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/. Introduction 

In the last few years linear prediction (LP) has proved 
valuable as a computational method for the accurate 
estimation of information contained in complicated 
NMR spectra. This holds in particular because the LP 
method does not suffer from a series of drawbacks that 
characterizes the discrete Fourier transform (DFT) 
method, routinely used in NMR spectroscopy since the 
introduction of the pulse NMR technique.1,2 The LP 
method can be used either for spectral improvements 
in combination with the DFT method; i.e. it can be used 
qualitatively to remidy spectral artifacts that, otherwise, 
may arise from the discrete Fourier transformation of 
an experimental time-domain signal (the free induction 
decay, FID); or it can be used for spectral analysis and, 
thus, provide quantitative estimates of the spectral in­
formation contained in the FID; i.e. estimates of the 
frequencies, the line widths, the intensities, and the 
phases of the individual signals of the corresponding 
spectrum. In this case it is an alternative to the DFT 
method. 

Starting with a brief exposition of the DFT method 
and its virtues and drawbacks, this review focuses on 
the scope and limitations of the LP method, and the 
qualitative and quantitative applications of the method 
to NMR spectroscopy. Other computational methods, 
such as the maximum entropy method3 (MEM) and the 
maximum likelihood method4 (MLM) are also being 
used for improved analyses of experimental NMR data, 
but will not be covered here. For a more exhaustive 
theoretical description of the LP and MEM methods 
the reader is referred to the excellent review by D. S. 
Stephenson.5 

/ / . The Discrete Fourier Transformation of the 
Free Induction Decay 

On the assumption that the sampled time-domain 
NMR signal (FID) is a sum of exponentially damped 
sinusoids the fcth data point of the FID is given by 
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Fk = F(Atk) = 

L / , exp((i27n>, - R2j)(kAt + TJ + i<pj) (1) 
7=1 
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where At is the sampling interval, p the number of 
sinusoids, Ij the amplitude of the jth resonance, Vj the 
chemical shift, R2, the transverse relaxation rate, and 
</>,• the phase. Further, T1n is the initial delay between 
the rf pulse and the first data point, .F(O). As shown 
previously6'7 the discrete Fourier transformation of eq 
1 results in a discrete NMR spectrum: 

{V) U ;'l - exp((i2x(^- -v) - R2j)/SW) () 

Here v is the variable frequency, Taq the acquisition 
time, and SW the sweep width. The symbol Aj is de­
fined as 

Aj = Ij exv((i2irvj - R2j)Tin + i<p,) (3) 

As it appears from eq 2 the obtained discrete spectrum 
is a periodic function with a period of SW = Ar1. 
Therefore, the discrete spectrum differs significantly 
from the theoretical spectrum, given as a sum of non-
periodic complex Lorentzians 

p 1 
s(v) = HIj exp(ivj)/R2j- TT-, r-=- (4) 

j=i' 1I- i2it{vj- V)/R2J 

However, the discrete spectrum in eq 2 approximates 
the theoretical spectrum if (1) Taq » 1/.R2; and (2) SW 
» R2J, Vj - v; i.e. (1) if all sinusoids decay completely 
during tne acquisition period, and (2) if the period of 
the frequency function in eq 2 is much larger than the 
signal line widths as well as the frequency range of the 
spectrum. Whereas the former of the two last men­
tioned conditions are often fulfilled the latter is rarely 
so. Nonetheless, for all three conditions fulfilled eq 2 
reduces to 

S(v) = SWEV-Ry ,9 ,* wo + £ V 2 (5) 
; = 1 Jl-l2ir{Vj- V)/R2j ; = 1 

as shown in ref 7. Equation 5 represents the ideal 
discrete Fourier transform spectrum; i.e. a frequency 
sampled sum of complex Lorentzians. However, even 
this ideal spectrum differs from the theoretical spec­
trum given by eq 4 at two particular points: (1) a 
constant, Yfj=\Aj/2, has been added to each data point, 
and (2) each one of the p Lorentzians have been mul­
tiplied by the factor Qn^({i2irvj - R21)T11). 

Here the first deviation results in a pseudobaseline 
in the DFT spectrum. According to eq 5 the level of 
this pseudobaseline is equal to half of the sum YJj=\Aj 
which in turn, is given by the first point in the FID. 
Therefore, the pseudobaseline can be removed by 
multiplying the first point in the FID by 1/2 before 
performing the Fourier transformation. In particular 
in the case of two dimensional spectra this multiplica­
tion is important since here the pseudobaselines lead 
to F1 and F2 ridges.8 

The second deviation, i.e. the multiplication of each 
data point in the spectrum by the factor eYLp({i2tvvj -
R2j)Tin, results in a frequency and relaxation dependent 
phase distortion of the DFT spectrum, as it appears 
from eq 3. This phase distortion does not vary linearly 

with the frequency, v, in a continuous way. Instead it 
depends linearly only on the center frequencies of the 
individual Lorentzians. This implies that the same 
phase correction, i.e. the phase correction corresponding 
to the centers of the Lorentzians, must be used across 
a given signal irrespective of its line width. Thus, in 
effect the phase correction is nonlinear. Even so, a 
linear phase correction suffice in most cases with 
modest phase distortions and narrow and well-separated 
signals. If, however, extreme phase distortions occur 
or the signals are broad and poorly separated, or if small 
signals are situated on the tail of a larger signal, the 
spectrum can be correctly phased only at the center of 
each signal, and baseline undulation will occur.9 Thus, 
the true spectrum cannot be produced even under ideal 
sampling conditions, i.e. when the time-domain signal 
is allowed to relax completely during acquisition and 
the sweep width is significantly larger than the width 
of the spectrum. Obviously, this effect increases with 
increasing values of the initial delay, T1n. Therefore, 
the value of T1n is normally kept as small as possible 
even though nonlinear effects of the amplifier, distor­
tions due to electronic filtering, and overflow in the AD 
converter may reduce the quality of the first few data 
points of the FID, and thereby give rise to new baseline 
distortions. However, as discussed below these dis­
tortions can be remedied by linear prediction. 

If the ideal sampling conditions are not fulfilled ad­
ditional distortions occur. Thus in case of a trunction 
of the FID (Ta„ ^ 1/Ry) the ;th Lorentzian is overlaid 
by a new periodic expression, exp((i27r(i'; - v) - R2J)T^, 
with the period of one data point (Taq

_1). This, in turn, 
results in an apparently misphased signal.6 Further­
more, the relative signal intensity is no longer given by 
the area between the curve and the baseline, because 
the pseudobaseline level is also altered by the factors 
exv((i2ir(vj - v) - i?2;)Taq); i.e. the area between the 
baseline and the resonance curve depends on the fre­
quency and the relaxation rate. As seen from eq 5, this 
deviation can be reduced by increasing the sweep width, 
SW, to a size significantly larger than the actual spectral 
width. 

