
Chem. Rev. 1991, 91, 1507-1524 1507 

Multidimensional NMR and Data Processing 

ISTVAN PELCZER#t and SANDOR SZALMA* 

NMR and Data Processing Laboratory, Chemistry Department, CST BkJg., Syracuse University, Syracuse, New York 13244, and Inst, fur 
Organlsche Chemie, J. W. Goethe—Universitat Frankfurt, Niederurseler Hang, D-6000 Frankfurt am Main, Germany 

Received April 30, 1991 (Revised Manuscript Received August 1, 1991) 

Introduction 
Preacquisition Considerations 
A. Experiment Time and Artifacts 
B. Sampling 
C. Quadrature Detection Methods, Acquisition 

Schemes 
D. First Delays in Indirectly Detected 

Dimensions 
E. Buffered Acquisition 
Postacquisition Manipulations 
A. Processing Strategies 
B. Data Access, Transposition 
C. Extension of Time-Domain Data by Linear 

Prediction 
D. First Point Correction 
E. Apodization 
F. Phase Correction 
G. Zero Filling, Digital Resolution 
H. Base-Line Distortion and Corrections 
I. Suppression of Residual (Water) Signal 
J. Selective Discrete Fourier Transformation 
K. Processing Alternatives to FT 
Enhancement of Frequency-Domain Data 
A. Removal of Artifacts 
B. Resolution Enhancement 
C. Symmetry 
D. Data Compression 
Visualization of Multidimensional Data 
A. Storage Problems 
B. Space Views 
C. Plane Hopping 
Approaches for Evaluation 
A. Manual Connectivity Search 
B. Approaches toward Automated Evaluation 
C. Peak Analysis in nD 
Future and Present Time 
Acknowledgments 
References 

1507 
1508 
1508 
1509 
1509 

1510 

1510 
1511 
1511 
1511 
1512 

1513 
1514 
1514 
1515 
1515 
1515 
1516 
1516 
1517 
1517 
1517 
1517 
1517 
1517 
1517 
1519 
1519 
1519 
1519 
1519 
1521 
1521 
1522 
1522 

/. Introduction 

High-resolution multidimensional (nD, i.e. more than 
two dimensional) nuclear magnetic resonance spec­
troscopy was a great challenge of the late 1980s, and 
probably is the most exciting field of applications in the 
1990s. 

Theoretical extension of dimensionality to more than 
two was mentioned at the beginning of multidimen­
sional era (i.e. data acquisitions as a function of more 
than two independent time parameters).1 However, at 
this time many scientists did not put much confidence 
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even in 2D NMR, primarily because of concerns about 
data processing difficulties. Problems with data size, 
transposition, processing speed, evaluation, as well as 
advantageous separation of acquisition and data pro-
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cessing had already been discussed.2 Development of 
reliable hardware,2 theoretical background and so­
phisticated experimental techniques3'4 in two-dimen­
sional NMR, as well as revolutionary improvement of 
computation5-7 was necessary to realize nD NMR. 

Three-dimensional NMR spectroscopy is widely ap­
plied already, involving double and triple resonance 
experiments.8"14 Extension to the fourth dimension,15 

and lately full 4D experiments have been carried 
out.16"19 Further variants have also been proposed.20'21 

Five-dimensional experiments are said to be on the way, 
and maybe 6D is not far away either. 

This review discusses data processing in multidi­
mensional pulsed Fourier transform NMR spectrosco­
py,8 including some recent applications of reconstruc­
tion methods, which are becoming increasingly popular. 
In the following we will be focusing on problems oc­
curring primarily in multiple-, i.e. in more than two 
dimensional, NMR spectroscopy. However, many of 
these problems, suggested solutions, and ways of data 
handling are general and have some commonalty with 
two-dimensional NMR spectroscopy, especially when 
the enormous size of data is the origin of difficulties. 

We have tried to touch all major points of multidi­
mensional NMR spectroscopy which are closely con­
nected to data processing steps. Preacquisition and 
experimental considerations affecting data handling and 
data processing possibilities are briefly surveyed. Ac­
quisition schemes, data storage and format, and pro­
cessing strategies are also subjects of this work. Data 
processing procedures, already familiar from two-di­
mensional applications, as well as those specific for 
multidimensional applications are discussed. Visuali­
zation and evaluation of spectra are mentioned. Details 
on instrumentation and computer hardware are dis­
cussed only marginally since these are subjects of a very 
fast development. 

Stochastic NMR spectroscopy represents a special, 
promising territory in multidimensional NMR.22 For 
example, the information present in a 3D correlation 
spectrum is available from 3D sections cut through 5D 
or even 7D stochastic spectra.8 Since data acquisition 
and data processing methodology is much different 
from that of pulsed Fourier transform nD NMR spec­
troscopy, the reader is referred to existing literature.22 

In order to exploit the full 3D multiplex advantage, 
it is desirable to record 3D spectra that cover the entire 
spectral range in all the three dimensions,8 and this is 
so for higher dimensions, as well. Of course, experi­
ments frequently involve selective, or semiselective 
excitations ("soft" experiments) both to simplify the 
spectrum and reduce size, experiment time and data 
processing difficulties. One of the first high-resolution 
3D experiments was a double "soft"-C06Y spectrum.23 

Its final output size was (after zero filling) 256 X 256 
X 4096 (real) points, and the processing took 7 h on an 
Aspect 1000 computer using home-written software 
(Figure 1). 

Selective excitation experiments, extendable into 
multidimensions,24 will be discussed elsewhere in this 
issue.25 Application of selective pulses instead of time 
incrementation provides information of reduced di­
mensionality, as is common in image spectroscopy. 
Also, there are experiments, involving extra dimensions 
hidden, as relay type parts,26 isotope filtering11 or as 

extra decoupling.15 Such practical approaches result 
in less severe problems in size and complexity of the 
data.27 On the other hand, experimental problems from 
appropriate selective excitation and the limited amount 
of information extracted are some of the disadvantages. 

The other possibility, to acquire data with time-do­
main incrementation in each dimension, is always a 
matter of compromise. Acquisition time, instrumen­
tation, stability of sample, size of output data, etc. are 
the factors limiting multidimensional experiments. 
Experimental tricks, data processing manipulations, 
and other optimization approaches are of extreme im­
portance. Of course, the information content of mul­
tidimensional spectra is usually huge, providing access 
to investigation of structures larger and more complex 
than ever before.13,14'28 

Increasing data size is a straightforward consequence 
of increasing the number of dimensions. It poses direct 
storage problems,10,29 as well as difficulties in data 
transfer and processing. Certain kinds of experiments 
may even require linear combinations of separately 
stored subsets of nD data, as has already been used for 
isotope-filtered spectra in 2D.30 An elegant approach 
uses a linear combination of appropriately acquired 
TOCSY derivatives in order to increase signal to 
noise.31,32 

Massive disk storage capacity is inevitable for nD 
experiments, mainly if oversampling33 is carried out in 
the detected dimension to improve the dynamic range 
of the experiment. On the other hand, efforts have been 
made to decrease the number of acquired points to a 
minimum through extensive folding34,35 or appropriate 
linear prediction of data.36 An interesting theoretical 
consequence of increasing resolution by increasing the 
number of dimensions, is that an experiment of N di­
mensions may require fewer independent FIDs to ac­
quire than one of dimensionality (N - I).20 

Off-line processing has come to play a more impor­
tant role than ever before, as a straightforward conse­
quence of high computational demands. Sophisticated 
versions of independent data processing software are 
available on the market, usually developed to have close 
connections to data evaluation and structure calculation 
programs. Highly parallel computation37 is becoming 
more and more important.38,39 We will not go into de­
tails of available software, graphics, and other computer 
hardware, instead, the reader is referred to recent lit-
erature.5'6'7,39'40 

If published data are cited we prefer to follow the 
classification as it has originally appeared in the liter­
ature. For example, we shall use TOCSY41 or HOHA-
HA42 following the original publication. 

