that the bottom of the S2 band lies above 
but very close to the Fermi level (0.018 eV). Therefore, 
as in the case of the blue bronze, thermal excitation of 
electrons can occur from the TT+ and S1 bands into the 
bottom portion of the S2 band. This thermal excitation, 
which increases with temperature, shrinks the occupied 
region of wave vectors of both the ir+ and S1 bands. As 
a consequence, the two pieces of the Fermi surface of 
either the ir+ or the S1 band come closer to each other 

upon losing electrons by thermal excitation. Then, the 
CDW vector q would remain nearly temperature inde
pendent in contrast to the case of the blue bronze. 

11. Magneli Phase MOjO23 and Diphosphate 
Tungsten Bronzes AJPgOJ/WO^ 

11.1 Magneli Phase Mo8O23 

Mo8O23 is metallic63 and exhibits no superlattice spots 
above 360 K, but shows incommensurate superlattice 
spots at qK = (0.195a*, 0.56*, -0.120c*) between 360 and 
285 K and commensurate superlattice spots at qc = (0, 
0.56*, 0) below 285 K.270-64 The presence of the 0.56* 
component shows that the unit cell size of Mo8O23 
doubles along the 6-axis direction as the temperature 
is lowered below 360 K. According to the electronic 
instability argument based upon Fermi surface nesting, 
the 0.56* component implies that Mo8O23 has a half-
filled band primarily dispersive along the 6* direction 
(i.e., the 6 direction, see 8.14). However, it seems un
likely: according to the usual oxidation formalism of 
O2", Mo8O23 has only two d electrons per formula unit 
to fill its 24 tjg-block bands. Furthermore, the Magneli 
phase Mo9O26, which can be derived from the structure 
of Mo8O23 (8.14) by replacing the Mo4O16 layer 8.12 with 
the Mo6O18 layer 8.13b, has also two d electrons to fill 
its 27 t^ block bands, but it exhibits a superlattice 
modulation with 0.56* component.65 Therefore, the 
structural modulation of Mo8O23 may not originate from 
a Fermi surface nesting. 

The crystal structure of Mo8O23 determined at 370 
K (i.e., the crystal structure without superlattice mod
ulation)27 shows that the MoO6 octahedra are all dis
torted from an ideal, regular octahedron. Every MoO6 
octahedron of Mo8O23 shows a strong O-Mo—O bond 
alternation (e.g., Mo-O = 1.69 A and Mo-O = 2.37 A) 
along the 6 axis. Every Mo atom of MoO6 is located 
slightly out of the four O6,, atom plane, as depicted in 
11.1, where the filled and empty circles represent the 
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Mo atoms lying above and below the four O6, atom 
planes, respectively. The senses of O-Mc—O alternation 
at these two kinds of Mo atoms are opposite (i.e., O-
Mo-O at one and O—Mo-O at the other) so that the 
unit cell of Mo8O23 is given by (Mo8023)2. The Mo-O 
bonds associated with the 0 » atoms of the Mo4O14 
chains (11.2) and the Mo4O15 slabs (11.3) are shown in 
11.4 and 11.5, respectively. Note that every MoO6 



Transition-Metal Oxides—Conceptual Aspects Chemical Reviews, 1991, Vol. 91, No. S 1003 

11.2 11.3 

11.4 

octahedron of the Mo4O14 chain has one short Mo-O^, 
bond (less than 1.80 A), while that of the Mo4O15 slab 
has Mo-O4Q bonds longer than 1.82 A. Simply speaking, 
therefore, the MoO6 octahedra of the Mo4O16 slab 11.3 
have a distortion in which one Mo-O bond is shortened, 
and those of the Mo4O14 chains 11.2 have a distortion 
in which two Mo-O bonds are shortened. It is then 
expected that the bottom t^-block bands of Mo8O2S wiU 
originate from the Mo4O15 slab alone (i.e., the non-
hatched part of 11.1). 

Shown in Figure 11.1, parts a and b are the dispersion 
relations calculated for the bottom t^-block bands of 
the Mo4O14 chain and Mo4O16 slab inMo8023, respec
tively.66 The lowest bands of the Mo4O14 chain are quite 
high in energy with respect to the bottom bands of the 
Mo4O15 slab in agreement with the above structural 
analysis. The main orbital character of the pairs of 
bands labeled a, b, and c in Figure 11.1b are those of 
the cluster orbitals 11.6a, 11.6b, and 11.6c, respectively. 
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[Because of the opposite senses of the O—Mo-0 alter
nations shown in 11.1, the unit of the Mo4O16 slab is 
given by (Mo4015)2, and all the bands contain two 
subbands.] Namely, the bottom portion of the t^-block 
bands of the Mo4O15 layer is made up of the metal xy 
orbitals. Again, this result is in agreement with the 
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Figure 11.1. Dispersion relations of the bottom portion of the 
t^-block bands calculated for (a) the Mo4Ou chain 11.2 and (b) 
the Mo4Oi6 slab 11.3 in Mo8O23, where T = (O, O), Y = (6*/2,0), 
and Z = (O, c*/2). 
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Figure 11.2. Dispersion relations of the bottom portion of the 
d-block bands calculated for Mo8O23. r = (O, O, O), X = (a*/2, 
O, O), V = (O, b*/2, O), and Z = (O1 O, c*/2). 

structural analysis since the xy orbital is the 8 orbital 
with respect to the strong 0-Mo«-0 alternation direc
tion in the octahedra of the Mo4O15 slab. Bands ax and 
a2 are dispersive along the c* direction, and so are bands 
bi and b2 because the 8 orbital (with respect to the b 
axis) at each MoO6 octahedron is engaged in ir-type 
interactions along the c-axis direction. For example, 
the nodal properties of bands ax and a2 at r are given 
by 11.7a and 11.7b (Chart 11.1), respectively, and those 
of bands bx and b2 at T by 11.8a and 11.8b (Chart 11.1), 
respectively. Bands C1 and C2 are not dispersive along 
the c* direction, since the unit cell orbital 11.6c prac
tically does not have any orbital contribution at the 
shared O64 atoms (between unit cells). This is shown 
by 11.9a and 11.9b (Chart 11.1), which are the nodal 
properties of bands C1 and c2 at T, respectively. Bands 
S1 and a2 merge at Z because, by changing the relative 
phases between adjacent unit cells, band at picks up but 
band a2 removes oxygen p-orbital contribution from the 
shared 0«, atoms between unit cells. Similarly, bands 
hi and b2 merge at Z, and so do bands C1 and c2. 

If there is no appreciable interaction between the 
Mo4O16 slabs and the Mo4O14 chains in Mo8O23, su
perposition of Figure 11.1, parts a and b would be a 
good approximation for the t^-block bands of Mo8O23. 
With four d electrons per unit cell (Mo8O23) 2, it is ex
pected that only bands at and a2 of the Mo4O15 slabs 
are occupied and all d-block bands of the Mo4O14 chains 
are unoccupied. Figure 11.2 shows the bottom portion 
of the t2g-block bands calculated for the three-dimen
sional lattice of Mo8O23.

66 There are two important 
observations to note from Figure 11.2: (a) Mo8O23 is 
predicted to be a semimetal and does not have a half-
filled band dispersive along the b* direction. AU the 
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bands of Figure 11.2 are not dispersive along the 6* 
direction, since they are largely based upon 5 orbitals 
with respect to the & axis, (b) Only the bottom d-block 
bands of the Mo4O16 slabs are filled, while the d-block 
bands of the Mo4O14 chains are empty. Consequently, 
the Mo atoms of the Mo4O16 slabs should be lower in 
their formal oxidation states than those of the Mo4O14 
chains (Le., approximately, Mo6J5+ for the Mo4O16 slabs 
and Mo6+ for the Mo4O14 chains). The Zachariasen 
analysis67 for Mo8O2S is found to give an unreasonable 
result; it predicts that all Mo atoms are nearly the same 

Canadell and Whangbo 

in their oxidation states (i.e., approximately Mo6-76+).65 

The Magneli phase Mo8O2S is thus a semimetal and 
has two partially filled bands resulting primarily from 
its structural components Mo4O16 slabs. These two 
bands are not dispersive along the 6* and a* directions 
but dispersive along the c* direction. Namely, Mo8O23 
does not possess a half-filled band dispersive along the 
6* direction, so that the 0.56* component of the su-
perlattice modulation in Mo8O23 does not originate from 
an electronic instability associated with Fermi surface 
nesting.66 As suggested by Pouget,1" therefore, the cause 
for the 0.56* modulation is likely to be the well-known 
structural instability inherent in perovskite metal ox
ides, i.e., the concerted pairwise rotations of MO6 oc-
tahedra within a layer of corner-shared MO6 octahe-
dra.68 As illustrated in 11.10 for an Mo4O17 quadruple 
chain (see 8.12 and the nonhatched part of 11.1), rota
tion of an MoO6 octahedron around an 0-Mo-O axis 
(perpendicular to the 6 axis) induces a concerted 
pairwise rotation of all MoO6 octahedra within the 
Mo4O17 chain. This doubles the unit cell size along the 

1> 
i 

11.10 

b direction and accounts for the 0.56* component. In
deed, the crystal structure of Mo8O23 determined at 100 
K27c and the inelastic neutron scattering data69 of 
Mo8O23 are consistent with the concerted pairwise oc
tahedral rotation described above. It is expected that 
the 0.56* modulation observed for Mo9O26 is also caused 
by the same mechanism. 

11.2 Diphosphate Tungsten Bronzes 

DPTB's A1(PA)4(WOa)4n, have slabs of Re03-type 
corner-sharing WO6 octahedra terminated on both sides 
by insulating P2O7 groups.28,70 Hence they are expected 
to be 2D conductors. Studies of the electrical properties 
of these materials in polycrystalline samples show708-71 

that they are metallic and their electrical transport 
properties are almost independent of the nature of the 
A cation. Later, it was shown on the basis of single 
crystals that DPTB's are indeed quasi-2D metallic 
materials, with better conductivity along one of the two 
directions of the slabs.72 

The slabs of corner-sharing WO6 octahedra in the 
lowest member of the DPTB series (i.e., m = 4)70d (8.17) 
are similar to the Mo4O16 slabs (8.12) of Mo8O23. 
However, the real structures of the DPTB's is more 
complex because the P2O7 groups (8.15) induce small 
tiltings of the WO6 octahedra leading to a unit cell four 
times bigger than that of the ideal W4O15 slabs. With 
the formal oxidation of A+, P6+, and O2", the average 
oxidation state of W in DPTB's A;c(P204)4(W03)4m is 
given by 6 - (8 + x)/4m. Since the x values are usually 
between 1 and 2, the number of d electrons per slab is 
usually between 9 and 10, so that the mean oxidation 
state of W increases with the thickness of the slab. In 
the case of the lowest reported member of the series 
(i.e., m = 4), the number of d electrons per W atom is 
0.625. This is very similar to the value for the Mo atoms 
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Figure 11.3. Dispersion relations for the bottom portion of the 
d-block bands calculated for (a) the ideal WOs chain 8.1 and (b) 
W4On quadruple chain 11.3. 

in the Mo4O15 slabs of Mo8O23 (i.e., 0.5). Hence, both 
structurally and electronically, the two systems are very 
similar. There is however one important difference: 
whereas Mo8O2S exhibits a strong O'-Mo-O alternation 
along the b direction, this is not the case for the 
DPTB's.70 Consequently, all three W orbitals of W can 
now lead to the low-lying tjg-block bands. In the fol
lowing, we study the band structure of an ideal W4O15 
slab 11.11. 

il.il 

Shown in Figure 11.3a are the bottom three d-block 
bands of an ideal WO5 chain (8.1b) constructed from 
WO6 octahedra with W-O distances of 1.916 A. With 
the coordinate system shown in 11.12, the two disper
sive bands are built from the xz and yz orbitals, and 
the nondispersive one from the x2-^2 orbital. Figure 

x*-y* xz yz 

11.12 

11.3b shows the bottom part of the d-block bands of a 
quadruple chain W4O17,11.13, which consists of a set 
of four nondispersive 5 bands and eight dispersive -K 
bands. The four nondispersive ones originate from the 
four x^-y2 orbitals. Four of the dispersive bands are 

- o . i 

-9.0 X ^ T ^ ^ : = ^ = ^ ^ / ^ / 

- O Q 

Y r M Y 
Figure 11.4. Dispersion relations of the bottom portion of the 
d-block bands calculated for the ideal W4Oj5 slab. T = (.0,0), Y 
= (ft*/2, O), Z = (O, c*/2), and M = (6*/2, c*/2). The dashed 
line refers to the Fermi level corresponding to 2.5 electrons per 
unit cell. 

almost degenerate and built from the cluster orbitals 
11.14a-d. The latter have 5 symmetry with respect to 
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the long axis of the cluster 11.3, so that the bands 
constructed from those cluster orbitals become prac
tically degenerate. The remaining four dispersive bands 
are constructed from the cluster orbitals 11.15a-d, and 
hence are not degenerate. 
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Figure 11.4 shows the dispersion relations of the 
t^-block bands calculated for the ideal W4O16 slab 11.11. 
Along r -»• y (i.e., the intrachain direction), they are 
very similar to those of the ideal W4O17 chain (Figure 
11.3b) except that the four nearly degenerate bands of 
the W4O17 chain split into two groups. Three of the four 
5 bands show dispersion along T-Z (i.e., the inter
chain direction), whereas all eight w bands are not 
dispersive only along T-Z. Shown in 11.16 and 11.17 
is the main orbital character of the lowest 5 band at T 
and Z, respectively. Depending on the wave vector, the 

± 
\* m W 

i 1 i — j — , , — i — . 

#1 
11.16 

^ A 

A 
+ 

11.17 

x2_y2 ofbitaig c a n make interchain in-plane x anti-
bonding interactions and hence this band is dispersive 
along r — Z. A similar reasoning applies to the other 
S bands. Because of its 6 character along the b direction, 
these bands are flat along T — Y so that the 5 bands 
are ID in character. Four of the ir-type bands are built 
from the cluster orbitals 11.15, which lead to 5 inter
actions between adjacent W4O17 chains (11.13) in the 
W4O16 slab. Thus these ir bands are nondispersive along 
T-Z. They are, however, dispersive along T — Y 
because the metal d orbitals make 7r-antibonding in
teractions with the bridging oxygen p orbitals along b 

11.18 

m L4_k-
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Figure 11.5. Combined Fermi surfaces associated with the 
partially filled bands of Figure 11.4. 
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Figure 11.6. Dispersion relations of the bottom portion of the 
t2«-block bands calculated for (a) the WieOso slabs of 
Rb2(P2O4MWO3)I6, (b) the W24O84 slabs of Rb,.8(P204)4(W03)24 
and, (c) the W28O96 slabs of Rbi.74(P204)4(W03)28. The dashed 
lines refer to the appropriate Fermi levels for (a) 
Rb2(P2O4MWO3)I6, (b) K2(P2O4MWOa)24, and (c) K2(P2O4J4-
(WOa)28, respectively. 

direction. Shown in 11.18 and 11.19 are the crystal 
orbitals at T and Z for the second ir-type band of Figure 
11.4, i.e., the lowest one originating from the set of four 
almost degenerate ones in Figure 11.3b. Essentially, 
11.18 and 11.19 are generated by repeating the cluster 
orbital 11.20 in-phase and out-of-phase, respectively. 
Since the total number of (N)-type interactions does 
not change, the band is dispersionless along T-Z. 
The same reasoning applies to the remaining three ones 
of the four nearly degenerate bands of Figure 11.3b. 
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11.20 

The calculated Fermi level for 2.5 electrons per unit 
cell (i.e., corresponding to the usual occupation of 10 
d electrons per slab) cuts both the h- and x-type bands, 
which are dispersive along the c and b directions, re
spectively. Consequently, the system should behave like 
a 2D metal. However, more bands are cut along the b 
direction (i.e., r -*• Y and Z -» M), so that the electrical 
conductivity should be greater along the b direction 
than along the c direction. It is interesting to note that 
the 2D metallic character of this system does not ori
ginate from the existence of genuine 2D bands but from 
that of ID bands in orthogonal directions. This is 
clearly seen from Figure 11.5, which presents the com
bined Fermi surfaces associated with the partially filled 
bands of Figure 11.4. 