If the FID is zero filled before the discrete Fourier 
transformation in order to increase the digital resolu­
tion, the exponential term in the numerator of eq 2 
causes even more pronounced distortions in the re­
sulting spectrum. This can be seen by letting m assume 
fractional values in v = mTaq

_1. "Wiggles" with a period 
of Taq

_1 will then appear in the spectrum in connection 
with the signal whose components in the FID have been 
truncated. It should be emphasized that in this case 
a correction of the baseline by multiplying the first data 
point of the FID by a factor of 1/2 will not work since 
the pseudobaseline is here modulated by the term 
exp(-i'2™Taq). 

Finally, it should be emphasized that if the sweep 
width is not significantly larger than the actual fre­
quency range covered by the spectrum (SW ^ vj - v) 
the periodic behavior of the denominator of eq 2 will 
give rise to the well-known effects of aliasing or zoning.10 

As demonstrated above an experimental DFT spec­
trum differs from the theoretical spectrum to a large 
extent and may even differ significantly from the op­
timal DFT spectrum. As will be demonstrated in the 
following sections several of the drawbacks of the DFT 
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spectrum can be alleviated or even remedied by linear 
prediction calculations. 

/ / / . Spectral Improvements 
It is evident from the previous section that a series 

of artifacts, often observed in DFT spectra, are due to 
defective or incomplete time-domain signals. This 
holds, in particular, for baseline distortions due to 
corruption of the first few data points of the FID, large 
first-order phase corrections caused by lack of infor­
mation about the initial part of the FID, and truncation 
artifacts that result from incompletely decayed and 
zero-filled FID's. Consequently, these artifacts can be 
remedied or alleviated if the FID can be repaired or 
completed. As originally demonstrated by Tirendi and 
Martin11 and Marion and Bax,12 such time-domain 
signals can be generated from the experimental FID's 
by linear prediction calculations. In this section the 
principle of the LP calculations that allow repair and 
extrapolation of the FID's will be briefly reviewed to­
gether with a series of examples that illustrate the ap­
plication of the LP method for these purposes. 

A FID signal, Fk, consisting of a sum of exponentially 
damped sinusoids (eq 1), sampled at regular time in­
tervals, has the following property13 

Fk=LfmFk_m (6) 
m = l 

disregarding the effect of the noise. Here fm is the mth 
forward prediction coefficient. Since fm is independent 
of k it can be determined from the experimental data 
points, and subsequently used to calculate the extension 
of the FID's. To determine the prediction coefficients, 
fm, from a set of linear equations of the type given by 
eq 6, various techniques are being used11,14-19 depending 
on the size and the nature of the problem. Some of 
these techniques were recently discussed by Gesmar et 
al.7 An interesting alternative to direct extrapolation 
of the FID, the LPZ method, has been suggested by 
Tang and Norris.20 

Further, the prediction coefficients are related to the 
frequencies, vj, and the relaxation rates, R2J, through the 
characteristic polynomial 

ZO-LLz^ = P(Z) (7) 

since the roots, Cj, of this polynomial are given by the 
equation13 

Cj = exv((i2irvj - Ry)At) (8) 

In general the precise number of signals contained in 
the FID is unknown a priori. Therefore a number of 
prediction coefficients must be chosen, that is suffi­
ciently large (>p) to assure the determination of all the 
involved complex exponentials. This results in an ex­
cess of roots of the characteristic polynomial in eq 7. 
However, as shown by Kumaresan,21 the roots are di­
vided into two classes: one class containing the p signal 
roots that conform to eq 8, and another class containing 
the extraneous roots. Moreover, in the case of backward 
prediction, i.e. 

Fk-Z bmFk+m (9) 
ro=l 

the extraneous roots fall inside the unit circle, whereas 

the signal roots, Cj, are situated outside the unit circle, 
thus making possible a separation of the two classes. 
In the case of forward prediction (eq 6) both classes fall 
inside the unit circle. When the coefficients are to be 
used for an extrapolation of the FID this has, in prin­
ciple, no consequences since both classes of coefficients 
must be used for the extrapolation. In practice, how­
ever, the presence of noise may occasionally result in 
roots that fall outside the unit circle corresponding to 
noise components with negative relaxation rates. 

The first example of spectral improvement through 
a combination of the LP and DFT methods concerns 
the effect of a corruption of the first few data points 
of the FID. As shown in Figure 1 severe damage of 
these points results in a strongly curved baseline of the 
spectrum. However, a reconstruction of the first data 
points of the FID from the following experimental data 
points by backward LP using eq 9 results in a DFT 
spectrum with a completely smooth baseline. 

Another powerful application of backward LP is for 
phase correction of soft-pulse spectra, such as soft-
COSY and soft-NOESY spectra22 or soft-HMQC spec­
tra.23 Due to the length of the selective pulses used in 
soft-pulse experiments, a considerable frequency-de­
pendent dephasing of the magnetization occurs during 
the pulses. As discussed earlier, a linear phase cor­
rection of the size needed in this case would lead to 
severe distortions of the spectrum. Consequently, the 
resulting spectra are characterized by large first-order 
phase distortions, unless special measures are taken to 
refocus the magnetization, such as refocusing 180° pulse 
immediately after the soft-pulse.22 Recently, Geen and 
Freeman24 have developed and elegant "top-hat" shaped 
composite pulse with "phase purity"; i.e. a band selec­
tive pulse without phase distortion. This pulse, how­
ever, acts only if the magnetization is initially along the 
z axis.24 It can, therefore, be used only as an excitation 
pulse and not as a general band-selective pulse. 

An experimentally simple way to correct the phase 
distortion caused by the dephasing of the magnetization 
during semiselective soft pulses, is to extrapolate the 
phase distorted experimental FID backward to t = 0, 
that is to the time at which all the sinusoids of the FID 
are in phase. For this end backward LP is the ideal 
computational method as originally suggested by 
Marion and Bax,12 and newly demonstrated by Led et 
al.25 using the soft-HMBC experiment as an example. 
The pure-absorption-mode version of this experiment, 
developed by Davis,23 includes two soft-pulses 

1H: (n/2)„ (soft) - A - I - UIZ - Ky (soft) - f,/2 - | - A - acq (f2) (10) 

I I 
X: ( K / 2 ) , (KlZ)x 

Here, first-order phase distortions in the F2 dimension 
can be avoided by using the TT/2 "top-hat" excitation 
pulse24 with "phase purity" for the proton excitation. 
However, the semiselective -K pulse applied in the 
middle of the evolution period inevitably introduces a 
lower limit to the time, tx, given by the length of the 
•K pulse and thus gives rise to a considerable phase 
distortion in the F1 dimension. In ref 25 Led et al. used 
the experiment to correlate the carbonyl carbons (13C) 
and the a protons of the individual leucine residues in 
human growth hormone (hGH), using a sample of hGH 
in which the carbonyl carbons of all 26 leucine residues 
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Figure 1. The first slice along the F2 dimension in a two-di­
mensional HOHAHA spectrum of insulin in D2O: (a) the DFT 
spectrum and (b) the first 60 data points of the FID. Notice the 
fourth data point in the FID is severly damaged. In c the first 
6 data points of the FID were deleted and recalculated from 18 
LP coefficients by using eq 9. The LP coefficients were deter­
mined from 36 equations of the type of eq 9, k ranging from 7 
to 42. Notice that the vertical scale is changed. In d the DFT 
spectrum of the repaired FID is shown. Notice that both scales 
are changed. 