/ / . Preacquisition Considerations 
Appropriate data processing begins with proper data 

acquisition. Careful planning and optimization for 
multidimensional NMR spectroscopy of larger mole­
cules is extremely important.43'44 Maximization of 
sensitivity and minimization of measuring time,34'45 as 
well as the possibilities and limitations of further data 
manipulations are critical. 

A. Experiment Time and Artifacts 
Multidimensional acquisitions often compromise on 

artifact suppression in order to minimize the necessary 
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Figure 1. Three-dimensional COSY-COSY spectrum of 70 mM buserilin in DMSO-d8. Four 2D cross sections of the 3D spectrum 
parallel to the W2(C0H) and (O3(C8H) axes are shown at NH frequencies of His, D-Ser, Leu, and Trp, respectively. Acquisition size was 
96 X 96 X 2048 (real) points. The spectral width is 500 X 500 X 3000 Hz. Contours are drawn for both positive and negative intensities 
(reprinted from ref 23; copyright 1987 American Chemical Society). 

number of scans per increment and reduce the size of 
the output data. As a straightforward consequence of 
this situation, optimizing experimental conditions, 
highly reliable instrumentation, as well as artifact 
suppression through data processing become even more 
critical than in 2D NMR. 

In most applications of multidimensional NMR the 
minimum number of scans required is limited by nec­
essary phase cycling rather than by sensitivity. Al­
though this area does not bear directly on data pro­
cessing, minimization of necessary phase cycling steps 
should be remembered.46 Experimental effort can be 
further reduced in cases when certain experimental 
procedures can be replaced with data processing steps. 
For example, signals of uniform phase difference, such 
as dispersive diagonal peaks in phase-sensitive COSY 
spectra can be removed through data manipulation.47 

B. Sampling 

Sampling in time is linear in common cases where 
sampling rates define frequency ranges to be detected 
according to the well-known Nyquist relation. However, 
there are other interesting possibilities. Oversam-
pling33'48 can be used for multidimensional acquisitions49 

to reduce dynamic range problems and to filter folded 
noise in indirectly detected dimensions even though it 
enlarges the data size considerably. 

Nonlinear sampling is another very interesting pos­
sibility. Exponential sampling has already been dem­
onstrated to be useful in two-dimensional NMR.50,51 

The drawback of this approach at present is that it 
requires MEM reconstruction, but this is less a problem 
as computational power increases. In addition to 
shortening experimental time, nonlinear sampling offers 
data compression. Such compressed data would be 
easier to transfer through long distance networks. 

C. Quadrature Detection Methods, Acquisition 
Schemes 

Absorption-mode presentation of multidimensional 
spectra, if applicable, has general advantages.52 Some 
guidelines to the type of FT and spectrum display for 
a nD experiment have been discussed.8 If pure ab­
sorption profiles can be obtained in all the dimensions, 
then a full phase sensitive calculation and display is the 
right choice in order to exploit maximum capacity of 
the results. When phase distortions or inherently mixed 
peak shape occur in one or more dimensions, absolute 
value presentation is necessary after discarding imag-
inaries in dimensions exhibiting pure absorption pro­
files. Such mixed mode presentations have also been 
used in 2D processing to improve resolution of the final 
spectrum.53,54 



1510 Chemical Reviews, 1991, Vol. 91, No. 7 Pelczer and Szalma 

Phase-sensitive detection is commonly linked to sign 
discrimination (quadrature detection). Simultaneous 
versus sequential acquisition2 in the acquired dimen­
sion, and choices in the implementation of quadrature 
detection in indirectly detected dimensions are not the 
same. The two different methods have been compar­
atively analyzed.52 Redfield56 and TPPI56-58 or hyper-
complex59'60 methods, as well as a special combination 
of the two (States-TPPI)46-61 can be applied. Possible 
acquisition schemes reported so far differ in terms of 
simultaneous or sequential acquisition of the orthogonal 
magnetization components and addition/subtraction 
of results as a part of the acquisition process or of data 
processing.46,62 The type of FT (real versus complex) 
to be applied, as well as the position of axial peaks in 
the resulting spectrum, are different. If axial peaks are 
located out of the spectral range of interest, their sup­
pression is not necessary, saving experimental time. 

Artifacts in correlation spectra,62 as well as folding 
(aliasing),63 are closely determined by the type of ac­
quisition scheme and Fourier transform method being 
applied. Although simultaneous and sequential type 
acquisition schemes are very closely related,52,60 the 
TPPI approach has some disadvantages in practice. 
For "real" or TPPI type acquisitions the long tails of 
the dispersive part of each component with negative 
frequency may lead to severe base-line distortions in 
the positive frequency region.64 This makes correct 
phasing impossible in some cases and results in in­
creased ridges and other artifacts. On the other hand, 
folding (aliasing) properties of complex data are ad­
vantageous in terms that shifting of the virtual carrier 
position is possible during data processing.65 Appro­
priate postacquisition shifting of carrier frequency has 
been carried out, for example, for the 13C (F2) dimen­
sion in the 3D NOESY-HMQC spectrum of calmodulin 
to bring all the aliphatic resonances within the observed 
spectral window.66 As a result, spectral windows can 
be limited to the minimum size; only direct overlap 
should be avoided due to cancellation. 

At present, the best strategy for acquisition data in 
indirectly detected dimensions seems to be the 
States-TPPI method,46 which has been used for various 
multidimensional acquisitions43,67 with success. TPPI 
mode quadrature detection in all dimensions is, how­
ever, still widely used in multidimensional NMR.68'69 

One of the most likely reasons is that only the latest 
models of commercial NMR spectrometers are flexible 
enough to freely choose the acquisition scheme. 

Block structure (relative locations of reals and im-
aginaries) of the output riD FID is determined by choice 
of appropriate phase programs to select desired co­
herence transfer pathways. There are two systematic 
approaches using either "preparatory phases" or 
"detection phases";8 however, several other combina­
tions are possible. The nD processing software should 
be flexible enough to handle any of these. The user 
should be given options for combining real and imagi­
nary blocks, as well as capability for any mixed variants 
of TPPI and/or complex data structure for powerful 
nD processing. 

D. First Delays in Indirectly Detected 
Dimensions 

In the acquisition dimension a delay is introduced 

between the last pulse and the first acquired point in 
time to avoid pulse breakthrough and other hardware 
problems.2 Introduction of an echo-type read pulse 
sandwich70 and detection of sine modulation signals 
using sequential acquisition scheme71 were proposed to 
avoid base-line problems arising from imperfect meas­
uring conditions and thus reducing the necessity in 
difficult base-line correcting procedures. In the latter 
case first point correction is not necessary either. By 
careful experiment setup base-line problems can be 
reduced even to the level when no correction by soft­
ware is necessary. For example, extra base-line cor­
rection was avoided for a 3D HMQC-NOESY-HMQC 
spectrum by adjusting the receiver phase to give sine 
modulation, as well as through careful gating of the 
receiver and proper tuning of the first delay.71 

First points in indirectly detected dimensions do not 
suffer such deviations, but still are affected by both 
incorrect scaling by discrete Fourier transform and 
delayed sampling. Both introduce base-line distortions, 
which cannot be reduced sufficiently by scaling.72 

Linear prediction of the missing point after setting the 
first effective delay exactly at one dwell time73 is pos­
sible. Then halving of the first point's intensity to 
compensate overestimation by the FT procedure is still 
necessary. This procedure needs careful adjustment of 
experimental parameters, as well as increased comDU-
tation with FT and IFT steps.73 

Beginning data acquisition at exactly half dwell time 
appears to be the most powerful approach so far.61,74 

This method has several advantages: no scaling of the 
first point(s) is necessary, the base line is largely dis­
tortionless, and aliasing is easy to follow. When com­
plex data are acquired, acquisition delayed by half dwell 
time results in aliased peaks exactly antiphased in 
comparison with those ones falling within the detected 
range74 (Figure 2). 