Shown in Figure 11.6, parts a, b, and c are the band 
structures calculated72 for the real W-O slabs in Rb2-
(P2O4)4(WO3)16,

70d Rb1.8(P204)4(W03)24,m and Rb1)74-
(P204)4 (WO3)28,

70c respectively. Except for the band 
folding along the r -»• Y and T -* Z directions, which 
is the consequence of the quadrupled unit cell found 
in the real slabs, these band structures are qualitatively 
similar to the ideal one of Figure 11.4. Hence, all these 
systems should be 2D metals with better conductivity 
along the b direction as found experimentally.72 Some 
bands of Figure 11.6 have their flat portions lying very 
close to the Fermi level, and thus would have high DOS 
values in those energy regions. Therefore, the n(et) 
value can be increased if the Fermi level is either raised 
or lowered to these flat regions. Such an increase in 
n(e{) may be responsible for the observed increase in 
the conductivity72 of both the I^Rb^PAMWOs)^ (x 
+ y < 2, i.e., electron deficient) and K2Snx(P2O4J4-
(WO3J24 (x > 0, i.e., electron rich) systems (see Figure 
11.6b) with respect to that of K2(P204)4(W03)24. In 
contrast, according to Figure 11.6c, only electron-defi
cient samples A2_jt(P204)4(W03)28 (x > 0) are expected 
to show conductivity increase. 

12. Lithium Purple Bronze LI09Mo6O17 and 
Other Compounds Containing Zigzag Octahedral 
Chains as Conducting Paths 

12.1 LL.Mo.0 I0 - 9V '6W17 

Molybdenum purple bronzes A0-9Mo6O17 (A * K, Na) 
and TlMo6O17 are 2D metals and exhibit CDW phe
nomena.lb,c In contrast, the lithium purple bronze 
Li09Mo6O17 has a 3D crystal structure34 and exhibits 
pseudo-ID metallic character.34 It eventually becomes 
superconducting at ~2 K.73 (Li1^Nax)Q19Mo6O17 (x < 
0.48) and (Li1^Kx)Q9Mo6O17 (x < 0.40) also exhibit su
perconductivity at ~2 K despite the random potentials 
expected from the presence of mixed alkali cations.74 

Li0JMo6O17 has 2.9 electrons per six molybdenum 
atoms and consequently, only the bottom portion of the 
d-block bands can be filled. In order to understand why 

• Mo 

o Li 

Figure 12.1. A schematic drawing of the crystal structure of 
Lio.sMoeOi?, where each triangle or tetragon with an Mo atom 
represents an MoO4 tetrahedron or MoOe octahedron, respec
tively. 

a 3D crystal structure leads to pseudo-ID electrical 
properties, it is essential to determine how these 2.9 d 
electrons are distributed among the different Mo atoms. 
As shown in 8.25, the octahedral layers of Li09Mo6O17 
are step layers which have four different types of mo
lybdenum atoms: Mo1, Mo11, Mom, and Mo™. The 
different MoO6 octahedra in these layers share six to 
three of their oxygen atoms with MoO4 tetrahedra. 
Consequently, each MoO6 octahedron can be classified 
as an (m + n) octahedron, where m and n are the ox
ygen atom numbers shared with MoO6 octahedra and 
MoO4 tetrahedra, respectively. Then, the four different 
molybdenum atoms Mo1 to Mo™ are associated with 
octahedra of types (5 + 1), (6 + O), (4 + 2), and (3 + 
3), respectively (see 8.25 and Figure 12.1). The MoO4 
tetrahedra have in average much shorter Mo-O bonds 
than do the MoO6 octahedra. AU octahedra of the 
structure have three short and three long Mo-O dis
tances. However, the short Mo-O bonds of the (3 + 3) 
and (4 + 2) octahedra are shorter than those of the (5 
+ 1) and (6 + O) octahedra. Therefore, the lowest lying 
d-block bands of Li09Mo6O17 are expected to be largely 
represented by the t^ levels of the (5 + 1) and (6 + O) 
octahedra (i.e., the t^ levels of Mo1 and Mo11). These 
two types of octahedra are hatched in Figure 12.1, which 
shows a projection view of the 3D structure of Li0 9-
Mo6O17. Therefore, according to the crystal structure 
analysis, the lowest lying d-block bands of Li09Mo6O17 
would be given by the t^-block bands of the isolated 
Mo4O18 chains 12.1. Hence Li0-9Mo6O17 is expected to 

12.1a 

12.1b 

exhibit pseudo-ID electrical properties. How the d 
electrons are distributed among the different Mo atoms 
is empirically estimated by performing a Zachariasen 
analysis67 of the Mo-O bond lengths. This analysis 
revealed34 that the Mo atoms of the tetrahedral sites 
as well as the Mom and Mo™ atoms of the octahedral 
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Figure 12.2. Dispersion relations of the d-block bands calculated 
for L^9Mo6O17, where T = (0,0,0), X = (a*/2,0,0), Y- (0,6*/2, 
0), and Z = (0,0, c*/2). The dashed line refers to the Fermi level. 

WM 

(a) (b) 

Figure 12.3. Fermi surfaces of the two partially filled d-block 
bands of Lip.»MoeOi7. The wave vectors of the shaded and un
shaded regions of the Brillouin zone give the occupied and 
unoccupied band levels, respectively. 

sites have the oxidation state close to +6, but the Mo1 

and Mo11 atoms of the octahedral sites have the oxi
dation state close +5, thereby confirming the above 
structure analysis. 

Shown in Figure 12.2 are the dispersion relations of 
the bottom d-block bands calculated76 for Li0-9Mo6O17. 
As shown in Figure 12.1, the repeat unit of Li0-9Mo6O17 
is (Li0.9Mo6O17)2 so that the d-block bands of Figure 12.2 
are filled with 5.8 electrons. The four lowest bands of 
Figure 12.2 originate essentially from the Mo4Oi8 double 
zigzag chains as predicted by the crystal structure 
analysis. The two partially filled bands in the r -»• Y 
region of Figure 12.2 are related in orbital character to 
the two flat bands in the T-* Z region, although it is 
not apparent because of several avoided crossings. 
These partially filled bands give rise to the two almost 
perfect ID Fermi surfaces shown in Figure 12.3. The 
most striking feature of the band electronic structure 
of Li09Mo6O17 is the ID nature of its partially filled 
bands. Since this feature is so critical in interpreting 
various physical properties of Li09Mo6O17, we now ex
amine how the bottom d-block bands come about from 
the viewpoint of orbital interaction analysis. Shown in 
Figure 12.4a is the band structure calculated76 for the 
isolated Mo4O18 chain 12.1 as found in the Li09Mo6O17 
structure. In order to trace the origin of these bands, 
we first study the band structure of an ideal Mo4O18 
double chain (i.e., the Mo4O18 chain which is made up 
of regular MoO6 octahedra). The t^-block bands of this 
chain, shown in Figure 12.4b, are similar to those of the 
real Mo4O18 chain. The Mo4O18 chain results from two 
Mo2O10 chains 12.2 upon snaring their axial oxygens. 

C tei^te}^1 Z7 

ev 

r Y 

(o) (b) (O 

Figure 12.4. Dispersion relations of the d-block bands calculated 
for (a) the real Mo4Oi8 chain, (b) the ideal Mo4Oi8 chain, and (c) 
the ideal M02O10 chain. 
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Figure 12.4c shows the t^-block bands calculated for 
the ideal Mo2O10 chain. It is clear from Figure 12.4 that 
the bottom two dispersive d-block bands of Li09Mo6O17 
originate from the dispersive band a of each Mo2O10 
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TABLE 12.1. Antibonding Contributions of the Oxygen p 
Orbital* of the Mo-O-Mo Bridges in the t*-Block Band 
Orbitals of the Mo1O1, chains" 

band 
orbital 
12.3a 
12.3b 
12.4a 
12.4b 
12.5a 
12.Sb 
12.6a 
12.6b 
12.7a 
12.7b 
12.8a 
12.8b 

wave 
vector 

r 
r 
y 
Y 

r 
r 
Y 
y 
r 
r 
y 
y 

bridging oxygen 

within a 
unit cell 

(N) 
(Y) 
(N) 
(Y) 
(N) 
(N) 
(N) 
(N) 
(y) 
(y) 
(y) 
(y) 

between nearest 
neighbor unit cells 

(N) 
(Y) 
(Y) 
(N) 
(N) 
(N) 
(N) 
(N) 
(y) 
(y) 
(y) 
(y) 

° The presence of the antibonding contribution is indicated by 
the symbol (Y) or (y), and the absence of it by the symbol (N). 
The symbols (Y) and (y) refer to the stronger and the weaker an
tibonding contributions discussed in section 2.4.1. 

chain, and the bottom two flat d-block bands of Li09-
Mo6O17 originate from the flat bands c and d of each 
Mo2O10 chain. Thus, in the following, we analyze the 
nature of the W-block bands of the ideal Mo2O10 and 
Mo4O18 chains in some detail.78 

12.1.1 Ideal Mo2O10 Chain 

The t^-block bands of the ideal Mo2O10 chain are 
shown in Figure 12.4c. The orbitals of the dispersive 
bands a and b at T are given by 12.3a and 12.3b, re
spectively, and those at V by 12.4a and 12.4b, respec
tively (Chart 12.1). The metal-bridging ligand anti-
bonding interactions present in 12.3 and 12.4 are sum
marized in Table 12.1. 12.4a and 12.4b are degenerate 
so that the two bands a and b merge at Y. The orbitals 
of the two lower flat bands c and d of Figure 12.4c are 
given by 12.5 at T and by 12.6 at Y. Similarly, the 
orbitals of the two upper flat bands e and f are given 
by 12.7 at T and by 12.8 at Y. The metal-bridging 
ligand antibonding interactions present in 12.5-12.8 
(Chart 12.1) are listed in Table 12.1. Bands c and d are 
flat since the orbitals of the bridging oxygen atoms do 
not mix into the d orbitals both at T and at Y, while 
bands e and f are flat because the orbital of the bridging 
oxygen atoms mix with the d orbitals both at T and Y. 

According to Table 12.1 alone in which one considers 
only the metal bridging-ligand antibonding interactions, 
the energy level of 12.3a would be similar to that of 
either 12.5a or 12.5b. That 12.3a is lower in energy than 
either 12.5a or 12.5b arises from the difference in the 
extent of the molybdenum nonbridging-oxygen atom 
antibonding interactions. Each Mo atom of the Mo2O10 
chain has four (two axial and two equatorial) unshared 
oxygen atoms. As depicted in 12.9, the two equatorial 
oxygen atoms provide two strong Mo-O antibonding 
interactions to the x2~y2 orbital but two weak Mo-O 

<f-7^\ *> % 0~=-0 

x V 
12.9a 

XZ 

12.9b 12.9c 

12.1Oa 

Of© 

xz 

12.1Ob 

do not contribute to the x^-y2 orbital but contribute two 
strong Mo-O antibonding interactions to the xz and yz 
orbitals. Since the sum of the two weak Mo-O anti-
bonding corresponds to one strong Mo-O antibonding 
(see section 2.4.1), the overall antibonding contribution 
of the four unshared oxygen atoms is stronger in 12.5a 
or 12.5b than 12.3a. In a similar manner, it can be easily 
shown that the flat bands c and d lie in the middle of 
the band a, and the flat bands e and f lie in the middle 
of the band b. 

12.1.2 Ideal Mo4O18 Chain 

The W-block bands of the ideal Mo4O18 chain are 
shown inFigure 12.4b. The Mo4O18 chains are obtained 
from two Mo2O10 chains by sharing the axial oxygen 
atoms. As discussed in the previous section, the x2-^2 

orbital of an MoO6 octahedron has no orbital contri
bution from the axial oxygen atoms. Thus, if two MoO6 
octahedra are joined together to make an Mo2O11 unit 
by sharing an axial oxygen atom, the in-phase and 
out-of-phase combinations of the two x2-?2 orbitals are 
practically degenerate. Therefore, the dispersive bands 
a and b of the Mo2O10 chain would remain the same in 
the Mo4O18 chain. This explains the existence of the 
nearly degenerate, dispersive bands in Figure 12.4b. 

The xz and yz orbitals (i.e., 12.10b and 12.10c, re
spectively) of each MoO6 octahedron, which lead to the 
flat bands c-f of the ideal Mo2O10, have p-orbital par
ticipation from axial oxygen atoms. How the energy 
level of 12.1Ob (or 12.1Oc) of an MoO6 octahedron is 
affected upon making an Mo2O11 unit by sharing an 
axial oxygen atom is depicted in 12.11 with the xz or
bital as an example. The (xz). orbital 12.12a is lower 

(XZ). 

in energy than the xz level, since the orbital of the 
bridging oxygen atom does not mix into the (xz)- The 
(Xz)4. orbital 12.12b is higher in energy than the xz level, 
since the p orbital of the bridging oxygen atom mixes 

antibonding interactions to the xz and yz orbitals. As 
shown in 12.10, however, the two axial oxygen atoms 

(XZ)_ 

12.12a 

OO (XZ)+ 

12.12b 



1010 Chemical Reviews, 1991, Vol. 91, No. S Canadell and Whangbo 

in with a greater coefficient than in the case of an MoO6 
octahedron 12.10b, which makes the (xz)+ orbital nor
malized (see section 2.4.1). The set of bands c and d 
and that of the bands e and f each undergo the kind of 
level splitting depicted in 12.13, when two Mo2Oi0 
chains are condensed into one Mo4O18 chain. Conse
quently, the two groups of nearly degenerate bands in 
each Mo2O10 chain give rise to the three groups of nearly 
degenerate bands, as depicted in 12.13. As a result, we 

M°2°,0 M°<°I8 M°2°I0 

12.13 

obtain the 12 tyblock bands of the ideal Mo4O18 chain 
shown in Figure 12.4b. As can be seen from Figure 12.4, 
parts a and b, the d-block bands of the real Mo4O18 
chain are only slightly different from those of the ideal 
Mo4O18 chain, which reflects the fact that in the real 
Mo4O18 chain each MoO6 octahedron deviates somewhat 
from a regular octahedral structure. 

12.1.3 Interchain Interactions and Physical Properties 

It is clear that the four filled d-block bands of Li0-9-
Mo6O17 (Figure 12.2) arise primarily from the Mo4O18 
chains 12.1 parallel to the b axis. As can be seen from 
12.14, the Mo4O18 chains are linked to one another via 
the MoO6 octahedra involving the Mom atoms. Note 

12.14 

that each Mo111O6 octahedron is linked to two Mo4O18 
chains, one with sharing its axial oxygen atom and the 
other with sharing its equatorial oxygen atom. The 
x2-y2 orbital of each Mo11 atom makes a 5-type overlap 
interaction, and hence practically no overlap interac
tion, with the Mo111O6 octahedron through the shared 
axial oxygen atom. As far as the x2-y2 orbitals of the 
Mo11 atoms are concerned, therefore, the Mo4O18 chains 
of Li09Mo6O17 do not interact with one another. Con
sequently, the lower two dispersive bands of a single 
Mo4O18 chain retain their ID character in 3D Li0-9-
Mo6O17. Each Mo111O6 octahedron provides a x-type 
overlap interaction not only with the Mo11 atom xz/yz 
orbitals through the shared equatorial oxygen atom but 
also with those through the shared axial oxygen atom. 
That is, as far as the xz/yz orbitals of the Mo11 atoms 

Figure 12.5. Projection view of the crystal structure of 
Cs(̂ O4MWO3)S. Cesium atoms (not shown) are present in the 
octagonal tunnels. 

are concerned, the Mo4O18 chains of Li09Mo6O17 do 
interact to one another. This explains why two of the 
bottom four bands in Li09Mo6O17 are almost equally 
dispersive, though not strongly, along T-» Z and T -+ 
Y directions. Since only the x2-y2 based bands are 
partially filled, Li018Mo6O17 is predicted to be a ID metal 
in agreement with the results of the Zachariasen 
analysis. 