were 95% 13C enriched. The length of the applied 
Gaussian ir semiselective pulse in the middle of the 1̂ 
period was 2 ms. For the applied At period of 40 na this 
corresponds to a delay of the J1 acquisition of 50 data 
points, or a linear phase distortion of 9000 degrees 
across the sweep width. Although, in principle, there 
is no limit to the size of the first-order phase correction 
one can apply, there is, in practice, a limit due to the 
nonlinear nature of the phase distortion, discussed 
above in section II. This is immediately apparent from 
Figure 2a that shows a contour plot of the CH- 1 3 C 
region of the soft-pulse HMBC spectrum of hGH and 
from Figure 3a that shows a slice taken along the 13C 
axis at the position indicated by the arrow in Figure 2a. 
Thus, although the spectrum basically is in pure ab­
sorption mode in both dimensions, negative signals 
occur despite an optimized phase correction. As re­
vealed in Figure 3a the negative signals are due to 
baseline undulation around the signals as discussed in 
the previous section. When the experimental two-di­
mensional FID is extended 50 data points backward in 
the 1̂ domain i.e. to the point where all sinusoids are 
in phase, the artifacts disappear and the discrete 
Fourier transform results in a spectrum almost free of 
negative signals and baseline undulation as illustrated 
in Figures 2b and 3b. Further spectral improvements 
can be obtained by forward extrapolation of the FID 
as shown in Figures 2c and 3c and discussed in detail 
in the following. 

A third application of LP extrapolation, that has 
proved very useful, is forward extrapolation of trun­
cated FID's with the purpose of reducing or eliminating 
the trunction errors, and increasing the resolution and 
the sensitivity of the DFT spectrum. This was origi­
nally demonstrated by Tirendi and Martin11 for the case 
of a NOESY spectrum of a small protein. Forward 
extrapolation is particularly valuable in cases where the 
resolution and the sensitivity are limited by the time 
necessary to obtain the data file, such as three- or higher 
dimensional spectra27 or natural abundance two-di­
mensional heteronuclear correlation spectra.28 In both 
cases the time-domain data for the slowest incrementing 
time dimension is normally truncated. For the three-
or higher dimensional spectra the truncation is due to 
accumulation time constraints rather than to the lack 
of signal. In contrast, lack of signal is mainly the 
problem in the natural abundance heteronuclear cor­
relation spectra. Here the sensitivity problem can be 
alleviated by confining the data acquisition in the tx 
domain to only the first and most intense part of the 
FID, if the associated truncation errors and reduced 
resolution can be eliminated by forward LP extrapola­
tion of the FID. In both cases the reliability of the 
extrapolation depends on the number and the quality 
of the experimental data used for the extrapolation. 
This can be realized by considering a noiseless FID 
containing N sinusoids. Here only 4iV data points 
would be necessary to determine the AN parameters 
that are involved (i.e. the frequencies, the line widths, 
the intensities, and the phases of the N signals) and, 
thus, reproduce the entire FID. When noise is present, 
as in experimental data, the number of data points and 
LP coefficients used for the extrapolation must be in­
creased considerably. Thus, as demonstrated by Ges­
mar and Led19 for a one-dimensional spectrum, 128 LP 
coefficients calculated from 512 data points were nee-
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Figure 2. Contour plots of a soft-pulse absorption mode HMBC 
spectrum of human growth hormone (hGH) with 95% 13C labeling 
of all 26 Leu carbonyl carbons. The spectrum correlates the 
carbonyl carbons with the a protons. Full contour lines indicate 
positive signals; broken contour lines indicate negative signals. 
The spectrum was obtained from a 0.8 mM solution of hGH in 
D2O, 50 mM phosphate buffer, pD 2.32, and 305 K, with use of 
a Bruker AM 500 NMR spectrometer equipped with an inverse 
probe and a selective excitation unit. The pulse scheme in eq 
10 was used for the experiment. A detailed description is given 
in ref 25. The initial (ti,t2) data set consisted of 512 X 2048 real 
data points acquired over a period of 25 h with acquisition times 
of 20.5 ms (S1) and 102.4 ms (£2), 128 acquisitions per tx increment 
and a delay of 1.84 s between acquisitions. During this delay the 
residual HOD signal was saturated with a weak DANTE pulse.26 

The sweep width was 12 500 Hz in F1 and 10000 Hz in F2. After 
Fourier transformation the F2 domain was truncated to 1250 Hz 
resulting in an absorption mode spectrum represented by 1024 
data points. In a, a first-order phase correction of 9000° has been 
applied in order to correct the phase in the F1 dimension. Before 
Fourier transformation the 1̂ domain was zero filled to 2048 data 
points. In b, the tx domain has been backward extrapolated 50 
points by using linear prediction and zero filled to a total of 2048 
points. No first-order phase correction was necessary in order 
to correct the phase in the F1 dimension. In c, the FID has, 
furthermore, been extrapolated to 2048 points (reprinted from 
ref 25; copyright 1991 Academic Press, Inc.). 

essary for an optimum reproduction of four signals in 
a spectrum with a signal-to-noise ratio of approximately 
1:10. 

As mentioned above, the noise may also give rise to 
roots outside the unit circle. Since these roots corre­
spond to noise components with negative relaxations, 
an extrapolation that included the corresponding LP 
coefficients would result in an extrapolated FID that 
increased instead of decayed.29 In order to remove these 
roots and assure the decay of the extrapolated FID, a 
more stable solution should be obtained by including 
more experimental information.29 If this is not possible, 
the roots may simply be reflected to fall inside the unit 
circle.12 Therefore, it is mandatory to apply eq 7 in 
order to check for roots outside the unit circle and, if 
necessary, to construct a modified set of roots from 
which a new set of LP coefficients can be calculated. 
Without this check artifactual peaks may creep into the 
analysis. 

Forward LP extrapolation, as outlined above, was 
recently applied to a proton-detected natural abun­
dance heteronuclear multiple quantum coherence 
(HMQC) spectrum that correlates the protonated car­
bon in an insulin analogue (B9(Asp) insulin) to the 
attached protons.28 The combination of a short 1̂ ac­
quisition time and LP extrapolation of the FID in the 
ti dimension is particularly favorable in this case due 
to the short R2 relaxation rate induced by the self-ag­
gregation of insulin. 

