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/. Introduction 
The nuclear spin-lattice relaxation observed in nu­

clear magnetic resonance (NMR) involves a conserved 
transfer of energy between nuclear spin states and the 
lattice states associated with the environment of the 
spins. It was recognized in early experimental obser­
vations of the NMR phenomenon1"3 that nuclear spin 
degrees of freedom would couple only weakly with their 
lattice environment. Consequently the spin-lattice 
relaxation time, T1, for a nuclear spin system to attain 
thermal equilibrium with the lattice is on the order of 
milliseconds in solid samples to seconds in liquids, and 
in rare cases T1 can even range up to minutes. These 
relatively long times compare with optical relaxation 
times of pico to nanoseconds. A significant benefit of 
these weak spin-lattice couplings is that the spins and 
the lattice may be treated, to zero order, as separate 
systems. Furthermore, the lattice is left essentially 
unperturbed due to exchange of energy with the spins 
because the heat capacity of the lattice at typical 
magnetic fields is orders of magnitude greater than that 
of the spins. When experimental measurements are 
made solely on the spin system, time-dependent per­
turbation theory is sufficiently accurate to explore the 
various important aspects of spin-lattice interactions. 

Under these conditions, simple thermodynamic ar­
guments lead to Bloch's equations of motion2,3 which 
are adequate to predict the behavior of an ensemble of 
noninteracting nuclear spins interacting weakly with the 
lattice (see section ILA). The situation differs, however, 
when groups of nuclear spins couple with each other, 
and a more rigorous treatment is required involving a 
spin density matrix equation of motion with multiple 
spin-lattice relaxation parameters.4-7 In low viscosity 
liquids, spin-lattice relaxation can be treated as tem­
poral modulation of the various spin-lattice coupling 
terms as a consequence of thermally activated reorien­
tation of a molecule. Therefore, the study of spin-
lattice relaxation can contribute to a better under­
standing of molecular dynamics in liquids. 

Historically, a single spin-lattice relaxation time was 
measured for each nucleus in an attempt to characterize 
the molecular motion. This oversimplification of re­
laxation processes may be due in part to the success of 
Bloch theory for isolated spins, but in the case of 13C 
it is also due to the traditional 1H decoupled experiment 
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that renders the 13C relaxation essentially exponential 
in a single effective T1C. To be strictly precise, however, 
such studies involving a single parameter per nucleus 
are unable to model adequately the complexity of cou-
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pled spin relaxation. Furthermore, these data, even if 
reasonably successful in modeling the spin dynamics, 
are unable to characterize the motion of molecules un­
dergoing anisotropic reorientation. A single dynamical 
parameter would provide only one effective rotational 
correlation time per atom, and only a rigid spherical 
molecule rotating isotropically in its environment could 
be correctly described by such a simple approach. For 
real molecules with more complicated shapes, aniso­
tropic motion obtains and additional diffusional pa­
rameters are required to characterize the reorientation. 

The correlated motion of two or more nuclear spins 
produces modulation of the dipole-dipole interactions, 
and the resulting nuclear relaxation parameters in turn 
provide additional information about molecular motion. 
The motion of each pair of spins correlates either with 
itself (auto-correlation terms) or with that of other pairs 
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of spins (cross-correlation terms) in the coupled nuclear 
spin systems. One of the important aspects of complete 
relaxation data involving both auto and cross terms is 
that they may be interpreted in terms of an anisotropic 
rotational diffusion model. In liquids, molecules un­
dergo collisions that modify their rotational states 
sufficiently frequently that small step diffusion models 
are usually appropriate for discussing these motional 
features. 

Extensive reviews on coupled spin relaxation pub­
lished by Werbelow and Grant8 and by Void and Void9 

still are relevant. The review of coupled spin relaxation 
by Canet10 provides a recent discussion of significant 
work completed during the past decade. Canet's elegant 
summary of the physical laws governing coupled spin 
relaxation emphasizes use of the spin operator basis. 
His use of irreducible spherical operators provides sig­
nificant mathematical conveniences and insights to 
readers familiar with standard works on angular mo­
mentum,11 and the serious worker in coupled spin re­
laxation can not avoid mastery of these powerful 
mathematical methods. However, many practicing 
chemists not conversant with such operator algebra may 
find this approach quite formidable thereby limiting 
their appreciation of coupled spin relaxation data and 
the associated molecular motional features elucidated 
by such information. As Canet has provided a recent 
comprehensive overview of coupled relaxation, the oc­
casion of this review offers us the opportunity to put 
in one place an integrated and detailed presentation of 
coupled spin relaxation for the often used AX2 case. 
This common system is the one important in proton 
coupled 13C relaxation studies of the methylene spin 
moiety encountered often in the areas of organic and 
biochemistry. We also welcome the chance to unify 
definitions and notations. It is not our intent to du­
plicate the greater portions of the three previous reviews 
except as some material is needed in this manuscript 
for continuity. This review also focuses on the details 
of anisotropic molecular motion as it affects coupled 
spin relaxation in both rigid and flexible chain mole­
cules. 

It is our hope in this effort to provide the larger 
community of practicing chemists with a treatment that 
might give the nonspecialist a better appreciation of 
nuclear spin relaxation. The perception of simplicity 
often results from merely including a few extra details 
readily known to specialists in a field. Some aspects 
of NMR require a reasonably high level of complexity 
(e.g., the coupling of angular momenta of identical 
spins), and it is impossible to account for all experi­
mental observations with excessively simple concepts. 
To illustrate this point further, many commonly used 
two-dimensional (2D) NMR experiments require mul­
tiple spin coherences to be produced and exploited. 
The relaxation of these coherences is invariably gov­
erned by the mathematical expressions that have 
evolved in the field of coupled spin relaxation. Several 
groups12-21 have contributed extensively in recent years 
to the comprehension of these phenomena. 

Some simplification of the material is made possible 
by limiting the cases to be treated to those that illus­
trate the relevant principles without being unnecessarily 
complicated. We make the following choices in the 
material to be presented: 

(1) The simplest assumption of spin isolation leading 
to the Bloch equations obviously must be rejected to 
observe the effects of coupled spin relaxation. 

(2) The X approximation will be assumed. Second 
order effects, present when scalar couplings are of the 
order of chemical shift differences, will not be consid­
ered. 

(3) Only longitudinal or T1 type processes are con­
sidered. This is accomplished by imposing a secular 
approximation, to separate the static, or at least slowly 
varying, components of the magnetization from rapidly 
oscillating components associated with precession in 
response to either static or rf (radio frequency) magnetic 
fields. The traditional Redfield density matrix devel­
opment transforms the equation of motion to an in­
teraction representation using the static or Zeeman 
Hamiltonian and representing the equation of motion 
in terms of eigenstates of this Hamiltonian. This leads 
to explicit oscillatory factors in terms of the eigenvalues 
for each element of the relaxation matrix.22 When this 
oscillatory term has a frequency other than zero the 
corresponding relaxation matrix element is nonsecular 
and may be set to zero since it will have no influence 
on the behavior of the secular terms. In a totally 
equivalent development,23 the density matrix may be 
expanded in a complete set of spin operators many of 
which correspond to experimental measurables. The 
secular approximation then consists of selecting the part 
of the relaxation matrix corresponding to those basis 
operators that commute with I1. (See Mehring24 for 
more details on commuting operators and secular ap­
proximations.) 

(4) Our treatment focuses on spin 1J1 nuclei that only 
quantize along the axis of the B0 field. This restriction 
eliminates consideration of quadrupolar nuclei that 
interact strongly with electric field gradients and that 
often quantize along axes other than that controlled by 
B0 in the Zeeman interaction. 

(5) We make the so called sudden approximation 
which amounts to assuming that relaxation does not 
occur during the period a perturbing rf pulse is applied 
to the sample. For typical systems studied by high-
resolution liquid NMR it is usually possible to accom­
plish the needed perturbations in a time short com­
pared to all relaxation processes. 

(6) When molecular tumbling motion in liquids is 
much more rapid than the nuclear precession or Larmor 
frequency, an extreme narrowing approximation pro­
vides significant mathematical simplification in the 
Fourier expansion of the spatial correlation function. 
Avoidance of the extreme narrowing condition is not 
very difficult and the totally general case is carried in 
this review until direct evaluation is required. 

(7) We limit our consideration in this review to only 
isotropic fluids. Ensemble averaging of spatial corre­
lation functions, expanded in spherical harmonics, is 
greatly simplified as all projections of the spherical 
harmonics behave identically in isotropic systems. 
Thus, the averaging need be done only for the simplest 
zero projection of each rank. 

(8) Finally, we focus on relaxation mechanisms in­
volving a composite first rank random field term and 
the second rank dipole-dipole interaction. In each rank, 
however, both auto-correlated and cross-correlated 
terms are included, but interfering cross terms between 
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the dipolar and random field mechanisms are absent. 
These many assumptions are compatible with data from 
many organic systems especially when taken at lower 
magnetic fields. 

Workers have explored in considerable detail the 
consequences of deviations from several of the above 
simplifying assumptions and approximations. The 
following items are numbered to correspond to those 
given above. The literature on (1) isolated spins, (2) 
second-order effects, (3) transverse relaxation, and (4) 
quadrupolar nuclei is too large to include in this review. 
Treatments of (5) spin systems perturbed by rf pulses 
comparable in length with relaxation times and in 
noncompliance with the sudden approximation leads 
to extremely complicated expressions for the time de­
velopment of the magnetization and even steady-state 
solutions are often not simple. However, some success 
has been achieved for very simple spin systems.25-28 

The literature on (7) ordered systems, e.g., liquid 
crystals and micelles, is now quite extensive, and the 
mathematical methods for analysis are largely in 
place.9,29"42 

With the use of ever higher magnetic field strengths, 
chemical shielding anisotropy,21,43"46 and cross-corre­
lated terms between chemical shielding anisotropy and 
the dipolar mechanisms, thought to be an anomaly 10 
years ago, are now being reported in ever increasing 
numbers.16"18'20,21,47-56 These new interference terms fit 
nicely into the formalism of cross terms and coupled 
relaxation initially provided by Mackor and MacLean.56 

Pyper57 and Blicharski et al.58,59 clearly emphasized 
their theoretical importance 20 years ago. Werbelow 
and Grant60 anticipated early their significance in 
multiplet relaxation modes, but only recently has ex­
perimental evidence, coming primarily from multidi­
mensional NMR studies, indicated their general im­
portance. Undoubtedly, with the rapid growth of 
multidimensional NMR at very high fields, we can ex­
pect to find even more cases of such interference phe­
nomena that eliminate spin inversion symmetry of the 
relaxation Hamiltonian commonly exploited to simplify 
the equation of*motion. 

This review is organized along the following lines: 
The quantum mechanical density matrix formalism and 
associated theoretical developments4-7 required in the 
treatment of coupled spin systems are presented briefly 
in section ILB. The dipolar mechanism is given in 
detail in section II.C, along with a brief summary of 
various other spin-lattice interactions.10,57,61 The effect 
of spin inversion symmetry8,62"66 is explained in section 
ILD. Detailed phenomenological equations for longi­
tudinal relaxation in the AX and AX2 cases are given 
in section III. The relationships existing between mo­
lecular diffusional motion and relaxation power den­
sities or correlation functions are treated in section IV. 
Typical spin-coupled experiments are described in 
section V, and the interpretation of such relaxation data 
in terms of diffusional models for molecular reorienta­
tion is briefly explored for specific examples in section 
VI. Finally, section VII illustrates the type of infor­
mation available when coupled spin relaxation data are 
interpreted with statistical mechanical models. 

/ / . The Theory of Nuclear Spin Dynamics 

A sample containing spin V2 nuclei, when placed in 

a strong external magnetic field, B0, develops a bulk 
magnetization that is parallel to and proportional to the 
magnitude of B0, to the number of nuclei present, and 
to the magnetic moment of each nucleus. As the di­
rection of B0 defines the spin quantization or z axis in 
the laboratory reference frame, it also specifies the 
longitudinal relaxation axis. Radio frequency magnetic 
fields are used to perturb the magnetization from 
thermal equilibrium, and then relaxation processes re­
turn the spins to equilibrium when the rf field is re­
moved. These relaxation processes, described by a 
system of coupled linear differential equations, deter­
mine a variety of time independent relaxation param­
eters that contain information on the molecular struc­
ture and motion. 

Spin perturbations normally are implemented with 
high intensity pulses of rf energy short compared with 
relaxation times. Under the sudden approximation 
negligible relaxation occurs during the pulse leaving the 
relaxation to develop only under the influence of B0. 
Spin-lattice relaxation studies, therefore, consist of 
applying pulses to a sample in thermal equilibrium, and 
then monitoring the magnetization as it returns to 
equilibrium. The relaxation parameters in the equa­
tions of motion are numerically adjusted until the so­
lutions of the differential equations fit the experimental 
data as closely as possible using a least-squares criterion. 
These relaxation parameters then may be interpreted 
in terms of various models for molecular structure and 
reorientation dynamics. The mathematical basis for the 
equations of motion used in this review is only outlined, 
but the reader is referred to standard texts6,12,22,67 for 
more details. The reviews by Werbelow and Grant,8 

Void and Void,9 and Canet10 provide a comprehensive 
overview of the theoretical developments in coupled 
spin relaxation and also a valuable compendium of 
equations for a variety of coupled spin cases. 

A. Classical Treatment, The Bloch Equation 

When nuclear spins do not interact significantly with 
one another, they may be considered to be isolated and 
the classical equations of motion due to Bloch2,3 ade­
quately describe the time evolution of the bulk 
magnetization. These equations may be cast in a frame 
rotating at an angular frequency, «, about the labora­
tory z axis to yield 

dMv r , . i Mv 

-^=-[Mx[YB0-CO)-M2JBx]-^ (1) 

M(t) is the magnetization induced in the sample, and 
M(») is the thermal equilibrium magnetization, often 
designated as M0. The time-dependent components 
Bx(t) and BJt) represent the applied rf field in the xy 
plane and the z component of the field is usually time 
independent with magnitude S0 - w/7 in the rotating 
frame. In the absence of rf fields and with w0 = 7B0, 
M2 approaches the thermal equilibrium value, M(°°), 
exponentially with the characteristic time, T1. Such 
longitudinal spin-lattice parameters may be used to 
obtain information pertaining to molecular structure 
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Figure 1. A rf pulse of stength, H1, with phase and duration 
properly adjusted can produce any desired precession of the 
magnetization. 

and dynamics. Components Mx and My also decay 
exponentially to zero but with a transverse time con­
stant, T2, but these equally important T2 or spin-spin 
relaxation processes are not treated in this review. 
However, since z magnetization cannot be detected with 
an NMR spectrometer, it is necessary to access infor­
mation on M2 through measurement of the xy magne­
tization. It is assumed that the measured xy magne­
tization can be made proportional to the desired z 
magnetization using an appropriate rf pulse. 

In a NMR spectrometer with phase detection the 
signal produced is proportional to and has the same 
time dependence as the xy magnetization in the rotating 
frame. The precession frequency in the laboratory, o>0 
= 7B0, is normally on the order of hundreds of me­
gahertz for modern spectrometers, but when the ro­
tating frame frequency, o>, is selected to be comparable 
to W0, the Bloch equations become manageable. Pulses 
of rf field rotating at w applied in the laboratory xy 
plane will, in the rotating coordinate frame, result in 
static fields about which the magnetization precesses. 
The magnetization can be rotated to any desired ori­
entation in the rotating frame (see Figure 1) by ad­
justing the phase, amplitude and width of the rf pulse. 
To comply with the sudden approximation it is neces­
sary to accomplish these nutations in a time short 
compared to the relaxation times. 

B. Redfield Density Matrix Treatment 

1. The Quantum Mechanical Hamiltonian 

The physical basis for spin-lattice relaxation may be 
described quantum mechanically in terms of the Ham­
iltonian 

H = H1+H0+H^t) + V (2) 

For the systems considered here the Hamiltonian, H, 
is composed,of dominant terms for the spins, H0,

 a n d 
the lattice, H1. The term, Ht(t), expresses the effect of 
rf fields applied by the spectrometer. This term has 
explicit time dependence because external fields will be 
treated classically. Finally, an interaction term, V, 
coupling the spins to the lattice,68 will contain the terms 
upon which we will concentrate to characterize the 
molecular dynamics. The "hat" will be used to indicate 
quantum mechanical operators. The spin-lattice terms, 
V, may be written 
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V = J^O1Ti (3) 
1 

where the sum extends over all the interactions between 
the spins and the lattice. The set of operators, T1-, as­
sociated with the spin system, is known in detail, but 
the exact form of the corresponding operators, Uit de­
scribing the liquid lattice is generally not known. 
However, it is often possible to model the effects of the 
lattice on the nuclear spins when it is desired to make 
measurements on the spins and not the lattice. If the 
Hamiltonian were known completely, it would be pos­
sible, at least in principle, to solve the time-dependent 
Schrodinger equation and to calculate the expectation 
value of any spin operator. Since this is normally not 
possible, one js obliged to employ simplifying approx­
imations for Ui to make progress. Extensive details will 
be given in this review for the dipolar mechanism which 
often dominates the relaxation of spin 1J2 nuclei and 
which has proven to be a rich source of structural and 
dynamical information. Under appropriate experi­
mental conditions, the remaining spin-lattice interac­
tions will be regarded as a composite external random 
field term. Canet10 has provided detailed information 
on terms in V for several spin-lattice interactions. 

2. The Equation of Motion—Basic Theory 

In this section we will briefly outline the formalism 
required to proceed from the Hamiltonian (2) to an 
equation of motion that can be used to interpret ex­
perimental data. References are given to assist the 
reader desiring further details. The fundamental 
equation of motion for nuclear spins can be derived 
from the time-dependent Schrodinger equation:22,69 

<£ = -i[H(t),p(t)} W 

where H is the Hamiltonian given in (2) of the entire 
system (spins and lattice), and the density operator, p, 
embodies all that can be known about the lattice and 
the ensemble of spins. 