The two pieces of the Fermi surfaces of Figure 12.3 
are perfectly nested by the wave vector q en (O, 0.456*, 
O). Consequently, Li09Mo6O17 is expected to be sus
ceptible to a ID instability such as CDW or SDW for
mation associated with q.75 The electrical resistivity of 
Li0 9Mo6O17 decreases slowly as temperature is lowered 
down to 25 K, below which the resistivity gradually 
increases until it drops abruptly to zero around 1.9 K.73 

At 25 K there is also a heat capacity anomaly.73* It 
could be argued that the resistivity upturn is due to a 
localization effect76 associated with the influence of the 
lithium cations. However, this would be inconsistent 
with the fact that (Li1^NaJt)0-9Mo6O17 (x < 0.48) and 
(Li1-XKJt)0-9Mo6O17 (x < 0.40) exhibit both the resistivity 
upturn around 25 K and the superconductivity below 
2 K despite the random potentials expected from the 
presence of mixed alkali cations. In addition, our study 
shows that the conducting electrons should be quite well 
screened from the influence of alkali cations.75 In fact, 
recent magnetoresistance results do not seem to be 
consistent with a localization effect.77 The resistivity 
upturn at 25 K could be due to a CDW formation.778 

However, the magnetic susceptibility of Li0-9Mo6O17 is 
observed to remain nearly constant upon lowering 
temperature below 25 K.7Sb This observation is not 
consistent with the possibility of a CDW instability. 
Alternatively, it may be suggested that the resistivity 
upturn of Li0-9Mo6O17 at 25 K is caused by a SDW 
formation in the Mo4O18 chains by analogy with the 
SDW - • superconductor transition in the ID organic 
metal (TMTSF)2PF6, which occurs under pressure.78 

This suggestion is consistent with the observation that 
an applied pressure suppresses the resistivity upturn 
of Li0-9Mo6O17 and keeps the low-temperature super
conducting state.79 Formation of a SDW is not incon
sistent with the observation of constant magnetic sus
ceptibility. Hence, although the elucidation of the 
low-temperature behavior of Li0-9Mo6O17 requires fur
ther experimental work, a SDW instability seems more 
likely to be responsible for the resistivity upturn at 25 
K. 

12.2 Cs(P2O4J4(WO3), and (P204)4(WO,)12 

Double zigzag chains M4O18 are also found in Cs-
(P2O4J4(WO3)B* (Figure 12.5) where the W4O18 chains 
are isolated from each other, so that Cs(P204)4(W03)8 
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Figure 12.6. Dispersion relations of the t2,-block bands of the 
W4O18chain, where r = 0 and Z = c*/2. The Fermi level (dashed 
line) is for 4.5 d electrons per formula unit W4O18. 

-9.2 

eV 

-9.4 

-9.6 
a - e . 

X V 
Figure 12.7. Dispersion relations of the bottom portion of the 
t2g-block bands calculated for Cs(P2O4J4(WO3)S, where T = (0,0, 
0), X = (a*/2,0,0), Y = (0, 6*/2,0), and Z = (0,0, c*/2). The 
Fermi level is for nine d electrons per unit cell. 

is expected to be quasi ID in electronic properties. 
Indeed, the electrical transport and magnetic properties 
are consistent with this picture.81 The resistivity versus 
temperature plot of Cs(P204)4(W03)8 shows the pres
ence of two resistivity anomalies at ~160 K and ~ 24 
K: It is semiconducting from ~760 to 160 K, metallic 
between ~160 and ~24 K, and semiconductor below 
~24 K. With the formal oxidation states Cs+, O2", and 
P2O7

4", the oxidation state of W in Cs(P2O4J4(WO3)I, is 
4.875. Thus, the electron counting on W is d1126, and 
there are 4.5 electrons to fill the d-block bands of the 
W4O18 chain per formula unit (W4O18). The t^-block 
bands of the W4O18 chain are shown in Figure 12.6, 
where the dashed line represents the Fermi level ap
propriate for 4.5 d electrons per unit cell. These bands 
are essentially identical in nature with those of the ideal 
Mo4O18 chain described in section 12.1.2. Figure 12.7 
shows the bottom portion of the t2g-block bands of the 
Cs(P204)4(W03)8 lattice.82 Since this lattice has two 
W4O18 chains per unit cell, it has twice as many t^-block 
bands as does the W4O18 chain and nine electrons to fill 
them. Except for the band doubling and a very small 
splitting in each pair of bands, the t^-block bands of 
the Cs(P204)4(W03)8 lattice are identical with those of 
the W4O18 chain. The W4O18 chains of Cs(PA)4(WOa)8 
are not as well screened as are the Mo4O18 chains of 
Li05Mo6O17, and hence their conduction electrons would 
be more susceptible to the electrical fields created by 
the cations. Hence order-disorder transitions of the Cs 

sf&SW%£$ 

Figure 12.8. Projection view of the crystal structure of 
(PA)4(WOs)12. 

(a) 

Figure 12.9. Dispersion relations of the Wblock bands of (a) 
the WeO2S chain and (b) the W4O1S chain, where T = O and Z = 
c*/2. 

z r 
Figure 12.10. Dispersion relations of the bottom portion of the 
tto-block bands calculated for the W12O48 lattice of (P2O4J4(WOa) 12. 
where the dashed line refers to the Fermi level, r = (0, 0, 0), X 
« (a*/2, 0, 0), Y = (0, b*/2, 0), and Z = (0, 0, c*/2). 

cations could influence the conducting properties. In
deed, a partial interchannel ordering of the cations has 
been observed83 near the temperature at which a met
al-semiconductor transition occurs. Thus, the high-
temperature semiconducting behavior may be associ
ated with an Anderson localization (see section 6.3) of 
the electrons caused by an interchannel Cs+ disorder. 
The resistivity upturn at ~ 24 K could be ascribed to 
a CDW associated with the one-fourth filled bands of 
Figure 12.7 since they are strongly one-dimensional 
ones. It should be possible to observe a CDW with 
vector q at 0.25c*. As the electron density in the par
tially filled dispersive bands increases, screening among 
the electrons of the band is increased so that electrons 
become less susceptible toward localization around 
Cs+-rich neighbors. Thus, it would be of interest to 
study the electronic properties of Tl2(P2O4J4(WO3)S,84 

isostructural with Cs(P204)4(W03)8 but more electron 
rich. In fact, Wang et al. prepared alkali-metal sub
stituted phases AvCs,(P204)4(W03)8 (x + y > 1) and 
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showed that as x + y increases the resistivity hump at 
160 K disappears whereas the upturn at 24 K remains.82 

As shown in Figure 12.8, the crystal structure of 
(P2O4J4(WO3)J2

86 contains W6O28 chains 12.15. These 
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^ JIL 
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ZJ 
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12.15a 
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12.15b 
chains contain three types of tungsten atoms: W1, Wn, 
and Wm. It is noted that the W1O6 and W11O6 octahedra 
form a double zigzag chain W4O18 12.1. The 3D octa
hedral network of (P2O4J4(WO3J12 can thus be described 
as a series of double zigzag W4Oi8 chains interlinked by 
W111O6 octahedra. According to a Zachariasen-type 
analysis of the W-O bond lengths, the oxidation states 
of W1, Wn, and Wm are calculated to be 5.19, 5.10, and 
5.71, respectively.84 The oxidation state for Wra is 
practically identical with those of the Mo111 and Mo™ 
atoms (see 12.14) in Li018Mo6O17, i.e., 5.72 and 5.76, 
respectively.34 Thus one may expect a negligible con
tribution of Wm in the low-lying d-block bands of 
(P2O4J4(WO3J12 and hence a low-dimensional electrical 
property. However, this is in disagreement with the 
observed 3D electrical properties.84 With the formal 
oxidation states of O2" and P2O7

4", there are eight d 
electrons per 12 W atoms, i.e., four electrons per W6O28 
chain. Figure 12.9a shows the dispersion relations of 
the t2g-block bands calculated84 for the W6O28 chain 
12.15. With four electrons to fill these bands, the Fermi 
level lies near the top of the bottom flat band, and the 
bottom dispersive bands become partially filled as well. 
The partially filled bands are largely represented by the 
tungsten atoms W1 and W11. This can be seen from 
Figure 12.9b, which shows the dispersion relations of 
the t^-block bands calculated for the W4O18 chain ob
tained from the W6O28 chain by removing W m 0 6 oc
tahedra. Clearly, the bottom portions of Figure 12.9 
parts a and b are nearly identical in nature. The W 
orbitals of Wm06 octahedra represent the main orbital 
character of the three additional flat bands of Figure 
12.9a. Consequently, the d electrons reside mainly in 
the W1O6 and Wn06 octahedra in agreement with the 
Zachariasen analysis. 

From the band dispersions of the W6O28 and W4O18 
chains, one might speculate a ID character for (P2-
04)4(W03)12. However, this is not the case as can be 
seen from Figure 12.10, which shows dispersion relations 
of the bottom portion of the t^-block bands calculated 
for the W12O48 lattice of (P204)4(W03)12. The essential 

features of the band dispersions of the W12O48 lattice 
are similar to those of the W6O28 chain, except for an 
important difference that the ir-type bands of the 
W12O48 lattice exhibit substantial dispersions in all three 
directions. Since the W12O48 lattice has two W6O28 
chains per unit cell, there are eight d electrons to fill 
the bands of Figure 12.10. Consequently, the x-type 
bands are cut by the Fermi level in all three directions, 
and (P2O4J4(WO3J12 is a 3D metal. As shown in Figure 
12.8 (see also 12.15b), the W111O6 octahedra of one W6O28 
chain share two oxygen atoms with another W6O28 
chain. Therefore, the ir-type orbitals of an W111O6 oc
tahedron provide 7r-type interactions not only within 
a W6O28 chain but also between W6O28 chains as sche
matically depicted in 12.16. This interaction is effec

ts, 

Wn KD Wm 

12.16 

tive in the low-lying x-type bands of (P204)4(W03)12 as 
in Li09Mo6O17 (section 12.1.3). A W111O6 octahedron of 
one W6O28 chain is linked in a tilted manner, due to the 
diphosphate ions, to a W11O6 octahedron of the neigh
boring W6O28 chain, which leads to a better interaction 
between the W11O6 and W111O6 octahedra. The essential 
difference with Li09Mo6O17 lies in the number of d 
electrons per M4O18 chain (M = Mo, W). Whereas in 
Li05Mo6O17 there are 5.8 electrons per Mo4O18 chain and 
the lower ir bands are completely filled, in (P2O4J4(W-
O3J12 there are only four electrons and both 8 and x 
bands are partially filled. According to Figure 12.10, 
(P2O4J4(WO3) 12 will behave like a ID metal if more 
electrons are added to its lattice so that the Fermi level 
lies above the top of the ir bands. Our calculations84 

show that this change requires more than four electrons 
per formula unit, i.e., an electron count similar to that 
of Li019Mo6O17. This explains why all the Ax(P2O4J4-
(WO3J12 (A = Li, Na; x < 1) bronzes are 3D metals as 
found experimentally.84 Li0-9Mo6O17 and (P2O4J4(WO3J12 
contribute an example of two systems for which the 
Zachariasen-type analysis gives a similar distribution 
of the d electrons but have very different electrical 
conductivities. This observation originates from the 
fact that two types of bands with different dimension
ality occur in the same energy range. In such cases, the 
dimensionality of the electrical conductivities will be 
a very sensitive function of the band filling, so that band 
structure calculations are necessary to determine the 
dimensionality or their electrical conductivities. This 
situation is likely to occur in low-dimensional systems 
built from octahedra condensation because of their S-
and x-type bands associated with the t^-block levels. 

12.3 (PO2J4(WO3J4 and CsMo4_x012 

M2O10 single zigzag chains (12.2J are found in the 
crystal structures of (PO2J4(WO3J4

86 and CsMo4-A2.87 

In both compounds, however, these chains are distorted. 
Successive octahedra turn in opposite directions around 
their apical axis (12.17) in (P2O4J4(WO3J4 and around 
the chain axis (12.18) in CsMo4-J(O12. The W2O10 chains 
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Figure 12.11. Projection view of the structure of (P02)4(W03)4. 

Figure 12.12. Projection view of the structure of CsMo^Ou 
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QJ 

Figure 12.13. Dispersion relations of the t^-block bands 
calculated for the W2Oi0 chains of (P02)4(W03)4. 

12.17 

of the former are linked by PO4 tetrahedra such that 
every chain can be considered isolated from one another 
(Figure 12.11). CsMo4_x012 is a layered compound 
where the MoO3 layers (Figure 12.12) are constructed 
from Mo2O10 zigzag chains 12.18 linked by MoO4 tet
rahedra. Since the MoO4 tetrahedra have in average 

12.18 

much shorter Mo-O distances than the MoO6 octahe-
dra, the tetrahedral Mo atoms should be in a +6 oxi
dation state, and therefore both CsMo4-^O12 and (P-
02)4(W03)4 should be ID materials. It is noted that, 
according to the crystal structure refinement, the Cs 
sites in CsMo4-XO12 are fully occupied but the Mo sites, 
both tetrahedral and octahedral, are partially vacant 
(i.e., x af 0.13).87 

With the oxidation states of O2" and P6+, the d 

eV 

-9.3 

Figure 12.14. Dispersion relations of the t^-block bands 
calculated for the Mo2OiO chains of CsMo4-,Oi2. 

electron count of W in (P02)4(W03)4 is d1. Namely, 
there are two electrons to fill the t^-block bands of 
Figure 12.13.88 Therefore, the dispersive band a is 
nearly half-filled, and the nearly degenerate bands c and 
d are quarter-filled as a whole. In simple chemical 
terms, this implies that the two 5 orbitals of a unit cell 
accommodate one electron, and so do the four w orbitals 
of a unit cell. Since bands c and d are extremely nar
row, electrons in these bands are most likely to be 
localized. On the other hand, band a is quite dispersive 
so that electrons in this band are expected to be delo-
calized. Actual calculations88 show that these obser
vations remain valid for the 3D lattice of (PO2J4(WO3J4. 
As a result, (PO2J4(WOa)4 is expected to be metallic and 
possess magnetic properties associated with localized 
electrons. In addition, the ID metallic band a may lead 
to an electronic instability such as CDW. It would be 
of interest to measure the physical properties of (P-
02)4(W03)4. 

The dispersion relations for the Mo2O10 zigzag chains 
of CsMo4-,012 are shown in Figure 12.14. The main 
difference from the band structure of Figure 12.13 is 
that the four nondispersive bands have been pushed up 
in energy and that an energy gap opens at Y. The latter 
stems from the fact that the two Mo atoms of the oc
tahedral zigzag chain are slightly different, while the 
former results from the fact that all octahedra have one 
very strong O—Mo-0 distortion (i.e., 1.676 vs 2.211 A 
or 1.694 vs 2.222 A) along the apical axis. This leaves 
only one d orbital on the equatorial plane at low energy. 
Bands a and b have thus the same orbital character as 
do bands a and b of the ideal Mo2O10 chain in Figure 
12.4c. Assuming tetrahedral Mo atoms in a +6 oxida
tion state, there are 1 - 6* electrons to fill band a of 
Figure 12.14. Band a is as much dispersive as the 
partially filled bands of metallic oxides like blue bronze. 
Hence the semiconductive behavior of CsMo^O^87,89 

could result either from Anderson-like localization if 
vacant Mo sites occur only in MoO4 tetrahedra or sim
ply because the conduction path is cut if vacant Mo 
sites occur in both MoO6 octahedra and MoO4 tet
rahedra. The crystal structure refinement study of 
Abrahams et al.87 is consistent with the second possi
bility. Interestingly, if a nondefective CsMo4O12 with 
this structure could be prepared, it would have a 
half-filled ID band a exactly as it does (P02)4(W03)4. 
However, the formal electron count on the octahedral 
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Figure 13.1. Projection views of representative MPTB phases: 
(a) (POjMWOaMWOsh, (b) (P02)4(W03)6(W03)6, (c) 
(P02)4(W03)4(W03)e, and (d) Na^POsMWOj.MWO^. 

metal atom would be different in the two phases, i.e., 
d0-6 in CsMo4O12 but d1 in (P02)4(W03), as a result of 
the different structure of the MO6 octahedra. 

13. Compounds Containing Stop-Layers as 
Conducting Paths 

The Magneli phases 7- and 77-Mo4O11
32 are both 2D 

metals at room temperature and exhibit a resistivity 
anomaloy at low temperature (the phase transition 
temperature T8 = 100 and 109 K for 7- and Jj-Mo4O11, 
respectively).90,91 Diffuse X-ray and electron-scattering 
studies on 77-Mo4O11 show that the resistivity anomaly 
originates from a CDW,91b which leads to the satellite 
peaks centered at (O, 0.236*, 0). Although the CDW 
affects the resistivity anisotropically, Mo4O11 retains its 
2D metallic character below Tp. 