In Figure 4 are shown various modifications of an 
experimental FID along the J1 dimension in the methyl 
region of the C-H correlation spectrum of insulin. The 
original tu t2 data set was Fourier transformed in t2, and 
the FID in Figure 4 is a sum of a group of proton signals 
modulated by the frequencies of the attached 13C nuclei. 
The extrapolation shown in Figure 4c was based on 150 
forward LP coefficients derived from the experimental 
data points by using 354 equations (eq 6). The spectral 
resolution obtained by different types of data treat­
ment, and the enhancement that can be obtained by the 
LP extrapolation, appear from the comparison in Figure 
5. Thus, while the Fourier transform of the 512 ex-
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Figure 3. Traces along the 13C axis in the soft-pulse HMBC 
spectrum in Figure 2. The traces in a, b, and c correspond to 
contour plots a, b, and c in Figure 2 and are taken at 4.36 ppm 
as indicated by the arrows in Figure 2. In c the FID has, fur­
thermore, been forward extrapolated to 2048 points, (reprinted 
from ref 25; copyright 1991 Academic Press, Inc.). 

perimental data points alone results in an unacceptable 
low digital resolution as shown in Figure 5a, zero filling 
(Figure 4a) gives rise to truncation errors in the form 
of a sine function ("wiggles") superimposed on the signal 
as shown in Figure 5b. Although this artifact can be 
removed by digital filtering (Figure 4b) it can be done 
only by further sacrifice of resolution as seen in Figure 
5c. Only if the FID is LP extrapolated to an almost 
complete decay (Figure 4c) is the information, inherent 
in the experimental FID, retained as shown in Figure 
5d. The increased resolution obtained by the LP ex­
trapolation is further illustrated in Figure 6 that shows 
the contour plot of the methyl region, corresponding to 
Figure 5 parts c and d. 

The full potential of LP extrapolation for enhancing 
heteronuclear correlation spectra is displayed in Figure 
7. This figure shows the trace in a heteronuclear single 
quantum correlation (HSQC) spectrum corresponding 
to the trace in the HMQC spectrum shown in Figure 
5. Unlike the HMQC spectrum the HSQC spectrum 
has no splitting in the Fx dimension due to passive J 
couplings to adjacent protons. Consequently, the line 
broadenings induced by these couplings in the HMQC 
spectrum are absent in the HSQC spectrum. A com­
parison of Figures 5d and 7b reveals that this is indeed 
the case. Also, a comparison of Figure 5c and 7a shows 
that the differences in line width in the two spectra are 
completely hidden by the extra line width imposed on 
the signals by the digital filtering, necessary in the case 
of truncations. Therefore, under experimental condi­
tions where the FID must be truncated, such as in the 
case of natural abundance heteronuclear correlation 
spectra of proteins, the higher resolution of the HSQC 
spectra as compared to the resolution of the corre­
sponding HMQC spectra can be observed only by ap­
plying LP extrapolation. 

In conclusion it should be stressed that backward 
prediction is normally a "safe" modification, considering 

8000 

8000 

Figure 4. An experimental FID along tj (512 data points, S1 
acquisition time 10.2 ms), corresponding to the trace indicated 
by an arrow in the HMQC C-H correlated two-dimensional 
spectrum in Figure 6: (a) zero filled to 8192 data points; (b) zero 
filled to 8192 data points and digital filtered by using a cos2 

window function; and (c) LP extrapolated to 8192 data points 
by using eq 7 (reprinted from ref 28, copyright 1991 ESCOM 
Science Publishers B.V.). 

the relatively small number of extrapolated data points 
as compared with the number of LP coefficients that 
can be calculated, and the large surplus of experimental 
data points from which the LP coefficients can be de­
rived. Thus, normally we apply a number of LP coef­
ficients that is a factor of three larger than the number 
of backward predicted points. Further, the number of 
equations used to determine the LP coefficients should 
be at least twice the number of coefficients. When 
forward prediction is applied more care should be ex­
ercised. In practice an extrapolation that exceeds the 
number of experimental data points by several factors 
may often be desirable in order to assure a complete 
decay. In such cases the number of complex LP coef­
ficients must at least be equal to the number of reso­
nances in the FID, and preferably exceed it by several 
factors, the surplus necessary depending on the sig-
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ppm 
Figure 5. Comparison of four versions of the F1 trace indicated by an arrow in the HMQC C-H correlated two-dimensional spectrum 
in Figure 6: (a) Fourier transform of the 512 experimental data points in Figure 4a, alone, and (b) the entire zero-filled FID; (c) Fourier 
transform of the digital filtered (cos2 filter) FID in Figure 4c; and (d) Fourier transform of the LP extrapolated FID in Figure 4c (c 
and d are reprinted from ref 28; copyright 1991 ESCOM Science Publishers B.V.). 

nal/noise ratio. Should this condition not be fulfilled, 
the accuracy by which the frequencies are reproduced 
by the extrapolation will be too low, making the ex­
trapolation less valuable or even meaningless if carried 
too far. In such cases a shorter extrapolation in com­
bination with a window function may be appropriate.27 

IV. Spectral Analyses 

The ultimate use of linear prediction in the field of 
NMR spectroscopy is for spectral analyses; i.e. as an 
alternative to the DFT method. This was originally 
suggested by Barkhuijsen et al.,14 using the singular 
value decomposition method for determining the LP 
coefficients (LPSVD). This approach was based on the 
work of Baron de Prony30 and Kumaresan and Tufts.31 

The procedure for the analysis is to estimate the fre­
quencies, Vj, and the transverse relaxation rates, R2J, of 
the involved sinusoids from the experimental time-do­
main signal by using eqs 7-9, as mentioned in the 
previous section. Subsequently, the intensities, /,, and 
the phases, 0,, are recovered from the FID by a linear 
least-squares calculation with use of eq 1. Therefore, 
unlike the DFT method that produces the frequency 
spectrum corresponding to the time-domain signal, the 
LP analysis results in a complete set of parameters 
describing the Lorentzians of the frequency spectrum. 
As a consequence, all the artifacts of the DFT method 
such as truncation errors, baseline shifts, baseline 
modulations, intensity distortions, and other drawbacks 
described in section II, and laboriously remedied in 

section III, vanish. From the parameters obtained 
through the LP analysis one can simulate a noiseless 
spectrum without the artifacts caused by the DFT (in 
the following named the LP spectrum). This, however, 
does not necessarily mean that the LP analysis provides 
a more accurate result than the DFT analysis. In the 
LP analysis the accuracy is merely given by the un­
certainties of the parameters that result from the 
least-squares calculation, whereas in the DFT analysis 
the uncertainties are primarily reflected in the noise of 
the DFT spectrum. 

The important difference, however, is that the LP 
analysis provides the parameters of interest directly, 
whereas the DFT spectrum must be subjected to fur­
ther analysis in order to yield these parameters. 
Moreover, in the LP analysis of the FID all of the ex­
perimental data points are involved in the determina­
tion of the parameters, thus providing the most reliable 
estimates. A corresponding analysis of the DFT spec­
trum consists in a nonlinear least-squares analysis of 
the entire frequency domain signal; i.e. the absorption 
as well as the dispersion mode spectrum.6 Although, 
in principle, this is possible it is, in practice, unfeasible 
for more complex spectra since the DFT method, unlike 
the LP method, does not provide information about the 
number of signals in the spectrum. Recently, however, 
Kumaresan et al.32 proposed a new iterative method, 
requiring only very simple starting values although it 
works in the frequency domain. Preliminary results 
seem to indicate the applicability of the method to 
NMR data. 
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Figure 6. Comparison of two contour plots of the methyl region 
in the one-bond HMQC C-H correlated spectrum of B9(Asp) 
insulin: (a) without and (b) with LP extrapolation applied. The 
vertical line at 0.39 ppm (u)2) indicates the trace shown in Figure 
5. In a, a cos2-filter function was used in the J1 domain while an 
exponential multiplication corresponding to a line broadening of 
3 Hz was used in t2. In b no digital filtering was used either in 
J1 or in t2 (reprinted from ref 28; copyright 1991 ESCOM Science 
Publishers B.V.). 