By using (2) the expanded equation of motion can be 
written as 

^ f = -AH1 +A0 +H1M+V, p(0] 
(5) 

=-i{[tf,.p(o]+[H0,m]+[#I(O.P(O]+[V.PM]} 

The first and second commutators produce rapid os­
cillations in the off diagonal elements of the density 
matrix (e.g., the precession of the magnetization due to 
B0) in a manner analogous to the classical Bloch 
equations given in (1). A unitary transformation may 
be defined as follows: 

Equation 6 constitutes a transformation into an inter­
action representation. This is analogous to the rotating 
frame transformation used in the Bloch equations and 
reduces (5) to 

The formal solution of (7) in the absence of external 
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time-dependent fields is given by 

^%)=^\o)-ijy[v^)^r\t')} (8) 
A first-order perturbation approximation allows one to 
substitute p(r)(0) for p(r)(tO in (8) to give 

pW(0Sp(r)(0)-/j;dr'[vW(0,PW(0)] (9) 

Substitution of (9) back into (8) in a recursive manner 
provides the second-order perturbation solution to (7): 

(10) 

The second term on the right is presumed to be zero 
since random fluctuations in relaxation are not expected 
to cause significant frequency shifts. Differentiating 
(10) gives 

df>ir) _ 
r = -£d4?<%VM(r>M(0) (H) 

Changing the variable to t - t' = T, resetting the initial 
time value from zero to t, and extending the upper limit 
of the integral to infinity allows one to write 

d p " 
df 

v(r)f :-J0"dt]Vl''(0,|V*r'(*-T).P Mi » (Oi (12) 

The justification for this step follows from the as­
sumption that the fluctuations leading to relaxation are 
rapid compared with the evolution of the density op­
erator. Thus, a time domain can be specified in which 
the value of the integrand falls to zero while the density 
operator only changes slightly from its initial value. 
These conditions normally obtain in nonviscous liquids 
where the fluctuating fields caused by molecular re­
orientation are in the nanosecond to picosecond range. 
In large macromolecules the reorientation rates are 
much slower and when they approach times comparable 
to the Larmor precession frequency these conditions 
may be violated. A reduced spin density operator, a, 
defined by performing a partial trace over the lattice 
degrees of freedom will simplify the above equations in 
p, and is defined as follows: 

<7(0 = Tr,{p(f)} (13) 

It should be apparent that the legitimacy of this op­
eration depends on the separability of p into lattice and 
spin degrees of freedom. Using a(t) from (13) the 
time-dependent expectation value, (Q)(t), of any spin 
operator, O, corresponding to a measurable may be 
obtained from 

(O)(O = Trs{a(t)6} 

3. The Redfield Formalism 

(14) 

By tracing over the lattice variables in (13) and col­
lecting from (14) the expectation values of the various 
V(t) interaction terms, after a somewhat involved de­
velopment,4-7 (12) may be converted into the so-called 
Redfield equation 

da" . ^ 

f̂- = ! ' 
XX' 

^-«-^<R\aW(O-^H] (is) 

In this form, (15) is given in terms of eigenstate matrix 
elements of the static spin Hamiltonian (i.e., K and X 
are eigenvalues as .H0IO = Kk>l- The matrix element 
of any general operator is, (/c|0|X) = OKX. Use of an 
eigenstate representation in (15) avoids the necessity 
of using super operators, and the secular approximation 
is explicitly embodied in the exponential term. Under 
the secular approximation the argument of the expo­
nential term vanishes whereas the nonsecular or os­
cillating components have a non-zero exponential ar­
gument. 

An expression, totally equivalent to (15), has been 
derived by Wang and Grant23 using an irreducible 
spherical tensor basis and projection operator tech­
niques. In this representation the secular approxima­
tions are preserved in the commutation properties of 
the angular momentum operators. The mathematical 
power of irreducible tensor bases is appreciable espe­
cially in the derivation of complex expressions, but the 
eigenstate representation is used in this review to ac­
commodate nonspecialists more familiar with the tra­
ditional formulation. It is also common for practicing 
chemists to approach dynamical processes with an en­
ergy level representation where relaxation is charac­
terized by transitional relaxation rate constants linking 
the eigenstates. Unfortunately, the presence of coherent 
rf fields is treated with considerably more difficulty in 
this historical eigenstate representation. 

The time-dependent variations in the combined 
spin-lattice states are restricted to changes only in the 
spin-density matrix because of the overwhelming 
magnitude of the lattice heat capacity relative to that 
of the nuclear spins. Thus, the lattice may be presumed 
at all times to be in thermal equilibrium while the 
time-varying spin states, in the absence of a rf field, are 
driven to thermal equilibrium by the spin-lattice in­
teractions. In a lattice at equilibrium the correlation 
of the temporal lattice fluctuations is independent of 
the origin of time making the various RKK>\\> constant 
over time. When the exponential argument 
(K- K' - X + X') in (15) is significantly larger than the 
relaxation rate, the exponential term oscillates rapidly 
compared to the slow time evolution of the density 
matrix under relaxation thereby reducing the effective 
impact of these terms to zero. Under this so called 
secular approximation, many of the spin density matrix 
terms become irrelevant and the equations of motion 
are simplified accordingly. The exponential coefficients 
in front of i?wXA are clearly secular and may be identified 
with longitudinal transition probabilities between states 
K and X. These R1xXx parameters control the spin-lattice 
relaxation and are associated with the diagonal elements 
of the density matrix, a*£(t), which specify the proba­
bility that the state K is occupied. 

In the eigenstate representation, Redfield terms of 
the form, R1^, are associated with an exponential term 
that also is clearly secular, but these rates control the 
transverse or spin-spin relaxation processes. As long 
as the spectrum consists of clearly resolved transitions, 
all remaining R^w terms are associated with expo­
nential coefficients that are nonsecular and may be 
omitted from consideration. Hence, for simple first 
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order spectra, secular arguments are able to uncouple 
the diagonal from the off-diagonal elements of the 
density matrix. Should two or more transitions overlap 
due to second order features in the spectrum, diagonal 
and off-diagonal elements in aKK> may couple, and this 
case requires a more extensive mathematical analysis 
involving some of the fourth rank RKK>\\> terms. Highly 
second order spin systems generally have been neglected 
because of these secular problems in the mathematical 
analysis. 

For spin systems containing two or more identical 
spins and consequently degenerate lines, it has been 
possible, at least for the simpler cases explored to date, 
to choose an eigenbasis that restricts to diagonal ele­
ments the type of Redfield terms required to account 
for longitudinal relaxation. Redfield terms that oth­
erwise couple off-diagonal density matrix elements into 
the spin-lattice relaxation manifold, again become zero 
under the symmetry of the relevant eigenfunctions. 
Thus, in systems such as AX2 and AX3, spin-spin and 
spin-lattice relaxation processes may still be separated 
in the Redfield equation (15). Admittedly one may 
argue that this distinction is semantical as the elements 
of the so called off-diagonal Redfield terms associated 
with a spin product basis are subsumed into the new 
diagonal Redfield terms of the eigenstate representa­
tion. 

The relaxation coefficient R^w* involving the spin 
states K, K', X, and X', is given by 

RKK'W = KKXK'AWKX) + 7W^(0Vr) 

-8KkLKrK'yx\(0yx)-8
Kr1LKr^((0y>) 

r r 

where the spectral density, K^^ia,)) is 

KKXK'X'^KX) = Jo"d T WK'X* ~ i*1"** ^ 

The V,x(t) are matrix elements in the eigenstate basis, 
and V(t) in the Hamiltonian may be expressed in 
spherical tensors to facilitate the dot product given in 
(3). Equation 18, equivalent to (3), expresses V(t) as 
a spherical tensor expansion: 

^) = 1 1 i(-D'^Cu.0f,('V) (18) 

where the sum over ju spans all appropriate mechanisms, 
I and q are, respectively, the rank and projection indices 
associated with the spherical tensors representing a 
given mechanism. The C7l̂ (/u,t) and T^(M) are the 
spatial and spin tensors, respectively. The spin spectral 
density now becomes 

KKXK'X'«°*X) = 

Wi It' qq 

where the spatial power density is defined by 

It is apparent from (19) and (20) that power densities 
important in spin relaxation are of two general types; 

those with n-n' giving an auto-correlation term in a 
single interaction n and those with n ^ n' requiring a 
cross-correlated or interference term in two different 
interactions. Section ILC treats the various types of 
interactions affecting relaxation. 

When only longitudinal relaxation is considered the 
indices on the R^w are constrained by secular argu­
ments and the important Redfield terms in the ei­
genstate representation are limited to the following 
types: 

RKKXX =2KKXKX (0KX) 

RKKKK~-X2XYKrKV0YKj = ~ X RYYKK 
Y*K Y*K 

This greatly simplies the fourth-ranked expression given 
in (15), collapsing it to a second-rank equation to be 
discussed in section ILD. 

C. Spectral Power Densities for Various Spin 
Interactions 

1. General Comments on Important Spin Relaxation 
Mechanisms 

The intramolecular dipole-dipole mechanism and a 
composite random field term encompassing several 
first-rank or pseudo-first-rank mechanisms are given 
below in sections II.C.2 and II.C.3, respectively. Canet10 

has presented a rather comprehensive treatment of a 
variety of other mechanisms, and we omit duplicating 
much of this detailed information. 

An important second-rank relaxation interaction in 
the Hamiltonian arises from chemical shielding an-
isotropy (csa). The external magnetic field, B0, is 
chemically shielded by molecular electrons that reflect 
the electronic environment of the nucleus. These 
shielding fields depend on the orientation of the mol­
ecule with respect to B0, and the resulting anisotropy, 
if sufficiently large, can modulate with molecular tum­
bling the magnetic perturbations at the relaxing spin. 
This relaxation term becomes increasingly significant 
as NMR studies move to higher magnetic fields because 
the relaxation rate due to anisotropic shielding fields 
is proportional to the magnitude of B0 squared.70 The 
nonlinear functionality of relaxation on B0 may be used 
to separate this contribution from that of the other 
relaxation mechanisms.71,72 

The csa mechanism studied extensively by Far-
rar2i,43-46 m a v dominate, in its own right, the relaxation 
of nonproton-bearing nuclei, and these works on pri­
marily phosphorus and fluorine nuclei offer seminal 
examples of such csa relaxation. More novel are the 
cross-correlated terms in coupled relaxation that be­
come important when the csa interaction is comparable 
with the dipole-dipole mechanism.21'47"64 The dipolar 
and csa mechanisms are both governed by the same 
molecular motion and have the same rotational corre­
lation times. In general, cross terms between different 
interactions of the same rank will be effective when they 
conform to the same symmetry and have correlation 
times of comparable magnitudes. Interestingly, these 
interference terms destroy the inversion symmetry of 
the spin Hamiltonian57 and can yield absolute signs of 
the scalar couplings that produce the multiplet struc­
ture. Workers will have to give increased attention to 
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csa-dipolar cross terms as higher magnetic fields are 
employed because favorable conditions will exist for 
such relaxation processes. Relaxation studies are one 
of the few ways to access the antisymmetric terms in 
the chemical shielding tensor.73"75 

2. Intramolecular Dipole-Dlpole Interactions 

Each magnetic nucleus creates a magnetic field at 
other spin sites in a molecule, and the strength of these 
fields depends on the inverse cube of the distance be­
tween the interacting nuclei and the orientation of the 
internuclear vector relative to the external magnetic 
field. Thus, the fluctuating dipolar fields are modulated 
in time with molecular motion. By casting the rank two 
dipolar Hamiltonian in terms of irreducible spherical 
tensor operators, the full benefits of symmetry are 
achieved. By using (18) the dipole-dipole contribution 
to the Redfield terms is then given by 

?(<*».') = I i(-l)guW(ij,t)f(%) (22) 

where the first sum in i and ;' replaces the sum over n 
in (18) and extends over all pairs of spins ij in the 
system. The sum in I is limited to I - 2 for the dipolar 
term and q = -q' in order for the application of spin 
tensors to be nonvanishing. The normalized irreducible 
spin operators for the dipolar terms are given in 
standard angular momentum operator notation as 
follows: 

7f«/) = £(4/f'// -iiii -!Lit) 

TiWiJ) = I(W + /&') (23) 

fg>(ij) = m 
and the corresponding second-rank dipolar lattice 
functions for the qth projection are given by 

tf?W) = -StflfHW'M'>] (24) 

Standard distances and constants are given by 

S>J i 5 J (25) 

where Y* is the gyromagnetic ratio of the ith nucleus and 
/•y is the j - ; internuclear distance. The i and ;' labels 
designate the pair of interacting dipolar spins, and the 
normalized second rank spherical harmonics, 
V^(AyW, <t>ij(t)), specify the orientation of the inter­
nuclear vector in terms of the polar angles, 0 and <f>. To 
define the distances and angles, it is usually assumed 
that the part of the molecule bearing the coupled spins 
is rigid. While molecular vibrations alter internuclear 
distances, the frequencies involved are much higher 
than any of those associated with NMR and the vi­
brational^ averaged (rifs) replaces ri;~

3. Note, <ri;~
3} 

is not (Ty)"3. 
Application of (19), (20), and (22), gives the dipole-

dipole spectral densities as 

;W(^>aV;L) = XXX(-l)? 

t*JM q ( 2 6 ) 

X (K\ff\diPJj)IX)(Mf™(diPM)\K)J?jkl(COKX) 

where w,x is the energy difference in frequency units 
between the K and X nuclear states and ij and kl rep­
resent pairs of interacting spins. The spatial dipolar 
power density is given by 

o 

(27) 

where Y [̂fi}yb(£)] is the qth projection of the second-
rank spherical harmonic. The angular function, fijfb(£), 
is the corresponding polar angles (BW'it),^^)) for the 
tji dipole-dipole vector in the laboratory frame. 
Equation 27 is simplified considerably when the spatial 
order dies out rapidly before e'w«if changes. In this ex­
treme narrowing limit, W10J: « 0, and the integral in (27) 
is simplified greatly. 

The presence of two independent sets of nuclear spins 
ij and kl indicates the importance of auto-correlated 
power densities when ij = kl, but also of cross-correlated 
dipolar terms when ij ^ kl. These cross dipole-dipole 
terms, contained in (19) and (20), introduce cross-cor­
related information directly into the relaxation power 
densities. As indicated above, the dipolar power den­
sities become simpler when the extreme narrowing ap­
proximation obtains, i.e., J1jki(uK\) = J1jk0)> because 
(27) loses its dependence on UKX. Furthermore, if the 
sample is not experiencing any preferential spatial or­
dering, the correlation function for different projections 
of Y [̂Q|*b(t)] are all the same (a condition that exists 
in an isotropically ordered liquid) and an additional 
simplification is realized. These two reductions in 
complexity allow contraction in notation for all values 
of q to give 

two spin auto-correlation 

jycoKX) =4,(0) -/„ 
three spin cross-correlation ,~o,. 

4,(0)^) =4,(0) mjijt 

four spin cross-correlation 

Jh«°*0 =J°JkW =JiJk! 

Note, the two-spin auto-correlation term needs only two 
labels, while the three-spin cross term requires three 
indices. The nucleus that appears twice in the three-
spin dipolar power density is placed at the middle index 
position in the simplified notation. The four-spin 
correlation term involves all four spins, and no com­
paction of spin notation is possible even though only 
the zero projection need be calculated for an isotropic 
fluid. It is obvious that the second-rank dipole-dipole 
interaction can only correlate a maximum of four cou­
pled spins at least in the limit of second-order pertur­
bation expressions. 

Theoretical expressions for the dipolar spectral den­
sities in anisotropic media such as liquid crystals have 
been presented for a number of simple coupled spin 
cases.9'29-42,76 In these anisotropic media the correlation 
functions for the various projections of the spherical 
harmonic in (27) no longer equal one another and all 
of the projection terms in (27) must be retained in de­
riving expressions for the spectral densities. While 
relaxation in anisotropic media is not addressed further 
in this review, the references given here indicate these 
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studies are of considerable importance because aniso­
tropic media remove some of the line degeneracies as­
sociated with symmetry thereby increasing the number 
of measurables in the spin system. 

3. First-Rank, or Pseudo-First-Rank, Random Field 
Interactions 

The composite first-rank, random field interaction 
energy for spin-lattice is given by 

V(«wid.0 = X i(-i)"U%t)f^(i) (29) 

where the normalized irreducible first-rank spin oper­
ators are 

f0
(1)(0 = V2/2(0 f£>(i) = ?I±(i) (30) 

and the generalized first-rank spatial tensor at nucleus 
i is 

U^(O= y^B^kuJj) (31) 

The time-dependent B^fojJ) is the qth component (in 
the spherical basis) of any fluctuating field from the /uth 
interaction at the position of nucleus i. B^(n,i,t) in 
Cartesian form is given by 

B$] (HJJ) = ^B2(HJJ) 

m Ir i ( 32 ) 

BiV(MO = +\{BX(H Jj)±iBy(HJj)\ 

By applying the irreducible interaction terms in (29) 
through (32) in (19) and (20), the random field spectral 
density becomes 

^(-i)q(K\f^m\^MK)j>KO (33) 

<? 

with 

r,r,f (-D« X [B^iM\a\jJ)]eiC0^dt (34) 

The literature includes a variety of definitions for the 
random field power density that differ from (33) and 
(34) usually by factors of 2. These definitional diver­
sities arise from the use of unnormalized T ^ and from 
integral limits in (34) of -°° to + ra. Again, it is con­
venient to use a simpler compacted notation for these 
random field terms as follows: 

single spin auto-correlation 

;/!(«>•*> = 3(O) = J1 
two spin cross-correlation *• ' 

$«*>*) = $(fi)m Jy 

Note, two different types of cross terms exist in (34). 
There are the single i = j and dual i T* j nuclear spin 
correlations given in (35), but one may also have auto 
and cross mechanistic correlations when n = n' and 
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ix j^ n', respectively. This latter type of cross mecha­
nistic power density is possible in both ;',- and jy. 

Expressions for a variety of £L are available for dif­
ferent interactions,10 but it is often convenient in the 
absence of detailed information on these several terms 
to combine the various random field interactions into 
the composite single and cross nuclear correlation terms 
given in (35). These different interactions have varying 
impact on the relaxation of coupled nuclei but are not 
always easily identified and separated one from another. 
The fitting of relaxation data usually requires consid­
eration of such terms to allow the better understood 
dipole-dipole terms to be extracted. The random 
terms61,67,77"81 include the following: some intermole-
cular dipole-dipole interactions modulated by not only 
rotational but also translational diffusion,82-84 spin-ro­
tation interactions,61,86-88 scalar coupling of the first and 
second kind,70 free electron and paramagnetic impuri­
ties such as oxygen,89 etc. All of these types of inter­
actions are assumed to transform under the symmetry 
of first-rank tensors in accordance with (31) and (32), 
but to be completely precise some of the interactions 
should be considered as only pseudo-first-rank random 
field terms. It needs to be recognized that random field 
terms, of any rank, may affect the density matrix of the 
designated spin subsystem as first rank projections, and 
therefore may be included in the class of power den­
sities discussed in this section. Interference between 
all the various random field interactions potentially may 
exist, but fortunately the various mechanisms often 
have very different correlation times and therefore do 
not form compatible mechanistic cross terms. 