7- and 7J-Mo4O11 contain step-layers of composition 
Mo6O22 (see 8.24). Such layers are linked via MoO4 
tetrahedra to form the 3D structures of Mo4O11. The 
7- and Tj-Mo4O11 phases differ slightly only in the way 
the Mo6O22 layers are joined by the MoO4 tetrahedra, 
as shown in Figure 8.2, parts a and b, respectively.32 7-
and TJ-Mo4O11 are instructural with the third members 
of MPTB the family.31*-33 In the MPTB phases, the 
octahedral step layers are linked by PO4 tetrahedra. 
The MPTB phases have either pentagonal or hexagonal 
tunnels between the W-O step-layers, and those with 
pentagonal and hexagonal tunnels are called MPTBP 
and MPTBh, respectively.3,28,29 The latter invariably 
occur with alkali-metal atoms Na or K in the hexagonal 
tunnels. Nearly all MPTB phases have two W-O layers 
per unit cell so that the general formula for the MPTBP 
phases can be written as (PO2J4(WO3)D(WO3)O, and that 
for the MPTBh phases as Ax(POz)4(WO3)P(WO3), (A = 
Na, K). The indices p and q are even or odd integers, 
which are equal to the number of WO6 octahedra per 
unit cell used to form the W-O layer. Usually, p and 
q are identical, thereby leading to the alternative for
mulas (P02)4(W03)2m and Ax(PO2J4(WO3)^. However, 
they can be different as in the case of (P02)4(W03)4-
(WO3J6,

92 which should be distinguished from (P02)4-
(W03)5(W03)6. Figure 13.1 shows projection views of 
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Figure 13.2. Dispersion relations of the Wblock bands calcu
lated for an ideal W4Ow layer, where the dashed lines refer to the 
Fermi levels for JV = 2, 3, and 4 .T = (O, O)1 X = (a*/2, O), Y = 
(O, b*/2), and M = (a*/2, b*/2). 

four representative MPTB phases, (P02)4(W03)4(W-
O3J4,

30 (P02)4(W03)6(W03)6,
33 (P02)4(W03)4(W03)6,

92 

and Nax(P02)4(W03)4(WO„)4,
31b where the filled trian

gles represent the PO4 tetrahedra. 
For the purpose of d-electron counting, the general 

formula of the MPTB phases can be written as Ax-
(PO2J4(WO3)P(WO3),. With the formal oxidation states 
of A+, P6+, and O2", the average oxidation state of W 
is given by 6 - (4 + x)/(p + q). Thus, a unit cell of an 
MPTB phase has 4 + x electrons or equivalently 2 + 
x/2 electrons per W-O layer. Namely, there exist 2 + 
x/2 electrons per unit cell to fill the t^-block bands of 
a W-O layer. In the Mo4O11 phases (x - O, p = q = 6), 
the average Mo-O bonds of the MoO4 tetrahedra are 
much shorter than those of the MoO6 octahedra. 
Consequently, the tetrahedral Mo atoms will have the 
formal oxidation state +6 so that there are eight d 
electrons per repeat unit or equivalently, four d elec
trons per octahedral Mo-O layer. 

Recently, the MPTBP phase, (P02)4(W03)«(W03)6, 
has been found to have resistivity anomalies93 which 
originate from CDW instabilities.94 Although the oc
tahedral step-layers of Mo4O11 and (PO2J4(WO3J6(WO3J6 
are similar, the resistivity anomalies of the two phases 
are different. Presumably, this results from the dif
ferent electron filling of the layer d-block bands. In the 
following, we examine how the electronic structure of 
octahedral step layers depend on both band filling and 
thickness of the slab. 

13.1 Band Dispersion Relations of ths Ideal 
Step-Layer M4O1, (M = Mo, W) 9 8 " 

Figure 13.2 shows the dispersion relations of the 
t^-block bands calculated96 for an ideal W4O16 layer 
made up of regular WO6 octahedra (with the average 
W-O distance of 1.916 A), where the dashed lines refer 
to the Fermi levels appropriate for 2, 3, and 4 d elec
trons per unit cell, and the r -*• X and T-* Y directions 
represent the intra- and interchain directions, respec
tively. The four bands a, b, c, and d are only dispersive 
along the intrachain direction and have ID character 
(see also section 15.2 for further discussion). The four 
bands e, f, g, and h are each practically doubly degen
erate. The bands e, f, and h are dispersive along the 
intra- and interchain directions and thus have 2D 
character. The Fermi level for any d-electron count 
between 2 and 4 per unit cell cuts the ID band a as well 
as the two nearly degenerate 2D bands e. We now 



Transition-Metal Oxides—Conceptual Aspects Chemical Reviews, 1991, Vol. 91, No. 5 1015 

probe the essential features of Figure 13.2 by examining 
the orbital character of bands a, b, and e.95 

13.1.1 8 Bands 

Band a of Figure 13.2 is constructed from the orbital 
13.1a of the W4O2I

 u n i t 13-2 (i.e., the lowest lying d 
orbital of the unit). Within this unit, the three equa-

o 

13.1a 13.1b 

torial bridging oxygen atoms have no contributions to 
13.1a, i.e., they have the (NNN) contribution to 13.1a. 

13.2 

Band a at T and X is given by the step orbitals 13.3 and 
13.4, respectively, which show the orbitals for one step 
of the W4Oi6 layer (see 8.20). Between the W4O21 units 

k .I Ii .I i i 

1 II II II m 
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Figure 13.3. Dispersion relations of the t2g-block bands calcu
lated for the real Mo6C^ layer of 7-M04O11. T, Y, Z, and M refer 
to the wave vectors (0, 0), (6*/2, 0), (0, c*/2), and (6*/2, c*/2). 
The dashed line refers to the Fermi level. 

along the chain axis, the three equatorial bridging atoms 
have the (NNN) and (YYY) contributions to 13.3 and 
13.4, respectively. Thus band a is less stable at X than 
at T by three (Y) interactions per W4O21 unit. The step 
orbital of band a at Y is also given by 13.3. Along the 
interchain axis, the step orbitals 13.3 combine in-phase 
at T but out-of-phase at Y. The two bridging-axial 
atoms of each W4O21 unit have the (NN) contribution 
to these band orbitals, due to the 6 symmetry of the 
metal d orbitals. Therefore band a is dispersive along 
T -* X and remains flat along T -* Y. 

Band b of Figure 13.2 is constructed from orbital 
13.1b of the W4O21 unit (i.e., the second lowest lying 5 
orbital of the unit 13.2. Within this unit, 13.1b has the 
(NYN) contribution from the three bridging-equatorial 
oxygen atoms. Band b at T and X has the step-orbitals 
13.5 and 13.6, respectively. Between the W4O21 units 

^ S 
2 Q J-

13.5 

5" 

e. 

v 

"5 
2 , 

S S ^ 

13.6 

along the chain axis, 13.5 and 13.6 have the (NYN) and 
(YNY) contributions from the bridging-equatorial ox
ygen atoms, respectively. Therefore, 13.5 and 13.6 are 
less stable than 13.3 by two and three (Y) interactions 
per W4O21 unit, respectively. Thus, with respect to 
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Figure 13.4. Fermi surfaces of the MO6OM layer associated with 
(a) band a, (b) band ei, and (c) band e2. The wave vectors of the 
shaded and unshaded regions refer to filled and unfilled band 
levels, respectively. 

band a, band b lies higher in energy and is less dis
persive along r -* X. Band b is flat along r - • Y for 
the same reason why band a is flat along r -*• Y. Table 
13.1 lists the contributions of the bridging oxygen p 
orbitals to bands a, b, and e at T, X, and Y. 

13.1.2 ir Bands 

The nearly doubly degenerate band e of Figure 13.2 
is constructed from the orbitals 13.7a and 13.7b. Both 

, 

&3 

&o 

©o 
13.7a 13.7b 

are the lowest lying TT orbitals of the W4O2I
 u m ^ 13.2. 

Within this unit, the three bridging-equatorial oxygen 
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atoms have the (NNN) contribution to 13.7a and 13.7b. 
One of the two bands e has the step orbital 13.8 and 
13.9 at T and Y, respectively. Between the W4O2I units, 
13.8 and 13.9 have the (NNN) contribution from the 
three bridging-equatorial oxygen atoms. At T and X, 
the step orbitals repeat with the same sign along the 
interchain axis, so that 13.8 and 13.9 have the (NN) and 
(YY) contributions, respectively, from the two bridg
ing-axial oxygen atoms per W4O21 unit. At Y, however, 
the step orbitals 13.8 repeat with alternating signs along 
the interchain axis. Thus band orbital e at Y has the 
(YY) contribution from the two bridging-axial oxygen 
atoms per W4O21 unit. Therefore, as listed in Table 
13.1, band e goes up in energy along both T-*• X and 
r -*• Y. That is, band e is 2D-like. The same conclusion 
is obtained for the other member of the nearly degen
erate band e. According only to the bridging oxygen 
contributions listed in Table 13.1, the 2D-like band e 
at T and the ID-like band a at r would have the same 
energy. However, one must take into consideration the 
antibonding contributions from the eight nonbridging 
oxygen atoms of each W4O21 (i.e., four axial and four 
equatorial oxygen atoms in 13.2). At T, band a (8 band) 
has 4(Y1) interactions from the equatorial oxygen atoms, 
while band e (T band) has 4(Yt) and 4(yt) interactions 
from the axial and equatorial oxygen atoms, respec
tively. Therefore, band e should lie higher in energy 
than band a. 

13.2 Magnell Phases y- and 17-Mo4O11 

The MOAO22 step layers 8.24 of Magneli phases 7- and 
^Mo4O11

3* contain three different types of molybdenum 
atoms (see 13.10). AU octahedra have three short and 

13.9 

13.10 

three long Mo-O bond lengths although the extent of 
the distortion is much stronger in the Mo11O6 octahedra. 
This suggests that d electrons are confined to the inner 
part of l ie layer (i.e., the Mo111O6 and Mo^O6 octahe
dra). The Zachariasen analysis of the Mo-O bond 
lengths, in which the molybdenum oxidation state in 
the MoO4 tetrahedral site is normalized to +6, shows 
that the Mo11, Mom, and Mo™ atoms have the oxidation 
states +5.8, +5.4, and +5.0, respectively,32* confirming 
the simple crystal structure analysis. Removal of the 
Mo11 octahedra from an Mo6O22 layer leads to an Mo4O16 
step layer. 

Shown in Figure 13.3 is the bottom portion of the 
t^-block bands calculated95 for the real Mo6O22 layer 
taken from the crystal structure of 7-Mo4O11. With four 
d electrons to fill these bands, the Fermi level cuts the 
bottom three bands a, eu and e2. The main orbital 
characters of these bands are largely represented by the 
molybdenum atoms Mora and Mo", in agreement with 
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Figure 13.5. (a) Combined hole Fermi surfaces in the extended 
zone scheme for bands a and ei of the MoeO^ layer, where A = 
(6*, c*/2). (b) Combined electron and hole surfaces in the 
extended zone scheme, where the nesting vector is given by qc 
at (0.256*, 0). 
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Figure 13.6. Fermi surface expected to result from Figure 13.5b 
after being partially destroyed by the CDW associated with qc. 

the crystal structure analysis. The nature of these three 
bands is very similar to the three lowest d bands of the 
ideal W4O16 step-layer examined in section 13.1. 

The Fermi surfaces associated with bands a, e1; and 
e2 are shown98 in Figure 13.4, parts a, b, and c, re
spectively. Since bands a and ej merge into a single 
band (along Z — M -* Y of Figure 13.3), their Fermi 
surfaces should be combined into one in the extended 
zone scheme as illustrated in Figure 13.5a. Thus, the 
Mo6022 layer, and therefore Mo4O11, has the hole 
pockets given by Figure 13.5a and the electron pockets 
given by Figure 13.4c. All those Fermi surfaces are 
closed so that Mo4O11 is predicted to be a 2D metal, as 
experimentally observed.90,91 The hole Fermi surfaces 
of Figure 13.5a and the electron Fermi surface of Figure 
13.4c are combined together in Figure 13.5b. In each 
heart-shaped hole surface, the "V-shaped" portions are 
related to each other by the translation qc s* (0.25b*, 
0), i.e., they are nested by qc. The remaining portions 
of the hole surfaces, except for those parallel to the T 
-* Z direction, are found to be nested to the appropriate 
portions of the electron surface by qc as indicated by 
the arrows. This nesting95 is the most likely reason for 
the electronic instability associated with the superlattice 
spots at (0, 0.236*. 0).91b The nesting given by qc is 
incomplete since the Fermi surface has some pieces not 
nested by qc (i.e., those approximately parallel to T -— 
Z). In such a case, a CDW formation associated with 
qc does not remove these pieces, but leads to elongated 
ellipse-like pockets comprising them as schematically 
shown in Figure 13.6. Nesting among such Fermi 
surface pockets would be responsible for another re
sistivity anomaly found for Tj-Mo4O11 at 30 K.91***7 For 
further discussions of the Fermi surface nesting; see 
section 15. 
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TABLE 13.1. Antibonding Contributions of the Oxygen p 
Orbitals of the W-O-W Bridges in the t„-Block Band 
Orbitals of the W4On Layer" 

band 
wave 

vector 
step 

orbital 

bridging oxygen 

between nearest 
within « neighbor unit cells 
unit cell eq ax 

r 
X 
Y 
T 
X 
Y 
T 
X 
Y 

13.3 
13.4 
13.3 
13.5 
13.6 
13.5 
13.8 
13.9 
13.8 

(NNN) 
(NNN) 
(NNN) 
(NYN) 
(NYN) 
(NYN) 
(NNN) 
(NNN) 
(NNN) 

(NNN) 
(YYY) 
(NNN) 
(NYN) 
(YNY) 
(NYN) 
(NNN) 
(NNN) 
(NNN) 

(NN) 
(NN) 
(NN) 
(NN) 
(NN) 
(NN) 
(NN) 
(YY) 
(YY) 

"The presence of an antibonding contribution is indicated by 
the symbol (Y), and the absence of it by the symbol (N). 

TABLE 13.2. Oxidation States of the W1 and Wn Atoms in 
the W4On Layers Calculated by the Bond Valence Sum 
Analysis 

compound W1 Wn 

(POi)4(W03)4(W08)4 

(P02)4(W08)4(W03)8 
Nai.6(P02)4(W03)4(W03)4 

5.82 
5.28 
5.24 

5.18 
5.82 
5.38 

13.3 Similarity of Band Structures In 
Monophosphate Tungsten Bronzes96 

As discussed in previous sections, complex oxide 
metals often contain their d electrons only in a specific 
portion of their crystal structure. It is then important 
to estimate the oxidation states of nonequivalent metal 
atoms of the structure. As pointed out earlier, this 
question has been answered by a bond valence sum 
analysis, which allows one to estimate the oxidation 
state of a metal on the basis of the metal-oxygen bond 
lengths it makes with the surrounding oxygen atoms. 
This type of analysis (e.g., the Zachariasen-type anal
ysis)67 has been quite successful for molybdenum oxides. 
The parameters needed for the bond valence sum 
analysis of the MPTB phases have been developed by 
Domenges et al.98 according to eq 13.1 

S1 = (R0/R-)n (13.1) 

where S1- is the bond valence of the bond i with bond 
length flj. In this equation, n - 5.75 and R0 is deter
mined so as to make the sum of all the bond valences 
associated with the W atoms equal to that expected 
from the formal tungsten oxidation states in the crystal. 
The bond valence sum of a W atom is then given by the 
sum of all the bond valences the W atom is associated 
with. For example, let us consider the W4O16 layers 
present in several MPTB's. There are two nonequiv
alent W atoms (W1 and W") in the W4O16 layers of 
(P02)4(W03)4(W03)4,30 (P02)4(W03)4(W03)6,92 and 
Na,(P02)4(W03)4(W03)4 (x = 1.5)31b shown in Figure 
13.1. Every W1O6 octahedron shares five oxygen atoms 
with other WO6 octahedra and one oxygen atom with 
a PO4 tetrahedra, while every Wn06 octahedron shares 
three oxygen atoms with other WO6 octahedra and 
three oxygen atoms with PO4 tetrahedra. Table 13.2 
summarizes the oxidation states of the W1 and Wn at-
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( a ) ( b ) ( c ) 

Figure 13.7. Perspective views of the W4Oi6 layers found in (a) 
(POj)4(WOs)4(WOa)4, (b) (PO2J4(WOS)4(WOS)8 , and (c) 
NaL8(PO2J4(WOs)4(WOs)4. The shaded octahedra are predicted 
to contain d electrons by the bond valence sum analysis. 
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Figure 13.8. Dispersion relations of the bottom portions of the 
t2g-block bands calculated for the W4Oj9 layers of (a) 
(PO2J4(WOs)4(WOs)4, (b) (POJ)4(WOS)4(WOS)6 , and (c) 
Na1(PO2J4(WOs)4(WOs)4. r = (O, O), X = (a*/2,0), Y = (0, b*/2) 
and M = (a*/2, b*/2). The chain direction is given along T — 
X in a, but along T — V in b and c. The dashed lines in a and 
b refer to the Fermi level corresponding to two d electrons per 
unit cell. In c the two dashed lines refer to the Fermi levels 
appropriate for 2.55 and 2.75 d electrons per unit cell (i.e., x = 
1.1 and 1.5), respectively. 

oms calculated for the three different W4O16 layers by 
the bond valence sum analysis. For Li0^Mo6O17 and 
Mo4On, it is reasonable to consider that the Mo atoms 
with oxidation state +5.7 or greater do not contain d 
electrons, and those with oxidation state +5.4 or smaller 
have d electrons. According to this approximation, the 
d-electron-containing WO6 octahedra are isolated in the 

W4O16 layer of (P02)4(W03)4(W03)4 (shaded octahedra 
in Figure 13.7a), but form a continuous chain in the 
W4O16 layer of (P02)4(W03)4(W03)6 (shaded octahedra 
in Figure 13.7b). On the other hand, all WO6 octahedra 
are expected to have d electrons in the W4O16 layer of 
Nax(P02)4(W03)4(W03)4 (x = 1.5) (see Figure 13.7c). 
Therefore, Figure 13.7 suggests that the W4O16 layers 
are nonmetallic in (P02)(W03)4(W03)4, ID metallic in 
(P02)4(W03)4(W03)6, and 2D metallic in Na16(P02)4-
(W03)4(W03)4. 

