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AE all electron 
AO atomic orbital 
BO Born-Oppenheimer 
CAS complete active space 
CAS- complete active space self-consistent field 

SCF 
CCSD coupled cluster-single-double 
CIPSI configuration interaction by perturbation of 

multiconfigurational wave function selected 
iteratively 

CI configuration interaction 
CPF coupled pair functional 
CPP core polarization potential 
CVC core-valence correlation 
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Quantum Chemistry of Small Elemental Clusters 

/. Introduction 

A. Specific Features of Elemental Clusters 

Common physical laws valid for atoms, molecules, 
and solids—as well as other physical systems—govern 
the nature of clusters under quite specific conditions. 
Consequently, we can expect them to lead to effects 
uncommon for other more stable electronic systems, 
such as molecules or solids. In other words, clusters do 
not only represent a transition—a bridge—between 
atoms and solids but they exhibit several of their own 
specific features as well. Formal similarities due to 
common physical laws might be present for systems 
which possess a number of substantially different basic 
physical properties. In such cases, it is important to 
analyze carefully the reasons for such similarities in 
order to avoid erroneous conclusions about the physical 
nature of these parallels. For example, very specific 
conditions under which the physical laws act in small 
elemental clusters may give rise to regularities similar 
to those characteristic for the physical behavior of at­
omic nuclei, in spite of the fact that the constituent 
particles and forces acting among them are basically 
different. 

Similarly caution is advised in interpreting the results 
when an attempt is made to answer the question often 
raised: at which cluster size does metallic character 
appear? Individual cluster properties can easily re­
semble metallic characteristics, but at the same time 
other properties can be still very far from those which 
are typical for the metallic state. 

Since cluster physics opens new aspects which are not 
usually met in the molecular or solid-state physics, the 
theory of the electronic structure of clusters can be 
useful in finding the basic reasons for their appearance. 

B. Methodological Requirements 

Many theoretical concepts and methods employed 
customarily in molecular physics and solid-state theory 
have some features tailored to the specific properties 
of the given class of investigated systems. Such an 
adjustment using appropriate concepts, treatable 
models, and mathematical approximations is necessary 
and useful, since the complexity of the quantum me­
chanical laws makes it necessary to simplify the em­
ployed procedures. The interplay of adequate as­
sumptions justifiable in the given scientific domain and 
of the simplified physical laws builds the basis of the 
techniques which are used for determining the prop­
erties of interest. 

However, such an approach is not always applicable 
in cluster physics, since our knowledge of the basic facts 
about clusters is not sufficient for this purpose. 
Therefore, it is risky to employ quantum chemical 
semiempirical and empirical methods for the descrip­
tion of cluster properties without obtaining and com­
paring results from more sophisticated methods. Sim­
ilarly, the customary, considerably simplified metho­
dology of solid-state quantum theory must be carefully 
verified before it is applied in this field. 

The most frequently experimentally studied clusters 
have so many electrons that very sophisticated quantum 
chemical methods, relatively free from ad hoc assump­
tions, are hardly applicable. For example, it is difficult 
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to routinely use the "ab initio" quantum chemical 
methods for transition-metal clusters that are particu­
larly interesting for various practical reasons and, 
therefore, intensively investigated experimentally. 

Therefore, it is necessary to begin by applying ab 
initio quantum chemical methods to relatively simple 
systems with a small number of electrons, and then use 
that knowledge to understand complicated systems. 
Since studies of medium-size clusters are the primary 
goal of such investigations, the methodological details 
must be chosen so that the largest possible simplifica­
tions are combined with care so as not to neglect some 
relevant methodological features allowing for the de­
scription of the essential physical features governing the 
interactions inside clusters. 

Such compromises require physical feeling and suf­
ficient experience. They can be sometimes considered 
as not sufficiently cautious from the standpoint of ab 
initio quantum chemists and not reduced sufficiently 
to the basic essentials for those who are used to dealing 
with simple models, but they are unavoidable for ob­
taining basic knowledge about the physical properties 
of the electronic structure of clusters. 

C. The Task of Quantum Chemistry In Cluster 
Research 

When applied to small molecules, including those that 
are not stable under usual conditions or are involved, 
e.g., in photophysical and photochemical processes, the 
quantum chemical methods at high level of accuracy 
yielded novel insights. The same type of methods are, 
in principle, useful also for the investigation of clusters. 
Unfortunately, the application of these procedures are 
limited to relatively small clusters with a small number 
of explicitly considered electrons. 

At first glance, these obvious limitations are quite 
discouraging if one considers the importance of the 
interpretation of size-dependent cluster properties, 
which are experimentally investigated in a wide range, 
as well as the practical importance of larger clusters, 
mainly of heavier atoms. However, recent methodo­
logical developments in ab initio quantum chemistry 
and the availability of powerful computers make it 
possible to study a wide range of cluster sizes at least 
for simple elements such as those of the Ia and Ib 
columns. Apart from their predictive power, they can 
serve as guides for designing acceptable simplifications. 
For example, it is a challenging task to distinguish those 
cluster properties arising from the specific nature of the 
constituent atoms and their ability to participate in 
bonding from those which are caused solely by the 
symmetry or topology. Further, the analysis of the 
results obtained from the advanced quantum chemical 
procedures can be used to determine the essential in­
gredients which should not be omitted in any simplified 
theoretical treatment of clusters. This might also be 
useful for proposing "semiempirical" approaches spe­
cifically adopted to the study of larger clusters. 

D. Limitations and Scope of the Review 

Recently, numerous reviews1-18 as well as compen­
dia19"26 have been published concerning theoretical and 
experimental work on elemental clusters. For this 
reason, the present review does not seek to give a bal-
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anced survey of the research on all properties of all 
interesting classes of clusters or to give a comprehensive 
summary of the explosively growing literature of cluster 
research. Instead, this review focuses on problems in 
which the application of quantum chemical methods 
can yield a deeper insight into the fundamental laws 
governing the structure of clusters. Section ILA briefly 
describes approaches commonly applied in quantum 
chemistry. Section ILB and the Appendixes analyze 
and compare the concepts of solid-state theory and 
nuclear physics frequently applied for the description 
of cluster properties. We have emphasized the latter 
aspect because a number of problems at the borderline 
of these cluster research disciplines can open new fields 
for applied quantum chemistry. For this reasons we 
have treated extensively the theory of excited states of 
clusters and its application to the spectroscopy of 
clusters (section LV). The selected ground-state prop­
erties have been analyzed as well, in order to demon­
strate how some general laws manifest themselves in 
cluster physics (section III). The Green's function 
technique can serve as a link among various methods 
employed to investigate perturbations to which a cluster 
is subjected. For this reason the Green's operator, 
Green's functions, and some illustrative examples of 
their application are described in section II.B.2. Several 
general connections among Green's function technique 
and various concepts, useful in cluster theory, are 
sketched in the Appendixes. This analysis serves also 
for establishing common features among different re­
sponse theories given in sections II.B.4, ILB.5, and 
ILB.7. (Readers interested only in the application of 
quantum chemistry to clusters can omit the section ILB 
and the Appendixes.) 

A clear and lucid understanding of the ground- and 
excited-states phenomena is possible only for relatively 
simple cluster classes. For this reason, no attempt has 
been made to extend the present review to clusters of 
transition-metal atoms as well as to clusters for which 
the conventional valence rules are applicable (e.g. sulfur 
clusters). 

The conclusions drawn from theoretical and experi­
mental investigation of small clusters do not completely 
refer to very large cluster sizes for which a number of 
other phenomena might occur. 

The main part of this review deals with alkali-metal 
clusters, since in this case the theory can be applied at 
a relatively high level of accuracy. The next simplest 
systems are Ib clusters, and their properties are also 
addressed. Other clusters with atoms from groups LT-IV 
of the periodic table are considered only when a com­
parison with the Ia and Ib clusters is illustrative. 

/ / . Comparison of Quantum Chemical and 
Solld-State Theoretical Concepts and Methods 

In the last two decades, methods and notions de­
veloped in a particular scientific field have been fre­
quently adopted in other disciplines. The introduction 
of such new ideas and procedures is very often useful 
and successful. The use of second quantization and of 
related methods in molecular physics is only one of 
many similar examples. The tight binding methods, 
particularly the Koster-Slater semiempirical approach, 
can be considered parallel to the Mulliken LCAO (linear 

combination of atomic orbitals) methods of quantum 
chemistry. 

Elemental clusters represent a transition domain 
between solids and individual atoms. They also exhibit 
some properties resembling those found in nuclear 
physics. Small clusters have, in general, sizes of mol­
ecules investigated in organic chemistry and biochem­
istry. Therefore, cluster theory is a field of science 
where the advantages of quantum chemical approaches, 
solid-state theory, and models and methods of nuclear 
physics can be compared, tested, and analyzed. A 
better understanding of connections between corre­
sponding scientific concepts and attitudes can result 
from such studies. This is important for cluster theory 
and is also of general interest for applied quantum 
mechanics. 

Only those aspects of the scientific fields relevant for 
the theoretical interpretation of properties of elemental 
clusters will be addressed in this section. A partly 
simplified presentation of the topic should help to em­
phasize the similarities and differences among ap­
proaches customary in quantum chemistry, solid-state 
theory, and nuclear physics. 

A. Concepts of Quantum Chemistry 

A very important and frequently used class of quan­
tum chemical methods derives molecular properties 
from those of the constituent atoms. For example, this 
can be achieved by using one-electron functions which 
have the form of linear combinations of the basis 
functions centered at the positions of atomic nuclei in 
the molecular system (atomic orbitals, LCAO approx­
imation). The characteristic parameters of these 
localized functions allow a derivation of molecular and 
atomic properties within the framework of the chosen 
quantum chemical method. It is not within the scope 
of this review to analyze the advantages and deficiencies 
met in the applications of the LCAO type of methods. 

Tight-binding procedures represent a class of meth­
ods used in solid-state theory which are closely related 
to a philosophy typical of quantum chemical ap­
proaches. However, due to a number of simplifications 
introduced, the majority of methods used in solid-state 
theory try to avoid the large difficulties that arise when 
quantum chemical methods are applied to large sys­
tems, by introducing a number of simplifications. 

1. One-Electron Approximations: Hartree-Fock and 
Density Functional Theories 

The simplest many-electron wave function obeying 
the antisymmetry principle is the Slater determinant 
of one-electron functions <ft(x,) (or spin orbitals):26-28 

^ ( X 1 X 2 1 1 1 X N ) = A[^(-S.x)^%2)..,<pN(-S.N)] (IIA1.1) 

where A is the antisymmetrizer, X1 is the set of space 
(r;) and spin (^ = a, /?) coordinates, and N is the num­
ber of electrons. 

For the pure electrostatic Hamiltonian H0 in the 
Born-Oppenheimer approximation (BO), assuming 
orthogonal basis in (IIAl.l), the total energy can be 
computed according to 
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E = (<t>\H0\<t>) = 

£<w(l)|fi(l)lw(D) + (l/2)L{[»;|y] - WVi]) + Vn 
i ij 

(IIA1.2) 
where the following shorthand notations have been 
used: 
[ij\kl] = [i(l);(2)|A(l)J(2)] = 

J* J (Pi(X1)IPj(X2)(IZr12)^(X1)(Pi(X2) dXidx2 

h(l) = (-1/2)V2(1) - ZA(ZA/r1A) (IIA1.3) 

and 
(ZAZB/RM) (IIA1.4) 

The summations in (IIA1.2) run over the set of n0 
(occupied) spin orbitals contained in <$>. 

The spin orbitals minimizing the expectation value 
E are eigenfunctions of the Hartree-Fock (HF) opera­
tor: 

Al)Iw) = [MD + </(D - K(\)]\(pO = 6,-fo) (IIA1.5) 

where h(l) collects all the one-electron contributions 
while the Coulomb «7(1) and exchange K(I) operators 
define the electron-electron potential experienced by 
a single electron: 

Jd) - K(O = <«(1)|J(1) - *(l)|w(l) > = 

hum - mm (IIAI.6) 

It is useful to introduce the definition of the one-
electron density which plays a fundamental role in all 
the independent particle methods: 

P(X1) = Nj 0(x1,x2,...XjV)(/.*(x1,X2,...xw) dx2...dxN 

(IIA1.7) 

or its "spin-free" form p(r{), obtained by integrating 
over the spin variables. When the HF spin orbitals are 
expanded in a fixed set of (real) basis functions (xxl 
(Roothaan method) according to 

Iw(X)) = |w(r))k> = £xCw|xx(*))k> (HA1.8) 

in terms of spatial orbitals w(') and fixed real basis 
functions )xx(. p(r) assumes the form 

p(r) = LE^iCuCM1Xx(i*)x^r) = 
i 

EE^ txx ( r )x M ( r ) = ZJt^xWxJx) (IIA1.9) 

where n,- is the orbital occupation number (n, = 1,2). 
R = [R\J = Z?° R' is the matrix representation of the 
density p(r) in the basis ixxl- Coulomb and exchange 
integrals can be written in terms of quantities defined 
over the basis fxxl according to 

^ = ZJHJ$Zji&.[to\pff]\ - ZJi11Jx, 

Kt = ZJtU^ZjIjRLVw[W]) - ZJIi11Kx11 

(IIA1.10) 
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For a multielectron system it is always possible to 
identify groups of electrons which share the same Fock 
operator (shells). In particular, for a closed-shell system 
(n, = 2, VO all the pairs of electrons with opposite spin 
occupy the same spatial orbitals. Systems with un­
paired electrons can be also considered as composed by 
a closed shell and one or more open shells. In general, 
for ns shells, one can define the matrix elements for each 
Fock operator in the form 

K - hu + Z,ZM*A*¥*] - b,AMw]) 

h^ = <xxlMD|x„> (llAi.il) 

where S^' = 1,2, ...ns. The constants a^ and rv depend 
upon the spin coupling which is characteristic of the 
electronic state under consideration and depend upon 
the occupation number of the shell s. 

When the constraint that pairs of electrons must be 
described by the same spatial orbitals is removed, that 
is when U00 spin a and U06 spin /3 electrons are described 
by two sets of nonorthogonal orbitals with coefficients 
(CxU ICU one has 

Rt = ChCU RT = ER"' (r = a,/S) ( I I A L 1 2 ) 

R = Ra + R" 

and the corresponding matrix elements of the Fock 
operator obey the definition 

*X, - fc* + ZJR„[to\po] - RrJM°ri\ (T = OiS) 
(IIA1.13) 

The above equation forms the basis of the 
"unrestricted Hartree-Fock" (UHF) method, also called 
"spin-polarized" method, often used in quantum chem­
ical studies of clusters. It must be pointed out, however, 
that the wave function </>0 constructed with unrestricted 
spin orbitals Jw") and i<̂ } is not an eigenfunction of the 
spin operator, S2, that is, in general it does not represent 
a pure spin state. This fact does not seem to be care­
fully considered in cluster studies, especially when the 
UHF method is used to investigate large portions of the 
Born-Oppenheimer surfaces. The <.§2> expectation 
value can vary from point to point along with the degree 
of "spin-contamination" of the wave function. 

It is important to note that the exchange term of 
(IIA1.13) is essentially a nonlocal contribution, while 
the Coulomb term has the classical meaning of inter­
action between electronic clouds and can be represented 
in terms of local values of the one-electron density. For 
instance, for a single closed-shell wave function the HF 
electron energy can be written, as the sum of traces of 
matrix products, in the form 

Etl = tr Rh + tr RJ(R) - (1/2) tr RK(R) (IIA1.14) 

or equivalently in terms of integrals over the electron 
coordinate r: 

Et\ - fp(r)h(r) dr + 

(1/2) J J | r _ r q drdr' - .EJp(F)] (IIA1.15) 

Equation IIAl. 15 is a basic relation used to express 
the electronic energy in terms of the electron density 
only. 

llAi.il
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The density functional (DF) formalism of Hohenberg 
and Kohn29 is based on the theorem stating that for a 
system of N interacting electrons the ground-state en­
ergy E„ is determined uniquely by p(r), that is E^ = 
E[p(r)]. Furthermore, the exact ground-state energy 
Ev can be found only for the exact ground-state density 
p0(r). The connection between the formulation based 
on the exact one-electron density and that based on the 
exact many-electron wave function <f>0 (po(rj) = Nf<j>0-
(x1(x2,...XJV)^O(XLX21-XJV) dtfidx2...dxN) has been estab­
lished by Levy- According to the variational principle, 
the function 0o"n which minimizes the functional 

( 0 r | - (1/2)£;V 2(0 + Hn, + Hee l e r ) ^ ^gS 
(IIA1.16) 

can be found, in principle, through a search of "all" 
possible trial functions 0O. Correspondingly, the func­
tional 

QMr)] + f P(T)H^(T) dr > E88 (IIA1.17) 

must be in principle searched for all the N representable 
densities. Note that Q[p(r)] contains all the terms 
(kinetic, Coulomb, exchange, and correlation energy) 
for interacting electrons. 

A practical solution of (IIA1.17) has been proposed 
by Kohn and Sham,31 based on the use of the functional 
E[p(T)] = 

UP(T)] + Jp(T)[H^(T) + ffceeW] dr + EIC[p(r)] 
(IIA1.18) 

where T0 is the kinetic energy which the system would 
have in absence of electron-electron interactions. The 
contributions due to the operator H1x have been sepa­
rated into Coulomb (Hcn) contribution which can be 
easily evaluated in a classical way, and an exchange and 
correlation term EK which is a typical feature of all DF 
methods. 

In the DF theories, one usually defines "intermediate" 
one-electron functions (Kohn-Sham orbitals)31,32 which 
are solutions of the equation 

H0M - e,M> P(r) = LM(»)| ! (HA1.19) 

with 

H0(I) = 
/ w o m 2 m v 2 ^ CPW**' MIC[p(ri)] 

(IIA1.20) 

The modern literature of the DF methods (see ref 33 
and references therein) is rich in suggestions for ana­
lytical expressions of the £xc[p(r)] functional, based on 
simple local values of p(r) or including corrections for 
nonlocal effects. The most general form of E10 is Exc-
[p(r)] = f[p(r), Vp(r), V2p(r),...]. However, in order to 
reduce the computational difficulties, simple depen­
dencies on the local values of the density or its spin 
components pa(r) and p^(r) are assigned to Exc: these 
approximations are known as local density (LD) or local 
spin density (LSD) approach. 

In the framework of the HF and LD theories, effec­
tive core potential (ECP) methods34,35 have been de­
veloped with the aim of representing in a simple way 
the Coulomb and exchange potential generated by the 

core electrons and acting on the valence ones. ECP 
methods allow us to carry out calculations only on va­
lence electrons, thus drastically reducing the compu­
tational time, especially in the case of large molecular 
systems composed of atoms of heavy elements. The 
most reliable forms of the ECP operator include non­
local contributions expressed in terms of projectors on 
the space spanned by the angular momentum functions 
centered on a given nucleus. This gives us the ability 
to consider in a proper way the nonlocal character of 
the exchange potential. Short range terms in the ECP 
operators must be repulsive, in order to avoid the 
variational collapse of the valence electrons into the core 
region. Long range terms are attractive in order to take 
into account for the fact that the core electrons do not 
completely screen the nuclear charges. 

Usually the ECP operators are determined in such 
a way that the atomic pseudoorbitals and their energies 
match the corresponding results obtained from all-
electron (AE) calculation. When AE wave functions 
determined according to relativistic Dirac-Fock calcu­
lations are used as reference functions for deriving the 
effective valence-only operators, the resulting relativistic 
ECP's (RECP) automatically include the most impor­
tant relativistic corrections.35,36 For example, pseudo­
orbitals of s symmetry that are eigenfunctions of RECP 
operators show a characteristic contraction with respect 
to the corresponding functions obtained from nonrela-
tivistic ECP calculations. 

Tabulations of ECP or RECP operators and the as­
sociated atomic basis sets have been reported for a large 
number of chemical elements, both in connection with 
HF37"44 (see also ref 35 and references therein) and 
LSD41,42 methods. 

Several test calculations in which a comparison has 
been made between ECP and AE results have con­
firmed the validity and reliability of the valence-only 
approaches, which are now also routinely applied to 
elemental clusters, especially those of larger dimensions 
and composed of heavy atoms (see sections III and IV). 

2. Correlation Effects 

As is well known, all one-electron properties can be 
expressed in terms of the one-electron density matrix. 
In particular, as shown in the previous section, this is 
true for the electronic energy of the HF and other in­
dependent-particle methods. A single-determinant 
wave function \4>) does not describe correlation of 
electrons with different spin. Electrons of equal spin 
are correlated due to the antisymmetric character of |4>). 
Therefore, the independent electron models give energy 
values higher than the true ones by an amount called 
the correlation energy, which is formally defined as the 
difference between the exact nonrelativistic value and 
the HF energy associated with a complete HF space. 
When working with truncated basis sets |xx), both the 
HF and correlation energy become basis set dependent 
quantities. In particular, the calculated correlation 
energy is underestimated in the case of large systems 
with many electrons, for which relatively small basis 
sets have to be adopted. 

Wave functions which approximate the exact wave 
function better than <$> and which automatically include 
part (or all) of the correlation effects can be expanded 
in terms of configuration functions (CF) according to45 
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I*) = |*„> + EAfW) + LA»|<^> + ... = 
ip i<j 

p<q 

(1 + ZAfaldt + ZAffSjfil&fli + ...)fo>> (IIA2.1) 
ip i<j 

p<q 

where \4>0) is the HF single determinant wave function 
in which the spin orbitals i, j , k, etc. are occupied. The 
spin orbitals p, q, r, etc. are solution of the complete 
HF problem but do not enter the definition of \<p0) 
(virtual orbitals). \<j>f)t \<P^), etc. are called singly, dou­
bly, etc. excited configurations with respect to |<p0) and 
can be formally generated by using annihilation a,- and 
creation dp operators.46 

It is convenient to introduce the excitation or 
"replacement" operators Eoi and the spinless operators 

Epi = Sjfli 

%pi = alaaia + Opfflip (IIA2.2) 

1 W ; ~ Gp$di ~ b«fipj = GqjGpi ~ fypGqi (IIA2.3) 

The operators Epi and &pi are generators of Lie al­
gebra. These operators are often used in modern theory 
of correlated wave functions and are very useful to ex­
press, for instance, the electronic Hamiltonian in a 
general form 

#o = Ziphjpi + a^Zij.pqt^iJlpq] (IIA2.4) 

where the coefficients hpi and [ij\pq] are quantities 
defined in the basis of the orbitals {&) (cf. IIA1.3 and 
IIA1.8). 

Equation IIA2.4 is the form of the time-independent 
Hamiltonian most suitable for the computation of ele­
ments of the matrix H among the configurations 
l0yX!r) • H is ^ e matrix of the secular or configuration 
interaction (CI) problem 

Ha, = E,&, (IIA2.5) 

The vector a, collects the coefficients of (IIA2.1) for a 
specific electronic state s, while different roots of the 
secular determinant eqution |H - E| = 0 give the en­
ergies of the ground and excited states. 

When the sets of configurations (<Af) and \4>ff] are 
generated from a single reference configuration (usually 
\4>0)), one obtains the so called "single and double CI" 
(SD-CI) method. When single and double excitations 
are generated with respect to several reference config­
urations, the CI expansion is of the multireference type 
(MR-CI) and includes higher order excitations with 
respect to |0O). 

As the number of electrons increases, the number of 
multiple-excited configurations increases dramatically 
and the required computational effort may be so large 
that a truncation of the expansion must be accepted. 
There are two ways to reduce the number of configu­
rations to be inserted in the CI expansion. The first 
is to reduce the space of the virtual orbitals to which 
specific excitations are allowed and the other way is to 
retain only those configurations which according to 
some "energy lowering" criterion are expected to con­
tribute significantly to the final correlation energy. The 
latter approach forms the basis of the MRDCI me­
thod,48,49 which offers several advantages especially in 

connection with the determination of multiple roots of 
the secular equation (cf. section IV.B). 

It is important to recall that CI expansions including 
only low-order excitations may be affected by large 
errors due to size inconsistency. This is an intrinsic bias 
of the CI method because for a fixed order of excitations 
the corresponding expansion is close to the full CI limit 
for systems with a few electrons and far from the full 
CI limit for larger systems. The coupled pair functional 
(CPF) approach and other related methods60,61 aim to 
overcome the size-inconsistency effects. 

A bottleneck of the CI calculations is represented by 
the high number of configurations to be generated (and 
selected), which is a consequence of the slow conver­
gence of the method especially if the basis of spin or­
bitals is not well chosen. Accurate calculations may 
include up to 106 configurations and the corresponding 
matrix elements cannot be stored in computer memory 
or retrieved in an efficient way. These difficulties can 
be overcome since the matrix elements between con­
figuration 4>K And 4>i have the form 

#KL
 = 

(IIA2.6) 
and the matrix elements of the excitation operators act 
just as coefficients of the one- and two-electron inte­
grals.62 Conversely, each integral can be associated with 
the labels of the matrix elements to which it contributes 
and with corresponding factors. In this way, the con­
struction (and storage) of the matrix H is avoided and 
the determination of the energy E, and the associated 
vector a, can be carried out iteratively with an "integral 
driven" algorithm. The method is known as "direct-
CP63a and is well suited for large-scale calculations. 

Other approaches for evaluating the correlation en­
ergy which are frequently used in cluster studies are 
based on Moller-Plesset perturbational tretment (MP) 
at different orders.27 The second order expansion 
(MP2) is the most commonly used because it requires 
a computational work drastically reduced with respect 
to the variational CI. MP4 expansion can efficiently 
handle all the excitations up to the quadruple ones due 
to the fact that the H matrix does not need to be ex-
plicitely constructed and diagonalized. Other efficient 
approaches, like the CIPSI64,65 method, combine a 
variational CI step carried out in order to define a 
relatively small intermediate space of configurations 
from which higher excited configurations are generated 
and treated in a perturbative way. 

3. Born-Oppenhelmer Surfaces, Local and Absolute 
Minima, Vibrations, and Molecular Dynamics 

The time-independent Hamiltonian H0 that obeys the 
Born-Oppenheimer assumption allows the computation 
of the total molecular energy for a fixed nuclear con­
figuration as a parametric function of the Sn - 6 (Sn -
5 for linear systems) internal degrees of freedom. 

In the simple case of a closed-shell molecules the total 
HF energy (IIA1.2) can be written in the form 

(IIA3.1) 
If the nuclear displacements from the minimum 

(equilibrium) geometry are expressed in terms of nu-
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clear coordinates q, the derivative of the energy E^p has 
the form66 

dEm dhu A 

- ^ - = Z A — + (1 /2JEw^iC-UX 1 ZM -
dS 

(l/2)[M<rn]) + (dVn/dq) - E x , W x , ^ (IIA3.2) 
dq 

where W^ = E?°ei #!*> «i is the orbital energy and SX)l 
= <XxlxM) is an overlap matrix element. 

As is well known, the most computationally de­
manding part of (IIA3.2) is the evaluation of the de­
rivative of the two-electron integrals which, in principle, 
cannot be neglected because the wave function asso­
ciated with 2?HF is usually far from being exact. In fact, 
only for exact wave functions the forces acting on the 
nuclei depend only on the derivatives of one-electron 
integrals and on Vn (Hellman-Feynman theorem). The 
assumption that gradient components can be repre­
sented by one-electron terms only is present in some 
studies on clusters carried out in the framework of the 
LDA methods. This probably was a necessary ap­
proximation because the two-electron part of the LDA 
energy (Exc) cannot be put in a simple analytical form 
and its derivatives cannot be easily computed. Only 
recently, in fact, the theory has been developed in order 
to work out analytical forms of the orbital forces.67,68 

In searching for the minimum energy conformations 
of clusters, quasi-Newton algorithms have to be adopted 
if only first derivatives are available: the Hessian ma­
trix is evaluated only in an approximate way and up­
dated at each iterative step.69 

The two-electron integral derivatives are clearly even 
more computationally demanding when working with 
minimization algorithms based on exact second deriv­
atives (Newton methods). However, such procedures 
are expected to be much faster in convergence than the 
quasi-Newton approaches based only on gradients. The 
exact second derivative methods have been seldom 
adopted in cluster studies despite the fact that this is 
certainly an ideal field of application. In fact, it is now 
well established that the BO surfaces of elemental 
clusters (in particular those composed of metal atoms) 
are characterized by low curvatures also in points far 
from the stationary ones. Experience has shown that 
quasi-Newton methods may present difficulties because 
the approximate Hessian matrix is sometimes not 
positively definite due to numerical inaccuracies. 

In cluster studies, one of the most challenging prob­
lems is to answer the question of how many stable 
conformers exist and how large is the energy separation 
among them. This is a basic problem since the exper­
iments on clusters are usually carried out at such high 
temperature that a statistical population of isomers has 
to be taken into account. However, the identification 
of different isomers by means of gradient-based theo­
retical calcualtions can be a very difficult task because 
such methods are able to locate only the minimum 
point nearest to the starting point. Other minima can 
be identified by repeated runs of geometry optimization 
by starting from different (e.g., randomly generated) 
initial configurations. 

As for normal molecules, once the minimum geometry 
of a cluster has been identified, it would be interesting 
to carry out a full vibrational analysis. This would not 
only give information on the lowest energy distortions 

that the cluster can undergo but would also help in 
interpreting experimental data. This has been done 
only for very small species.60-63 However, in carrying 
out a theoretical vibrational analysis the same compu­
tational difficulties mentioned for the geometry opti­
mizations can arise if exact (analytical) second deriva­
tives are not available. The numerical accuracy of the 
approximate second derivatives can be unsatisfactory, 
especially for normal modes characterized by small force 
constants and frequencies. This can further increase 
the inadequacy of the HF approach in predicting vi­
brational properties. As a consequence, the computed 
vibrational frequencies can be ultimately unreliable 
from a quantitative point of view. However, even an 
approximate analysis can be useful in order to confirm 
the character of minima of the stationary points which 
are often reached with an optimum geometry search 
carried out with symmetry constraints. 

Recent developments of the quantum molecular dy­
namics (QMD) method proposed by Car and Parri-
nello64,66 open new a horizon for studying large portions 
of BO surfaces and for identifying local and absolute 
minima. 

In the QMD method the total molecular energy is 
considered simultaneously as a function of spin orbitals 
<fii and of nuclear coordinates 
E = E[M, \rA}] (i = 1,..JV; A = l,...n) (IIA3.3) 

E is the expectation value of a DF Hamiltonian in­
cluding a LSD exchange-correlation functional 

H0 = # e n - (l/2)E;V2(i) +Vc+ Vxc + Hn (IIA3.4) 

For computational convenience the orbitals ^>,(r) are 
expanded in a (truncated) set of plane waves, according 
to 

«(r) - ECp- exp(ig-r) (IIA3.5) 
t 

The minimum electronic energy for a fixed nuclear 
configuration can be found without building and diag-
onalizing a Kohn-Sham type one-electron operator 
matrix, by means of quasidynamical treatment. In fact, 
introducing a fictitious time variable t for the "motion" 
of the electrons, the following equation can be written: 

(6V,(r,t)/at) = (-l/2)[dE/d<6(r,t)] = Hm(r,t) 
(IIA3.6) 

Let At be the elementary time step: it controls im­
plicitly the convergence rate of the optimization which, 
when carried out according to a simple steepest descent 
scheme leads to a variation of <?; defined by 

<Pi(r,t + Ai) • (fii(r,t) - At H0<Pi(r,t) + (constraints) 
(IIA3.7) 

where the constraints collect all the contributions de­
rived from the orthonormality conditions 

JV(r)^r) dr = dtj (IIA3.8) 

The "dynamics" for the electrons can be combined with 
dynamics involving the nuclear centers by using the set 
of equations 

<F<fii(r>t) dE ^ 

""Sr- - ̂ / 2 W + ZAii*M (IIA3,9) 

32Mt) _ dE „ d . 
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where ji» and MA are "effective" masses for electrons and 
nuclei to which are assigned values which conform to 
the Born-Oppenheimer hypothesis (Af A » /*;)• Ay 8 ^ 
Lagrangian multipliers defined by the constraints con­
ditions for the electrons (IIA3.8), while ac are expres­
sions for the constraints involving only nuclear coor­
dinates r; (J = l,...n) and are needed to maintain the 
molecular structure. Since the electron and nuclear 
velocities can be assumed to be temperature-dependent 
quantities, different thermal processes like melting, 
annealing, or quenching can be simulated by varying 
simultaneously the degrees of freedom of the electrons 
and nuclei. With an algorithm similar to the simulated 
annealing66 (but not based on Monte Carlo sampling) 
the QMD is able to give equilibrium structures at T -
0, which would correspond to the absolute minimum on 
the BO surface provided that the adopted rate of 
"cooling" is slow enough. Other QMD experiments 
carried out at T > 0 can give information about the 
existence of equilibrium molecular structures corre­
sponding to local minima lying at higher energy. 

The QMD method offers several conceptual advan­
tages with respect to the conventional quantum me­
chanical methods. However, its rate of convergence, 
accuracy and applicability seems to be bound to two 
difficulties. The first concerns the At parameter step 
which is required to be sufficiently small, thus in­
creasing the number of steps for each trajectory. The 
second difficulty is certainly represented by the 
plane-wave expansion. The plane waves are delocalized 
functions and all attempts to use them to describe 
localized (atom-like) electronic states results in a very 
slow convergence. This is the reason why QMD has 
always been applied in connection with effective po­
tentials (ECP)67 which avoid the representation of the 
electronic core states. In addition, when reliable ECPs 
exist, the QMD method is expected to work better for 
elements with diffuse valence orbitals than for elements 
of low atomic numbers. In addition, the QMD methods 
are usually applied in the context of spin-polarized 
(spin-unrestricted) formalism and LSD approximation 
for the Exc functional. 

4. Symmetry, Topology, and Electron-Counting Rules 

In all branches of physics and particularly in molec­
ular and cluster quantum chemistry, the symmetry of 
the nuclear frame plays a key role, being the cause (and 
the consequence, at the same time) of the intrinsic 
symmetry of the electronic wave function. The inter­
play between the symmetry of the nuclear frame and 
the symmetry of the wave function is so evident that 
the appearance (or absence) of specific electronic 
properties (dipole moments, anisotropy in polarizability, 
number of infrared—or Raman—active vibrational 
modes, and number and intensity of the photoabsorp-
tion bands) can be considered as an indication of the 
existence (or absence) of specific elements of space 
symmetry. Since a correct electronic wave function 
must belong to a single irreducible representation of the 
symmetry group to which the nuclear frame belongs, 
it is obvious that the non-Abelian character of a high-
symmetry group corresponds to degeneracies of the 
electronic wavefunctions. 

In this respect the behavior of the elemental clusters 
can serve as a very characteristic example. It is to be 

expected that they tend to assume a very symmetric 
shape, in order to maximize the interatomic bonding 
interactions. This usually corresponds also to a max­
imal average number of nearest neighbors (average co­
ordination number) for each atom. This fact is clearly 
documented by the analysis of the preferred geometries 
generated by simple two-body classical potentials.68 

Such predictions, however, are expected to be physically 
relevant only for clusters composed of weakly polariz-
able atoms, which interact among themselves like 
(nearly) rigid spheres. This is the case of the van der 
Waals clusters of rare gas atoms. 

In the case of metal atoms (and in some respect also 
of covalent elements) the electronic distribution around 
each nucleus can be markedly dependent upon the type 
and number of the surrounding atoms since hybrid­
ization and electron polarization occur. Therefore the 
global topology of the cluster can influence the specific 
electronic configuration of each individual atom. The 
fact that the electron distribution may be inhomoge-
neous even in clusters of high symmetry is just a specific 
characteristic which distinguishes clusters from bulk 
materials. 

Such specific features of clusters clearly also influence 
the choice of computational methods. In particular, the 
basis sets employed in calculations must contain 
"polarization functions" well adapted to describe the 
distortion that valence electrons can undergo. Limi­
tation in the size of the basis sets are often a necessary 
compromise in order to make possible the investigation 
of a wide range of cluster sizes; but also in this case the 
inclusion of polarization functions seems to be essential. 

The topology and the related symmetry characteris­
tics of a cluster often depend mainly on the number of 
valence electrons which effectively contribute to the 
cluster bonding. Therefore it is not surprising to ob­
serve that elements with the same atomic ground state 
form clusters with identical topologies. This is partic­
ularly evident, for instance, for the elements of the 
groups Ia and Ib, all characterized by a single s valence 
electron. This observation is important, since basic 
information about preferred geometries and general 
rules for cluster growth can be obtained from highly 
accurate calculations on clusters of elements with low 
atomic number, and then applied to a broader class of 
clusters. 

In contrast to closed shell systems (with no unpaired 
electrons), or open-shell systems with nondegenerate 
one-electron levels, Jahn-Teller (JT) distortions can 
occur for systems with degenerate one-electron levels. 
Distortions lower the symmetry and remove the de­
generacy. 

Usually, JT distortions, acting along a non-totally 
symmetric normal coordinate, have small amplitude for 
molecules like transition-metal complexes, but in the 
case of clusters characterized by shallow BO surfaces 
large geometry modifications can take place (see section 
II.A.3). Of course, when the number of electrons is 
sufficiently high to completely fill the set of degenerate 
one-electron levels, no JT distortion can occur and the 
cluster has a closed-shell configuration, usually with a 
very compact structure. 

For finite symmetry groups the assignment of a 
one-electron function to a specific irreducible repre­
sentation is analogous to the assignment of the atomic 
angular momentum quantum number and its compo-
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nents mj for atoms. 
As a simple illustrative example, let us mention that 

molecules with eight valence electrons are particularly 
stable [e.g. CH4 (T-), NH3 (CJ, H2O (CJ, HF ( G J ] . 
They can be considered as derived from "united atoms" 
with electronic configuration ls22s22p6 (Ne) perturbed 
by a "ligand field" of symmetry Td, C311, C2v, and C„, 
respectively. The following relations are obvious: 
ls22s22p6 (atom) — \&\2&\\t\ (T6)] — la?2a?3a?e4 (CJ 
— la?2a?3a?lb?lbi (CJ — lcr22ff

23<r2lx4 (C0). The 
symmetry of the (closed-shell) molecule (taking also into 
account the presence of electron lone pairs) is always 
the highest possible one. These rules are well known 
in chemistry as "electron-counting rules": they have 
been empirically applied to both organic and inorganic 
compounds69 and can be derived from simple consid­
erations on the combined symmetry properties of the 
nuclear frame and of the total electronic wave function. 

Recently, the electron-counting rules for spherical70"72 

and ellipsoidal73 jellium models of clusters (cf. section 
II.B.6) have been proposed as an explanation of the so 
called "magic numbers" of the valence electrons in 
clusters which exhibit large stability (cf. ref 7). The 
basic assumption of the jellium models is that the nearly 
free conduction electrons move in the potential of a 
smeared positive charge of atomic nuclei screened by 
core electrons. It is frequently argued that this model 
is particularly appropriate for alkali-metal clusters since 
the alkali metals are very soft and consequently the 
position of atomic cores is not fixed. Various further 
assumptions4,74 are made about the effective potential 
seen by the conduction electrons (cf. section II.B.6). 

The most simple and consequently the most ap­
pealing cluster form is a sphere, but for clusters with 
incomplete electron shells ellipsoidal geometries are 
often assumed. The similarities with the models of 
atoms and atomic nuclei are obvious. The possibilities 
of meaningfully defining the ellipsoidal models for very 
small clusters is limited. The frequent assumption73 

that Na3 and Na4 are prolate and Na5, Na8, and Na7 are 
oblate spheroids is difficult to accept since all these 
clusters are planar (Na3, Na6, Na6) or nearly planar 
(Na6, Na7). 

In the effective single-particle Hamiltonian, the po­
tential is either a fixed function (e.g. Woods-Saxon 
potential76) or it depends in a self-consistent way upon 
the electron density, e.g. it satisfies the Poisson equa­
tion. The fixed potential can, for example, have the 
form of the three-dimensional harmonic oscillator po­
tential, or of the infinite spherical well potential. Very 
appealing are the potentials taken over from nuclear 
physics which represent some kind of transition be­
tween these two extreme cases. Their use stresses sim­
ilarities between clusters and atomic nuclei. The in­
volved numerical parameters give to these models some 
flexibility, mainly for the cluster shapes which deviate 
from the spherical geometry. 

The sequence in which the one-electron functions are 
occupied depends, in the one-electron approximation, 
strongly on the number and positions of their nodal 
surfaces. The presence of nodal surfaces of a given 
one-electron function in the region of attractive po­
tential reduces its contribution to the attractive po­
tential energy and increases its contribution to the 
positive kinetic energy. The detailed sequence of the 
one-electron levels depends upon the form of the ef­

fective potential which acts on the electrons; however, 
some general rules nearly independent of the particular 
potential can be formulated. This occurs mainly if the 
cluster exhibits at least an approximate symmetry or 
high compactness. Evidently, the symmetry is a nec­
essary condition for the existence of the nonaccidental 
degeneracies of the one-electron levels but it is not a 
strictly necessary condition for the formulation of ap­
proximate rules concerning the sequence of the levels. 