This well-defined phase relationship is very important 
when time-domain data are to be extended by linear 
prediction36 (see later). When only a few points are 
acquired and maximum acquisition time is on the order 
of the dwell time the half dwell time approach provides 
some valuable extra resolution. 

E. Buffered Acquisition 

Disk I/O time becomes an important factor as nD 
experiments are usually run acquiring only a few scans 
per file with relatively short recycling delays and dum­
my scans are frequently avoided. Overhead time may 
in fact double the actual experimental time needed if 
dummy scans are also involved.75 For example, 47 out 
of 177 h were used just for I/O procedures for a 3D 
NOESY-HMQC experiment with acquisition size of 100 
X 37 X 1024 (all complex) data points.76 In a 119-h 3D 
HOHAHA-NOE experiment on a Bruker AM-500 
spectrometer 58 h were spent on disk transfers and 
reloading of the pulse programmer.77 Data size was 246 
X 256 X 512 real points. Therefore it was necessary to 
modify the acquisition computer to permit buffered 
acquisition.46 This allows in-memory acquisition of 
many actual FIDs without writing them on the disk, 
saving considerable time for data transfer. Dummy 
scans should be avoided, too, if possible. Uniform 
starting conditions for each cycle can be provided by 
using spin-lock or homospoil-like pulses in between 
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Figure 2. Simulated spectra obtained by Fourier transformation 
of data with an initial sampling delay of ' /4 dwell time. For a 
multiplication of the first data point by 0.75 was used, and for 
b the scaling factor was 0.6. For both a and b the linear phase 
correction was 90° across the spectrum. Part c shows a spectrum 
obtained for a sampling delay equal to one-half dwell time, with 
no scaling of the first data point. Part d shows a spectrum 
obtained if the spectral window is narrowed by 33%. The res­
onance at the right side of the spectrum is aliased and appears 
inverted at the left-hand side. For both c and d the linear phase 
correction is 180° (reprinted from ref 74; copyright 1991 Academic 
Press.). 

acquisitions.46 Another approach is to accomplish all 
evolution time incrementations before changing sub­
sequent phase cycling steps.78,79 

/ / / . Postacqulsltlon Manipulations 

Data processing in the more conventional meaning 
occurs, of course, after acquisition is completed. In the 
following, we'll survey the major steps, and also some 
extensions and variants of currently available methods 
in order to get reasonable frequency domain informa­
tion. Until now, multidimensional spectra were pro­
cessed mostly with home-written software69,77'80"84 or in 
combination with existing commercial soft-
ware_45,49,67,71,85-89 

A. Processing Strategies 

Output format and structure of the acquired data is 
a function of the acquisition mode; acquisition scheme 
and relative phase shifts to obtain quadrature detection8 

(see also above). These characteristics largely determine 
the processing strategies to apply. Data size and access 
to the particular dimensions, phase properties, noise 
distribution, visualization strategy, etc., must always be 
considered during setting up processing protocols. 

It seems to be the most straightforward way to pro­
cess the data in successive steps, as is usual for 2D. 
However, even for 2D spectra it might be worth be­
ginning with the indirectly detected dimension, as, for 
example, when linear prediction (replacement) of the 
first point(s) is applied in £2.

73 

Since most multidimensional correlations involving 
one or more heteronuclear axes are analyzed by using 
homonuclear 2D slices, filtered by heteronuclei (e.g. 15N 
or 13C) the algorithm which renames files instead of 
transposing them physically (see later) is especially 
advantageous.61 Following this strategy, the heteronu­
clear dimension is processed first including (calculated) 

phase correction. Then homonuclear 2D slices can be 
handled with commercial processing software.61 Se­
lected slices can be zero filled in the usual way. 

Although this strategy seems to be the most devel­
oped one for such spectra at this time, other approaches 
are also possible. Processing 3D NOESY-HMQC 
spectra has been reported,76 for example, transforming 
the W1 - w3 (NOESY) planes first, and—after base-plane 
correction—finishing data processing with FT in t2. 

If homonuclear correlations are combined (e.g. COSY, 
HOHAHA, NOESY, etc.), processing cross sections 
perpendicular to the acquisition dimension68,83,84 may 
have the following advantages. The spectral resolution 
and usually the digital resolution is the highest in this 
domain. Cross talk between the planes is, therefore, less 
severe than in any of the other dimensions. Also, noise 
distribution in these perpendicular planes is more 
uniform than that in other slices.77,90 A possible con­
venient choice is to process and analyze only selected 
slices of interest after the acquisition dimension has 
been Fourier transformed. Selectivity for slice selection 
can be improved through appropriate zero filling, how­
ever, overall size increases. 

Selective processing using SDFT91 (see later) is an­
other choice, with complete flexibility, which sets the 
limits of selectivity back to that determined only by the 
spectral resolution. 

B. Data Access, Transposition 

Data access could be the very limiting bottleneck of 
processing in many instances. To access any point or 
slice of a multidimensional dataset equally quickly on 
a one-dimensional medium (like the hard disk of com­
puter) it is practical to organize the data in a format 
that enables the system to accomplish this efficiently. 
By using so called sequential data storage, the FIDs or 
ID spectra stored one after the other, incrementing the 
other dimension is inefficient. By using this, one would 
face the problem of corner turning,92 i.e. transposing the 
dataset to have quick access in other dimensions. Such 
processing slows down the overall procedure, requires 
extra storage space, and becomes more complicated 
with an increasing number of dimensions. A powerful 
method has been proposed to avoid one transposition 
step in 3D processing.61 This method applies renaming 
of files using bit reversal and the "butterfly algorithm" 
rather than physically transposing them (Figure 3). 

The improvement in speed and convenience is re­
markable; to reach the stage having the appropriate J1 
- F2 - t3 dataset of initial size (128 X 2) X (32 X 2) X 
(256 X 2) points took about 1.5 h on a Sun-4-110 
workstation, without visual inspection and in local 
mode.61 Further, regular 2D processing can be accom­
plished by using commercial software. Appropriate F2 
slices can be selected for applying extensive zero filling 
without a penalty on overall size. It is not, however, 
a general solution, and for visualization in orthogonal 
planes it is impractical and inefficient. 

In order to avoid transposition for multidimensional 
processing, a data structure based on submatrices can 
be used instead,84 allowing fast access to data in all 
dimensions. This approach, the so-called "brick" me­
thod, has found its place successfully in commercial 
NMR software (UXNMR of Bruker, FELIX of Hare Re­
search, and TRIDENT174) and even in molecular modelling 
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Figure 3. Schematic representation of the Fourier transform process in t2- Each Ct1, J3) plane is manipulated according to the prescription 
for each point in a ID transform. The transform is divided into two sections. The first consists of a bit reversal routine whereby the 
planes are renamed appropriately. The planes are then recombined according to the "butterfly algorithm"118 to generate a (J1, F2, 
t3) data set61 (reprinted from ref 61; copyright 1989 Academic Press). 

(QUANTA of Polygen). Nonsequential data storage (brick 
method) has extra advantages if parallel processing or 
distributed processing should be utilized. It is worth 
mentioning that selective processing (SDFT, see later)91 

is also an alternative to avoid limitations of sequential 
data storage and access. 