The major drawback of the LP analyses is the com­
puting time necessary. Thus the complete analysis of 
a one-dimensional spectrum of a protein, like the 
analysis of the 13C spectrum of insulin (vide infra), takes 
from a fraction of an hour to a few hours on a VAX 
workstation, depending on the model and the configu­
ration of the workstation and the efficiency of the al­
gorithm. This should be compared with a fraction of 
a second to a few seconds for a DFT analysis of the 
same spectrum. Still, the LP analysis seems worthwhile 
considering the results. Also, the fact that the time 
necessary to record the spectrum may be several hours 
puts the time for the LP analysis in perspective. 

ppm 

10 Hz 

X A ^ / V 

14 Hz 

_L _L J-
ppm 25 20 15 10 

Figure 7. Comparison of two versions of the same F1 trace in 
a HSQC C-H correlated two-dimensional spectrum, corresponding 
to the trace in the HMQC spectrum shown in Figure 5, parts c 
and d. The tx FID consists of 512 experimental data points and 
was (a) zero filled to 8192 data points and (b) linear prediction 
extrapolated to 8192 data points. A cos2 filter was used in a; no 
digital filter was used in b. The HSQC spectrum was obtained 
from the same sample as the HMQC spectrum, and under the 
same experimental conditions except for the difference in the pulse 
sequences used to obtain the two spectra (reprinted from ref 28; 
copyright 1991 ESCOM Science Publishers B.V.). 

Moreover, development of more efficient numerical 
procedures and faster computers will undoubtedly re­
duce this disadvantage in the near future. 

A. One-Dimensional NMR Spectra 

Using the approach outlined above it was shown by 
Led and Gesmar19 that spectral parameters can be es­
timated from complicated signals, such as the 1H FID 
of the heptapeptide Gly-Phe-Phe-Tyr-Thr-Pro-Lys in 
D2O (8.9 mM, pD = 4.4). The conventional phase-
corrected DFT spectrum is shown in Figure 8. The LP 
calculation was performed with 2400 real backward 
coefficients, using all 8 k data points except the initial 
32 that were deleted in order to suppress the effects of 
electronic filtering and fast decaying transients caused 
by the rf pulse. Thus eq 9 was solved as 5760 equations 
in 2400 unknowns. The solution of the 2400 degree 
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Figure 8. (a) 1H FT NMR absorption spectrum of a 8.9 mM 
solution of the heptapeptide Gly-Phe-Phe-Tyr-Thr-Pro-Lys in 
D2O at pD = 4.4; the FID was recorded at 250.1 MHz in 8 k using 
a sweep width of 2500 Hz; a relatively intense HDO signal was 
removed by presaturation. (b) LP spectrum of the heptapeptide, 
displaying the result of an LP calculation based on 2400 LP 
coefficients, (c) The cosine FT of the residual of the LP estimation 
(reprinted from ref 19; copyright 1988 Academic Press, Inc.). 

polynomial equation corresponding to eq 7 gave 2163 
extraneous roots (i.e. roots inside the unit circle) thus 
leaving 237 intensities and 237 phases to be determined 
by eq 1. Following this final least-squares calculation, 
signals with intensities smaller than the corresponding 
standard deviation were deleted. A total of 78 signals 
were removed by this procedure. The result of the 
calculation is displayed graphically in Figure 8b. In 
Figure 8c the cosine FT of the difference between the 
observed and the recalculated FID's is shown. Expan­
sions of the aromatic region (6.60-7.45 ppm) are shown 
in Figure 9. As can be seen from Figures 8 and 9 and 
Table I the reproduction of the observed signals is ex­
cellent, every essential feature of the FT spectrum being 
reproduced. Small variations that cannot be classified 
as white noise appear in Figure 8c. Apart from the 
residual of the HDO signal at 4.696 ppm, caused by the 
HDO presaturation, these variations are all very narrow 
(one point) and as such represent very little intensity. 
They are residuals from narrow signals of modest in­
tensity in which case even very small systematic errors 
in the FID may appear in the Fourier transform of the 
difference between the observed and the recalculated 
signal. Thus errors caused, for example, by the finite 
digital resolution or field inhomogeneity are likely to 
be visible in Figure 8, because of the good signal-to-
noise ratio. 

Gesmar and Led19 also demonstrated that the LP 
method is able to extract information from signals with 
a poor signal-to-noise ratio. This particular capability 

J^ 
J_ _L J_ _L 

7.400 7.300 7.200 7.100 7.000 6.900 6.800 6.700 ppm 

Figure 9. (a) Expansion of the aromatic region (6.60-7.45 ppm) 
in the DFT spectrum of the heptapeptide (Figure 8a). (b) Ex­
pansion of the aromatic region in the LP spectrum of the hep­
tapeptide (Figure 8b). The corresponding parameters estimated 
by the LP calculation are shown in Table I (reprinted from ref 
19; copyright 1988 Academic Press, Inc.). 

TABLE I. Estimated Parameters" Corresponding to the 
Expanded LP Spectrum in Figure Hb 

j 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Vj, ppm 

6.7206 
6.7307 
6.7393 
6.7564 
6.7650 
6.7765 
6.8035 
7.0065 
7.0174 
7.0251 
7.0341 
7.0447 
7.0525 
7.0656 
7.0764 
7.0843 
7.0977 
7.1001 
7.1148 
7.1236 
7.1326 
7.1421 
7.1478 
7.1560 
7.2038 
7.2126 
7.2239 
7.2320 
7.2422 
7.2505 
7.2585 
7.2675 
7.2712 
7.2903 
7.2953 
7.3068 
7.3124 
7.3250 
7.3658 

A"u/2>; 

1.80 
1.23 
1.21 
1.31 
1.24 
1.30 
1.28 
1.44 
1.56 
1.03 
3.05 
0.77 
1.48 
1.83 
1.52 
1.76 
0.77 
3.68 
2.64 
1.19 
0.83 
0.47 
1.80 
1.73 
0.48 
1.53 
0.76 
1.03 
1.09 
2.28 
2.56 
0.14 
0.38 
2.55 
1.63 
1.05 
1.45 
0.63 
0.43 

'/ 
22 
188 
36 
48 
232 
17 
12 
23 
256 
27 
62 
13 
189 
32 
83 
134 
9 

332 
310 
72 
7 
6 

140 
169 
4 
23 
13 
39 
179 
724 
784 
9 
23 
249 
41 
13 
30 
9 
1 

a(l,)' 
(3) 
(3) 
(3) 
(3) 
(3) 
(3) 
(3) 
(3) 
(4) 
(3) 
(7) 
(2) 
(3) 
(4) 
(4) 
(5) 
(3) 
(11) 
(7) 
(3) 
(2) 
(2) 
(4) 
(4) 
(D 
(3) 
(2) 
(2) 
(3) 
(7) 
(6) 
(D 
(D 
(7) 
(5) 
(3) 
(3) 
(2) 
(D 