When the random field assumption breaks down 
special attention must be given to the explicit effect of 
the offending mechanism on the relaxation process. 
Intermolecular dipole-dipole interactions modeled as 
random field terms likely present the greatest hazard 
to the random field assumption. They often do not 
behave as even pseudo-first-order terms, if the motion 
of the perturbing intermolecular dipole is highly cor­
related to that of the spin system under study. Of 
course, if the spin system under study is not sufficiently 
dilute in the liquid lattice, the assumption of isolated 
spin systems breaks down, and equations upon which 
the analysis of relaxation data is based may not be valid. 
The early work of Khazanovich and Zitsermann90 and 
of Simon and Void91 on the relative importance of inter-
and intramolecular dipole-dipole relaxation illustrates 
the situation where a more complete relaxation treat­
ment is needed. Spin relaxation in dilute solutions 
using aprotic solvents has been the typical way to avoid 
serious intermolecular dipolar interferences between 
intermolecular protons. Thus, those employing random 
field simplifications should do so with some care as it 
is essential that one always investigate the possibility 
of fatal errors being introduced into the analysis. 

D. Symmetry Mode Analysis of Spin-Lattice 
Relaxation 

As noted in (21) in section ILB only a limited number 
of Redfield terms are significant when longitudinal re-

. laxation is considered in the eigenstate representation. 
In addition, the indices on the density matrix are also 
collapsed to include only the diagonal elements that 
give the state populations, i.e., erxx = Nx. In this form, 
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the Redfield terms may be considered to be simple 
transition probabilities, i.e., RKKX\ = WKX, linking the 
populations of the various spin eigenstates. Under these 
conditions, (15) and (21) yield a set of differential 
equations for tracking changes in the various state 
populations as follows: 

dt 
= lWKX[Nx-Nx(-)] (36) 

where N11 spans (K = 1 to 2") all eigenstate populations. 
Writing (36) in matrix notation gives 

^N=W[N-N(OO)] (37) 

In a two-spin AX system, four spin eigenstates exist and 
a four by four W transition matrix is obtained from this 
Redfield formalism. For an AX2 spin system, eight 
eigenstates produce an eight by eight W transition 
matrix, and larger coupled spin systems require corre­
spondingly larger transition matrices which scale as 2" 
when n is the number of coupled spins. In each case 
W is the special Redfield matrix given by (16) and (21) 
for longitudinal relaxation. 

In high-resolution multiplet NMR experiments, not 
only the total magnetization of each nuclear spin but 
also the intensity of each multiplet line is measurable 
as a function of time. These line intensities, L,x, become 
the relaxation measurables for monitoring time changes 
in the spin states and are proportional to ANKX = 
(NK - Nx). By transforming (37) into appropriate linear 
combinations of N11, the equations of motion are cast 
into measurable NMR variables. Use of inversion 
symmetry, normally present in the Hamiltonian,8,62-66 

allows the size of the transition matrices to be subdi­
vided accordingly. These appropriately selected linear 
combinations of spin-state populations, corresponding 
to measurable NMR line intensities, specify a set of 
dynamical variables or magnetization modes, v, of the 
system as follows: 

VK=^"KXNX o r D = T - N 
X 

(38) 

w h e r e TKX = aKX. 
Applying the transformations given by (38) in (37) 

yields 

§«r[t>-n<-)] (39) 

where T = TWT"1 becomes the relaxation matrix in a 
given magnetization mode basis, and u(°°) is the 
magnetization mode vector of equilibrium values. K the 
inversion symmetry of the Hamiltonian is preserved in 
T, the coupled differential equations in the measurable 
magnetization modes reduce in complexity as the T 
matrix is factored into symmetrical and antisymme-
trical parts of equal size. To be precise the inversion 
symmetry exchanges the frequencies of symmetry re­
lated lines that vary from one another by only an in­
finitesimal difference in their corresponding Boltzmann 
factors. The permutations of such line assignments, 
therefore, can not be recognized from intensity mea­
surements in the experimental spectrum. Construction 
of these various magnetization mode vectors, v, then 
reflects the symmetry under spin inversion and factors 
the appropriate transition matrix into two components. 

The completely symmetric linear combinations of 
state populations always include the combination, 
VT - Er^»» representing the total spin population. 
This magnetization variable will remain invariant (i.e., 
dvT/dt = O) with time due to the conservation of nuclear 
particles in a closed system. The effect of spin con­
servation is to reduce by one the number of differential 
equations in the symmetric manifold. Illustrations of 
the use of inversion symmetry and its consequence will 
be discussed in more detail in section III where specific 
individual cases are considered. 

/ / / . Symmetry Equations for Simple Spin 
Systems 

The complexity of the spin-lattice equations of 
motion may be appreciable even for fairly simple spin 
systems. As indicated above, there are 2" coupled 
equations for n spin x/2 nuclei but considerable sim­
plification can be achieved with the inversion symmetry 
discussed in section ILD. These manageable calcula­
tions can be used to extract the values of the corre­
sponding spectral densities from the experimental data. 
We treat in detail the AX spin case, because of its 
relative simplicity, as a way to illustrate the recipe for 
setting up the coupled differential equations. The more 
complex AX2 spin case, a principal emphasis in this 
review, is then treated with matrix methods to provide 
mathematical expressions for this useful and commonly 
encountered coupled spin system. The reader is re­
ferred to important discussions of AB,92 A3,

93""95 homo-
nuclear AX2,

96"99 AX3,
52'10^102 ABX,103-104 AMX,106"108 

and AMX2
49 cases given elsewhere in considerable de­

tail. 

A. The AX Spin System 

1. The Equations of Motion and the Relaxation Matrix 

The coupled AX two-spin system may be discussed 
in terms of lines L1 and L2 in the spectral region of the 
A spin and of L3 and L4 in the X spin region (see Figure 
2). The inter level transition probabilities are given by 
the W rates with the K\ designation indicated by the 
nuclear species A or X and by the net change in spin 
quantum number specified in Figure 2. With these 
definitions65 a set of coupled differential equations for 
the AX spin system is obtained as follows: 

d_ 
dt 

N2 

(-W0 W1A W1x W2 *) 

W1A -Wb W0 W1x 

W1x W0 -Wb W1A 

V W2 W1x W1A -WJ 

'N1-N1H) 
N2-N2H 

N3-N3H 
N4-N4H) 

(40) 

where (21) defines the diagonal elements as 

wa = w1A+wlx+w2 

wb = w1A + wlx + W0 

(41) 

Appropriate linear combinations of L1- specify the 
multiplet magnetization modes and capitalize on the 
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inversion symmetry property of the spin system to give 

VA=N1-N2 + N3-N,= (L1 + L2)Zk* 

= 2tr[f0
W(A)f0

W(X)a] (42a) 

= 2tr[l2(A)d] 

Vx=N1+N2-N3-N4=[L2 + L4)Zkx 

= 2tr[f0
m(A)f0

W[X)a] <42b) 

= 2tr[7,(X)a] 

VA=N1-N2-N3+N4 

^L1-L2)ZkA=[L3-L4)Zkx 

= 2tr[f0
(1)(A)f0

(1)(X)<r] 

= 4tr[/1(A)/ z(X)a] 

V7= N1+N2+ N3 + N4 

= 2tr\f^[A)T^[X)a 

(42c) 

(42d) 

= tr[£<y] 

This equation defines the magnetization modes in terms 
of the measurables of the system, L1, and the state 
populations of the system, NK. The NK eigenstate rep­
resentation also provides a conceptual link between the 
irreducible spherical tensor operators23 and the exper­
imentally defined modes in line intensities. The nor­
malized irreducible tensor operators for two coupled 
heteronuclear AX spins are T<0

0) (A) = TfJX) = E/V2, 
T^ (A) = V2I, (A) and ftf> (X) = V2IZ (X). Also 
given in (42) are the expressions for the_ various 
magnetization modes in terms of standard I1(I) spin 
operators and the identity operator, E. 

Multiplet magnetization modes have the following 
meanings. The total number of spins is vT. The z 
magnetization measured for either the A or X spins 
becomes vA or ux> respectively. Finally, a multiplet 
difference mode, u,A, may be recognized in either the A 
or X spectrum as the difference between either the A 
or X doublets, respectively. These magnetizations 
modes each have quantum mechanic operators that 
may be evaluated in any representation by tracing with 
the spin-density matrix the appropriate zero projection 
angular momentum operator indicated in (42). The 
coefficients in front of the traces of (42) bring the op­
erators into correspondence with the measurables of the 
system. The fe, scaling factors in (42) depend on 
spectrometer parameters and carry no molecular sig­
nificance. They are essential in the fitting program, 
however, as a way to adjust for instrumental variations 
between experiments (see section V.B.I). 

The transformation given by (42) may be put in 
matrix form, T, as follows 

T = 

f+1 -1 +1 -Pi 

+1 +1 -1 -1 

+1 -1 -1 +1 

+1 +1 +1 +1 

(+1 +1 +1 +V\ 

-1 +1 -1 +1 

+1 -1 -1 +1 

-1 -1 +1 +1 

(43) 

(a) 

(b) 
WP)-^- / 

W1, 

l««>-

w„ 

(C) 
L 3 ^ 4 

L1L2 

Figure 2. For a 13CH (AX) spin system, part a shows the energy 
level diagram labeled by the eigenstates of the static Hamiltonian, 
H0. (The first label gives the state of the carbon spin and the 
second that of the proton.) The Lj indicate the allowed (Le., single 
quantum) transitions that appear similarly labeled in the sche­
matic spectrum (c). The interlevel relaxation rates are shown in 
part b. Note that IV0 and W2 correspond to zero and two quantum 
processes, respectively, and produce relaxation between levels 
where no allowed transitions producing spectral lines exist. 

to be used in converting (40) into simultaneous equa­
tions of the type specified by (39) as follows: 

d_ 
dt 

~vA~ 

Vx 
vA 

VJ 

'f PA <0 
{<> Px) 

0 0 

. ° ° 

0 

0 

i " 

0 

0 1 
0 
0 

0 J 

'"A ~VAH' 

Vx ~ VxH 
vA-vAH 
VJ ~ Vj (°°) 

(44) 

where the magnetization mode relaxation matrix, T = 
TWT"1, given explicitly in (44) has been partially block 
diagonalized. The value for uA(°°) is zero. Thus, the 
four coupled differential equations have been condensed 
into two coupled equations in vA and ux and single 
differential equations in vA and vT as follows: 

- J 1 = -PA[VA ~ VAH]-4.VX- VXH] 

dv ( 45 ) 

# = -a[ vA - VAH] ~PX[ VX - VxH] dt 

dvA 

dt ~ 

dVj 

-HVA 

= 0 

(46) 

(47) 

Equation 47 specifies the conservation of spins and 
therefore does not couple with the remaining equations. 
The composite relaxation parameters are related to the 
interlevel transition probabilities and given by 

PA = 
_ i -W2+2W1A+W0 

Px = ^7=W2+2W1x+W0 

a = L 
(48) 

= W2-W0 

i 
TM 

--2[W1 IA+W1x) 
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where the T1A and T 1 x designations refer to A and X 
relaxation times, respectively, and T1AX is a cross re­
laxation time. The T1AX relaxation parameter is re­
ferred to as the cross relaxation time, not to be confused 
with cross relaxation power densities, as it couples the 
uA and ux modes. These quantities govern the coupled 
differential equations in (45) first derived by Solo­

mon 109 

In (48) the T1A parameter is a relaxation time asso­
ciated with the multiplet difference magnetization and 
was discussed by Shimizu and Fujiwara110 and by 
Mackor and MacLean.56,111,112 More recent literautre 
is also helpful.65,113 While (45) requires a double ex­
ponential general solution, (46) has a single exponential 
solution in the T1A relaxation time. 

When relaxation due to anisotropy of chemical 
shielding is comparable to the dipole-dipole mecha­
nism, (19) allows for the possibility of correlated terms 
between the two mechanisms. For the AX case this 
correlation is manifest in nonvanishing T matrix ele­
ments connecting the uA in the symmetric manifold to 
uA and ux in the antisymmetric manifold. Thus, this 
coupling of the symmetric and antisymmetric modes 
invalidates the assumption of inversion symmetry in the 
spin Hamiltonian. This results in the observation that, 
for a system prepared in a state with only the antisym­
metric modes populated, magnetization may be seen to 
flow into the symmetric modes. Indeed, this has been 
observed in a number of systems.21,44'47,48,50,53,55'114 

Working with (26) through (28) and (33) through (35) 
provides the following relationships linking the terms 
in W to the following dipolar and random field power 
densities: 

W0 =K(${dip,cox-coA) 

W2 = KAX'(dip,a)x + coA) 

= 3JAX 

WIA =KA^(dip,(oA) + KA(rand,(0A) = ±JAX+2JA 

Wxx = K(^{dip,cox) + Kx{rand,(Ox) s^J^+Vx 

(49) 

The extreme narrowing dipolar and random field power 
densities given in (49) may be related to the symmetry 
transition parameters as follows: 

pA = 2JA^{(ox + mA) + J{^{<oA) + \JA^{cox-coA) 

Px =2/$(a>x + (O A) + JAX«°X) + \ JAX«°X-C°A) 

+4A1Vx) 

f JAX+ 4Jx 

r - or<2> 

(50) 

o = 2J™{cox + coA)-\J($«ox-coA) 

2. T 
3JAX 

^ = JAx{oyA) + J(
A\{cox) + AjA

l\coA) + Ajx
v\wx) 

= 2JAX+4jA+4jx 

Both the general and extreme narrowing limits for the 
symmetry relaxation parameters are given in (50). 

2. Nuclear Overhauser Enhancement 

The Solomon equation given in (45) also describes the 
very important nuclear Overhauser enhancement 
(NOE) experiment where A is observed while decou­
pling X. An extensive literature through 1971 on this 
valuable experiment is given in the comprehensive book 
by Noggle and Schirmer115 along with a theoretical 
treatment of the effect. In the classical AX treatment 
of NOE, ux is locked to zero under a strong saturating 
rf field and (45) becomes 

dv 
of- =-PA[^A- VAH] + ™X H 

= -PA VA-(I + VA{X})VAH 

with 

_ ovxH _arx 
nA[X]~ PAVAH' PAYA 

(51) 

(52) 

Equation 51 has a single exponential solution with a 
characteristic relaxation rate, pA = 1/T'1A, and its steady 
state solution (i.e., duA/d£ = 0) gives the following for 
iff: 

^ b y = ( I + ^ x , ) = NOE (53) 

The explicit dependence of the NOE upon the dipolar 
and random field power densities is obtained from (50), 
(52), and (53) as 

VA1X)= I^ 

2-/&)K+^)-j^)K-^) 
2J^x + (oA) + J^{wA) + \j^{cox-coA) + AjA

x\coA) 

JiA, 5/. AX 
YA JWJAX+1VA 

(54) 

Thus, J/A|XJ = 7X /27A in the limit where Jy^x » ;'A, but 
*?A|X| = 0 if A » JAX. 

B. The AX2 Spin System 

Equations of motion for the AX2 spin system have 
appeared in numerous places that treat the T transition 
matrix in a number of different ways.10,30,64,66,82,100,101,116 

The diversity in these treatments reflects evolving 
concepts on how to maximize the magnetization mode 
definitions, and at other times have reflected an at­
tempt to provide a type of normalization that leaves the 
T matrix symmetrical. When the equation of motion 
is expressed in modes that are traces of normalized 
irreducible operators a symmetrical T matrix is ob­
tained, but attempts to keep the modes in a one to one 
correspondence with normalized irreducible spherical 
operators defeat the purpose of finding operators that 
will describe a given set of measurables. The merits of 
using orthonormal sets of operators to derive the 
equation of motion in an operator basis are obvious to 
all familiar with these developments. However, having 
derived the equations, simple transformations into an 
optimal mode set are then required if the equations are 
to reflect directly the experimental quantities. Or-
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(a) IBHflW). 

|3> = ̂ (l««0>+l«0«» 

|2> = | / M -
\i)m\aaa). 

T , . „ IS)-J1(WaP)-Wa)) 
IL2 _ I i i _ | 4 > = ^ ( | a a^_|^ a > ) 

I U i 

(b) 
Lt L, 

Isotropic media 

L1 L1 

I L2 -Ih 
Li 

Anisotropic media LILA LcLm 

I -Ih 
Figure 3. For a 13CH2 (AX2) spin system, part a shows the energy 
level diagram labeled by the eigenstates of the static Hamiltonian, 
H0. (The first label gives the state of the carbon spin and the 
second and third that of the two identical protons.) The Lj 
indicate the allowed (i.e., single quantum) transitions that appear 
similarly labeled in the schematic spectrum (b). Note that in an 
isotropic fluid L2, L4, and L6 are each composed of two transitions 
having the same frequency, but in an anisotropic medium (e.g., 
a nematic liquid crystal) a doublet of doublets appears and each 
of the four transitions composing L4 and L5 is resolved. 

thogonality arguments cease to be of any great relevance 
if they create problems in the fitting procedures (i.e., 
give unequal statistical weight to otherwise equivalent 
measurements). Thus, we conform to only two re­
quirements. First, the maximum number of measura-
bles must appear within the mode set, and, second, we 
continue to employ the inversion symmetry, when ap­
propriate, of the Hamiltonian to achieve the greatest 
amount of factoring in T. There is no importance in 
maintaining a symmetrical T matrix if it compromises 
one of these requirements. 

Should the fitting be done in a mode set that weights 
the various line intensities or boundary conditions in 
a biased way, the statistical assessment of the data 
analysis will be distorted as the independent experi­
mental measurements should be given equal weight. 
Some of the mode sets in the literature have given more 
consideration to normalization conditions than to the 
numerical fitting methods required to extract the re­
laxation parameters. When a degree of arbitrariness 
exists in the choice of any specific mode, then we select 
modes that are orthogonal to the required set and most 
closely related to one of the irreducible spherical tensor 
operators.23 With availability of data on molecules in 
anisotropic media, came the recognition that the AX2 
case can provide up to six independent measurables 
when the X doublet breaks into a quartet in the pres­
ence of non-zero dipolar couplings.30 Partially oriented 
molecules dissolved in anisotropic media exhibit XX 
dipolar couplings that change the appearance of the X 
spectrum accordingly (see Figure 3). Spin inversion 

in the AX2 spin system, when not destroyed by inter­
ference terms, again factors the relaxation matrix into 
four by four antisymmetric and three by three sym­
metric matrices. 