C. Extension of Time-Domain Data by Linear 
Prediction 

The number of acquired data points, especially in 
indirectly detected dimensions, is usually quite limited 
for multidimensional NMR spectroscopy. This is so not 
only because of data size limitations, but also as a 
consequence of experimental difficulties (sample and 
instrumental stability, etc.). Even fast acquisition 
methods46 do not give a general solution to this problem. 
Usually the resulting spectrum lacks sufficient resolu­
tion, which can not be changed drastically by the usual 
interpolation (zero filling). Moreover, as truncation 
should be avoided, strong weighting (see later) sup­
presses valuable data points at the end of the FID, 
decreasing sensitivity. 

Linear prediction (LP) methods, which are subjects 
of another chapter of this issue,93 can be applied for 
reasonable extension of time domain data. Such ex­
tension can be carried out in a straightforward man­
ner,94 calculating real and imaginary components in­
dependently in the positive time regime. Safe limits 
for LP extension of time domain data are a function of 
the number of acquired data points, number of fre­
quency domain components, as well as the relative noise 
level. Instabilities are clearly visible upon increasing 
number of predicted points (Figure 4). 

As an application of this approach, direct extension 
of 192 acquired (TPPI) points to 484 points in each of 
the indirectly detected dimensions for a 3D TOCSY-
TOCSY spectrum by linear prediction to get better line 
shape through optimized apodization has been report-

Figure 4. Comparison of real (A) and predicted (B) time-domain 
data. The first 36 data points were used to predict 18 additional 
points in B. The difference between the actual data and the 
predicted data is shown in C. The data are from a tx interferogram 
of a two-dimensional NOE experiment on the small peptide 
Pro( 1O)-AAP (7-23) (reprinted from ref 94; copyright 1990 Aca­
demic Press). 

ed.95 For a recently published four-dimensional data 
set the following LP extensions have been reported:17 

36 to 44 points in tv 128 to 160 points in t2, and 32 to 
40 points in t3, all real points. This experiment is a good 
example of concerted use of conventional experimental, 
as well as data processing efforts for optimized results. 

It is preferable to reduce the number of variables for 
linear prediction calculations from the original four 
(frequencies, amplitudes, phases, and damping factors) 
to two.36 If complex data are acquired with first point 
at half dwell time, the phase of all signals can be pre­
dicted.74 Also, damping of sinusoids for seriously 
truncated data, which is often the case for multidi­
mensional experiments, is usually negligible. Slight 
corrections can be made applying line sharpening apo­
dization functions, if necessary.36 Appropriate calcu­
lations include reflection of increasing roots into the 
unit circle and mirror image projection procedure to the 
negative time regime, as well. Following this procedure, 
time-domain size can be extended by a factor of 4.36 

Using such processing acquisition of only eight (com-



Multidimensional NMR and Data Processing Chemical Reviews, 1991, Vol. 91, No. 7 1513 

h 115 

•120 

- 1 2 5 

- 115 

- 1 2 0 

-125 

PPM 

Figure 5. (Fl, F3) slice of the triple-resonance 3D HCA(CO)N relay spectrum. Each of the panels shown has been processed identically 
in the F3 dimension: (a) Fourier transform obtained after 9-Hz exponential line narrowing followed by cosines-bell apodization of 
32 complex 1̂ time-domain data points and zero filling to 128; (b) same as a, but using only the first 8 S1 time-domain data points; 
(c) spectrum obtained by 9-Hz exponential line narrowing, linear prediction of the first 8 data points out to 32 followed by cos2-bell 
apodization, zero filling, and Fourier transformation; (d) processed like c, but using the negative plus positive time domain data points 
(16 complex data) for linear prediction of the additional 24 points. The arrows in c and d mark the true Fl coordinate of the Q3 and 
Kl 15 resonances as observed in a (reprinted from ref 36; copyright 1990 Academic Press). 

plex) points may result in practically equivalent reso­
lution as if 32 complex data points were acquired 
(Figure 5). 

Extension of 32 complex points to 64 by linear pre­
diction in one of the 15N dimensions for a 1H-15N 
HMQCZ(1H-1H NOESY)15N-1H HMQC experiment 
has been reported.96 The same strategy has been ap­
plied successfully to 4D heteronuclear correlations as 
well, reducing necessary experiment time remarka­
bly.18'19 

This is a general technique, however, limited by the 
number of resonances being present in the actual slice 
to be processed. For this reason, all the other dimen­
sions are usually transformed before application of LP 
extension of time-domain data and successive inverse 
Fourier transform steps are applied if necessary18,19 

(Figure 6). 

Doubly heteronuclear-filtered 4D (and even 5D, etc.) 
experiments are good candidates for this strategy, as 
the number of resonances in a single heteronuclear slice 
is usually low due to the extremely high selectivity.18,19 

Similar calculations for more crowded spectra need 
computational development. 

D. First Point Correction 

First points may be distorted by acquisition, but also 
the FT algorithm may overestimate their value (see also 
later). It is common to multiply these first points with 
an appropriate factor,72 frequently optimized in a trial 
and error procedure for the acquisition dimension. 
Since indirectly detected dimensions usually do not 
suffer from experimental errors the theoretical factor 
0.572 can be used in most cases, when effect of finite 
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Figure 6. Flowchart of the steps used for processing a 4D 
spectrum involving linear prediction extension of time-domain 
data in two dimensions (reprinted from ref 19; copyright 1991 
Academic Press). 

pulse widths can be neglected. However, if half dwell 
time was used for the first point, no multiplication is 
necessary.74 

E. Apodizatlon 

In multidimensional NMR the maximum acquisition 
time is seriously limited at least in the indirectly de­
tected dimensions. As a consequence, time-domain 
signals are usually strongly truncated. The main pur­
pose of apodization is therefore to decrease this effect 
to a reasonable level. At the same time, sensitivity, as 
well as resolution, should be retained as much as pos­
sible. For heteronuclear dimensions with a size of only 
few points, unusual apodization functions have been 
proven to be appropriate. For example, a doubly 
shifted sinusoid16'61'67,88 retains both reasonable line 
shape and sensitivity. As an alternative, a shifted 
sinebell/exponential broadening combination10 has been 
proposed (Figure 7). 

For example, 45° shifted sinebell and 400-Hz expo­
nential line broadening combined apodization has been 
used for the carbon dimension in a 3D 13C-1H-1H 
HSMQC-NOESY spectrum (75) with 67 Hz/point final 
digital resolution. Other apodization functions serve 
the same purpose. For example, a Hamming window 
has been reported for a homonuclear 3D NOE-NOE 
spectrum.83 

There is a special situation when a slight damping of 
the time-domain frequency components should be 
compensated to make appropriate linear prediction 
extension of the time domain data possible.36 Then, an 
exponential line sharpening function should be applied 
prior to LP. Of course, when the extended time domain 
data are subject to further (in fact, conventional) pro­
cessing, the apodization functions, mentioned above, 
will be used. 

F. Phase Correction 

One of the rationales for the large data sizes produced 
in multidimensional NMR is to be able to combine the 
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Figure 7. The top panel shows a typical interferogram as ob­
tained for the 16N dimension of a 3D experiment. The data shown 
in the top panel transformed with a sine bell 45 window function 
is shown in panel b, with a line broadening of 150 Hz (panel c), 
and with the addition of the two apodization functions (panel d) 
(reprinted from ref 10; copyright 1990 Cambridge University 
Press). 

real and imaginary data achieving a "good" absorptive 
spectrum. This phase correction can be done through 
automated procedures, as was proposed for 2D spectra 
having diagonal elements.97 It can be based on a ID 
DISPA procedure98-100 or its 2D version.101 Of course, 
manual phase correction is always a possibility.102 

If the phase properties of 2D spectra from which the 
3D (nD) was composed are known, it is possible to 
predict the 3D peak shapes for different types (cross, 
back-transfer, cross-diagonal, diagonal).8 Then, 
choosing orthogonal ID vectors, phasing can be accom­
plished in successive steps.9 A serious drawback of this 
approach is that in order to save time and memory 
space, the imaginaries are usually discarded before the 
next consecutive step. If phase correction has not been 
sufficient in an early step, it may be difficult to restart 
processing from the beginning. 