Let us consider briefly, for the sake of illustration, 
three simple one-particle systems: the hydrogen atom, 
the three-dimensional isotropic harmonic oscillator, and 
a particle confined in a square well with infinitely high 
walls. In the H atom the sequence of atomic orbital 
energies depends only on the total number of nodal 
surfaces (n - 1), where n is the main quantum number. 
The principal quantum number on which the energy 
depends is N = n - 1. The sequence of one-electron 
energy levels for the isotropic three-dimensional har­
monic oscillator depends only on the total order m = 
mx + my + mt of the polynomial which describes the 
nodal surfaces. In this case, N = 2(n -I)-I. The 
sequence of the levels associated with the square well 
depends on the total number of nodal spheres and of 
nodal planes as well. The nodal spheres are much more 
energetically unfavorable than the nodal planes. The 
differences in rules determining principal quantum 
numbers for the three systems can be understood if one 
considers the effective potential V(r). In the case of the 
H atom, for instance, the dependence upon r is convex 
and diverges at r = 0. In the case of the harmonic 
oscillator the function V(r) is concave. 

The energy sequence of the H atomic orbitals is (Is), 
(2s,2p), (3s,3p,3d), (4s,4p,4d,4f), (5s,5p,5d,5f,5g) which 
can be considered as a sequence of degenerate subshells. 
The number of electrons in "closed shells" is n, = 2,10, 
28, 60, etc. In the case of the isotropic harmonic os­
cillator the sequence of the shells is (Is), (2p), (3d,2s), 
(3p,4f), (5g,4d,3s), (6h,5f,4p) with n, = 2, 8, 20, 40, 70, 
112. The sequence of sheik for the square-well model 
is (Is), (2p), (3d), (2s), (4f), (Sp), (5g), (4d), (6h), (3s) 
with n, « 2, 8, 18, 20, 34, 40, 58, 68, 90, 92, etc. The 
jellium-like effective potential must have properties 
intermediate between the square-well model and the 
isotropic harmonic oscillator model.76 

The validity of the Woods-Saxon76 potential or of the 
square-well potential for large clusters is documented 
by the experimental findings on abundances for very 
large Na,77 Cs-O, Cs-SO2,

78 Ag,79 and Au79 clusters 
which exhibit supershell structure. 

From the above mentioned rules the correlation be­
tween the results obtained from the assumed spherical 
(jellium) potential and those obtained from a molecular 
potential can be understood at least for cluster sizes up 
to 40 in a straightforward manner due to the symmetry. 
Therefore the shell-closing and electron-counting rules 
and "magic numbers" for the spherical (or spheroidal) 
jellium model should be interpreted as equivalent to the 
more general rules for molecular systems, being simply 
translated into the language (and notation) of a par­
ticular physical model (cf. also ref 80). 

Two severe limitations should nevertheless be em­
phasized. The whole argumentation is based on the 
dominant importance of the one-electron part of the 
Hamiltonian. In the case where electron correlation is 
very important, deviations from the electron counting 
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rules can be expected. Moreover, if the dimensionality 
of the system changes completely, different rules are 
valid. For example, the two- and three-dimensional 
symmetrical clusters exhibit electronic configurations 
fulfilling different "shell closing" regularities. 

B. Concepts of Solid-State Theory and 
Mathematically Related Notions In Other Fields 
of Science 

The common feature of the methods used in solid-
state theory and especially in the theory of metals is the 
key role played by translation symmetry and its con­
sequences. The reason for this is not only simplifica­
tions which make easier an appropriate treatment of 
large systems with many electrons, but also the success 
of very simple approaches like the free-electron and 
nearly free electron methods in explaining and esti­
mating some fundamental properties of metals. Plane 
wave expansions and the Fourier transform are very 
appropriate and powerful tools. It is possible to show 
that plane waves represent solutions of the Hartree-
Fock theory of free electron gas. 

The electron waves can be scattered by atomic nuclei, 
or the waves representing the nearly free valence elec­
trons in a metal are assumed to be scattered by the 
potential caused by the atomic cores. It is suggestive 
to divide the whole space of the metal into the regions 
close to the atomic nuclei and the remaining space in 
which the electrons are free. Different successful the­
oretical methods for metals are based on this model. 
The muffin tin type potential is very appealing since 
the spherical symmetry of the regions around the at­
omic sites models automatically at least the important 
local symmetry properties in the neighborhood of at­
omic cores or nuclei. Many properties are in any case 
qualitatively determined by the lattice symmetry which 
is clearly demonstrated by the interesting results ob­
tained with the Kronig-Penney model (cf. ref 81). 

The concept of scattering of electron waves is very 
attractive and useful since there is an analogy with the 
scattering of electromagnetic and electron waves in the 
X-ray and electron diffraction in real crystals, respec­
tively. 

The experience gained from the successful application 
of the methods such as Green's function and second 
quantization procedures in the solid-state and nuclear 
physics suggests their use in the field of elemental 
clusters. For example, assumptions about the spherical 
form of the cluster and about an appropriate spherical 
potential facilitates the use of procedures well estab­
lished in solid-state theory. 

7. One-Electron Approximation In Solid-State Theory 

Some characteristic features of theories typical of the 
solid state will be outlined in this section in order to 
emphasize their mutual similarities and differences (cf., 
e.g., refs 81-83). 

A plane wave of the form 

+k(r,t) = Ae'**-^/2"") • Ae i ( k ^) (IIB1.1) 

and a wave packet 

<A = B J*s(k)e i (kr-k2'/2m> dk (IIB1.2) 
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are the simple basic notions of the one-electron theory 
of metals and they often serve as starting points of more 
sophisticated methods. The plane wave i^k(r,t) is an 
eigenfunction of the momentum operator with the ei­
genvalue k and is the solution of the free-electron 
Schrodinger equation with the energy 

(k - k2/2m (IIB1.3) 

The Bloch theorem states that the wave function has 
the form of plane waves modulated by the lattice period 

*(r) = e*'uk(r) 

with 

uk(r+7) = uk(r) (IIB1.4) 

where 1 = (ma + nb + pc) and k = 2Tr(Z1ZAOa' + (I2/ 
N)V + (J3/P)c'). a, b, c and a', b', c' are the funda­
mental vectors of the lattice and of the reciprocal lattice, 
respectively, m, n, p, and I1,I2, k are integers, and Af, 
N, P are the integers in the Born-von Karman bound­
ary conditions (Ii = 0,...,Af-1; I2 = 0,...^/V-1; I3 = 0,...,P 
-1 ) . 

The analogous form of the free-electron wave func­
tions and the one-electron functions in the periodic 
lattice is evident and leads to the concepts of effective 
mass and group velocity of the electron wave packet in 
the crystal lattice (Wannier function). 

The basic idea of many solid-state theories is to use 
the Fourier transform of the Bloch periodic term u(r) 
over the reciprocal lattice g (compare also with 
(IIA3.5)): 

^k - eik'uk(r) = I>(k + g) exp[i(k + g)r] (IIB1.5) 
c 

with 
p(k + g) = [l /2x]3 J V k exp[-i(k + g)r] dr (IIB1.6) 

The substitution of the expression IIB1.5 in the 
one-electron time-independent Schrodinger equation 
with the effective potential W yields for the energy E 
an infinite system of equations in the Fourier trans­
forms: 
[(k + g)2 - E + (k + g|#|k + g)Mk + g) + 

E <k + g|#|k + g > ( k + g0 - 0 (IIB1.7) 
•Vl 

The free-electron theory assumes W = O and the ei­
genvalues are given by the equation: 

E = (k + g)2 = K% (IIB1.8) 
In the nearly free electron theory a linear combination 

of plane waves belonging to the same irreducible rep­
resentation is considered and the potential due to the 
atomic cores is assumed to be so small that perturbation 
theory can be employed. 

The augmented plane-wave methods and the KKR 
technique (Korringa,8* Kohn and Rostocker88) use the 
already mentioned idea of appropriate partitioning of 
the crystal space. The crystal space is modeled within 
the spherical muffin-tin regions with spherical potential 
around the atoms and within the interspaces with 
constant potential. The augmented plane wave is a 
plane wave in the interspaces among the spherical 
"atomic regions" and linear combination of products of 
spherical harmonics and radial functions in the "atomic 
regions". It is necessary to take care about the appro­
priate matching on the surfaces of the spheres. In the 
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KKR approaches the scattering of the plane waves in 
the interspaces among the atomic regions by the ef­
fective potential of the atomic sites is then investigated 
either with scattering matrix or the Green's function 
method. In this connection also the concept of pseu-
dopotential is successfully applied. The projection on 
the complement of the one-electron functions describing 
the core states leads to various forms of pseudopoten-
tials (cf. section ILA. 1). 

The tight binding method of LCAO approximation 
assumes that the one electron function has the form 

Ur) = 
JV-V2 exp(-ikr) L exp[ik(r + Rmnp)]0x(r - Rmnp) 

m,n,P,X 

(IIB1.9) 

where <t>x(r - Rm„o) is the basis function located in the 
point Rmnp. The formal analogy with (IIB1.5) is obvious 
as well as the rough similarity of the LCAO-like basis 
functions and Wannier's orbitals. 

The Hartree-Fock approximation is based on as­
sumptions which are indetical in solid-state theory and 
in molecular physics. By using the formalism of the 
second quantization the very useful concept of holes in 
the conduction band can be introduced. The interac­
tion among electrons and holes in metals and semi­
conductors as well as of excitations can be treated in 
a very convenient way. All these concepts of solid-state 
theory can be translated into the language of molecular 
physics without any difficulty. 

The calculation of the exchange terms necessary in 
the Hartree-Fock treatment is difficult in problems of 
solid-state physics. For this reason, the estimate of the 
exchange energy term based on the free-electron cal­
culations is introduced in the Hartree-Slater equations 
(compare section II.A.l). The Kohn-Sham theorem31 

guarantees that the observables in the ground state can, 
in principle, be determined from a functional of the 
electron density. Therefore, the evident computational 
advantages of the local electron density methods, which 
originated in solid-state theory, lead to their frequent 
application for the treatment of finite systems. 

2. Green's Functbns 

Since the Green's function technique is common to 
many different approaches simple definitions of the 
Green's operator are given in this section. This can be 
helpful for the understanding of links among the im­
portant concepts applied in the cluster theory. 

Green's Operators. ThejGreen's operator G(E) as­
sociated with the operator H has the property (cf., e.g., 
refs 81,86-89): 

(EI - A)G(E) = / (IIB2.1) 

where I is the identity operator. 
For the one-electron case, this definition can be 

written in the coordinate representation as 

(E - H(r))G(r,r':E) = 5(r - r') (IIB2.2) 

where 

G(r,r':E) = (r\G(E)\r') (IIB2.3) 

is the Green's function in the usual notation. 
Since the operator G is a function of H, its spectral 

representation has the form 

where Ej are the eigenvalues of the Hamiltonian H. 
In the one-electron case, the corresponding coordinate 

representation is 

^( r )^( r ' ) 
G(t,t':E) = T.(r\Ej)(Ej\r')(E-Ej)-1 = E „ ' 

(IIB2.5) 

where ty(r) = (r\Ej) are the eigenfunctions of the 
one-electron Schrodinger equation in the coordinate 
representation. 

Of course, the singularities of the Green's function 
are again the eigenvalues of the operator H. However, 
various methods can be developed by taking advantage 
of some useful properties of Green's operators or 
Green's functions, such as for example the connection 
between the Green's operator G0 of the Hamiltonian H0 
and the Green's operator G of the perturbed Hamilto­
nian H = H0 + V. It is simple to prove the Dyson 
equation, which has the form 

G = G0 + G0W = G0E (VG0)" = G0TG0 (IIB2.6) 
n=0 

where 

T=VZ (G0V)" (IIB2.7) 
n « - l 

The representation of t is the T matrix which is useful 
in scattering theory. 

The infinite sum in the Dyson relation can be for-
mallyjsolved under the assumption that the perturba­
tion V is small: 

G = G0/(I- VG0) = (/-G0V)-1G0 (IIB2.8) 

The possibility of summations in the Green's function 
method is very efficiently used in various approximate 
treatments which make it possible to carry out the 
process which has been formally outlined here. Evi: 
deptly the operator G has the poles of the operator (7 
- GQV)-1 which can be also quite different from the poles 
OfG0. 

In the coordinate representation the Dyson equation 
takes the form of an integral equation 
G(r,r'&) = 

G0(r,r';E) + fG0(r,r"#) V(r")G(r",r';E) dr" 

(IIB2.9) 
Another useful property of the Green's operator is 

that the eigenket \Ej) of the Hamiltonian H can be 
expressed^ in terms of the eigenkets \E%) of the Ham­
iltonian H0: 

\Ej) = \Ef)d(Ej-^j) + G0V\Ej) (IIB2.10) 

where the first term in the equation must be considered 
only if the eigenvalues of H and H0 coincide. The sum 
of the infinite series gives for b(EfJEtf) = O the following 
formal result: 

\Ej) = G0T]EJ) = G0V(J - G0V)-1I^) (IIB2.11) 

According to (IIB2.9) the coordinate representation 
of the free particle Green's function is simply defined 
as 
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G0(r,r';E) = (1/JV) S 
exp[ifc(r - r')] 

dk = 
(E - k2 + id) 

(i/2K0)[e-x^-^ - e+iK»^] = G0(r - r'^) 
(IIB2.12) 

where the small imaginary quantity i8 must be intro­
duced to make the integration meaningful. ±K0 are the 
poles (E = K0). The advantage of treating the pertur­
bation of free-electron systems using the Green's me­
thod is a consequence of the simple form of the Green's 
function which can be utilized for the treatment of the 
scattering of the plane waves. For example, the scat­
tering of a one-dimensional plane wave (2ir)"1/'2 exp-
(X0X) produced by the perturbation V(x) in the interval 
Xx < x < X2 results in the one-electron wave function 

\\f>(x)) - (l/V2^)eiK<* + 

(l/2iK0)e
iiK^ CleTiK<*V(x1|<M*1> d*' (IIB2.13) 

where the upper signs are valid for x > x2 (transmitted 
wave) and the lower signs for x < X1 (reflected wave). 

The use of the Green's functions (GF) allows a direct 
computation of properties due to the perturbation. In 
the more conventional methods, the effect of any per­
turbation can be investigated only if detailed informa­
tion about the whole manifold of the eigenstates of the 
unperturbed system is available. The equations for the 
Green's functions in the simple cases can be directly 
found and consequently the Green's functions method 
is a useful alternative to the customary approach to the 
calculation of the response of a quantum mechanical 
system to a perturbation. 

Double-Time Green's Functions. Since time-de­
pendent processes are of special interest in the cluster 
theory it is appropriate to introduce a generalization 
of the Green's functions. By using the Heisenberg 
picture for the operator A(t) and for the wave function 
\4>(t) > 

A(t) = exp(iHt)A exp(-iift) 

|0> = eiftt\+(t)) (IIB2.14) 

the definition of the double-time Green's function for 
the reference state |0) is (cf., e.g., refs 46 and 88) 
((A(t)-M0)» = iW(t)(0\A(t)B(0)\0) + 

0B)<O|B(O)A(t)|O>} = 

tE!=F0(t) <0|A|n> <n|B|0)eit(£»-£^ + 

0(-MO|B|ri)<n|A|O>e"<£»-£o>} (IIB2.15) 

where A(t) and B(t) are operators in the Heisenberg 
picture and d(t) is the Heaviside step-function: 

6(t) = 1 if t > 0 8(t) - 0 if t < 0 (IIB2.16) 

The plus and the minus sign in (IIB2.15) is valid for the 
operators which preserve the particles number and for 
those which do not, respectively. 

The Fourier transform of the Green function is de­
fined as 

(UiB)) „ -

Hm E 
V-O n 

<0|A>><n|£|0) <0|£|n><n|A|0> 

o> + (E0 - En) + it, U-(E0- En) - in 
(IIB2.17) 

The physical interpretation of the double-time 
Green's function is in principle very simple and picto­
rial. The double-time Green's function is the proba­
bility amplitude that the measurement of the observ­
able A yields the result (\f>(t)\A\ip(t)) in the state |^(i)> 
at the time t after the measurement of the observable 
5 in the state |0> at the time 0, and vice versa No other 
perturbation should occur in the time interval (0, t). 

If both operators A and B are set equal to the electric 
dipole moment operator, then the real part of ((A-Ji) )u 
takes the usual form of the frequency-dependent po­
larizability 

<<r;r))u = 2 lim L «noKol2/(wno - «2 + 2iwij) 
ir*0 n 

(IIB2.18) 

where 
Mn0 = <n|r|0> <on0 = En- E0 (IIB2.19) 

For the mean polarizability defined as 
a(u>) = (1/3Ma1x(O)) + ayy(w) + «„(«)) (IIB2.20) 

the following relation is valid: 

a(o>) = (2/3)L <"„o 
n U2

n0 - W2 
IM„0I2 = £A>o/(<4o - w2) 

n 

(IIB2.21) 

where the oscillator strength /n0 is related with the 
transition dipole moment Mno through the equation 

fn0 = (2/3K(KoI2 (HB2.22) 

The expression for the mean static polarizability reads 

5(0) = E/n0/o;2o (IIB2.23) 
n 

If a single transition w;0 is of predominant importance, 
the expressions for static and dynamic polarizabilities 
take on a very simple form due to the Kuhn-Thomas 
rule: 

a(0) = N/u% a(w) = N/(WJ0-U
2) (IIB2.24) 

where N is the number of electrons. 
In this manner, the connection between the Green's 

operators and the physical observables which are useful 
in the theory of spectroscopical properties of clusters 
has been established. Further connections with the 
time-dependent local density approximation (TDLDA), 
random-phase approximation (RPA) (see sections II.B.4 
and II.B.5) and plasmon theory are outlined in the 
Appendixes. 

3. Correlation Effects In Solid-State Theory 

Although the forces acting in molecules and solids are 
of the same Coulombic nature, the methods useful and 
feasible for the treatment of electron correlation are 
different in these two theoretical fields. Generally 
speaking, the basic difference in solid-state theory or­
iginates from the necessity to describe the interaction 
of many electrons acting partly over large distances. 
This kind of difficulty is already present in the quan­
tum theoretical description of large molecular systems 
(particularly of those which are not very stable) and is 
known as size correlation defect (or size-inconsistency) 
(cf. section II.A.2). 

The large difficulties with the correlation problem in 
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solid-state theory are avoided mainly with the methods 
similar to those which have been successfully applied 
also in the quantum field theory and in elementary 
particle physics. These approaches use the Green's 
functions, propagators, and "vacuum amplitudes"86 of 
the investigated systems. This is the reason why some 
aspects of the Green's function theory have been out­
lined in sections II.B.2 and Appendixes. 

Since the Green's functions of various kinds (like 
single-particle (G1), two-particle (G2) propagators, etc.) 
give, in principle, full information about the studied 
system, it is desirable to work out their efficient im­
plementation for practical calculation. 

One possibility is to solve a chain of the coupled 
nonlinear differential equations involving the 
"hierarchy" of G '̂s.46,88,89 Usually some approximations 
for G2 are assumed and in this way the system of 
equations is terminated. This method is also used in 
quantum chemistry under the name "coupled-cluster 
method". The other method is to expand the propa­
gator (or "vacuum amplitude"86) in an infinite pertur­
bation series and to carry out some kind of partial 
summation to infinite order. The use of Feynman's 
diagrams makes possible a bookkeeping and a system­
atic selection of such contributions which allows a 
"selective" summation of the perturbation series due to 
some common repetitive building elements of the dia­
grams. This kind of methods commonly used for the 
investigation of electron correlation in molecular sys­
tems, are known in quantum chemistry as "many-body 
perturbtaion theory". 

4. Time-Dependent Properties, Random-Phase 
Approximation, and Tamm-Dancoff Approximation 

The response of an electronic system to a time-de­
pendent perturbation (e.g. the interaction with elec­
tromagnetic field) can be described in two different 
conceptual frameworks. The perturbation can be con­
sidered as causing jumps to the excited states of the 
unperturbed system or as the time development of the 
perturbed system. 

Since the spectroscopic properties of clusters and 
their comparison with the absorption behavior of sol­
id-state systems are of present interest, several exam­
ples of the treatment of related subjects will be briefly 
sketched here, in order to illustrate useful analogies 
which are based on interactions among single excita­
tions. 

Let us mention two cases which are at first sight not 
connected with cluster physics but nevertheless show 
formal similarities to the theory used in the spectros­
copy of clusters. There are localized and delocalized 
excitons. 

In the theory of Wannier excitons the wave function 
\<p) of the excited state is assumed to have a form of a 
linear combination of the monoexcitations from a Bloch 
wave of the valence band to a Bloch wave of the con­
duction band:81 

\<t>) = LcM l£M l |0> (IIB4.1) 

where the Bloch wave Je1 belongs to the valence band 
and Bloch wave k2 to the conduction band and |0) = \<p0) 
is the ket for the fully occupied valence band. Note that 
many-electron excitations are excluded. Therefore, the 
assumption that one-electron functions have the form 

of Bloch waves is essential for the theory of the qua-
siparticles known as "Wannier's delocalized excitons". 

If the single electron excitation is described again as 
a creation of a hole in the valence band and a particle 
in the conduction band, but both the particle and the 
hole have been described by relatively well localized 
Wannier functions, the localized Frenkel's exciton is 
created. The wave function of the excited state has now 
the form of a linear combination of the monoexcitations 
from Wannier localized functions of the valence band 
to Wannier functions of the conduction band. 

Let us emphasize that the theory of both Wannier's 
and Frenkel's exciton81 models can be characterized 
within the Hartree-Fock approximation as monoexci­
tations of quasiparticles. If the one-electron states are 
delocalized, it is more appropriate to consider a linear 
combination of excitations between pairs of Bloch 
functions. Since the definition of the Wannier orbitals 
is based on the inverse Fourier transform, a good de­
scription of the valence band with Wannier orbitals is 
possible only if the valence band is fully occupied. 
Therefore, Frenkel's excitons describe better the exci­
tation process for insulators or semiconductors in which 
the one-electron states can be localized. 

A very simple wave function of an excited state of an 
agglomerate of atomic nuclei and electrons is given in 
the form of a linear combination of Slater determinants 
which represent monoexcitations <fif with respect to the 
single Slater determinant (<£0 = |0» describing the HF 
ground state of a closed-shell electronic system. An 
advantage of this form of wave function is that the 
matrix elements of the Hamiltonian H between the <p0 
and </>f are equal to zero due to the Brillouin theorem. 
Evidently, within this approximation transition energies 
can be determined only qualitatively, since the ground 
state is calculated in the one-electron approximation 
only and the wave functions of excited states do not 
contain double and higher order excitations with respect 
to <f>0. Nevertheless, this very simple single CI (SCI) 
approach combined with the Pariser-Parr-Pople 
semiempirical ir-electron theory yielded in the early 
days of quantum chemistry satisfactory results for some 
characteristic properties of the spectra of aromatic 
hydrocarbons.90 

The Tamm-Dancoff approach (TDA), which is com­
monly used in nuclear physics, is formally completely 
analogous to the SCI method. In this approximation 
the wave function for an excited singlet state has the 
form 

IW = LYpj &pj\0) = £|0> (IIB4.2) 

pJ 

with Lie algebra generators (cf. (IIA2.4)) 

^P; = Vpcflic + fytj, (IIB4.3) 
where j and p label the occupied and unoccupied spatial 
orbitals in the ground state |0). 

The operator 

R - ZYpj§pj (IIB4.4) 
pJ 

includes only the excitations from the "Fermi sea" of 
occupied orbitals j in |0) into the manifold of empty 
orbitals p (particle-hole excitations). 

The secular problem 
<0|£fcfl#£w|0>- 6^p9E = 0 (IIB4.5) 
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is the condition for solving the system of equations 

EYp;[<0|VJ£p;-|0> -E8JkSpq] = 0 (IIB4.6) 
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The random-phase approximation (RPA) can be 
considered as a generalization of the TDA. One of the 
ways to obtain the random-phase equations is to con­
sider the time dependent Hartree-Fock approach. 
Another possibility is the derivation based on the 
equation of motion method.91,92 In the former approach 
the time-dependent wave function \\[/(t) > results from 
the unitary transformation of a Slater determinant |0): 

Wf)> - e*(t)|0> (IIB4.7) 

with the Hermitian operator $(t) which considers mo-
noexcitations only: 

Ht) = HP.At)6ir = Z^mn = fr(t) (IIB4.8) 

For a small perturbation the relation 

\+{t)) = |0> + iZi3pj(t)$pj\0) (IIB4.9) 
pj 

is approximately valid. The linear dependence of the 
function \\f/(t)) upon single excitations shows its con­
nection with a TDA wave function. 

If the Ehrenfest theorem^ holds for an arbitrary 
time-independent operator A 

(d/dt)Mt)\A\W)) = XW)WA]W)) (HB4.10) 

then for the wave function of type (IIB4.9) the equation 
assumes the form 

iL[(SPj(0\A$pj\0) - irpj(0\6jpA\0)] = 
pj 

i2L[0w-<O|[#,A]£p;|O> " t3'Pj{0\Gjp[H,A]\0)] (IIB4.11) 
pj 

Since A can be an arbitrary one-electron spin-inde­
pendent operator: 

A = Ea(J) = £ £ . , < # ( % > (IIB4.12) 
j »/ 

equation IIB4.11 must be valid for £*, as well as for Sqk 
and the following system of equations is achieved: 

Li/3p/(<fc-g|Hl/-p> - WnE0) - fo<fc5|#|0M -#*,* 

= Z\(rpMJ^p\H\k-~q) - 5jk5pqE0) - Ppj{0\Hi-?q)\ 
pj 

(IIB4.13) 

with 

E0 = <0|#|0> l/-*p) = l/\/2£P;|0> 
|fc*> = (l/2)6pj$qk\0) (IIB4.14) 

The Fourier transforms /3p;(«) = Ypi and /3PJ(w) = Zpj 
satisfy the RPA system of equations 
L{[(k-*q\H\j-*p) -

6Jk6pq(E0 + «))Ypj - <PJ|#|0)Zp;) = 0 

PJ 

PJ 

and 
Lf-<0|#|£P> Ypj + [<;-*p|#|fc-g> -
pj 

6jk&pq(E0-u>)]Zpj\ = 0 (IIB4.15) 

with the secular condition for w 

Bt (A + col) 
= 0 (IIB4.16) 

where I is identity matrix and 
A = [(k-~q\H\j^p) - 6jk6pqE0] = 

[(tp-tj) Ww + 2\jq\pk] - \jq\kp}) 

and 

B = -[<£*|H|0>] = \-2\jk\pq] + \jk\qp]] (IIB4.17) 

The labels of the rows and columns in the determinant 
(IIB4.16) are the monoexcitation j -* p and k -* q, 
respectively. If Zp;- is set equal to zero the TDA type 
of equations results. The monoexcitations j - * p and 
P -* j are called in the RPA method forward and 
backward transitions. The calculated weights of the 
forward monoexcitations are usually larger than those 
of backward transitions. The roots of (IIB4.16) yield 
frequencies or transition energies. 

The connection between the TDA and RPA ap­
proaches is even more evident if the system of equations 
IIB4.15 is derived from the Ehrenfest theorem for three 
quantities: the operators Su,, the ground state \E0,t) 
= exp(-i£0t)|0>, and the excited state \E,t) = 
exp(-iEt)W\0) with 

W=ZXj, (IIB4.18) 

where l,k,r, and s are labels of arbitrary orbitals. The 
Ehrenfest theorem yields 

ijt{E0,t\%ik\E,t) = (E0-E)eM<rE)t (Qtf^Q) = 

eiW>-®'(0\[6lk>H]W\0) (IIB4.19) 
or 

E|(£0 - E) <0|£,*£,r|0) + <0|<tsr#£(ft|0> -

<0|H£(*lsr|0>}X,r = 0 

The simple derivation of the RPA (TDHF) equations 
reveals the basic assumptions from which the RPA 
theory starts: the time variation of [p(t)) allows only 
for the monoexcitations from the Slater determinant 
|0). This variation should be also quite small to justify 
the approximations introduced in the general expression 
for \4>{t)) which is linearly time dependent on Lie al­
gebra generators (cf. (IIB4.9)). The relations IIB4.16 
give the frequencies w - E - E0 of the free oscillations 
which in general are not too far from the excitation 
energies given by the Tamm-Dancoff approximate 
method. The interaction among the individual parti­
cle-hole excitations can in principle yield some fre­
quencies which differ appreciably from the individual 
particle-hole excitations. The presence of matrix ele­
ments between the ground state |0) and the doubly 
excited configurations in (IIB4.15) and (HB4.16) besides 
the exclusive consideration of monoexcitations in the 
definition IIB4.9 of the state \\p(t)> shows that the in­
teraction between ground state |0) and doubly excited 
configurations is partly taken into account in the RPA. 
The energies of doubly excited configurations do not 
figure in the RPA equations at all. The oscillator 
strengths of such combined excitations can differ from 
those calculated with the Tamm-Dancoff approach 
since the interferences due to the signs of individual 
contributions to the wave functions of the excited state 

file:///jq/kp}
file:///-2/jk/pq
file:///jk/qp
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can influence the results very drastically. Evidently, 
only the monoexcitations belonging to one irreducible 
representation of the symmetry group of the investi­
gated system can be involved in the TDA or RPA 
equations. 

5. Time-Dependent Local Density Approximation 

The change of the Fourier component of the electron 
density in the coordinate representation p(r,w) due to 
external perturbation Hamiltonian 

V" = J%(r,t)0(r,«)e-iwt dr (IIB5.1) 

can be written with the help of the susceptibility 
x(r,r';«) as 

6p(r,u>) = J x (IM-V)(Mr',w) dr' (IIB5.2) 

The spectral representation of the susceptibility con­
nected with the Green's function is 
x(r,r';w) = 

(0\p(r)\n)(n\p(r')\0) 

Bonafilc-Koutecky et al. 

6. Jellium Model 

<O|p(r')|n><n|0(r)|O> 
W-(En- E0) + it, w+ (En- E0) + iTj 

(IIB5.3) 
where \n) and En are the exact eigenstates and energies 
of the unperturbed system (cf. (IIB2.17) and (A23)). 

The frequency-dependent polarizability in the z di­
rection is (cf. (IIB2.18)) 

«zi(w) " -J*2x(r,r';w)2'dr dr' = 

2L ^Tn'E0) , (HB5-4) 7 (En-E0)2 -(w+ir,)*' 

The usually applied procedure approximates the 
change of the electron density by using simple as­
sumptions for the susceptibility (cf. refs 93 and 94) 

5p(r,«) = J Xo(r , r» V(r',a>) dr' (IIB5.5) 

where Xo is taken, for instance, from some one-electron 
approximation such as local density procedure (LDA) 
(cf. Eq. (A20)) 

Xo(r,r',a,) = I "' " ^ . . ^(r)^(r)^(r ')y f(r ') = 

E |^(r)^(r')G0(r,r';e,- + a) + 
i(occ) 

^(r)^*(r')Gl(r,r';(i - »)} (IIB5.6) 

The Green's functions are known for simple cases such 
as a jellium sphere94 and can be used explicitly in the 
integral on the right-hand side of (IIB5.6). 

The Coulombic potential due to the induced changes 
in the charge distribution of electrons V0 as well as the 
induced exchange-correlation potential Vn can be 
added to the external perturbation potential V. The 
correction V8x is of course specific for the LDA method. 
This approach, used for example by Zangwill and So-
ven95 and Puska et al.,93 has been applied by Ek-
ardt94,98,97 for the calculation of the photoabsorption 
cross section 

<r(a>) - 4w(u/c) Im a(u) (IIB5.7) 

for the spheric and spheroidal jellium type models of 
the alkali-metal clusters. 

The jellium model mentioned already in the section 
II.A.4 in connection with the "magic numbers" is used 
also in cluster physics for the investigation of the re­
sponse of the cluster to both, time-independent and 
time-dependent perturbations. Since the assumptions 
introduced in the definition of the effective potential 
can have considerable effect on the theoretical predic­
tion of cluster properties such as static and dynamic 
polarizabilities, transition energies, and intensities of 
absorption, it seems appropriate to recall the forms of 
the jellium potential frequently used in literature. 

The spherical, spheroidal, and ellipsoidal geometries 
assumed for clusters substantially facilitate the calcu­
lations as well as qualitative considerations.71,7 

A potential of the form 
U(t) = -[C70/exp[(r - r0)/e] + 1] (IIB6.1) 

where 
r0 = rji1'* - (3/4x)[p0n]V3 ( I I B 6 i 2 ) 

with the electron density p0 ond number of atoms n has 
been used by Knight et al. (cf. ref 70). Clemenger73 

applies the Nilsson potential98 under assumption of the 
ellipsoidal form of the system. Various modifications 
of the effective potential have been introduced, e.g. 
locating centers of simple pseudopotentials in the sup­
posed positions of atoms. 

Other kinds of effective one-electron potentials are 
introduced in the framework of density functional 
procedures (cf. refs 72, 99, and 100). In the local ap­
proximation of the Kohn-Sham density functional 
method (LDA)31 the following system of equations is 
solved self-consistently (cf. (IIA1.20)): 

p(r) = Lk(r)|2 

Vt{{ = -4ir(p(r) - Po6(R - r)) + Mxc(nr) (IIB6.3) 

where B(R - r) is a step function and cluster radius R 
depends upon n and p0 (cf. (IIB6.2)) 

ft3 = (3/4x)np0 (IIB6.4) 

The effective potential Vttt is self-consistent in the 
framework of the model and simplifications introduced. 
Also these approaches can be combined with a simple 
pseudopotential Vc, e.g. of the form101 

Vc = 0 r>rt 

Vc = -Z/r r < rc (IIB6.5) 

where Z is the valence of the atom and r is the distance 
from the center of the pseudopotential. 

The rearrangement102 of the terms in the expression 
for the energy in the density functional method 
(IIA1.19) is the basis of calculations of the cluster 
structures with the Madelung energy combined with an 
appropriate pseudopotential assumptions (see refs 103 
and 104). 

The use of the jellium model for the alkali-metal 
clusters is usually justified by the large softness of the 
alkali-metal agglomerates. It is often argued that the 
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positions of atoms in clusters are anyway not sure be­
cause the Born-Oppenheimer energy minima are quite 
flat. In our opinion the studies using the jellium model 
can describe some cluster properties quite well, mainly 
if they depend upon the completely general rules (like 
symmetry, counting rules, etc.) so that the assumption 
of the jellium potential is not the determining factor. 
Nevertheless, changes in the cluster topology can 
sometimes have pronounced consequences for their 
electronic structure, and therefore more sophisticated 
description of the complicated cluster structure is es­
sential for some properties. 

7. Plasmons 

The free oscillations of the electron gas in metals 
which cannot be described in terms of single-electron 
excitations are called plasmons in analogy to the os­
cillations in a plasma composed of positive and negative 
charges. If a more or less uniform distribution of the 
positive charge in the simple jellium model of metals 
is accepted the deviation from charge neutrality acts 
as the restoring force and can cause free oscillations of 
the resulting effective charge. In the jellium model of 
a finite metallic body some of these oscillations are 
modified, of course, by the presence of an additional 
restoring force due to the interaction between the 
positive jellium charge cloud in the metal and the 
neutral region of the vacuum. The additional spilling 
of electronic charge causes a further restoring force, and 
different frequencies of the surface plasmon result. 

Since the classical theory of electronic charge oscil­
lations is quite widely used in the theory of cluster 
spectroscopy it is useful to review shortly the classical 
theory of oscillations in a uniform electron gas. In this 
derivation we do not use the atomic units in order to 
show clearly the dimensions of the quantities involved. 
The equilibrium electron charge density p0 is compen­
sated by the positive background. 

The deviation from the equilibrium electron density 
(cf. refs 89 and 105) 

6p(r,t) - P 0 - p(r,t) (IIB7.1) 

gives rise to the electric field E satisfying Poisson's 
equation: 

div E(r,t) = -edp(r,t) (IIB7.2) 

The time-derivative of the linearized equation of 
continuity 

dbp 
— + P0 grad v = 0 (IIB7.3) 

where v is the velocity of the electron, can be combined 
with Newton's second law: 

(IIB7.4) 

and the equation for harmonic oscillations of the per­
turbed charge density follows 

6* Sp(r,t) 

dt2 = -ul8p(r,t) (IIB7.5) 

The plasma frequency up depends only on the average 
electron density p0 and universal constants 

or in 

Chemical Reviews 

atomic units 

, 1991, 

C2Po 

m 

Vol. 91, No . 5 1051 

(IIB7.6) 

^P = y/po (IIB7.7) 

A more realistic model of motion of an electron in a 
metal in the periodic electric field 

Ex - E0eiut (IIB7.8) 

takes into account the restoring force W0X; and the 
damping yij. The equation of the motion for the ;-th 
electron reads 

-e£0cfat = m(Xj + yxj + wgx;) (IIB7.9) 

If all electron coordinates x; oscillate with the fre­
quency a) the polarizability, defined as 

<*xx = P(fiX>X)/Ex (IIB7.10) 

is equal to 

<xxx(o)) = u>\/(<4 - w2+ iyu) (IIB7.11) 

where w0 can be expressed with the help of the static 
polarizability a„(0) and the plasma frequency o>p (cf. 
definition IIB7.6) as 

w; 
«« = a«(0) 

(IIB7.12) 

The expression for the imaginary part of the dynamic 
polarizability, which is the interesting quantity for the 
light absorption, is 

Im(ctxx(o>)) = 
ywwl 

U/axx(0) - a>2)2 + T V 
(IIB7.13) 

This formula is very often applied in the spectroscopy 
of clusters in connection with photoabsorption cross 
sections and will be used in section IV.D.2. It is useful 
to notice that the "plasma" frequency wp depends only 
upon the electron density, and consequently it yields 
the right order of magnitude of the wavelengths of the 
absorbed light. 

The photoabsorption cross section is given by the 
relation 

a W wlm(axx(a>)) - u>\ try 
(a>2 - oil)2 + « V 

(IIB7.14) 

After these well known facts have been reviewed, 
several consequences resulting from the general quan­
tum theory of the response for an arbitrary system of 
electrons only weakly interacting with an external field 
will be pointed out, in order to avoid confusion of no­
tions which sometimes occurs in the cluster theory. 

In the usual quantum theory of plasmons the electron 
density oscillations are described by means of the 
time-dependent operator p in the Heisenberg picture: 

PH - L#fc> M = L e ^ w e - ' A V > M (IIB7.15) 

The summation is taken over the complete basis of the 
one-electron spin orbitals p. and v. The excitation op­
erator Em replaces the spin orbital <?„ by the spin orbital 
v, (cf. (IIA2.4)). 
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For the evaluation of the equation of motion (cf. 
(IIB4.10) and ref 89) for the Lie algebra generator in 
the Heisenberg picture 

i~K = e^lE^e-^ (IIB7.16) 

the explicit expression for the commutator [E^jl] is 
needed. Let us assume the Hamiltonian for the system 
of interacting electrons in the form 

(1/4) L (paWnvAE^-d^] (IIB7.17) 

where (po\\nv) - [pc\p.v] - [p<r\vfi], e, are the Hartree-
Fock eigenvalues, and \i) are the occupied spin orbitals 
in the UHF procedure (cf. ref 106). 

The commutator [Ex, Jf] can be partitioned in two 
components: 

[6,Jt] = [EM + [KMh (HB7.18) 

[Ex^ fi]\ is an expression which is linear in Lie algebra 
generators &tf ( u ^ p ) which are not number operators 
np. [EuJt]2 is an expression which is bilinear in Eap(o 
* p). 

By using the commutation relations which directly 
follow from the definition of the Lie algebra as well as 
the "anticommutation" relations 
Ej:gp + E^E„K = 5 , X + $ , A (IIB7.19) 

valid for fermions (cf. ref 47), the following general 
relations is found:106 

[AAu]1 = (<x - OK + E <Kp||MX>4,(nx - nK) + 

E[E„<MP||MX> - K{np\\^)] [Qn, - Pm11] (IIB7.20) 

Here m, - 1 - n, is the "number operator for a hole" 
in the spin orbital n, P is the projector on the Fermi sea 
of occupied spin orbitals, Q = I - P is the projector on 
the space of virtual spin orbitals. 

[tijEuh = d / 2 ) E ; , p , A t ( ^ | | p X > ^ - (PnWaK)Ex,] 
(IIB7.21) 

EL,,,) means the summation over the indices of the 
spm orbitals which do not lead to "contractions" ac­
cording to the commutation (IIA2.5) or anticommuta­
tion (IIB7.19) relations. 

If the contribution [Htfuh (cf- (IIB7.18)) is neglected 
the equation of motion (IIB7.16) takes the form 

-£M = (ex - *M + £ <«PIIMX> ElW ~ nf) + 
at p*n 
£[£»<MP||MX> - El(,xp\\nK)][Qn« - Pm»] (IIB7.22) 

where «, are the Hartree-Fock eigenvalues. Conse­
quently, 

- i |<0$*|0> = 

(<x - O (0\Eu\0) + E (Kp\\n\)(0\E£(n[* - n?)|0> + 

E(0|[je«<MP||MX) - £&<MlM«>](Qrt? - P^) |0> 

(IIB7.23) 

If one assumes that the correction from the last term 
of (IIB7.23) is relatively small and the Fourier transform 

Bonaclc-Koutecky et al. 

of (IIB7.23) is carried out, then the following holds: 

<0|^|0> = nX~n' E <«p||XM><0|^|0) (IIB7.24) 
«x ~ *« ~ <*>P**» 

where HK and nx are the approximate average occupation 
numbers of the one-electron states K and X. Equation 
IIB7.24 describes the Coulombic interaction among the 
one-electron density matrix elements. 