<t>h
b deg 

-157 
-119 
-138 
-120 
-131 
-127 
-145 
-152 
-128 
-86 
22 
157 

-162 
152 

-174 
-157 
130 

-144 
-126 
-109 
-159 
49 

-157 
-151 
-171 
180 

-133 
-159 
174 

-174 
-105 
-UO 
133 

-171 
-26 
179 
-132 
-168 
120 

city)," deg 
(8) 

(D 
(4) 
(3) 
(D 
(8) 

(12) 
(7) 
(D 
(6) 
(6) 
(10) 

(D 
(7) 
(3) 
(2) 
(17) 
(2) 

(D 
(3) 
(17) 
(15) 
(2) 
(D 

(22) 
(7) 
(8) 
(4) 
(D 
(D 
(D 
(5) 
(3) 
(2) 
(7) 
(13) 
(7) 
(9) 
(49) 

"The estimates of frequency (VJ = WJ/2T), line width (Ava/2)j = 
R7J/V), intensity (I1), and phase ((Ji1), resulting from a 2400 order 
LP calculation. Equations 9 and 1 were both solved using 8 k data 
points. 6The values of Ij and <t>j refer to the intensity and phase at 
the time of the rf pulse. c Standard deviation calculated from the 
inverse of the normal equation matrix corresponding to eq 1. 
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Figure 10. 13C FT NMR (a) and 13C LP NMR (b) absorption 
spectra of human insulin. The spectra were derived from the same 
FID. No digital filtering was applied to the FID. The LP 
spectrum was calculated from the spectral parameters obtained 
in an analysis with 2400 backward linear prediction coefficients. 
Signals smaller than three times their standard deviations, and 
two signals entirely out of phase with the adjacent signals, were 
deleted, leaving 85 lines in the LP spectrum. In the spectrum 
displayed all phases are set to zero (reprinted from reference 33, 
copyright 1988 American Chemical Society). 

was exploited by Led et al.33 who analyzed the differ­
ences between the 13C FID of human and porcine in­
sulin using the LP procedure. The frequency spectrum 
calculated from the parameters obtained in the LP 
analysis of the 13C FID of the human insulin is shown 
in Figure 10 together with the conventional FFT 
spectrum, derived from the same experimental FID. 
Clearly, most of the signals found by the LP analysis 
are seen in the DFT spectrum. But unlike the DFT, 
the LP analysis gives quantitative measures of all the 
resolved signals in terms of values of the spectral pa­
rameters. In particular v-s and R2j are of interest as 
potential sources of information about differences be­
tween the structures and the dynamics of the two in­
sulins. However, in the LP spectrum in Figure 10b 
most of the resolved signals are still superpositions, 
corresponding to carbon atoms in slightly different 
environments. Hence, a reliable physical interpretation 
of the parameters derived can be given only for a few 
of the signals. 

In connection with estimation of spectra with very 
low signal-to-noise ratio a special procedure has been 
suggested by Delsuc et al.34 Although its efficiency is 
difficult to assess, as only few linear prediction coeffi­
cients (viz. 140) were applied in the calculation, it looks 
very interesting and promising. 

As far as analyses of low-sensitive, complex 13C 
spectra of proteins are concerned, proton-detected 

Led and Qesmar 

two-dimensional natural abundance 13C-1H correlation 
spectra are now accessible, as it appears from the pre­
vious section. Also, as reviewed in the following, LP 
analyses of two-dimensional spectra are now feasible. 
Considering the enhanced resolution provided by both 
of these approaches, a combined use of these methods 
holds great promise as a source of detailed information 
about dynamics, structure and function of proteins. 

B. Two-Dlmensional NMR Spectra 

In the case of two-dimensional NMR data the limi­
tation of the DFT method mentioned in section II are 
specifically pronounced, since in practice, truncation in 
the ti dimension is always necessary because of the time 
consumed during sampling in this dimension. More­
over, as the two-dimensional DFT procedure cannot 
provide an absorption-like line shape in both dimen­
sions, unless special phase cycling procedures are ap­
plied,3536 the linear prediction method should provide 
an effective improvement to two-dimensional spectral 
analysis. Yet, the time consumption of one-dimensional 
LP calculations, as described in the previous section, 
suggests that the extension to two dimensions might not 
be feasible, regarding the computational power normally 
available in NMR spectroscopy laboratories at present. 
Therefore some shortcuts have been proposed. 

Schussheim and Cowburn37 follow a scheme in which 
a Fourier transformation is applied in the t2 dimension 
after which a LP calculation is performed on the ^1 

FID's for each value of t2. Manassen et al.38 suggest a 
linear least-squares procedure, according to which the 
decay rates and resonance frequencies are determined 
prior to the two-dimensional experiment from a one-
dimensional experiment. The amplitude of two-di­
mensional signals are hereafter calculated from the 
two-dimensional FID by a least-squares calculation. 
However, for complicated spectra this is not feasible. 
Therefore these authors reduce the calculation to sev­
eral smaller ones by applying the Fourier transforma­
tion to the t2 dimension. In the following the applica­
tion of the LP principle to two-dimensional NMR free 
induction decays is described, following the treatment 
of Gesmar and Led.39 

In the two-dimensional case, a phase modulated FID 
has the form 

fih,t2) = Ehj exp(iV^) exp((i2irv^ -

RBti) exp((t27r,f > - R%)t2) (11) 

assuming the decay is exponential. Here vf\ v^\ R2J, 
and R2)I are the frequencies and transverse relaxation 
rates in the t2 and ^1 dimension. 7h; is the corresponding 
amplitude and ^ , the phase. When the signal is sam­
pled at regularly spaced intervals in both dimensions, 
the following discrete function is obtained: 

F,j, = ZD1J exp((i27nf > - R2f)At2k) (12) 

where 

Pi 

D1J = E h j e x p ( i ^ ) exp((i2in#> - R2)I)M1I) (13) 

Here At1 and At2 are the sampling intervals in the J1 

and t2 dimensions, respectively. The value of p 2 is the 
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number of resonances in the t2 dimension, and ps is the 
number of correlations of the ;'th resonance. For each 
value of I, the linear-prediction principle, as stated in 
eq 9, can be applied to eq 12. Since, furthermore, 
exp((i2ircj2) - R2J)At2) does not depend on Z, neither do 
the backward prediction coefficients. Therefore, the 
following equation is fulfilled for all k and I: 

F,k = Z bmFlMm (14) 
m=l 

Equation 14 shows that the entire two-dimensional FID 
can be included in the determination of the backward 
coefficients belonging to the t2 dimension. Conse­
quently the set of linear equations that determine the 
6m's is only solved once for a given two-dimensional data 
set. Again, the linear-prediction order is chosen to be 
larger than the expected number of resonances in the 
t2 dimension. For a detailed description of the solution 
to eq 14 the reader is referred to refs 19 and 39. 