In this review we have selected AX2 magnetization 
modes that are very similar to those of Werbelow et al.30 

These modes are directly defined with experimental line 
intensities thereby maintaining the intuitive physical 
interpretations that may be ascribed to each mode. Six 
of the seven selected modes correspond to the six po­
tentially available measurables. The AX2 set is given 
as follows: 

= N1-N2+N3+N^-N5-N6+N1-Ng 

= N1+N2-N1-Ni 

_ 1 [L1-L2 + L3) 
(55a) 

(55b) 

= N1-N2-N3-N4 + N5 + N6 + N1 - N 8 

= N1 - N2 - 2N3 + 2N6 + N7 - N8 

= N{ -N2 -N1 +N 8 

= N1 + N2 - 2 N 3 - 2 N 6 + N 7 +N 8 

ut-3s = ("triplet - 3NsmgietJ 

= Ni + N 2 + N 3 - 3 N 4 - 3 N 5 +N6 +N1 +N 8 

S»T = Ntotal 

= N1 + N2 + N3 + N4 + N5 + N6+ N1 +N 8 

where the lines, L;, are given in Figure 3 in terms of the 
energy level diagram for AX2. This figure also desig­
nates the corresponding labels for the eigenstate pop­
ulations, Nit used in (55). The kA and kx scaling pa­
rameters were discussed above for the AX case and 
retain their same meanings. 

The standard set of zero projection irreducible tensor 
operators for the AX2 case may be formed23 from the 
direct products of the corresponding irreducible tensor 
operators for the A spin as 

f0
((V) = E/V2 

f 0
(V) = V212(A) 

and for the degenerate X spins as 

T0^(X2) = E/2 

T$[X2) = 2i(X).i(*')/V3 

f0
(1) (X2) = [I2(X) + K[X')] 1^2 

f0
(2)(X2) = ^2[3I2(X)I2[X') - l(X) • I(X')}/V3 

These direct products form a natural set of quantum 
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mechanical operators that define the magnetization 
modes as follows: 

(a) (b) 

X = VStT[T0W(A)^(X2) a 

= 2tr[/z(A)a] 

%x=2tr[f^(A)f^(X2)c 

= tr[{l2(X) + iz{x')}d] 

a
U ± ,=2V3tr[ f 0

( 1 ) (A)f 0
( 2 ) (X 2 )a] 

= 4 tr [Z2 (ApI1 (X)I2 (X') -1(X)- I(X')} G 

(56a) 

(56b) 

Xo-=2tr |f0
( 1 )(A)f0

( 1 )(X2)CT 

= 2 Ir[Z1 (A)(Z1 (Jf) + Z1(X')) a ] 

s
U ± ± =2V3t r [ fW(A)f 0

( 2 ) (X 2 )d ] 

= 2tr[{3Z z(X)Z z(x ')-I(X)-i(x ')}a] 

V3 S =2V6t r [ f 0 W(A)f 0 W(X 2 ) a ] 

= 4tr[i(X)-l(x')a] 

svT=Str[f^(A)f^(X2)d] 

= tr[Ec>] 

The coefficients on the rhs of (56) are selected to give 
the correct linear combination of line intensities spec­
ified in (55) along with the corresponding combination 
of state populations, 2V;'s. Thus, the magnetization 
modes in (56) are expressed in terms of both irreducible 
tensor operators and standard single spin angular mo­
mentum operators. 

Note, svT again specifies the total spin population that 
is conserved and again decouples from the remaining 
equations. Six of the remaining seven coupled 
magnetization modes or dynamical variables in (55) and 
(56) are potentially measurable if one employs the 
benefit of anisotropic media to order the AX2 molecule. 
In isotropic media only four of the dynamical modes 
correspond to direct measurables. They are °vA, the 
total A magnetization; °ux. the total X magnetization; 
av+-+, the difference in intensity between the outer two 
lines and the inner line of the A triplet; and su+0_, the 
difference in intensity between either the two lines of 
the X doublet or between the outer two lines of the A 
triplet. Two other modes have clear meanings and can 
be measured in anisotropic media. These include the 
antisymmetric, av±T, mode that gives the differences 
specified by (55) between the lines of the X quartet in 
an anisotropic media. Similarly, the related sv±± mode 
in the symmetric manifold also gives a different com­
bination of these four lines within the X quartet. The 
line degeneracy of L '4, L"4 and of L '5, L"5 in isotropic 
fluids renders the °u±=F and 8u±± modes unobservable. 

>—'—T - \ 
\ ''W 

r i , 
' I A * I * 

I / /Wix 

Xr^ 

^ 2 A X 

1OAX ! 

* 

OAX 

I \ \ w' 
j • \ "2AX 

W 1^OAX \ 
"2XX: \ \ 

W 2 AX 

W V 1 "oxx A 

: W' / 

^ 2 X X ,-' ,-' , 

! / . / W2AX 

Figure 4. The interlevel relaxation rates corresponding to allowed 
transitions in the AX2 case are shown in part a, while those 
corresponding to zero and two quantum relaxation processes are 
shown in part b. 

Both of these modes may, in principle, be measured in 
anisotropic media as preferential ordering removes the 
degeneracies in the isotropic X doublet given by 
(L 4 + L"4) and (L'5 + L"5). Thus, it is convenient to 
construct a set of modes and general T matrix that can 
be used in both cases. The final mode 8V^38 differs from 
that given originally30 even though it corresponds to an 
irreducible tensor operator. Like svT, it has no inter­
pretation in terms of line magnetizations, but it does 
have an interesting meaning. The 8^38 mode tracks the 
populations of the six states with a triplet X spin 
multiplicity less three times the population of the two 
states with singlet X character. In the AX2 case, rf-
induced transitions between these two manifolds are 
symmetry forbidden, and thus selection rules prevent 
direct observation of the mode. It is interesting, how­
ever, that information on the excitation of 8U 3̂8 may be 
obtained in the dynamical fitting of relaxation data. 
The superscript labels the linear combinations of the 
populations as being either symmetric (s) or antisym­
metric (a) under the operation of spin inversion. 

Figure 4 defines the elements that appear in the 
Redfield matrix, W, as 

W = 

-W0 

wiA 
W1x 

w"x 

W2AX 

W2AX 

W2XX 

0 

W1A 

-wb 
W0AX 

WOAX 

w"x 

w;x 
0 

w2XX 

W1x 

W0AX 

-Wc 

Woxx 

W"A 

wU 
w{x 

w2AX 

w"x 
W0AX 

woxx 

-Wd 

w;A 

W"A 

w"x 

W2AX 

W2AX 

w"x 

W"A 

w{A 

-wd 
W0xx 

W0AX 

W"x 

W2AX 

w;x 

W{A 

W{'A 

woxx 

-wc 
W0AX 

W1x 

w2XX 
0 

w{x 

w;x 

W0AX 

W0AX 

- w b 

W1A 

0 

W2XX 

W2AX 

W2AX 

w"x 

W1x 

WlA 

-Wa 

(57) 

where 

wa = w1A + W1x + w{'x + w2AX + W2^ + w2XX 

wb = wlA + w;x + wi'x + w0AX + W0^ + w2xx 

wc = wiA + w"A + wlx + Wix + w0AX + w2AX + woxx
 (58) 

Wd = WiA + Wi'A + 2Wi'x + W0^ + Kx + WQXX 

Note, this W matrix is symmetric about both the di­
agonal axis and the antidiagonal axis (a property that 
reflects the inversion symmetry) and may be trans­
formed into a partially diagonalized T matrix using the 
information in (55) to obtain the following T matrix and 
its inverse, T"1: 



Spin-Lattice Relaxation of Coupled Nuclear Spins Chemical Reviews, 1991, Vol. 91, No. 7 1605 

T = 

. 

T - l 1 
1 " 2 4 

1-1 1 1 - 1 - 1 1 -1" 

1 1 0 0 0 0 - 1 - 1 
1 - 1 - 1 - 1 1 1 1-1 

1 - 1 - 2 0 0 2 1-1 
1 - 1 0 0 0 0 - 1 1 
1 1 - 2 0 0 - 2 1 1 
1 1 1 - 3 - 3 1 1 1 

1 1 1 1 1 1 1 1 

" 3 6 3 0 6 2 1 3 

- 3 6 - 3 0 - 6 2 1 3 
3 0 + 3 - 6 0 - 4 1 3 

3 0 - 9 6 0 0 - 3 3 

- 3 0 9 - 6 0 0 - 3 3 

- 3 0 - 3 6 0 - 4 1 3 

3 - 6 3 0 - 6 2 1 3 
- 3 - 6 - 3 0 6 2 1 3 

(59a) 

(59b) 

d 
dt 

"V 
> . 

"°r o~ 
o *r 

" au-a i>(~)" 

/u-SU(°o)_ 

The resulting partially diagonal T matrix and corre­
sponding differential equations become 

(60) 

with davT/dt = 0. The antisymmetric component of the 
T matrix is given in (61) and the symmetric component 
is in (62) (Chart I). The expressions for the various 
Ws in terms of the dipolar and random field power 
densities are 

+2J%cM + 2jf(cox) + 2Jxx[Oix) (63a) 

+2jx
l) (cox)-2 Jx^[COx) 

WOAX=\18K*X- (OA) + \JXAX{«>X-<°A) 

KAX=IJ^X-COA)-\JX%C{COX-COA) 

Woxx = 1 ^ ( 0 ) - $/£k(0) + 2jf\o) - 2Jx$(0) 

W2Ax = 2J<$(cox + coA) + 2JxW(Cox + coA) 
W2AX = 2J(j$(cOx + COA)- 2JxW(COx + COA) 

W2xx = 2J®(2cox) 

By using (63) in (61) and (62) the antisymmetric part 
of T given for power densities in extreme narrowing is 
given in (64) and the symmetric part of T is in (65) 
(Chart II). 

(63b) 

IV. Motional Diffusion Models 

A. General Historical Background 

The effect of molecular motion on nuclear spin re­
laxation has been treated in one of two ways. For a 
rigid molecule with three degrees of motional freedom, 
explicit expressions have been derived which relate the 
dipolar power densities to rotational diffusion param­
eters and the molecular geometry. Large flexible 
molecules, however, undergo overall diffusion as well 
as internal segmental motion. Coupling between overall 
diffusional motion and various internal motions pre­
vents the derivation of closed expressions relating the 
molecular dynamics directly to the NMR relaxation 
parameters. In this instance the NMR power densities 
are converted into standard Cartesian correlation times 
and compared with molecular mechanics calculations 
based on various approximations to the Langevin 
equation. Molecular potential functions which govern 
the segmental motion and frictional coefficients that 
control the diffusional liquid dynamics are then intro­
duced in the molecular mechanics to simulate the cor­
relation times obtained from the spin relaxation studies. 
The extent of agreement depends upon the approxi­
mations used in the Langevin equations and upon the 
suitability of the parameters that control the motional 
features. 

Early theories of rotational Brownian motion were 
proposed by Debye117 and by Perrin.118,119 These or 
similar methods have been used by a number of work­
ers120"126 to discuss the anisotropic motional dependence 
of single nuclear spin relaxation times. Woessner's 
expressions120'123 for the dependence of 1/T1 upon an­
isotropic molecular diffusion (i.e., spherical, symme­
trical, and asymmetrical) can be especially useful as 
they indicate the relative importance of various rota­
tional modes upon single parameter spin relaxa­
tion.48'61'78'79,127"130 The manner in which very rapid 
motion about a single axis (e.g., the principal axis of a 
methyl top) suppresses relaxation is clearly indicated 
in Woessner's work. Hubbard's131,132 evaluation of 
spherical harmonic correlation functions was helpful in 
developing expressions for treating the dipole-dipole 
interaction. However, the asymmetrical rotational 
diffusion expected for an AX2 methylene spin moiety 
requires multiplet relaxation parameters to have suf­
ficient information to characterize the anisotropic 
motional features. Using these concepts developed for 
general asymmetric diffusional motion, expressions for 
coupled spin relaxation parameters have been given by 
Grant and Werbelow.8,133 

B. Favro Diffusion Equation and Rigid Molecules 

To evaluate the spherical harmonic correlation 
function in (30) it must be first transformed into the 
molecular frame using the following standard expan­
sion: 

^r(O)) *?K<O))= 
(66) 

£«(fl(0)) D%,(a(t))) if > « ) YV(O 
nn 

where the Wigner rotation matrices, D^[Q(O)], are as 
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CHART I 

T = -

+ W 0 A X + W 0 ' A X 

+WM +Wu M 

+Wi IA 

T(W2AX +WiAX 

-WiAX) -W1 

W1A-W1'* 

-w. IA 

+W2AX +WiAX 

-W0AX-W0AX 

T(W2AX +WiAX 

+W0AX+WIAX l 

+W1x +Wlx 

+2W^x+AW2XxJ 

W, v -Wu IX 

T = 

j(-W2AX+W2
1AxI 

-W0AX+W0 AX 

+2WlA-2W{A 

-2W1^) 

\{W2AX +WiAX 

+W0AX +Wo AX 

+ 4 W 1 x + W 1 x + W 1 x 

+2W 1 X +4W 2 X X ) 

7(-W2AX + W2Ai 

+W0AX 'WoAX 

+3W 1 X -3W/ X ) 

W2A)C - W2AX 

+W0AX ~ W0AX 

+W1A - W1A 

-W1A 

J[W2AX ~ W2AX 

-WQAX + W0AX ) 

W\A +W\A 

+W1
1A+4WCx 

-JW2AX WAX 

—^W0AX -JWOAX', 

+WiA-W{A +Wu 

+2W^x -2W0XX 

-W2AX +W2AX 

-W0AX + W0AX 

ji-WiAX+WiAX 

+WoAX ~ W0AX 

+ W 1 x - W 1 x ) 

W1x +WiX 

-2W1 x 

'2AX + W2AX 

+W1 

T(w\ 
' O A X + W 0 ' A X + 4 H V A 

+3W 1 x+3W 1 x 

-2W 1 X +4W 0 X X ) 

(61) 

K3W2AX+W2'^ 

-3W 0 AX-W 0 '^ 

+3W 1 x -SW 1V) 

2WiAX-IW0-AX 

\(W2AX +WiAX 

-3W0AX-W0
1AX 

+ 3 W 1 x - 3 W 1 x ) 

j(9W2Ax+WiAx 

+ 9 W 0 A X + W 0 ' A X 

+4W1^+9W,v+9W,'J "IX 

+ 2 W 1 x + A W 0 ^ ) 

7(2W2AJt + 2W0Av 

^ W 1 ; + 4 W 1 x 

-4W 0 X X) 

7 ( W 2 ' A X - W 0 ' A X ) 

7(W2Ax + W 0 'AX 

-2W1A +2W1 x 

-2W0XX) 

7 ( 4 W 2 A X + ^ OAX 

+4Ww +8W1 IX 

+4W0Xx) 

(62) 

given by Rose.11 In (66) the molecular geometry is 
incorporated in the time-independent terms, 
Yi2Hn^0W(SJf,01). The time dependence is found 
solely in the correlation function given by the 
(DM[Q(0)]D$q{Q(t)]) correlation function that may be 
expanded in a conditional probability expression as 
follows: 

at time zero it had the orientation Q0. Favro134 devel­
oped a method for obtaining P(fi0|Q,£) from the follow­
ing wave equation: 

dP(i20\a,t) 

Jt 
k=x,y,z 

R, kk ' P(ao\a.t) (68) 

D%(a(0))Dfi(a(t)) 

\\ P(O0)D^ (aQ)p(n0\nj)Dfq,{n)dnodci (67) 

P(Q0) is a normalizing term that also is the probability 
of the molecule occupying the orientation Q0 at time 
zero. P(Q0|Q>£) is a conditional probability that the 
molecule will have the orientation Q at time t given that 

where Lk is the angular momentum operator about the 
fcth axis and Rkk is the &th component of the diago-
nalized rotational diffusion tensor. Because (68) is 
analogous to the wave equation for the three-dimen­
sional rigid rotor,135 its solution may be cast into the 
following form:8'133 

P{ao\a.t)~ X<( f l 0 ) Vv(o)e"V (69) 
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CHART I I 

T = -

3T ' AX+*JA 

U XAX 

~ T J XAX 

IS. 
3 

-S- JAX 

10 
^'AX+VXX 

+4Jx 

4 / AXX 

~TJXAX +6JAXX 

2p_ 
3 ' 

H 

TJXAX 

H 
4 / ^ - 2 / X A X 

-JJAX +JJXAX 
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1 4 I —J J XAX 

-JJXAX+2JAXX 

U XAX + 2J xx 
+SJxx 

14 3 J AX + ̂  J XAX 

+U XX+4JA 
+ZJX+4JXX 

(64) 

T = 

16 
TJAX+^XX 

+^XAX 
+4JA+4Jx 

\-

—JAX +JJXAX 

+6JAXX 

10 , 1 0 , 
—•>AX ~—JXAX 

—J AX + ^J XAX 

+2JAXX 

20 +^-J AX +U XX 
iP-
3 +1Z-JXAX 

+SJX +4JXX 

J J AX -jJxAX 

20 20 OJ T OJ j 
—JAX -~JXAX 

+*Jx-*Jxx 

(65) 

where the h„ are the eigenvalues of (68) and the eigen-
functions are expansions of Df\ (Q): 

*U.j(fl)=5>.jX*(f l) 
k 

(70) 

Note, it is known that the DfI(Q) are the natural so­
lutions for the problem of the three-dimensional rigid 
rotor just as the Yf)(Q) are the solutions for the two-
dimensional rigid rotor. Using (70) in the set of equa­
tions (69) back through (66) gives explicit expressions 
for the spherical harmonic correlation function found 
for J?jki(wKX) in (27). This exercise is more than a trivial 
step, and the reader is referred to the literature8,133 for 
further details. Use is made of the angular momentum 
properties of DfI(Q) wherein these functions are si­
multaneously eigenfunctions of L2, Lf1, and L'ab. The 
orthogonality properties of DfI(Q) also greatly facilitate 
the evaluation of (67). The final set of expressions 
derived by this approach of Favro134 for the various 
dipolar power densities in terms of the molecular 
structure and the associated rotational diffusion con­
stants are given for the following three cases: 

1. Spherical Top Molecule 

Jijki(°>) = 

^k 
'^r{3[lulki+mijmki+nijnki) -1} 6R 

(6R)2 + co2 
(71) 

Remember that 

[MIiIl (25) 

The auto-correlation terms in (70) have ij = kl and 
(lijlki + rriijmki + ni;nA() = 1 for all internuclear vectors 
making the auto-correlated terms such as J^x inde­
pendent of the molecular geometry. However, when ij 
^ kl the cross terms, such as JXAX> W M depend upon 
the angle 6 between ij and kl in spherical top molecules 
because (lyl M + fn^ki + nijnki) = c o s #• 

2. Symmetric Top Molecule 

Jm(co) = kh{A, 6R1 

+B1 

^\"m(6R1f+co2 

5RL + /J,, 

(72) 

•ijkl • + c, 
2R± + 4#|, 

ijkl 
[5R± + R][) + co1 (2/?±+4/?H) +co 

The fin and R± are, respectively, the parallel and 
perpendicular rotational diffusion constants. The 
coefficients A, JB, and C contain the directional cosines 
I, m, and n (relative to the x, y, and z axes, respectively) 
for the ij and kl internuclear vectors and specify the 
molecular geometry as follows: 
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'4yw=(3n,y-l)(3nf/-l) 

Bijid = 12(/,j-/w + my-myj/tyny (73) 

Cijkl ~ 3 [1U1U + mumu) - [hjma ~ mijlki) 

A consideration of (72) and (73) indicates that auto- and 
cross-correlated power densities will depend upon how 
molecular geometry relates to the axes prescribed by 
the two unique rotational diffusion constants. 