The dispersion relations of the bottom portions of the 
t^-block bands calculated96 for the W4O16 layers in 
(F02)4(W03)4(W03)4, (P02)4(W03)4(W03)6) and Nax-
(P02)4 (W03)4(W03)4 (x • 1.1-1.5) are shown in Figure 
13.8, parts a, b, and c, respectively. All these bands are 
very similar to those of the ideal W4O16 layer shown in 
Figure 13.2, except that bands e are split in the real 
W4O16 layers because of their octahedral distortions. 
The most important aspect of Figure 13.8 is that the 
W4O16 layers of (P02)4(W03)4(W03)4 and (PO2J4(W-
03)4(W03)e have both ID and 2D metallic bands, as 
does that of Nae(P02)4(W03)4(W03)4.

99 This is in sharp 
contrast to the prediction of the bond valence sum 
analysis. This failure of the bond valence sum analysis 
is striking, in view of its general success in molybdenum 
oxide metals. The major reason for this failure is that 
the orbitals of bands a and e in the W4O16 layers of 
(P02)4(W03)4(W03)4 and (POj)4(WOp4(WOJ6 have 
nearly equal contributions from their Wrand Wn atoms, 
just as in the case of the corresponding bands in Nax-
(P02)4(W03)4(W03)4. 

In the ideal W4O16 layer, the bottoms of bands e are 
close in energy to that of band a (Figure 13.2) because, 
at T, their symmetric metal-oxygen-metal (M-O-M) 
bridges do not allow the p-orbital contributions from 
the bridging oxygen atoms when the adjacent two metal 
orbitals have a same sign (see 13.11a). If there was a 
strong M-O-M bond alternation (as a consequence of 
octahedral distortion), the bridging oxygen p orbital 
combines out-of-phase with the metal d orbital of the 
shorter M-O bond even if the adjacent two metal or
bitals have a same sign (see 13.11b). Such an anti-

M O — M 
13.11a 

M-O-
13.11b 

bonding interaction raises the energy of 13.11b with 
respect to 13.11a. In the case of the MPTB phases, the 
W-O-W alternations are weak so that the bonding 
pattern of their W-O-W bridges at r are similar to that 
of 13.11a. Thus, in the t^-block bands of the W4O16 
layers (Figure 13.8), the bottoms of bands a and e are 
represented by W1 and Wn almost equally. In Mo4O11, 
of the three nonequivalent MoO6 octahedra, one has a 
much stronger distortion than do the remaining two so 
that, 13.11b becomes appropriate. The existence of 
such a large difference in the magnitudes of octahedral 
distortion is necessary for the prediction of the bond 
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Figure 13.9. Dispersion relations of the bottom portion of the 
t2,-block bands calculated for the W8O2! layer of 
(POj)4(WOs)S(WO3)B. The dashed line refers to the Fermi level 
corresponding to two d electrons per unit cell. 

valence sum analysis to agree with that of band elec
tronic structure calculations. This is not the case for 
the MPTB phases. 

In the perovskite-type W-O layers, the W atoms in
teract via the W-O-W bridges. Thus, a d-block band 
orbital in which contributions of the bridging oxygen 
p orbitals are absent would have an energy close to that 
of the atomic d level. This should be the case regardless 
of how many WO6 octahedra per unit cell are used to 
form a perovskite-type W-O layer. For example, band 
a of the W4O16 layer is constructed from the orbital 
pattern 13.12a. Likewise, the corresponding band of the 
W6022 layer is constructed from the orbital pattern 
13.12b. Since 13.12a and 13.12b have similar energies 

± 

13.12a 13.12b 

and similar nodal patterns, the resulting bands a of the 
W4O16 and W6O22 layers should be similar. According 
to the same reasoning, it is predicted that the bottom 
three t2g-block bands of the W4O16 layer should be 
similar to those of the W6O22 layer or any other per
ovskite-type W-O step layer. Since the W-<) step-layer 
of the MPTB phases have between 2 and 4 d electrons 
per unit cell, it is also predicted that all MPTB phases 
should have both ID and 2D metallic bands. These 
predictions have been confirmed for all MPTB phases 
with known crystal structures. As a representative 
example we show in Figure 13.9 the dispersion relations 
of the W-block bands calculated96 for the W6O22 step-
layer of (PO2MWOs)6(WO3),, 

13.4 Fermi Surfaces of Octahedral Step-Layers 
as a Function of Electron Filling100 

As shown in the preceding section, the band elec
tronic structures of various MPTB phases are very 
similar, and their characteristic features are also ex
hibited by the ideal W-O layer made up of regular 
octahedra. The number of electrons, N, filling the 
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Figure 13.10. Fermi surfaces associated with the partially filled 
bands of Figure 13.2 for JV = 2, where the filled regions of wave 
vectors are shown by shading. 
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Figure 13.11. Fermi surfaces associated with the partially filled 
bands of Figure 13.2 for N = 3, where the filled regions of wave 
vectors are shown by shading. 
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Figure 13.12. Fermi surfaces associated with the partially filled 
bands of Figure 13.2 for N = 4, where the filled regions of wave 
vectors are shown by shading. 
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Figure 13.13. Combined Fermi surfaces of Figures 13.10,13.11, 
and 13.12 in a, b, and c, respectively. 

d-block bands of the step layers of MPTB's A1(PO2J4-
(W03)P(W0S), is given by N - 2 + x/2. Therefore, N 
is always 2 for all MPTBp's, but varies from 2 to 4 for 
MPTBh's. In this section we examine the Fermi sur
faces of the ideal step layer W4O16 for the N values 
between 2 and 4. 

The electron and hole Fermi surfaces of the three 
partially filled bands calculated for the cases N = 2, 3, 
and 4 are shown in Figures 13.10, 13.11, and 13.12, 
respectively.100 We combine the hole and electron 
Fermi surfaces of Figure 13.10 in Figure 13.13a, those 
of Figure 13.11 in Figure 13.13b, and those of Figure 
13.12 in Figure 13.13c. The combined Fermi surfaces 
of Figure 13.13a originate from the ID surface associ
ated with the ID band a (Figure 13.14a) and the two 
2D surfaces associated with the 2D bands e (Figures 
13.14b and 13.14c). These features are also present in 
the combined Fermi surfaces of Figures 13.13b and 
13.13c. The Fermi surface of Figure 13.14b consists of 
rhombuses centered at r and M, while that of Figure 
13.14c consists of rhombuses centered at X and Y. We 
now examine why these rhombus-shape Fermi surfaces 
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Figure 13.14. ID and 2D Fermi surfaces leading to the combined 
Fermi surfaces of Figure 13.13a: (a) ID Fermi surface, (b) 2D 
Fermi surfaces centered at T and M, and (c) 2D Fermi surfaces 
centered at X and Y. The rhombus-shape 2D Fermi surfaces 
centered at X, Y, and M can be readily constructed by repeating 
the patterns of b and c in an extended zone scheme. 
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-9.7 

Figure 13.15. Dispersion relations of the Wblock bands of the 
ideal W4Oi6 layer along (a) r — P — M and (b) X — P — Y. The 
dashed line refers to the Fermi level for N = 2. 

arise from the 2D band e of Figure 13.2. Figures 13.15a 
and 13.15b show dispersion relations of the t^-block 
bands along r — P — M and X — P — Y. Here the 
wave vector P is the crossing point of the r -»• M and 
X -* Y lines in the FBZ, 13.13. Band e consists of two 

M 
13.13 

subbands. Along T--P-* M (Figure 13.15a), the lower 
subband is nearly flat but the upper subband is dis
persive with a maximum at P. At T and M, the two 
subbands are degenerate. Along X-* P-* Y (Figure 
13.15b), however, the lower subband is dispersive with 
a minimum at P but the upper subband is nearly flat. 
At X and Y, the two subbands are degenerate. The two 
subbands have a lower energy at T and Af than at X 
and Y. Consequently, along X -* P -* M, the upper 
subband is cut twice by the Fermi level nearly sym
metrically around P, while along X-* P-* Y the lower 
subband is cut twice by the Fermi level nearly sym
metrically around P. This topology of the dispersion 
relations of the two subbands is responsible for the 
rhombus-shape 2D Fermi surfaces centered at r and 
M in Figure 13.14b and those at X and Y in Figure 
13.14c. 

We briefly examine why the above is the case on the 
basis of the orbital nodal properties of band e. The 
d-block orbitals of the W4O2I

 UI"t appropriate for an
alyzing the behavior of bands e along r -» P -* M 

r. 

" , 0 

(a) (b) 
Figure 13.16. CDW nesting vectors associated with the Fermi 
surfaces of Figure 13.14: (a) <JID and (b) qr, qu, Qx, and qy-

(Figure 13.15a) are shown in 13.14a-c, which have no 
orbital contribution from the equatorial-bridging oxy
gen atoms (Ogq). Note that the first and third AO's in 

13.14a 13.14b 

13.14c 13.14d 

each of 13.14a-c have the same sign and so do the 
second and fourth AO's. Between the adjacent steps 
of the step layer 8.23, the third and fourth positions of 
one step are linked to the first and second positions of 
the other step, respectively, via the axial-bridging atoms 
(O8x). Consequently, as long as the wave vector moves 
along T-* P-* M, every two metal AO's between ad
jacent steps joined by the Ou atom have the same sign 
(e.g., as in 13.14d) when the W4O2I unit orbitals 13.14a-c 
are employed to construct the CO's. Thus, the orbitals 
of the O1x atoms cannot mix in with the orbitals of the 
steps so that there is essentially no orbital interaction 
between the steps. Therefore, only the intrastep in
teractions can change as the wave vector moves along 
T-* P-* M. The nodal properties of the flat subband 
of bands e at T and M are shown in 13.15 and 13.16, 
respectively. These orbitals have 5-type interactions 

HS ^ 
» " - M ^ - 3 T f 

IS % 
• — ^ 1 S — ' —— - t 

13.15 13.16 

between the W4O2I units across the 0«, atoms so that 
the orbitals of the O8,, atoms cannot mix with the W4O21 
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unit orbitals, thereby leading to the flat subband. The 
nodal properties of the dispersive subband of bands e 
at T and M are shown in 13.17 and 13.18, respectively. 

s£ <£ <? £ £ 

W W W W W 
13.17 

<£ 

13.18 

These orbitals have ir-type interactions between the 
W4O2I units across the O^ atoms. At T and JVf, the p 
orbitals of the 0«, atoms cannot interact with the W4O2I 
unit orbitals. However, this is not the case as the wave 
vector departs from T or Af toward P, and the extent 
of the Ogq atom p orbital mixing with the W4O21 unit 
orbitals is maximum at P. Thus, the energy of the 
dispersive subband of band e shows a maximum at P 
along r -» P -* Af. In a similar way, one can explain 
the dispersion relations of bands e along X-* P-* Y 
shown in Figure 13.15b. 

The ID Fermi surface of Figure 13.14a has the 
nesting vector q1D as shown in Figure 13.16a. The 
rhombus-shape 2D Fermi surfaces centered at T, Af, X, 
and Y in Figures 13.14b and 13.14c have the nesting 
vectors qr, qM, qx, and qY, respectively, as shown in 
Figure 13.16b. If the sides of the rhombuses centered 
at r and Af are parallel to the corresponding sides of 
the rhombuses at X and Y, one obtains a single nesting 
vector Q20 or q '^ (instead of qr, qM, qx, and qY) shown 
in Figure 13.17, parts a and b. Inspection of Figure 
13.13, parts a, b, and c shows that the rhombuses are 
nearly parallel only when the JV value (Le., the number 
of d electrons per unit cell) is close to 4 (i.e., Figure 
13.13c). The Mo-O step-layers of the Magneli phases 
y- and y-Mo4Ou correspond to this electron counting, 
and their Fermi surfaces (Figure 13.4) are very close to 
those shown in Figure 13.13c. 

Calculations carried out for the various W-O step-
layers of the MPTBp and MPTBh phases with known 
crystal structure show that their t2g-block bands are 
qualitatively very similar to those of the ideal W4O16 
layer described in section 13.1.93-99.1W This leads to 
Fermi surfaces very similar to those of Figures 
13.10-13.12. As an example, the combined Fermi sur
faces for the W6O22 slab of (P02)4(W03)6(W03)6 are 
shown in Figure 13.18.93 The CDW nesting vectors <j, 
(i = ID, T, JVf, X, Y) expected from the Fermi surfaces 
of these W-O step-layers may be expressed as 

qt - aa* ± 0b* (13.2) 
where the reciprocal vectors a* and b* correspond to 
the intrastep and interstep repeat vectors a and b, re
spectively (see 8.23b). According to a description based 
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(a) 
(b) 

Figure 13.17. Alternative CDW nesting vectors (a) Q2D and (b) 
IJ'H) constructed on the basis of Figure 13.13c. 

Figure 13.18. Combined Fermi surface for the W6O22 layers of 
(P02)4(W03)6(W03)6. 

upon the ideal W-O layers, the a values of qT and qx 
(or qY and qM), or the 0 values of qr and qY (or qx and 
qM) add up to 0.5. The Fermi surfaces calculated for 
the real step-layers of MPTB can be summarized as 
follows:100 (a) The "ideal" description of the CDW 
vectors given by eq 13.2 applies perfectly for the W6O22 
and W7O25 layers. In general the W4O16 layers deviate 
slightly from the ideal description in that a values of 
qr and qx (or qY and qM) or the 0 values of qT and qY 
(or qx and qM) do not exactly add up to 0.5. (b) The 
departure from the ideal description is caused by the 
distortion of the W-O layer from the ideal structure 
made up of regular WO6 octahedra. The extent of 
distortion in the W-O layers is generally larger for the 
thin W-O layer (e.g., W4O16 layer) than for the thick 
W-O layer (e.g., W6O22 or W7O26 layer), (c) The sides 
of the Fermi surface rhombuses at T and Af become 
more parallel to the corresponding sides of the Fermi 
surface rhombuses at X and Y as the JV value becomes 
close to 4. This is also the case for the W4O16 layers, 
although their structures are generally more distorted 
than those of the W6O22 or the W7O26 layers. Therefore, 
the <72D and q ^j vectors become relevant when JV s* 4. 
The reason for this can be understood on the basis of 
the Figure 13.15, which shows that bands e are slightly 
lower in energy at T than at Af (i.e., as depicted in 
13.19). This leads to a band dispersion with a slightly 

Z ^ 

M 
13.19 

asymmetric shape. However, the degree of this asym
metry decreases when the Fermi level is raised (i.e., 
when the band filling increases), which ultimately leads 
to rhombuses with parallel sides. The reason for the 
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energy difference of bands e at T and M is that the 
metal orbitals involved in 5-type interactions are in-
phase at T (13.17) but out-of-phase at M (13.18). 