Having found the bm's, the values of the frequencies, 
fj2), and transverse relaxation rates, R2J, connected with 
the t2 dimension, are determined from 

Cj = exp(H2™f + R2V)At2) (15) 

the backward equivalence of eq 8. Again, the rooting 
of the characteristic polynomial in eq 7 is only per­
formed once for a given two-dimensional data set. 
Thus, the time used for the most time-consuming parts 
of the procedure, corresponds closely to the time used 
in the one-dimensional case. As mentioned in the 
preceding section the extraneous roots, originating from 
the excess of linear-prediction coefficients have a 
tendency of falling inside the unit circle. Because 
backward prediction is used, the signal roots, Cj, are 
situated outside the unit circle, due to the positive 
values of R2J in eq 15. Contrary to the case where 
forward prediction is used, the two classes of roots are 
thus easily separated, and the extraneous roots are ex­
cluded from the following part of the calculation. 

Since the C/s are known at this point, the Dy's in eq 
12 can be evaluated from another overdetermined 
system of linear equations, viz. 

Flk = LD1JCf (16) 
>"i 

The calculation must be carried out for each value of 
I, but as the coefficients C, are independent of I, the 
number of operations involved in the solution can be 
reduced considerably. 

According to eq 13, Dy itself is a sum of decaying 
complex exponentials, and as such the linear prediction 
principle applies once again 

Dij= iBjmDl+mJ (17) 

Bjn representing the 1̂ backward coefficients belonging 
to the jth resonance. For each value of ;', a complete 
linear-prediction calculation and subsequent least-
squares determination of the intensity are applied, and 
thus estimates of the frequencies, v^\ and relaxation 
rates, R2

1Jl, in the 1̂ dimension are produced together 
with the value of intensity, Ihj, and phase, iphj, con­
necting the frequencies in the two dimensions. A com­
plete determination of the spectral parameters of the 

two-dimensional free-induction decay has thus been 
achieved. 

In connection with the final tt calculation, a few de­
tails should be noted. As in the former applications of 
the linear-prediction principle, the number of LP 
coefficient must be chosen somewhat larger than the 
expected number of resonances, since Dy is corrupted 
by noise. The finite variance of Du is not only caused 
by the white noise contribution to the individual FID's 
in the t2 dimension, but it is also affected by the 1̂ noise 
in the general case. Because of the limited number of 
frequency correlations for each t2 resonance, the de­
termination of the spectral parameters can be accom­
plished involving only few J1 values. This is an im­
portant advantage over the DFT spectrum in which 
"wiggles" and "ripples", originating from the truncation, 
would reduce the value of the spectral estimate as de­
scribed in section II. Still, the resolution obtained in 
the two-dimensional linear-prediction analysis is further 
enhanced when the number of applied J1 values is in­
creased. 

The applicability of the quantitative two-dimensional 
LP procedure has been demonstrated by Gesmar and 
Led.39'40 The pairs of spectral parameters {vf\ pj,1'), 
(R2J, R2

1^), and the corresponding intensities, Ihj, and 
individual phases, <phi, were estimated from the 1H 
COSY free-induction decay of threonine in D2O and 
DMSO, the Fourier transform of which is shown in 
Figure 11a. In the t2 dimension, 800 real backward 
prediction coefficients, bm, were applied, and all 172 
rows of the data matrix were included in the normal 
equations corresponding to eq 14. The first 16 points 
of each row were deleted in order to suppress possible 
fast, nonexponential decaying transients. The solution 
of the characteristic polynomial eq 7 resulted in 114 
roots outside the unit circle. As the backward coeffi­
cients are real valued, these roots fall in pairs of com­
plex conjugates, thus representing 57 potential signals, 
i.e. 57 values of e}2) and R2J. The normal equations 
corresponding to eq 16 were also formed on the basis 
of the entire two-dimensional free-induction decay, and 
consequently 57 times 172 complex values of Dy were 
evaluated. For each of the 57 values of ;', a complete 
linear-prediction calculation was performed on the 172 
complex values of Dy applying 64 complex backward 
prediction coefficients. Thus parameters corresponding 
to 206 signals were determined by the calculation. The 
apparent excess consists mostly of small, insignificant 
signals that can be classified as artifacts. 

To demonstrate the general quality of the estimated 
parameters a two-dimensional Lorentzian line-shaped 
spectrum was calculated directly from these values as 
shown in Figure l ib . For more complex 2D spectra 
with overlapping signals, "correlation leakage" can give 
rise to artifactual cross peaks. This was described in 
detail by Gesmar and Led in ref 39, together with a 
detailed description of the 2D LP spectrum. 

It is important to emphasize that the LP spectrum 
described above is only a practical way of visualizing 
a large amount of data. Any specific spectral infor­
mation must be taken from the parameter tables pro­
vided by the LP procedure. In Figures 12 and 13 
smaller sections of the DFT spectrum and the LP 
spectrum are expanded. The corresponding parameters 
are listed in Table II and III. As can be seen, the 
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TABLE II. Estimated Parameters0 Corresponding to the Expanded LP Spectrum in Figure 12b 
(,•/*>, ^ ) , Hz (Affia,-, &$>m), Hz i b 

°(hj)c Vhjf deg obfy),* deg 
5« 
5' 
6' 
6' 
V 
T 
1' 
8 
8 
8' 
9' 
9' 
10 
10 
10* 

1 
2 
1 
2 
1 
2 
3 
l 
2 
3 
l 
2 
1 
2 
3 

(255.9, 257.8) 
(255.9, 278.5) 
(263.2, 262.2) 
(263.2, 281.1) 
(267.1, 267.0) 
(267.1, 279.0) 
(267.1, 284.2) 
(269.3. 269.4) 

(269.3. 275.9) 

(269.3, 286.7) 
(272.3, 272.0) 
(272.3, 272.2) 
(276.0, 269.2) 

(276.0, 275.9) 

(276.0, 284.5) 

(1.0, 0.2) 
(1.0, 3.1) 
(2.0, -0.1)°* 
(2.0, -3.4)d 

(1.2, 5.3) 
(1.2, 4.8) 
(1.2, -35)°" 
(LO, 03) 
(1.0, 1.0) 

(1.0, -31)d 

(1.1, -16)d 

(1.1, 2.9) 
(1.0, 0.3) 

(1.0, 1.2) 

(1.0, -26)d 

2.0 
2.0 
8.1 
1.2 
20.7 
9.8 
6.6 x 10-6 

331.8 

386.9 

4.0 X \Qr* 
2.0 X 10"' 
7.6 
301.5 

396.7 

2.0 x 10"3 

0.1 
0.1 
0.1 
0.06 

0.1 
0.1 
1.6 x 10"6 

0.5 
0.5 
1.2 X 10"6 

1.6 x 10"3 

0.3 
0.4 
0.4 
6.7 x 10-6 

-65 
-112 
-112 
-139 
-135 
-126 
-45 
-106 

-106 

139 
-128 
-110 
-115 

-111 

155 

2 
4 
2 
4 
2 
4 
2 
0 
0 
2 
0 
2 
0 
0 
2 

"The estimates of frequency pair (i>/2\ vh
m), linewidth pair [(ArRU;, AK}}^) = (R^/*, R^HI*)], intensity (Ihj), and phase fay), resulting 

from an LP calculation applying 800 real LP-coefficients in the t2 dimension and 64 complex LP coefficients in the I1 dimension. All 172 X 
1024 points of the FID were included, except for the first 16 points in the t2 dimension. 6The values of Ihi and <ph; refer to the intensity and 
phase at (i = f2 = 0. 'Standard deviation calculated from the inverse of the normal equation matrix corresponding to eq 1. dThe signifi­
cance of negative line width is discussed in ref 7. • Instrumental artifacts. 