Only the components of the electron density operator 
which belong to a given irreducible representation T of 
the symmetry group of the system are interesting. If 
we label these contributions in the Heisenberg picture 
with the symbol M" E T then the expectation value for 
this component can be written in the following form: 

pf > = E ( (W)^V x = 
«xer 

E , ( " X " ^ , E </cp||XM><0$gO>^ (IIB7.25) 
«xen«x_ «»- w)w>er 

Equation IIB7.15 can be substantially simplified as, for 
example, in the case of free-electron gas (cf. (IIB7.40)) 
for which <p'<px = (£<?, holds. Therefore, if 

<KP||XM) * vT for K\ G r and up € T (IIB7.26) 

and all other integrals (Kp\\\p.) have negligible values, 
then it is possible to write approximately for the ex­
pectation value of the electron density the following 
expression: 

. ^ (fix ~ "«) 
Pf = ur Pr £ r 

«xer«x - « « - « ) 

or 

1 = vr E , ^ " " ^ , = vr [Gr01M + Gr°>(-co)] 
*\er(tK - ««- w) 

(IIB7.27) 

where (cf. refs 89 and 107) 

Gr°)(co) = E n < ( 1 " " X \ " <0|GiS»(co)|0> (IIB7.28) 

is the matrix element of the Green's operator for the 
monoexcitations in the oscillating state |0). This is the 
equation for free oscillations with frequency wr for the 
irreducible representation T. Equation IIB7.27 is also 
the condition for solving the system of equations 
(IIB7.24) if (IIB7.26) holds. 

Another derivation of the equation for a free oscil­
lating system is also quite instructive. The Fourier 
transform of the time-dependent Schrodinger equation 
is 

(a - A0)Wu) > - ^ M ) (HB7.29) 

if both H0 and V are time independent and the inverse 
Fourier transform of the wave function is defined as 

IKw)) = ( 1 / V S ) C+" e^(t)) dt (IIB7.30) 

The Fourier transform belonging to the irreducible 
representation r of the symmetry group of the system 
is 

M«r)> = GJ(o>)Vty(a>r)> (IIB7.31) 

where the Green's operator is defined as 
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<3&M - f<30(«r) - S , U > 0 L 

with 

#ol/> - Ej\j) 

(IIB7.32) 

(IIB7.33) 

and f is the projector on the manifold \j) and j £ T . 
It follows 

1 = <*(«r)|<3&(u)fy(«r)> (IIB7.34) 

If it is assumed that 
VJk = vr for j,k E T (IIB7.35) 

then 

I = ^ r I 7—^=:<*(«r)|/> E W K ) ) (HB7.36) 
yer (wr - £y) *er 

If moreover < (̂a>r)l/> =» 1/VN the condition for the 
frequency wr reads 

1 - ur E (« r " -S?)"1 (HB7.37) 
jer 

which has a form similar to the relation IIB.7.27. 
The simple connection with the Green's operator 

concept as well as the approximations involved are ev­
ident. If the "free oscillation frequency" wr is large in 
comparison to the energy differences 

^r » («x - O (IIB7.38) 

then it holds 

« | = cor = vT L («x - ftj(«. " «x) (HB7.39) 
«xer 

and Wp can be considered as "generalized plasmon 
frequency". 

Equation IIB7.27 can be also derived with the Green's 
function technique in the random-phase approximation 
in which only the summation over ring diagrams is re­
tained.89 The assumption of the treatment used in this 
section are evidently equivalent to the random-phase 
approach. 

It is very useful and illustrative to derive the explicit 
expression for the plasma frequency u>p in the classical 
limit of the free electron model of metals. 

The assumption IIB7.26 that all integrals <XP||XM) 
have a common value ur for a given irreducible repre­
sentation is fulfilled for free-electron gas (cf. (IIB1.1)). 

Vq = (1/V2) f f £^e,(<k3-k2)r+<k4-kl)r0 = 

(Vq2VWk1 + k2 - k3 - k4) (IIB7.40) 

where 

q = (1/2Xk1 + k3 - k2 - k4) (IIB7.41) 

This means that in the summation in (IIB7.37) are 
considered single excitations which satisfy the ring 
condition (HB7.40). If these conditions are not satisfied, 
the definition of the plasmon is not well grounded. 

In the random-phase approximation the excitations 
from the one-electron state |X) = |k) into the state \K) 
= |k + q) as well as from the one-electron state \K) -
|k - q) into the state |X> • |k) are considered. 

The contribution for X = k and X = k - q to the 
summation in (IIB7.39) is 

(«k+, + V , " 2«k)/c^ - H2H (HB7.42) 

where the relation IIB1.3 for the energy of a free wave 
has been used (cf. ref 89). 

The expression for the plasma frequency <op obtained 
as a limiting case (q —• 0) of the quantum mechanical 
approach has the classical form (cf. (IIB7.7)) 

<4 = vq2Enk = P0 
k 

(IIB7.43) 

The relation IIB7.27 for the "free-oscillation 
frequencies" wr results from the interaction among the 
single excitations belonging to the irreducible repre­
sentation r. Every other wr lies between a pair of 
monoexcitation energies w^ = ex -«, with exception of 
one which can be outside of the range of the w^'s. The 
interaction described in (IIB7.27) includes in principle 
all single excitations but if some Wx,"« very near to the 
root ojr these electron-hole excitations play a dominant 
role in the interaction. Only if a root wr is quite far 
from the dense band of w^'s the interaction among 
many electron-hole excitations is of comparable im­
portance and the corresponding cross section can be 
large since no interference takes place. This is clearly 
only a limiting case if some specific conditions are 
fulfilled. A simple example is the free-electron gas in 
the random-phase approximation (wr = wp). 

If the "band" of the monoexcitation energies is not 
dense enough or if the symmetry of the system is low, 
then further complications can be expected leading for 
example to large cross sections inside of the energy 
"band of single excitations. The two electron excita­
tions do not play any role in the concept of plasmons 
although they can in some cases be quite important. 

It has been shown that the concept of collective 
"plasma" oscillations is a special case of the general 
interaction among individual monoexcitations. The 
necessity to consider explicit interaction among mo­
noexcitations is in general a consequence of a conven­
ient methodological and conceptual approach custom­
ary in solid-state physics and molecular physics as well 
The excitations of the many-electron systems cannot 
in general be satisfactorily described in the one-electron 
approximation, but it is convenient to use the solution 
of the many-electron problems with the one-electron 
approach as a suitable starting point. 

More specifically, in the absorption spectroscopy of 
molecules the excited states which can be described as 
a result of a single monoexcitation are an exception. For 
example, the very intense "Bb absorption bands" of 
linear polyacenes exhibit intriguing simularities with 
"giant resonances" of alkali-metal clusters. A very 
simple semiempirical Pariser-Parr-Pople (PPP) TT-
electron theory of conjugated hydrocarbons predicts 
that only electron transition from the ground state to 
the I1B311 state (polarized along the longer axis of the 
polyacenes) leads to an intense absorption peak.90 The 
plus and minus signs label representations of the 
"alternant symmetry" which causes certain pairs of 
single excited configurations to be degenerate. In the 
PPP approach the I1B3U wave function is the proper 
linear combination of only a few one-electron excita­
tions. The linear combination leading to I1Bi11 state is 
optically forbidden and all other transitions (e.g. to 
1B2U) have small intensities. 

The transition energy to the state I1B311 decreases 
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from roughly 6 eV for benzene to 5 eV for pentacene 
and the intensity of the I1BJ, transition nearly doubles. 
The analysis of the whole phenomenon, which is in 
agreement with experiments,108 is very transparent.90 

As in the case of alkali metal clusters the symmetry and 
geometry cause interference phenomena among inter­
acting monoexcitations. 

From this example a conclusion can be drawn that 
the interaction among monoexcitations is a very general 
concept which is useful for the description of the in­
fluence of the electromagnetic field on any electronic 
system, which is not necessarily metallic. 

The validity of (IIB7.25) for the frequencies w of the 
oscillating system is not limited to any special case and 
it represents a link between the theory of volume 
plasmon, surface plasmon, and a response of a highly 
symmetrical molecular system to the interaction with 
the electromagnetic field. In the case of a surface 
plasmon the bands of one-electron volume states and 
possibly of one-electron surface states should be in­
volved in the interaction of particle-hole transitions. 
Consequently, there should exist a resulting collective 
mode with a frequency which differs substantially from 
those of single particle-hole excitations. The presence 
of a surface necessarily changes the plasmon frequency, 
but evidently its order of magnitude will remain un­
changed with respect to the bulk plasmon frequency. 
This is due to the common nature of the collective mode 
of surface and volume plasmons. It is possible to as­
sume that (IIB7.39) determines also the surface plas­
mon frequency but the occupation numbers nx differ 
from those for the volume plasmon and two-dimen­
sional k vectors figure in (IIB7.40-IIB7.42). 

The simple derivation of the plasmon theory outlined 
above shows that the following conditions must be si­
multaneously fulfilled: 

(i) A plasmon should result from the interaction of 
a very large (in the limit infinite) number of electron-
hole transitions. 

(ii) AU these particle-hole excitations play a compa­
rable role. 

(iii) The plasmon excitation frequency differs sub­
stantially from all the frequencies of individual mo­
noexcitations. 

(iv) Strong interference phenomenon is present. 
(v) Moreover, the usual concept of the plasmon allows 

for transitions into the one-electron states without re­
specting their occupancy in the ground state (random-
phase approximations). This assumption is important 
in taking the limit q -» 0 in order to obtain the classical 
expression for plasma frequency wp (cf. (IIB7.43)). 

In the theory of the surface plasmons analogous basic 
assumptions are made as in the case of volume plas­
mons. Consequently, the same conceptual analysis 
applies. 

8. Comparison of the Collective Effects in the 
Quantum Molecular Theory and Solid-State Theory 

From various theoretical approaches for the deter­
mination of the response of a quantum mechanical 
system to a perturbation it is possible to trace a com­
mon assumption: The excitation of the system is de­
scribed as a linear combination of single electron ex­
citations or, in other words, as interaction among 
electron-hole states. 

The excited states in the Tamm-Dancoff procedure 
are linear combinations of configurations arising by a 
replacement of a molecular orbital occupied in the 
ground-state Slater determinant by a virtual orbital. In 
the time-dependent Hartree-Fock theory (random-
phase approximation) the oscillating state is a linear 
combination of single excitations. In the theory of 
Wannier's and Frenkel's excitons the linear combina­
tions of single excitations are used for the definitions 
of the notions of excitons. In the quantum mechanical 
theory of plasmons the spectral decomposition yielding 
the eigenstates of the unperturbed system shows that 
only single excitations from a reference state are con­
sidered in this theory. The analysis of equivalent 
treatments with the Green's functions and polarization 
propagators yields the same picture. Here the as­
sumptions which are equivalent to the Hartree-Fock 
approximation and to the RPA approach are taken into 
account for the solution of the problems. 

Statements about the nature of the binding in rela­
tively small clusters and about the similarity of clusters 
with the condensed matter are often made with the help 
of the plasmon notion. Consequently, some clarification 
of the plasmon concept is a quite interesting and 
challenging task in the cluster theory. 

As commented at the end of the previous section 
(section II.B.7) several specific conditions for linear 
combinations of monoexcitations must be simultane­
ously fulfilled for plasmons justifying their distinction 
from the excitations known in molecular systems. 
Therefore, the notion of the plasmon can be clearly 
defined only for very large systems with a quasiconti-
nuous spectrum of particle-hole excitation energies. 
The state whose energy lies outside of the band be­
longing to specific irreducible representation of the 
symmetry group can be named a plasmon state and can 
be distinguished from the correlated particle-hole states 
characterized by a linear combination of a limited 
number of dominant contributions of particle-hole ex­
citations. 

Let us repeat that the appearance of "interferences" 
causing very large differences in the excitation cross 
sections can occur easily due to various signs of the 
coefficients of the contributing leading configurations. 

The quantum chemistry methods which account for 
electron-correlation effects contain also interactions 
among single and higher order excitations. We have 
tried in the section ILB to emphasize the inherent 
similarities of the treatment of the many-electron ef­
fects in the quantum chemistry and in the solid-state 
theory making a distinction between correlation effects 
which are a different type of collective effects than those 
responsible for excitons, plasmons, etc. 

/ / / . Ground-State Properties 

A. Methodological Requirements for Application 
of Quantum Chemistry 

A few methodological problems have to be solved 
when studying the ground-state properties of the ele­
mental clusters. First, the experimental data available 
are scarce and can be correlated with the true physical 
observables only in an indirect way. Therefore, the 
accuracy and reliability of the adopted methodological 
and computational approaches cannot be surely 
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checked by direct comparison between theoretical and 
experimental values. In addition, the incomplete ex­
perimental data do not allow us to formulate a sim­
plified computational scheme based on a set of empir­
ically determined parameters. For instance, empirical 
classical potentials like those used successfully in mo­
lecular mechanics and dynamics of complex systems 
cannot be easily derived in the case of clusters, espe­
cially those composed of metallic elements. All these 
considerations lead to the conclusion that the adopted 
methodological approach must be characterized by a 
very well defined internal consistency, avoiding un­
necessary approximations which can affect the results 
in an uncontrolled manner. In addition, the computa­
tional method must incorporate the most specific fea­
tures of the electron-nucleus and electron-electron 
potential. 

Moreover, the energy accompanying the formation 
of the cluster from the constituent atoms and its frag­
mentation to clusters of smaller dimensions (phenom­
ena which are related to experimental observations) is 
expected to be dominated by electron correlation ef­
fects. As a consequence, it is necessary to adopt 
methods yielding a correct estimate of the correlation 
effects, either in the framework of CI approaches (if 
possible, size-consistent ones), or by means of a density 
functional scheme, incorporating, however, at least the 
self-interaction corrections. 

Another aspect, which is of basic importance for the 
choice of a computational method, is connected with 
the fact that usually it is not sufficient to compute 
physical observables for a single (very small) cluster 
with high sophistication, but it is of greater interest to 
follow a trend of computed values in a range of nucle-
arities, as large as possible. A compromise between 
accuracy and simplicity of the method must be ac­
cepted. Typically, the choice of the size of the basis sets 
and the inclusion of polarization functions, are obvi­
ously determined by the size of the clusters considered. 
Analogously, the extent of the CI treatment is limited 
when a large number of electrons have to be correlated. 
Of course, very accurate calculations on small clusters 
are of essential importance in the framework of broad 
and systematic studies, because they allow one to es­
timate the limitations of more approximate treatments. 

B. Stability, Fragmentation, and Geometry of 
Clusters 

Theoretical methods fulfilling the methodological 
requirements discussed above can be very useful in 
determining the trend of physical observables in a series 
of clusters with increasing size. 

The most interesting ground-state properties of 
clusters are (i) the geometries of the stable conformers 
with the lowest energies, (ii) the corresponding binding 
energies per atom Eh/n (Eh/n = (TiE1-En)/n, En being 
the total energy of the n-atom cluster), (iii) the ioni­
zation potentials and electron affinities (IP = E* - En; 
EA = En- En, En being the energy of the charged n-
atom cluster). In addition, quantities directly related 
to the electronic distribution in clusters and with its 
response to static external fields (dipole moments, static 
polarizabilities, etc.) are of basic importance for de­
scription of the specific features of the cluster electronic 
structure. 

As is well known, clusters can undergo fragmentation 
when they possess a high internal temperature. For a 
given nuclearity, n, the theoretical study of the ener­
getics of the process An -*• A„_m + Am, i.e. the identi­
fication of the most favorable pairs (n - m) and m, is 
useful for interpreting a variety of phenomena observed 
experimentally. In this respect, the energy quantity 
that is convenient for future discussion can be defined 
as AEn>m = En.m + Em - En. In particular, AEnil and 
AEn 2 are measures of the tendency of an n-atom cluster 
to dissociate one atom or one dimer, respectively, 
leading to a species of nuclearity (n - 1) and (n - 2). 

The quantity AEM = En^ + Ex-En is also used to 
define the second difference A2En = AEn j - AEn+11 = 
E„_i + En+1 - 2En which is another useful quantity as 
a measure of the stability toward fragmentation. 
Negative values of A2En indicate that the process 2An 
-»• An^ + An+1 can easily take place. A positive value 
of A2En shows that the fragmentation of a cluster with 
n atoms (An -* An_t + A1) is energetically less favorable 
than the dissociation channel for a cluster with n + 1 
atoms: (An+1 -* An + A1). 

1. Neutral Clusters 

Alkali-Metal Clusters. Among the alkali metals, a 
theoretical treatment of lithium requires the smallest 
computational effort. This is the main reason why the 
lithium clusters have been theoretically studied so in­
tensively, in spite of the fact that little is known ex­
perimentally. This explains also why the number of ab 
initio studies on Lin clusters62,61,109"135 is higher than for 
Nan clusters.110,114,131,136-143 For Kn clusters only a few 
theoretical papers have been published,140,141,144 mainly 
dealing with species of relatively low nuclearity. 

Investigation of Nan and Kn (with n < 20) are now­
adays possible at a high level of accuracy due to the 
availability of reliable ECP's,34,35,37,39,40 which can be 
conveniently combined with one of the approaches 
proposed for the description of the core polarization 
potential (CPP) or core valence correlation (CVC)145"148 

effects. As pointed out in rigorous studies on alkali 
dimers,147 the CVC effects are responsible for the con­
traction of the equilibrium bond distances and the in­
crease of the Eb/n, IP, and AE values. The effects are 
of increasing importance as the polarizability of the core 
of the constituent atoms increases. CVC contributions 
are nearly negligible for Li2 (and Lin) but play a de­
termining role in K2.

147 

Ab initio studies of optimum geometries and stabil­
ities of alkali-metal clusters should be carried out 
adopting basis sets which necessarily include at least 
p polarization functions:149,1,150 they are expected to be 
essential particularly for small species and less impor­
tant for larger systems which assume preferentially 
three-dimensional structures. In fact in the latter case, 
functions of high angular momentum on one site can 
be easily mimicked by low angular momentum func­
tions centered on the surrounding atoms. All the papers 
discussed in the following discussion seem to fulfill these 
basic methodological requirements although to a dif­
ferent extent. 

The studies on Nan species have been carried out also 
by using LSD methods (n < 8)161"164 or with the QMD 
method of Car and Parrinello65 also on larger sys­
tems.156"167 In particular very recent LSD-QMD work 
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on Nan (n = 2-10,13,18 and 2O)157 makes possible a 
comparison with the predictions obtained from other 
theoretical approaches. 

The various theoretical studies generally agree upon 
the basic topologies of Lin, Nan, and Kn clusters. Figure 
la shows the most stable structures obtained from a HF 
optimization62 of lithium clusters (n = 2-10). The op­
timum HF interatomic distances have been uniformly 
scaled by minimizing the extrapolated MRDCI ener­
gies.48,49 The procedure is expected to take into account 
the effect of the electron correlation on the lithium-
lithium distances but, obviously, is not equivalent to 
a full geometry optimization at CI level. It has been 
shown®2 that such partial CI geometry optimization has 
a nonnegligible effect on the computed Eh/n values. All 
other papers on Lin clusters cited above have presented 
investigations limited mainly to clusters with n = 2-6 
atoms. Figure lb displays the best HF geometries for 
Nan (n < 9).142 The same topologies have been found 
to be the preferred ones also for Kn systems.140,141 The 
study of Boustani et al.62 is the only one which includes 
also a systematic theoretical vibrational analysis, which 
is essential in order to prove that the different con-
formers are real local minima on the (3n - 6)-dimen-
sional surface. 

Up to Li6 the most stable forms are planar. For Li6 
three isomers with low energies have been identified, 
namely the planar one (D311), the pentagonal pyramid 
(C61), and the bicapped tetrahedron (C2u): they are 
characterized by Eb/n values equal to 0.673,0.675, and 
0.660 eV, respectively.62 The relative stability of the 
Lin hexamers has been recently reinvestigated in detail 
by Koutecky et al.134 The study shows how the pre­
diction of the most stable conformer can easily depend 
upon the basis set chosen and the correlation treatment. 
By using a contracted 6s3p basis, the only real minima 
found at the SCF level are singlet states of C511, Z)3n, and 
C211 geometries (see above) and only one triplet state of 
C2U symmetry. The sequence of the E^/n values com­
puted at SCF level 0.275 (1A1, C21), 0.296 (3B1, C2,), 0.291 
(1A1, D3J1), and 0.265 eV (1A1, C50) is changed by the 
correlation treatment according to 0.732 (1A1, C21), 0.718 
(1A1, C6u), 0.718 (1A1, D3n), and 0.731 eV (3B1, C2u). 
These results confirm the degeneracy of the forms D3n 
and C61, but, at the same time, point out that the C2v 
form (which is formed by three condensed tetrahedra) 
exhibits a particularly high stability. 

The existence of isomers lying so close together in 
energy seems to be a general characteristic for the 
hexamers of the Ia elemental clusters; probably because 
they represent the transition point between planar and 
three-dimensional structures. This is confirmed also 
by studies on Nag which gave Eb/ n values for the D3n 
and C6t) forms that differed by about 0.010, 0.004, and 
0.003 eV, according to the results of refs 142,140, and 
138, respectively. The three studies adopted basis sets 
of type AE 3s3p, ECP 3slpld, and AE 6-21G, respec­
tively, while correlation effects have been accounted for 
in the framework of MRDCI, CIPSI, and MP4 meth­
ods, respectively. Clearly the determination of the exact 
energy ordering of the isomers would require much 
more elaborate calculations. In particular, in the case 
of sodium and potassium clusters, the computational 
method should include an adequate treatment of the 
CVC effects. The recent geometry optimization168 in 
the framework of the SCF ECP-CVC procedure for Na6 

Figure 1. The CI binding energy per atom Eb/n as a function 
of the nuclearity n for (a) neutral, anionic, and cationic Lin clusters 
and for (b) neutral, and cationic Nan clusters. The topologies of 
the HF-optimized geometries are shown, (c) The measures of 
stabilities A2En and A2En for neutral (—) and cationic (- - -) Lin 
and Nan clusters are shown in part c. Small, but appropriate AO 
basis sets are used (for details cf. refs 62, 133, 142, and 143). 

yields the following Eb/n values for D3n, C5v, and C2v 
structures: 0.131,0.096, and 0.065 eV, respectively. The 
corresponding CI values are 0.478,0.476, and 0.436 eV. 
Also LSD calculations164 predicted the C51, isomer to be 
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nearly degenerate (within 0.04 eV) with the D3n planar 
form. Note, that for an internal temperature of the 
cluster in the range of 400-500 K, the value of kT is 
0.03-0.04 eV. 

An ECP-CIPSI study of Kn (n < 6) has been reported 
in refs 140 and 141 by using a 3slpld basis and carrying 
out an extensive correlation treatment. Core-valence 
correlation effects have been considered by means of 
a perturbation approach.148 For the hexamer K6, the 
theory again predicts a near degeneracy between the C511 
and Z)3/, isomers. 

The above results show that in the case of hexamers 
the pentagonal pyramid is one of the low-energy con-
formers. Forms including regular or slightly distorted 
pentagons and pentagonal bipyramids have been found 
as stable geometries for clusters with n - 7, 9,1062,142 

and for largers ones.169 In the case of Li7, the exact D6n 
symmetry has been confirmed also from the analysis of 
the experimental EPR hyperfine constants for the 
species studied in a frozen matrix160 (see also ref 113). 

From Figure 1, parts a and b, it is apparent that the 
octamers are characterized by high stability. The most 
stable Lig cluster identified by HF-CI geometry opti­
mization" belongs to the Td point group, being com­
posed of a tetrahedron with all the faces symmetrically 
capped, while the LSD method164 suggests that the most 
stable form of Na8 should have a D^ geometry which 
is a deformed section of the fee lattice. Another com­
pact form for octamer is the square antiprism with DM 
symmetry. Recently,162 the three forms Td, D2* and D4^ 
of Na8 have been reoptimized at the ECP-CVC level, 
by using a basis set of type 3s3p. Extensive MRDCI 
treatments including large set of reference configura­
tions have been carried out. The best CI energies have 
been computed equal to -1.65840, -1.65614, and 
-1.65261 au, for the Td, D2^, and D44 form, respectively. 
However, it has been shown162 that the DM and D4^ 
transform into the Td minimum without any energy 
barrier. 

The Td structure of the octamer is associated with an 
electronic configuration of type Ia2It6 which is obvi­
ously related with the S2P6 configuration of the spherical 
potential. This clearly shows the connection between 
the predictions formulated on the basis of molecu-
laj.1,62,164,166 J11J(J spherical jellium approaches.7-16,70 The 
latter method suggests that the octamer must be par­
ticularly stable due to the fact that eight valence elec­
trons fill completely the Is and Ip shells. In the mo­
lecular approach, the same conclusion about the cluster 
stability can be drawn from the observation that a set 
of degenerate MO's, which correspond to a very com­
pact and symmetrical nuclear frame, is fully occupied. 
It must be noted, that the ax MO and the X^ MO's have 
s and p character, respectively, in the sense that they 
can be projected on (and only on) the spherical har­
monics with I * 0 and / = 1, respectively, located at the 
origin. 

The occurrence of degeneracies of the "p" orbitals, 
is therefore a specific consequence of the symmetry of 
the nuclear frame. The T)u and D4^ structures have the 
three highest MO's nearly (but not exactly) degenerate. 
This explains easily why the two forms exhibit so pro­
nounced stability although smaller than the Td form. 

Starting from the octamer, the most favored growing 
sequence for the cluster seems to be that of capping 
progressively the six concave surfaces formed by two 

atoms of the outer and two atoms of the inner tetra­
hedron, respectively. Each capping atom forms two 
additional (distorted) tetrahedra and this sequence of 
clusters ends with a 14-atom species with a very com­
pact (Td) structure, characterized by high stability. 
Notice, that the 13-atom cluster considered in such a 
path of growing has no relation with the icosahedral or 
cubooctahedral forms, which have been considered in 
HF-CI for Li13

161 and LSD studies for Na13.
164-187 

Alkali-metal clusters with n > 14 have not been 
studied systematically by using ab initio HF-CI meth­
ods. Probable geometries for large clusters composed 
of atoms with one-valence electron have been obtained 
from the Hiickel-type empirical calculations.163 Very 
recent LSD-QMD work167 contains equilibrium struc­
tures of Na18 and Na2O

 a s w e ^ a s those at higher tem­
perature. 

A few possible forms for the 20-atom clusters (the 
next "magic numbers" of the jellium model) have been 
computed and optimized (with symmetry constraints) 
for lithium with a basis of type 2slp164,165 and for Na 
in the framework of the ECP-CVC approach.166 

Two low-energy forms of Li2O both have Td symmetry. 
The first (the most favored at the CI level) is composed 
of three "spherical" shells composed of 4, 4, and 12 
atoms (4, 4,12), while the second cluster is just a part 
of the fee lattice (see Figure 5 of ref 164). The two 
clusters have the same electronic configuration 
la?lt|2a?2t|le4. However, the Td(fcc) isomer has the 
highest occupied MO's 2a2, 2t2, and Ie distributed in 
a range of about 0.7 eV, while these levels are virtually 
degenerate for the (4, 4,12) Td structure. In the latter 
case the 12 electrons 282^t2Ie*fill completely a system 
of six "degenerate" orbitals, which corresponds to the 
filling of the 2s and Id shells of the spherical jellium 
potential.7-70 

This is again an evident example of the combined role 
played by the symmetry of the nuclear frame and 
electronic wave function: the exact or nearly exact 
degeneracy of (completely filled) one-electron levels is 
an important factor for the cluster stability. 

The results commented above concerning the clusters 
of larger nuclearity (n > 8) cannot be presently con­
sidered as complete and systematic. A more detailed 
investigation is needed in order to obtain reliable in­
formation about the trend of the EJn and A2En 
quantities in this range of the cluster size. In addition, 
the calculations reported (mainly for Lin) are not suf­
ficient to show clearly which path of cluster growth is 
the preferred one, namely that producing structures 
with symmetry characteristic for the bulk (e.g. fee) or 
structures which still include pentagonal-like subunits. 

In general, for neutral and charged Lin and Nan 
clusters, EJn increases with n as shown in Figure 1, 
parts a and b. Exceptions have been found, however, 
for the trimers and for Lig and Na9: in the first case 
Eb/n decreases because the trimers are species of par­
ticularly low stability. For n = 9 the decrease in EJn 
is a consequence of the pronounced stability of the 
octamers. It is well recognized that the EJn quantity 
of the alkali clusters is strongly dominated by correla­
tion effects. The correlation energy accounts for about 
50% of the stability of Lin clusters and even more than 
90% in the case of small Nan and Kn clusters. It has 
been shown140,145 that the HF method—when all the 
core polarization contributions are neglected—is unable 



10S8 Chemical Reviews, 1991, Vol. 91, No. 5 Bonaclc-Koutecky et al. 

to yield Na and K dimers, trimers, and tetramers stable 
with respect to atomization. 

Even-odd alternations become more evident when 
the A2En function is considered (see Figure Ic). The 
A2En curves for Lin, Nan, and Kn show basically the 
same trend: sharp minima occur for n - 3, 9 and less 
pronounced minima for n = 5, 7. Correspondingly, 
maxima are present for even n and they are more pro­
nounced for n = 2, 4, and 8, than for n - 6, indicating 
that the clusters with an even number of atoms survive 
fragmentation easier than those with an odd number 
of atoms. 

The conclusion that clusters with an even number of 
atoms n are always more stable than those with the (n 
+ 1) and (n - 1)—atoms cluster has been drawn from 
the UHF-MP4 study of ref 138, but such an evidence 
is not present in results of other works.142^2,154 This also 
reflects the fact that the A2En curves reported by Ray138 

have even-odd oscillation more pronounced (in parti-
culary for n = 6) than the curves of Figure Ic. 

The trend of the A2JSn values computed by the ma­
jority of the theoretical works confirms that the process 
An - • A„_2 + A2 is favored for n even, while for odd 
number of atoms the preferred fragmentation leads to 
a (n - I ) -a tom cluster.141-167-174 

For very large Ia and Ib clusters special stability has 
been predicted and experimentally found76-79 for the 
magic numbers 40, 58, 92,138,198, etc. These magic 
numbers which are predicted, among others, by the 
Wood-Saxon potential and jellium model, can be un­
derstood considering the Bohr's correspondence prin­
ciple between quantum and classical motion.16 

Alkaline Earth Metal Clusters. Ground-state geom­
etries and stabilities of Ila-atom clusters have been 
investigated theoretically by using a variety of basis sets 
and electron correlation methods. It has been shown 
that a correct description of species such as Be2, Be3, 
and Be4 even at the semiquantitative level (see ref 175 
and references therein) is very difficult in spite of their 
small size and small number of electrons. Quantitative 
predictions of properties of Be clusters involve sub­
stantially larger computational and methodological 
difficulties than those met in studying la-elemental 
clusters. For instance, the size-consistency effects which 
are absent in Li2 and which can be overcome with a full 
(or nearly full) CI valence electrons treatment for Lin 
(n < 4-6) is expected to play a big role in Ila-atom 
clusters. Atoms of the group Ha have a closed-shell 
ground state and all the available theoretical results on 
clusters seem to suggest that small Ben and Mgn species 
also have a closed-shell configuration. This fact, which 
would simplify the theoretical treatment, is, on the 
contrary, complicated by the occurrence of large effects 
due to the s-p near degeneracy. 

A recent study of Lee et al.176 on small Ben and Mgn 
(n = 3, 4, 5) summarizes all these difficulties, showing 
at which level of sophistication the calculations on 
Ila-atom clusters must be carried out in order to obtain 
quantitatively correct results. The Be3 (D3n) cluster 
studied with a 7s3p2dlf basis and the coupled cluster 
(CC) method including single and double excitations 
(CCSD) is characterized by EJn = 0.260 eV and a 
Be-Be bond distance of 2.24 A. When a similar basis 
(5s3p2dlf) is used and the correlation treatment is ex­
tended at the MRCI level, the estimated value of EJn 
is nearly double (0.486 eV) with respect to the previous 

one, while the Be-Be distance (2.22 A) seems to be 
almost unaffected. For Be4 (Td), the value EJn = 0.838 
eV at an equilibrium bond length of 2.06 A has been 
calculated at the same level of approximation. The 
trigonal-bipyramidal form of Be6 is characterized by 
E^l n - 0.71 eV with the two independent Be-Be dis­
tances equal to 2.03 and 2.08 A. The EJn value for Be5 
has been obtained with a CCSD treatment (7s3p2d 
basis) and, therefore, must be compared with the cor­
responding values consistently obtained for Be3 and Be4, 
0.106 and 0.64 eV, respectively. These results show that 
an enormous increase in EJn is produced by a multi-
reference CI treatment and, at the same time, that EJn 
is probably a rapidly convergent quantity as the cluster 
size increases. The same rapid convergence occurs for 
the equilibrium Be-Be distances. The electronic 
structure and the basic quantities for the ground state 
of Mg3, Mg4, and Mg5 follow the same trend. 

The SCF method is unable to describe stable Mgn 
clusters (n < 5) and the single reference CI methods 
(CPF and CCSD) are unable to correct the HF inade­
quacies completely. Only the MRCI level of theory 
seems to be adequate in this case. For instance, for the 
trimer Mg3 EJn = 0.056 eV, obtained with a basis 
583pld, increases to 0.091 eV with a basis 7s6p3dlf. 
The latter, however, is not a practicable basis for cal­
culations on larger systems. 

Results obtained at comparable level (CCSD with 
basis set 6s5p2d) for the series Mg3, Mg4, and Mg5 (EJn 
= 0.014, 0.114, and 0.114 eV and equilibrium bond 
distance re • 4.00,3.23, and [3.16,3.53] A, respectively) 
show that the trend is indeed parallel to that discussed 
for Ben. 

For the study of clusters with higher nuclearity ap­
plication of the theory at a lower level of sophistication 
has to be accepted. Marino et al.176 investigated in a 
systematic manner the series Ben with n = 3, ...7, con­
sidering a large number of different geometry configu­
rations and different spin multiplicities by means of 
UHF-MP4 methods. For Ben, using a 6-31G basis, EJn 
values were computed equal to -0.001, 0.421, 0.467, 
0.435, and 0.498 eV for n = 3,4,5,6, and 7, respectively. 
The clusters have the following best structures: equi­
lateral triangle, tetrahedron, trigonal bipyramid, octa­
hedron, and pentagonal bipyramid with Be-Be equi­
librium distances equal to 2.48, 2.11, [2.04, 2.12], 2.09, 
[2.03, 2.17] A. The high spin states seem to be in­
creasingly favored as the nuclearity increases. In 
agreement with other studies, Marino et al.176 found 
that up to Be5 the cluster ground states are singlet 
states, while the lowest triplet (quintet) state (often with 
different symmetry of the nuclear frame) lies higher by 
about 1.37 (2.81) and 0.54 (1.83) eV in Be4 and Be6, 
respectively. On the contrary, Be6 (On) has a quintet 
ground state, although the first singlet (Z)3̂ ) is only at 
0.13 eV higher in energy. Similarly, the quintet ground 
state of Be7 (D6n) is more stable than the first triplet 
(centered hexagon, D6n) and the first singlet of the 
heptagon (D7n) by about 0.19 and 0.57 eV, respectively. 

In recent calculations177 the problem of the spin 
multiplicity of the ground state of Be13 (which has been 
assumed to be a singlet in previous calculations180) has 
been investigated for the cluster geometries optimized 
under D3n (hep) or DM (fee) symmetry constraint. The 
following stabilities have been computed: EJn = 1.124, 
1.201, and 1.257 eV for 1A1 (D3n),

 6A2 (D3n), and 3A8 (D3,,) 
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states, respectively, at the MP4 (SDTQ) level of theory 
by using a 4s2p basis. Inclusion of d polarization 
functions (4s2pld) does not alter the computed trend 
for E^l n, thus confirming that 3Alg is the ground state 
of Be13. 

The largest Be clusters investigated so far are Be61 
and Be57,

178 Be63,
179' Be69,

179b Be81 and Be87,
179c and 

Be56.
180 In all cases ECP approaches have been adopted, 

using basis sets of type 2slp178,179 and 3s2p.180 For an 
assumed singlet ground state, the conclusion has been 
reached180 that Be56 prefers an fee type structure instead 
of the hep of the bulk metal. The two other clusters, 
Be61 and Be57 are assumed to possess D3* symmetry,178 

and in the singlet ground state have Eh/n equal to 1.117 
and 1.103 eV, respectively. While the first quintet state 
of Be61 lies 2.01 eV above the ground state, the first 
triplet for Be67 is much closer in energy (0.58 eV). 
However, the ground state of the Be63,

179 turns out again 
to be an open shell 5E" (D3n), with Eh/n = 1.072 eV. 
There is no substantial difference in values of the 
binding energy per atom for Be61, Be57, and Be63 at this 
level of calculation. For the ground states of Be68, Be81 
(3E"), and Be87 (

1A1), the Eh/n increases slightly to 1.22, 
1.23, and 1.24 eV, respectively. It seems that Be68 and 
Be81 exhibit bulk-like behavior, while several anomalies 
concerning different properties have been obtained for 
Be87 (cf. ref 179c). 

Notice that calculations on large clusters at the HF 
level only178"180 are probably of limited validity for 
quantitative purposes, since accurate studies on small 
Ben and Mgn clusters have shown that correlation ef­
fects are essential in determining correct values and 
ground-state multiplicities. However, approximate 
calculations on high nuclearity systems may help in 
suggesting trends and regularities in a series of clusters. 

Other UHF-MP2 calculations adopting a basis set of 
the STO-6G* type have been recently reported for Mgn 
(2 < n < 4) clusters for which an Eb/n value has been 
computed (approximate data obtained from Figure 8 
of ref 181) as 0.45, 0.60, and 0.90 eV, respectively. 
Taking into account the extent of the basis and the 
quality of the CI expansion adopted, these Eb/n values 
seem to be overestimated (when compared with the 
accurate results of ref 175), probably partly due to a 
basis-set superposition error. 

Finally, the only example of LSD calculations re­
ported on the series Mgn (n - 2, ...6)182 is worth men­
tioning. The optimized structures up to Mg5 are in 
general agreement with the results of HF-type meth­
ods.175,176 On the contrary, Mg6 has a shape of a bi-
pyramid with rectangular basis (an octahedron with two 
axial distortions) in the singlet ground state. This is 
in disagreement with the findings of Marino et al.176 and 
is one of the examples known in which the LSD favors 
more the low-spin states while the HF method (com­
bined with a limited CI) favors high spin multiplicity 
probably because of the presence of large exchange 
contributions.183 

Ia-IIa Mixed-Metal Clusters. In a series of pa­
pers184-186 the electronic structure of the clusters com­
posed of la-group metal atoms and of only one Ha-group 
atom has been investigated at the ab initio level 
(SCF-MRDCI). Cluster geometries optimized at the 
HF level are reported in Figure 2a, for the MgNa* 
species (k = 1, ...8). The mixed dimer MgNa does not 
show an appreciable stability. Also the MgNa2 and 

MgNa3 systems are characterized by a relatively small 
value of Eb/n (0.22 and 0.27 eV, respectively). Note, 
that for a mixed cluster the following definition holds: 
Eh/n - Eh/(k + 1) = [E(AB*) -E(A) - kE(B)]/n, where 
A and B are Ha- and la-group elements, respectively. 

Starting only at MgNa4, the cluster appears to be 
characterized by an enhanced stability, showing that 
the Ila-group atom has little tendency to form only one 
or two Mg-Na bonds. In larger clusters the Mg atom 
takes the central position of a regular polygon or 
polyhedron (in the absence of Jahn-Teller distortions), 
therefore assuming the highest possible coordination 
number. In the range of the investigated cluster sizes, 
a pronounced increase oiE^/n occurs for k = 4 and, in 
particular, for k = 6. The 8 valence electron cluster 
MgNa6 (On) (see Figure 2a) has an electronic configu­
ration of type lalgltfu which is formally identical to the 
configurations Ia1It2 of Td or S2P6 of spherical symme­
try. This is a further example of a high symmetrical 
nuclear frame which, when combined with a closed-shell 
electronic configuration, gives rise to a particularly 
stable species. 

A comparison of Eb/n for three series of mixed cluster 
MgNa*, MgLi*, and BeLi* is shown in Figure 2b. Eh/n 
are relatively smoothly increasing functions with the 
number of valence electrons N. The values of E^/n for 
N - 8-10 do not differ substantially. Eb/n for BeLi* 
has substantially larger values for k > 4 than the cor­
responding curves for MgNa* and LiNa*, illustrating 
a stronger role of the Be atom in hybridization. 