3. Asymmetric Top Molecule 

J (ta\ - tut" L 6I I r h - c b3 
1D7T ^ fojZ+a/ I)2 +(O h 

V+ffl 

64 ^ 
+ C 4 T ^ I + C5 

b4
2 + co b5

2 + co2 

(74) 

The b( terms are eigenvalues of (66) and contain the 
rotational diffusion information as follows: 

bl=ARxt + Ryy + Rtz 

b2=Rxx+4Ryy+Rzz 

b3=Rxx+Ryy + 4RZZ ^ 

bi=6R + 64¥^^ 

b5=6R-6^R2-*2 

The following compacted rotational diffusion terms are 
needed to evaluate (75): 

R ~ 3[Rxx + Ryy + Rzz) 

=R2 = ^ R y y + RtxR2,+ RyyRzz) 

(*2-*2) = l ( 4 + t f 2
y + / ? 2 

~RxxRyy ~ RxxRzz ~ RyyRzz) 

It is often helpful to use reduced variables for the 
rotational diffusion constants and for the eigenvalues: 

(76) 

P« R„ Pl R1,' 

n
 R 

P = RZ 
C = JL 
Q Rzz 

(77) 

In these reduced variables, (75) and (76) become 

£2= P*+4Py + 1 

Pl=Px+Py+* (78) 

/J4=6p + 6Vp2-<T2 

where 

/35=6p-6Vp2-C2 

P = j[Px+Py + l) 

(P2 - C2) = i(Px +P2 -PxPy -Px- Py + l) 
(79) 

TABLE I. Geometrical Orientation of AX, AX', and XX' 
Bond Vectors 

bond vector Jy m^ n^ 

0 0 
-0 0 
1 0 

AX 
AX' 
XX' 

a 
a 
0 

by 
Finally, the various c; coefficients in (74) are given 

C1 = 12m0-mun0-nw 

C2 =
 l2lijki"ijnki 

C3 = 12/y/wm,7/nw 

C4 = d + ecos# + /VJ sin# 

C5 = d - ecos# - /VJ sin^ 

(80) 

with 

e = 1 - 3(/2W2, + Z2,™,2 + n , 2 ^ ) ( 8 x) 

/ = [3mlm2
u - 3I2JlI ~ 4 ~ mll + 1I + 1I) 

and 

COS£ 

sin x-

_[2R:z-Rxx-Ryy)_[2~PX-py) 

6V/?2-^2 6^p2 - C2 

V3(/?XI-/?>7)_V3(p,-py) 
(82) 

6 W - S t 2 6^P2 - C2 

Note, C1, C2, C3, d, e, and / specify only geometrical pa­
rameters of the spin systems, but c4 and c5 require a mix 
of geometrical parameters and the px and py reduced 
rotational diffusion terms. 

4. AX2 Asymmetric Top Molecule 

By selecting a specific spin case with the internuclear 
orientations in the molecule the directional cosines of 
(80) and (81) are specified, and explicit expressions may 
be obtained for the dipolar power densities. The cosines 
corresponding to the structure of an AX2 methylene 
group are given in Table I for a = cos (6/2) and 8 = 
sin (6/2) with 6 the XAX' angle. The remaining AX2 
geometric constants appearing in (79) and (80) are given 
in Table II with a± = (1 ± cos 6)/2. Note, explicit 
expressions in 6 are 4a+a_ = sin2 6; (a_ - a+) = -cos 6; 
and (&% + a?) = (1 + cos2 6)/2. As C1 = c2 = 0 two of 
the five terms in (74) are eliminated for the AX2 sym­
metry. Further simplification is also achieved in the 
extreme narrowing limit where 6; » o>. The general 
AX2 expression for the dipolar power density under 
these constraints is 

Jw[K<B>Px>Py) = 

SySu f C3(Q) [ cA[e,Px,Py) | c5(e,Px,Py)j
 (83) 

l6*R»\h{px.Py) Pi[Px-Py) Ps[Px-Py) J 

where K = (rf;r|(iJ«)_1 arises from the &;£*;/#« term, 
and the reduced rotational diffusion constants, px and 
py) are given in (77). 

A careful consideration of (83) along with Tables I 
and II indicates that the dipolar power densities are 
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TABLE II. Geometrical Parameters for Asymmetric Top 
Molecules 

Ci C2 Ca 

J A X 0 0 12o+a. 3 ( a + + o : ) - l 1 - 6 a + o . a . - a + 

</Xx< 0 0 0 2 1 1 
J*AX' 0 0 -12a+o_ 3(a+ + a?) - 1 1 - 6a+a. a_ - O+ 

</AXX' 0 0 0 3a. - 1 1 - 3a+ o_ 

Figure S. The molecule fixed coordinate system used in defining 
the reorientational parameters for an AX2 spin system is shown. 
The symbols, R1 and R2, represent arbitraryfunctionalities free 
of spins that couple appreciably to the AX2 system of interest. 

expressed in terms of six parameters: three rotational 
diffusion parameters, px, py, and Rzz, and the three 
molecular structural parameters, rCH, rHH. and 6. Un­
fortunately, only four independent dipolar J1S are 
available to evaluate these terms. The law of cosines 
provides a relation between rCH and rHH (i.e., r^H 
= 4a_rcn) no further relationships exist to reduce the 
number of parameters to four. However, careful in­
spection of (83) reveals that the sixth power of the in-
ternuclear distances always appears as a product with 
Rlt and only K may be determined from the experi­
mental spectral densities. Both Rzz and r^ can never 
be independently determined from the experimental 
spectral densities. Independent information on rCH is 
required to obtain all three rotational diffusion con­
stants, Rxx, Ryy, and Rzz. The fourth and final item of 
information may be either 6 or the ratio of internuclear 
distances, rHH/rCH. Thus, only the uniquely selected 
diffusion constant, Rzz, scaled by r6

H; the HCH' angle, 
0; and ratios px and py can be measured independently. 
Expressions relating the four power densities and the 
molecular structure and diffusion parameter, K, 6, px, 
and Py, are readily obtained from (83) and Table II. 

C. Flexible Molecules and Segmental Motion 

In flexible molecular chains, coupling of various 
motional degrees of freedom invalidates the rigid ro­
tational diffusion model. This difficulty is overcome 
in part by transforming the dipolar correlation functions 
into Cartesian correlation functions, and the results 
then compared with sophisticated molecular motional 
calculations using an approximate Langevin equation. 
In this approach the dipolar spectral densities are first 
transformed into standard Cartesian spectral densities 
where the symmetry axes of the AX2 group, given in 
Figure 5, serve as the reference frame. 

The normalized Cartesian correlation time, T1-, is de­
fined136 as 

m 

~ (T ,T At) = Aw qq 

i (T..>-T__. 

q,q (84) 
. . . . ) ri , • i , ) 

qq w 

where the Jm> is a power density of the correlation 

function in the irreducible Cartesian tensor, Tqq>, at zero 
frequency, and (Tqq^Tqq>) is a normalizing term that is 
2/3 when qq 'is equal to xx, yy, and zz and is V2 for qq' 
equal to xy, xz, and yz. The four dipole spectral den­
sities may also be expressed in terms of these Cartesian 
power densities136 as follows: 

,xx + a-" ^ yy,yy + ^a+a~^xx,yy 

'XX' 
H 

n \Jyy-yy\ 

.Hlx 
(85) 

J XAX'-SJT 

{a+2jxx,xx + a-2jyy,yy + 2a+a-Jxx,yy ~ 4a+a-Jxy,xy) 

j _ HAXSXX f r , T 1 
JAXX-~ Sn \a+Jxx,yy+a-Jyy,yyj 

where again a± = V2(I ± cos 6) with 6 the XAX' angle. 
These equations are obtained by projecting the spin-
spin vectors ry and rkl (where ij and kl represent the 
AX, AX', and XX' nuclear pairs) along the directions 
of unit Cartesian vectors (ex, a,, and e2) using the ir­
reducible tensor notation given in (84). The only cross 
term, Jxxc/y, in (85) may be eliminated by expressing it 
as a linear combination of auto-correlation functions136 

as follows: 

2Jxx,yy = •'zz.zz ~ •>xx.xx ~ Jyy,yy (86) 

One may now obtain an expression for the four auto­
correlation Jqq',qq', including the JlZiiZ of (86), in terms 
of the dipolar power densities by obtaining the inverse 
of the transformation given in (85). Note, at this point 
in the derivation all the Cartesian power densities are 
in an auto-correlation form, and it is convenient to drop 
the redundant indices. Applying the normalization 
condition in (84) to the Jqq& yields the normalized 
Cartesian correlation times in the measured dipolar 
power densities as follows: 

"yy 

4n 
„ 2 

• An 

JAX + J XAX' 

242AX 

'XX' 

a_2J XX' 2a_J 

4xx 
AXX' 

ZAXI XX 

Zxx 

In 
*y 3a+a_ 

J AX 

4AX 

JXAX' 

%AX 

(87) 

T„ = 
An 

\JAX+JXAX' .,. K ~a-fJXX' , 2ia+-a-)JAXX' 
%Ax4xX 242AX 4xx 

The dipolar spectral densities are thus transformed 
into Cartesian correlation times (rxx, ryy, TZZ, and rxy) 
and may be compared with standard statistical me­
chanical correlation times obtained from molecular 
mechanics. From the definition of rqq, rotations about 
the q axis do not contribute to the relaxation of the 
diagonal modes (i.e., TXX, ryy, and T«). Rather, these 
three modes relax by a rotational reorientation about 
either of the two directions orthogonal to the q axis. 
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Reorientational motion about all axes affects rxr Fuson 
et al.136 discuss this feature in some detail with attention 
given to the physical interpretation of these quantities. 
As auto-correlation times are generally easier to con­
ceptualize, the four Cartesian correlation times are more 
readily interpreted than the two auto- and two cross-
correlated dipolar NMR terms obtained experimentally 
from AX2 relaxation measurements. 

V. Coupled Relaxation Experiments 

In this section a few examples of multiplet relaxation, 
taken from the authors' work, are given to illustrate the 
nature of the experiments and types of longitudinal 
relaxation data that are obtained. The various ways in 
which the spin systems may be perturbed and a brief 
summary of the computer fitting programs are pres­
ented. 

A. Spin Preparation Steps 

A variety of initial spin perturbations are typically 
used in 13CH2 multiplet relaxation studies to displace 
the spin system from equilibrium. Following each of 
these initial spin preparations, the system is allowed to 
evolve for a time, D2, followed by a 90° observe pulse 
in the 13C domain. The resulting free induction decay, 
FID, is then collected and Fourier transformed to yield 
the partially relaxed line intensities. The proton de­
coupler channel, which remains off during the FID in 
all experiments, is used in many of the experiments as 
a proton pulse generator during the spin preparation 
period. 

Five different types of spin preparations are illus­
trated for l-decanol-l-13C dissolved in perdeuterated 
diglyme at 273 K, as follows: (1) 13C hard pulse, (2) 1H 
hard pulse, (3) 1H soft pulse, and two closely related 
multiple pulse perturbations (4) V pulse and (5) ~J 
pulse. Magnetizations are expressed in units of the total 
carbon magnetization at thermal equilibrium. The 
experimental points in each experiment are compared 
with the least-square fits obtained by adjusting the 
parameters of the coupled relaxation equations (see 
section V.B.). It is important to note that all five of 
these data sets are regressed simultaneously to accu­
rately determine all the parameters in the relaxation 
model. When one does fit all five experiments simul­
taneously, the difference between the experimental 
points and calculated fit lines seldom exceeds 1% of the 
total carbon magnetization. Each experiment is de­
signed to perturb significantly one or more of the sev­
eral magnetization modes, so that, overall, a significant 
amount of magnetization is caused to flow through as 
many available relaxation pathways as possible. 

7. Carbon Hard Pulse 

In the 13C coupled inversion recovery experiment, 
shown in Figure 6, a carbon 180° pulse inverts all three 
lines of the carbon triplet. The overall 13C magnetiza­
tion mode, avc, negated under the pulse, then returns 
to equilibrium. Because the "vc mode is coupled to 
three other modes in (60), the decay is, in principle, 
multiexponential; but the 1:2:1 equilibrium ratio of 
relative intensities of the 13CH2 multiplet is only min­
imally perturbed as the inverted multiplet relaxes to 
equilibrium. As illustrated by these data, it is often the 
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Figure 6. (a) A series of partially relaxed 13C spectra obtained 
at vaious times, D2, after application of a nonselective pulse to 
invert the triplet of the labeled carbon of CH3(CH2)8

13CH2OH. 
The data were obtained in deuterated diglyme at 273 K. (b) 
Experimental values of magnetization modes taken from these 
spectra compared to the values predicted by the nonlinear 
least-squares fit of the relaxation model discussed in the text The 
symmetric manifold is not observably perturbed in this experiment 
and is not shown. 

case that the traditional 13C inversion recovery exper­
iment can be rather accurately approximated by a single 
effective T1 relaxation parameter. However, considered 
in the context of the overall equations of motion, the 
observation that appreciable magnetization does not 
accumulate in the other measured modes under this 
perturbation places significant constraints on the values 
of all elements of the T matrix but accurately fixes the 
value of T 1 1 and makes significant inferences regarding 
the value of T13. 

The boundary conditions at t = 0 and t = <*> which 
are used for the °u and "v magnetization vectors in this 
experiment are given by 

3D(O) = 

-«11 

G 

Su 

.Su] 

0 D H = 

Aan+ Sn 

0 
0 
0 

V-) = 

1 
G 

Su 

[Sn 

8U 

0 
0 
0 

(88) 

SD(0) = 

where G - 7H/7C
 an^ the efficiency of the overall 

magnetization inversion used in this experiment to 
perturb the spins from equilibrium is a u . A well-ex­
ecuted experiment would yield a o u value that ap­
proaches unity. The Aa11 parameter models a differ­
ential pulse efficiency for the 8V+0. mode that can occur 
if the two outer lines of the triplet are not equally 
perturbed. The 5n and S12 parameters reflect the fact 
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(a) 

(b) 

Figure 7. (a) A series of partially relaxed 13C spectra obtained 
at various times, D2, after application of a nonselective pulse to 
invert both of the lines corresponding to the protons attached 
to the labeled carbon of CH3(CHj)8

13CH2OH. The data were 
obtained in deuterated diglyme at 273 K. (b) Experimental values 
of magnetization modes taken from these spectra compared to 
the values predicted by the nonlinear least-squares fit of the 
relaxation model discussed in the text. 

that the spectrometer receiver system may not have 
constant gain across the spectral width leading to small 
distortions of the multiplet. This in turn causes the 
magnetization modes that would otherwise relax to zero 
to retain a small but finite value at equilibrium. Dis­
tortion of the center line relative to the average of the 
outer two lines of the triplet affects °u+_+ and is given 
by Sn, and the corresponding distortion between the 
two outer lines of the triplet affects "v+(h and is given 
by S12. In a well-executed experiment, both S11 and 512 
should approach zero. When S12 is close to zero and 
when no significant contribution of Aa11 to

 sv+(y is in­
troduced by the carbon hard pulse, a condition easily 
monitored in this experiment, the inclusion of 3v data 
becomes irrelevant to the fitting process and there is 
no need to employ either the Aa11 or the S12 parameters. 
In fact, any of these parameters associated with artifacts 
of the measurement process may be set to some pre­
determined value and not iterated in the fitting process 
if they are known a priori. However, failure to recognize 
their influence on the fitting process has been found to 
lead to significant systematic trends in the residuals. 
Additional discussion of these issues is included in 
section V. B. 

2. Proton Hard Pulse 

In the proton hard pulse experiment, a nonselective, 
high power 180° proton pulse is applied at the middle 
of the proton doublet to invert simultaneously both 
proton lines. Initially the 13C multiplet has its thermal 
equilibrium structure and intensity, but the complete 
13CH2 spin system is now far from equilibrium with the 
lattice. As the spins return to equilibrium, shown in 
Figure 7, the two observable 13C antisymmetric 

magnetization modes that appear in the equation of 
motion are first populated and then depopulated. 
During this process, the original 1:2:1 13C multiplet 
undergoes significant distortion as the °u+_+ mode de­
velops in time. This case is quite novel as the original 
13C triplet has the same 1:2:1 structure at t = 0 and at 
t = oo but passes through a variety of other intensity 
patterns for intermediate values of t. None of the other 
experiments exhibit the importance of coupled relaxa­
tion involving multiple exponential recovery more 
clearly than this one. The pattern never develops sig­
nificant unequal intensities for the outer lines of the 
triplet indicating (1) that the proton pulse was well 
executed and no significant su+0_ magnetization is in­
troduced and (2) that the symmetric and antisymmetric 
magnetization modes are indeed not coupled. If 
cross-correlation terms between dipole-dipole and 
chemical shielding anisotropy were important, one 
might detect a break in the inversion symmetry and a 
coupling of the two manifolds. 

The boundary conditions for the proton hard pulse 
experiment are given by 

0D(O) = 

1 
-Ga21 

S21 

. 521 

%(-): 

1 ' 
G 

S2\ 
S2\. 

(89) 

GAa21+ S22I 

0 

0 

0 

V-) = 

522 

0 

0 

0 

SD(0): 

The overall pulse efficiency is given by a21 while S21 and 
S22 have the same meaning as S11 and S12, respectively, 
from the carbon hard pulse experiment. The first 
subscript designates the experiment and the second is 
a serial index within the experiment. As before, if the 
experiment is well executed, Aa21 is close to zero, the 
sy+0_ is left unpopulated, and the fitting of the sym­
metric manifold becomes unnecessary. However, if any 
asymmetry is introduced into the proton doublet by the 
pulse, it will be manifested in su+0_ as measured in the 
carbon spectrum magnified by a factor of G. In those 
cases where the symmetric manifold is included in the 
fit, values for both Aa21 and S22 must be obtained. 