\XX IMO 

Figure 11. (a) Phase modulated 250.13-MHz 1H two-dimensional 
FT COSY power spectrum of threonine in D2O and deuterated 
DMSO recorded in 172 X 1024 data points applying a spectral 
width of 1392.76 Hz in both dimensions. The FID was pre-
multiplied by an unshifted two-dimensional sine bell before 
Fourier transformation in 128 x 1024 points. The resonance at 
616.5 Hz is due to DMSO (2.5 ppm). (b) Two-dimensional-LP 
spectrum (see text) of the FID whose FT spectrum is shown in 
a (reprinted from ref 39; copyright 1989 Academic Press, Inc.). 

resolution of the LP method is beyond what can be 
obtained by inspection of the DPT spectrum, although 
the latter has been zero filled in both dimensions and 
premultiplied by a two-dimensional sine bell. It is also 

Figure 12. (a) Expansion of the region between 255.0 and 290.0 
Hz in both dimension of the FT spectrum in Figure 11a. In this 
case the FID was "zero filled" until 256 points in the ^1 dimension 
after the sine-bell filtering. The expansion shows the (CH3, CH3) 
multiplet. (b) LP spectrum of the same region calculated from 
the estimated parameters in Table II (reprinted from ref 39; 
copyright 1989 Academic Press). 

worthy of note that the phase estimates are exactly as 
one should expect: The signals on the diagonal in Table 
II are in phase while the off-diagonal signals in Table 
III are pairwise in counterphase. 

As mentioned above, a number of small extraneous 
signals is found by the procedure, particularly in the 
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TABLE III. Estimated Parameters0 Corresponding to the Expanded LP Spectrum in Figure 13b 
(»/»>, m«>), H z (A*i?> .»;: AKft'/a*). H z V <KV <%•>* d e g <r(<phi),

c deg 

36 
36 
37 
37 
38 
38 
39 
39 
40 
40 
41 
41 
42 
42 
43 
43 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

(980.2, 269.3) 
(980.2, 276.0) 
(985.2, 269.2) 
(985.2, 275.6) 
(987.2, 269.2) 
(987.2, 275.9) 
(992.1, 269.1) 
(992.1, 275.9) 
(993.2, 269.6) 
(993.2, 276.2) 
(998.2, 269.3) 
(998.2, 276.0) 

(1000.2, 269.7) 
(1000.2, 276.1) 
(1005.1, 269.4) 
(1005.1, 276.0) 

(1.2, 1.1) 
(1.2, 0.6) 
(0.9, 1.1) 
(0.9, 0.8) 
(0.7, 0.6) 
(0.7, 0.4) 
(1.4, -0.6)rf 

(1.4, -0.4)d 

(1.1, 0.O)1* 
(1.1, 0.2) 
(0.7, 0.8) 
(0.7, 0.7) 
(1.0, 1.1) 
(1.0, 0.8) 
(1.2, 0.8) 
(1.2, 0.9) 

46.5 
45.5 
35.5 
35.3 
43.6 
43.9 
53.4 
54.1 
63.1 
63.1 
44.3 
44.2 
38.1 
37.2 
44.1 
44.2 

0.1 
0.1 
0.1 
0.1 
0.2 
0.2 
0.3 
0.3 
0.3 
0.3 
0.1 
0.1 
0.2 
0.2 
0.1 
0.1 

73 
-109 
71 

-109 
36 

-146 
58 

-126 
-103 
75 

-103 
77 

-140 
40 

-137 
43 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

"The estimates of frequency pair (n/2\ vh
w), line width pair [(Av{?/2)j, AK(^8,,) = (Rfj/ir, R2^/r)], intensity (Ihi), and phase (<phi), resulting 

from an LP calculation applying 800 real LP-coefficients in the t2 dimension and 64 complex LP coefficients in S1 dimension. All 172 X 1024 
points of the FID were included, except for the first 16 points in the t2 dimension. 6The values of Ihi and <phj refer to the intensity and phase 
at t = 0. 'Standard deviation calculated from the inverse of the normal equation matrix corresponding to eq 1. ''The nonpositive line width 
is due to the uncertainty caused by the short J1 data record (see ref 7). 

vicinity of intense signals. This can also be seen in 
Figure 13. It should be emphasized that these are not 
removed by the procedure because they are real signals, 
in the sense that they conform with eq 12. Only 
physical knowledge of the system under study can 
separate them from the relevant signals. 

V. Conclusion 

The qualitative LP method, i.e. backward and for­
ward LP extrapolation of the time-domain signal before 
the DFT, is able to improve the quality of NMR spectra 
considerably. Intensity distortions, nonlinear phase 
problems, "wiggles", and pseudobaselines are of much 
less significance in the LP-enhanced spectra than in the 
normal DFT spectra. 

The quantitative LP method can directly estimate 
the frequencies, transverse relaxation rates, intensities, 
and phases from both one- and two-dimensional NMR 
data. It does not suffer from the previously described 
deficiencies of the DFT. In the two-dimensional case 
there is no need for phase-cycling procedures in order 
to avoid dispersion-like line shapes. Finally, it produces 
tables of spectral parameters, making further auto­
mated analyses possible without the need for peak 
finding procedures. 

The major drawback of the LP method is the exten­
sive computing time. However, as mentioned above the 
development of more efficient numerical procedures 
and faster computers will without any doubt eliminate 
this disadvantage in the future. 

VI. Abbreviations 

AD analogue to digital 
COSY two-dimensional correlation spectroscopy 
DANTE delays alternating with mutation for tai­

lored excitation 
DFT discrete Fourier transform 
DMSO dimethyl sulfoxide 
FID free infuction decay 
hGH human growth hormone 
HMBC two-dimensional heteronuclear multiple-

bond correlation .spectroscopy 
HMQC two-dimensional heteronuclear multiple 

quantum correlation spectroscopy 

i . . . . i 
1005 1000 985 960 

Figure 13. (a) Expansion of the region between 255.0 and 290.0 
Hz in the F1 dimension and 975.0 and 1010.0 Hz in the F2 di­
mension of the FT spectrum in Figure 11a. In this case the FID 
was "zero filled" until 256 points in the tx dimension after the 
sine-bell filtering. The expansion shows the (/3-CH, CH3) mul-
tiplet. (b) LP spectrum of the same region, calculated from the 
estimated parameters in Table III. As seen in Table HI the signals 
are pairwise in counterphase, but for reasons of clearness the 
phases have all been set to zero in the spectrum (reprinted from 
reference 39; copyright 1989 Academic Press). 

HOH- two-dimensional homonuclear Hartmann-
AHA Hahn spectroscopy 
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HSQC two-dimensional heteronuclear single 
quantum correlation spectroscopy 

LP linear prediction 
LPSVD linear prediction signular value decompo­

sition 
LPZ linear prediction and z transform 
MEM maximum entropy method 
MLM maximum likelihood method 
NOESY two-dimensional nuclear Overhauser en­

hancement spectroscopy 
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