Other studies on mixed Ia-IIa clusters have been 
carried out at ab initio levels111,122,124,125,187,188 or by using 
LDA approach.189 The number of isomers considered 
in these latter investigations is, however, much smaller 
than in refs 184-186, and no substantial improvement 
in the description of this class of clusters can be de­
duced. 

lb-Group Metal Clusters. It is often assumed that 
Cu, Ag, and Au atoms behave in a similar manner as 
the Ia atoms in metal-metal bond formation, due to the 
fact that the Ia and Ib elements have an ns1 valence 
configuration. This is equivalent to assume that the (n 
- l)d10 shell does not play a significant role in bond 
formation. However, some important electronic effects 
have to be taken into account in order to understand 
the limits inherent in the chemical analogy between Ia 
and Ib elements. The (n - l)d electrons do not con­
tribute to a large extent, in a direct way, to the met­
al-metal bond, which is expected to be dominated by 
the s-s interaction, accompanied by a small contribu­
tion from the np orbitals, due to polarization effects. 
However, a more precise estimate of the relative im­
portance of the role of the d orbitals may be derived 
from accurate wave functions of small lb-atom clusters. 
For instance, from the data reported by Walch et al.190 

for relativistic ECP (RECP)-CPF calculations on Ib 
trimers, the following average electron configurations 
can be obtained for Cu3 and Ag3, in their ground state 
(C2111

2B2): s(0.937)p(0.240)d(9.823) and s(0.883)p-
(0.197)d(9.920), respectively. It must be noted that even 
a small d-s-p hybridization can give significant con­
tribution to some molecular properties. In addition, the 
d-s correlation energy can be a determining factor for 
stabilizing the metal-metal bond. This is clearly proved 
by the rich literature on the Cu2 dimer (see ref 6 and 
references therein). Clearly, the necessity of considering 
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Figure 2. (a) The CI binding energy per atom EJn for neutral and charged MgNa* as functions of the number of valence electrons 
N. The HF-optimized geometries are drawn (cf. ref 186). (b) Comparison of the CI EJn for neutral and charged MgNa*, MgLi*, 
and BeLi* as functions of N (cf. refs 184 and 186). 

the Ib atoms as 11 valence electron atoms limits the 
applicability of the theoretical methods including CI 
correlation to a series of clusters of small nuclearity. 

A very appealing approach overcoming such a basic 
difficulty should be based on the description of the d-s 
and d-p correlation in terms of an "ad hoc" core-va­
lence correlation potential (CVC), allowing the inclusion 
of the (n - IJd1" shell into the core. Obviously the 

procedure, combined with ECP or RECP, is also aimed 
at reducing the SCF calculation to the s valence elec­
trons only. Recently, the problem has been investigated 
for Cun and Cun

 m by comparing the results of ECP-
CVC calculations with those of other ECP studies190 (for 
n = 1-3) in which the 3d10 electrons are explicitly 
correlated. Differences between the electron detach­
ment energies for Cun computed by the two approaches 
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fall into the range of 0.08-0.36 eV. An attempt to de­
scribe Ib atoms as one-electron systems by means of a 
suitable CVC operator has been proposed earlier by 
Flad et al. (ref 192 and references therein) in the 
framework of the so-called "energy adjusted" ECP 
method. Detailed comparison between Ia (Li, Na, and 
K) and Ib (Cu and Ag) atom clusters has been pres­
ented.192 It is important to note that the RECP 
methods can include relativistic effects only partially 
and that these effects are of increasing importance going 
from Cu to Au (see for instance refs 36,193-198). 

Relativistic scattered wave (RSW) calculations have 
been carried out by Arratia-Perez and Malli on Ag4 and 
Ag5 clusters.193,198 For the Ag8 species the total valence 
populations have been computed as equal to s(1.030)-
p(0.213)d(9.874) for axial and s(0.717)p(0.383)d(9.822) 
for equatorial Ag atoms. It is important to note that 
such values are very close to those reported above for 
RECP-CPF calculations on Ag3. However, it has been 
pointed out193 that at a nonrelativistic level the MO's 
of symmetry e' composed mainly of d atomic functions 
have a nonbonding character, while they contribute to 
the cluster stability because of their relativistic radial 
expansion. 

Accurate AE (Cu) and RECP-MCPF (Ag and Au) 
calculations using a 6s5p3d (Cu) and 5s5p4d (Ag and 
Au) basis set describing the (n - l)s2(n - l)p6(n -
IJd10TiS1 configuration have been reported190,199 for Cun, 
Agn, and Aun (2 < n < 5). The correlation treatment 
for the Xn (X = Cu, Ag, Au) clusters is applied to 11 
electrons per atom. 

The following best geometries have been found: ob­
tuse (2B2) or acute (2A1) triangles (X = Cu, Ag), rhom­
bus and planar-trapezoidal forms for X4 and X5, re­
spectively. The X-X bond distances for increasing 
cluster nuclearity are in the range 2.37-2.47 A for Cu^5; 
2.67-2.84 A for Ag3^, and are close to 2.76 A in Au4 and 
Au5. In this respect, all the lb-atom clusters considered 
have basic topologies identical to those of the alkali 
metals (see Figure 1). 

The spin density distribution in Ag5 has been inter­
preted on the basis of EPR hyperfine constants as 
strongly localized on two atoms and less pronounced on 
other centers (refs 200 and 201 and references therein). 
This suggested that the structure of Ag5 could be a 
(Jahn-Teller) distorted trigonal bipyramid. Such a 
structure is similar to that assumed in the nonrelativ­
istic scattered wave (SW)202 and RSW calculations on 
Ag5.

198 However, the MCPF results of ref 199 show that 
the distorted trigonal bipyramid and the square pyra­
mid of Ag5 are 0.31 and 0.76 eV higher in energy than 
the trapezoidal structure. The spin distribution of the 
latter is also consistent with the experimental EPR 
observations. 

The ground-state geometrical structure and stability 
of Cu4 and Ag4 clusters has been studied with RECP-
MRSDCI and RECP-CASSCF methods by Balasu-
bramanian and Feng.203 By means of relativistic CI204 

including explicitly the spin-orbit coupling operator, 
it has been shown that spin-orbit effects are small for 
Ag4 which prefers the rhombic structure. The 3B2 states 
for the rhombus and square arrangements of Cu4 lie at 
0.75 and 0.82 eV above the ground state 1A1 (D2n) at 
CASSCF level, while an MRSDCI treatment yields 1.10 
and 1.29 eV, respectively. 

For a linear arrangement of Ag 4
1^* state is found 

to be low lying. It is located 0.14 eV at the CASSCF 
and 0.38 eV at the MRSDCI level above the ground 
state 1A1 (D2H). The CASSCF method gives 10 singlet 
and triplet states of different symmetry within an en­
ergy range of about 1.0 eV. 

The Au4 tetramer has been studied with the same 
methodological approach adopted for Cu4 and Ag4.

206,206 

The best estimate of the stability of Au4 (1Ai, D2n 
rhombus) is EJn = 1.713 eV which must be compared 
with the corresponding values for Cu4 and Ag4:

203 EJn 
= 2.277 and 1.311 eV, respectively. The IPV values have 
been computed as equal to 7.8, 5.8, and 6.7 eV for Cu4, 
Ag4, and Au4. The gold tetramer is therefore markedly 
more stable than Ag4, a fact which can be completely 
ascribed to relativistic effects, such as the mass-velocity 
contraction of the outermost s orbitals. 

Rigorous and systematic quantum chemical investi­
gations of lb-atom clusters with nuclearity n > 5 have 
not yet been reported, and, most likely, cannot be 
carried out at present due to obvious computational 
limitations. At the same time, however, also a more 
approximate but systematic study covering a broader 
range of nuclearities is also lacking. In as much as the 
metal-metal bond in lb-elemental clusters is deter­
mined mainly by the s valence electrons, the above 
discussed results concerning basic cluster topologies 
clearly show a close similarity with the results obtained 
for the alkali metal clusters. 

Ilia- and IVa-Elemental Clusters. Clusters of the 
boron and carbon groups will be considered here just 
to point out the similarities and differences with the 
clusters discussed previously, which are composed of 
elements with essentially metallic character. Recent 
reviews on carbon9'14 and silicon5 clusters have been 
published. 

Overview and comments on the theoretical works 
done on Aln systems can be found in ref 2 (and refer­
ences therein). On the contrary, very few calculations 
have been reported on neutral207 and cationic208 Bn 
clusters. 

Bn (n - 4-10) clusters considered in a linear ar­
rangements should exhibit a feromagnetic behavior, a 
conclusion based on a VB analysis of the UHF wave 
function.209,210 

A recent systematic study has been carried out at the 
HF (AE)-CI level, using a double-f basis set with po­
larization function (DZ+P).211 The resulting best ge­
ometries of Bn (n < 8) are reported in Figure 3a. The 
strong tendency of the boron clusters to assume planar 
configurations is apparent with the exception of B7. 
Note, however, that the heptamer is a hexagonal pyr­
amid (C61) with the apical atom just slightly above the 
plane. This structure, therefore, is very similar to a B7 
unit of the hep lattice. B8 has a Dlh symmetry with a 
boron atom in the center of a heptagon, therefore, in 
an unusual coordination mode. EJn values ranging 
from about 1.2 eV (B2) to 3.0 eV (B8) have been com­
puted by using MRDCI or direct CI methods211 (see 
Figure 3b). 

The planar structures of Bn are consistent with the 
chemical characteristics of the boron atom which, 
having only three valence electrons, strongly prefers to 
assume an sp2 type hybridization. This is obviously true 
for B-B bonds, while in presence of electron-donor 
elements the boron can also assume a three-dimensional 
coordination. 
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Figure 3. (a) The best geometries of BJ and Bn (n < 8) clusters obtained by the HF procedure with use of a DZ+P basis set.211 (b) 
The CI binding energy per atom EJn as a function of the nuclearity n for neutral, singly, and doubly charged Bn clusters. The topologies 
of the optimized geometries are drawn. 

Ab initio calculations on Aln
212 (n = 2, ...6,13) have 

shown that up to Al5 the best geometrical structures are 
overall similar to those of Bn clusters. However, Al6 
seems to prefer the On geometry (Eb/n - 1.47) while 
the form analogous to B6 (see Figure 3b) is slightly less 
stable Eh/n = 1.25 eV). Al13 is found to be icosahedral 
(Ey n = 1.11 eV) although the D2n symmetry which is 
a planar section of an hep lattice has comparable sta­
bility (EJn = 1.08 eV). 

In the very systematic investigations carried out by 
Raghavachari et al. (ref 213, and see also ref 14 and 
references therein) the best geometries of Cn (n = 3, 
...10) clusters have been determined. The clusters with 
an odd number of atoms are linear chains, those with 
an even number of atoms have cyclic structures with 
n/ 2-fold symmetry. Thus C6, C8, and C10 assume ge­
ometries with D3n, D4n, and D5n symmetry, respectively 
(see Figure 4). However, the ground-state energy for 
the linear structure of C4 is only negligibly higher than 
for the rhombic geometry (cf. ref 214). 

Reference 5 collects and comments on the most re­
cent quantum chemical studies on Sin clusters, mainly 
carried out by Raghavachari. Figure 5 shows that 
planar forms exist only up to Si4. For nuclearities n > 

Figure 4. EJn as a function of nuclearity n for neutral Cn (n 
£ 10) clusters. Topologies of the best optimized structures are 
drawn (HF (6-31G*) and MP2-4 calculations213). 

basically built from distorted tetrahedral units. None 
of the low energy forms, however, are related with the 
bulk-type structures. 

Ilia- and IVa-elemental clusters differ substantially 
in shape from the Ia-, Ib-, and Ila-metal clusters. The 
obvious observation is that the elements of the boron 
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Figure 5. EJn as a function of nuclearity n for neutral Sin (n 
< 10) clusters. Topologies of the best optimized structures are 
drawn (HF (6-31G*) and MP2-4 calculations5). 

ground electronic state. Therefore, the p electrons (and 
p orbitals) are expected to play a determining role in 
the formation of the bonds in clusters. In addition, the 
tendency of individual elements to assume sp, sp2, or 
sp3 hybridization is the factor determining the prefer­
ence for linear, planar, or three-dimensional geometry. 
This can be clearly understood by comparing Bn and 
Aln clusters: the three-dimensional structures for the 
latter appear already for a smaller nuclearity than for 
the former. In Cn, both for linear and cyclic structures, 
a tendency of each carbon atom to interact with one or 
two nearest-neighbor atoms is apparent, which means 
the formation of multiple C-C bonds. Silicon, on the 
contrary, essentially favors structures with single Si-Si 
bonds, in which sp3 hybridization is well developed. 

In the case of Ia and Ib metals, the p orbitals act 
mainly as polarization functions, and therefore the 
three-dimensional structures become energetically fa­
vored only when a high number of metal-metal bonds 
can be formed, that is for a relatively high coordination 
numbers. The role played by the p orbitals is even more 
evident for Ben and Mgn where, starting from the Td 
tetramers, a true hybridization (and not only weak 
polarization) occurs. 

2. Cationic Clusters 

Alkali-Metal Clusters. Several theoretical studies 
have addressed the problem of ionization for Lin, Nan, 
and Kn clusters and the consequent changes in shape 
and stability. These studies aim to determine both the 
vertical (IPV) and adiabatic (IP8) values of the ionization 
potentials. Of course, the calculation of IP, requires, 
in principle, the knowledge of the optimum geometry 
of the ground state of the cationic clusters. In this 
respect, the computational difficulties met in the case 
of neutral clusters have to be mentioned once again, in 
order to emphasize that the existence of several isomers 
for the cationic clusters can make the determination of 
IP8 difficult. Studies based on HF-CI methods have 
been carried out on the Lin (n < 6)62-111'128-131'164 species, 
while refs 62 and 164 also contain results for higher 
nuclearities (6 < n ^ 10). Electronic structures of the 
cationic Nan clusters (or simply IPV values for Nan) have 
been computed in the framework of the HF131-13*"140'143 

or LSD164 theoretical methods. In Figure 1, parts a and 
b, the best geometries for the Lin and Nan species are 
shown.62,143 Several important changes in the best nu­
clear arrangements caused by the ionization process 
have to be noted. For Li3 the isosceles triangle becomes 
equilateral, and the rhombic form of Li4 transform into 
a T shape (C20). The pentamer and hexamer prefer to 
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Figure 6. Vertical and adiabatic ionization potentials (IPV and 
IP,) for Lin and Nan clusters defined as Ea (Mn) - E& (Mn) as 
functions of the nuclearity n. A comparison between the calcu­
lated IPV of Nan and the measured IP218 is in the window. For 
details see refs 62 and 143. The vertical process is assumed to 
take place at the fixed geometry of the neutral species and in the 
adiabatic process the cationic geometry is allowed to relax. 

assume a three-dimensional structure (D3n and D2d> 
respectively) while Li* and Na* preserve their exact Z)5n 
symmetry. The cationic octamer is no longer a tetra­
hedron but a capped pentagonal bipyramid. Li+ has 
the form of a centered square antiprism, while the C2̂  
structure of Na+ has slightly lower energy than the 
centered square antiprism. Finally, Li^0 is a three-
capped pentagonal bipyramid. 

As expected, due to the geometrical reconstruction 
of cations with respect to neutral clusters, the IP8 values 
differ appreciably from the corresponding IPV. For Lin, 
the differences AIP = IPV - IP8 (which are always 
positive) have values equal to 0.2, 0.4, 0.2, 0.3, and 0.5 
eV for n = 3, 5, 6, 8, and 9, respectively. In the other 
cases, AIP values are usually smaller than 0.1 eV.62 The 
absolute values of IPV and IP8, as well as the differences 
AIP, seem to be markedly dependent upon the theo­
retical approach adopted for their evaluation and in 
particular upon the basis set. For instance, in refs 120 
and 124IPV values equal to 4.33 (3.67), 3.09 (3.16), 3.79 
(3.60), and 3.05 (1.99) eV have been computed at SCF 
(CI) level by using the STO 6G basis, for the clusters 
Lin (n = 2-5), respectively. These IP values are con­
sistently smaller by about 0.6-1.0 eV with respect to the 
values of the ref 62 for n = 2, ...5 and ref 215 for n = 
2, 3. The inadequacy of the STO 6G basis is evident 
if one considers that the values of IPV computed by Rao 
et al.120,124 for Lin are even smaller than the values ex­
perimentally measured for the corresponding Nan 
clusters.12 

As Figure 6 shows the behavior of IPV and IP8 for Lin 
and Nan as a function of the cluster size is quite parallel, 
as is also the case for the Kn species studied in ref 140. 
The ionization potentials are characterized by a pro­
nounced even-odd alternation which is present both in 
the theoretical and experimental sets of data (for a 
recent review of the experimental values see refs 12,18, 
and 216 and references therein). IP values decrease 
with the increasing cluster size toward a limit which 
should correspond to the work function for the bulk 
metal (2.4, 2.3, and 2.2 eV for Li, Na, and K, respec­
tively). All the reported theoretical data lie, however, 
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considerably (about 1.5 eV) above the asymptotic value. 
This is certainly due to the relatively small nuclearities 
so far investigated. On the other hand, theoretical es­
timates are lacking for cluster sizes so large that ex­
trapolation to the bulk value would be meaningful. 
Therefore, the question "is the IP value of the cluster 
a reliable quantity to prove the appearance of a metallic 
behavior?" and "how large must a cluster be in order 
that its IP approximately matches the bulk value?" still 
remain open and difficult questions. 

As shown in Figure Ic, the A2En values computed for 
LiJ and NaJ clusters show an even-odd alternation 
which is complementary to that of neutral clusters. The 
behavior, however, can be easily rationalized in terms 
of the number of valence electrons. Both for neutral 
and cationic clusters, the A2En values are always large 
and positive for an even number of valence electrons 
and negative for odd. This means that while for neutral 
clusters processes like A2n, -*• A2n^2 + A2 are favored, 
the cationic clusters follow a fragmentation path of type 
A2m+i ~* Aan-I

 + A2. Such behavior of the alkali-metal 
clusters is predicted by all the ab initio calculations, 
which perfectly agree with the available experimental 
data based on photofragmentation experiments carried 
out on Nan and Kn species.167'172"174-*17'218 

Alkaline Earth Metal Clusters. Little has been re­
ported for ionization energies of Ila-elemental clusters 
and the stability of geometry-relaxed cationic Ben and 
Mgn, Mg2+ clusters. The works of Durand219 and Du­
rand et al.220 are aimed at analyzing and interpreting 
the collective effects following the (single and double) 
ionization processes in terms of static and dynamic 
polarization. The dynamic polarization, which can be 
taken into account by means of CI or effective VB 
treatments, overcomes the inadequacy of the estimate 
of the ionization energy based only on the SCF energy 
differences. Neutral and cationic Mgn (n < 7) have been 
studied by using an ECP (basis 4s3pld)-CVC-CIPSI 
method. Vertical and adiabatic ionization energies 
range from about 6.8 (Mg2) to 6.1 eV (Mg7). The cor­
responding IPa have values lower by about 0.4-0.8 eV 
(approximate data obtained from Figure 12 of ref 219). 
It is important to notice that even-odd oscillations of 
IP's as a function of the nuclearity, characteristic for 
alkali-metal clusters, are almost completely absent for 
the Ha clusters. In particular, the IPa quantities show 
a smooth convergence toward a value of 5.53 eV eval­
uated for a Mg17 cluster (hep unit cell). However, this 
value is considerably higher than the 3.79 eV for the 
photoelectric work function of Mg bulk. 

Reuse et al.182 reported LSD values of E^/n for Mgn 
and Mgn (n < 6), together with a computed atomic 
ionization energy IP1 of 7.63 eV (the experimental value 
is 7.64). It is easy to show that the adiabatic ionization 
potential for the rc-atom cluster obeys IP8 = n[(Eb/n) 
- (E^/n)] + IP1, where E%/n is the binding energy per 
atom for a cationic species: E^/n = [(n - I)Ex + E* -
E+]/n. Therefore the data of Table I in ref 182, allow 
us to compute the values EP8 = 6.33,5.86,6.31,5.48, and 
5.77 eV for n = 2-6 which, when compared with the 
HF-CI values of Durand et al.,219,220 seem to be con­
sistently smaller by about 0.4-0.5 eV, and, which exhibit 
a well-pronounced even-odd alternation. 

Ia-IIa Mixed-Metal Clusters. Only one systematic 
ab initio study has been reported on cationic MgLiJ, 
MgNaJ, and BeLiJ mixed clusters.184-186 The struc­
tures and stabilities Eb/n for the MgNaJ cations are 
reported in Figure 2a. It is apparent that the ionization 
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Figure 7. The adiabatic ionization potentials (IP,) for MgY* (Y 
= Li and Na) as a function of k. They are obtained as the CI 
ground-state energy difference between cationic and neutral 
species at their best geometries (cf. ref 186). 

of the neutral MgNa* clusters has two important effects. 
First, there is a strong increase in Eh/n values, even in 
the case of very small clusters (k = 1-3), which become 
quite stable species. Second, the topologies for the 
cations are nearly always coincident with those of the 
neutral clusters, a fact which was not observed in the 
case of homogeneous la-elemental clusters. An excep­
tion occurs for MgNaJ-", which assumes a Z)6n pentagonal 
structure, thus requiring an important nuclear rear­
rangement of the neutral precursor. Again, close sim­
ilarity between the topologies and a parallel trend in 
JSj/n values have been computed for the MgNaJ, 
MgLiJ, and BeLiJ series of clusters (see Figure 2b). 

The computed IP8 values for the MgLi* and MgNa/,186 

clusters are reported in Figure 7. Alternation occurs 
for even and odd k. Higher IP8 values for even k are 
reminiscent of the situation found for the homogeneous 
Li and Na clusters and confirm that systems with an 
even number of valence electrons are characterized by 
large stability. Notice that the IP8 behavior of MgNa* 
and MgLi* as functions of cluster size is parallel. 
However, the IPa's of the MgNan series have lower 
values than those of the MgLin species. 

3. Anionic Clusters 

The recent development of experimental techniques 
allows the preparation of mass-selected anionic clusters 
and their spectroscopical investigation (see section IV), 
thus opening a new route to study directly the electronic 
structure of such complex systems. Since the measured 
quantities are often closely dependent on the cluster 
shape, the spectroscopical results can offer indirect but 
precise information about the preferred geometries. 

From a theoretical point of view the Lin species are 
the simplest examples of metallic anionic clusters, and 
their study should require a relatively small computa­
tional effort. However, two important methodological 
aspects have to be pointed out. First, in order to de­
scribe correctly the electronic structure of negatively 
charged clusters a special choice of the atomic basis set 
might be necessary, especially for the smallest clusters 
in which the amount of net negative charge on each 
center is relevant. Second, the correct prediction of the 
electron affinity EA, both vertical (EAV) or adiabatic 
(EA8), requires a more extended treatment of the cor­
relation effects than for neutral clusters. In fact, the 
one-electron methods may be qualitatively correct for 
predicting ground-state properties of neutral species or 
for the evaluation of IP's but usually yield quite un­
acceptable values for EA. This is particularly valid for 
small metallic anionic clusters which are characterized 
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by low values of EA, since they possess an extra electron 
only loosely bound. 

The importance of the correlation effects for deter­
mining correct EA values (i.e. ETn energies) has an ob­
vious impact also on the procedure adopted for geom­
etry optimization, which, to some extent, should be 
carried out with correlation effects taken into account. 

Therefore, despite the chemical simplicity of the Li; 
clusters, their study with rigorous quantum mechanical 
methods may turn out to be a nontrivial task. This is 
the main reason why very few systematic investigations 
concerning la-metal anionic clusters are known. 

The study of Boustani and Koutecky133 on Li; (n < 
9) uses a small basis set 3slp augmented by a diffuse 
s function necessary to improve the estimate of the 
atomic EA. Several different conformers have been 
studied in order to identify the most stable geometries. 
Theoretical vibrational analysis has been performed at 
the RHF level to check if the stationary point on the 
BO surface is a local minimum. 

Figure la reports the trend in the Eb/n values com­
puted at the MRDCI level with the corresponding best 
cluster topologies. The E~b/n values are intermediate 
between those of neutral and cationic clusters and in­
crease regularly (without pronounced even-odd alter­
nation) in the investigated range of nuclearity. Notice 
a rapid increase of El/ n value for the trimer and a 
sharp increase for the heptamer, followed by a decrease 
for octamer. The trend is analogous to that computed 
for E£/n values and is complementary to the curve of 
Ey1Jn values for the neutral clusters. High IP or low AE 
values for Li8 indicate a particular stability which 
characterizes the clusters with eight valence electrons. 
Note, however, that Liv is no longer a pentagonal bi-
pyramid, but assumes a structure of C&, symmetry (see 
Figure 3 of ref 62), which is the second most stable form 
for the neutral cluster. The Dy, structure presents im­
aginary frequencies. The Li8" cluster has a tetrahedral 
form, with the electronic configuration of type 
Ia2It8^aJ. Other structures derived from the fee lattice 
are, less stable than the Td form. 

Akeby et al.191 have reported a theoretical SCF-CI 
study on Cu; (n < 10) in which the copper atom is 
treated as a single valence electron atom, but all the 
core-valence interaction terms have been included in 
the ECP or CVC operator. 

The best cluster geometries found in ref 191 do not 
coincide, in general, with those reported in ref 133 for 
Li;. In particular, Cu^ is found to be a rhombus, 0.25 
eV more stable than the linear form, which seems to be 
the best one for Li;. CuJj assumes the form of a bicap-
ped tetrahedron (C1) instead of the bipyramidal struc­
ture found for Li8. The largest clusters investigated (n 
- 7-10) also differ in the preferred structures from the 
Li; clusters. It has been pointed out191 that the core-
valence 3d-4s correlation considered by means of the 
effective CVC operator is responsible for an important 
stabilization of the planar or three-dimensional struc­
tures with respect to linear ones. In fact, the linear 
structures (for instance, for Cu )̂ are found to be pre­
ferred in absence of core-valence correlation. On the 
basis of these results, the claim has been made that 
some discrepancies between the best geometries for Cu; 
and Li; could be due just to the fact that standard 
HF-CI calculations on Li;133 do not consider the core-
valence correlation effects. This problem, however, 
should be more carefully investigated, since the very 
accurate results concerning the dimer147 do not show 

large CVC effects for lithium. Ab initio ECP calcula­
tions with and without CVC corrections for Na^ yield 
in both cases slight preference for the linear geometry 
with respect to the rhombic ones. Other aspects con­
sidered in the study of ref 191 will be reviewed in sec­
tion IV.C.3, in the context of electron-detachment 
spectroscopy. 
4. Consequences of Shell-Closing and Jahn-Teller 
Effects for Cluster Properties 

Several specific features of the geometrical and 
electronic structure of the elemental clusters presented 
in the previous sections can be interpreted and ration­
alized in terms of general and simple rules. 

Elemental clusters, especially the larger ones, have 
a pronounced tendency to assume very compact and 
symmetrical structures. As a consequence of com­
pactness and symmetry of the nuclear frame, degen­
eracies of the one-electron energy levels occur. Since 
the cluster geometries necessarily belong to subgroups 
of the spherical group, it is obvious that the actual 
ordering and degeneracy character of the one-electron 
levels can be correlated with the corresponding quan­
tities of an idealized superatom. In fact, in previous 
sections examples have been presented of electronic 
configurations of clusters (expressed in terms of irre­
ducible representations of the finite groups) which can 
be easily translated into an atomic-like notation. This 
allows for a direct correlation between results based on 
quantum molecular methods (HF-CI or DF methods) 
and those obtained from the spherical jellium approach. 
The existence of highly symmetrical clusters (and 
molecules) is possible only in the absence of Jahn-Teller 
distortions, a condition which is certainly fulfilled for 
systems with a number of electrons sufficient to fill 
completely the sets of degenerate one-electron levels. 

The existence of "closed-shell" systems which exhibit 
particularly high stability is a fact well recognized in 
the chemistry of molecules and in particular for tran­
sition-metal complexes.17 

Such elementary principles governing the stability of 
a high symmetric molecular system are expected to be 
approximately valid also in the case of clusters which 
do not exhibit exact symmetry. In the presence of high 
compactness and approximate symmetry, the one-
electron energy levels are expected to be almost de­
generate. The particular stability of clusters charac­
terized by fully occupied degenerate levels is, of course, 
also one leading feature of the spherical jellium theory. 
In this context, such a phenomenon is named "shell-
closing"76,101,221*222 and can occur only for specific num­
bers of electrons (magic numbers). Notice, that the 
magic numbers larger than 2 and 8 depend upon the 
particular assumptions made in defining the effective 
potential (cf. section II.A.4). Molecular quantum me­
chanical approaches are able to predict in a very natural 
and general way why a cluster of given nuclearity and 
symmetry of the nuclear frame should possess high 
stability. Moreover, the same theoretical approaches 
predict the nature of the geometrical distortions, in 
agreement with the Jahn-Teller (JT) theorem. A very 
well known example of JT instability is provided by the 
trimers of Ia and Ib metals for which the D311 equilateral 
structure is a cusp on the BO surface. The JT D3/, -* 
C2„ distortion leads to two possible stable structures: 
an acute and obtuse triangle. The determination of the 
exact energy ordering of the two conformers may re­
quire the use of elaborate computational treatments 
(see section IV). In an analogous fashion, it is easy to 
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predict that a tetrahedron, trigonal bipyramid, or oc­
tahedron cannot occur as best forms for alkali-metal 
clusters of nuclearity 4, 5, and 6, respectively. Oppo­
sitely, the ionization of one electron, leading to the 
cationic clusters, can remove the JT instability, leading 
to species, which are more symmetrical than the original 
neutral one.62 This is the case, for instance, of the 
nuclearities 3, 5, and 9. On the contrary, it is clear that 
the ionization of highly symmetrical (closed-shell) 
clusters, like Li8 (Td), produces a cationic species with 
seven valence electrons with much lower symmetry (C8, 
capped pentagonal bipyramid). 

A more complicated situation occurs for anionic 
clusters of the Ia- and lb-group elements. The structure 
of the cluster deviates from an idealized highly sym­
metrical one not only due to JT distortions but also 
since relatively low compactness of clusters minimizes 
the Coulomb repulsion due to the excess of negative 
charges. Large net negative charges are usually located 
on the exposed atoms with low coordination number. 
This can easily explain the existence of linear forms for 
trimers, tetramers and pentamers of the la-metal 
clusters. 

The shell-closing phenomenon is certainly a relevant 
factor for the stability of a cluster. However, due to the 
results from jellium-type calculations its importance has 
been overemphasized. For larger clusters, the addi­
tional {n + l)-th atom added to a compact cluster with 
n atoms can lower the average coordination number 
reducing the cluster stability due to a purely geometrical 
effect as experimentally found by Martin et al.77 and 
pointed out by Koutecky and Fantucci in the work 
published in ref 20. 

In fact, the Ey,/n curves determined by molecular 
quantum methods (HF or DF) (see Figure 1, parts a and 
b and Figure 2, parts a and b) do not exhibit very 
pronounced maxima for clusters with "magic numbers" 
of valence electrons. On the contrary, Ey,/n seems to 
be a fairly smooth function of n. This is a quite general 
tendency, which is characteristic for clusters of all the 
elements so far studied with rigorous theoretical models. 
For example, Eb/n for neutral alkali-metal dimers and 
octamers exhibit maxima which are also found for 
cations and anions with two and eight valence electrons. 
The clusters with three and nine valence electrons al­
ways have slightly smaller Ey,/n than those with two 
and eight electrons, respectively. Relatively high values 
of Eh/n have also been calculated for Li20 and Na20-
These results are in full agreement with the qualitative 
analysis of section II. A.4 and with the predictions of the 
jellium model. Notice, however, that although the 
maxima of the EJn functions are not very pronounced, 
the quantities A-En exhibit large maxima not only for 
clusters with two and eight but also for those with four 
valence electrons. The examples of mixed clusters 
MgLi*, MgNa*, and BeLi* also show more pronounced 
even-odd alternation for A2Ek than for EJn. Gener­
ally, size-dependent functions of EJn and A2En ob­
tained from quantum chemical investigations contain 
additional information with respect to the results ob­
tained from simple models. The deformation of the 
jellium sphere into spheroidal or elipsoidal shapes in­
troduces even-odd alternations of the EJn and A2En. 
The argument is more or less analogous to the ration­
alization of the cluster shape deformation due to the 
pseudo-Jahn-Teller effect. The jellium theory assumes 
that the appropriate model of the tetramer and the 
pentamer is a prolate and an oblate spheroid, respec­

tively. The quantum molecular calculations predict for 
both clusters planar structures. The overall predictions 
of the jellium model for the structural deformation of 
clusters with nuclearity smaller than 10 are rather ar­
bitrary (cf. section II.A.4). 

It is natural to raise the question about the intrinsic 
nature and origin of the high abundancies experimen­
tally observed in mass spectra of alkali-metal clus­
ters.70'221,223"226'170 The occurrence of maxima in the 
recorded intensities for specific nuclearities did con­
tribute essentially in designing interpretative models, 
including magic numbers. The following question, 
however, must be answered in a precise way: "are the 
high abundances of clusters with magic numbers of 
valence electrons due to the intrinsic stability of the 
parent species An or are they due to accumulation of 
stable Af species generated from dissociation processes 
of clusters of higher nuclearity?" Clearly, no easy an­
swer can be obtained from the analysis of experimental 
data concerning clusters characterized by a relatively 
high internal temperature (vibrationally "hot" clusters). 
Recent measurements carried out on very cold clus­
ters226 have pointed out, in agreement with ab initio 
results, that the emphasis placed on the shell-closing 
phenomenon as being the factor principally responsible 
for the high abundancies should be reconsidered at least 
for small clusters. 

C. Physical Properties Dependent on Cluster 
Size and Cluster Shape 

As discussed previously, Ey,/n is a typical quantity 
which depends both on the shape and the size of clus­
ters. The computed curves for EJn, although yielding 
rich physical information, cannot be related in a direct 
way with any of the quantities experimentally acces­
sible. On the other hand, experimental data for IP and 
EA values can be obtained with a good accuracy and 
for a broad class of nuclearities. Although the depen­
dence of these quantities upon cluster size is enlight­
ening, the information about cluster shape does not 
emerge from experiments. Of course, only rigorous 
quantum mechanical calculations based on Hamilto-
nians in which the positions of the individual nuclei are 
considered can represent a reliable tool for investigating 
the dependence of cluster properties on cluster shape. 
In this sense, not only the difficulties inherent in the 
assumptions of a spherical positive background can be 
overcome, but it is possible to point out to which extent 
the cluster shape is important for specific properties. 
In fact, it is widely recognized that a spherical jellium 
approach fails to yield a complete and qualitatively 
correct description of all the cluster properties and for 
this reason, the spheroidal jellium theory73 has been 
introduced. 

For simplicity, the following discussion will refer only 
to the la-elemental clusters. IP and EA values for al­
kali-metal clusters show a clear tendency toward lower 
and higher values, respectively, when the nuclearity 
increases. The trend is evident, in spite of the even-odd 
alternation, as already discussed. In the case of Lin and 
Li+,62 the number of different isomers identified as local 
minima is sufficiently high to allow a discussion of the 
shape-dependence of the EPa values. For the trimer the 
D3n and £)„„ forms of LiJ are associated with IP8 values 
which differ by about 0.69 eV. For tetramer only one 
stable (C2,,) isomer has been found, while for the pen-
tamers the two forms of Li^ are nearly degenerate, with 
IPa values differing only by 0.03 eV. For n = 7-9 the 
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corresponding differences are 0.23, 0.13, and 0.30 eV. 
Thus, in several cases, different isomers have IPa values 
characterized by differences definitely larger than the 
estimated experimental error, which is, for instance, in 
the case of Nan clusters often smaller than 0.1 eV (see 
refs 8 and 256 and references therein). Therefore, the 
ionization potential can be considered in principle as 
a quantity useful for selecting among different possible 
cluster shapes. This, of course, is true in particular for 
small clusters, while in the case of large species one can 
expect that several isomers exist with similar com­
pactness, symmetry, and stability both for neutral and 
cationic forms with corresponding very similar values 
OfIP4. 

Analogous considerations can be applied also to the 
measured EA values. In this case, the combined use of 
experimental and theoretical results seems to be a very 
powerful tool for establishing (or at least suggesting) 
possible structures for the ground state of the anions. 
The EA values are often obtained from photodetach-
ment experiments, in which transition energies to ex­
cited states of the neutral clusters are also measured 
(cf. section IV.C.l). The importance of rigorous quan­
tum mechanical treatment in this context will be dis­
cussed in details in section IV. 

A physical quantity directly connected with the 
electronic charge distribution in clusters in the ground 
state is the static dipole polarizability, which has been 
measured by means of molecular beam deflection ex­
periments for Nan and Kn clusters (n < 4O).227 From 
a theoretical point of view, static dipole polarizabilities 
can be computed employing the coupled Hartree-Fock 
theory or the finite field approach. The latter allows 
for the determination of the diagonal components of the 
polarizability tensor {axx, ayy, a„) via SCF or CI cal­
culations repeated for different values of perturbing 
homogenous electric field. An analogous procedure can 
be employed in connection with LSD calculations. In 
any case, the determination of reliable values for a 
requires the choice of sufficiently flexible basis set, since 
obviously in this case the description of polarization 
effects is essential. 

Calculations of a = (a„ + aw + a„)/3 for alkali-metal 
clusters have been carried out also in the framework of 
the jellium theory (see, for instance refs 93,228 and 229) 
but the results from quantum molecular models are 
more relevant for a discussion of the shape dependency. 

LSD methods have been employed to compute a or 
the associated value 8 = an/noti (an and ax are the 
polarizability values for the n-atom clusters and the 
single atom, respectively) for a series of different iso­
mers of Nan clusters.151"163 

In the latter studies, the authors have explicitly stated 
that a is a quantity particularly sensitive to variations 
in the cluster shape, especially for small nuclearities. 
Only for specific cluster shapes which are the best 
ground-state geometries or energetically close lying 
isomers, the theory yields values whose trend is parallel 
to the observed trend. The results of Mullet et al.151"163 

have been recently substantially confirmed by the re­
sults of SCF and CI calculations carried out on Lin (AE) 
and Nan (ECP-CVC) clusters.230 In Figure 8 the results 
for Lin species are reported and compared with the 
experimental data of ref 227. Even-odd alternations 
are pronounced for the smallest clusters, while the av­
eraged polarizability per atom 8 becomes a smooth 
function for higher nuclearities, in agreement with the 
experimental finding. 
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Figure 8. A comparison between calculated static polarizabilities 
for Lin as a function of the cluster size230 and the measured 
polarizabilities for Nan.

227 The CI values for the static polariz­
abilities a are obtained by using the Hamiltonian in which a 
homogeneous external field E is considered, from the expression 
E(E) = E0- 1I0E - (1Z2)EaE, where E0 is the energy of the 
unperturbed system and the dipole moment is n(E) = Mo + <*E. 

The cluster shape has even more pronounced effects 
on the components a„ (i - x, y, z) than on a values. For 
instance, the components of a for acute and obtuse 
forms of Na3, reported in ref 151, are axx = 50.6, 78.8; 
ayy = 46.6, 74.3; a„ = 34.3, 36.0 A3, respectively (xy is 
the plane of the nuclear frame). 

For Nan, pairs of isomers have a values equal to 76.3, 
92.3 (n = 4), 100.3,112.7 (n = 6), 111.7,120.0 (n = 8), 
and 136.7,135.3 A3 (n = 9). The differences, seem to 
decrease with the increasing nuclearity showing that 
large clusters, although having different shapes, are 
characterized by electronic distributions which respond 
in a similar manner to an external perturbing electric 
field. 

D. Nature of Interatomic Interactions in Small 
Elemental Clusters 

The study of the nature of the atom-atom interaction 
as characteristic of the elemental clusters can, in prin­
ciple, be carried out on the basis of the analysis of the 
electron density of the associated wave function, de­
termined at the HF-CI or LSD level of theory. Notice, 
however, that such an analysis has been carried out for 
alkali-metal clusters, while for other elements the 
analysis is limited only to the gross atomic and orbital 
populations. 

Mulliken analysis has been reported, for instance, for 
Lin and Lin clusters62 pointing out that the p functions 
of Li are definitely important: in the series Li3-Li9 their 
(average) occupancy on each center ranges from 0.14 
to 0.25. Therefore, the p functions cannot be considered 
simply as polarization functions, since they are involved 
in a quite important hybridization process. 

The role of the polarization-hybridization functions 
in the electronic wave function of alkali-metal clusters 
as well as of other elemental clusters has been exten­
sively discussed in several papers.130,220,231"233 It has been 
concluded that the stabilizing effect of the p orbitals 
is essential in ab initio treatments, but it can be also 
described by a basis set including only s functions, 
provided that use is made of an appropriate model 
Hamiltonian. In addition, the analysis of the CI wave 
function in terms of VB structures, revealed the ex­
istence of important contributions from ionic struc-
tures.115'116'234"237 
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Figure 9. Difference one-electron density (DOD) maps for Lin (n = 5-9). The coordinate axes define the planes of cuts displayed. 
The full and broken lines represent constant positive and negative values of DOD, respectively (cf. ref 62). 