As discussed above, the MPTB phases have well-
nested Fermi surfaces with nesting vectors <?1D, qr, q^, 
qx, and qY. Thus these phases may in principle exhibit 
different CDW instabilities when their W-O step layers 
contain less than four d electrons per unit cell (e.g., 2 
< N < 3). When the value of N becomes close to 4, the 
four vectors qr, qu, qx, and qY are expected to merge 
thereby leading to the alternative nesting vectors q2D 
and q'2D. Energy lowering associated with a CDW 
formation increases as the area of the nested Fermi 
surface increases. For the rhombus shape Fermi sur
faces centered at T, M, X, and Y, the nested area in
creases with the size of the rhombus. Therefore, for the 
W-O step layers with N value close to 2, CDW's re
sulting from qx and qy are more likely to be observable 
than are those from qT and q^- To confirm the CDW 
nesting vectors predicted on the basis of these calcu
lations, diffuse X-ray scattering and/or neutron dif
fraction measurements would be necessary. Our 
analysis of the W-O layer band orbitals shows that their 
partially filled bands are represented by the orbitals of 
all the WO6 octahedra including those of the W-O layer 
surfaces. This situation differs considerably from that 
found for many Mo-O layers, in which the MoO6 oc
tahedra of the Mo-O layer surfaces have practically no 
orbital contribution to their partially filled bands. 
Therefore, the CDW formation in the W-O layers of 
the MPTBh, Ax(POz)4(WO3L(WO3),, can be prevented 
by the random potentials that cation disorder in the 
hexagonal channels may create, because the alkali 
cations are close to the WO6 octahedra of the W-O layer 
surfaces." In observing CDW phenomena of the 
MPTB phases, therefore, it would be more fruitful to 
investigate the MPTBP phases (P02)4(W03)p(W03), 
rather than the MPTBh phases A1(POa)4(WO3)P(WO3),. 
The MPTB phases should exhibit rich CDW phenom
ena and therefore would be very exciting materials to 
study. For further discussions of the Fermi surface 
nesting, see section 15. 

14. Purple Bronzes 

The potassium purple bronze K09Mo6O17 has sepa
rated metal-oxygen layers of composition Mo6O17, 
which are made up of both MoO6 octahedra and MoO4 
tetrahedra (Figure 8.1).36 The sodium purple bronze 
Na0-9Mo6O17

101 and the thallium purple bronze Tl-
Mo6O17

1"2 are similar in structure to the potassium 
purple bronze. As discussed earlier, the lithium purple 
bronze differs from the other purple bronzes in that it 
has no separated metal-oxygen layers.34 It was recently 
shown that the real composition of the sodium and 
potassium purple bronzes is not A09Mo6O17, as initially 
proposed, but AMo6O17 (A = K, Na)103 so that hereafter 
we will refer to the 2D purple bronzes as AMo6O17 (A 
= K, Na, Tl). 

The potassium purple bronze is a 2D metal above 120 
K at which temperature it undergoes a CDW phase 
transition.104"106 In contrast to the case of the blue 
bronze, however, the potassium purple bronze remains 
2D metallic after the CDW phase transition.104 Diffuse 
X-ray scattering and electron diffraction studies show 
the occurrence of superlattice spots at a*/2, b*/2, and 

(a* - b*)/2 below 120 K.106b According to the ther
moelectric power measurements, the major carriers for 
electrical transport are electrons and holes above and 
below 120 K, respectively, and the CDW removes about 
50% of the carrier concentration.104* Hall effect mea
surements show that both electrons and holes are 
present below 120 K. According to these observations, 
several partially filled d-block bands are present in 
KMo6O17. In electrical, CDW, and other physical 
properties, NaMo6O17

106 and TlMo6O17
106 are similar to 

KMo6O17. 

14.1 Crystal and Electronic Structures of 
AMo6O17 Purple Bronzes 

The crystal structure of KMo6O17 contains hexagonal 
Mo6O17 layers perpendicular to the c direction (Figure 
8.1).38 A convenient way to describe this Mo6O17 layers 
is in terms of the building unit Mo4O21 (14.1), which is 
constructed from four MoO6 octahedra by sharing the 
axial oxygen atoms. Shown in 14.2 is a schematic 

^ ^ M M 
14.1 

representation of the Mo4O16 hexagonal layer (i.e., the 
Mo6O17 layer without MoO4 tetrahedra. See also 8.26) 
constructed from the Mo4O21 cluster. Though not 

90 

shown explicitly, every MoO6 octahedron of 14.2 forms 
a zigzag chain Mo2O10,14.3, along the crystallographic 
a direction (i.e., the direction perpendicular to the plane 
of the paper.). Consequently, along the crystallo-

D r-h 

14.3 

graphic a direction, every adjacent pair of Mo4O21 
clusters share the equatorial oxygens of three octahedra. 
This is also true along the crystallographic b direction 
(a = b, y = 120°). When the Mo4O16 layer 14.2, is 
viewed along the c axis (i.e., perpendicular to the layer 
shown in Figure 8.1), every three nearest neighbor MoO6 
octahedra of its outer octahedral sublayers from a tri
angle of oxygen atoms that can be used as a face of an 
MoO4 tetrahedron. When all these triangles are capped 
by MoO groups to form MoO4 tetrahedra, the Mo6O17 
layer of 2D purple bronzes is generated. It is between 
these Mo6O17 layers that the K+ cations reside. Thus 
there exist three different types of Mo atoms in K 
Mo6Oj7: The Mo atoms of the MoO4 tetrahedra (Mo1), 
those of the MoO6 octahedra in the outer two sublayers 
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of the Mo4O16 layers (Mo11 in 14.2), and those of the 
MoO6 octahedra in the inner two sublayers of the 
Mo4O16 layer (Mora in 14.2). According to a Zacharia-
sen-type analysis of the metal-oxygen bond lengths in 
KMo6O17 in which the oxidation state of Mo1 is adjusted 
to be +6, the oxidation state of Mo11 and Mo™ are 
calculated to be +5.8 and +5.1, respectively.36 In other 
words, the d electrons of KMo6O17 reside primarily in 
the MoO6 octahedra in Mom. Therefore, the inner two 
sublayers of the Mo4O16 layer are expected to play an 
important role in determining the electronic structure 
of the Mo6O17 layer and hence that of KMo6O17. 

The inner two sublayers of 14.2 are schematically 
shown in 14.4, which has the composition Mo2O9. This 

14.4 

layer may be considered to originate from the building 
unit Mo2O11, 14.5a. An alternative view of 14.5a is 
shown in 14.5b. A projection view of 14.5b along the 
direction perpendicular to a triangular face of the MoO6 
octahedra is given by 14.5c. With this representation 

h h 
14.5a 14.5b 

14.5c 

of the Mo2O11 unit, a projection view of the hexagonal 
Mo2Og layer 14.4 along the c axis is given by 14.6. For 

14.6 

the discussion of its electronic structure, it is very im
portant to recognize that the Mo2O9 layer 14.6 is con
structed from the Mo2O10 chains 14.3 upon sharing the 
axial oxygen atoms as illustrated in 14.7. Due to sym
metry, there are three different ways of making Mo2O10 
chains in 14.6: The Mo2O10 chains are aligned along the 
a-, b-, and (a + b)-axis directions in 14.7a, 14.7b, and 
14.7c, respectively. This structural aspect of the Mo2O9 
layer is crucial in understanding the low temperature 
CDW anomaly, as will be shown in section 15.1. 

-9 .9 

b 
v. * 

A * / \ / 

-9 .9 -• 

(b) 
Figure 14.1. t^-block band structure of the (a) ideal and (b) 
real Mo2O9 hexagonal layer. T, X, and L refer to the wave vectors 
(O, O)1 (a*/2, O), and (a*/3, 6*/3), respectively. 

-9.2 T 

-10.2 

Figure 14.2. Bottom portion of the d-block band structure of 
the real MOsOi7 layer in KMoeOn. The dashed line refers to the 
Fermi level. 

For a 2D hexagonal lattice (i.e., a = b, y = 120°) such 
as the Mo2O9 layer 14.6 or the Mo6O17 layer, the FBZ 
of its reciprocal lattice is a regular hexagon centered at 
the origin T, as shown in 4.25. We now examine the 
d-block bands of the ideal and real structures of the 
Mo2O9 layer as well as that of the real Mo6O17 layer.107 

In our discussion, an ideal layer refers to one in which 
the MoO6 octahedra are regular in shape, while a real 
layer refers to one in which the MoO6 octahedra (and 
MoO4 tetrahedra) have the shapes as found in KMo6O17. 
Figure 14.1a show the W-block bands calculated107 for 
the ideal Mo2O9 layer 14.6, where the two bands marked 
with asterisks are each doubly degenerate. As expected 
from the presence of two metal atoms in the unit cell, 
there are six t^-block bands. The t2g-block bands of the 
real Mo2O9 layer are shown in Figure 14.1b.107 They are 
very close to those of the ideal Mo2O9 layer. The MoO6 
octahedra of the real Mo2O9 layer are slightly distorted 
from a regular octahedron, so the degeneracy in the 
t^-block bands of the ideal layer is somewhat lifted by 
the structural change in the real layer. Shown in Figure 
14.2 is the bottom portion of the d-block bands calcu-
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14.7a 

14.7b 

n ~ 

LJLJ rt 

14.7c 

lated107 for the real Mo6O17 layer. The bottom three 
d-block bands are essentially identical with those of the 
real Mo2O9 layer. The bottom three d-block bands of 
the Mo6Oi7 layer have the d-orbital character of pri
marily Mo™ atoms. The d-block bands of primarily Mo1 

and Mo11 character all lie above these three bottom 
d-block bands. With three electrons per KMo6O17 (i.e., 
K+Mo6O17

-) to fill the d-block bands of Figure 14.2, only 
the bottom three bands are partially filled. The Fermi 
surfaces calculated for the three partially filled bands 
of the Mo6O17 layer are shown in Figure 14.3, where the 
shaded and unshaded regions refer to the occupied and 
unoccupied regions, respectively. As shown in Figure 
14.3, parts a and c, the first and the third d-block bands 
(from the bottom) of the Mo6O17 layer give hole pockets 
around L and an electron pocket around T, respectively. 
AU three Fermi surfaces are closed, so that the potas
sium purple bronze is a 2D metal. How these Fermi 
surfaces are related to the CDW instability in 2D purple 
bronzes is discussed in section 15.1. 

(O) (b) (O 

Figure 14.3. Fermi surfaces for the (a) first, (b) second, and (c) 
third d-block bands of the Mo6On layer in KMO6OI7. 

14.2 tjg-Block Bands of Hexagonal Mo2O9 

Layors107 

As discussed in Section 4.3, the point M = (a*/2, 
6*/2) associated with an hexagonal lattice (see 4.25) is 
equivalent to Af' = (-a*/2, b*/2), since Af'differs from 
Af by an integral multiple of the reciprocal vector, i.e., 
Af' = Af - (a*, O). By symmetry, Af' is equivalent to X, 
so that the L - • XJine of the FBZ is equivalent to the 
L-* M line. Thus, in our discussion, the r - • L -*• X 
line can be replaced by the r -*• Af line. Then, essential 
features of the d-block bands of the ideal Mo2O9 layer 
in Figure 14.1a can be summarized as follows: (a) The 
nondegenerate bands a and b are flat along T-* X but 
strongly dispersive along T-- M. In addition, the two 
bands cross each other along T -*• Af. (b) The doubly 
degenerate bands c and d are both equally dispersive 
along r -»• X and along r -*• Af, the extent of the dis
persion being half that of the bands a and b along T -* 
M. In the following we examine these trends in terms 
of orbital interaction analysis. 

On going from T to X, the phases between nearest 
neighbor unit cell orbitals remain in phase in one di
rection but change from in-phase to out-of-phase in the 
other direction. To simplify our representation of band 
orbitals, the building unit Mo2O11, of the Mo2O10 chain 
may be represented as in 14.8. The two orbitals of this 

7 

14.8 

building unit that lead to bands a and b of the Mo2O9 
layer are shown in 14.9. On the basis of the layer 

* / 
14.9 

representation 14.7b, bands a and b at r = (O, O) are 
given by the orbitals 14.10a and 14.10b, respectively. 
The bands a and b at X are given by the orbitals 14.11a 
and 14.11b, respectively. Note that 14.10a and 14.11a 
are derived from the unit cell orbitals <£f of 14.9, while 
14.10b and 14.11b are derived from the unit cell orbitals 
</>!+ of 14.9. As summarized in Table 14.1, the oxygen 
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TABLE 14.1. Antibonding Contributions of the Oxygen p 
Orbitals of the Mo-O-Mo Bridges in the t„-Block Band 
Orbitals of the Mo1O, Layer" 

band 
orbital 
14.10a 
14.1Ob 
14.11a 
14.11b 
14.13a 
14.13b 
14.14a 
14.14b 
14.17a 
14.17b 
14.18a 
14.18b 

wave 
vector 

r 
r 
X 
X 
T 
T 
M 
M 
V 
T 
X 
X 

unit 
cell 

orbital 

0f 
01* 
0f 
0.* 
02* 
02" 
02* 
02" 
03" 
03* 
03" 
03* 

intrachain 

within a 
unit cell 

(N) 
(Y) 
(N) 
(Y) 
(N) 
(Y) 
(Y) 
(N) 
(N) 
(y) 
(N) 
(y) 

between 
nearest 

neighbor 
unit cells 

(N) 
(Y) 
(N) 
(Y) 
(N) 
(Y) 
(Y) 
(N) 
(N) 
(y) 
(N) 
(y) 

inter-chain 
(N) 
(N) 
(N) 
(N) 
(N) 
(N) 
(N) 
(N) 
(N) 
(Y) 
(Y) 
(N) 

0 The presence of the antibonding contribution is indicated by 
the symbol (Y) or (y), and the absence of it by the symbol (N). 
The symbols (Y) and (y) refer to the stronger and the weaker an
tibonding contributions discussed in section 2.4.1. 

14.10a 14.10b 

14.11a 14.11b 

orbitals of the interchain Mo-O-Mo bridges do not 
contribute to 14.10 and 14.11. Those of the intrachain 
Mo-O-Mo bridges do not contribute to 14.10a and 
14.11a, but they do to 14.10b and 14.11b. Thus energies 
of 14.10b and 14.11b are raised with respect to those 
of 14.10a and 14.11a. Since the chain orbitals do not 
overlap significantly across the interchain Mo-O-Mo 
bridges, 14.10a and 14.11a are nearly the same in en
ergy, and so are 14.10b and 14.11b. On going from r 
to M, the phases between nearest neighbor unit cell 
orbitals change from in-phase to out-of-phase in both 
a- and b-axis directions. The Mo2O9 layer 14.7c has the 
unit cell orbitals ̂ 2

+ and ^2" shown in 14.12. The CO's 

resulting from ^2
+ and ^2

- at T are given by 14.13a and 
14.13b, respectively, and those at M by 14.14a and 
14.14b, respectively. As can be seen from the p-orbital 

14.13a 14.13b 

14.14a 14.14b 

contributions of the bridging oxygens summarized in 
Table 14.1,14.13a is lower in energy than 14.13b, but 
14.14a is higher in energy than 14.14b. With respect 
to the 2-fold rotation around the (a + 6)-axis of 14.7c, 
14.13a and 14.14a are symmetric, while 14.13b and 
14.14b are antisymmetric. Therefore, on going from T 
to M, 14.13a and 14.13b are correlated to 14.14a and 
14.14b, respectively, and thus the two correlation curves 
(i.e., bands a and b) cross each other. This explains why 
bands a and b are highly dispersive along T-M. 
Given the translational symmetry of the Mo2O9 layer, 
14.13a and 14.13b are identical with 14.10a and 14.10b, 
respectively, while 14.14a and 14.14b are identical with 
14.11b and 14.11a, respectively. The latter observation 
is particularly interesting in that the CO's at X derived 
from the layer representation 14.7b are identical with 
those at M derived from the layer representation 14.7c. 
From the viewpoint of CO's, this is why the X and M 
points are equivalent for a hexagonal lattice. 