3. Proton Soft Pulse 

In the 1H soft pulse experiment a low-power proton 
pulse is used to selectively invert one of the two proton 
lines, and the effect on the 13C multiplet may be ob­
served in Figure 8. This perturbation affects the 13C 
multiplet due to a 1H to 13C polarization transfer (dis­
cussed initially by Jakobson137). The width, amplitude, 
and frequency of the pulse are adjusted to yield the 
ideal 9:2:-7 carbon multiplet magnetization response 
expected for this polarization transfer. The instru­
mental adjustments involve striking a compromise be­
tween the low power required to focus the spin per­
turbation only on one proton line while maintaining 
sufficient power to complete the spin preparation in a 
time short compared with the spin relaxation processes. 
Reasonably short relaxation times encountered for alkyl 
chain molecules require intermediate power (soft) 
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(a) 
. IQOHz 

3-° D2(sec.) 

(b) 

Figure 8. (a) A series of partially relaxed 13C spectra obtained 
at various times, D2, after application of a selective pulse to invert 
one of the lines corresponding to the protons attached to the 
labeled carbon of CH3(CHj)8

13CH2OH. The data were obtained 
in deuterated diglyme at 273 K. (b) Experimental values of 
magnetization modes taken from these spectra compared to the 
values predicted by the nonlinear least-squares fit of the relaxation 
model discussed in the text. 

pulses.138 Even these soft pulses have bandwidths that, 
unfortunately may spread over more than one line of 
a multiplet. 

To deal with this problem effectively, perturbing rf 
fields are often used that affect significantly both lines 
of the proton doublet. By applying the pulse exactly 
on resonance for one line of the doublet and tailoring 
the amplitude of the perturbing pulse to the value of 
the carbon-proton scalar coupling constant so that 
7B2 = JQH/VZ, the decoupling power can produce a 
360° pulse on the off-resonance proton line, returning 
it to its original position, while rotating the on-reso-
nance line through only 180°. Another, perhaps sim­
pler, way to state this condition is that the amplitude 
of the proton rf field must be adjusted to produce a 
180° pulse on-resonance in a time equal to V3/(2JCH). 
A related though not identical initial condition could 
be achieved by using the familiar INEPT pulse se­
quence to perturb the symmetric manifold. 

The boundary conditions for the proton soft pulse 
experiment are 
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Figure 9. (a) A series of partially relaxed 13C spectra obtained 
at various times, D2, after application of the +</ pulse sequence 
shown in Figure 11 to the labeled carbon of CH3(CHj)8

13CH2OH. 
The data were obtained in deuterated diglyme at 273 K. (b) 
Experimental values of magneitzation modes taken from these 
spectra compared to the values predicted by the nonlinear 
least-squares fit of the relaxation model discussed in the text. 

The a's and 5's have analogous definitions to those in 
the two previous experiments. If one assumes that the 
preparation pulse leaves the sum of avH and 8u+0_ in­
variant in spite of any small imperfections, then Aa31 
= 1 - a31. Interestingly, all three measurable 13C modes 
vary significantly in this experiment as both the sv+(h 
and the auH modes are displaced appreciably from their 
thermal equilibrium values in the spin preparation 
phase of the experiment. Thus, both the antisymmetric 
and symmetric manifolds are significantly stimulated 
by this pulse; none of the other pulse preparations 
produce such extensive excursions in both the anti­
symmetric and symmetric manifolds. 

4. J Pulse Excitation 

This class of experiments involves a pulse sequence 
similar to that used for 2D J spectroscopy.139 Shown 
in Figure 9 is the inversion of the center peak of the 13C 
triplet by a V pulse while the outer peaks are left un­
perturbed. In Figure 10 the outer peaks are inverted 
by a V pulse without disturbing the center peak.140,141 

Both of these perturbations leave the "u+-+ and °u±T 
mode far from equilibrium in contrast to the first three 
experiments discussed above. 

The pulse sequence for the ±J pulse experiment is 
given in Figure 11. During the preparation period, a 
(ir/2)+x pulse tips the carbon magnetization along the 
+y axis in the rotating frame. At time T = l/(4/CH) the 
three vectors corresponding to a carbon triplet are 90° 
out of phase. Simultaneous application of 7r+y pulses 
to both the carbon and proton spins refocuses the 
chemical shift and field inhomogeneity, but the spin 
system continues to evolve under scalar coupling. When 
the refocusing is completed, after another T period, the 
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(a) ^ * - H 
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8.0 12.0 16.0 
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Figure 10. (a) A series of partially relaxed 13C spectra obtained 
at various times, £>2, after application of the ~J pulse sequence 
shown in Figure 11 to the labeled carbon of CH3(CH2)8

13CH2OH. 
The data were obtained in deuterated diglyme at 273 K. (b) 
Experimental values of magnetization modes taken from these 
spectra compared to the values predicted by the nonlinear 
least-squares fit of the relaxation model discussed in the text. 

it 
2{x) n[y) 

T 

4(±x) 4(x) 
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Figure 11. The J pulse sequence used to obtain maximum initial 
excitation of "«>+-+. The V and 'J forms of the experiments are 
determined by setting the phase of the second ir/2 carbon pulse 
to +x or -x, respectively, T = 1/(4JCH)> and D2 is arrayed so as 
to monitor the relaxation process. 

multiplet magnetization vectors have evolved to an 
antiphase configuration along the y axis (i.e., the inner 
and outer lines are 180° out of phase). A (ir/2)+x pulse 
for the V pulse or a {ir/2)_x pulse for the "J pulse then 
rotates the carbon magnetization to the z direction. At 
this point the system is allowed to relax for a time, D2, 
after which a final (ir/2)+x carbon observation pulse is 
applied to convert the resulting longitudinal magneti­
zation into transverse magnetization to obtain the FID. 
An array of D2 values monitors the time-dependent 
return of the magnetization to thermal equilibrium. To 
minimize the accumulation of systematic errors, the 
preparation and read pulses along with the receiver 
phase are independently cycled through the four qua­
drature phases to produce a 16-step phase cycle. The 
two J spectral experiments, though related, yield av+_+ 
magnetizations that are opposite in sign (compare 
Figures 9 and 10). It is noteworthy that the av+-+ in the 
~J pulse experiment goes through a positive excursion 
before decaying back to zero. Similar dramatic multiple 
exponential behavior is also exhibited by °v<> 

The boundary conditions for these two J pulse ex­
periments can be summarized together as follows: 
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VO) = 

The a±2 represents the efficiency of the proton 180° 
refocusing pulse, a±1 is the overall efficiency with which 
the J pulse sequence generates the magnetization ob­
served in the carbon spectrum. The other parameters 
are defined analogously to the previous experiments. 
Again, if Aa±2 affecting su+0_ is zero in an optimal ex­
periment, then only the antisymmetric manifold will be 
relevant to the fitting. All four antisymmetric modes 
in this set of experiments are displaced significantly 
from their equilibrium values and, therefore, should 
reveal information on all significant relaxation path­
ways. The symmetric manifold shows no perturbation 
in either Figure 9 or 10 indicating that the J spectral 
pulses are effective only in the antisymmetrical mani­
fold. While this information is important in assessing 
the quality of the experiment it is not used in the fitting 
program. 

5. The Importance of Diverse Spin Perturbations 

The accuracy with which the various spectral den­
sities can be measured from the above set of experi­
ments is obviously limited by the overall signal-to-noise 
in the various 13C spectra from which the line intensities 
are determined. However, the accuracy of any given 
power density can be further enhanced or degraded by 
the nature of the experiments used to perturb the spin 
system from equilibrium. Failure to adequately perturb 
a given mode may leave some of the relaxation channels 
unutilized. If certain spectral densities appear only in 
the relaxation matrix elements corresponding to these 
poorly utilized channels, they also will be poorly de­
termined. In early AX2 studies only three experiments 
(namely, the proton soft pulse, the proton hard pulse, 
and the standard 13C inversion-recovery experiments) 
were used to perturb the spin system from thermal 
equilibrium (see for example Mayne et al.66). As a 
consequence a maximum perturbation is created for the 
"vc, "vH, and 8V+0. modes. However, considerable benefit 
can be realized in perturbing the °i>+-+ mode from its 
thermal equilibrium state using the ±J pulse sequence 
discussed above. Significant improvement in the ac­
curacy of determining the relaxation parameters was 
achieved by adding data from the *«/ pulse experi­
ments,140 and the marginal standard deviations for J^w 
and jH

 aie reduced accordingly. These improvements 
are realized because unfavorable correlations between 
the pairs (</HH'> 7HH')

 a n d 0H> 7HH')
 a r e reduced. Inclu­

sion of ^J pulse data also results in more rapid con­
vergence of the computer fitting procedure. The per­
turbation created for the 0U+-+ and °u±=F modes with the 
±J pulses, particularly at short times, emphasizes re­
laxation channels in the coupled differential equations 
with a stronger dependence on jH and ;'HH' a s m a y be 
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noted in (64). Further improvement in the determi­
nation of the proton power densities would likely follow 
from the availability of proton magnetization data. 
Unfortunately, the strong proton resonances due to 12C 
molecules usually interfere with the direct use of proton 
multiplet data. 

B. The Computer Fitting Programs 

The problem of extracting values for the spectral 
densities from the relaxation data consists of, first, 
solving the differential equations under the appropriate 
boundary conditions for the experiments performed 
and, second, using nonlinear regression techniques to 
fit these solutions to the experimental data. Both of 
these steps must be accomplished numerically, and a 
fairly powerful digital computer is required to complete 
the task in a reasonable time. In order for the regres­
sion analysis to fix the values of all the relevant spectral 
densities, experiments using a variety of boundary 
conditions must be regressed simultaneously. The re­
sults shown in Figures 6-10 were obtained by regressing 
all the data shown simultaneously. Decatur et al.46 have 
explored this complication of coupled relaxation in some 
detail for some of the two spin cases involved in their 
work. The regression analysis produces a covariance 
matrix giving an estimate of the errors in the values of 
the parameters. One must also examine the residuals, 
i.e., the differences between the computed and the ex­
perimental values of the data, for systematic errors 
indicating aspects of the data not explained by the re­
laxation equations. Certain practical considerations 
require the introduction of additional parameters to 
reduce these systematic errors to acceptable levels. Our 
normal criterion is that the systematic component of 
the residuals must be less than or at least not much 
greater than the random component. 

/. Instrumental Fitting Parameters 

A variety of parameters other than the spectral den­
sities are incorporated into the fitting routines to ac­
commodate the instrumental imperfections in the ex­
periments. For example, each separate experiment in­
cluded in the fitting procedure must have its own in­
tensity scaling parameter, kit given, for example, in (42) 
and (56) to model the effects of amplifier gain and the 
other arbitrary variations in the instrumental mea­
surements. Imperfections in the perturbing pulse also 
need to be introduced in the boundary conditions for 
the several experiments discussed in section V.A. For 
example, the limitations on creating an idealized 180° 
spin inversion are parameterized with an a,-. These 
values, which approach unity for perfect spin prepara­
tions, should be at least above 0.9 for a well-executed 
experiment. The Aa1 are also pulse imperfection pa­
rameters normally taken to be zero and often associated 
with the symmetric manifold when the symmetric 
modes are unintentionally perturbed from equilibrium. 
They are given in (88) to (91) to allow for inclusion of 
data from slightly less than optimized experiments. 
When the Aa; become appreciable this indicates that 
serious problems exist in the experiment and may in­
dicate that such data should be excluded from the fit­
ting procedure. Finally, a set of parameters, 5it is in­
troduced to account for the instrumental distortions of 
the various triplet lines that appear even in the equi­

librium multiplet structures. For example, when one 
measures the thermal equilibrium carbon spectrum of 
a 13CH2 group, the intensities may differ by a few 
percent from the expected 1:2:1 ratio, and this imper­
fection will produce clearly discernible systematic errors 
in the residuals. In a perfect experiment the 5, would 
be zero, and, therefore, these parameters also must be 
small if the instrument is operating under favorable 
conditions. 

2. Historical Evolution of the Fitting Programs 

It is appropriate to summarize briefly the develop­
ment of computer programs used in the fitting proce­
dures. The sophistication of these codes evolved as 
newer concepts emerged and improved experimental 
methods provided better data. The initial AX2 fitting 
program, recorded in Mayne's thesis,142 was written in 
the early 1970's. This code, which is no longer extant, 
ignored the random field cross terms given in (34) and 
(35). It also incorporated only an approximate treat­
ment for the observation of the 13C inversion recovery 
under proton decoupling.66 The decoupling approxi­
mation worked well in this simple decoupled inversion 
recovery experiment because only the T11 and T12 terms 
tend to influence the recovery of "vc under NOE 
steady-state condition. This initial code was similar to 
a program prepared in the late 1970's by Prestegard and 
Fuson,143 and the two codes gave comparable fits on the 
same data. 

The second Utah code, referred to as the line inten­
sity fitting (LIF) routine, was prepared towards the end 
of the 1970's and described by Chenon et al.144 The LIF 
code treated individual line intensities rather than 
magnetization modes as the dependent variables of the 
equation of motion and, differing appreciably in its 
structure from the initial fitting programs, it was used 
as an independent confirmation of the accuracy of other 
existing codes. The manner in which boundary con­
ditions are incorporated in the LIF is different, and an 
alternative set of library routines for matrix manipu­
lation was used. 

A new code, entitled the magnetization mode fitting 
(MMF) routine was created in the late 1970's using 
REDUCE, a computer program for doing symbolic 
mathematical manipulations, to derive the relaxation 
equations and boundary conditions with decoupling. 
The output of REDUCE included FORTRAN codes for the 
MMF program. The MMF program, compared in the 
work of Chenon et al.144 with the results of the LIF 
method, exhibited satisfactory agreement between the 
two programs. The discrepancies between the MMF 
and LIF program in the 13CH2Cl2 work were sufficiently 
minor that they were attributed to rounding errors. 
The sets of parameters obtained from the two programs 
generally agreed within their estimated marginal 
standard deviations. The MMF routine uses the 
magnetization modes of (55) and (56) and may therefore 
be used to fit molecules dissolved in either isotropic or 
anisotropic fluids. 

VI. Diffusion In Rigid and Flexible Chain 
Molecules 

Carbon-13 magnetic resonance (CMR) relaxation 
methods, historically, have provided a powerful tech­
nique for studying molecular dynamics in organic com-
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pounds,145 but coupled spin methods have greatly en­
hanced the motional information available from such 
studies. A reasonably good variety of small to medium 
molecules have now been studied in low viscosity li­
quids, including 13CH2(CN)2,84 13CH2I2,65 

13CH2Cl2,
83'144-146 various chlorobenzenes,96-99'147 cyclo­

propane,148 cyclopropanone,55 nonane,149 and 1-deca-
n o l i4o,Hi c0Upie(i Spin relaxation measurements also 
have exhibited very high promise in solutions of biom-
olecules,150,151 and other macromolecular systems.152-154 

In these larger molecules internal degrees of motional 
freedom are very important to an adequate discussion 
of the molecular dynamics and, hence, to spin relaxa­
tion. Molecules dissolved in anisotropic media such as 
nematic phases exhibit more resolved transitions for 
simple spin systems due to the incompletely averaged 
first order dipole-dipole couplings. Motional con­
straints imposed by this anisotropic lattice provide very 
interesting systems for dynamic studies, and a number 
of workers have explored such systems.29'34'35'155-157 

Relaxation measurements in anisotropic media provide 
correlation information on both spatial and orienta-
tional relationships affecting the molecular motion. 
Data on rigid methylene halides and the flexible chain 
molecules, nonane and 1-decanol, illustrate the types 
of molecular dynamical information that is available in 
coupled spin studies. 

A. Rigid Methylene Hallde Molecules 

The first extensive longitudinal relaxation study of 
a coupled AX2 system involved the measurement of 
magnetization modes as a function of time for methy­
lene iodide, 13CH2I2.

66 Following the prescription out­
lined above, values for the four dipolar spectral densities 
(JCH, J11H, JCHH» ^HCH) ^ d two random field terms, 0C 
and ;'H = ;HH) under extreme narrowing conditions were 
extracted from the time development of the magneti­
zation modes. The spin system was prepared using the 
carbon hard pulse, proton hard pulse, and proton soft 
pulse. Data under full proton decoupling for a standard 
inversion recovery experiment and for an evolution of 
the system from thermal equilibrium to a fully devel­
oped NOE were also included in the least-squares 
analysis in the methylene iodide study. When this work 
was done in the early 1970's, equipment capable of 
gating the decoupler on and off during various parts of 
the pulse sequence was generally unavailable, so only 
the total carbon magnetization was obtained from the 
latter two experiments. Under these conditions the 
transient behavior of the auc mode is essentially con­
trolled by T11. Later, data on 13CH2Cl2 were obtained 
under similar conditions to those of 13CH2I2 except that 
instrumental development by this time allowed gated 
decoupling data to be acquired.144'146 Both methylene 
halides had a 13C spin enrichment of about 90%, and 
their concentration is 13.5 mol % for 13CH2I2 in pe.r-
deuterobenzene and is 8.3 mol % for 13CH2Cl2 in carbon 
disulfide solution. Typical values of the dipolar power 
densities for these two methylene halides are contained 
in Table III. 