Worth mentioning are the studies62 based on the 
analysis of both the total electron-density maps and 
distortion-density maps (obtained by subtracting out 
the contributions of the constituent atoms, assumed to 
be spherical) for a series of Lin clusters. An accumu­
lation of electron density in the centers of triangles in 
the planar forms of Li4, Li6, and Li6 is apparent Also 
in the case of larger three-dimensional clusters, no ev­
idence has been obtained of accumulation of charge 
between pairs of atoms, which would correspond to the 
formation of a conventional two-center bond (cf. Figure 
9). Therefore, it is possible to conclude that Lin clusters 
are characterized by delocalized distribution of all the 
valence electrons. The SCP-MRDCI wave functions of 
Li4, Li6, and Li6 have been analyzed by Gatti et al.160 

on the basis of the topological approach proposed by 
Bader.238-240 The study did confirm the existence of 
maxima of electron density at the centers of triangles, 
a situation markedly different from that of normal 
molecules, for which the density maxima occur generally 
only at the nuclear positions. According to Bader's 
theory, the maxima at the nonnuclear positions have 
to be characterized as "nonnuclear'' attractors, i.e., as 
central points of basins (quantum mechanical subsys­
tems fulfilling, for instance, the local virial theorem) 
which essentially contribute to the cluster stability. In 
fact, no direct Li-Li bonds have been identified, and 
the bonding interactions must be classified essentially 
as three-center bonds. This conclusion is basically 
identical with that reached by Hall,137 in a study of Na4, 
Na6, and Na6 based on the path-integral approach. 
Finally, the existence of unusual metal-metal interac­
tions caused by electrons not localized according to the 
usual chemical schemes has also been pointed out on 
the basis of GVB studies of alkali-metal clusters117,118 

and aluminum clusters.241,242 

Concerning the electron charge distribution in clus­
ters, it is important to emphasize a fact which is entirely 
evident in a molecular or chemical context, but which 

is often interpreted in a completely different way in the 
framework of the spherical jellium theory. 

In the case of highly symmetrical clusters the charge 
distribution assumes a symmetrical shape, which is 
sometimes close to spherical. For instance, in the case 
of the octamers of the alkali-metal clusters which are 
composed of two tetrahedra, the charge density is 
composed of two quite distinct shells (see Figure 9) 
associated with the atoms belonging to the inner and 
outer tetrahedron, respectively. A situation entirely 
equivalent from a topological point of view is expected, 
for instance, in the case of the octahedral clusters MgLi6 
or MgNa6. It is obvious that the shape of the charge 
density is a direct consequence of the symmetry of the 
assumed electron-nuclear potential. Spherical or very 
symmetric potentials give rise to spherical or very 
symmetric densities. This clearly does not mean that 
nearly spherical densities necessarily have to be asso­
ciated with potentials in which the actual positions of 
the nuclei are irrelevant. Thus, the claims that 
spherical electron densities for alkali-metal clusters 
support the validity of the jellium model have to be 
carefully reconsidered. 

E. Comparison of Concepts and Results 
Obtained from Quantum Molecular Methods and 
Other Approaches 

As commented in previous sections, the different 
theoretical methods applied to the study of the elec­
tronic structure of clusters in their ground state are 
either quantum molecular methods, based on HF (or 
HF-CI) or DF (LSD) theories, or methods based on 
jellium (spherical or spheroidal) models. The methods 
belonging to the first group are equivalent regarding the 
adopted potential created by the nuclei (point charges 
at given spatial positions) and differ essentially by the 
assumed form of the exchange-correlation potential. 
The HF-CI methods are able to give an accurate 
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many-electron wave function while DF approaches are 
basically one-electron models. Despite these differ­
ences, the HF-CI and LSD methods, in general, are in 
agreement at least in the predicted trend of the com­
puted quantities, such as the most favorable cluster 
geometries, cluster stability, and ionization potentials. 
Of course, the two groups of methods may be in dis­
agreement as for the absolute values of some cluster 
properties, especially when the LSD methods are ap­
plied without self-interaction correction (SIC). It is very 
well known, for instance, that SIC can strongly reduce 
the values of the computed binding energy, which is 
usually overestimated by the LSD methods. 

More difficult are the comparisons between the 
quantum molecular methods and the jellium approach, 
due to the large differences in the basic assumpt:ons. 
The only point in which all the methods are qualita­
tively in agreement concerns the "spherical" clusters 
and their properties.70,93,123,132,243"250 As discussed above, 
the agreement is due to the high symmetry of the nu­
clear potential. Notice, however, that also in this case 
the jellium model always overemphasizes the stability 
of the closed-shell structures. For clusters with a 
number of valence electrons different from one of the 
magic numbers, the comparison between methods using 
molecular and jellium potentials is difficult, since the 
specific features of the results depend in this case just 
on the departure of the actual potential from spherical 
symmetry. The spherical jellium models have been 
originally justified by the observation that alkali-metal 
clusters are "soft", easily melting species, for which the 
effective nuclear positions are irrelevant, especially at 
high temperature. However, the molecular dynamic 
studies (LSD-QMD)167 indicate that shapes of clusters 
with closed electronic shells (8 and 20) deviate from the 
sphericity with increasing temperature. This finding 
does not support a spherical liquid droplet picture. Also 
other examples of jellium-type calculations reported in 
the literature do not always seem to conform to the 
basic hypothesis of complete atomic mobility. For in­
stance, large clusters composed of Ila-group elements 
are characterized by higher stability than the corre­
sponding clusters of the Ia group. The three-dimen­
sional structures for Be or Mg clusters seem to be 
largely preferred over planar structures also in the case 
of very small systems. As a consequence, some of the 
features of the Ila-group clusters are expected to be 
more shape dependent than in the case of alkali clus­
ters. Jellium calculations on Mg clusters have been 
reported245'74 with the aim of discussing shell-closing 
properties, stability, and fragmentation channels. The 
problem of the electronic structure of the mixed Ia-IIa 
clusters has also been addressed by the jellium theo­
ries.251,252 These clusters assume in general a very 
compact structure with the Ha atom at the center of 
the regular polyhedron. Therefore, the high symmetry 
of the cluster would suggest that a jellium approach is 
applicable. However, the strong Ia-IIa interaction, 
which is maximized only in the case that the Ha atom 
occupies a central position, makes the cluster structure 
much more rigid than that of the alkali metals, in 
contrast with the jellium potential assumption. 

Finally, the reliability of the jellium approach for the 
study of clusters composed of heavy metals such as Al 
and Pb,74,101,253 Cu,254 and Ag254,256 has never been dem­
onstrated. 

IV. Excited-State Properties 

A. Experimental Spectroscopic Methods 

In the last 5-10 years there has been a rapid devel­
opment of the optical response spectroscopic techniques 
which aim to probe the size-dependent structural 
properties of clusters via their electronically excited 
states. They represent a more direct tool for deter­
mining the characteristic electronic and geometrical 
features of clusters than the previous measurements of 
the properties such as molecular beam abundanc-
ggj.12,70,71,223224 ionization potentials (see for example refs 
216 and 256), polarizabilities (Nan

227 and Aln
257), and 

chemical reactivity18 (section III.B,C). The information 
about structures has been available from the ESR 
studies258 in matrices, with obvious limitations such as 
no direct information about the particle size and the 
influence of the matrices (for example alkali-metal 
trimers259 and heptamers160). The first gas-phase ab­
sorption experiments were most extensively performed 
on metal trimers by laser-induced fluorescence (LIF) 
(Na3,

260 and Cu3
261,262) and multiphoton ionization 

(MPI) (Na3,
263,264 Cu3,

265 Ag3,
266 Al3,

267 Li3,
268 LiNa2, and 

Li2Na). The interpretation of absorption spectra of 
trimers in terms of the dynamical Jahn-Teller model 
will be discussed in section IV.C.2. However, both 
techniques, LIF and MPI, have not been successfully 
applied to larger clusters in part due to the dissociative 
nature of their excited states. This has been recently 
overcome by the two complementary techniques of 
photodetechment10,11,13,269"276 and photodissociation277"283 

spectroscopies, applied to negative ions and to neutral 
or positively charged cluster beams, respectively. Both 
techniques are capable of accessing a large part of the 
spectrum of excited states, in principle, for any cluster 
of any element or combination of elements, and they 
take into account the specific particle size. 

In the framework of photodetachment spectroscopy 
two complementary lines have been followed by using 
pulsed11,275,284 and continuous10,271 ion sources. The 
photodetachment spectra using the latter technique, 
which has higher resolution (10 meV) but is not ap­
plicable to the far and extreme ultraviolet, have been 
recorded for Ib clusters: Cun (n = 2-10),269"271 Agn (n 
= 2-1O),271 and Aun (n = 1-5)271 and for alkali-metal 
clusters: Na; (n = 2-5,7), K; (n = 2-7), Rb; (n = 2-4), 
Cs; (n - 2,3), (NaK)-, (Na2K)", (KRb)", (KCs)" (K2Cs)", 
and (RbCs)".10,276 The pulsed technique has been widely 
used, and numerous spectra have been measured for Ia, 
Ib, Ilia, and IVa clusters which are reviewed in refs 9, 
11, 13, 285, and 286, From the photodetachment 
spectra the optically allowed and forbidden states of the 
neutral clusters are accessible but are obtained at the 
ground-state geometries of the anions. If the geometries 
of small neutral clusters differ from those of their an­
ions, the structural information about the neutral 
species from the spectra is not direct. Also, relatively 
small portions of the spectra of neutral clusters are 
accessible through photodetachment measurements, 
since they are recorded summed with the vertical de­
tachment energies (VDE), defined as the energy dif­
ference between the ground states of the anion and the 
neutral cluster at the geometry of the former. Never­
theless, ultraviolet photoemission spectroscopy (UPS) 
with photon energy of 7.9 eV has been successfully 
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applied (for example to CjJ0
9 and very recently, to the 

resolution of the d band for Cun
287). Both powerful 

techniques, pulsed and continuous, produced large 
amounts of data, such as electron affinities EA and 
VDE corresponding to the onset of intensities and to 
the first maximum in the spectrum, as well as additional 
bands corresponding to excited states of the neutral 
clusters. Characteristic fingerprints have been found 
as a function of the cluster size (e.g. oscillatory behavior 
of EA) and the demand for theoretical interpretations 
became enormous. There are two major difficulties with 
this type of experiments: (i) the clusters produced are 
not supercold, and (ii) there is, in general, no selectivity 
among the cluster geometries studied. Difficulties on 
the part of the theory are also large, since there are 
many isomers to consider, and in the case of larger 
clusters the density of excited states becomes very large 
and prohibitive for the molecular treatment. Never­
theless, through the interplay between theory and ex­
periment, reliable structural information about differ­
ences and similarities between anionic and neutral 
clusters can be obtained at least for Ia and Ib clusters. 

The theoretical interpretation of the photodetach-
ment spectra will be discussed in sections IV.C.l and 
IV.D.l. Several lines have been followed: (i) electron 
affinities have been determined by using simple qual­
itative highest occupied and lowest unoccupied molec­
ular orbitals (HOMO-LUMO) considerations based on 
the jellium model (e.g. for Cu;),272 (ii) more sophisti­
cated quantum chemical approaches have recently been 
successfully employed, ranging from semiempirical to 
ab initio versions for EA of Si;,288 C;,289"292 

Cu;,191,199,293"294 and (iii) complete quantum chemical 
interpretation of all bands of photodetachment spectra 
obtained by using a continuous beam has been limited 
until now to small alkali-metal clusters.144,162,296 

Photodissociation spectroscopy offers a good oppor­
tunity to address the structural properties of clusters 
directly and large portions of optically allowed transi­
tions have been recently covered. The first spectra of 
tetramers Na4,

279 CuJ,281 and Li4
283 have been very re­

cently recorded by photodepletion, exhibiting a rich 
pattern. In the case of Cu4

 281 and Li4
283 the vibronic 

structure of several electronic transitions has also been 
resolved. The complete quantum molecular interpre­
tation of absorption spectra of alkali-metal tetramers 
will be discussed in section IV.C.2. The first photo-
dissociation experiments on clusters larger than tet­
ramers have been carried out for Nan (n = 8, 9,10,12, 
16, and 20),277,298,297,298 but with low resolution and only 
for selected visible wavelengths, so that some spectral 
regions have not been covered. These measurements 
have been interpreted in terms of classical collective 
electronic oscillations in spherical, spheroidal (or elip-
soidal) metal droplets, since they exhibited from one 
to three broad maxima (cf. section IV.D). In the case 
of cationic clusters Kn (n = 9,21)278 a pronounced single 
intense transition was observed, resembling a "giant 
resonance" found for the interaction of atomic nuclei 
with electromagnetic radiation. Similarly the photo-
absorption spectra of two closed-shell clusters Cs8 and 
Cs10O

282 have been interpreted as due to plasmon or 
plasmon-enhanced excitations. The high-resolution 
spectra for Nan (n = 3, 4, 8, 20),279,280,308 Lin (n = 
2_8))283,299,300,301 ^ Li^Nax

302 also became available, 
covering a good part of the spectral region. These ex­

perimental findings called for theoretical interpretation 
using more sophisticated quantum molecular mod-
el8ji58,i62,30o,30i,353-307 s i n c e t h e presence of quantum ef­
fects279,280,308,309 became evident. 

B. Methodological Requirements for Application 
of Quantum Chemistry 

One of the early successes of the quantum mechanical 
ab initio CI methods has been the determination of the 
spectroscopic properties of small molecules such as 
diatomics and triatomics.310 The study of vertical ex­
citations (i.e., in the neighborhood of the ground-state 
equilibrium geometries; so called spectroscopic minima) 
as well as geometrical relaxations in the excited states 
(energy potential surfaces) important for photochemical 
processes311 put large demands on the computational 
tools. After gaining some experience, these methods 
have also been successfully applied to larger systems. 
Two factors determining the accuracy of the calcula­
tions are the choice of the atomic-orbital basis set and 
an appropriate treatment of the correlation effects. 
These requirements are much more severe for adequate 
description of excited states than in the case of the 
determination of the ground-state properties. This is 
true not only from the numerical point of view but also 
for extracting the qualitative information from the 
nature of the wave functions of the excited states, which 
is crucial for understanding the underlying principles 
governing the physical and chemical processes involved. 

This is particularly important for the study of excited 
states of clusters. The difference in the nature of 
chemical bonding between small clusters and "normal" 
molecules and solids, which is present in the electronic 
ground state, is even more pronounced in the excited 
state. Since the study of the latter should serve for 
characterization of mostly yet unknown specific struc­
tural and electronic properties for the given size of the 
cluster, in connection with optical response experiments 
which are in progress, the approximations involved in 
the description of excited states should be kept at a 
minimum. After knowledge about the leading factors 
determining these characteristics is gained, the nature 
of the methodological simplifications acceptable in 
models applicable to larger clusters can be set. 

The use of ab initio CI methods for the description 
of excited states is limited to small clusters with a small 
number of valence electrons. These limitations are 
connected with the fact that the calculation of one 
vertical spectrum for the ground-state equilibrium ge­
ometry of a cluster involves determination of individual 
electronic (quantum mechanical) excited states with 
given multiplicity and symmetry. This implies that the 
number of states in the energy regime of interest, which 
is several eV, can be large, and the balanced description 
of the close-lying excited states of the same symmetry 
and multiplicity is not an easy task. Therefore the ab 
initio CI methods have only recently been applied to 
the study of a number of excited states of s^electron 
metal clusters larger than trimers.158,162,296,300,301,303"306 

Apart from their predictive power, these calculations 
should serve as a guidance for the other approaches, 
such as the ab initio response theory or the ab initio 
random phase approximation (RPA). 

The Appropriate Atomic Orbital Basis Set. The AO 
basis sets are usually determined to yield an optimal 
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energy for an atom, but the polarization functions are 
added to account for the molecular environment, and 
the basis can be extended by adding the functions 
which are important in correlation treatments (there 
is not always a strict distinction between polarization 
and correlation orbitals).310 Numerous AO basis sets 
are tested, mainly for the ground states, and there are 
many studies about the influence of polarization and 
correlation orbitals on the total energies, dissociation 
energies, bond lengths, and other ground-state prop­
erties. (The influence of polarization p functions on the 
stability of Li clusters has been discussed previous­
ly.1,148) The results of these investigations are also valid 
in general for excited states, and moreover, the corre­
lation orbitals might be even more important, since 
reliable determination of transition energies requires 
adequate calculation of the difference in correlation 
energies for different states. However, fortunately, in 
a molecule or a cluster at the equilibrium geometry, or 
close to it, there are many molecular orbitals with ad­
equate nodal properties which can mimic at least the 
angular part of correlation orbitals. Therefore, it is not 
always necessary to introduce many additional corre­
lation functions in order to construct a reliable basis set 
for the treatment of the excited states, especially if 
vertical spectra at equilibrium geometries are calcu­
lated. Some diffuse functions accounting for the radial 
contribution of correlation orbitals might be necessary. 
In the case that the dissociation limits or the whole 
potential surfaces are needed, the additional correlation 
functions might be essential for the description of 
separated parts of the system. Moreover, in many cases, 
for the reliable description of excited states, orbitals 
with higher quantum numbers occupied in excited 
states but not in the ground states, i.e., "spectroscopic 
orbitals" have to be added.310 The exponents of Ryd-
berg orbitals are listed in the literature, but in many 
cases it is reasonable to optimize spectroscopic orbitals 
for the excited states of interest. 

The choice of the AO basis set is closely related to 
the compromise between accuracy and feasibility. It 
is also fortunate that sometimes the description of 
spectroscopic properties of dimers is more difficult than 
that of larger systems and therefore calculations on 
dimers can also serve as tests of the quality of the AO 
basis sets. For example, in the case of Li and Na, 
calculations of the excited states of dimers have been 
carried out by using relatively large basis sets in the CI 
treatments prior to the calculations of excited states of 
alkali-metal clusters (cf. refs 303 and 304 and references 
therein). It has been possible to obtain CI results of 
comparable accuracy and in good agreement with the 
experimentally available spectroscopic constants for 
dimers by using considerably smaller basis sets: 
(13s3pld/6s3pld) for Li303 and (12s8pld/7s4pld) for 
Na,304 modifying the standard basis sets by adequate 
contractions, splitting the exponents of p functions to 
reach the optimal A£(2S-»2P) atomic excitation ener­
gies, and adding one d function. These basis sets have 
then been employed for calculations of excited states 
of Lin

303-300-301 and Nan
304-162 and of mixed LixNay

306 

clusters. 
Even these basis sets which are not considered to be 

sufficiently large for exact treatment of very small 
systems become impracticable for the treatment of 
excited states of larger clusters, which are expected to 

have interesting characteristic optical response prop­
erties (for example alkali-metal clusters with 8-20 
electrons). This is mainly due to the very large CI space 
produced by more than 200 one-electron functions if 
several states of the same symmetry have to be deter­
mined, and, therefore, an inevitable severe truncation 
of the CI expansion might introduce a substantial lack 
of accuracy. Therefore the use of the nonempirical 
effective core potentials (ECP), corrected for core va­
lence correlation (CVC)146 even for alkali-metal clusters 
such as Nan and Kn (which has been successfully used 
for ground-state properties) can be useful for the de­
scription of excited states if sufficiently small AO basis 
sets yielding acceptable accuracy are designed. For 
example, (4s4p/3s3p) basis set for Na and (6s3p/4s3p) 
for K yield atomic properties (ionization potential, static 
polarizability, and excitation energies) in good agree­
ment with the experimental and with the ab initio 
all-electron values. The calculated and experimental 
values (in parentheses) of ionization potentials of Na, 
IP (2S) = 5.136 (5.139), IP (2P) = 3.042 (3.035), and of 
K, IP (2S) = 4.339 (4.340), IP (2P) = 2.719 (2.726) eV 
are in good agreement.145 

The appropriate description of anionic clusters re­
quires the addition of some diffuse functions, since 
negative anions have a more expanded charge distri­
bution than the neutral species. For example, the ad­
dition of one s diffuse function with a s = 0.01 to the 
above all-electron basis for Na atom corrects the atomic 
electron affinity from 0.44 to 0.539 eV, leading to a 
better agreement with the experimental value (0.548 
eV162). Similarly, in the CIECP-CVC calculations, the 
addition of two diffuse s functions with exponents a = 
0.007, 0.0035 to the (3s3p) basis of Na, and with expo­
nents a = 0.002, 0.001 to the (4s3p) basis of K, yields 
electron affinities EANa = 0.540 and EAK = 0.518,146 in 
good agreement with the experimental values of 0.548 
and 0.501 eV, respectively. 

The influence of correlation and spectroscopic or­
bitals for description of excited states of other than 
alkali-metal clusters will be discussed in sections IV.C.2 
and IV.C.3. For example, several low-lying excited 
states have been determined for Ib clusters (trimers and 
tetramers)203,206,312-313 as well as for C4,

314-315 Si3,
316 and 

Si4.
317 

Methods for Calculating Excited States of Clusters. 
In order to study the excited states of clusters, it is 
necessary to use theoretical methods able to give a 
balanced description of excited states of different nature 
in an energy interval which sometimes requires deter­
mination of a large overall number of states and among 
them many (more than 10) of the same symmetry and 
multiplicity. For this purpose, only methods which take 
correlation effects into account are acceptable, since the 
SCF procedure will give a wrong ordering of states and 
erroneous excitation energies even for the lowest state 
of a given symmetry. Until now mainly vertical spectra 
of Ia clusters (including higher lying excited states) have 
been studied theoretically. The wave functions of op­
tically allowed excited states often havepronounced 
multideterminantal leading features.168,162-300,301'303"'306 In 
the case of geometrical relaxation in excited states, these 
features are even more pronounced.136,206,203 Therefore, 
all the theoretical methods based on a truncated single 
reference configuration expansion are most probably 
not adequate for a description of higher lying excited 
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states of clusters, at least not in the case of Ia and Ib 
clusters. 

The deficiency of the truncated CI expansion is re­
moved to a large extent in a multireference approach 
in which the reference space (from which single, double, 
or higher excitations are generated) includes all the 
configurations which are necessary for the zero-order 
description of all excited states of the same symmetry 
and the same multiplicity.310,318 The aim of such ap­
proaches is the balanced description of excited states, 
so that the transition energies can be calculated in a 
reliable manner, although the full CI limit is not 
reached. There are several schemes used to achieve this 
goal and they can be compared with the full CI results 
feasible for smaller systems in order to estimate the 
errors of the approximations (cf. section II.A.2). The 
reference space can be formed (i) by configurations 
generated from the complete active space (CAS) ,53b 

which includes all configurations which can be obtained 
by distributing n electrons among m orbitals in all 
possible ways consistent with the symmetry and mul­
tiplicity of the state, or (ii) by selection according to 
energy-lowering criteria leading to a reference set of 
configurations which appear in the final CI expansion 
with weight larger than the chosen value. Then, the 
single and double excitations SD (usually and some­
times higher order) with respect to the reference set can 
be (i) all included by direct CI53" or (ii) the expansion 
can be truncated again according to the energy lowering 
criteria chosen (MRDCI).48,49 Of course, the procedures 
confined to (i) are more exact, but they are computa­
tionally very demanding, and the limit of their appli­
cability is easily reached in the study of excited states 
of clusters. A comparison and understanding of the 
spectral pattern for clusters of different sizes requires 
determination of many excited states of the same sym­
metry covering the whole spectral region characteristic 
of the physical phenomena involved. 

In connection with the latter requirement, additional 
methodological difficulties are present, since the choice 
of one-electron functions for the description of many 
excited states of the same symmetry in truncated CI 
is a very important accuracy-determining step. Optim­
ized MO's from MCSCF313 procedure are usually de­
signed for a given state. For the description of several 
excited states of the same symmetry, one can use the 
natural orbitals as one electron functions, or MO's from 
the lowest excited state of the given symmetry, making 
sure that the MRCI treatment includes the most im­
portant contributions to the CI expansion, so that the 
description of the higher excited states of the same 
symmetry does not substantially suffer from this de­
ficiency. Moreover, in the case of metal clusters (e.g., 
alkali) the ground-state SCF wave function at equilib­
rium geometries with relatively high symmetry contains 
many energetically close lying virtual orbitals, so that 
the number of active orbitals to span CASSCF or 
MCSCF spaces often becomes prohibitively large. 
Therefore, a reasonable strategy seems to be to compare 
the methods by using the complete active space as the 
reference set and all SD excitations with respect to it 
and those which select the reference set as well as SD 
excitations according to the energy lowering criteria for 
the examples where this is feasible. After estimating 
the error of the less accurate scheme one can proceed 
with the application of the latter to determine semi-

quantitatively transition energies and other spectro­
scopic properties for cluster of different sizes. 

Table I should serve as an illustration of this strategy. 
It contains a comparison of transition energies for op­
tically allowed states for the equilibrium geometry of 
Na4 obtained from (i) the MRDCI48-49'320 procedure by 
using the SCF MO's of the lowest state of the given 
symmetry; (ii) the MRDCI procedure by using iterative 
NO's as one electron functions in the CI; (iii) the direct 
CI63"-320 procedure with full CI for four valence electrons 
in the active space of 25 MO's and with SD excitation 
in the external space of 47 MO's. The deviation in the 
excitation energies obtained from the MRDCI and the 
direct CI procedure are not larger than 0.02 eV for the 
lowest state of the same symmetry (cf. ref 162). 
Moreover, both procedures yield the equivalent leading 
features of the wave functions which demonstrates their 
multideterminantal nature even at the qualitative level 
of the analysis. (Notice, that the exact values of the 
coefficients of the leading configurations in the CI ex­
pansion given, for example, in Table I are not inde­
pendent of the choice of one-electron functions.) The 
errors in excitation energies are surely larger if the 
calculations of many more than three states of the same 
symmetry are requested, and they might reach the value 
of 0.2 eV. 

C. Results Obtained with CI and Related 
Quantum Chemical Methods 

1. Photodetachment Spectra of Anionic Ia Clusters 

Photodetachment spectra of small alkali metal-cluster 
anions are highly structured and have regular patterns 
as a function of the cluster size.10,276 The measured 
photoelectron intensities are functions of the electron-
binding energy which is equal to the difference between 
the photon energy and the measured electron kinetic 
energy (e,g., for recorded spectra of Ia anions the photon 
energy of 2.54 eV has been used). The individual peaks 
arise due to photodetachment transitions between the 
ground state of the anion and the ground and the ex­
cited states of the neutral clusters. Figure 10 illustrates 
that the CI energies of vertical transitions at the in-
ternuclear distance of the K2 anion coincide with the 
individual peaks of the recorded spectrum. Notice that 
the first peak corresponds to VDE and the next two 
bands arise from transitions to two triplet states of K2. 
The adiabatic electron affinity EAa corresponds to the 
onset of the intensity of the first peak. The vertical 
transitions to the excited states at the equilibrium ge­
ometry of neutral K2 do not correspond to the positions 
of the band maxima. Consequently, in order to inter­
pret the photodetachment spectra the equilibrium ge­
ometries of the anionic clusters have to be determined 
first and the spin multiplicity of the states has to be 
considered. 

For small clusters, Li;,133 Na;,296-162 and K;,144 2 < n 
< 5, linear geometries minimize the Coulomb repulsion 
due to an extra charge located at the end of the chains 
and therefore it is to be expected that they are good 
candidates for the equilibrium geometries. AU three 
anionic trimers are linear according to the ab initio all 
electron or ECP-CPP calculations. The ground-state 
energies of linear and rhombic tetramers are almost 
degenerate. The CI energy difference between the two 
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TABLEI. Comparison of AE-MRDCI 
Excited-State Properties of Na4 up to 
Cluster (in D1/, Symmetry) 

, ECP-CVC-MRDCI, and Direct CI (close to the full CI), Ground and Optically Allowed 
3.3 eV of Excitation Energies for the Optimized Ground-State Geometry of the Neutral 

states E(CI)"-* TJ eV Ipsa" U E(CIy TJeW 

A 

B 

C 

D 

E' 

E 

F 

G 

G' 

H 

I1AJ 
I1Aj 
I1BJu 

I1BS11 

I1BSu 

I 1 B L 
21BSu 

21BJu 
I1BIu 

I1BJu 

21BSu 

21BIu 

31BJu 

31BS0 

21BJu 

21BJ11 

31BJu 

31BSu 

41BSu 

-647 .44583 
-0 .81400 

-647 .39061 

-0 .75666 

-647 .38331 

-0.74881 
-647.37707 

-0.74179 
-647.36993 

-0.73305 

-647.35569 

-0.71997 

-647.35528 

-0.71760 

-647.34428 

-0.70647 

-647.33546 

-647.3345 

-647.32449 

0 
0 
1.51 

(1.57)'' 

1.57 

1.71 
(1.74)"' 
1.77 
1.87 

(1.92J* 
1.96 
2.07 

(2.10V 

2.20 

2.45 
(2.52)'' 

2.57 

2.46 
(2.52)d 

2.63 

2.76 
(2.80)'' 

2.90 

3.00 

3.03 

3.30 

0.930 
0.925 

-0.453 
-0.658 
-0.375 
0.404 

+0.669 
-0.393 
-0.899 
-0.079 
0.912 

-0.109 
+0.725 

0.717 
0.569 

+0.561 
-0.235 
-0.584 
-0.526 
+0.231 

0.572 
0.553 

-0.235 
+0.500 
-0.572 
-0.291 
-0.357 
+0.184 
-0.617 
-0.522 
-0.095 
-0.553 
-0.648 
-0.297 
-0.501 
0.672 

-0.304 
+0.476 
-0.472 
-0.493 
+0.350 

0.315 
-0.533 
0.411 

-0.353 
+0.201 
+0.209 

(laJlbD 
(laJlbL) 
(Ib3U - Ib11) 
( lb 3 u — l b * . l b 3 u — 2a,) 
(Ia1 - Ib2U) 
( lb 3 u - Ib11) 
(lb3u — Ib2U, lb3 u — 2a,) 
( l a , - Ib211) 
(lb3u — 2a,) 
( lb 3 u — 3a,) 
(lb3u — 2a,) 
( lb 3 u — 2a,) 
(Ib3U — 3a,) 
( lb 3 u — 3a,) 
( lb 3 u ~* Ib2 ,) 
(lb3u — lb l u , 1^Su — 2a,) 
( l a , - Ib1n) 
(lb3u ~* Ib2 ,) 
(Ib3U —• lbju , lb3 u — 2a,) 
( l a , - Ib1 0) 
( lb 3 u - Ib1 , ) 
(Ib3U — Ib2U, lb3„ -* 2a,) 
(lb3„ — 2b3„, lb3u — Ib1 , ) 
(lb3„ - Ib1 , ) 
(Ib 3 n — Ib2 n , l b 3 u — 2a,) 
(Ib3U ~* 2b3u, lb3 u "*• Ib1,) 
(Ib3U - Ib11) 
(Ib3U — 2a,, lb3 u — Ib2U) 
( l a , - Ib2n) 
(lb3u - Ib1,) 
(lb3„ -* 2a,, Ib3U — Ib2U) 
(la, - Ib2U) 
(lb3u - Ib2,) 
(lb3u — 2a,, lb3u — Ib1J 
(la, - Ib1J 
(lb3u ~* Ib2,) 
(Ib3U — 2a,, lb3u —• lblu) 
(la, - lblu) 
(lb3u — 2a,, Ib3U — !blu) 
(la, - Ib10) 
(Ib3U - 3a,) 
( lb 3 u "* 3a,) 
(Ib3U ~~* Ib2U, lb3u ~* Ib1,) 
(lb3u ~* 2b3u, lb3u ""*• Ib1,) 
( Ib 3 0 - 2b l f ) 
( l a , — Sb20) 
( Ib 3 0 - • 3a,, Ib 3 0 ~* Ib2 0) 

-647 .44820 

0.008 -647 .39138 

0.002 

1.180 -647 .38450 

1.20 
0.011 

0.016 
0.075 -647 .37123 

0.095 

0.150 

0.027 

0.81 

0.954 

0.796 

0.672 

0.083 

0.002 

0.056 

0 
0 
1.55 

1.73 

2.09 

"CI energies (in au) obtained from 37M/4R (T = 1 /Ji), 27M/3R (T = 1 jih), and 24M/3R (T = 1 iih) for 1B20,
1B80, and 1B10 states, 

respectively. AO basis is (12s8pld/7s4pld). 11CI energies (in au) obtained from the ECP-CPP 5M/1R, 20M/2R, 14M/2R, and 30M/3R 
MRDCI treatment (T - 0) for 1A1, two 1B30, two 1B10, and three 1B20 states, respectively. AO basis is (4s4p/3s3p). "Transition energies with 
respect to the ground state in eV. 'In brackets the excitation energies obtained from the iterative NO procedure. 'Leading features of the 
correlated wave functions. Excitations with respect to the ground state configurations are indicated. 'Calculated oscillator strength. 
'Energies and transition energies obtained from the direct CI procedure with the 25 MO's in the internal space for which the four valence 
electron full CI has been carried out and with 47 MO's in the external space into which all single and double excitations with respect to 
internal space configurations have been included in the CI. A to H correspond to labels of experimental bonds. 

isomers, AE1 (Li;) - -0.10 eV, AE1 (Nap = -0.01 eV, 
and AE1 (K;) = -0.067 eV, lies within the accuracy of 
the method employed, although in all three cases the 
linear geometries are slightly favored over the rhombic 
ones (E (2Zg) < E (2B2J), independent of the details 
of the treatment (addition of one diffuse s function to 
the AO basis set and inclusion of all triple and quad­
ruple excitations).296,182,144 The stabilities of the planar 
trapezoidal and linear anionic pentamer geometries are 
also comparable: AE1 (Lip = 0.01 eV, AE1 (Nap • 
0.081 eV, AE1 (Kj) - -0.029 eV. In the case of Lij and 
Naj trapezoidal structures are favored, and for Kj the 
linear one has slightly lower energy. For hexamers the 
comparison is available between Lij133 and Kj.144 In 
both cases the D^1 topologies of tetragonal bipyramids 

are more stable than the planar D31, geometries, AE1 
(Lij) - 0.177 eV, AE1 (Kj) - 0.120 eV, and more stable 
than the C2n face-capped trigonal bipyramids (C20) and 
the pentagonal pyramids (C51). Note that the trape­
zoidal topologies are the most stable structures of the 
neutral pentamers, while planar (D31,), three-dimen­
sional pentagonal pyramids (C611), and C2n geometries 
with tetrahedral subunits of the neutral hexamers have 
close-lying energies (as already pointed out in section 
III.B.l). The C2U, D31,, and C50 structure has the lowest 
energy for Li6, Na8, and K6, respectively. Notice, how­
ever that the C61, and Dy, structures are almost degen­
erate in all three cases. 

If several anionic isomers are energetically close it is 
important to calculate their VDE values in order to find 
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Figure 10. A comparison of calculated144 and measured10,276 

photodetachment transitions of Kj (ECP-CVC-MRD-CI treat­
ment148). 

TABLE II. Comparison of ab Initio CI and Experimental 
Values for VDE and EA, of Na; and K; Anions 

species 

Na" 
Na'2 
Nai 
Nai(RH)' 
N B J ( L / 
Nai(PL/ 
NBi(L/ 
K-
Kl 
Ki 
Ki(RH)' 
Ki(L) 
Ki(PL) 
Ki(L) 
Ki(D4*) 

theory 

VDE" 

0.44» (0.548)' 
0.507» (0.542)' 
1.174» 
0.768» (0.744)' 
1.127» (1.097)' 
1.035» (1.024)' 
1.472» (1.450)« 
0.518" (0.518)« 
0.575" (0.578)« 
1.11O* (1.098)« 
0.760'' (0.777)« 
1.073" (1.073)« 
0.95S* (1.013)« 
1.345«' (1.373)« 
0.948" 

EA,0 

0.427» 
1.065» 

0.715» 

0.807» 

0.534" 
1.601" 

0.791" 
0.833" 

0.731" 

experiment276 

VDE 

0.548 
0.543 ± 0.010 
1.158 ± 0.010 

1.145 ± 0.030 
1.200 ± 0.05 

0.501 
0.550 ± 0.010 
1.043 ± 0.01 

1.048 ± 0.025 
1.045 ± 0.022 

1.091 ± 0.020 

EA. 

0.430 ± 0.015 
1.019 ± 0.060 

0.91 ± 0.15 
1.10 ± 0.10 

0.493 ± 0.012 
0.956 ± 0.05 

0.83 ± 0.10 
0.95 ± 0.10 

0.95 ± 0.10 

"The CI values in eV. »The AO basis set (12s8pld/7s4pld) and 
large scale CI (cf. ref 162). 'The AO basis from b augmented with 
one diffuse s function with exponent a = 0.01 (cf. ref 162). "The 
ECP-CPP-CI calculations with the AO basis (4s3p) (cf. ref 145). 
'The AO basis from d augmented by two diffuse functions a = 
0.002 and a = 0.001 (cf. ref 145). 'RH, L, and PL label rhombic, 
linear, and planar trapezoidal structures, respectively. 

out to which extent the corresponding structures con­
tribute to the recorded spectrum, since the internal 
temperature of the clusters (nonequilibrium distribu­
tion) is not exactly known. If the topologies of the 
anionic clusters differ from the corresponding neutral 
ones, the VDE values will be considerably larger than 
in the opposite case (see Table II). If the values of the 
VDE's for different anionic isomers coincide with the 
maxima of the measured intensities, the determination 
of excited states for the neutral species at these anionic 
geometries is desirable in order to carry out the com­
plete assignment of the spectrum. 

A comparison of measured276 and calculated photo-
detachment spectra of Na2L6

296,162 and K2_6
144 is given 

in Figures 11-14 (cf. also Table II). The spectroscopic 
patterns of Na2L6 and K2L6 in the energy interval up to 
2.54 eV differ by the appearance of one additional band 
in the latter case. Notice that the calculated and 
measured atomic 2S-2P transition for the K atom is 
lower (1.62 eV) than for the Na atom (2.10 eV). For 
dimers and trimers the assignment of linear anionic 
geometries to the spectra is straightforward. 

For Nai and K2" the VDE values as well as the posi-
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tions of the first triplet state 3 £„ of the neutral dimers 
coincide with the maxima of the first two recorded 
bands. The third weak band in the Na2" spectrum is due 
to the pair of 1 ^ J and 3IIU states lying slightly above 
2.0 eV. The equivalent pair of excited states of K2 
coincide with the maximum of the largest peak in 
spectrum of K2" which is located below 2.0 eV. The 
fourth band in the K2 spectrum corresponds to the lo­
cation of the 3 £ * excited state (cf. Figure 11). Simi­
larly, the two lowest states 2 £ u and 2 £ g of the neutral 
trimers at the anionic linear geometries are assigned to 
two intense peaks in spectra of Nai a n ^ K3. ^n t n e 

latter case two close-lying excited states, 22£g and 2nu, 
located above 2.0 eV coincide with the third measured 
band (Figure 12). 

The patterns of the Ki and Nai spectra differ mainly 
by the presence of the third weak band in the former 
case. In order to illustrate that different geometries of 
neutral and anionic clusters give rise to different 
spectroscopic patterns, the vertical spectra for the best 
neutral obtuse isosceles triangles of Na3 and K3 have 
also been shown in Figure 12. The energies of the 
ground states of Nai a n d Ki at the best geometries of 
the neutral species are considerably higher, by 0.378 and 
0.328, respectively, than at their own best linear geom­
etries. 

Notice that if anions with an odd number of atoms 
have singlet ground states, the vertical transitions for 
the neutral species take place among doublet states but 
if the triplets are the ground states, transitions to 
quartet states can also take place. 

Calculated vertical spectra of Na4 and K4 for the two 
best linear and rhombic geometries of the anions as well 
as for the best rhombic geometries of the neutral 
species, containing the ground states of anions and of 
the neutral species as well as excited states of the latter, 
are shown in Figure 13 together with the recorded 
spectra. This illustrates that (i) the vertical spectra for 
linear topologies differ substantially from those of the 
rhombic geometries and that (ii) the differences in the 
rhombic geometries of the neutral species and of the 
anions have a considerable influence on the location of 
excited states of different nature. In the latter case an 
extra electron causes a deformation of the rhombus 
toward a square geometry. Therefore, the lowest triplet 
state 3B lg is close to the ground state 1A., as in the 
biradicaloid species, since this geometrical deformation 
is favorable for the triplet state, with the leading con­
figurations having singly occupied HOMO and LUMO. 
The CI values of VDERH for rhombic anions are con­
siderably lower than the values of VDEL for linear an­
ions (cf. Table II). In fact, VDER11 of Na4 is lower than 
the onset of the measured intensity, while VDERH, of 
K4 just coincides with the onset of the signal. In both 
cases of Na4" and K4", the vertical spectra of linear anions 
give rise to VDEL, corresponding to the maxima of the 
first bands in the measured spectra, the 3£u states 
coincide with the second maxima, and the pairs of states 
3Lg and 1^u ^H m the energy interval of the most 
intense bands. A pair of 3ng and 3nu states coincide 
with the fourth measured band in the K4 spectrum, 
which does not appear in the 2.54 eV interval of the Na4 
spectrum. The vertical spectra for the rhombic geom­
etries of the Na4 and K4 anions match the recorded 
spectra less well. For example, a pair of triplet states 
3B2u and 3B311 does not coincide with high spectral in-
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Figure 11. The CI values for vertical transitions and for EA. 
of (a) Nai182 and (b) Kl1** calculated (i) at the best anionic and 
(ii) the best neutral geometries are compared with photoelectron 
detachment spectra*8 AE-CI and ECP-CVC-CI results for Nai, 
Na2 and Ki, K2, respectively. Assignment of anionic geometry 
to the spectrum is labeled as A. 

tensities. Since the optically allowed states lie above 
the whole group of triplet states and above the 
"optically dark" xBlg state, the calculation of the tran­
sition moments would not clarify the assignment. In 
conclusion, the linear geometries of Na4" and K4" are 
dominantly responsible for the measured photoelectron 
detachment spectra, although the contribution of the 
anionic rhombic geometries is not excluded, particularly 
in the case of K4". 