Zolnai et al.103 have proposed a very useful strategy 
to avoid this problem. They suggest to compute only 
the real part of the spectrum (in 2D 4-fold, in 3D 8-fold 
size reduction, etc.) and then reconstruct the imagi­
naries applying the Hilbert transform.104 Phase cor­
rections for each dimension are accomplished inde­
pendently and successively. This procedure saves both 
processing time and storage space as the imaginary 
parts are present as necessary. The results are quite 
promising. It was possible to process and phase correct 
a medium-size 3D spectrum on an Intel 80386 based PC 
with array processor within 10-90 min. 

Another practical alternative is to use selective re­
construction (SDFT)91 of ID slices for the purpose 
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finding appropriate phase correction parameters. By 
SDFT, phasing can be carried out in all dimensions, 
cycling through appropriate ID slices. Thus necessary 
parameters can be determined before the total, or even 
partial, transformation of the dataset. Mistaken phase 
parameters can be detected and replaced in an early 
stage of processing, sparing much computation time. 

It is worth mentioning here, that in certain cases, as 
for antiphase cross-peak structure and low resolution, 
a defined alteration in phase correction ("twist"105,106) 
results in some gain in sensitivity.105 

G. Zero Filling, Digital Resolution 

Zero filling once prevents loss of half of the infor­
mation acquired.63'107 Otherwise zero filling is usually 
considered as a merely cosmetic action to obtain visually 
better looking spectra. Theoretically spectral resolution 
is what inherently limits the available information, but 
in practical cases zero filling can make of that infor­
mation more available. 

Adding extra zeros to the end of the acquired (or 
maybe already extended by LP,36,94 see above) FID 
works as a type of generalized curve/surface fitting on 
the whole spectrum, according to the characteristics of 
the FID and filtering being applied. Such a procedure 
is definitely the most convenient, although not neces­
sarily the most exact, approach, as different peaks may 
have very different behavior.108 Locally different pa­
rameters can be applied with selective processing91 when 
one also is free to alter the digital resolution (see later). 

None of these approaches increase the theoretical 
information content of the spectrum. However, for 
either further visual or automated data handling, some 
level of zero filling is advantageous in comparison with 
individual curve/surface fit analysis for each region with 
reasonable intensities. Systematic errors of integration 
of a discrete NMR spectrum can be reduced by ap­
propriate zero filling, as was shown for ID spectra.109 

Also, reconstruction methods such as MLM110,111 may 
lead to better results if digital resolution is improved.112 

H. Base-Line Distortion and Corrections 

Base-line (base-plane) distortions originate from two 
major sources: erroneous scaling by the algorithm being 
applied for Fourier transformation72,113 and experi­
mental mismatches. The latter case incorporates sev­
eral possible sources of error. If, for example, the re­
quired zero-order phase correction is not a multiple of 
90° for time-domain data acquired in sequential mode, 
real Fourier transformation results in nonlinear base­
line distortions.64 This can be overcome by setting the 
relative phase of the receiver and the transmitter 
properly.64 Problems of the first data point(s)114 and 
delayed acquisition can be corrected either by pure 
experimental efforts, including echo-type read pulse 
sandwich70,115,116 if applicable, or by concerted use of 
appropriate timing and linear prediction of missing 
points.73 Linear prediction of the first point(s) can be 
accomplished when acquisition has begun at exactly the 
first dwell time point;73 however, this timing is not too 
critical. The method can be used to correct distorted 
first point(s) in any FIDs followed by phase correction. 
As only few points are necessary to extrapolate, the fast 
Burg algorithm117,118 can be used instead of the classical 
singular value decomposition method (LPSVD).119 This 

extrapolation should be done after Fourier transfor­
mation is accomplished in the orthogonal dimension(s) 
to reduce the number of frequency domain components 
and avoid lengthy calculations.73 

MEM reconstruction of the spectrum (see also later) 
or LPSVD reconstruction of the distorted first part of 
time domain data113 might also be subjects of interest. 
Cosine fit of the base line is an alternative approach.120 

This method effectively removes the base-line roll 
caused, for example, by delayed acquisition. Such de­
lays usually occur in selective excitation experiments8 

and heteronuclear correlations. It is effective even with 
noisy data, without affecting the first points of the FID. 
This can be important for later integration, since the 
vast majority of information about integrals are in first 
points, Moreover, this method works very well with 
Gaussian line shapes, making this line shape the su­
perior choice for base-line correction and integration 
for multidimensional NMR.80 

More conventionally, a (higher order) polynomial 
base-line fit also can be used, either in between con­
secutive Fourier transformation steps, or after all are 
complete. The former approach is usually inevitable 
when noncompensated selective pulses have been used 
in the sequence.8 However, such manipulations should 
be applied with care, as imperfect base-line compen­
sations can introduce further nonuniform modulation 
of the time-domain signals. Various base-line correc­
tions, applied on 3D spectra, have been reported in the 
literature.75"77,121 

Recently a two-dimensional Cardinal spline method 
was also shown to effectively remove F2 ridges and 
other artifacts from distorted 2D NMR spectra.122 

Extension of this approach to multidimensions is fea­
sible, although it might be very time consuming. 

It should be reemphasized that, if first point detection 
at half dwell time was applied,74 base-line correction in 
indirectly detected dimensions is not necessary in most 
cases. 

I. Suppression of Residual (Water) Signal 

Probably the most frequently occurring base-line 
distortions originate from residual solvent (water) sig­
nal. It may be desirable to remove such residual signal 
for other reasons as well. 

In many cases the H2O signal, surviving presaturation 
or other suppression maneuvers, gives a dispersive 
signal in the detected dimension. It can be removed 
in the frequency, or in the time domain. In the fre­
quency domain, techniques involve conventional base­
line fitting, and in its more sophisticated version sub­
tracting also the dispersive component.123 Absorption 
phased residual signal is easy to remove, and after 
Hilbert reconstruction of the imaginary part a highly 
distortion-free spectrum can be regained.124 This 
strategy has also been published in a more generalized 
version to remove two-dimensional signals of uniform 
phase difference, compared to the (cross-)peaks of in­
terest.47 

Residual signal of any phase can be removed effec­
tively in the time domain. The idea is based on 
"base-line correction" of the FID125 suppressing certain, 
usually low frequency contributions. Versions either 
in differential126,127 or the more sophisticated integral 
form128 have been developed. The Karhunen-Loeve 
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Figure 8. Three-dimensional NOESY/DQ-COSY correlation for 
a 24-mer RNA hairpin structure173 processed by SDFT. Selected 
NOESY (F1-F3) slices are shown. Data were acquired in hy-
per-hypercomplex mode in four blocks. Acquisition size was 1024 
X 32 x 64 (t3 - 1 2 - 1 \ , all complex) points. Result of a local increase 
in digital resolution ("zoom") is demonstrated. Only a preselected 
area (Fl - F3; base - 1' NOESY correlations) was reconstructed. 
Output size was only 240 x 31 X 62 (real) points, which corre­
sponds to an increase of digital resolution by factors of 2,1, and 
3.9, respectively. Similar increase by conventional processing 
would result in output size of 2048 x 32 x 256 points.133 

digital signal filtering in the time domain129 is especially 
useful for 3D NMR. This technique relies on creating 
an autocorrelation matrix and finding the eigenvalues. 
Substantial data compression is afforded by removing 
the smallest eigenvalues (which belong to noise).130 If 
the method is applied to select and remove the largest 
eigenvalues (which in turn belong to the solvent signal), 
the result is a virtually solvent-free 3D spectrum.131 

J. Selective Discrete Fourier Transformation 

Selective Discrete Fourier Transformation (SDFT)91 

is a powerful alternative to the widely used FFT al­
gorithm in many cases. Advantageous features are most 
pronounced in multidimensional spectroscopy. In direct 
comparison, SDFT is slower than FFT on the same data 
set if the size is larger that 32 points. However, if a 
limited range is the only subject of interest, which is 
often the case for multi-dimensional spectra, the overall 
time can be remarkably less. Also, if suitable hardware 
(DSP chips, parallel computers) and machine-optimized 
matrix multiplications are used, performance can be 
increased impressively. 