At the time the data in Table III were taken, the 
auto-correlated, ;H, and cross-correlated, iHH> random 
field terms were treated as equal, i.e., random fields at 
the positions of the two protons were assumed to be 
fully correlated. Therefore, only a single value for ;'H 
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TABLE III. Methylene Halide Spectral Power Densities" 

power 
densities" 

^CH 

"̂ HCH' 
^HH' 

./CHH' 

Jc 
JH ~ JHH' 

193 K 

15.6 
4.1 

13.1 
10.1 

~0 
3.2 

13CH2Cl2
6 

233 K 

7.4 
1.6 
6.1 
4.8 

~0 
1.4 

272 K 

4.4 
1.0 
3.4 
2.8 
1.3 
1.2 

309 K 

3.3 
0.7 
2.4 
2.0 
2.0 
1.1 

13CH2I2:' 
300 K 

10.0 
2.0 
9.4 
6.8 

15.1 
3.4 

° All values of J are given in ks"1. To obtain units of s"1 multiply 
all values for J"% by 10~3. b Chenon, Bernassau, Mayne, and Grant 
(ref 144). c Mayne, Alderman, and Grant (ref 66). 

and ; H H is reported. This locking of the two terms 
together produced no apparent systematic discrepancies 
in the fits. Several trends may be noted in the data of 
Table III. First, the power densities for the 13CH2I2 
molecule are larger than 13CH2Cl2 at the same tem­
perature as might be expected for a molecule with larger 
moments of inertia and a larger cross-section for in­
teraction with the solvent. Besides larger dipolar efs 
in 13CH2I2, the relative magnitudes of the four dipolar 
J's form a reasonably consistent pattern for both 
13CH2I2 and 13CH2Cl2. For example, the ratios of 
«^CH:^HH:^CHH:^HCH

 a r e quite similar for 13CH2I2 
(4.71:3.43:2.86:1) and 13CH2Cl2 (3.45:3.24:2.43:1) even 
though the overall magnitudes for the 13CH2I2 dipolar 
J's are 3 to 4 times larger than those for 13CH2Cl2. One 
must lower the temperature on 13CH2Cl2 by about 80 
degrees to have comparable motional regimes for the 
chlorine molecule relative to that of the iodine. This 
difference will be influenced by changes in the solvent 
due to variations in viscosity and the extent of slip 
versus stick boundary conditions governing the hydro­
dynamics. 

The significant values measured for the two cross-
correlated power densities, JQUH

 a n d ^HCH> clearly in­
dicate the importance of multispin cross terms in the 
spatial correlation functions used in coupled spin sys­
tems and documents the inadequacies of traditional 
relaxation studies that ignore these terms. Thus, the 
historically prominent proton decoupled carbon inver­
sion recovery experiments leave most of the relaxation 
information undetermined. 

The random field terms also show significantly 
larger values for 13CH2I2 relative to 13CH2Cl2, i.e., 
;?(

13CH2I2)/Jc(13CH2Cl2) = 7.5. Two possible explana­
tions for this difference are that the spin-rotation re­
laxation is more efficient in 13CH2I2 because the R11 
reorientational motion about the I-I or z axis is more 
persistent thereby increasing the spin-rotation corre­
lation time, rsr. This change in rar would increase the 
spin-rotation contribution. Spin rotation in methyl 
groups has been studied in a variety of systems and the 
principles are discussed in these works.85-87,158-160 Also, 
it is known that the scalar coupling between 13C and the 
quadrupolar 127I provides a more efficient relaxation 
mechanism than does that between 13C and the quad­
rupolar Cl magnetic isotopes. The decline of j c as the 
temperature is lowered in 13CH2Cl2 further indicates the 
importance at higher temperatures of the spin-rotation 
mechanism in 13CH2Cl2. Note, at the two lowest tem­
peratures j c =» 0 and the relaxation of the 13C nuclide 
is dominated totally by dipolar relaxation terms. Re­
cently, Chenon, Coupry and Bernassau83 have studied 
13CH2Cl2 in deuterated and protonated solvents to de-
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TABLE IV. Rotational Diffusion Constants in Methylene 
Halides 

rotational 
diffusion 
constant" 193 K 

13CH2Cl2
6 

233 K 272 K 309 K 

13CH2I2:
1 

300K 

Ryy 

Rn 
Px 

Py 

0.03 
0.03 
0.18 
0.17 
0.17 

0.06 
0.07 
0.34 
0.18 
0.21 

0.12 
0.11 
0.59 
0.20 
0.19 

0.17 
0.15 
0.76 
0.22 
0.20 

0.06 
0.02-0.04 
0.29 
0.21 
0.08 

"All values of R are given in units of ps"1. To obtain units of s ' 
multiply all values by 1012. 6rCH in 13CH2Cl2 is 1.08 A. Relative 
errors are about AR11 « 6 % ; Aflw » 15%; Afl« « 3 % . crCH in 
13CH2I2 is 1.09 A. Relative errors are about ARXX «20%; ARyy = 
60%; AR11 ~ 6%. 

termine the relative importance of the intra- and in­
termolecular dipolar mechanisms for this molecule. 
They conclude that the coupled relaxation experiments 
yield the same values for the dynamical parameters in 
either case. 

The small increase of ;'H
 m 13CH2Cl2 as the temper­

ature decreases argues against the dominance of spin-
rotation interactions for the 1H nuclei; this is not too 
surprising with the lack of p orbitals centered on the 
hydrogens. Instead, the increase of /H with decreasing 
temperature indicates the dominance of those mecha­
nisms that are enhanced by the slower motions occur­
ring at lower temperatures, i.e., random intermolecular 
dipole-dipole interactions and proton-iodine dipolar-
quadrupolar terms. The exact mechanism for jH has 
not been determined, but evidently different mecha­
nisms are required to explain the temperature depen­
dence of ;H and j c in

 13CH2Cl2, as these two terms move 
in opposite directions with changes in temperature. 
Intermolecular dipole-dipole interactions from other 
13CH2Cl2 molecules (concentration is 8-12 mol %) may 
relax the protons at the periphery of the molecule, but 
not the carbon nucleus that is at the center of the 
molecule. The larger gyromagnetic ratio for protons 
would also contribute to a more favorable random field 
proton-proton intermolecular interaction. The data of 
Table III and (83) are used to obtain the molecular 
dynamical parameters presented in Table IV. R22 may 
be extracted from (TgIL1R22) by employing the microwave 
value of rCH = 1.082161 for 13CH2Cl2 and the reasonable 
value of rCH = 1.09 for 13CH2I2. The HCH geminal angle 
is 111° for 13CH2Cl2 and 104° for 13CH2I2. The smaller 
angle for the iodine compound may be explained by 
repulsive effects between the bulky iodines compressing 
the HCH angle. The values for Rxx, Ryy, and R22 and 
the corresponding values for px and py are given in Table 
IV. 

A slower motional regime is clearly exhibited for 
13CH2I2 by all three rotational diffusion constants, with 
consistent ratios of about 3 to 4 observed between the 
corresponding rotational diffusion constants in 13CH2Cl2 
over 13CH2I2. Of considerable interest, is the rotational 
diffusion anisotropy measured by px and py, see (77). 
In 13CH2Cl2 the molecule diffuses as an effective sym­
metrical top with an anisotropy of about 1:5 for rotation 
about the perpendicular versus the parallel axis defined 
as the Cl-Cl internuclear vector. Errors for px and py 
in 13CH2Cl2 are sufficiently large that minor differences 
in these quantities can not be reliably differentiated. 
Chenon et al.144 give careful attention to a discussion 
of the statistical significance of the several rotational 

diffusion parameters. While there appears to be a break 
in the symmetry of px and py in

 13CH2I2 the statistical 
measures indicate some ill-conditioning for either Ryy 
or py that prevents a stronger statement from being 
made about the relative magnitudes of Rxx and i L r 
However, it is possible to measure reliably the value for 
R22 and the large 5:1 anisotropy noted between the 
parallel and two perpendicular modes. The overall 
anisotropy of diffusional motion for both halides is 
remarkably similar and has an inverse dependence, at 
least qualitatively, with the moments of inertia for 
13CH2Cl2 (Ixx = 2.53 X 10"45 kg m2; I^ = 2.74 X lO"45 kg 
m2, and / „ = 2.62 X 10"46 kg m2)1*2 and for 13CH2I2 
(Ixx = 1.22 X 10"44 kg m2; / = 1.25 X IO"44 kg m2, and 
I22 = 4.14 X 1O-46 kg m2).163 The relatively low moments 
of inertia about the z axis allow for the emergence of 
spin-rotation at higher temperatures. 

Chenon et al.144 explored the general validity of the 
small step rotational diffusion model of Favro134 that 
was developed in section IV.B and then used it to ob­
tain the diffusional parameters given in Table IV. They 
concluded that "inertia effects make a large but not 
major contribution to the motion at higher tempera­
tures; however, inertial influence can be considered 
negligible" at lower temperatures, thereby justifying the 
small step diffusion assumptions used in the formula­
tion of the Favro equation. These workers also dis­
cussed several aspects of the Stokes-Einstein hydro-
dynamic theories used to characterize the frictional drag 
associated with the molecular rotational diffusion. They 
concluded that only modest amounts of stick versus 
pure slip interfacial interaction is needed to explain the 
data. 

Knauss, Evans, and Grant164 used Brownian dynam­
ics, BD, simulations based on a simple Langevin 
equation and on the Stokes friction law to estimate the 
rotational diffusion of methylene halides. (This work164 

contains additional relevant background literature.) For 
13CH2Cl2 this approach underestimates R22 slightly but 
overestimates by a comparable amount the values of i?„ 
and Ryy. The cancellation of these two deviations gives 
a reasonable theoretical estimate for the average rota­
tional diffusion constant. The estimates of the an­
isotropics, px and py, are reasonable but somewhat 
smaller than the experimental values of Table IV. The 
theoretical BD results are in somewhat better agree­
ment with the 13CH2I2 rotational diffusion anisotropics. 
Considering the rather crude approximations and sim­
plified molecular mechanics used in the simulations, one 
is left with the conclusion that many of the essential 
elements of the hydrodynamics must have been cap­
tured by these simulations. The success of these the­
oretical efforts provided encouragement that reorien-
tational motional features could be theoretically treated 
in flexible chain molecules where relaxation arising from 
segmental motion associated with internal degree of 
freedom is present. This initial effort provided a the­
oretical foundation for the work on nonane and 1-de-
canol to be briefly reviewed in the next section. 

B. Flexible Aliphatic Chain Molecules 

/. Labeled n-Nonane, n-Heneicosane, and 1-Decanol 

Spin-lattice relaxation in a chain molecule may result 
both from overall rotation of the molecule as a rigid 
body and from internal segmental motion involving only 
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TABLE V. Methylene Spectral Densities in Alkyl Chains 

power 
densities 

JcH 
^HH' 

^HCH-

^CHH' 

;c 
./H = JHW 

1-decanol 
(273 K) 

C-I C-5 C-9 
93 117 59 
85 100 66 
-1.3 27 4 
54 79 36 

~0 ~0 ~0 
43 94 27 

nonane 
(273 K) 

C-2 C-5 
49 63 
45 65 
7 22 

34 47 
~0 ~0 
19 5 

nonane 
(313 K): 

C-5 
26 
28 
9 

19 
~0 

2 

heneicosane 
(313 K): 

C-Il 
110 
98 
40 
82 

~0 
15 

a limited number of atoms in the chain. For short chain 
molecules like butane, the overall rotational diffusion 
is sufficiently rapid according to BD simulations that 
it dominates internal motions. For medium-size mol­
ecules like n-nonane and 1-decanol, the conformational 
flexibility of the chain is rich enough to allow local 
segmental motion to be comparable with overall motion 
in its effect on the spin-lattice relaxation. Thus, both 
the overall and internal motions become important in 
these molecules. In very long chain molecules (e.g., 
polymers), the overall molecular tumbling motion be­
comes very much slower and usually totally ineffective 
in the relaxation process. There is, of course, the 
question of whether one may even consider overall 
motion independent of developing segmental motions 
in polymers because the various Cartesian motional 
modes136 do not appear to be influenced by the mo­
lecular weight once the systems reach a critical size.153'164 

In intermediate-size molecules, spin-relaxation mea­
surements are affected both by overall rotational dif­
fusion and segmental motion and have a sufficiently 
large dynamic range, fortunately, to address information 
obtained over extended time regimes. As motion shifts 
from rotational diffusion in small molecules to seg­
mental motion in long chain molecules the values of the 
spectral power densities respond accordingly. 

Table V contains dipolar and random field power 
densities for a labeled 13CH2 spin moiety placed at the 
middle of the chains and at the penultimate atom near 
each end of the molecule for n-nonane and 1-decanol. 
The labeled methylene in heneicosane was in the mid­
dle position of the 21 carbon linear chain. Selected data 
at 273 and 313 K are merely representative of extensive 
information acquired by Brown et al.149 and by Liu et 
al.165 on the two alkanes and 1-decanol, respectively. In 
each case the Jc was found to be negligible and the jH 
and ; H H tended to be both small and equal in the two 
hydrocarbons. A possible explanation for the consid­
erably larger / s in the alcohol is the possible existence 
of minor complexation with paramagnetic metal im­
purities. The fitting programs found evidence only for 
;"H = ;'HH-

One cannot help noting the similarity of dipolar terms 
at C-2 in nonane and C-9 in 1-decanol. Both methy­
lenes appear next to the end of a reasonably long alkyl 
chain and exhibit almost identical dipolar power density 
profiles even though their random field terms differ 

significantly. Apparently the effect of the hydroxyl 
group is essentially fully attenuated by a continuous 
chain of nine aliphatic carbon atoms. Comparison of 
the three mid position carbons reveals variations in the 
magnitudes of spectral densities at C-5 in nonane, C-5 
in 1-decanol, and C-Il in heneicosane. The anchoring 
effect of the hydroxyl group in 1-decanol increases all 
the J1S at C-5 relative to those at C-5 in nonane. 
Likewise, the effect of higher molecular weights in he­
neicosane is to increase markedly the four dipolar J1S 
at C-Il. Perhaps in a molecule such as heneicosane the 
concept of local order32 may be relevant, but the nec­
essary frequency-dependent data on heneicosane that 
could address this possibility is still unavailable. The 
molecular mechanics, however, contained in section VII 
does implicitly include such concepts of local order. 
Nonane C-5 is recorded twice in Table V at 273 and 313 
K to provide comparisons both with the 1-decanol and 
heneicosane samples, respectively. The differing 
physical properties of heneicosane and 1-decanol make 
accessible temperature ranges different for the two 
molecules. It is somewhat interesting that the 40-degree 
difference between the data for C-Il in heneicosane and 
for C-5 in 1-decanol leave the profiles of these two sets 
of values almost the same. Finally, the profile of power 
densities for C-I in 1-decanol appears to be uniquely 
different from any of the other molecules studied. This 
uniqueness is attributed to the anchoring effect of the 
hydroxyl group as it participates in hydrogen bonding. 

The dipolar spectral densities transformed into 
Cartesian power densities provide a set of standard 
second rank auto-correlation times. These times de­
fined by (87) are linked to the experimental power 
densities that are given in Table VI. The ill-condi­
tioned TXX values may be expected to be similar to Tyy 
and are averaged with Tyy or omitted if inordinately 
large errors are indicated (e.g., TXX for C-2 in nonane) 
to give a Tx. As slower motions or longer T values tend 
to enhance the dipolar mechanism these correlation 
times describe the anisotropic motional features of 
dipolar spin relaxation. In each instance the values 
follow the pattern T22 > rL{rxx,Tyy) > rxy. Thus, it is the 
longtime T„ correlation time that is of greatest interest 
in dipolar relaxation. This correlation function char­
acterizes the reorientation of the z axis lying generally 
along the longer axis of the alkyl chain and perpendi­
cular to the HCH plane. 

Motions related to the Rxx and Ryy rotational diffu-
sional motions impact T22. Likewise, rotational reori­
entation related to R22 about the z axis influences TXX, 
Tyv, and r™. Only rxy is affected by reorientation about 
all three Cartesian axes. Therefore, its correlation time 
is the shortest. Ratios of T22-T1(T1x,TyyY.Txy are given in 
the last row of Table VI. Note, the middle carbons (C-5 
in 1-decanol; C-5 in nonane; C-Il in heneicosane) all 
exhibit similar respective profiles (i.e., 3.9:1.5:1; 4.9:2.2:1; 
5.1:2.2:1). Thus, the relative T values defining motional 

TABLE VI. Cartesian Correlation Functions for Alkyl Chains 
1-decanol 

correlation <273 K> 
times C-I C-5 C-9 

nonane 
(273 K) 

C-2 C-5 

nonane 
(313 K): 

C-5 

heneicosane 
(313 K): 

C-Il 
13 
19 
31 
2.4:1.5:1 

12 
18 
47 
3.9:1.5:1 

8 
16 
20 
2.5:2.0:1 

6 
9 
16 
2.9:1.7:1 

6 
13 
28 
4.9:2.2:1 

2.3 
6 
13 
5.6:2.6:1 

9 
17 
48 
5.1:2.2:1 
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anisotropies establish patterns that are remarkably 
similar even though overall motion varies by 2- or 3-fold 
between the different molecules. Likewise, for C-9 in 
1-decanol and C-2 in nonane a similar pattern (i.e., 
2.5:2.0:1 versus 2.9:1.7:1, respectively) is found for these 
two related carbon atoms. The final pattern (2.4:1.5:1) 
for C-I in 1-decanol again is similar to C-9 in decanol 
and C-2 in nonane, but the overall magnitudes of the 
correlation times are unique for C-I, indicating the im­
portance of hydrogen bond formation. It would appear 
that overall rotational diffusion controls the magnitude 
of the efs with overall motion restricted both by hy­
drogen bonding and molecular bulk. Furthermore, the 
local anisotropies measured by the ratios of 
TZZ:T±(Txx,Tyyy.TXy would seem to be controlled by in­
ternal segmental motions as these ratios are often sim­
ilar even when the magnitudes vary appreciably. As 
Table VI involves only limited amounts of temperature 
data for a single solvent, the reader is referred to recent 
literature149,165 for a full discussion of both of these 
effects. 

A comparison of the complete nonane and 1-decanol 
relaxation data illustrates the importance of solvent-
solute interactions. The hydroxyl group in 1-decanol 
can form hydrogen bonds with oxygen-containing sol­
vent molecules such as diglyme but cannot do so in 
other nonpolar solvents.165 The variation in the an­
choring effect of a terminal hydrogen bond upon dif­
ferent carbons along the chain provides information 
that can be used to address the structurally dependent 
features of both segmental and overall motions. 

The dipolar spectral densities normally decrease as 
the temperature increases. Even so, for typical tem­
perature ranges used in 13CH2 coupled relaxation 
studies, the dipole-dipole interactions either dominate 
or are at least one of the principal mechanism for spin 
relaxation. For higher temperatures, however, the types 
and rates of various molecular motions increase, 
quenching the efficiency of the dipolar interactions and 
reducing the magnitude of the dipolar spectral densities. 
The intrinsic measurement errors appear to remain at 
about the same level with changes of temperature 
making the dipolar measurements relatively more ac­
curate at lower temperatures. Unfortunately, the sol­
ubility of many compounds places a lower limit on the 
experimental temperatures that can be achieved. In 
many analyses of chain molecules, it is possible to lock 
j c to zero since its fitted value seldom exceeds one 
marginal standard deviation from zero. This supports 
the obvious conclusion for chain molecules that 13C 
spin-rotation contributions are unimportant, unlike the 
methylene halides. As tetrahedral carbons never appear 
at the periphery of a paraffin molecule, one also would 
not anticipate significant intermolecular dipolar con­
tributions to 7o The csa of paraffin carbons is also low 
making contributions from this mechanism small, at 
least at the fields used to date. 