The recorded Kj spectrum is more structured than 
the Nag one. Nevertheless, the calculated vertical 
spectra for linear (L) and trapezoidal (Pl) anionic 
structures of both pentamers exhibit very similar pat­
terns (cf. Figure 14). The VDEL has a larger value than 
VDEpi in both cases, but they coincide with the second 
and first band maxima in the Kj spectrum, and fall in 
the interval of the broad feature of the Nai spectrum. 
The excited states of the neutral species at the both 
trapezoidal and linear geometries of the anions match 
the energy intervals with high intensities. Although the 
calculated vertical transitions for trapezoidal geometries 
of the anions account for the measured spectroscopic 
patterns by themselves, contributions from the linear 
geometries cannot be completely ruled out. 

The examples of calculated and measured Na^5 and 
Kj-g spectra show clearly that there is a substantial 
difference between the geometries of anions and neutral 
species (which seems not to be the case for Ib anions, 
cf. sections III.B.3 and IV.C.3). Moreover, the struc­
tural assignment of spectra can be accomplished if in 
addition to the VDE values, the energies of excited 
states are calculated. This is also decisive for the de­
termination of contributions from different isomers with 
comparable energies, which is not always possible on 
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Figure 12. The CI values for vertical transitions and for EA, 
of (a) Nai182 and (b) KJ144 calculated (i) at the best anionic and 
(ii) the best neutral geometries are compared with photoelectron 
detachment spectra."8 AE-CI and ECP-CVC-CI results for Nai, 
Na3 and Ki, K3, respectively. Assignment of anionic linear ge­
ometry to the spectrum is labeled as •. 

the basis of their VDE values. The photodetachment 
spectra of small alkali-metal anions exhibit very char­
acteristic features which are due to their linear (Na^4, 
K2-4) and planar (Naj, Kp geometries, although in the 
case of tetramers and pentamers the mixture of both 
is not excluded. As pointed out already, presently 
available experimental data might still contain a mix­
ture of different structures, although the development 
of cold cluster sources is in rapid progress and the first 
vibrational structure of small anions has been record­
ed.271 

In order to carry out the complete assignment of the 
photodetachment spectra in a semiquantitative way, the 
optimization of anionic geometries is needed, correlation 
effects have to be taken into account, and spin mul­
tiplicities of all excited and ground states have to be 
considered. For the large clusters the increasing density 
of optically allowed and dark excited states, especially 
if more than one isomer is considered, presents a 
problem, and simplified approaches might be useful (cf. 
section IV.D.l). 

2. Photoabsorptlon Spectra of Neutral and Cationic Ia 
Clusters 

The interpretation of absorption spectra of small 
clusters represents an inviting subject, where concepts 
taken from different fields, such as nuclear physics, 
solid-state physics, and quantum chemistry, require 
careful consideration. This is closely connected with 
a desire to define at which size and due to which 
characteristic property small clusters might or might 
not exhibit metal bulk properties. Since the available 
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experimental data are far from being complete and new 
measurements are in progress, there is a challenge for 
theoretical predictions concerning the characteristic 
features of the absorption spectra for clusters with 
planar versus three-dimensional geometries belonging 
to different symmetry point groups, and for those 
containing odd versus even numbers of valence elec­
trons. 

There are presently five different model approaches 
available for discussions of absorption spectra: (i) 
quantum chemical ab initio CI models, which have been 
successfully used for prediction of molecular spectro­
scopic properties for a long time; (ii) random-phase 
approximation using ab initio SCF Hartree-Fock one-
electron functions which will be addressed in this sec­
tion, (iii) Mie-Drude classical theory used for an esti­
mate of the surface plasmon frequencies in spherical 
metal droplets; (iv) time-dependent local density ap­
proximation for modeling the optical response of clus­
ters based on the jellium model and related methods; 
and (v) random-phase approximation using the jellium 
model. A comparison of results and concepts obtained 
from all these model approaches will be discussed in 
section IV.D.2. 

Trimers. The theoretical interpretation of the pio­
neering experimental work on absorption spectra of 
Na3

263-321,2* using the two-photon ionization (TPI) 
technique started more than a decade ago and later on 
Cu3

266 became the classical examples of the dynamic 
Jahn-Teller effect due to vibronic coupling in the 
ground as well as in excited states. The first ab initio 
CEPA calculations have been carried out for the ground 
and excited states of Li3,

322,323 which has been selected 
as a model for other trimers. These results have been 
scaled in order to interpret the A and B bands of the 
Na3 spectrum, located at 1.85 and 2.02 eV respectively 
(see ref 12 and references therein). The equilateral 
triangle Z)3/, is the crossing point of two surfaces for the 
ground and excited states [[3E^1, [

2F]2; [W]1, [2EH2]-
There are three equivalent wells corresponding to 
isosceles triangles which arise by a cyclic permutation 
of the apex atom. The molecule oscillates from obtuse 
to acute triangle without passing through the D3^ center. 
If the energy barrier between the wells is small com­
pared to kT, so called pseudorotation occurs (dynamic 
Jahn-Teller molecule). In this case the ground state 
of the trimer is a fluxional molecule without a single 
well-defined geometrical structure. If kT is small or the 
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well is deep, the trimer (Na3) will be frozen in one of 
the C2U wells (cf. "low"-temperature ESR spectra259,324). 
The quantitative analysis of resolved vibrational-rota-
tional fine structure of the A and B bands of Na3 in 
terms of half-integers for rotational quantum numbers 
J has been taken as a proof of a pseudorotation. The 
analysis of the experimental data suggested that the A 
and B bands at 1.85 and 2.05 eV originate from the 2E' 
— 2E" and 2E' — 2E' transitions and later found B' and 

C bands (at 2.16 and 2.58 eV) from 2E' — 2E' and 2E' 
-* 2E" transitions, respectively. ECP-GVB-CI calcu­
lations of the ground and excited states energy surfaces 
of Na3

136 confirmed the I2E' -»• I2E" assignment of the 
A band and suggested that the B and B' bands are due 
to the three-state system 42Aj and 32E' and the C band 
corresponds to the 22E" doublet. Recently seven band 
systems for Na» have also been observed by the deple­
tion technique. The location of the A, B, B', C, and 
D bands is in agreement with previously measured 
positions264 and additional A' and B" bands have been 
found at 1.65 and 2.40 eV, respectively. The ab initio 
CI calculations162 for the optically allowed excited states 
of Na3 (in the energy interval up to 3.1 eV) at the op­
timal ground-state geometry (obtuse isosceles triangle), 
as well as oscillator strengths /,, are compared with the 
depletion data280 in Figure 15. The calculation of os­
cillator strengths helps to clarify the assignment, since 
there is a large manifold of close-lying optically allowed 
excited states in the energy interval of 2-3 eV. The 
vertical transitions from the 1B2 states of the obtuse 
isosceles triangle (arising from the Jahn-Teller distor­
tion of the expected E' ground state in D2/, symmetry) 
to the I2A2,4

2A1,3
2B2, 2

2A2, and 32A2 states correspond 
to the previously found A, B, B', C, and D bands and 
the A' and B" bands are assigned to 32A1 and 42B2 
states. The A and A' bands are most probably mutually 
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perturbed and the transitions to both 32A2 and 42A2 
might be responsible for the D band. The calculated 
oscillator strengths of these optically allowed transitions 
are in qualitative agreement with the measured cross 
sections. Locations of allowed transitions together with 
their oscillator strengths yield an assignment of both 
two-photon ionization (TPI) and depletion spectra. 
This indicates that the surfaces of excited states may 
be very parallel to the ground-state energy surface and 
that the bands which have not been observed by the 
TPI technique correspond to fully dissociative excited 
states. Note, however, that the depletion and TPI 
spectra are not identical, where both are observed. 
There is a slight deviation in positions of optically al­
lowed transitions. 

In addition to Na3, which is the most exhaustively 
studied trimer,263,264 and for which the interpretation 
of the data is most complete, similar features (e.g. dy­
namic Jahn-Teller effect for the ground and excited 
states) have also been observed for Cu3

268'262'326'326 (cf. 
section IV.C.3) and Li3.

268 

For Li3 two-band systems with resolved rovibrational 
structures and band heads located at 1.80 and 2.67 eV 
have been observed by using the TPI technique.268 

They have been labeled as the A and C bands in 
analogy to the Na3 absorption spectra. The ground 
state as well as both excited states have been inter­
preted in terms of a dynamical Jahn-Teller effect. Due 
to the measured rovibronic pattern the conclusion has 
been drawn that the A and C bands originate from 2E' 
-* 2E' and 2E' - • 2E" transitions, respectively, although 
the perturbation of other close-lying transitions of 
different symmetry is not excluded. It is well estab­
lished that a Jahn-Teller distortion takes place in the 
ground state of Li3 leading to the 1B2 state of the obtuse 
isosceles triangle. Although an extensive study of the 
ground and excited states energy surfaces of Li3 was 
carried out a long time ago,322,323 for the quantitative 
assignment of the recent measurements268 additional 
state-of-the-art CI calculations are necessary for the 
surfaces of excited states. 

The interpretation of absorption spectra of trimers 
manifesting high-resolution rovibronic structure for 
each electronic transition can be considered as a very 
special case of molecular spectroscopic studies. Only 
recent progress in the experimental field has opened the 
new possibility to investigate the size-dependent fea­
tures of absorption pattern which calls for theoretical 
structural assignments and characterization of larger 
clusters. 

Tetramers. The depletion spectra of alkali-metal 
tetramers recently recorded279-28"*283,302 offer a good op­
portunity for structural assignment since they represent 
the smallest clusters with relatively large stability. It 
is instructive to compare measured and calculated op­
tically allowed transitions for Na4,

304,162 Li4,
303,300 and 

the mixed LiNa3
307-308 and Li2Na2

307-308 tetramers with 
four valence electrons in order to study the dependence 
of the spectroscopic pattern upon their geometry and 
the degree of substitution. 

The rhombic geometries (D2/,) of Na4 and Li4 are the 
most stable structures with 1A8 ground states lying 0.256 
and 0.43 eV below the energies of the lowest triplet 
states 3A2 of deformed tetrahedron structures (C21, = 
D2^), respectively. 1^-303-304 The latter have been derived 
by axial distortions of the tetrahedrons leading to the 
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Du forms and by further small distortions in which the 
degeneracy has been completely removed (cf. section 
III.B.1). 

The MO schemes for both the best singlet and triplet 
structures of Na4 obtained at the SCF level are drawn 
in Figure 16 for illustrative purposes. The near-de­
generate pattern and energy ordering of the virtual 
orbitals (although they don't have direct physical 
meaning) will serve as guidance for discussion of elec­
tronic excitations which have a leading role in the 
multideterminantal wave functions of optically allowed 
excited states obtained by the MRDCI method. The 
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excited states with CI excitation energies Te up to 3 eV 
for the rhombic (D2J and deformed tetrahedron (C211) 
structures of Na4 together with their oscillator strengths 
are compared with the recorded depletion spectrum in 
Figure 17a. The calculated vertical spectrum of the 
rhombus304,162 exhibits three intense transitions to I1B3U, 
31B2U, and 21B111 states located at 1.71, 2.46, and 2.76 
eV, in complete agreement with measured B, E, and F 
bands.279-280 The transitions to I1B2U, 22B30,1

1Bm, 31B1U, 
31B3U, and 41B2U

 w l*n l ° w oscillator strengths coincide 
with recorded A, C, D, G, and H weak bands.279,280 

Notice that in each of the three irreducible represent­
ations of the D2), group there is only one transition with 
considerable intensity. Moreover, the leading features 
of the CI wave functions listed in Table I together with 
the MO scheme of Figure 16 illustrate that the first two 
1B3U states have largest contributions from the singly 
excited configurations: (lb3u -*• 2aJ or (lb3u -* 3ag) 
while all 1B2U and 1B111 states have three or four leading 
configurations among which one is doubly excited: (lb3u 
— 2ag) lb3u -* lb2u) and (lb3u — 2ag, lb3u — Ib1J, 
respectively, and the others are singly excited with re­
spect to the ground state configuration (Ia2Ib2J. 

Notice also that the several excited states Delonging 
to the same irreducible representation have common 
leading configurations, whereby just coefficients and 
signs with which they enter linear combinations are 
different, substantially influencing the values of the 
oscillator strengths for transitions to these states. 
Consequently, there are interference phenomena within 
each irreducible representation in the case of homoge­
neous tetramers, giving rise to one transition with large 
and to others with low oscillator strengths (I1B3U versus 
21B3U-, 21B2U versus I1B20 and 41B211; 2

1B111 versus I1B1U 
and 31B1J. 

The described leading features of the correlated wave 
functions remain unchanged also when the natural or-
bitals (NO) are used instead of MO's as one electron 
functions in the CI, and the transition energies do not 
differ substantially as shown in Table I. A comparison 
between transition energies and oscillator strengths for 
allowed transitions obtained from AE-CI and ECP-
CVC-CI is also given in Table I, illustrating that the 
latter procedure yields acceptable results. Therefore 
it can be applied for a study of absorption spectra of 
larger clusters. It has already been discussed in section 
IV.B that the fine details of the CI treatment do not 
substantially influence the excitation energies and os­
cillator strengths, although a large-scale multireference 
SD-CI is inevitable for the assignment of the rhombic 
Na4 to the measured spectrum, as will be shown later 
in connection with the applicability of the RPA method. 

The question can be raised whether the other isomers 
contribute to the spectrum and how different geometry 
influences the spectroscopic pattern. The calculated 
vertical spectrum with respect to the triplet ground 
state 3A2 of the distorted tetrahedron (cf. Figure 17b) 
yields the transition to 53B1 at 2.12 eV with dominant 
oscillator strength resembling a giant resonance.162 The 
wave functions of the 53B1 state is dominated by three 
singly excited configurations (Ia2^a1Ib1), (Ia1Ib^Ib1), 
and (Ia^Ib2Ia2O with respect to the triplet ground state 
configuration (Ia1Ib1Ib2). For all other transitions low 
intensity has been calculated. The calculated spectro­
scopic pattern for Na4 with C2u symmetry does not 
correspond to the measured one. Since the energy of 

the 3A2 state is 0.24 eV higher than that of the 1Ag state 
of the rhombus, the conclusion can be drawn that there 
is no contribution from this isomer and that only the 
rhombic structure is responsible for the recorded 
spectrum. However, the finding that even the four 
valence electrons of a deformed tetrahedron structure 
can give rise to a spectroscopic pattern with one dom­
inant intense transition illustrates that the appearance 
of the single or few intense transitions in the depletion 
spectrum is not necessarily proof of the existence of 
surface plasmons due to a collective excitation. Of 
course, the individual particle-hole excitations are not 
sufficient for the description of excited states, which 
means that the many-electron picture has to be used 
instead of the one-electron description. Moreover, it 
seems that the symmetry of the cluster is one of the 
determining factors for the appearance of the giant 
resonances, as will also be pointed out for larger clusters. 
If the geometry of the cluster belongs to a point group 
for which the degenerate one-electron levels are present, 
among which few mutually interacting particle-hole 
excitations take place, the intense transition can occur 
to the state in which those configurations play a leading 
role. The location of the intense transition is closely 
connected with an energy gap of one-electron levels 
among which excitations take place, and this is again 
dependent on the structure of the cluster. 

A comparison of the absorption of Na4 obtained from 
the CI calculations and from the RPA technique using 
the same ab initio ground-state SCF one-electron 
functions (Figure 18) illustrates explicitly the influence 
of the type of electron excitations on the location and 
the oscillator strengths of the transitions. As pointed 
out in section II.B.4, the RPA approach accounts for 
interactions among single excitations as well as between 
the ground-state and doubly excited configurations, but 
not among the double excitations. Consequently, the 
oscillator strengths of transitions to 1B3U states and their 
energies obtained from the RPA method agree well with 
those calculated by CI, since one or two configurations 
with single excitations have a leading role in their wave 
functions (cf. Tables I and III). The discrepancy be­
tween results obtained from both methods is large for 
excitation energies and oscillator strengths of other 
optically allowed transitions to 1B20 and 1B10 states, as 
illustrated in Figure 18, since one of the leading con­
figurations in the corresponding wave functions con­
tains double excitations which are not accounted for in 
the RPA approach on the same footing as the single 
ones (cf. Tables I and III), Note, that the excitation 
energies obtained from the TDA approximation, which 
takes into account just interaction among single exci­
tations, are just slightly higher (not more than 0.2 eV) 
with respect to the RPA ones, and the values of oscil­
lator strengths are also larger in the former case (cf. 
Table III). This comparison is instructive since it 
clearly demonstrates that the successful applicability 
of the RPA for the complete interpretation of absorp­
tion spectra is limited to cases in which the single ex­
citations represent the leading features of the wave 
functions (cf. section II.B.4) as it will be also demon­
strated on a number of examples throughout this sec­
tion. However for tetramers the RPA does not yield 
satisfactory description of spectra. 

The calculated303,300 and measured283-300 depletion 
spectra of Li4 shown in Figure 19 exhibit striking sim-
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TABLE III. Comparison of Transition Energies and Oscillator Strengths Obtained from the AE-RPA and AE-TDA for Na4 
Da, Structure" 

state 7,(RPA)1OeV 7.(TDA),6 eV /,(RPA)' /,(TDA)' leading excitation (RPA):'' c2 > 0.10 

0.95 (Ib3U — Ib2.) 
0.95 (la, — Ib1J 
0.88 (la, — 2blu) 
0.87 (lb3u — 2bj.) 
0.88 (la, — 3blu) 
0.84 (Ib311 - Ib1,), 0.10 (la, - Ib211) 
0.92 (la, — I b J 
0.90 (Ib311 - 2b!,) 
0.71 (la, - 2 b J , 0.16 (Ib311 - Sb1.) 
0.56 (la, - Sb211), 0.18 (la, — 2 b J , 0.11 (lb3u — 3b,,) 
0.81 (lb3u - 2a,), 0.11 (lb3u — 3a,) 
0.87 (Ib311 - 3a,) 
0.63 (Ib311 — 4a,), 0.28 (lb3u — 5a,) 
0.69 (lb3u - 5a,), 0.28 (Ib311 — 4a,) 
0.86 (la, -* 2b3u) 

"The ground-state SCF one-electron functions have been used employing AO basis (12s8pld/7s4pld). bExcitation energies. 'Oscillator 
strengths. ''Leading excitations with respect to the ground-state configuration (Ia^Ib311). 

l lB l u 
21B111 

31B111 

41B111 

51B111 

I1B2U 
21B2U 
31B2U 
41B2U 
51B2U 
I1B3U 
21B3U 
31B3U 
41B3U 
51B3U 

2.45 
3.09 
4.76 
5.01 
5.66 
2.22 
2.60 
3.67 
4.50 
4.68 
1.73 
2.06 
3.25 
3.58 
4.13 

2.51 
3.20 
4.77 
5.13 
5.70 
2.26 
2.81 
3.71 
4.61 
4.68 
1.81 
2.07 
3.26 
3.60 
4.19 

0.539 
0.476 
0.003 
0.158 
0.016 
0.306 
0.701 
0.036 
0.070 
0.000 
1.111 
0.078 
0.207 
0.050 
0.014 

0.574 
0.835 
0.004 
0.396 
0.099 
0.228 
1.299 
0.134 
0.287 
0.007 
1.433 
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0.311 
0.016 
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Figure 18. Comparison of ab initio AE-CI and RPA transition 
energies (eV) and oscillator strengths / , for optically allowed states 
of Na4 (Da,) rhombic structure. 

ilarities with those obtained for Na4.
304,279 Again the 

transitions from the 1A, ground state of the best rhom­
bic geometry to I1B3U, 21B2U, and 2xBlu located at 1.78, 
2.65, and 3.01 eV, respectively, have considerable values 
of oscillator strengths in decreasing order and corre­
spond to the recorded spectrum with bands maxima 
located at 1.80, 2.65, and 3.01 eV labeled as A, D, and 
E, respectively, which are only slightly red shifted with 
respect to those found for Na4. The energy of the I1B111 
state lies in the region of the A band, and the transition 
to 21B3U at 2.09 eV coincides with the weak B band 
recorded at 2.08 eV. The measured spectrum can again 
be assigned as due to the rhombic ground state geom­
etry of Li4.

303,300 The leading features of the excited 
states are analogous to those of Na4. The only differ­
ence between Li4 and Na4 spectra is the smaller number 
of recorded weak bands in the former case, but the 
overall spectral pattern remains unchanged. 

A study of excited states of heterogeneous tetramers 
serves as a good example for finding out to which extent 
the number of valence electrons and the position of the 
nuclei determine the spectral pattern. For LiNa3 there 
are two energetically close-lying planar rhombic isomers 
with the Li atom located on the short (LiNa3), and on 
the long (LiNa3); diagonal, respectively. The energy 
difference is AEi = -0-082 eV in the favor of the former 
one. Three planar isomers have been found for Li2Na2 
with Li2 lying on short diagonal, long diagonal, and the 

550 BDO 650 700 

l ' B , 
2 'B5 , 

3 Iu 21B 3u I 1 B , , 

3.01 2.65 2.36 209 1.811.78 (eV) 

Figure 19. Comparison of the photodepletion spectrum283 and 
CI optically allowed transitions (nm) and oscillator strengths / . 
of Li4.

308 

side of a rhombus having small energy differences AEx 
= -0.193 and -0.110 eV with respect to the first 
one.307'306 

In order to carry out the structural assignment to the 
recorded spectrum302,327 the optically allowed excited 
states of both LiNa3 isomers (C2u) are compared in 
Figure 20. Again, there are three intense transitions 
from the 1Ai ground state of (LiNa3), to 21B2, 5

1A1 
(61A1), and 31B1 states located at 1.73, 2.53 (2.54), and 
2.80 eV, respectively, coinciding with recorded bands 
having large cross sections. There is close analogy to 
the B, E, and F bands of Na4. Transitions to 31B2 and 
to 21B1 states correspond to the weaker fine structure 
with slightly larger oscillator strengths than those 
calculated for the C and D bands of Na4.

302-307-308-327 The 
rhombic (LiNa3), structure accounts fully for the re­
corded spectrum. However, the other (LiNa3)] isomer 
gives rise to an almost identical spectrum. In the 
ground state the role of the HOMO and LUMO orbitals 
has been exchanged with respect to (LiNa3), due to Li 
substitution at the long diagonal. The contribution of 
the second isomer to the spectrum may depend on the 
height of the barrier separating both species, since the 
temperature is not known. The calculated barrier be­
tween the two isomers is not negligible (~0.5 eV), al­
though this investigation has not been completed. The 



Quantum Chemistry of Small Elemental Clusters Chemical Reviews, 1991, Vol. 91, No. 5 1081 

T r 
2.0 VO 0 

CROSS SECTION (SQ A) 

Na3Li 

3,ft. 6'A,{VB^-r-3 
^ 

5V 

2'B2 

Na 

3& 

Na 

Na 

10 ~oT 

E IeV) t 41B, 
3'B, 

i r 
2.0 1.0 0 

CROSS SECTION(SQA) 

Na 3 Li 

61B2 

EIeV) • 

rn^u 5L-L30 

5V 
3'A1 î 
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Figure 20. Comparison of photodepletion spectrum302,327 and CI optically allowed transitions (eV) and oscillator strengths /, of two 
LiNa3 isomers. 

Li-Na as well as Na-Na bond lengths in both isomers 
do not substantially differ from each other and the MO 
energy schemes are almost identical. Since among 
many energetically close lying states there is always one 
intense transition in each irreducible representation it 
is not surprising that both structures yield almost 
equivalent spectroscopic^ patterns. 

In comparison with homogeneous clusters, increasing 
the amount of Li introduces some new features into the 
absorption spectrum302,327 as shown in Figure 21, since 
four intense transitions are present for Li2Na2. Calcu­
lated energies of excited states and oscillator strengths 
for the (Li2Na2), isomer with Li2 on the short diagonal 
(which is the most stable ground-state structure) il­
lustrate that there are now two intense transitions in 
each irreducible representation. The leading features 
of the wave functions of the I1B3U and 21B311 states are 
determined by two configurations with comparable 
weights arising from excitations lb3u -» 2% and from 
lb3u -* 3a. of the ground state configuration (lagb2

u). 
For the other (Li2Na2)i isomer with Li2 on the longer 
diagonal the oscillator strength of the transition to the 
21B3U state is negligibly small and the calculated spec­
troscopic pattern with three dominant transitions re­
sembles the one obtained for the homogeneous Na4 
cluster. Since the location of other intense transitions 
to I1B3U, 21B2U. and 21B1U states are in good agreement 
with three of four recorded intense bands, the contri­
bution from this isomer is not excluded. Similarly, the 
calculated spectrum of the third Li2Na2 isomer with 
Li-Li as next nearest neighbors accounts for a part of 
the recorded spectrum. However, only the (Li2Na2)s 

isomer with the lowest ground-state energy gives rise 
to four intense transitions and to the fine structure307,306 

of the recorded spectrum.302,327 

These examples illustrate clearly that besides the 
number of valence electrons and the common planar 
structure, the location of Li atoms is important for the 
complete assignment of the recorded spectrum. 

Na5. The optically allowed transitions have been 
calculated with the ECP-CPP-CI method158 for two 
Na5 structures: the planar (C211) and the deformed 
trigonal bipyramid (C21,). The reliability of ab initio 
ECP-CPP-CI versus ab initio all-electron results for 
the determination of absorption spectra has been il­
lustrated earlier on the example of Na4. The ground 
state 2A1 of the planar geometry is more stable (for 0.23 
eV) than the 2B1 state, which is the ground state of the 
bipyramid.142 A comparison of one-electron levels for 
both structures, given in Figure 22, illustrates that there 
are more closely lying almost degenerate MO's present 
for the planar structure than for the bipyramid. 
Moreover, the HOMO-LUMO energy gap is smaller for 
the latter, which is the less-stable structure, indicating 
that the transition energies for the lowest lying optically 
allowed states might have smaller values than in the 
former case. A comparison of calculated locations of 
the optically allowed excited transitions up to 3.0 eV 
and the oscillator strengths for both structures are given 
in Figure 23. The calculated vertical spectrum for 
planar Na5 exhibits large oscillator strengths for tran­
sitions to 42B2 and 52B2 located at ~2.0 eV and for the 
transitions to the 82A1 and 92A1 states at ~2.5 eV, re­
spectively. In the energy interval 2.5-3.0 eV no intense 
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Figure 22. The SCF MO's for planar and bipyramidal Na6 
structures (C^).168 

transitions have been calculated. In the case of the 
bipyramid there are more transitions with considerable 
oscillator strengths than in the former case, and they 
are distributed over the whole energy interval 2.0-2.8 
eV. 

Although absorption spectra recorded at high reso­
lution are not yet completed, it is likely that only the 
planar structure is responsible for the spectrum.329 

Nan (n = 6,8,20). The theoretical investigation of 
absorption spectra for Na8,

168 Na8,
805,162 and Na20

328 and 
their comparison is of particular interest for several 
reasons: (i) A transition between planar and three-
dimensional structures occurs for alkali-metal hexamers 
for which three energetically close lying geometrical 
structures have been found: almost degenerate planar 
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Figure 23. The CI optically allowed transitions (eV) and oscillator 
strengths /, for planar and bipyramidal structure of Na6.

158 

(D31, — C20) and a "flat" pentagonal pyramid (C811 -* C3) 
(with energy difference ABi = -0.014 eV, separated by 
a negligible barrier) and the three-dimensional C2v 
structure built from the tetrahedral units with AE1 = 
-0.250 eV with respect to the planar one142,168 which has 
the lowest energy. Notice that geometry optimizations 
for planar and pentagonal pyramid yield slight devia­
tions from the highly symmetrical point groups. 
Therefore, the (Dy1 -*• C21,) and (C^1 - • C1) labels are 
introduced. Recent experiments*8'®9 indicate that the 
absorption spectrum of Na6 exhibits a dominant tran­
sition at ~2.07 eV (600 nm) (see Figure 25) and an 
additional weaker band at ~2.88 eV (430 nm). (ii) Na8 
and Na2O with 8 and 20 valence electrons represent 
particularly stable clusters with closed shells. Moreover, 
"giant resonances" have been measured at ~500 nm 
(2.5 eV) for Na8

277-279-280 and Na20.
298-297-308 In addition, 

a fine structure at ~700 nm and at ~600 nm for 
Na8

279-280 and a broad band at 400-450 nm for Na20
308 

have recently been found via the high-resolution de­
pletion technique. (Ui) An understanding of reasons for 
similarities and differences in the absorption spectra 
of Na6, Na8, and Na20 represents one of the essential 
issues concerning specific structural properties as a 
function of the cluster size. Very recent ab initio 
ECP-CI and ab initio ECP-RPA work which is still in 
progress will be addressed in this section. A comparison 
with results for Na6, Na8, and Na20 obtained by using 
the RPA based on the jellium model with the harmonic 
oscillator potential will be made in section IV.D.2. 

MO'S (Na, D K - C 1 , ) 

-̂ 11L-3e" 

~£pk| 
2e =(H2t>;) 

- * - If=(Za11Ib1) 

MCs(Na1 C - C 1 ) Na1(C1. 

2a. 
- l b , 

Figure 24. The SCF MO's for planar, "flat" pyramidal and 
three-dimensional C21, structures of Na6. D3I1 -* C21, and C60 --
C, label a small deviation from the higher symmetry groups for 
the optimized geometries. 

The ground-state SCF MO levels for three Na6 
structures are given in Figure 24 for illustrative pur­
poses. Two closely related (D^ -*• C20) and (C6U -* C8) 
topologies with almost degenerate pairs of one-electron 
levels and HOMO-LUMO energy gaps ~4.5 eV differ 
from the one-electron scheme of C211 Na6 structure for 
which the degeneracy is not present. A comparison of 
calculated spectra for three structures with excitation 
energies up to 3.0 eV and the oscillator strengths using 
CI and RPA techniques158 is given in Figures 25 and 26, 
respectively. The dominant pair of transitions located 
at ~ 2.1-2.2 eV is present for both the planar Na6 and 
for the flat pentagonal pyramid. The CI and RPA wave 
functions of the 41A1 and 31B2 states of the planar 
structure contain as the two largest contributions singly 
excited configurations arising by promoting an electron 
from almost degenerate Ie '« (2a1(lb2) to 2e' «* (4alt2b2) 
one-electron levels, although the CI wave functions also 
contain a few additional leading configurations with 
coefficients > 0.1 (cf. Table IV). Consequently, the 
transition energies obtained by the RPA technique are 
only negligibly higher with respect to the CI ones for 
these two states (cf. Table V). In addition to these 
dominant transitions there are several excited states 
located between 2.8 and 3.2 eV which have some os­
cillator strength, so that a broad band with lower in­
tensity is expected in this region (cf. Figure 25). How­
ever, there is a substantial difference between the CI 
and RPA results for these higher lying excited states 
concerning their location and oscillator strengths, since 
the leading configurations of the CI wave functions 
contain double excitations which cause lowering of the 
transition energies and the oscillator strengths relative 
to RPA. In particular, RPA yields a considerably larger 
/e value for transition to the 31B1 and its location is ~0.3 
eV higher with respect to the corresponding CI state 
(cf. Figures 25 and 26 and Tables IV and V). 

The analysis of the results obtained from the RPA 
and the CI procedures for the (D311 -* C211) structure of 
Na6 offers a good opportunity to point out that one has 
to be aware of approximations involved in different 
treatments in order to judge the reliability of their 
predictions (cf. sections II.A.2 and n.B.4). For example, 
the location of the 31B1 state for planar Na6 obtained 
from the RPA treatment, which is not adequately de­
scribed due to a lack of interactions among double ex­
citations, coincides accidentally with the region of a low 
intensity band observed, although its oscillator strength 
is too large and similar to those calculated for the 41A1 
and 31B1 states. All three RPA states together exhaust 
63% of the sum of oscillator strengths which is 5.4 in 
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Figure 25. Comparison of photodepletion spectrum329 and CI optically allowed transitions (eV) and oscillator strengths f, for three 
Na8 structures:1" Dy1 — C20, C10, and C211. 

the energy interval up to 4.0 eV. The RPA prediction 
of ~ 2:1 intensity for the bands located at 2.24 and 2.85 
eV, respectively, is not in agreement with the CI re­
sults158 and experiment.329 

Since the MO scheme of the pyramidal (C51, -* C8) 
structure is very similar to the (D3/, - • C2v) one, an 

analogous situation to that described for the 41A1 and 
31B2 states has been found for the location, oscillator 
strengths, and the leading features of the wave functions 
for the 71A" and 71A' states (cf. Figure 25). Dominant 
intense transitions to these states give rise to the overall 
similar spectra of the (D311 -* C2„) and (C51, - • C1) 
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Figure 26. The RPA (based on the SCF procedure) transition 
energies (eV) and oscillator strengths /, for three Na8 structures:168 
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structures which differ from each other only in details. 
Notice, that the (C61, -»• C1) topology differs from the 
(Dy1 -*• C2J one only in the position of the out-of-plane 
atom. 

In contrast, the C24, structure seems to produce a 
different spectroscopical pattern with several intense 
transitions between 2.0 and 2.8 eV. Also, the location 
and oscillator strengths of the transitions obtained from 
the CI and RPA technique differ substantially from 
each other. It is likely that the C2x, structure, which is 
less stable than the other two, is not responsible for the 
observed Na6 spectrum.329 

The example of Na6 illustrates clearly that the as­
sumption about averaging of geometries, which will 
smear out the structural properties in the sense of an 
oscillation among many energetically close lying 
structures contributing to a broad absorption band, is 
not valid.330"332 If this were the case, the contribution 
from the C24, structure would also be seen in the ab­
sorption spectrum. Namely, a broad band at ~2.5 eV 
would have to be observed in addition to an intense 
band located at ~2.0 eV and the weak one at ~2.8 eV 
due to the planar (Dy1 •— C211) and (C61, -*• C,) structures. 
Only the two latter bands have been recorded.329 Re­
cent QMD work167 in which also the structures at high 

temperature have been considered indicate strongly 
that the mobility of atoms is not so large as expected. 

From a comparison between the CI and RPA results 
a rough estimate can be made that a dominant intense 
transition can already arise due to an interaction of very 
few (two or three) particle-hole excitations among de­
generate or almost degenerate pairs of one-electron 
levels. For example, two single particle-hole transitions 
contribute ~78% to the RPA wave function of the 31B2 
and 41A1 state of (D311 -*• C24,) structure. In this case the 
RPA will reproduce this part of the spectrum well. The 
approximate location of the intense transition depends 
roughly upon the energy difference between the one-
electron levels among which excitations occur. The 
one-electron level scheme is determined by symmetry, 
geometry, and the potential. Therefore, differences 
between these RPA results and those based on the 
jellium model oscillators can be expected (cf. section 
IV.D.2). 

The number of valence electrons available to occupy 
the degenerate or almost degenerate one-electron levels 
is closely connected with the symmetry of the stable 
cluster geometry. In a fact, the most stable Na8 cluster 
is the highly symmetric Td tetracapped tetrahedron (cf. 
section III.B.l). In this context the number of valence 
electrons is connected with the appearance of charac­
teristic features in the absorption spectra, but the ex­
istence of one dominant intense peak is not necessarily 
dependent only on the number of valence electrons 
corresponding to a closed shell (8,20) (compare Na6). 

As already pointed out in section III.B.l, geometry 
optimization of Na8 in the framework of the HF ana­
lytical gradient method carried out for an antiprism 
with the D^ symmetry and a deformed section of the 
fee lattice leading to the geometry with the D2d sym­
metry, respectively, yields ground-state energies which 
are only slightly higher than the Td one (cf. section 
III.B.l). The Did and D^ structures have been con­
sidered since they have been found as stable isomers 
in the LSD164 and LSD-QMD work157 and they cer­
tainly belong to a class of compact and symmetrical 
geometries. Therefore, it is of interest to find out to 
which extent their spectral pattern is different from the 
one calculated for the Td structure. The CI energy 
ordering for the three structures remains the same as 
in the SCF case.162 The optimization of geometry at the 
large-scale CI level in the framework of CASSCF is not 
practicable, and pointwise CI optimization is not par­
ticularly instructive due to the very shallow energy 
surfaces. A comparison between the measured ab­
sorption spectrum279,280 and the calculated energies for 
allowed transitions with corresponding oscillator 
strengths for all three Td, D24, and D^ structures306,162 

is given in Figure 27. The one-electron level schemes 
of Figure 28 will again be helpful for discussing the 
nature of the excited states of different Na8 structures. 
For the Td structure, the 41T2 state located at 2.49 eV 
(498 nm) has dominant oscillator strength and coincides 
with the maximum of the observed intense band. There 
are only three leading configurations in the wave 
function of the 41T2 state, arising from single excitations 
from It2 to 3t2 and the Ie MO's (cf. Figure 28). There 
are two close-lying states, 51T2 and 61T2, blue shifted 
with respect to 41T2 also lying in the energy interval of 
the observed intense band. The 61T2 and 41T2 have 
similar leading terms in the corresponding wave func-
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TABLE IV. Transition Energies and Oscillator Strengths Obtained from the ECP-CVC-CI Procedure for the Na, 
(Dn — Ct,,) Structure 

state E, au" T„ eV» ft
c *" 

I1A1 
21A1 

31A1 

41A1 

51A1 

61A1 

71A1 

81A1 

91A1 

101A1 

H1A1 

121A1 

I1B1 

21B1 

31B1 

41B1 

51B1 

61B1 

71B1 

-1.2379 
-1.1797 

-1.1770 

-1.1583 

-1.1565 

-1.1553 

-1.1437 

-1.1431 

-1.1318 

-1.1289 

-1.1261 

-1.1241 

-1.1698 
-1.1450 

-1.1432 

-1.1283 

-1.1244 

-1.1192 

-1.1146 

0.00 
1.59 

1.66 

2.17 

2.22 

2.25 

2.56 

2.58 

2.89 

2.97 

3.04 

3.10 

1.85 
2.53 

2.58 

2.98 

3.09 

3.23 

3.35 

0.1330 

0.0025 

1.3862 

0.0016 

0.0186 

0.0555 

0.0026 

0.0612 

0.0001 

0.1224 

0.0331 

0.0000 
0.1039 

0.0290 

0.1947 

0.5177 

0.1577 

0.0336 

0.91 (la?2a?lbl) 
-0.72 (2ax — 3ax) - 0.26 ^ a 1 — 4B1) 
-0.19 (Ib2 — 2b2) + 0.19 (2B1 — 7B1) 
+0.18 (2B1 — e&i) 
-0.55 (2B1 -* 4B1) + 0.54 (Ib2 — 2b2) 
+0.21 (2B1, Ib2 — 4B1, 2b2) 

0.52 (Ib2 — 2b2) + 0.50 (2B1 — 4B1) 
-0.39 (2a t — Sa1) + 0.15 (Ia1 — lsn) 

0.42 (Ia1 — Sa1) + 0.30 (2B1, Ib2 — 3B1, 2b2) 
+0.25 (2B1 — 5B1) 
-0.24 (2a? — 3B1, 4B1) + 0.16 (2a? — 3a?) 

0.41 (Ia1 — 4ai) + 0.27 ( l b | — 4a?) 
+0.25 (Ib2

5 — 3B1, 4B1) 
+0.25 (2a!, Ib2 -* 4B1, 2b2) 
-0.21 (Ib2 — 3b2) - 0.19 (Ib2 — 4b2) 
-0.18 (2a? — 4a?) - 0.15 (Ib2 — 8b2) 

0.37 (2at — Sa1) + 0.36 (Ib2 — Sb2) 
+0.25 (2a? — 3a?) - 0.25 (lbl — 3a?) 
+0.22 (2B1 — 6B1) 
+0.16 (2B1 — 13B1) + 0.16 (Ia1, 2B1 — 3a?) 
-0.15 ( l b | -~ 3B1, 4B1) 
-0.40 (2B1 — Ba1) - 0.30 (Ib2 — 4b2) 
-0.24 (2B1, Ib2 — 3a1? 4B1) 
-0.23 (2B1 — 13B1) - 0.20 (Ib2 — 8b2) 
-0.20 (2a? — 3a1( 4B1) 
-0.17 (2a? — 2b|) + 0.17 (2a, — 7a,) 

0.34 (2a„ Ib 2 — 3a„ 2b2) - 0.30 (Ib2 — 3b2) 
-0.28 (2a, — 5B1) + 0.26 (2a, — 6a,) 
+0.22 (2a? — 3a?) - 0.21 (Ia1 — 4a,) 
-0.20 (lbl — 3a?) + 0.16 (Ia1, 2a, — 3a?) 