The method is actually an up-to-date revival of the 
traditional spectrum analyzer63 using submatrix mul­
tiplications.132 Selectivity may include either recon­
struction of a limited frequency range, lower dimen­
sional subvolumes, slices, surfaces in nD, or recon­
structions with arbitrarily fewer or more frequency 
domain points than defined by the acquisition. In re­
gard to the latter point, local digital resolution can be 
increased without the penalty of a huge output size133 

(Figure 8). 
This can be very useful, for example, when fine di­

gitization is required in a multidimensional spectrum 
to measure coupling constants.11,29 Instead of subvo-
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Figure 9. The Fl = F2 cross-diagonal plane (top) and the cor­
responding stacked plot (bottom) from the homonuclear ROE-
SY-HOHAHA spectrum of benzanthracene.151 The reconstruction 
was carried out selectively; only the shown part was calculated. 
The time-domain data size was 32 X 64 X 256 (all complex; tu 
t2, 3̂) points. The resulting spectrum contains 64 x 128 real points, 
and it took 77 s of CPU time on a Stellar GS-1000 graphics 
supercomputer to reconstruct91 (reprinted from ref 91; copyright 
1991 Academic Press). 

lume(s), special planes can also be presented without 
reconstruction of any other part of the frequency do­
main spectrum (Figure 9). 

Locations of output frequency domain points are 
defined by look-up tables using SDFT processing.91 

Consequently, digital resolution can be lower than that 
defined by the time domain size (a kind of oversam-
pling). This leads to fast and convenient preprocessing 
options, as phase correction and optimization of other 
processing parameters concerted in nD, as well as the 
possibility to have a quick look at interesting region (s) 
even before processing is started on the whole spectrum. 
Parameters can be locally different or, on the other 
hand, different parameters for the same region can be 
tested in one step. 

The higher the number of dimensions or the larger 
the overall size of data, the more advantageous is the 
application of the SDFT processing. Combination of 
this approach with various other techniques, as decon-
volution methods, could be very promising. 

K. Processing Alternatives to FT 

There are many errors connected with conventional 
FT processing. Usual problems for multidimensional 
(and therefore nonideally detected) spectra are low 
resolution, noise, phase and base-line errors partially 
due to first point problems, leaking (wiggles), etc. 
Reconstruction of multidimensional NMR spectra 
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based on non-Fourier transformation methods is, con­
sequently, a subject of increasing interest, despite their 
usually huge computational demands and other prac­
tical problems. 

Several approaches have been introduced in the 
NMR literature which have been recently thoroughly 
reviewed.93'113'134"138 Maximum entropy (MEM)113-134"136 

and maximum likelihood (MLM)110 reconstruction, as 
well as linear prediction (LP) methods93,113,134 are being 
used more widely to improve data processing. However, 
the huge computational demands mentioned before are 
still serious limitations for direct use on larger data sets, 
as nD spectra. There are some possible ways to ease 
this problem. Combination of the above methods with 
selective processing methods, as SDFT91 can reduce the 
overall size of the required data, while still retaining 
reasonable digital resolution. Another possible ap­
proach is application of huge computational power and 
massive parallelism,37 most likely in developed com­
puter centers through networking.39 Further develop­
ments in the algorithms applied may also result in faster 
and less complicated computation. 

IV. Enhancement of Frequency-Domain Data 

A. Removal of Artifacts 

Multidimensional spectra usually suffer nonsup-
pressed artifacts, as a result of keeping the number of 
scans per file as small as possible. Several experimental, 
as well as straightforward data processing efforts can 
be made to decrease these effects (see above). 

Postprocessing data treatment may involve applica­
tion of principal component analysis (PCA), as was 
shown for 2D spectra.139 It was found that in removing 
the largest principal components it is possible to sup­
press the main sources of variance in data, i.e. base-line 
offset, base-line roll, 1̂ noise, quadrature images, etc. 
The computation time requirements are reasonable, 
falling into the same range as Fourier transformation. 

Recently a method, using linear prediction, has been 
proposed to remove oscillatory artifacts caused by 
truncation of free induction decay.140 This approach 
might be possible to apply to more than two-dimen­
sional cases. 

B. Resolution Enhancement 

Multidimensional spectra usually show much less 
overlap than those of lower dimensionality.16-19 How­
ever, application of constrained deconvolution methods, 
as maximum entropy (MEM113) and maximum likeli­
hood (MLM110'111) methods, is a promising data pro­
cessing alternative in resolving crowded spectra (Figure 
10). 

Currently no existing software works in more than 
two dimensions, and there are also practical limitations 
is size. The largest MLM applications, according to our 
best knowledge, work on a 2K X 2K real-point 2D 
correlation spectrum at the time,141 although this lim­
itation will be eased by introduction of massive paral­
lelism37 in computation of NMR spectra.39 

Recently a linear prediction based method, so-called 
LP-ZOOM has been introduced, for detailed analysis 
of a selected frequency region of an NMR spectrum.142 

Here the spectral refinement starts from the z domain142 

which, in certain circumstances, is the same as the 

frequency domain. This method has proven to be 
useful; however, it was also shown that LP-ZOOM 
cannot be applied without restrictions, and it's per­
formance is dependent on the nature of the spectrum 
to be analyzed.143 

C. Symmetry 

Symmetry relationships is more than two dimensions 
are not obvious, are more complicated than in most 2D 
applications, and closely depend on the nature of 
magnetization transfer processes.8,9'144 Even in the case 
when symmetry should be present given the magneti­
zation transfer steps, experimental circumstances (very 
different acquisition times, resolution, etc. in different 
dimensions) often destroy this inherent symmetry. As 
a consequence, symmetrization routines, frequently 
used in 2D NMR, are not appropriate for 3D (riD) 
NMR. However, an inversion symmetry exists for 
13C/13C-edited homonuclear proton NOESY 4D corre­
lations17,18 for example, which could be used to improve 
spectral quality. 

D. Data Compression 

Data reduction is aimed at reducing the overall size 
of the data and the associated computational and mass 
storage demands. The reduction can be accomplished 
at different stages of the procedure. Preacquisition 
considerations and proper organization of the experi­
ment (see above) may lead to reduced output data size. 
Straightforward steps can be also taken during the 
processing. Imaginaries can be thrown away after 
proper phasing in the dimension in question.61 A re­
duced "strip" of the data set, already processed in the 
previous domain (s), can be selected and transformed 
to produce a smaller dataset.9 This "strip" selection has 
been available in the Bruker software for a long time 
and can be applied also in rcD NMR processing.17 The 
approach can be generalized for reasonable data com­
pression and straightforward automation if the TRA-
WIATA algorithm is followed.145 If rephasing is nec­
essary, Hilbert transformation is a convenient tool to 
reconstruct the imaginary part again.103,104 Involvement 
of Hilbert transformation into multidimensional pro­
cessing saves not only storage space, but also computer 
time103 according to the actual I/O performance. 

Artifact and solvent suppression in already processed 
spectra146 combined with data compression is possible 
for purposes of future handling.139,147 This is especially 
straightforward if data are already reduced to the dy­
namic range level of the cross peaks.47 Such compressed 
data can be used in well-organized data analysis soft­
ware, as in PIXI,148 even on small personal computers. 
The final reduction level is to save the spectrum as only 
a "peak table" information set, from which the whole 
spectrum can be reconstructed if necessary.149 However, 
the latter solution should be used only with care as real 
spectra are always far from an ideal and well-charac­
terized peak set. 