On the basis of the Mo2O9 layer 14.7b, we now ex
amine the degenerate bands c and d along T-X, 
which are derived from the unit cell orbitals ̂ + and <f>f 
in 14.15 and ^4

+ and <j>f in 14.16. Since the set of ^4
+ 

* ; 

14.15 

1S <S 

* / 

14.12 

* ; V 
14.16 

and 4>4~ leads to the same results as does that of ̂ 3
+ and 

<t>f, it is sufficient to consider only the CO's arising from 
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the latter. Bands c and d at r are represented by 14.17a 
and 14.17b, respectively, and those at X by 14.18a and 
14.18b, respectively. The contributions of the oxygen 

14.17a 14.17b 

14.18a 14.18b 

p orbitals of the Mo-O-Mo bridges in those CO's are 
summarized in Table 14.1. As discussed already (see 
2.43 and 2.44), there are two different types of metal-
ligand TT overlap denoted by (Y) and (y) in Table 14.1. 
14.17a has no oxygen p-orbital contribution from the 
Mo-O-Mo bridges and thus has the same energy as 
14.1Oa. 14.17b has oxygen p-orbital contribution from 
all the intra- and interchain Mo-O-Mo bridges, unlike 
14.10b, which has oxygen p-orbital contribution only 
from the intrachain Mo-O-Mo bridges. Nevertheless, 
14.17b is degenerate with 14.10b since the sum of two 
(y) antibonding p-orbital contributions per unit cell is 
equivalent to one strong antibonding p-orbital contri
bution per unit cell. 14.18a has one (Y) antibonding 
p-orbital contribution per unit cell, while 14.18b has two 
(y) antibonding p-orbital contributions per unit cell. 
Consequently, 14.18a and 14.18b are nearly degenerate, 
and their energies lie at the midpoint between 14.17a 
and 14.17b. This explains why bands c and d are dis
persive along r -* X and why their dispersion is half 
as strong as that of bands a and b along T-M. In a 
similar way, the Mo2O9 layer 14.7c can also be employed 
to show that bands c and d are equally dispersive along 
T-M, and their dispersion is half as strong as that 
of bands a and b along T-M. 

15. Hidden Fermi Surface Nesting 

In the previous sections, we have seen the importance 
of Fermi surface nesting in explaining the electronic 
instabilities of low dimensional metallic compounds. 
For ID metallic systems (e.g., Li09Mo6O17 and 
K033MoO3), it is straightforward to recognize the nesting 
vectors of their Fermi surfaces. In section 13, we have 
encountered somewhat complicated examples: The 
Magneli phases Mo4On and the MPTB's possess several 
partially filled bands and therefore several Fermi sur
faces. When those surfaces are analyzed individually, 
detection of Fermi surface nesting is not immediately 
obvious. However, when they are combined together, 
it is possible to redraw them into nested ID and 2D 
Fermi surfaces, which are intended but hidden because 
of weak band hybridization (i.e., noncrossing of band 
dispersion surfaces). Such hidden, nested Fermi sur
faces lead to CDWs which destroy the nested portions 
of the combined Fermi surfaces. They may even give 

(a) (b) 
Figure 15.1. (a) Combined Fermi surfaces of potassium purple 
bronze KMo6Oi7 and (b) hidden ID Fermi surfaces associated 
with KMoeOp. 

(o) (b) 
Figure 1S.2. Nesting vectors common to two sets of the hidden 
ID Fermi surfaces. The nesting vectors in a and b are parallel 
to the a* and b* directions, respectively. 

(a) (b) (C) 
Figure 15.3. Perspective views of the three t^ orbitals of an 
MoOe octahedron in the Mo2O9 layer 14.6. The d orbital 
containing planes are aligned along the a, b, and (a + 6) directions 
of the Mo2O9 layer in a, b, and c, respectively. 

rise to a metal-insulator transition if the energy re
quired for decoupling the weak band hybridization is 
smaller than the energy gain from a metal-insulator 
transition associated with the nesting of the hidden 
Fermi surfaces. In the following, we discuss this concept 
of hidden Fermi surface nesting in some detail. 

15.1 Hidden Nesting In KMo6O17
108 

The CDW instability of the purple bronze KMo6O17 
(section 14) may now be examined from the viewpoint 
of hidden nesting. The three Fermi surfaces of this 
phase (Figure 14.3) are combined into one in Figure 
15.1a. A shown in Figure 15.1b, this combined Fermi 
surface may be decomposed into three sets of parallel 
lines (i.e., three sets of ideal ID Fermi surfaces), if the 
weak noncrossing effects at the intended crossing points 
are neglected. Given such ideal ID surfaces, one needs 
to find what nesting vectors are likely to be observed 
because, as discussed in section 5.2 (see 5.7), an ideal 
ID Fermi surface possesses an infinite number of 
nesting vectors. The extent of electronic instability is 
enhanced with increasing the area of nested Fermi 
surface, so that nesting vectors appropriate for KMo6O17 
are the ones that simultaneously nest more than one 
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(o) (b) 
Figure 15.4. Representation of one hidden ID Fermi surface of 
KMo6Oi7 in (a) the FBZ and (b) the rectangular zone. The latter 
has the same area as the FBZ. 

set of the ID Fermi surfaces. Two examples of such 
nesting vectors are illustrated in Figure 15.2. The 
vectors qa and qj, (in Figure 15.2, parts a and b, re
spectively) each nest two sets of the ID Fermi surfaces, 
and they are parallel to the a* and b* directions, re
spectively. The magnitudes of these hidden nesting 
vectors are examined in the following. 

As shown in 14.7, the d-electron-containing layer of 
KMo6O17 (i.e., the Mo2Og layer 14.6) can be decomposed 
into three sets of the zigzag Mo2O10 chains (14.3) run
ning along the a, b, and (a + b) directions. The bottom 
three d-block bands of the Mo2O9 layer are derived from 
the tjg orbitals of the MoO6 octahedra. These three t^ 
orbitals each make ir-type interactions along the in-
trachain directions but 5-type interactions along the 
interchain directions. (For example, see 14.13 and 
14.14.) Consequently, the band associated with each 
of the t2g orbitals is dispersive along the associated in-
trachain direction but dispersionless along the associ
ated interchain direction. As shown in Figure 15.3, each 
t-jg orbital of an MoO6 octahedron is a 8 orbital along 
the chosen axial Mo-O bond direction. Due to the 
orthogonality of the t^ orbitals, the three chain bands 
resulting from the t^ orbitals are practically inde
pendent of one another, to a first approximation. Thus, 
for qualitative purposes, the bottom three d-block 
bands of KMo6O17 can be approximated by the three 
independent ID bands resulting from the t^ orbitals. 

In a 2D representation, the Fermi surface of an ideal 
ID metal is given by two parallel lines perpendicular 
to the chain direction (section 5). This is also the case 
for the ideal ID Fermi surfaces of Figure 15.1b. For 
example, Figure 15.4a shows one set of the ideal ID 
surface, which can be redrawn in a rectangular zone 
(Figure 15.4b) with the area identical with that of the 
FBZ. In Figure 15.4b, T — X' is perpendicular to T — 
7 and is therefore parallel to the a direction. Namely, 
the Fermi surface of Figure 15.4b is perpendicular to 
the a direction and therefore refers to the ideal ID band 
associated with the Mo2O10 chains running along the a 
direction (14.7a). In Figure 15.4b, the length of T —• 
X' is v/3a*/4. In a similar manner, the remaining two 
of the ideal ID Fermi surfaces are related to the Mo2O10 
chains running along the b and (a + b) directions. 
KMo6O17 has three electrons to fill its d-block bands, 
so that each of the three ideal ID chain bands becomes 
half filled. Therefore, in Figure 15.4b, the length of T 
— X" becomes half that of T — X', and the nesting 
vector qa is equal to T -* X. As a result, the nesting 
vector qa is given by a*/2. Likewise, the nesting vector 
qb (Figure 15.2b) becomes b*/2. This explains the su-
perlattice spots at a*/2, b*/2, and (a* - b*)/2 observed 
for KMo6O17 below 120 K.106b We note that KMo6O17 
remains metallic below 120 K,104 which implies that the 

Y M 

X 

\ 0S 

(C) 

Figure 15.5. Construction of the rhombus-like 2D Fermi surfaces 
of the Magneli phases M04O11 and the MPTB phases with N = 
4: (a) the ID Fermi surface associated with the upper subband 
of band e (Figure 13.15a) and (b) that associated with the lower 
subband of band e (Figure 13.15b). The two ID Fermi surfaces 
of a and b are combined into one in c. 

Fermi surface is not removed completely below 120 K. 
This is understandable because the nesting of the real 
Fermi surface is not complete due to the band hybrid
ization. 

15.2 Hidden Nesting In the Magneli and the 
MPTB Phases 

As discussed in section 13, the combined Fermi sur
faces of the Magneli and the MPTB phases are decom
posed into nested ID and 2D Fermi surfaces. Thus, the 
nesting vectors of those ID and 2D Fermi surfaces are 
hidden nesting vectors. The ID surface results from 
the 5 band, and the 2D surfaces from the x bands 
(section 13.1). The 2D surfaces are described in terms 
of rhombuses centered at T, X, M, and Y (Figure 
13.16b). We now show that, to a first approximation, 
these 2D Fermi surfaces can be further decomposed into 
two sets of hidden ID surfaces. 

As already discussed, those rhombus-like 2D Fermi 
surfaces originate from the fact that, along T -* P-* 
M, the upper subband of band e in Figure 13.15a has 
a maximum at P, so it is cut twice by the Fermi level. 
Thus, to a first approximation, this bands leads to the 
ideal ID Fermi surface shown in Figure 15.5a, which 
consists of four parallel lines (perpendicular to T -* P 
-* M) within the FBZ. (In 5.1a the band dispersion 
along r —• X is cut once by the Fermi level, so the 
resulting Fermi surface 5.3a consists of two parallel lines 
within the FBZ.) Likewise, along X -* P — Y (13.13), 
the lower subband of band e in Figure 13.5b is cut twice 
by the Fermi level and leads to the ideal ID Fermi 
surface shown in Figure 15.5b. When the two sets of 
these ideal ID surfaces are combined together, as shown 
in Figure 15.5c, one obtains rhombus-like 2D Fermi 
surfaces centered at T, X, Y, and M. To a first ap
proximation, the rhombus-like 2D surfaces of the 
Magneli and the MPTB phases discussed in section 13.4 
originate essentially from two sets of such ideal ID 
Fermi surfaces. 

As discussed above, the upper and lower subbands 
of band e have ID character along the (a + b) and (-a 
+ b) directions, respectively. In order to understand 
this observation, it is necessary to redraw the MO6 oc
tahedra of the step-layer 8.23b such that two "basal" 
oxygen atoms of every MO6 octahedron in the old rep
resentation are made "axial" in a new representation 
of MO6. There are two sets of "basal" oxygen atoms to 
choose: One set contains two "basal" oxygen atoms 
trans to each other along the (a + b) direction, and the 
other contains those along the (-a + b) direction. Ac
cording to these two new representations, the step-layer 
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8.23 is constructed from new octahedral chains (i.e., 
those formed upon sharing the new "basal" oxygen at
oms of MO6 octahedra) running along the (a + b) or the 
(-a + b) directions by sharing their "axial" oxygen at
oms. These "new" octahedral chains differ in shape 
from the "old" step chains running along the a direction. 
The t2g orbitals appropriate for band e at T are given 
by 13.15 and 13.17, where the d-orbital planes are 
aligned along the (-a + b) and the (a + b) directions, 
respectively. Thus the two W orbitals each make ir-type 
interactions along the new chain direction (i.e., the (a 
+ b) or the (-a + b) direction) but 5-type interactions 
along the interchain direction. This accounts for the 
ID nature of the two subbands of band e in Figure 
13.15. The situation is very similar to that of purple 
bronze AMo6O17 (A = Na, K) except that the step-layer 
8.23 consists of two different types of ID chains because 
of its lower symmetry. It should be noted that our 
analysis discussed above applies to any step-layer built 
on the basis of the (13)-condensation of step-chains, 
regardless of the width of the step-chain. 

In Figure 15.5c, the two sets of ID Fermi surfaces are 
nested by a common vector (̂ 2D

 o r 9 W- This situation 
is analogous to that found for KMo6O17 in the previous 
section (see Figure 15.2). The CDW vector 2̂D

 0I" Figure 
15.5c corresponds to the observed CDW vector qc of the 
Magneli phases Mo4O11 (Figure 13.5b) and also to the 
CDW vector ^20 of the MPTB phase with JV = 4, where 
JV is the number of electrons per unit cell of one W-O 
step-layer (see Figure 13.17a). In terms of the nested 
Fermi surface areas, the CDW's with vectors g2D

 a n d 
q 2D are equally probable. However, only the CDW with 
q2D is observed. This implies that the CDW with q2D 
induces less strain than does that with the q 2D. This 
is due probably to the fact that the vector ^20 is parallel, 
but the vector q '^3 is perpendicular, to the step-chain 
direction. As discussed in section 13.4, the "2D" Fermi 
surface nesting of the MPTB phases is better described 
in terms of the vectors qt (i = T, X, Y, M) associated 
with the rhombus-like Fermi surfaces (e.g., see Figure 
13.16b), as JV becomes smaller than 4. Nevertheless, 
the occurrence of the rhombus-like Fermi surfaces can 
be viewed in terms of two sets of "warped" ID Fermi 
surfaces. If this Fermi surface warping is weak, it may 
be possible to observe a CDW vector <72D instead of qt 
(i = T, X, Y, M) even when JV < 4. 

The purple bronze KMo6O17, the Magneli phase 
Mo4O11 and the MPTB's possess 2D Fermi surfaces, 
and thus they are all 2D metals. However, these sys
tems exhibit CDW phenomena typically observed for 
ID metallic compounds because their 2D Fermi surfaces 
have hidden ID nesting vectors. Therefore, when a 2D 
metallic system exhibits a CDW phenomenon, it would 
be interesting to examine whether or not such an 
electronic instability originates from hidden ID Fermi 
surface nesting. From this viewpoint, it would be 
worthwhile to reexamine the electronic structures of 
layered transition-metal dichalcogenides. 

16. Electronic Structures of Other Seemingly 
Complex Systems 

A common feature of the compounds examined so far 
is a very low d-electron count, so that only the lowest 

lying portion of their t^-block energy bands are filled. 
If some of the octahedra are distorted such that certain 
M-O bond lengths become short, some or all t^ orbitals 
of these octahedra are raised in energy and do not 
contribute significantly to the lowest lying t^-block 
bands. Thus, a detailed analysis of crystal structures 
is important in providing a qualitative understanding 
of the electronic structure of these materials. In par
ticular, it can be very useful in the case of complex 
materials where only a certain part of the structure is 
responsible for their transport properties. As shown 
earlier, this approach is more powerful than the tra
ditional bond valence sum analysis because the direc
tionality of the low-lying orbitals is explicitly taken into 
account. In the present section, we consider the crystal 
and electronic structures of Na0-25TiO2

109* and Li0-33-
MoO3,

37 two materials which have a seemingly complex 
3D lattice but which are nevertheless pseudo-ID in 
physical properties. 

16.1 Na028TIO2 

The sodium titanium bronze Na0-25TiO2 undergoes a 
metal-insulator transition at 630 K.109 Below 430 K, 
Na0-25TiO2 shows incommensurate superlattice spots 
centered at (a*, qb*, O), suggesting that the transition 
is of a Peierls type.109,110 The qb* is found to increase 
gradually from 0.2306* at 430 K to 0.2456* at room 
temperature. Such a temperature dependence of qb* 
is reminiscent of that in blue bronze (section 10). 
Na0-25TiO2 has a 3D lattice of TiO6 octahedra.1098 Since 
Peierls-type transitions are usually associated with 
low-dimensional systems, a particular distortion of some 
TiO6 octahedra must exist to render a low-dimensional 
character to the 3D Ti-O lattice. Thus, it is important 
to understand how the electronic structure of Na0-25TiO2 
is related to its crystal structure. 