0.47 (Ib2 — 3b2) - 0.43 (2a, — 5a,) 
+0.22 (2a,, Ib2 — 4a,, 2b2) 
+0.20 (Ia1 — 3B1) + 0.16 (Ib2 — 2b2) 
-0.15 (2A1 — 4B1) 
-0.44 (Ib2 — 4b2) - 0.30 (Ia1 — 4a,) 
+0.27 (2B1, Ib2 — 4a„ 2b2) + 0.26 (2B1 — 6B1) 
-0.18 (Ib2 — 8b2) 
+0.19 (2a, — 5B1) 

0.29 (2B1, Ib2 - - 4B1, 2b2) 
-0.29 (Ib2 — 3b2) 
-0.24 (2a? — 2b|) + 0.24 ( l b | — 2b|) 
-0.24 (Ia1 — 3a,) - 0.23 ( lb , — 4b,) 
-0.21 (2a, — 5a,) + 0.19 (lbl — 4a!) 
-0.17 (Ia1 — 4a,) 
-0.89 (2ax — Ib1) 

0.63 (2B1 — 2b!) + 0.32 (2a„ Ib2 — Ib1, 2bs) 
-0.24 ( la , — Ib1) 
+0.17 (Ia1, 2ax — 3a!, Ib1) - 0.16 (2a, — 3b,) 
+0.16 (2a? - 3a„ lb,) 

0.58 (Ib2 — Ia2) - 0.27 (2a, — 2b,) 
+0.26 (lbl — 4a„ lb,) 
-0.20 (la, — lb,) + 0.19 (2a„ Ib2 — Ib1 , 2b2) 
-0.16 (Ib2 — 3a2) 

0.50 (2a„ Ib2 -~ Ib1 , 2b2) - 0.26 (Ib2 — Ia2) 
-0.25 (2a, — 2b,) 
-0.22 (2a? — 3a„ Ib1) 
+0.18 (Ia1, 2B1 — 3a,, lb ,) 
-0.16 (2a„ Ib2 — 3a,, Ia2) 
-0.43 (2B1 — 2bx) - 0.30 (Ib2 — Ia2) 
+0.28 (Ia1, 2a, — 3a„ lb,) 
-0.26 (la, — lb,) + 0.21 (2a? — 3a„ Ib1) 
+0.19 (2a„ Ib2 — l b „ 2b2) 
+0.18 (2a„ Ib2 -»• 3a„ Ia2) 
-0.15 (Ia1, 2a, — 4a„ lb,) 
-0.58 (2A1 — 3b!) + 0.23 (Ia1, 2B1 — 4B1, Ib1) 
+0.22 (Ib2 — Ia2) 
-0.22 ( lbi — 4a!, Ib1) + 0.18 (2a? — 4a„ Ib1) 
-0.17 (2a, — 7b,) 

0.47 (2a, — 3b,) + 0.28 (2a,, Ib2 — lb„ 2b2) 
-0.25 (2a, — 4b,) - 0.24 (lbf — 4a„ lb,) 
+0.21 (2a? — 3a„ Ib1) 
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T A B L E I V (Continued) 

state 

8'B1 

I1B2 
2'B2 

3'B2 

4'B2 

5'B2 

6'B2 

E, au" 

-1.1128 

-1.1828 
-1.1736 

-1.1597 

-1.1551 

-1.1513 

-1.1495 

T„ eV» 

3.41 

1.50 
1.75 

2.13 

2.25 

2.36 

2.41 

f: 
0.1374 

0.0583 
0.0062 

1.3567 

0.0063 

0.0010 

0.0907 

tyd 

0.40 (2ai — 4b,) + 0.28 (Ia1 — Ib1) 
-0.21 (2ai, Ib2 — 3a,, Ia2) 
+0.21 (2ai, Ib2 — Ib1, 2b2) 
-0.19 (la,, 2B1 — 4B1, Ib1) 
-0.17 ( l b | — 4a1( lbj) + 0.16(2B1 — Sb1) 
-0.16 (lbi — Sa1, Ib1) 
-0.85 (Ib2 — Sa1) 
-0.52 (2at — 2b2) - 0.46 (Ib2 — 4at) 
-0.30 (2a? — Sa1, 2b2) 
-0.25 (2alt Ib2 — 3a1( 4ax) 

0.48 (Ib2 — 4a,) - 0.42 (2B1 — 2b2) 
+0.32 (2a1( Ib2 — 3a1( 4SL1) 
-0.25 (2a? — 3a,, 2b2) + 0.22 (Ia1 — 2b2) 
-0.17 (Ib2 — Sa1) 

0.34 (Ia1 — 2b2) + 0.30 (2a? — Sa1, 2b2) 
+0.23 (Ib2 — 5ai) 
-0.23 (2B1, Ib2 — 2b|) 
-0.22 (2ai, Ib2 — 3B1, 4aj) 
+0.19 (28 l — 4b2) 
+0.15 (2a„ Ib2 — 3a1( 5ai) 
-0.59 (2a,, Ib2 — Sa1, 4B1) 
+0.21 (2af — 3a,, 2b2) 
-0.18 (2ai — 3b2) 
-0.17 (2B1, Ib2 — 3B1, 7B1) 

0.32 (Ib2 — 5at) - 0.29 (2B1, Ib2 — 3a?) 
-0.26 (Ib2 — 7aj) 
-0.21 (Ib2 — 3B1) 
-0.19 (2B1, Ib2 — 3a,, 5a,) 
-0.19 (2a„ Ib2 — 2b|) 
+0.17 (Ib2 — 8a,) - 0.17 (2a? - 3a„ 2b2) 
-0.16 (2B1, Ib2 — 3alF 7B1) 
-0.16 (Ia1 - 2b2) 

71B2 -1.1435 2.57 0.0303 -0.28 (lbi — 4a„ 2b2) - 0.27 (2a, — 3bj) 
-0.25 (Ib2 — 6a,) 
+0.23 (Ib2 — 7a,) - 0.22 (2a? — 3a„ 2b2) 
-0.22 (2B1 — 4b2) + 0.21 (Ib2 — 5B1) 
+0.17 (2B1, Ib2 — 3a?) - 0.17 (Ib2 — 13a,) 

8'B2 -1.1359 2.78 0.0276 -0.50 (2a, — 3b2) - 0.30 (2a? — 3a„ 3b2) 
-0.24 (Ib2 — Sa1) 
-0.20 (2a1( Ib2 — 3B1, 4a,) 
+0.17 (Ib2 — 6a,) + 0.17 (2a„ Ib2 - 4a?) 
+0.16 (2a?, Ib2 — 3a,, 4a?) 

9'B2 -1.1280 2.99 0.1897 0.30 (lbi — 4a„ 2b2) - 0.29 (2a,lb2 — 2bg) 
+0.27 (lbi — 3a„ 2b2) + 0.20 (2a„ Ib2 — 3a?) 
-0.20 (2a? — 3a„ 2b2) - 0.20 (2a„ Ib2 — 3a„ 5ai) 
-0.20 (Ib2 — 7a,) 

10'B2 -1.1277 3.00 0.0039 0.36 (2a, — 4b2) - 0.30 (Ib2 — 6a,) 
-0.30 (la, — 2b2) 
+0.19 (la„ 2a, — 3a„ 2b2) - 0.18 (2a, — 2b2) 
+0.17 (Ib2 — 5a,) 
-0.17 (2a, — 7b2) - 0.16 (Ib2 - 8a,) 
+0.16 (Ib2 — 7a,) 

U1B2 -1.1197 3.22 0.0131 -0.30 (2B1, Ib2 — 3a?) + 0.26 (Ib2 — 9a,) 
+0.26 (lbi — 3a,2b2) 
-0.25 (Ib2 — 8a,) - 0.24 (Ib2 — 5a,) 
+0.20 (Ib2 — 7a,) 
-0.18 (2a„ Ib2 — 3a„ 9a,) 
+0.17 (2a„ Ib2 — 3a„ 5a,) 

12'B2 -1.1154 3.33 0.0360 0.52 (Ib8 — 9a,) 
+0.38 (Ib2 — 8a,) 
+0.22 (2a„ Ib2 — 3a„ 9a,) 
-0.19 (lbi - 3a,, 2b2) 
-0.18 (Ib2 — 6a,) 

"The CI energies obtained from MRDCI treatmente employing AO basis (4s4p/3s3p): 57M/12R (T = 2.7 nh), 49M/8R (T = 1.2 /ih), and 
62M/12R (T = 2.3 Mh) for 'A1, 'B1, and 'B2 states, respectively. 6Transition energies. 'Oscillator strengths. dLeading excitations of die 
wavefunction. Excitations with respect to the ground-state configuration are indicated. The configurations with the coefficients \c\ 2 0.15 
are listed. 

tions, but the coefficients of the single excitations and transitions to the I1T2, 2
1T2, and 31T2 states located at 

their signs give rise to a different interference and 1.58,1.68, and 2.08 eV, respectively, have considerably 
therefore a smaller transition dipole results in the for- lower oscillator strengths. The leading configuration 
mer case. Notice that the lower lying optically allowed of the I1T2 state arises from a HOMO-LUMO excita-
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TABLE V. Comparison of Transition Energies and Oscillator Strengths Obtained from the ECP-CVC-RPA and 
ECP-CVC-TDA Approaches for the Na4 ( J t t — C^) Structure" 

state 

21A1 

31A1 

41A, 
51A1 

61A1 

71A1 

81A1 

91A1 

101A1 

H1A1 

I1B1 

21B1 

31B1 

41B1 

51B1 

61B1 

71B1 

81B1 

91B1 

101B1 

I1B2 

31B2 

41B2 

51B2 

61B2 

71B2 

8'B2 

91B2 

101B2 

T, (RPA)' 

1.80 
2.12 
2.24 
2.84 
2.87 
3.15 
3.22 
3.38 
3.48 
3.59 
1.92 
2.83 
2.85 
3.36 
3.63 
3.75 

3.84 
4.07 
4.28 
4.36 
1.69 
2.24 
2.84 
2.99 
3.15 
3.22 
3.38 
3.48 
3.51 

T, (TDA)" 

1.84 
2.15 
2.35 
2.91 
2.94 
3.16 
3.26 
3.39 
3.49 
3.69 
1.95 
2.83 
2.94 
3.37 
3.68 
3.76 

3.85 
4.08 
4.40 
4.36 
1.71 
2.35 
2.91 
2.99 
3.16 
3.26 
3.39 
3.49 
3.51 

/ . (RPA)* 

0.34 
0.00 
1.20 
0.14 
0.00 
0.00 
0.01 
0.03 
0.08 
0.00 
0.0 
0.0 
1.04 
0.0 
0.40 
0.0 

0.03 
0 
0.38 
0.00 
0.00 
1.20 
0.14 
0.00 
0.0 
0.00 
0.03 
0.08 
0.00 

/ . (TDA)' 

0.41 
0.00 
1.20 
0.14 
0.00 
0.00 
0.01 
0.03 
0.15 
0.00 
0.00 
0.00 
1.17 
0.00 
0.57 
0.00 

0.06 
0.0 
0.98 
0.0 
0.00 
1.55 
0.33 
0.00 
0.00 
0.00 
0.04 
0.15 
0.00 

leading excitations (RPA):'' \c\ > 0.2 

0.88 (2at - • 3S1) 
-0.67 (2a : — 4a,) - 0.67 (Ib2 — 2b2) 

0.63 (2aj — 4a,) - 0.63 (Ib2 — 2b2) 
-0.55 (2aj — 5a,) + 0.55 (Ib2 — 3b2) 
-0.66 (2a, — 5a,) - 0.66 (Ib2 — 3b2) 
-0.60 (2a, — 6a,) + 0.39 (2B1 — 7a,), -0.39 (Ib2 — 4b2) -

0.66 (Ib2 — 4b2) + 0.33 (2a, — 7B1), +0.32 (2a! — 5a,) • 
-0.83 (2a, — 1Oa1) 
-0.63 (2a, — 7a,) - 0.43 (2a, — 6B1), -0.36 (2B1 — 3B1) 
-0.87 (Ia1 — 3ax) 
-0.90 (2B1 - Ib1) 
-0.62 (2B1 — 2b,) - 0.62 (Ib2 — Ia2) 

0.67 (2a, — 2b,) - 0.67 (Ib2 — Ia2) 
0.63 (2a, — 3b,) - 0.40 (2a, — 4b,), -0.40 (Ib2 — 2a2) 
0.76 (Ia1 — Ib1) - 0.39 (2B1 — 4b!), +0.39 (Ib2 — 2a2) 

-0.47 (2a, — 4b,) - 0.47 (Ib2 — 2a2) 
+0.44 (2a, — 5b,) - 0.40 (2a, — 3b,) 
-0.57 (2a, — 4b,) + 0.57 (Ib2 — 2a2), +0.52 (Ia1 — Ib1) 

0.73 (2a, — 5b,) + 0.46 (2B1 — 3b,) 
-0.65 (2a, — 6b,) + 0.65 (Ib2 — 3a2) 
-0.54 (2a, — 6b,) - 0.54 (Ib2 — 3a2), +0.43 (2a, — 5b,) 
-0.66 (2a, — 2b2) + 0.66 (Ib2 — 4a,), 0.88 (Ib2 — 3a,) 

0.63 (2a, — 2b2) + 0.63 (Ib2 — 4a,) 
-0.55 (2a, — 3b2) - 0.55 (Ib2 — 5a,) 

0.60 (2a, — 3b2) - 0.60 (Ib2 — 5a,) 
-O.60 (Ib2 — 6a,) + 0.39 (2a, — 4b2), +0.39 (Ib2 — 7a,) 

0.66 (2B1 — 4b2) - 0.33 (Ib2 — 7a,), +0.32 (2B1 — 3b2) -
0.83 (Ib2 — 1Oa1) 

-0.63 (Ib2 — 7a,) - 0.43 (Ib2 — 6a,), -0.36 (Ib2 — 3a,) 
-0.53 (Ib2 — 8a,) - 0.53 (2a, — 5b2) 

"The ground-state SCF one-electron functions have been used employing AO basis (4s4p/3s3p). 'Transition 
strength. "Leading excitations with respect to the ground-state configuration (la,2a,lb2). 

• 0.34 (2a, -
- 0.32 (Ib2 

- 0.34 (Ib2 

¥ 0.33 (Ib2 

energies. ' 

- 10a,) 
- 3 I ) 2 ) 

- 5a,) 
- 5 a , ) 

'Oscillator 

tion (It2 -* 2ax) and the composition of the 21T2 and 
31T2 wave functions is dominated by three configura­
tions arising from single excitation from It2 -* 2I2 and 
to the Ie MO's. These two weak transitions coincide 
with the measured fine structure, red shifted with re­
spect to the dominant transition (for details cf. ref 162). 

The closely related Du Na8 structure again exhibits 
dominant features at ~2.5 eV, which correspond to the 
calculated transitions to the 31B2 and 61E states. This 
is easy to understand by comparing the one-electron 
schemes for the Td and D2^ structures. The symmetry 
lowering in the latter splits the degeneracy of t2 rep­
resentation into e and b2, giving rise to two transitions 
which have large oscillator strengths and almost coin­
cide in energy. The transition to the 21B2 state at 2.09 
eV with small but not negligible oscillator strength 
corresponds again to the measured fine structure. 

In the case of the antiprism (D4^) the dominantly 
intense transition to the 41E1 state at 2.7 eV is slightly 
blue shifted relative to the maximum of the measured 
cross section and the weak transtions do not correspond 
to the measured fine structure. The one-electron levels 
of this compact and highly symmetrical structure 
(Figure 28) do not substantially differ from those of the 
Td and Du structures. Correspondingly, the leading 
features of the wave functions of the 41E state are de­
termined by single excitations similar to the case of the 
states of the Td and Z)2d structures to which intense 
transitions have been found. Although the absorption 
spectrum calculated for the antiprism contains a single 
intense transition, the agreement with the locations of 
observed bands is not as good as for the Td and D2d 
structures. Since all intense transitions for the three 
Na8 structures considered are characterized by the in­

teraction of singly excited configurations, RPA using 
the SCF one-electron functions yields very similar re­
sults to those obtained by the CI treatments (cf. Figure 
29). In fact, for the Td

m and LV6 8 structures for the 
RPA gives rise to two close-lying transitions which ex­
haust the large part of the sum of oscillator strengths. 
For £44 one single transition is more dominant similar 
to that found by using the CI procedure. The transi­
tions with low values of the oscillator strength are 
distributed over a large part of the energy interval, 
particular for the Z)M structure. 

Notice that although the three structures, Td, D2d, 
and D4J calculated for Na8 give rise to similar spectro­
scopic patterns, only the first one represents an equi­
librium geometry. Furthermore, it is apparent that the 
consideration of dynamical averaging of geometries to 
yield "spherical" Na8 in which the position of the nuclei 
can be neglected is an inadequate assumption for this 
level of response measurement.332 It is more appro­
priate to consider the broadening of the intense ab­
sorption band due to vibrations. 

It is instructive to compare the calculated spectra for 
Na6 and Na8 and to point out similarities and differ­
ences. This is particularly interesting in the context of 
the previous plasmon collective mode interpretation of 
a "giant resonance" found for Na8.

277,296,297 Let us com­
pare the one-electron level schemes and the calculated 
spectra of the Td Na8 cluster with those obtained for 
the D& and C60 structures of Na8. The HOMO-LUMO 
gap is almost the same for all three structures (4.3-4.4 
eV) (cf. Figures 24 and 28). In the case of Na6 the 
interaction among single excitations from the highest 
occupied to a pair of almost degenerate one-electron 
levels Ie' « (2a1( Ib2) - • 2e '« (4a1( 2b2) corresponding 
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Figure 27. Comparison of photodepletion spectrum279,280 and 
CI optically allowed transitions (eV) and oscillator strengths /e 
of three Na8 structures:306'162 Td, DM, and Du. 
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Figure 28. The SCF MO's for three energetically close lying 
structure of Na8: Td, Du, and Du. 

to LUMO + 1 gives rise to a pair of states with low and 
high oscillator strengths (due to interference) with a 
dominant transition at ~2.1 eV (cf. Table IV). For Na8 
the interaction among single excitations from degen­
erate HOMO levels to the second and third pairs of 
degenerate orbitals (It2 - • St2, It2 -* Ie) shifts the in-

No1(TJRPA 

IfE 

V£z3 
\flio—JE 

21B1 Vi 

SO 50 40 30 20 10 

fi 

Figure 29. The RPA (based on SCF procedure) optically allowed 
transitions (eV) and oscillator strengths /, for three energetically 
close lying structures of Na8: Td, Du, and Du. 

tense transition to the blue by about 0.4 eV. Moreover, 
the weak transition in Na8 is also located at ~2.08 eV 
and in the wave function of 31T2 the interaction be­
tween single excitations from the It2 - • 2t2 levels plays 
a leading role. In other words, the appearance of the 
intense transitions in the same or similar energy region 
for clusters of different sizes is closely connected with 
their geometrical structures. Both intense transitions 
in Na6 and Na8 with locations differing by ~0.4 eV, can 
be interpreted as due to the interference phenomena 
in which only a very limited number of particle-hole 
excitations (three) play a leading role. The interaction 
among these single excitations giving rise to the final 
quantum-mechanical states is a many-electron effect 
which cannot be classified as a collective mode in the 
sense of plasmon theory (cf. section II.B.7). 

At this point it is instructive to mention that the 
description of the excited states of clusters in terms of 
interaction of individual excitations is just a way of 
improving the wrong starting point which is the one 
electron picture. However, this discussion is useful since 
we can distinguish between (i) individual particle-hole 
excitations and (ii) many-electron effects which can be 
qualitatively determined by (a) interaction among very 
few leading excitations as is the case in many molecular 
excited states and those (b) for which a very large 

file:///flio�
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number of excitations with comparable weights is in­
volved so that the notion of collective excitations can 
be introduced. 

In this context, the question can be raised at which 
cluster size such a molecular picture will disappear. 
Therefore, the interpretation of the absorption spec­
trum of Na2O is 0^ particular interest. The geometry 
optimization of the Na2O structure without symmetry 
constraints is not a very easy task. In analogy to Li20,

164 

several structures have been optimized under symmetry 
restrictions such as the most compact highly symme­
trical Td Na20, and sections of fee and hep lattices with 
Td and D3h symmetry, respectively. Other structures 
resulting from pentagonal growth as well as deformed 
sections of hep lattices will have still to be considered 
(cf. ref 157). The SCF Eh/n for the T^-fcc structure 
is lower than for the other two geometries. This energy 
ordering remains the same when the correlation energy 
has been estimated by a nonlocal density functional by 
using the HF density.334 However, in analogy to Li20, 
the extensive CI treatment for Na20 might yield the 
lowest energy for the most compact "spherical" Td 
structure. The results at this level of calculation are 
not yet available. The MO schemes of both Td struc­
tures are compared in Figure 30. The valence electrons 
occupying one-electron levels Ia1, It2, 2&i, Ie, and 2t2 
in both cases can be approximately compared with Is, 
Ip, 2s, and Id orbitals of the superatom. However, 
there are differences in energy ordering of degenerate 
one-electron levels among the two structures, particu­
larly in the case of the "spherical" Td structure. Notice 
that the HOMO-LUMO (2^-3Ii2) energy gap of the 
"spherical" Td structure of Na20 is only ~0.5 eV smaller 
than for the three Na8 geometries considered. Moreo­
ver, the HOMO-LUMO gap of Na8 (Td) is comparable 
in size with the energy difference between the Ie = 
HOMO-I (or 2B1 = HOMO-2) and the LUMO of Na20. 
If we assume, according to the analysis of the Na6 and 
Na8 results, that the dominant transition will arise by 
interaction among single excitations from the 2sld type 
of one-electron levels (corresponding to HOMO, 
HOMO-I, and HOMO-2) to degenerate close-lying 
unoccupied orbitals, it is likely that the location of this 
band will not substantially differ from the one found 
for the Na8 cluster. 

A comparison of ECP-RPA results for Na8 {Td)
m 

and Na20 {Td)
m with the experimental spectra is shown 

in Figure 31. In fact, the most intense calculated 
transitions are located in both cases at ~500 nm, where 
the giant resonances have been found. However, the 
second intense transition to 41T2 in the case of Na8 is 
slightly blue shifted relative to the measured maximum 
and the value of the oscillator strength is about half of 
that calculated for the 31T2 state. For the highly sym­
metrical spherical Na20 with Td symmetry the ECP-
RPA yields a single dominant intense transition to the 
91T2 state, although there are two additional states with 
some oscillator strengths in the 450-500 nm regions 
where the broad band has been measured. Notice 
however, that for the most intense transition the os­
cillator strength ft has a value of about 10. In addition 
to the values of ft drawn in Figure 31a there are many 
small contributions in the energy interval considered. 
The sum of/e is 19.1 in the energy interval up to 7.78 
eV. 

The number of particle-hole excitations playing a 
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leading role in the 91T2 state of Na20(Td) is larger than 
in the case of the 31T2 and 41T2 states of Na8. The 
weights of the three leading excitations in the 31T2 state 
of Na8 represent 78% of the wave function. For Na20 
the main contributions to 91T2 arise by promoting one 
electron from six close-lying 2ax = 2s and Ie, 2t2

 s 

ld„ld7 occupied levels to the three lowest lying unoc­
cupied t* two au and It1 levels. The configurations (2Iv2 

— It1) = (Id7 - If1), (Ie -* St2) = (Id. -* It,), (2t, -* 
4tj) • (Id7 — 2p), (2t2 — Sa1) • (Id7 — 3s), and (2ax 
-*• 4Ii2) = (2s -» 2p) contribute with weights larger than 
0.1 to the 91T2 state of Na20, making up 62% of the 
wave function. The labels point out a connection be­
tween the Td and the full rotation Rs symmetry groups. 
In other words, the number of leading particle-hole 
excitations is still not very large in Na20. There are also 
differences between the spectra obtained from ECP-
RPA for Na8 and Na20 with respect to those resulting 
from the RPA based on the jellium model, as will be 
discussed in section IV.D.2, illustrating a strong de­
pendence of the results on the details of the potential. 

However, the Tj-fcc structure of Na20 gives rise to 
a completely different spectral pattern (cf. Figure 31b) 
which does not correspond to the measured one. The 
transition to the 61T2 located at 560 nm has the largest 
oscillator strength, but it does not dominate the spec­
trum since there are two other transitions to the 72T2 
and 101T2 states at 510 and 433 nm with relatively large 
intensities. The 61T2 state contains four leading par­
ticle-hole transitions with weights > 0.1:(le -* 4t2) = 
(Id, - IfJ, (Ie -* It1) = (Id, -* If1), (2a, -* St2) = (2s 
— 2p) and (2ta — It2) = (Id7 — If7). Transition to this 
state exhausts 20% of the oscillator strength sum which 
equals to 19.04 over the energy interval up to 7.5 eV. 
The other two states, 71T2 and 101T2 with oscillator 
strength each representing ~12% of the sum contain 
two and three leading configurations: (2Ii2 - • 4Ii2) = (Id7 
-* If7), (2tj - It1) = (Id7 - IfJ; and (2t, - 4at) = (Id7 
— 4s), (2a — St8) • (2s — 2p), (2t, — St1) = (Id7 — 2dL), 
respectively. There are many small contributions of the 
oscillator strengths for transitions distributed over the 
whole energy interval. Structural assignment of the 
recorded Na20 spectrum has not been completed yet. 
This investigation is in progress.328 Note that experi­
mental internal energies may in fact be a problem here. 

Nag. The depletion spectrum of Na£ exhibits a giant 
resonance with a maximum located at 2.62 eV309 just 
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328 which is a section 
of the fcc lattice. 

slightly blue shifted with respect to the one found for 
Na8. The Nag structure with C2u symmetry obtained 
by adding one atom to the Td structure of Na8 has the 
lowest SCF energy in comparison with two other ge­
ometries optimized by the analytical gradient method 
under C^ and D4J symmetry constraints. The latter two 
structures are antiprismatic with the ninth atom cap­
ping one face of the Na8 antiprism, and located in its 

center, respectively. The CI ground-state energies of 
both antiprismatic forms are 0.127 and 0.31 eV higher 
than the C2„ structure.168,307 A comparison of one-
electron levels in Figure 32 shows again that there are 
many close-lying levels to which particle-hole excita­
tions will occur whose degeneracy is of course higher 
for the antiprisms than for the C211 structure. Although 
the MO energies of Na^ are shifted to lower values with 
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Figure 32. The SCF MO's for three energetically close lying 
structures of NaJ: C21,, C41,, and Du. 

respect to those of Na8 due to the lack of one electron 
in the field of nine nuclei, the energy gap between the 
levels among which excitations take place is almost the 
same as for Na8 (~4.5 eV). In analogy to the previous 
discussion, it is to be expected that large oscillator 
strengths will be found for transitions to states which 
are located in a similar energy interval as the intense 
band for Na8. Also, higher symmetrical and compact 
antiprisms should give rise to a smaller number of in­
tense transition than the C20 geometry. 

A comparison between transition energies and os­
cillator strengths obtained from the ECP-CVC-CI and 
ECP-CVC-RPA approximations for all three Na£ 
structures is given in Figures 33 and 34. For the C20 
structure the CI method yields dominant intense tran­
sitions to 71A1 and 71B2 states located at ~2.8 eV and 
two transitions at ~ 2.4-2.6 eV with considerable os­
cillator strengths. In addition weak fine structure has 
been located at ~2.0 eV.307,158 An overall agreement 
with experimental data309 is present, although the most 
intense calculated transitions lie ~0.2 eV higher than 
the maximum of the recorded absorption band. The 
dominant features of the theoretical spectrum are due 
to interaction among single particle-hole excitations. 
Therefore they are also appropriately reproduced by the 
RPA. However, as noticed earlier the role of double 
excitations seems to be larger for structures which are 
not highly symmetrical (e.g. C21). Therefore, in com­
parison with CI, the RPA yields several additional 
transitions with considerable intensity distributed over 
the broader energy interval 2.5-3.5 eV for the C2v 
structure. Both antiprismatic forms, particularly the 
body centered one, give rise to dominant intensities 
located at 2.6-2.8 eV. The RPA yields only negligibly 
higher transition energies than the CI results for those 
states for which the high oscillator strengths have been 
calculated. Although an additional detailed investiga­
tion of the relative stability of the three structures of 
NaJ might be necessary, the CI results (transition en­
ergies and oscillator strengths) for the C2v and Did 
structures agree well with the observed spectrum. 

Lin (n = 6-8). Although the most stable ground-state 
structures of Lin clusters have almost equivalent to­
pologies to those found for Nan, it is interesting to find 
out if the specific structural differences will be reflected 
in the absorption spectra. As mentioned earlier, the 
recorded and calculated absorption spectra of Li4 and 
Na4 exhibit striking similarities, and an assignment to 
the rhombic structure was straightforward. 

For Li6 there again are three structures of comparable 
stability: planar D3n, flat pentagonal pyramid C61,, and 
a C20 structure containing tetrahedral subunits.62,134,301 

However, the latter has the lowest ground-state energy 
with respect to the former ones (0.17 eV), which is op­
posite to the case of Na6. The D3n and C50 structures 
are closely connected, since the pentagonal pyramid is 
very flat and it transforms into the planar structure 
without a barrier, but the C20 form is separated by a 
small barrier from the planar geometry. 

Although the work on well-resolved absorption 
spectra for Li6

301 and for Na6,
329 as well as on the the­

oretical predictions for all three close-lying isomers 
(three-dimensional C20, planar D3n, and pentagonal 
pyramid) is still in progress,301,158 it is very likely that 
a structural difference between Na6 and Li6 is present. 
The C211 structure of Li6 which has the lowest ground-
state energy gives rise to a group of transitions with 
considerable oscillator strengths located in the 2.4-2.6 
eV energy interval. The most intense transition at 2.51 
eV occurs to the 81A1 state, and considerably weaker 
ones are located at ~1.7 eV, as shown in Figure 35. 
The energy difference between one-electron levels 
among which important excitations occur leading to the 
most intense transition to the 81A1 state at 2.51 eV are 
comparable with those responsible for intense transi­
tions in Li7 and Li8 clusters. For all three clusters the 
recorded intense transitions occur in the same energy 
interval (cf. Figure 36). The calculated spectral pattern 
obtained for the Li6 C20 structure is in complete 
agreement with the presently available recorded spec­
trum.3* It seems that the intense band at ~2.1 eV (600 
nm) present in the spectrum of Na6

329 is absent in the 
case of Li6. The planar and flat pyramidal structures 
of Li6 give rise to similar spectral patterns301 as the 
equivalent topologies of Na6, with dominant feature at 
~2.1 eV (600 nm). Therefore the three-dimensional Li6 
(C20) for which the dominant transitions are located at 
~2.5 eV (500 nm) is the only candidate for assignment 
to the presently available spectrum. Although further 
experimental and theoretical confirmation is desirable, 
this is an interesting example of the pronounced 
structural characteristics of the absorption spectra of 
small clusters. 

The most stable ground-state structure of Li7 is the 
pentagonal bipyramid (D5n).

62 For the Li7 pentagonal 
bipyramid, all calculated oscillator strengths for tran­
sitions up to ~2.40 eV have negligible values. One 
intense transition coinciding with the maximum of the 
recorded band at 2.46 eV has been calculated. However, 
since this is an open-shell system, there are many 
close-lying states of the same symmetry to be deter­
mined, and it is not yet conclusive that some intense 
transitions blue shifted with respect to the one located 
at 2.46 eV might not be present.300 

As in the case of Na8, the tetracapped tetrahedral Li8 
structure is the most stable one and the other two DM 
and D4^ with close-lying energies do not represent local 
minima on the SCF surface, since they transform into 
the Td form without passing over barriers336 (cf. section 
III.B.l). The calculated spectra for both the Td and D24 
structures of Li8 and Na8 have globally similar features 
(Figure 37) due to the symmetry and similar energy 
gaps between the levels among which particle-hole ex­
citations take place. However, the energy interval in 
which the transitions with large intensities are located 
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is considerably broader in the case of Li8 than for Na8. 
Also, there is more discrepancy between the locations 
as well as the values of the oscillator strengths obtained 
from the AE-CI and AE-RPA for Td Li8 (cf. Figures 37 
and 38) than for Td Na8. However, the dominant fea­
tures obtained from both methods are similar although 
transition energies obtained from the RPA are too high 
in comparison with the recorded spectra. The AE-RPA 
method gives rise to two transitions located at ~2.4 and 
3.0 eV with large and comparable oscillator strengths 
for the Td structure of Li8. For the DM structure, in 

addition to the most intense transition to the 61E state, 
there are transitions to three 1B2 states with some os­
cillator strengths. The recorded depletion spectrum of 
Li8 has recently become available and exhibits a dom­
inant broad band at 450-520 nm. The assignment of 
the Li8 Td structure to the recorded spectrum is most 
likely, although a contribution from the other related 
Du structure cannot be ruled out. The energy gaps 
between the occupied and virtual orbitals among which 
important excitations take place in the wave functions 
for the intense transitions have very similar values for 
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the C21, Li6, D6n Li7, and Td Li8 structures. This might 
be the reason for the almost same location of an intense 
transition at ~2.5 eV in all three cases. 

A comparison between absorption spectra of Lin and 
Nan clusters is not yet complete and can be of signifi­
cant importance for obtaining direct detailed evidence 
about structural properties of alkali metal clusters. 

From quantum molecular description of absorption 
spectra of small alkali-metal clusters the following 
conclusions can be drawn: 

(1) The appearance of dominant intense transitions 
is closely connected with a symmetry of the structure, 
the degeneracy of the one-electron levels as well as their 
detailed energy ordering, which is given by the potential 
determined by the position of the nuclei. It seems that 
a high degeneracy of occupied one-electron levels and 
close-lying triply degenerate (or almost degenerate) 
unoccupied levels must be available for the interacting 
single particle-hole excitations in order to give rise to 
a dominant transition. 

(2) There is a substantial difference between the 

Bonacic-Koutecky et al. 
quantum theory of surface plasmons (section II.B.7) and 
CI or RPA methods (section II.A.2 and II.B.4), although 
all of them consider the interaction between particle-
hole excitations. The frequency of the surface plasmon 
resulting from the quantum theory corresponds to a 
pole lying outside the one-electron level spectrum at an 
energy higher than the individual excitations (cf. section 
II.B.7). The interaction among excitations in the CI or 
RPA accounting for many-electron effects changes the 
energy of the resulting state with respect to the energy 
of the individual particle-hole excitations, giving rise 
to the appropriate value of the transition energy. 

(3) The aim of a comparison between ab initio CI and 
RPA results for a number of absorption spectra for 
different structures has been to establish qualitative 
rules according to which judgement can be made under 
which conditions the RPA should yield reliable pre­
dictions of transition energies and oscillator strengths. 
The wave functions of states to which transitions with 
large intensities take place usually contain single ex­
citations as leading configurations. In this case, the 
RPA results might be acceptable. However, there have 
been found many cases in which the role for interactions 
among double excitations is crucial for determining the 
spectral pattern. Additional investigations are needed 
before a conclusion might be drawn that, for clusters 
with high symmetry and high compactness, interaction 
among single excitations only may be sufficient for a 
reliable qualitative description of the absorption spec­
tra. It seems that the ab initio RPA procedure is 
suitable for qualitative purposes, but it is less reliable 
for an assignment of a particular cluster geometry to 
the recorded spectrum. 

(4) Large transition moments are also connected with 
larger polarizability of the electronic density along the 
symmetry axis which allows for the optical transitions. 
The involvement of p orbitals of Na and Li is obvious, 
causing in principle large polarizability already at the 
size of the tetramer. The appearance of one or a few 
dominant transitions in small alkali-metal clusters (n 
< 20) illustrates their very characteristic structural 
properties which only for considerably larger sizes where 
the structures turn into droplets can be adequately 
interpreted in the semiclassical picture of the surface 
plasmon, as will be discussed later in section IV.D.2. 
Additional experimental and theoretical data are 
needed in order to determine at which size approxi­
mately this transition will occur. 

3. Spectroscopic Properties of Ib Clusters 

Photodetachment. There are several essential dif­
ficulties in the quantitative determination of the ground 
and excited state properties of the neutral and anionic 
Cun, Agn, and Aun clusters, as mentioned in section 
IV.B: (i) the correlation of d and s electrons, and 
therefore also large basis sets which are necessary for 
the approximate description of d-d correlation, as well 
as (ii) the treatment of the (n + l)-electron system with 
the same accuracy as the n-electron system. In par­
ticular, if more than one valence electron per atom is 
correlated, the correlation of many electrons puts severe 
limitations on the cluster size and a size-consistent 
treatment of the correlation effects is important. 
Therefore, most of the theoretical work correlating 
many valence electrons per atom has been done on the 
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theoretical description of the neutral trimers is partic­
ularly difficult, since all three of them are fluxional 
molecules and in some cases such as Cu3 and Au3, 
correlation effects are important even for the geometry 
optimization.336 The results obtained from all-electron 
SCF followed by a modified coupled-pair functional 
(MCPF) size-consistent correlation treatment for 33 and 
34 electrons are available for Cu3 and Cu3.

293'336 In the 
case of neutral and anionic Ag3

336 and Au3
294'336 the 

relativistic effective core potential (RECP) has been 
used for the inner-core electrons while the outermost 
core orbitals 4s and 4p for Ag and 5s and 5p for Au were 
included in the valence shell. Since the 5s and 6s or-
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bitals have nodal spheres, the 4d and 5d electrons can 
correlate with 5s and 6s ones, respectively.336 The 
correlation effects were accounted for by the MCPF 
approach. Large basis sets of the type (16sl2p7d4f)/ 
[6s3p3slf] for Cu and (6s6p4d3f)/[5s4p4dlf] for Ag and 
Au have been used.336,294 All three trimers are Jahn-
Teller distorted molecules with 2B2 ground states of the 
obtuse isosceles triangles with the bond angle only 
slightly larger than 60 °. The 2B2 ground states are only 
slightly lower than the 2E' states of the equilateral 
triangles (cf. section III.B.l). All anionic trimers are 
linear, since this geometry minimizes the Coulomb re­
pulsion for the extra electron. In this respect there is 
close analogy to the alkali metal neutral and anionic 
trimers. However, it is known that even at this level 
of accuracy an ab initio treatment of lb-metal clusters 
does not yield accurate EA's in the absolute sense. 
Nevertheless, if the computed EA's for the atom, dia-
tomics, and trimers are directly multiplied by 1.3, the 
scaled EA values are in satisfactory agreement with the 
experimental values. The calculated adiabatic electron 
affinities for Cu ,̂ Ag3, and Au3" without (and with) 
scaling including Jahn-Teller correction are 1.75 (2.24), 
1.89 (2.39), and 3.26 (4.16) eV, respectively.336 The 
experimental values271 for the threshold detachment 
energy ET, defined as the electron binding energy at 
which the intensity reaches 10% that of the lowest 
maximum, are 2.27 ± 0.01, 2.36 ± 0.01, and 3.4-3.95 for 
Cu3", Ag3, and Au ,̂ while the electron binding energy at 
the maximum of the lowest electronic transition (VDE) 
are 2.37 ± 0.01, 2.43 ± 0.01, and >3.5 eV, respectively. 
The calculated and scaled VDE values for Cu3* at the 
linear geometry are 1.97 and 2.63 eV,337 respectively. 

According to Franck-Condon simulations, the observed 
narrow peak widths for Cu3" and Ag3 are consistent with 
calculations only for linear-to-linear transition (v' = 0 
*- v" = 0). The adiabatic electron affinity was esti­
mated from the VDE value by subtracting the energy 
difference between the ground states of the neutral 
trimers calculated at the linear geometries of the anions 
and at the best geometries of the neutral ones E (2J^p 
- E (2B2).

271 The Aui spectrum exhibits features dif­
ferent from the two lighter Ib trimers. These have been 
assigned to a two-photon processes in which photodis-
sociation is followed by photodetachment of the mo­
nomer and dimer fragments, since the calculated EA 
of 4.16 eV lies higher than the photon energy of 3.35 
eV in the high resolution experiment. The experimental 
EA obtained by using pulsed ion sources is estimated 
to be ~3.9 eV.11 The results of calculations at the same 
level of accuracy are available for geometries of mixed 
Ib trimers Au2Cu, Au2Ag, Ag2Cu, Cu2Ag, Ag2Au, Cu2Au, 
and CuAgAu as well as corresponding EA's,336 but ex­
perimental data are not yet available. 

The recorded photodetachment spectra of Ib clusters 
(n = 2-10) exhibit discrete isolated electronic bands (cf. 
Figure 39). In contrast to the nickel group clusters,286 

the relatively simple spectra of lb-metal clusters (n = 
2-10) indicate that only s valence electrons might be 
responsible for the relatively small number of the low-
lying excited states. Therefore, simplified theoretical 
approaches can also be useful. Results are available 
presently for Cun (n < 10). They were obtained from 
the ECP approach in which copper atoms are treated 
as one-electron atoms.191 This ECP (including 3d or-
bitals) is corrected for core-valence correlation (CPP) 
and correlation effects for valence s electrons are taken 
into account. However, a geometry optimization of the 
anionic structures has not been carried out. The op­
timized geometries of Li; clusters served as starting 
points to select the topologies for Cun clusters (cf. sec­
tion III.B.3), and then comparison of ground-state and 
first excited state transition energies (VDE and Te) with 
measured peaks for Cun rather than the calculated 
ground state energies of anions has been used to select 
cluster geometries as good candidates for structural 
assignment. 