V. Visualization of Multidimensional Spectra 

A. Storage Problems 

In visualizing a 3D (nD) spectrum there are few 
possible solutions for data storage. One is to store the 
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Figure 10. Results of MLM-after-symmetrization processing (SML) on a base-to-2' subregion of the 2D NOESY spectrum of a 24-mer 
RNA hairpin structure:173 (a) conventional processing and (b) MLM reconstruction. The original 4K X 512 (hypercomplex) spectrum 
was zero filled 4K x 4K, diagonally symmetrized by replacing each related point by the minimum of the absolute values retaining 
the original sign. The presented IK X IK subregion was extracted and reconstructed by MLM with 100 iterations and -6 Hz line sharpening. 
Overlapping is greatly decreased, while relative volumes of peaks are conserved.112 (The spectra are courtesy of P. N. Borer and G.-w. 
Jeong.) 

data continuously in main memory of the computer. 
This can be a costly solution taking into account the 
prices for large and fast random access memory (RAM). 
Such storage may need RAM being at least 30% or even 
two times larger than the total data size in order to 
avoid disk swapping (a standard process on widely used 
computers and operating systems). Room is needed 
also for other purposes (the program itself needs space, 
operating system, etc.), especially in a multiuser envi­
ronment. All this may end up with the requirement of 

32-128 Mbyte RAM size for a moderate range of 16-64 
Mbyte data size. The other practical solution is to have 
only partial data stored in RAM: typically 2-12 Mbyte 
(for which the RAM size should be 8-16 Mbyte). The 
remaining part resides on the disk. In this case the 
program should refresh the dataset in RAM through 
explicit disk requests. This still can pose a serious load 
on the system, for even mainstream disk drives and 
computers/operating systems. However it is a cheaper, 
and not much slower solution, and there is no upper size 
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limit other than background memory. Also, for 3D data 
it may be very practical to reformat a stack of planes 
into small subcubes,10 to have fast access to any cross 
sections. 

Recently published 4D spectra are huge (e.g. 1.2 
Gbyte17) and even after processing are still beyond the 
size which can be easily handled by the mainstream 
workstations (e.g. 1.6 Gbyte17 and 134 Mbytes,18 re­
spectively). Therefore some kind of selective processing 
and partial presentation is inevitable, even with rapidly 
increasing computational power.39 

B. Space Views 

Presentation of a whole 3D spectrum as a space view, 
for example a homonuclear nonselective 3D spectrum84 

is more valuable aesthetically than from the point of 
view of real data evaluation (Figure 11). 

However, such space veiw presentation may still be 
appropriate for general information about spectral 
features. Evans and Sutherland graphics stations have 
been widely used for display and presentation,8,9'81'150 

although any other graphics software can be used for 
the same purpose as well. Stereoviews of contour plots 
in 3D, possibly in perspective mode151 may be pres­
ented. Of course, no higher dimensional spectra can be 
visualized in a similar way. 

C. Plane Hopping 

Although it seems to be a simplification, a mutual 
plot of appropriate 2D slices, selected from the nD 
correlation solid seems to be the most convenient and 
most practical solution. Connectivities can be followed 
from plane to plane in various directions—"plane 
hopping".87 Such presentations easily follow appro­
priate data processing, when only selected planes are 
transformed in the last step (see above). As the virtual 
position of the carrier can be changed at will for indi­
rectly detected dimensions acquired in hypercomplex 
mode,61,74 selected 2D slices of a multidimensional 
correlation solid are easy to match for convenient visual 
evaluation. Such 2D slices from 3D spectra can be 
plotted with simple contouring software which creates 
xy plots or Postcript files as outputs for laser printers.88 

"Plane hopping" is probably the most widely used 
presentation/evaluation method at the time. For ex­
ample, 2D planes for inspection of a nonselective 3D 
NOE-HOHAHA for an oligosaccharide have been 
shown.68 An elegant example of how to use selected 2D 
planes to evaluate connectivities on a 3D spectrum has 
been shown for a 3D HMQC-COSY spectrum of kana-
mycin A.152 Planes selected from several 3D spectra can 
be combined, of course. Such concerted evaluation of 
five independently acquired different 3D spectra has 
been presented for calmodulin12 (Figure 12). 

VI. Approaches for Evaluation 

A. Manual Connectivity Search 

Manual evaluation of multidimensional spectra is 
extremely time consuming and difficult, with plane 
hopping the most straightforward approach. Although 
increasing the number of dimensions may introduce 
some confusion, reducing peak overlap is advantageous. 
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Figure 11. Three-dimensional NOE-HOHAHA spectrum of 8.7 
mM pike parvalbumin (pi = 5.0). Parts a and b show only a 
limited number of local maxima for the spectrum. The plane 
containing the tx and t2 noise of the strong H2O resonance was 
eliminated. Panel a shows the view of the 3D NOE-HOHAHA 
spectrum, and panel b shows the view along the diagonal axis (o>3 
= O)2

 = ">i) of the cube (reprinted from ref 84; copyright 1988 
Academic Press). 

B. Approaches toward Automated Evaluation 

Automated analysis of (two-dimensional) correlation 
spectra is usually approached by two main strategies. 
One of them analyzes the detailed fine structure of 
cross-peaks, while the other focuses on connectivities, 
determined from relatively low-resolution spectra. 
Combination of 2D spectra into multidimensional solids 
for improved data analysis and data banking has al­
ready been proposed.153 A very similar strategy, which 
uses 2D spectra corresponding to projections from a 
heteronuclear 3D correlation, has been applied to au-
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Figure 12. Selected regions of slices from five separate 3D NMR experiments for calmodulin.12 These regions illustrate the J correlation 
between Lys-21 and Asp-22. Solid and dotted lines trace the connectivity patterns for these two residues. Slices A-C are taken at 
the Lys-2116N chemical shift. Slices D and E are taken at the Lys-21 C" shift, observed in B. Slices F-H are taken at the 16N frequency 
of Asp-22, as measured in E12 (reprinted from ref 12). 

tomated three-dimensional sorting of 2D cross-peaks 
of protein spectra.154 Such strategies can be transposed 
to higher dimensional cases, as well. 

Sequential multidimensional homonuclear and het-
eronuclear magnetization transfer experiments, espe­
cially those with in-phase multiplet structures, are ex­
cellent candidates for automated spectral evaluation. 
The large number of 3D cross-peaks in such correlations 
(ca. 105) makes some kind of automation desirable an­
yway. On the other hand, reduced overlap due to in­
creased dispersion by adding dimensions results in 
easier recognition of individual cross-peaks. Fine 
structure of peaks in a 3D spectrum can be informa­
tive.144'155 However, low resolution is inherent for many 
applications, especially for larger molecules where lines 
are broad. Consequently, connectivities are more often 

used to get structural information. Automated peak 
picking from a multidimensional spectrum in combi­
nation with path analysis methods153,156 is a promising 
strategy. Application of high capacity neural network 
systems would be also desirable. 

Attempts to develop strategy and concrete software 
for spectral evaluation at a high level of automation 
have been made.10'157 Also a program has been devel­
oped for the evaluation of 3D spectra and has been 
applied to the sequential assignment of BPTI utilizing 
a 3D TOCSY-NOESY correlation.158 A semiautomatic 
assignment strategy has been developed and used with 
success for sequential assignment of calmodulin.12 The 
process involves combining information from several 3D 
spectra and strongly resolution enhanced 2D hetero-
nuclear correlations (Figure 13). 
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Figure 13, Flow diagram of the semiautomated assignment 
procedure, applied to calmodulin12 (reprinted from ref 12). 