The essential building blocks of the 3D Ti-O lattice 
in Na0-25TiO2 are Ti2O8 double octahedral chains 16.1a. 
A Ti2O8 double chain is obtained from two TiO5 chains 
2.34 by sharing two edges per octahedron. 16.1b is a 
projection view of the Ti2O8 double chain 16.1a along 
the chain direction. In terms of such a projection view, 

# 

16.1a 16.1b 

it is very easy to build the 3D Ti-O lattice of Na0-25TiO2. 
We obtain a Ti4O12 quadruple chain 16.2 by sharing 
edges of the Ti2O8 double chains, a Ti8O20 layer 16.3 by 
sharing edges of the Ti4O12 quadruple chains, and fi
nally the 3D Ti8O16 lattice 16.4 by sharing corners of 
Ti8O20 layers. The sodium cations are located in the 
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16.3 

16.4 

channels between Ti9O2O layers. 
There are two crystallographically different Ti atoms 

in Na0126TiO2
109* [i.e., Ti(I) and Ti(2)] and their TiO6 

octahedra are distorted from a regular octahedra as 
shown in 16.5. In the Ti(I)O6 octahedron, there exists 

b 

16.5 

a strong 0-Ti-O bond alternation (Le., 1.787 vs 2.260 
A) along the direction perpendicular to the crystallo-
graphic b axis (i.e., the chain direction), and the re
maining four Ti-O bonds have a similar length (i.e., 
~ 1.986 A on average). It is then clear that only the xz 
orbital of the Ti(I)O6 octahedra will remain low in en
ergy. Although each Ti(2)06 octahedron has four 
"short" and two "long" bonds, it has no strong 0-Ti-O 
alternation unlike Ti(I)O6. However, the four "short" 
bonds of Ti(2)06 are snorter in average (i.e., 1.945 A) 
than the four intermediate bonds of Ti(I)O6. Thus, the 
three tj, levels of Ti(2)06 will lie higher in energy than 

9 O • 

0 . 0 -

Figure 16.1. Dispersion relations of the bottom t^-block bands 
calculated for the Ti8Ow2" lattice 16.4, where the dashed line 
refers to the Fermi level, r - (0,0,0), X = (a*/2,0,0), y = (0, 
6*/2, 0), and Z - (0, 0, c*/2). 

the xz level of Ti(I)O6. In addition, there is some Ti-
(1)—Ti(2) interaction perpendicular to the shared edge 
(i.e., 2.993 A), which will provide some additional low
ering of the Ti(I) xz level. It is then expected that the 
lowest t2g-block levels of the Ti8O16 lattice originate 
mainly from the xz orbitals of the Ti(I)O6 octahedra. 

Given the oxidation states of Ti4+ and O2", the t^-
block bands of Na0126TiO2 are filled due to the electrons 
donated by Na. The amount of electrons donated is not 
large, Le., one electron per four Ti atoms or, equiva-
lently, one electron per 12 t^-block levels. Therefore 
in Na026TiO2, only the bottom of the t^-block bands 
(i.e., the lowest xz bands) becomes occupied. 

In the Ti4O12 quadruple chain 16.2, the Ti(I) and 
Ti(2) atoms are found in the middle two and in the 
outer two TiO6 chains, respectively. Consequently, the 
Ti(I)O6 octahedra form Ti(I)2O8 double chains and 
these double chains are separated from one another as 
shown in 16.6. The xz orbitals of Ti(I) (i.e., those 

16.6 

leading to the lowest t^ bands) have strong x-type in
teraction with the oxygen * orbitals along the chain 
direction (i.e., the b axis), as illustrated in 16.7 for one 
TiO6 chain. These xz orbitals are well oriented to 

16.7 
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interact with the high-lying xz orbitals of the Ti(2)06 
octahedra so that a weak coupling between the xz bands 
of the Ti(I)2O8 double chains can be expected. The 
Ti(I) xz orbitals of different Ti2O8 double chains along 
the c direction lead to 5-type interactions between Ti-
(I)O6 and Ti(2)06 octahedra, which are extremely weak. 
Therefore, the lowest t^-block bands of the Ti8O16 
lattice should be pseudo-ID with strong dispersion 
along the b direction and weaker interaction along the 
a direction. Figure 16.1 shows the bottom portion of 
the t2g-block bands calculated111 for the 3D Ti8O16

2" 
lattice of Na026TiO2, where the dashed line refers to the 
Fermi level. With only two electrons to fill them, the 
bottom two folded bands become partially filled. These 
bands are largely represented by the xz levels of the 
Ti(I) atoms and are mainly dispersive along r -+ Y, as 
expected. 

Na0-26TiO2 is pseudo-ID despite its 3D crystal lattice. 
This is reminiscent of the situation for lithium molyb
denum purple bronze Li0-9Mo6O17 (section 12). How
ever, Na025TiO2 is even more striking because its lattice 
is exclusively built from TiO6 octahedra. Since the 
Fermi surfaces associated with the partially filled bands 
of Figure 16.1 have a strong ID character, it is expected 
that Na026TiO2 has some type of Peierls instability. 
According to the band structure of Figure 16.1, the 
Fermi surfaces for Na0-25TiO2 are not perfectly nested, 
which would be consistent with a metal-to-metal tran
sition rather than the observed metal-to-insulator 
transition. However, it should be recalled that the 
available crystal structure for Na025TiO2 was solved at 
room temperature without considering the superlattice 
spots in the refinement.109" Consequently, this crystal 
structure should be considered as approximate, and 
only the gross features of the band structure calculated 
on the basis of this structure can be considered relevant. 

16.2 LI033MoO3 

The lithium bronze Li0-33MoO3
37,112 is violet blue and 

different in structure from the other A033MoO3 (A = 
K, Rb, Cs, Tl) bronzes (see section 9). A single-crystal 
X-ray diffraction study37 reveals that it is triclinic, 
which is quiet unique among the known molybdenum 
bronzes. As in the case of other A0-33MoO3 bronzes, 
however, Li0-33MoO3 is a semiconductor.113 Although 
its crystal structure is quite complex, a careful analysis 
of the distortions present in the lattice leads to a simple 
explanation for the origin of its semiconducting prop
erties. 

Schematically shown in 16.8 is a Mo6O26 unit made 
up of six MoO6 octahedra sharing their edges and cor-

16.8 

ners. Such Mo6O26 units form an Mo6O24 chain 16.9 
upon sharing their corners. When LiO6 octahedra are 

16.9 

fused into the Mo6O24 chain between every two adjacent 
Mo6O26 units, one obtains an Li2Mo6O30 chain 16.10, 
where LiO6 octahedra are indicated by shading. Such 

16.10 

Li2Mo6O30 chains share their octahedral corners to form 
an Li2Mo6O28 layer 16.11. It is these layers that form 

16.11 

the 3D crystal structure of Li0-33MoO3 by sharing their 
octahedral corners and edges. Two Li2Mo6O28 layers 
may share their octahedral corners as indicated in 
16.12a or their octahedral edges as indicated in 16.12b, 
where LiO6 octahedra of each Li2Mo6O28 layer are 
omitted for clarity. In the layer stacking 16.12a, 

16.12a 16.12b 

Mo6O24 chains (16.9) of one layer (16.10) are linked to 
one another via the Mo6O24 chains of another Li2Mo6 
O28 layer, while this is not the case in the layer stacking 
16.12b. In Li033MoO3, the types of layer stacking 16.12a 
and 16.12b are both present. As schematically shown 
in 16.13, a unit cell of Li033MoO3 contains four shared 
Li2Mo6O28 layers (I8, H8, lib, ond Ib). The layers H8 and 

n 

na 

16.13 

IIb share their octahedral edges as in 16.12b, while all 
other adjacent layers share their octahedral corners as 
in 16.12a. Thus a repeat unit cell OfLi033MoO3 has the 
formula unit (LiMo3Og)8. Due to the inversion sym
metry of the crystal, the layers I8 and H8 are equivalent 
to Ib and lib, respectively, so that only two unique 
Li2Mo6O28 layers are present in Li0-33MoO3. 
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Figure 16.2. Dispersion relations of the bottom d-block bands 
calculated for the MOeOj4 chains present in (a) layer Ia and (b) 
layer II, of Li0^MoO3. 

In every Li2Mo6O2S lf lver 0^ L10.33M0O3 (e.g., Ia and 
IIa in 16.13), each MoO6 octahedron has a strong O-
Mo—0 bond length alternation perpendicular to the 
layer plane (e.g. ~1.7 vs ~2.4-2.5 A in Ia and ~1.7 vs 
~2.3-2.7 A in IIa). Thus the xz and yz orbitals of each 
MoO6 octahedron (see 16.14) are strongly raised in 
energy with respect to its xy orbital (i.e., the in-plane 
orbital), so that the bottom d-block bands of each 
Li2Mo6O28 layer result from the xy orbitals of the MoO6 
octahedra. It is important to note that, between adja
cent Li2Mo6O26 layers, having the corner stacking shown 
in 16.12a, these xy orbitals give rise to 5-type interac
tions. Since these interactions practically vanish, such 
Li2Mo6O28 layers do not interact each other as far as 
their xy orbitals are concerned. As will be discussed 
later, adjacent Li2Mo6O28 layers having the edge 
stacking shown in 16.12b (i.e., IIa and IIb in 16.13) can 
also be considered noninteracting as far as their low-
lying xy bands are concerned. Thus, the bottom d-block 
bands of Li033MoO3 can be approximated by super
posing the bottom d-block bands of each Li2Mo6O28 
layer. As discussed already, there are only two unique 
Li2Mo6O28 layers (e.g., Ia and IL4 in 16.13) in Li0-33MoO3. 
In addition, each layer 16.11 consists of isolated Mo6O24 
chains. Thererfore, one needs to consider only the 
d-block bands of the Mo6O24 chains present in layers 
Ia and IIa in order to deduce the bottom d-block bands 
of Li0-33MoO3. 

Shown in Figure 16.2 are the bottom portions of the 
d-block bands calculated114 for the Mo6O24 chains 
present in layers Ia and IIa of Li0-33MoO3. These bands 
are largely derived from the xy orbitals of the MoO6 
octahedra and possess dispersion patterns that resemble 
those found for the ideal Mo4O18 chain in Figure 9.2a. 
The CO degeneracies of the ideal Mo4O18 chain ob
served in Figure 9.2a are all lifted in Figure 16.2 because 
of the distortions present in the real Mo6O24, as will be 
examined in this section. The two important features 
to note from Figure 16.2 are that the lowest lying band 
a is separated from other bands lying above in Figure 
16.2, and that the top of band a in Figure 16.2b lies 
below the bottom of band c in Figure 16.2a. With two 
electrons per unit cell per chain to fill the d-block bands, 
the band structure of Figure 16.2a or that of Figure 
16.2b has a band gap, and the band structure obtained 

by superposing Figure 16.2 a and b also gives a band 
gap although it is very small. 

16.14a (16.14b) illustrates how the Mo6O26 unit 16.8 
of the Mo6O24 chain in layer Ia (H8) of Li0-33MoO3 differs 
from the corresponding ideal structure constructed from 
regular octahedra. For simplicity, the Mo-O distances 
associated with the axial oxygen atoms are not shown 
in 16.14. In 16.14a and 16.14b the hump MoO6 oc-

16.14a 

16.14b 

tahedra have very short Mo-O distances (~1.7 A), so 
that their xy orbitals are raised in energy beyond the 
energy region of Figure 16.2. Thus, the lowest lying 
ry-block bands of the Mo6O24 chains should be largely 
represented by the bands of the Mo4O18 chain 8.2. Let 
us now discuss how the band structures of Figure 16.2 
deviate from that of Figure 9.2a corresponding to the 
ideal Mo4O18 chain 8.2. For this purpose, both the 
orbital analysis in section 9.2 and the geometry dis
tortions present in the real Mo6O24 chains 16.14a and 
16.14b should be taken into consideration. 

Bands b and c in Figure 16.2 show noncrossing due 
to the symmetry lowering induced by the distortions. 
The essential result of Figure 16.2 is that the top of 
band a in Figure 16.2b lies slightly lower in energy than 
the bottom of band c in Figure 16.2a. The Mo-O bonds 
in 16.14a and 16.14b (excluding those of the hump oc
tahedra) approximately parallel and perpendicular to 
the Mo6O24 chain may be referred to as the Mo-O(H) 
and Mo-O(J.) bonds, respectively. The average lengths 
of the Mo-O(J.) and Mo-O(H) bonds are respectively 
1.92 and 1.97 A in 16.14a, and 1.91 and 1.95 A in 16.14b. 
Since the average Mo-O(J.) bond length is shorter than 
the average Mo-O(H) bond length, the top of band a lies 
below the bottom of band c in Figure 16.2, parts a and 
b (see 9.9 and 9.10). The average Mo-O(J.) and Mo-
0(H) bond lengths are both shorter in 16.14b than in 
16.14a, so that the band a (top) and the band c (bottom) 
in Figure 16.2b both lie higher than the corresponding 
points in Figure 16.2a. Since the average Mo-O(H) 
length in 16.14b is longer than the average Mo-O(X) 
length in 16.14a, the band a top of Figure 16.2b lies 
below the band c bottom of Figure 16.2a so that band 
c of Figure 16.2a does not overlap with band a of Figure 
16.2b. 
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Finally, we note that band a is essentially obtained 
from the unit cell orbital 9.5a, which has no orbital 
contribution from the bridging oxygen atoms within a 
unit cell. In the layer stacking of 16.12b, the metal xy 
orbitals of each layer can in principle interact with those 
of the other layer via the bridging oxygen atoms. 
However, band a does not have any orbital contribution 
from the bridging oxygen atoms, so that the character 
of band a is not expected to change upon the layer 
stacking of 16.12b. Band c is obtained from the unit 
cell orbital 9.5c, which has p-orbital contribution from 
the 0(||) atoms (Le., those oxygen atoms on the Mo-O-
Mo bridges parallel to the Mo6O24 chain) within a unit 
cell. According to 16.12b, these 0(||) atoms of one layer 
are located on top of the Mo atoms of the other layer 
so that there exists no orbital overlap between such Mo 
and 0(||) atoms. Consequently, the character of band 
c is not expected to change upon the layer stacking of 
16.12b. As a result, the energy gap between band a at 
Z in Figure 16.2b and band c at r in Figure 16.2a is 
expected to remain even if the layer stacking 16.12b is 
taken into consideration. As a result, Li033MoO3 was 
predicted to be semiconducting in all directions.114 

Since the valence and the conduction bands of Figure 
16.2 are dispersive along T-* Z, the electrical conduc
tivity of Li033MoO3 is expected to be largest along the 
c direction. These predictions were confirmed by sin
gle-crystal electrical resistivity measurements.113 

17. Concluding Remarks 

In the first half of this review, we have discussed 
theoretical and computational concepts necessary for 
understanding the electronic properties of low-dimen
sional metallic compounds. The electronic structures 
of crystalline solids are described in terms of band 
structures, the essence of which can be easily under
stood in terms of overlap, symmetry, and chemical 
bonding by analyzing the band orbitals at a few specific 
wave vector points. The phase transition from a normal 
metallic state to a CDW, SDW, or superconducting 
state is described in terms of orbital mixings between 
the occupied and unoccupied levels of the normal 
metallic state near the Fermi level. In the second half 
of this review, we have examined the structure-property 
correlations associated with the electronic instabilities 
of low-dimensional molybdenum and tungsten oxide 
metals. The CDW phenomena of these oxides originate 
from the Fermi surface nesting of their partially filled 
d-block bands. Those oxides have a very low d-electron 
counting on transition metal. Consequently, only cer
tain parts of their crystal structures, i.e., the metal-
oxygen layers made up of MO6 octahedra, contain d 
electrons, and only the bottom portion of the t^-block 
bands associated with such layers become partially 
filled. The dispersion characteristics of these partially 
t^-block bands are easily explained by analyzing the 
octahedral distortions of the oxides and by counting in 
how many metal-oxygen-metal bridges the oxygen p 
orbitals can mix between adjacent metal t^-block or
bitals at a few specific wave vector points. 

For ID metals such as Li09Mo6O17 and K033MoO3, it 
is straightforward to identify their Fermi surface 
nesting. The 2D metals, purple bronze KMo6O17, the 
Magneli phases Mo4O11, and the MPTB phases, all 
possess several 2D Fermi surfaces which, if viewed in

dividually, do not give a clue to any Fermi surface 
nesting. When those 2D Fermi surfaces are combined 
together, it is easy to redraw them into nested ID and 
nested 2D Fermi surfaces. Such a hidden nesting leads 
to an electronic instability when the energy required for 
decoupling the weak band hybridization, which pro
duces "unnested" 2D Fermi surfaces, is small compared 
with the energy gain resulting from a CDW or SDW 
formation associated with the hidden nesting. The 
Fermi surfaces of every MPTB phase have several 
different hidden nesting vectors, so that the MPTB 
phases should exhibit rich CDW phenomena and are 
exciting materials to study. 
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