Notice that the energy difference between the ground 
and first excited state of the neutral cluster (first 
transition energy = T8,) corresponding to the energy gap 
between two maxima with the lowest binding energy in 
recorded spectrum, is often called the HOMO-LUMO 
gap in the literature. This stems from the qualitative 
considerations which have been used for the interpre­
tation of the oscillatory behavior of T61 values as a 
function of cluster size, especially for even clusters. The 
energy gap should also decrease for large n, as the 
lowest excited states develop into the conduction band. 
The T61 energies are associated with the HOMO-
LUMO gap in the case of nondegeneracy and with the 
even number of electrons, in the sense that, for example, 
the lowest lying triplet state for Cu2 has a leading 
configuration in which one electron from the doubly 
occupied HOMO has been promoted to the LUMO: 
X1E+(4s<7.)2-a3Eu(4s<7g)

1(4s(7;)1. However, the calcu­
lation of the transition energy Te involves more than 
just an independent-particle model as well as appro­
priate spin of the states under consideration. The en­
ergy of the first excited state is associated with the 
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stability of the clusters. For example, Te, (Cu2) > T6 
(Cu4) > T6, (Cu6) < T6, (Cu8) > T6, (Cu10). Dimers and 
octamers are more stable than tetramers and hexamers 
and the HOMO-LUMO gap, as well as T8, are larger 
for the former than for the latter. Notice also that, for 
example, HOMO-LUMO gap for K2, K4, and K6 at the 
best geometries of the anions have values of 3.53, 3.05, 
and 2.8 eV, while the calculated T6, values are 0.52,0.36, 
and 0.2 eV which are in agreement with the recorded 
spectra are presented in section IV.C.l. 

Recent calculations of EA for Ib clusters up to pen-
tamers,199 carried out by using the MCPF method and 
correlating both the d and s electrons in the framework 
of an all-electron treatment for Cun and of relativistic 
ECP for Agn and Aun, have confirmed results on Cun 
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Figure 40. Comparison of measured VDE values for Ia276 and 
Ib271 clusters and calculated values for Na;,298,162 K;,144 Cu;,191 

Ag;,199 and Au;.199 

obtained by using a simplified procedure.191 Also in the 
case of Ag4 and Au^ the planar rhombic and trapezoidal 
geometries have been found to be the most stable, sim­
ilarly to the case of the neutral ones. When scaled by 
the factor 1.3, the calculated values for EA are in sat­
isfactory agreement with experimental VDE values.271 

The scaling factor has been envisaged as a correction 
for missing atomic electron correlation effects.312 

A comparison of experimental and available theo­
retical VDE values for small Ib and Ia anionic clusters 
is given in Figure 40. There is a pronounced alterna­
tion between even and odd numbered clusters (odd > 
even), particularly for Ib metal clusters, with a general 
increasing tendency as a function of a cluster size, al­
though it seems that several hundreds of atoms are 
needed to reach the work function values (4.65, 4.26, 
and 5.10 eV for Cu, Ag, and Au, respectively). Since 
the neutral clusters with an even number of valence 
electrons are more stable than those with an odd num­
ber, the accommodation of an extra electron leading to 
the anionic species is less favorable in the former than 
in the latter cases. Therefore, the VDE and EA are 
smaller for even than for odd numbered clusters. The 
general behavior of VDE for Ib clusters as a function 
of cluster size is parallel; the values for Aun are just 
shifted by 1 eV with respect to those measured for Agn 
and Cun. The ECP calculations of VDE, correlating 
only s electrons for Cun

191 (scaled to account for missing 
atomic electron correlation effects), and without geom­
etry optimization, reproduce the experimental trend 
qualitatively. The scaled VDE values obtained corre­
lating s an d electrons of Cu2_6, Ag2.5, and Au2_6 for 
optimized anionic structures compare well with the 
experimental values. 

The VDE's obtained from the AE-CI and ECP-
CPPCI procedures for Nan and K; at their best geom­
etries (cf. section IV.C.l) are in satisfactory agreement 
with the experimental values. The alternation in the 
VDE values for n = 4-6 is much less pronounced for 
alkalis than for Ib clusters. This is most probably due 
to structural differences of their anionic geometries. It 
is to be expected that a larger odd-even alternation will 
be present if the geometries of the anions do not sub­
stantially differ from those of the neutral ones. This 
for example is not the case for Na4, K4, and K6 (cf. 
section IV.C.l). The linear forms (L) for Na4 and K4 



1098 Chemical Reviews, 1991, Vol. 91, No. 5 BonaSc-Koutecky et al. 

have slightly lower energies than the rhombic ones 
(RH), but this is energetically unfavorable for the 
neutral tetramers and therefore VDEL is considerably 
larger than VDERH- In contrast, the most stable ge­
ometries of anionic and neutral Ib tetramers seem to 
be the rhombic forms, and therefore the VDE's are 
relatively small and not considerably larger than the 
electron affinities EA. Hexamers represent special 
cases, since for neutral alkali-metal clusters the planar 
and the three-dimensional structures are in a compe­
tition. Anionic hexamers seem to prefer a square-bi-
pyramidal geometry or a deformed C2u structure, and 
therefore it is to be expected that the VDE values will 
be high. Drawing the analogy, a similar situation might 
be present for Ib anionic hexamers, indicating that their 
geometries may substantially differ from the neutral 
ones, which is not the case for tetramers and pentam-
ers.199 

In conslusion, although there are some similarities 
between Ia and Ib anionic clusters, it is not possible to 
use information available from alkali-metal cluster to 
make straightforward structural assignment for coinage 
metal clusters. 

The interpretation of photodetachment spectra of 
larger Ib clusters for which the jellium model has been 
used will be briefly discussed in section IV.D.l. 

Absorption Spectroscopy. The most extensively 
studied systems are again the trimers (cf. ref 6), and 
among them Cu3. According to the SCF-SD-CI calcu­
lations326 the ground-state energy surface of Cu3 is also 
extremely flat, with the 2B2 state of the obtuse isosceles 
triangle being slightly lower than the 2A1 state of the 
acute one due to a Jahn-Teller distortion. The calcu­
lated barrier for pseudorotation is only 171 cm"1. Two 
groups of low-lying excited states have been calculat­
ed,325 a 3s Rydberg state of 2A'i symmetry located at 
2.14 eV and a 3d -*• 4s excited state at 2.40 eV, which 
correlates with a 2E" state of D^ symmetry, were can­
didates for the interpretation of the absorption spectra. 
The 2E' -* 2A'x transition does not involve the dynam­
ical Jahn-Teller effect and the 2E' — 2E" transition 
does. There has been controversy about the assignment 
of the measured transition at 2.3 eV, which seems to 
be settled as 2E' -* 2A'X assignment.266 

Several excited states of Ag3 have been calculated by 
using relativistic ECP and correlating the 5s electrons 
only.338* Later, Rydberg orbitals were added and the 
ground-state properties of the neutral and cationic Ag3 
as well as several excited states have been determined, 
correlating 5s and 4d electrons.33811 Recent gas-phase 
spectroscopy experiments339 on Ag3 reported a vibronic 
spectrum with an origin at 3.35 eV as the result of a 
one-photon resonant two-step ionization process. Al­
though there is an excited 2E" state calculated in this 
energy interval (3.26) with some oscillator strength, 
additional work is necessary in order to secure a full 
assignment. Presently, a dynamical Jahn-Teller effect 
for the ground state of Ag3, with a barrier height cal­
culated190 at about 100 cm-1, agrees with the experi­
ment. The conjecture has been made on the basis of 
vibronic structure that there might be a higher barrier 
to pseudorotation in the excited states,339 but this re­
mains to be examined. 

The excited states of Ib tetramers still represent an 
inviting but not simple field for theoreticians. The first 
absorption spectrum of a Ib tetramer has recently been 

published.281 The photodissociation spectrum for Cut 
in the visible region (710-370 nm)281 exhibits 10 elec­
tronic transitions and seven of them show vibrational 
fine structure. There are two groups of transitions 
located at ~650 nm and in the energy interval 450-370 
nm. Since the question has been raised whether the 
group of transitions at ~600 nm corresponds to a d -» 
s type of transition which does not change drastically 
from atom to bulk, theoretical work on the ab initio 
level would be helpful for addressing this problem. 

Although the ground-state properties of Ib tetramers 
have become available recently at a high computational 
level as discussed in section III.B.l, there are almost no 
calculations for the excited states. An exception is a 
study of the ground state and the two lowest excited 
states (triplet and singlet) of Au4.

206 A relativistic core 
potential and correlation employing the MCSCF/ 
MRSDCI method including d electrons have been used. 
The effect of the spin-orbit term has also been inves­
tigated by using the relativistic CI method. The 
rhombic structure has been found to be the most stable 
in the singlet ground state. The surfaces of the first 
excited singlet and triplet states corresponding to the 
HOMO-LUMO transition seem to be very flat, since 
the energies at their own square and rhombic geome­
tries almost coincide. The energy of the lowest triplet 
state at the optimized tetrahedron geometry is higher 
than for the rhombic or square geometries, which is 
opposite to the cases of Li4 and Na4. Also, the splitting 
between the 3B lg and 1B18 states seems to be smaller 
than in the case of alkali tetramers. However, optically 
allowed excited states have not yet been calculated. It 
would be interesting to know how much excitations 
from the d shell will complicate the absorption pattern 
of the neutral Ib tetramers with respect to the relatively 
simple but rich spectra of the alkali-metal tetramers. 

D. Comparison and Analysis of Concepts and 
Results Obtained from Quantum Chemical 
Methods and Other Approaches 

1. Photodetachment Spectra 

The HOMO-LUMO energy difference and the 
LUMO energy of the anions obtained from the jellium 
model have been used for the interpretation of the UPS 
spectra of Cun (n = 6-41).m The qualitative agreement 
between theory and experiment is very good, exhibiting 
a particular drop in the EA values for clusters 8,20, and 
40 as well as 14 and 34. It has been assumed that there 
is no geometrical change between the anions and the 
neutral clusters. It is to be expected that for the stable 
clusters with n = 4, 8, and 20 the HOMO-LUMO gap 
is larger than in the case of less stable ones. In analogy 
to molecules, the lowest excited states of the stable 
species are usually, but not necessarily, lying higher in 
energy than the states of less stable ones. Consequently, 
the finding that the energy difference between the first 
two peaks in the photodetachment spectra is particu­
larly large for n = 4, 8, and 20 can easily be explained 
as due to larger HOMO-LUMO gaps of these very 
stable species with respect to other less stable ones. 
This qualitative consideration is model independent. 
Also the low values for VDE or EA for stable molecules 
are then connected with the high energy of the HOMO 
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for anions which causes their relatively low stability. 
The even-odd alternations of the EA as a function of 
n are also easy to understand without using any par­
ticular model. Let us assume a decrease in the MO 
energy with cluster size. Neglecting electron-electron 
repulsion, as is the case in the simple theories, the 
HOMO of the neutral system with an odd number of 
electrons is analogous to the doubly occupied HOMO 
of the anion. Therefore the energy of the singly occu­
pied HOMO of the anion with an even number of atoms 
is higher than the energy of the doubly occupied 
HOMO for the anionic system with an odd number of 
atoms. The latter may easily be lower than the energy 
of the singly occupied MO of the next larger anion with 
an even number of atoms. These simple qualitative 
considerations are very useful for understanding a 
general trend in the measured observables. 

However, at least for the smaller clusters, the meth­
ods which can be used for a satisfactory interpretation 
of the photodetachment spectra have to provide reliable 
predictions of geometry, spin multiplicity, and stability 
of the anionic and neutral clusters. Furthermore, the 
correlation effects and the spin multiplicity for the 
ground and excited states of the neutral species have 
to be accounted for in order to predict the adequate 
energy ordering of excited states of different nature (cf. 
section IV.C.l). 

2. Absorption Spectra 

Classical Theory. As mentioned in section IIB, the 
Mie-Drude classical free-electron theory for surface 
plasmons has been frequently used for the interpreta­
tion of absorption spectra of small alkali-metal clus­
ters.277,296-298,278 The classical model of a damped os­
cillator applied to the electron polarization under the 
influence of an electric field has been defined in section 
II.B.7. The imaginary part of the polarizability axx(u>) 
given by (IIB7.11) is connected with the photoabsorp-
tion cross section (cf. (IIB7.14)): 

a »s u Im(axx(u))) = a>2a)27/[(«2 - w2,)2 + a>272] 
(IVD2.1) 

where a>p is volume plasma frequency and 7 is a 
damping factor which is inversely proportional to the 
electron mean free path. 

The frequency-dependent polarizability has the 
maximum value for W0 = W8 = wp/ Va(O). The same 
relation can be obtained from the quantum mechanical 
expression for the static polarizability, assuming that 
a single transition takes place (wno = w0): 

w; n0 WS 
»(0) = T ^ L ^ - ~„ 

Nn <«& 
(IVD2.2) 

«. 
where /„o is the oscillator strength for the 0 -*• n tran­
sition and N is the number of electrons (cf (IIB2.21-
IIB2.24)). However, there are two conditions under 
which the damped oscillator model formally yields the 
classical limit of the quantum mechanical expression: 
(i) Each electron reacts in the same manner to the ef­
fective electric field which allows for an interpretation 
of a;2, • e2N/mt as the frequency of the volume plasmon 
and of a(0) as die static polarizability. (ii) The sum rule 
for all electronic transitions considered, must be ful­
filled, and only then the relation a>8 = o>0 holds for the 

surface plasmon frequency <*>8. 
The restoring force with the proportionality constant 

o>2/a(0) (cf. (IIB7.12)) depends upon the shift of the 
electronic cloud with respect to the charge of the fixed 
atomic nuclei. 

The concept of the "collective motion or plasmon" in 
the classical model can be correlated with an analogue 
of the self-consistent one-electron picture, in the sense 
that each electron reacts to the effective electric field 
but modified by the actual electron density. In other 
words, the volume plasmon, which is a well-defined 
collective mode in the quantum mechanics of very large 
systems, yields in the classical limit a good estimate of 
the plasma frequency which depends on the electron 
density only. However, the surface plasmon involves 
additional assumptions about the nature of the re­
storing force and therefore "quantum effects" will in­
evitably be present in small clusters of finite dimension. 
Consequently, the concept of surface plasmon, using a 
simple damped oscillator model, can only yield an es­
timate of the interval in which the frequency of the 
adsorbed light is to be expected if static polarizability 
a(0) is taken from experiment or calculations and the 
damping factor 7 is fitted to the experiment The static 
polarizability a(0) will then determine a position of the 
absorption band, and 7 is closely connected with the 
band width. 

For spherical particles only one resonance frequency 
can be obtained and in order to explain the appearance 
of other transitions the three-dimensional oscillator has 
been optimized, giving rise to "axial ratios" Dj/Di used 
in the relation connecting surface plasmon frequencies 
W8; and averaged static polarizability:277,296"298 

«&-
N2 

3mea 

°j Dk 

l + TT + TT 
Di D1 

a j± j j£ k = 1,2,3) 

(IVD2.3) 

The axial ratios of sodium clusters have been deter­
mined by using a self-consistent spheroidal jellium 
model.72 

The ellipsoidal and spheroidal deformation of a 
cluster leads to three or two frequencies, respectively, 
since in this manner distinct polarizabilities along 
corresponding axes are introduced. For spherical 
clusters all the oscillator strength should be exhausted 
in a single transition, while for spheroidal clusters one 
peak should have twice the oscillator strength of the 
other (ellipsoidal shell model (ESM)). According to 
ESM theory the "closed-shell" clusters such as Na8, 
Na2O. and Na40 should exhibit a single giant resonance, 
and other open-shell clusters one or two additional 
peaks. 

For the classical monovalent metal sphere a = Nr8 
where r, is the Wigner-Seitz radius (cf. ref 82) of the 
metal, the classical surface plasma resonance wave 
length for Na is 365 nm (3.4 eV) (r. = 4 au). In the 
jellium model the electronic charge density can "spill 
out" from the rigid positive background charge. 
Therefore, a size-dependent red shift of the surface 
plasma mode with decreasing sphere size has been 
predicted.94 

The first experimental data on the absorption of Nan 
(n = 8-10,12, 20) clusters exhibited one, two, or three 
intense and broad bands.277,296,297 Since the classical 
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ESM model using measured polarizabilities gave rise 
to resonance frequencies in the measured interval, 
roughly agreeing with the recorded bands, as for exam­
ple in the case of Na8-X0, the conclusion has been made 
about the presence of surface plasma resonances already 
in small alkali-metal clusters.277,296'297 However, several 
new features appeared later. In the framework of the 
classical model the experimental data are described 
better for some very small clusters than for the larger 
ones. For clusters with n = 6-12 the ESM yields better 
rough estimate of the bands than for n = 13-40.298 The 
measured dipole strength per atom decreases with 
cluster size, indicating that the additional absorption 
occurs outside the measured energy interval. 

For Na8 and Na2O the "plasma resonances" have been 
calculated at 2.59 and 2.67 eV, respectively, assuming 
a spherical shape for both clusters. For Na6, which has 
oblate spheroidal shape according to ESM, two bands 
with 2:1 intensities have been predicted. As already 
discussed in section IV.C.2, recent experiments exhibit 
in addition to giant resonances, the red-shifted fine 
structure for Na8,

279,280 and the blue-shifted band with 
smaller but considerable intensity for Na2O-308 Also, the 
well-resolved spectrum of Na6 is dominated by one in­
tense transition at ~2.05 eV and there is a considerably 
weaker broad transition at ~2.8 eV.329 The simple 
classical theory is capable of predicting only the range 
of the energy interval in which intense absorption bands 
appear in the case of Nan and Kn. For Lin the Mie-
Drude jellium frequencies lie ~ 1 eV higher in the UV 
region than the recorded absorption bands. In order 
to take into account the higher electron binding it has 
been proposed to introduce the effective optical mass 
m* similarly as for the bulk near the Fermi level.300 For 
clusters with the average distance of 3.1 A the correction 
of m*/m = 2.04 has been calculated, which shifts the 
"plasmon frequency" to the measured wavelength in­
terval. 

It is not surprising that additional absorption bands 
appear in the absorption spectra of small clusters which 
cannot be accounted for in classical model, or that 
predicted positions and intensities of bands do not agree 
consistently with the spectroscopic pattern. The 
quantum effects must be appreciable in systems such 
as small alkali-metal clusters. Because of the classical 
limits of quantum effects, the right order of magnitude 
of predicted "plasma frequency" is to be expected. The 
problem with the physical interpretation of the classical 
theory is that the agreement between the experimental 
findings and theoretical predictions do not improve 
systematically with the increasing cluster size for n < 
40. This behavior contradicts the idea that the free-
electron nature of a cluster becomes more apparent with 
increasing cluster size. The appearance of a small 
number of intense transitions in absorption spectra and 
their partial agreement with the predictions in the 
framework of classical Mie-Drude theory does not 
justify the conclusion that the collective plasma oscil­
lations are present for alkali-metal clusters of any size.298 

Time-Dependent Local Density Approximation 
Based on the Jellium Model. In order to account for 
the quantum effects of the absorption spectra of small 
alkali-metal clusters two other approaches in the 
framework of the jellium model have been used: the 
time-dependent local density approximation 
(TDLDA)340-94'341 and the RPA.332'342"344 

In the TDLDA,94 which makes use of Kohn-Sham 
orbitals, the imaginary part of the dynamic polariza-
bility Im(a(w)), corresponding to the interaction of 
single particle-hole transitions, exhibits peaks con­
nected with the poles of the Green's functions. Con­
sequently, the characteristics of the imaginary part of 
the dynamic polarizability are also due to the electronic 
correlation effects which are partly taken into account 
in TDLDA. The calculated maxima of Im(a(u>)) have 
been assigned to surface plasmons at about 2.6-2.9 eV 
and to the considerably blue-shifted volume plasmons, 
while other fine "cusps" have been identified as single 
particle-hole pair excitations. 

The size dependence of quantum size effects has been 
illustrated, comparing results for sodium spheres of n 
= 20, 92, and 198 valence electrons.94 The shifts of 
peaks with respect to poles of the Green's functions 
(which are related to the unperturbed Hamiltonian) can 
be understood as due to the perturbation introduced 
through the effective potential. The maxima super­
posed on the continuous "background" are due to in­
clusion of electron correlation, which can lead to con­
siderable enhancement of some transition intensities, 
similar to the case of the CI or RPA procedures. 

As pointed out in refs 341 and 331, many approxi­
mations are involved in TDLDA on the basis of the 
jellium model and the positions of maxima and fine 
cusps cannot be used for quantitative purposes, since 
they are strongly dependent on the potential used. 
Nevertheless, the inclusion of quantum effects in the 
framework of TDLDA illustrated the crudeness of the 
classical Mie-Drude approach.94 The use of the ap­
proximate one-electron Green's functions based on 
jellium local electron density in the framework of 
TDLDA (cf. section II.B.5 and Appendixes) shows a 
connection of this approach with the other methods 
applied in the theory of cluster spectroscopy, since the 
poles of Green's functions correspond to the energies 
of the individual particle-hole transitions. Various 
rough approximations to the effective potential make 
it possible to obtain the absorption cross sections by a 
direct integration in space. Since the TDLDA approach 
includes different approximations and assumptions 
than other quantum mechanical methods, it yields only 
additional supporting information on small clusters, but 
it can be valuable for large metallic clusters. The 
evaluation and interpretation of the TDLDA results is 
quite difficult, since the influence of the assumptions 
about the effective potential, as well as other approx­
imations, are not very transparent. 

Random-Phase Approximation Based on the Jellium 
Model. The calculations of transition energies and 
oscillator strengths for the interpretation of absorption 
spectra within the mean-field framework (jellium) using 
the RPA are parallel to those performed for studies of 
giant resonances in nuclei. Notice, however, that al­
though methodological tools are applicable in different 
fields, there is substantial difference in the nature of 
the forces giving rise to the giant dipole resonances in 
nuclei (GDR) and those responsible for electronic 
transitions with large intensities in clusters resembling 
a GDR (short range versus Coulomb forces). 

The spherical clusters such as Na8, Na20, Nag, 
NaJ1,

342" Kt, Ktlt
mh and Na40

344 as well as Cs8 and 
Cs10O

332 have been studied. In the case of Na8 a single 
state at ~2.8 eV exhausting ~75% of the total oscil-
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lator strength according to the energy-weighted sum 
rule has been found and is dominated by the interaction 
among three single particle-hole transitions. For Na20 
two lines at 2.6 and 2.9 eV have been located with al­
most equal values of the oscillator strengths similar to 
the case of TDLDA. The associated wave functions 
contain about 10 forward going amplitudes and about 
six backward going amplitudes. These intense transi­
tions have been called collective states (Na8) or frag­
mented collective states (Na2O)- It has been found that 
one single particle-hole transition is responsible for the 
so called "fragmentation of the plasmon" in Na20,

342* 
since a spectrum with a dominant single peak has been 
obtained when this particle-hole transition was ex­
cluded from the interaction. 

For cationic clusters Kj, K21, and K22 a single peak 
carrying most of the oscillator strength has been ob­
tained by using the jellium-RPA342b method. This has 
been explained as due to particularly deep potentials 
of the cationic clusters relative to the neutral one. The 
particle-hole transition which was responsible for the 
"fragmentation" of the "collective state" in the case of 
neutral clusters has a much higher energy for cations 
and therefore does not contribute essentially in the 
interaction with other particle-hole transitions that give 
rise to the state with the large oscillator strength. The 
experimentally recorded spectra of Kg, NaJ, and 
K21 exhibit dominant single peak features. However, 
the widths of the bands are not small. In the case of 
Na21 two close-lying bands with large intensity have 
been measured.309 Recently an ellipsoidal shell-model 
average potential has been introduced in the RPA study 
of Na6, Na10, and Na12,

346 giving rise to more than one 
intense transition. In addition, a broadening of the 
band (cf. refs 346 and 347) has been simulated by 
Lorentzian functions in order to obtain a qualitative 
agreement with experiment. 

Notice that the role of a single particle-hole transition 
interacting with a "plasmon" in the physical interpre­
tation of the spectra should be considered with caution. 
As mentioned earlier, the individual particle-hole 
transition does not have any direct physical meaning. 
Its individual contributions to the states can of course 
change the energy and oscillator strength of the tran­
sition particularly when an interaction with other 
particle-hole transitions is energetically favorable, is 
symmetry allowed, and when the nodal properties of 
the one-electron functions among which transitions 
occur have significant influence on the magnitude of the 
allowed dipole transitions. These basic features are 
accounted for in the RPA theory. Contributions of 
individual particle-hole transitions to the RPA wave 
functions of the states having significant influence on 
the oscillator strength produce interference phenome­
non common in molecular spectroscopy. 

A Comparison of Jellium RPA with ab Initio RPA 
and CI Results. It is very instructive to compare the 
RPA-jellium results with those obtained from the RPA 
on the basis of the nonempirical SCF-ECP approach 
and results from the CI treatments in order to clarify 
the notions necessary for the interpretation. 

Let us first compare the results obtained from the 
jellium RPA and the ab initio RPA on the basis of the 
SCF Roothaan procedure for Na8 and Na20, which differ 
mainly in the detailed form of the assumed potential. 
The most compact spherical geometries, such as Td 

structures, are very suitable for this comparison. As 
shown in section IV.C.2, ab initio RPA for Na8 yields 
two close-lying states at 2.48 and 2.8 eV with oscillator 
strengths 2.83 and 1.65, respectively (cf. Figure 29), 
which exhaust 37% and 22% of the sum of oscillator 
strengths, which is equal to 7.58 in the energy interval 
up to 6 eV, in contrast to a single dominant transition 
obtained from the jellium RPA (cf. Figure 31a). In the 
case of Na20 (Td) the dominant single feature with 54% 
of the sum of oscillator strengths (~19.1 in the energy 
interval up to 7.8 eV) has been calculated by using ab 
initio RPA in contrast to the above mentioned jellium 
results with a large portion of the oscillator strengths 
distributed between two transitions. These discrepan­
cies clearly illustrate that the classification of the 
physical phenomena responsible for the pattern of ab­
sorption spectra of small alkali-metal clusters, as 
"collective" state or "fragmented collective" state on the 
basis of calculations of oscillator strength using jellium 
RPA, is rather arbitrary. In fact, introduction of 
changes in the potential through "nonjellium effects" 
strongly influences the results, as illustrated in ref 332. 
For Na6 the ab initio RPA as well as the CI calculations 
yield different spectroscopic patterns for the planar and 
for the three-dimensional C20 structure, illustrating that 
the averaging of geometries is not a suitable assump­
tion.347 

In the case of cations a comparison between jellium-
and ab initio-RPA results is available only for NaJ. As 
illustrated in Figure 33 the structures of high symmetry, 
such as antiprisms D^ and Civ exhibit a dominant 
transition located at ~2.8 eV and a fine structure 
shifted to the red. It is remarkable that the antipris-
matic structures with eight valence electrons (Na8 and 
NaJ) have a tendency to yield a single intense transi­
tion. In contrast, the C20 structure of NaJ with the 
lowest ground-state energy gives rise to several tran­
sitions with considerable oscillator strengths due to the 
lower symmetry and they are distributed over the en­
ergy interval in which a dominant band has been re­
corded. The transition energies obtained from ab initio 
RPA are all blue shifted with respect to the experi­
mental results. A dependence of the spectral pattern 
on the geometry of the cationic cluster is clearly dem­
onstrated. As already mentioned, the jellium RPA gives 
rise to a single intense transition for NaJ.342* 

In summary, the results obtained from ab initio RPA 
calculations for optimized structures with the lowest 
energies for Na8 and NaJ differ qualitatively from those 
resulting from the jellium RPA. The discrepancy is 
present also for Na20, but in this case it is still an open 
question whether the Td structures ("spherical" or a 
section of fee lattice) considered in the ab initio RPA 
calculations are the most stable geometries. 

A comparison between the ab initio RPA and the CI 
results made in section IV.C.2 served to illustrate the 
role of the explicitly considered interaction among 
doubly excited configurations. It has been shown that 
qualitative agreement is present only for some parts of 
the spectra, i.e. for the states with dominant contribu­
tions of single excitations, while for other parts of the 
spectra the discrepancy is large even from a qualitative 
point of view. It is not yet possible to state completely 
generally that RPA reproduces the dominant features 
well and the fine structure less well. 

From a comparison of results obtained using different 
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approaches which account for quantum effects the 
following conclusions can be drawn: 

(i) The interaction among single excitations or par­
ticle-hole transitions giving rise to the final states is a 
manifestation of a many-electron effect, which means 
that electrons cannot be treated independently of each 
other as in the one-electron description (by a single 
particle-hole transition). This is a completely general 
characteristic of several phenomena of a very different 
physical nature such as excitations in molecular sys­
tems, excitons, plasmons etc. The necessity of consid­
ering the interactions among single excitations is simply 
a basic manifestation of the many-electron nature of a 
realistic quantum mechanical model. Only if the num­
ber of strongly interacting monoexcitations that con­
tribute with nearly equal weights to the wave functions 
is very large and if other conditions listed in section 
II.B.7 are simultaneously fulfilled is it justified to use 
the notion of plasmon. An appropriate treatment of 
correlation effects as such does not justify the use of 
this notion. In the case of small alkali-metal clusters 
very often the leading features of two (or three) opti­
cally allowed states are determined by the same par­
ticle-hole transitions, e.g., three such transitions, but 
they enter with different coefficients and different 
phase in the linear combinations, giving rise to inter­
ference phenomena leading to a large oscillator strength 
for a transition to one state and a very weak one to the 
other. 

(ii) The locations of intense transitions and the os­
cillator strengths are both strongly dependent on the 
energy ordering of the one-electron levels among which 
excitations take place, and this is determined through 
a potential which depends on the positions of nuclei and 
on the approximations introduced in the Hamiltonian. 

Interpretation of Spectra. Comparing all the theo­
retical and experimental results concerning absorption 
spectra of small alkali-metal clusters presently available, 
the following conclusions can be drawn: 

(i) Characteristic features, such as a very small num­
ber of intense transitions, are due to a delicate interplay 
between the electronic and geometrical structure of the 
clusters (including symmetry). Valence electrons in Ia 
clusters are delocalized, since they form many-center 
delocalized bonds (cf. section III.D). Therefore, their 
excitation is not localized in the sense of partly or en­
tirely breaking two-center bonds. Consequently, 
many-electron effects accounted for by electronic cor­
relation play a specially important role. This is, of 
course, the sort of collective effect that is present in 
many molecules as for example in the case of delocalized 
ir-electrons in conjugated hydrocarbons. 

(ii) A very large oscillator strength can result for one 
or a few transitions also from the interaction of a very 
small number of leading excitations due to interference 
phenomena (analogous to the selection rules). 

(iii) The number of strongly interacting monoexci­
tations can be applied as a rough criterion for classi­
fication of collective effects present for plasmons. If 
the number of dominant configurations is small, the 
usual correlation effects are present. The limiting case 
of the plasmon is reached if the number of configura­
tions with equal weights in the wave function is so large 
that the individual excitations cannot be identified, so 
that integration over their manifold is necessary, as 
shown in section II.B.7. However, notice that for any 

truncated correlated wave function this analysis is 
strongly dependent upon the choice of the one-electron 
functions. 

(iv) The concept of the splitting of a surface plasmon 
due to the interaction of the plasma frequency with a 
single particle-hole transition represents an arbitrary 
definition, unless a nearly infinite number of equally 
contributing particle-hole transitions is involved in the 
interaction. 

(v) Similarly as in the case of some ground-state 
properties, certain features of excited-state properties 
are independent of the model used, since they are dic­
tated by the global symmetry of the system. 

V. Summary 

We have shown that a number of valuable general 
rules governing the electronic and geometrical structure 
of small elemental clusters have resulted from quantum 
chemical investigations. They concern, for example, 
symmetry, shape, stability, and a number of physical 
observables. The predictive power of these relatively 
accurate methods, although still limited to small clus­
ters with a small number of valence electrons, has been 
clearly demonstrated by successful structural and 
spectroscopic assignments and interpretation of the 
optical response properties. For example, at the present 
time the direct experimental information on cluster 
geometry is available only for very small clusters by 
analysis of the vibronic structure, which has not yet 
been resolved for the larger ones. In the latter case only 
a comparison between accurate theory and experiment 
makes it possible to gain knowledge about the geome­
tries and specific electronic properties such as the type 
of excitations responsible for the spectroscopic pattern. 

As illustrated on a number of examples, in spite of 
a relatively large mobility of alkali-metal atoms in small 
clusters, the positions of their nuclei cannot be ignored. 
After all, the positions of the nuclei are respected in 
solid-state theories for metal bulk and surfaces taking 
into account three- or two-dimensional periodicity. 

Many recent advances in cluster science have been 
achieved due to the joint effort by nuclear and solid-
state physicists aiming to gain understanding of the 
reasons for the appearance of similarities between 
properties of atomic nuclei and clusters. In this con­
nection quantum chemistry can play an important role 
as a guide for extracting the essentials from the allow­
able simplifications which can be introduced in ap­
proximate theories. 

Recent experimental trends toward the production 
of clusters under well-defined conditions (e.g. low tem­
perature), as well as the preparation of small and very 
large clusters under the same conditions, offer a new 
challenge for future theoretical developments. They 
should permit the quantitative predictions of structure 
and properties of medium-size clusters and contribute 
toward a qualitative understanding of the behavior of 
large clusters. 

VI. App0tnHx0$ 

A. Green's Functions and Interaction Picture 

The direct use of the Green's functions is in general 
very difficult and therefore various approximate 
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methods are very often used. For this purpose, the 
separation of the Hamiltonian H in the perturbation 
V and the unperturbed Hamiltonian H0 is advanta­
geous. Usually, H0 is chosen to be a one-electron op­
erator. 

It is very convenient to apply the interaction picture89 

\Ut)) - exp(i#oW(t)> 

where 

Ax(t) = e^A(t)e-i6^ 

H0 = H-V(t) 

(Al) 

(A2) 

for the calculations in the framework of the linear re­
sponse theory. 

The time-dependent Schrodinger equation in the in­
teraction picture has the form 

i-11^- = VmHt)) (A3) 

where V(O is the time-dependent perturbation which 
has been switched on at the time t = 0. 

The formal solution is 

\Ht)) - ~i CHrMiir)) dr + |0> = U(t)\0) (A4) 
•/o 

It can be shown that the double-time Green's func­
tion can be written in the interaction picture as 
< <A(0; B(O) >> = J(Te(O(OlA1(OfZ(OB1(O)IO) + 

0(-0(015!(O)LTH)A1(OIOM (A5) 

(cf. (A4) for the definition of the operator U). 
The formal solution (A4) of the Schrodinger equation 

(A3) in the first-order perturbation approximation is 

|^I(0) = ( l - i J^V I ( t - r )dT) |o> = 

(l + if'$& - T) d(t - T))|O> (A6) 

The expectation value of an operator A in the linear 
response theory takes the form 
W(0|A>(0> - <0|A|0> = S(A) = 

-i f' dr ( O I A V ^ O X ^ ' V X T ) - VdOe^o-^N^'AlO) = 
JQ 

ifl'dr 8(t - T)(OI[V1(T)1A1(O]IO = 

- f " dT 6(t - T) < < A ( 0 ; V ( T ) > > + compl conj (A7) 
%/— so 

with A(O = 0 for t < 0. From the last expression in the 
equation (A7) the connection of the linear response 
theory with Green's functions is clear. 

B. Green's Functions In the One-Electron 
Approximation 

Because of the important role of the free-electron 
wave in the solid-state theory let us mention that jthe 
Heisenberg picture of the Lie algebra generator EkX 
describing the excitation from the free-electron wave 
|^k) with the impulse k to |^v> is simply 

Eft s e««k'-«k)t£k/k (A8) 

For the discussion of the approximate procedures 
used in the cluster theory the consideration of the 
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one-electron Hamiltonian as the unperturbed Hamil­
tonian is of interest. The free-electron case is an ex­
ample of a more general relation valid for an unper­
turbed system described by an one-electron Hamilto­
nian ./J0. H0 always can be written in terms of occu­
pation number operators as 

H0 = X.*>jRj (A9) 

For the Heisenberg picture of the operator A the fol­
lowing general relation is valid: 

XW = eHAtAe-iAt = A + (It)[HA] + 

±(it)2[H,[H,A]] + ±(itnH[H,A)[H,A]] + ... = e ^ A 

(AlO) 

where the "super-operator" H is defined as46 HA = 
[H1A]. 

JJy - using (A9) for H0 and (IIA2.5) the commutator 
[H0J2ki\ takes the form 

Xwj[nj£kl] = (uk - W1)Eu (All) 

and consequently according to (AlO) it holds 
E<ff<Z = eH">i,-»i)Ekl (A12) 

For any operator A in the one-electron approximation 
the following relation is valid: 

A(Ho) = Y.aike*a<-<->k)tElk 
Lk 

(A13) 

Consequently, the intermediate picture of a density 
operator 

(A14) P(r,r') = Z4lk tf(r) ^(r ' ) 

is 

p<"<»(r,r',0 - Z$ik e W T - ^ r M r O 
ik 

where <pi(t) is the eigenfunction of the Hamiltonian H0 
with the eigenvalue «;. Let us consider the "excitation" 
propagator defined as 

((Elk(t)-Xm(t)))o = 
-mt - o<oi£ifc<"<»(o£s?>(tiio> + 

e(t'-t)(0\E^(f)E^(t)\0)}^ 
_ig««r«*)(t-t')(0(f _ tOn,mA + 

8(t' - Onfcm/JMfcn = 
H<a*(0;W)><><(SHt);am(tv>0 (Ai5) 

since for the one-electron double-time Green's functions 
in one-electron approximation holds: 

<<a*(0;W>>o - 1 5 ^ " ' K 8(t'- 0 - mn6(t - «11 

<<<5?(0;S JtV)0 = 
ihlme^-t')\mi d(t'- t) - nm 6(t - Oi (A16) 

where nk is the occupation number, and mk = 1 - nk. 
The circumstance that the two-electron Green's func­
tions assigned to H0 is possible to express as products 
of one-electron Green's functions is the consequence of 
one-electron character of the Hamiltonian H0. 

C. Polarization and Dipole Propagators 
The polarization propagator has generally the form 

<<p(r,0;p(rVO>> - »<0(T|^(r,r,*)^(r',r/,tOI|0> (A17) 
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where T is the time ordering operator. 
If l̂ o) = |0> is a ground-state ket in one-electron 

approximation with the effective Hamiltonian H0 (cf 
(A9)) then the polarization propagator is 

<<p(r,t);p(r',O>>0 = 
i E ^( r )^(r )^(r ' )^m ( r0((^( t )^ n m (O>> 0 = 
nklm 

»Le'('**»M^^(r)«(rO«k(r)^(rO|tf(t - t^rhk + 
ik 

6(t - tOMM (A18) 
The Fourier transform reads 

«p(r,a>);p(r',o>)))0 = 'Z: 
Ti1Tn1, 

ikmi 

a) - (o)| - uk) - it) 

o> - (« j - (Dk) + it) 

ft*(r)«(rO«k(r)*i(rO - X°( r , r» 

(A19) 

The polarization propagator can be expressed in 
terms of one-electron Green's functions due to the 
one-electron character of the Hamiltonian H0: 

X 0 ( r , r » = E m f e ' W f t W d r . r ' H + w) + 

^(r')^(r)G*(r,r ' ;^ - a.)} (A20) 

where 

G(TfM = Znk^(r)<pk(t')/(E - wh) (A21) 
k 

The expression (A20) is used in the calculations of linear 
response with the jellium model.93,94,340 

The mutual Coulombic interaction between the 
charge distributions pit) and p(r') can be to the first 
order expressed simply with Green's functions 

r e a l | j x o ( r , ^ ) V ( r , r ' ) d r d r ' 

1 
Y.nkmi 

(d)( - W)1) - Ul (di), - O J f ) - W 
'Ku' 

2.2^nkmr -
uk (at - wky -

(A22) 
<*r 

Xo(r,r';w) is clearly the independent-particle density-
density correlation function and Khl is the exchange 
integral.94,340 

Similarly the dipole propagator in the one-electron 
approach has the form 

S 
ik 

<<A(r,w);A(r»)>0 drdr' = 

TIiTtI)I nkml 

a) - ( « | - Ui)1) +ir) a) - (oi( - Oi)1) - ijj 

where 

W (A23) 

m - J*tf (r)*<sn(r) dr (A24) 

In this section the two electron propagators have been 
discussed since the processes during which the number 
of particles remains constant are for us of special in­
terest. If the ionization potential or electron affinity 
were discussed in more detail the one-electron propa­
gators or Green's functions (cf. e.g. Refs 86, 89) would 
be important. In this case, the operators which figure 
in the definition (IIB2.15) would be the creation and 
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annihilation operators of the second quantization. The 
one-electron Green's functions are very useful for the 
investigation of the fundamental properties of the 
quasiparticles. 

In summary, many common features of the ap­
proaches used in the theory of clusters (e.g. theory of 
plasmon and the TDLDA approximation) can be well 
understood if the connection with Green's functions is 
properly worked out. 
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