C. Peak Analysis in nD 

After a multidimensional spectrum has been detected 
and transformed, there is a very important question of 
peak assignment and quantification. Assignment has 
been mentioned already above. Quantification of peaks 
in a multidimensional spectrum, however, poses unusual 
problems in comparison with two-dimensional cases. 

When dipolar magnetization transfer is connected 
with scalar transfer, as for example, in homonuclear 3D 
HOHAHA-NOESY9 or TOCSY-NOESY80 experiments, 
cross-peak volumes compress information from both 
steps. However, this increased complexity can provide 
extra information about the secondary structure of the 
molecule.9,80 Such complications are even more likely 
if more dimensions are involved. 

Accurate volumes of cross-peaks for as many distance 
constraints as possible are simultaneous tasks for peak 
analysis in multi-dimensional NMR. The resulting data 
then can be used for achieving better molecular struc­
ture through various computer programs (e.g. 
IRMA,159-160 CORMA, and MARDIGRAS161). General 
problems of volume measurements160'162 will not be 
addressed here in detail. 

Volume measurement for multidimensional correla­
tion peaks, however, is most straightforward using di­
gital integration, i.e. summation of all intensity present 
in the volume around the cross-peak. Such quantifi­
cation is the best way to get the most error-free volumes 
even with low digital resolution and the presence of 
residual zero-quantum effects.160'163 Some difficulties 
may arise because of the large line widths of 3D peaks. 
However, it was shown theoretically164 that if Gaussian 

filtering is used, the bias and variance of integrals are 
reduced in comparison to the case of Lorentzian line 
shapes. This finding was successfully used recently in 
integration of 3D TOCSY-NOESY spectra of proteins,80 

where the error of measured integrals was found to be 
within 5%. Recently a semiautomatic integration 
program was also developed for overlapping peaks165 

which is a simple 2D line fit, preferably also for Gaus­
sian line shapes. A deconstruction method was also 
proposed to resolve overlapping NOE correlation 
peaks.166 

Peak (curve) fitting was found preferable in analyzing 
ID spectra, if the analytical form of the peaks is known. 
Numerical integration underestimates the real area due 
to the noise, digitization errors, and finite truncation 
of peak tails.167 Unfortunately the success of peak-
fitting procedures is very dependent on initial condi­
tions. Recently the Metropolis or simulated annealing 
algorithm was shown to be advantageous for curve-
fitting spectra with severe problems, such as badly 
defined base line (roll), diverse line width, and poor 
initial estimates of parameters.168 This algorithm re­
liably finds the global minima of the spectral parame­
ters. The only problem seems to be the huge compu­
tational requirement. For a relatively simple ID 
spectrum the calculation can take a half hour on a 
minisupercomputer.168 Furthermore it suffers from the 
same drawback as every line fitting procedure: the peak 
shapes should be analytically defined, which is not 
easily fulfilled for multidimensional data. Conse­
quently, such volume determination still awaits more 
developed computer programs and computational 
power. 

VII. Future and Present Time 

Processing of multidimensional NMR data is a big 
challenge for the present time and for the very next 
future. Just five years ago169 envisioning the future for 
the 1990s it was natural to foresee a typical working 
place for NMR spectroscopists to handle their data on 
hardware with high CPU performance, large data 
storage media, wide I/O bandwidth, on-line supercom­
puter support, and high performance graphics. Now 
here we are in those bright years and indeed the hard­
ware has developed quite in the predicted manner. 
Nevertheless, some of the goals are only approached and 
not yet achieved. While this is true for well equipped 
facilities, the bitter reality is that the sophistication of 
hardware in many laboratories cannot keep pace with 
top-of-the-line computers simply because of financial 
problems. Even worse, the computational needs have 
been increasing in nonpredictable ways. 

With 4D NMR measurements, and certainly with 5D 
and 6D under way, the data processing requirements 
pose serious tasks for all but high-end computers. As 
an example, one of the first high-resolution 3D data sets 
processed on an Aspect 1000 computer took 7 h23 and 
four years ago that was the mainstream computer at 
many NMR laboratories. Processing the first, 4D 
13C/15N-edited NOESY experiment with an acquisition 
size of 16 (complex) X 64 (complex) X 16 (complex) X 
512 (real) took 12 h for just the t3 dimension with one 
zero fill.16 The resultin 32 3D data sets needed an ad­
ditional 1 to 2 h to process each, with equal amounts 
of double zero filling in J1, t2 and t4, respectively. This 
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roughly 60-h session was accomplished on a Sun 
Sparcstation (in local mode),16 which is a mainstream 
computer of today's laboratory. Just recently a 4D FFT 
combined with linear prediction extrapolation took 62 
h on a "top-of-the-line" computer, a Silicon Graphics 
4D/220.17 Output size of such spectra reaches easily 
the gigabyte range. The software used for this enor­
mous tasks are now totally in-house written,17 or a result 
of mixing existing software with in-house routines.16'18,61 

The conclusions are clear: changes in the strategy, 
hardware, and software are required for multidimen­
sional NMR processing to be accessible for many lab­
oratories. These aspects are closely related with some 
of the possible solutions listed below. 

If there is an existing network of computers in the 
vicinity of an NMR laboratory, then data processing 
software can distribute subtasks for processing among 
idle computers, speeding up the overall application. For 
this strategy there are many unsolved questions, and 
only the first results have appeared.39 A widely ap­
preciated and general solution is yet to come. 

A second strategy is possible if there is a supercom­
puter accessible to the NMR laboratory. Although 
results of using minisupercomputers for NMR pro­
cessing (e.g., for ID,170 for 2D,171 and for 3D150) have 
been published this option is not generally available at 
this time. There are also problems due to hardware, 
operating system and word format incompatibilities. 
The use of a "departmental", minisupercomputer or 
even a large mainframe computer is also desirable. It 
will also be necessary to evaluate the relative effec­
tiveness of a computer with a few scalar + vector pro-
cessors150,170,171 in contrast to a massively parallel com­
puter.37,39 Moreover, the existing commercial software 
has no capability to fully utilize these computers. The 
best solutions will evolve over time and are presently 
difficult to forecast because there are so few published 
results. 

However, some preliminary results show the usage of 
a massively parallel digital computer in 3D processing 
to be very promising (e.g., 3D FFT for 256 X 256 X 256 
X 2 points size test data in 10 s on 8192 processors on 
a Connection Machine39). There are several other 
promising possibilities including optical or optoelectric 
hybrid computers. By using these types of computers, 
after an appropriate translation of multidimensional 
data, Fourier transforms would take only nanoseconds 
(since the data processing speed is roughly governed by 
the speed of light passing through optical devices172). 
That is really a futuristic vision! 

Array processors could be a relatively cheap alter­
native for parallel/supercomputers. Array processors 
have been in use for some time, and recent promising 
results were shown for processing 2D and 3D103 spectra 
on inexpensive array processors attached to a personal 
computer. However, there is a barrier to usage, namely 
the existing software should be adapted to each avail­
able type of array processor (hardware and software), 
requiring considerable programming effort. 

It is obvious that forecasting future hardware trends 
is a hazardous endeavor. Perhaps more hazardous is 
the plight of the laboratories faced with an expensive 
budget choice, who could purchase a machine that is 
next year's "orphan". Recent history demonstrates that 
even a conservative choice results in the obsolescence 

of a machine within five years of its purchase. At the 
present time, given the convergence of NMR data 
processing and molecular modeling, many laboratories 
are opting for computers with large data throughout 
capacity—for NMR processing and molecular 
mechanics—as well as the interactive graphics capa­
bility currently used to evaluate candidate structures. 
Other contributions to this issue of Chemical Reviews 
provide ample demonstration of this trend. 
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