If only overall molecular motion contributes to the 
relaxation of the local modes, Cartesian correlation 
times at different chain positions should remain the 
same. However, the correlation times at the center 
carbons (C-5 in n-nonane and C-5 in 1-decanol) are 
always larger than for the penultimate carbons (C-2 or 
C-8 in nonane and C-9 in 1-decanol). Apparently these 
latter carbons enjoy greater motional freedom. For the 

motion of hydrocarbon chains in solution, two major 
factors affect the rate-determining processes. One is 
the energy barriers restricting conformational isomer-
ization, and the other is the frictional force exerted by 
the surrounding solvent. The larger the volume that 
is needed to accommodate the motion of a solute 
molecule, the larger will be the effect of friction due to 
solvent molecules that must rearrange to accommodate 
the molecular motion of the solute. Based on this ar­
gument, smaller groups (i.e., -OH or -CH3) attached at 
C-I or C-9, respectively, can reorient relatively more 
easily than the longer chain segments attached to C-5. 
The experimental results are consistent with this intu­
itive steric concept, although the relative importance 
of the steric effect versus the hydrogen bond anchoring 
effect requires additional experimental information. 

In 1-decanol, the relation, r(C-5) > r(C-l) > r(C-9), 
exists for most of the Cartesian modes except that of 
C-I in the solvent ethanol where an extensive hydro­
gen-bond network at the -OH group more firmly an­
chors this 13CH2 group. The hydrogen-bonding network 
increases the rigidity of the C-I carbon in 1-decanol due 
to increased solvent packing around the hydroxyl end 
of the 1-decanol chain. These effects result in signifi­
cant changes in the correlation times for certain 
Cartesian modes. The deviation between T(C-1) and 
T(C-9) may be rationalized from the hydroxyl anchoring 
effect at C-I and the different torsional potentials for 
C-C-C-C and C-C-C-OH linkages. 

A study of Table VI indicates that the carbons at the 
middle of these chain molecules exhibit a higher an-
isotropy than do the end carbons. Preferential rotation 
around the long axis of an all-trans conformation of 
these molecules does not require large displacements 
of the backbone or of the solvent molecules with the 
attendant high frictional drag. At the penultimate 
carbon, local isomerization between conformations plays 
a more important role in the relaxation processes. 

As noted earlier, very small chains are dominated by 
overall rotational diffusion. The flexibility of longer 
chains becomes pronounced due to the rapidly in­
creasing number of conformations, and local segmental 
motion plays an even more important role in the re­
laxation processes. Therefore, there are significant 
differences in the motional processes as the degree of 
conformational freedom changes between small mole­
cules and polymers. The conformational transition 
about a single bond can take place more readily in ei­
ther small molecules or near the ends of long molecular 
chains. A carbon atom near the center of a long chain 
molecule will tend to reorient with isomerization tran­
sitions involving more than one C-C bond. Concerted 
motion with adjacent bonds is required otherwise cen­
tral segments of the chain, if held rigid, could only 
undergo large motional displacements, and even in a 
relatively low viscosity solvent, an enormous frictional 
resistance would be exerted by the solvent on the solute. 
Such exceedingly slow motion, with a rate dependence 
on molecular size, is in contradiction to existing ex­
perimental results. Intuitively, it is therefore easy to 
see that most long chain conformational transitions 
should be cooperative, involving conformational changes 
in several proximate carbon-carbon bonds. 

One way to avoid large displacements of the long 
chains attached to the rotating bond is to have neigh-
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boring bonds undergo compensating transitions within 
a relatively short time interval of each other. The 
"crankshaft" model, proposed by Schatzki,166 allows 
terminal groups on both ends of a long chain molecule 
to remain at roughly their same positions while bonds 
in the internal parts of the molecule undergo concerted 
conformational transitions. Neither translational nor 
rotational motion is required by this mechanism for the 
terminal groups. The crankshaft motion discussed by 
Jelinski et al.167 involves correlated motion of five bonds 
and six atoms. This type of transition was shown to be 
important in polyesters containing butanediol. The 
other two types of "crank-like" conformational transi­
tions, proposed by Helfand,168-170 include gauche mi­
gration (g+tt ** ttg~) and pair gauche production 
(ttt *» g+tg+), and involve cooperative motions of three 
bonds. The counter rotation about parallel bonds of 
nearest neighbors does not require large-scale dis­
placement of the remainder of the chain. 

To extract the full value from the extensive correla­
tion information, both magnitudes and anisotropics, it 
is necessary to make theoretical simulations of these 
motion-dependent parameters using standard molecular 
mechanics. In this way valuable insights into the po­
tential functions controlling chain conformations and 
structures may be obtained on otherwise complex mo­
lecular systems. Information on the appropriate fluid 
frictional laws of Stokes also are contained in such 
simulations. Finally, successful modeling of 1-decanol 
requires critical information on the degree of intermo-
lecular associations arising from hydrogen bonding. 
The following section presents relatively early work on 
molecular modeling of these features and how they 
affect nuclear spin relaxation. 

VII. Statistical Mechanical Modeling of Chain 
Motion 

A. Brownian Dynamics—Langevin Equations 

Several classes of generalized Langevin equations, 
GLE, have been rigorously derived171 to describe the 
motion of an interacting many-body system, S, in a 
heat bath, L. The fundamental assumption in deriving 
these GLE's is that the total interaction energy, HSL, 
between S and £ is a scalar c number that is a function 
of time only. The constrained molecular dynamics 
(CMD) simulations172 are found to produce structural 
and dynamical properties in liquids in good agreement 
with the exact MD method as long as the number of 
particles in S is not very small (i.e., greater than about 
10). This condition is met by nonane and 1-decanol. 
In a dilute solution, the GLEs for a single solute mol­
ecule with N + 1 interacting beads can be written as171 

W ' ^ ^ = P ' ( O + F ' W + R ' ( ° '=I>2>->N+I (93) 

where r,- and v, are the Cartesian displacements and 
velocities of bead i in a laboratory-fixed frame, R;(£) is 
a random force with vanishing mean, and P;(£) is the 
mutual potential forces between bead i and all the other 
molecular beads. It may incorporate potentials of mean 
force due to the static interaction with the solvent.171 

The friction force F;(t) is given by 

F,- (() = - } dzti (T)W1-V/ (* - T) (94) 
0 

In the ordinary Langevin equation (OLE) description, 
a Dirac 5-function is used for the memory kernel, 
m = &>*(«). 
B. Fluctuation-Dissipation Processes 

Upon neglecting the correlation between P, and R; 
the memory kernel in (94) has the following dissipa­
tion-fluctuation relation:171 

6iB,*J,r§,-(T) = (R,(0)|RI-(T)) (95) 

The frequency-dependent friction function is obtained 
from the classical hydrodynamic theory173'174 of an in­
compressible viscous medium. This approach works 
well even at the molecular level. For a sphere with 
radius r, the friction function for the slip boundary 
conditions is given by a Stokes-like relation 

4(s) = 4mis(s)re (96) 

where the effective hydrodynamic radius re is 

rc = 77j77 (97) 
1 3T7, 

In (97) r}s and rji are, respectively, zero-frequency shear 
and longitudinal viscosities. 

The solvent viscoelastic response is dependent on a 
variety of relaxation mechanisms.175 One simple mod­
el176 considers mode relaxations as independent pro­
cesses; thus, the solvent shear viscosity can be decom­
posed into separate terms: 

^W = G-X^T (98) 
; J 

where G00 is the infinite frequency shear modulus, C;s 
and w,s are, respectively, the normalized relaxation am­
plitude and the relaxation frequency associated with 
mode ;'. For a solvent with internal motion, the relax­
ation modes include overall molecular reorientation, r, 
cooperative isomerization, i, structural relaxation, s, and 
vibrational relaxation, v. Each process evolves on a 
distinct time scale justifying the assumption of mode 
independence. Depending on the interval of the dy­
namic processes, the memory effects of various solvent 
relaxation modes are manifested differently in the 
motion of solute molecules. In the case of trans-gauche 
isomerization the barrier frequency of a torsional po­
tential, e.g., Rychaert-Bellemans (R-B) potential177 is 
on the order of 1013 s"1. This value is comparable to that 
of structural relaxation rates, one order of magnitude 
smaller than that of vibrational relaxation rates, and 
1 or 2 orders of magnitude larger than rates ascribed 
to rotational relaxation or cooperative conformation 
changes. These observations are reasonable if the 
structural relaxation of a hydrocarbon chain solvent is 
determined by the local torsional motion of the solvent. 

The frequency dependence of the friction function 
may be approximated if picosecond dynamic processes 
are characterized by the following function: 

« ( , ) - 4 « r . G . { S L ± ^ + ^ + £ } (99) 
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A four-parameter empirical function similar to (99) was 
proposed by Zhu et al.178 based on the analysis of MD 
simulations.179'180 Our derivation is based solely on the 
continuum fluid dynamics. The parameters in (99) 
depend only on the properties of the solvent and can 
be estimated from experimental measurements such as 
ultrasonic absorption and Brillouin and depolarized 
Rayleigh scattering. 

To evaluate the dynamical parameters in (99), Sceat's 
formulation176 of viscoelastic properties of n-alkane 
liquids is used in the following ansatz: 

0)v 

• 1 .0 

• = 0.0 

C C 
a. + ̂ n. = o.5 - ^ 
>is ars (0SS 

cis + crs«\ 

(100) 

(101) 

(102) 

(103) 

Equations 100-103 assume that the structural relaxa­
tion is the dominant channel in determining the fre­
quency-dependent shear viscosity. 

The random force on bead i, R1(O, is composed of n 
parts: 

R;(0 = £Ry(0 (104) 

where Ry(0 is the force component due to the solvent 
relaxation mode j . As different relaxation modes are 
assumed to be uncoupled 

where 

6m,-^(O = (Ry(O)-Ry(O) 

^ ( 0 = ^ 0 , 0 * * ' *<> 

(105) 

(106) 

The friction coefficient |0,y is equal to 41Tr6G00Cy8O)J8
1. 

Equation 106 suggests that Ry(0 is a wide-sense sta­
tionary stochastic process. If nonlinear couplings arise 
from the superimposition of a large number of weak van 
der Waals collisions, a Gaussian distribution for Ry(O 
is a good approximation in keeping with the so-called 
central limit theorem. 

C. Molecular Model 

A flexible-chain model, employed in the computer 
simulations, keep the bond lengths and geminal angles 
near their equilibrium positions with harmonic poten­
tials. Various conformational states181 are described by 
a set of torsional angles, <j>it and governed by the R-B 
potential177 for a C-C-C-C linkage and a Jorgensen 
potential182'183 for a C-C-C-O linkage.165 Exclusive 
volume is imposed with a Lennard-Jones 6-12 potential 
between beads separated further than the third nearest 
neighbors. The definitions of these dynamic variables 
are given in Figure 12. 

Methylene, methyl, and hydroxyl groups are modeled 
as spherical beads with radius, r, deduced from the slip 
boundary conditions by setting the normal force to zero 
in the Lennard-Jones 6-12 potential with r = (6V2)a. 
As the spheres have radii greater than either the C-C 
or C-O bond lengths a considerable portion of the 

V̂ "" 
r. ^ V T '- J - >• Z 

(a) 
Figure 12. Schematic drawings of a portion of a chain molecule 
illustrating the definitions of the coordinate variables. 

Figure 13. Comparison of the NMR experimental results with 
the GLE simulations at various temperatures for n-nonane dis­
solved in deuterated diglyme. 

surface area of each bead is buried by its neighbors. 
These van der Waals spheres may be represented by 
a set of equivalent nonoverlapping spheres with smaller 
radii whose surface areas equal the exposed surfaces of 
the original van der Waals spheres.184,185 

D. Comparison with NMR Experiments 

Figures 13 and 14 show, respectively, the Cartesian 
correlation times for n-nonane and 1-decanol dissolved 
in diglyme at several temperatures. Positions C-2 and 
C-5 are given for nonane and C-I, C-5, and C-9 for 
1-decanol. The experimental values141,149 are compared 
with simulations of the Brownian motion using the 
approach of Xiang et al.185 The GLE simulations give 
correlation times in reasonable agreement with the 
NMR measurements except at very low temperatures. 
This suggests that the coupling of the motions in the 
solute and solvent, which gives significantly reduced 
friction forces, has a measurable effect on the segmental 
motion of the chain molecule. As shown in a previous 
study,185 the Cartesian correlation times are sensitive 
to changes in the solvent relaxation frequency w,. 
Therefore the NMR-coupled relaxation experiments in 
combination with dynamics simulations provide a useful 
method to determine solvent relaxation rates. 

The relatively large deviation of the GLE simulation 
with single solvent relaxation mode for T22 = 150 ps at 
the central bead in nonane from the experimental re-
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TABLE VII. Apparent Activation Energies for the Cartesian Modes and End-to-End Correlation Times for Nonane" 
method e-t-e yy *y 

overall molecule 

carbon-2 

carbon-5 

GLE" 
OLE' 
GLE" 
OLE' 
GLE" 
OLE' 

"The solvent viscosity is fixed at a 
'Obtained from the OLE simulations. 

0.64 (0.18) 
0.83 (0.12) 

constant 17 = 1.04 cp. 

fill 

1.32 (0.14) 
0.97 (0.20) 
0.99 (0.12) 
0.84 (0.21) 

1.33 (0.16) 
1.16 (0.21) 
1.10 (0.16) 
1.34 (0.26) 

"Obtained from the GLE simulations with G„ = 1.6 

1.68 (0.27) 
0.99 (0.28) 
1.27 (0.19) 
0.74 (0.29) 

x 10+1° dynes/cm2. 

Figure 14. Comparison of the NMR experimental results with 
the GLE simulations at various temperatures for 1-decanol dis­
solved in deuterated diglyme. 

suit, T„ = 113 ± 14 ps, at 233 K may be attributable 
to the influence of slow relaxation modes on the friction 
force and/or of solvent packing on potentials of mean 
force. At lower temperature more solute and solvent 
molecules tend to populate in the trans state. The 
formation of a locally ordered phase would make the 
cage surrounding the solute molecule sufficiently rigid 
to significantly "screen" the influence of rapidly fluc­
tuating motions. Thus, slow motional modes, negligible 
at higher temperatures, may have a greater contribution 
to the frequency-dependent friction forces at low tem­
peratures. One possible slow mode is rotational re­
orientation of the solvent molecules. With a normalized 
amplitude of 0.1, for Cn a value of T„ = 121 ps at the 
central bead is obtained in our simulation. 

The asymmetry of the Cartesian correlation times in 
1-decanol as one moves away from the chain center 
arises from the differences in the torsional potentials 
of the C-C-C-OH and C-C-C-C linkages at each end 
and from a hydrogen bond anchoring effect at the hy-
droxyl carbon. 

In contrast to the results in solvents with internal 
rotation the OLE simulations for 1-decanol in methy­
lene chloride exhibit good agreement with the experi­
mental values.165 Methylene chloride is a solvent 
without internal segmental rotational modes. Thus, 
motion associated with the structural relaxation mode 
is either absent or shifted to a faster time domain. In 

both cases, decay of the correlation between the seg­
mental motion in 1-decanol and the solvent motion may 
become so fast in comparison with the characteristic 
times of the motions in the solute that the OLE method 
becomes fully capable of providing an accurate de­
scription of 1-decanol in methylene chloride. 

E. Temperature Dependence at a Fixed 
Viscosity 

In contrast to motion in a vacuum, the temperature 
dependence of molecular motion in solution is partly 
attributed to the viscosity of the solvent. If the internal 
motion (i.e., isomerization transitions) dominates the 
overall rotation of the relaxation processes, the tem­
perature dependence of the relevant correlation times 
should be Arrhenius like with an activation energy 
roughly equal to one barrier height between trans and 
gauche states. For the R-B torsional potential, the 
trans-gauche barrier is 2.95 kcal/mol, much larger than 
the thermal energy kTin the temperature range of the 
experimental data. By varying the temperature, while 
holding the zero-frequency viscosity fixed, one can de­
termine the apparent activation energy arising from the 
contributions other than the solvent viscosity. These 
estimated activation energies for rc-nonane from GLE 
and OLE simulations are listed in Table VII. Except 
for the slow-motion modes (i.e., the end-to-end direction 
and the zz mode at the central bead) the GLE simu­
lations predict significantly higher apparent activation 
energies for the motion of all other Cartesian modes 
than the OLE simulations. This is apparently due to 
the underestimation in the OLE model of the contri­
bution from the internal torsional motion to the re­
laxation of local Cartesian motion. In the GLE simu­
lations, the reorientation of the end-to-end direction, 
which has the longest correlation time, requires the least 
amount of apparent activation energy, whereas the xy 
mode at position C-2, which has the shortest correlation 
time, requires the largest amount of apparent activation 
energy. 

The effective activation energies for the Cartesian 
modes at penultimate beads are always larger than the 
corresponding modes at the central bead. This result 
suggests that isomerization transitions are more in­
volved in relaxing the Cartesian modes at the outer 
beads than near the central bead. This result is in 
accord with the physical intuition that the torsional 
motion about end bonds can be realized by the swing 
of small -CH3 groups and, thus, requires exclusion of 
only a small amount of solvent volume, whereas motion 
about the bonds near the center of the chain requires 
swings of the attached tails through large volumes 
thereby imposing considerable frictional drag. The 
cooperative motion of the nearby bonds such as the 
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formation of "kinks" and "jogs" as in the crankshaft 
rotational model169 will facilitate torsional motion near 
the chain center. As this type of motion requires an 
activation energy of roughly one barrier height,170 which 
exceeds the simulation results, it can only be assumed 
that the cooperative modes do not dominate the overall 
rotation in the structural relaxation in n-nonane. 

Implementation of other solute-solvent interaction 
mechanisms may further improve the accuracy of GLE 
simulations. The effect of hydrodynamic interaction 
ignored in this study may either increase or decrease 
the calculated correlation times.186,187 Its implementa­
tion in stochastic dynamics simulations requires the 
extension of the current hydrodynamic theories of 
friction forces to include both frequency-dependent 
viscoelastic responses of the fluid and position-de­
pendent cross-correlation of random forces. 

VIIJ. Conclusions 

Historically, the Bloch equations were invaluable in 
their contribution to our understanding of the manner 
in which relaxation and rf irradiation combine to de­
scribe the time evolution of isolated nuclear spins that 
have been perturbed from their equilibrium state. As 
the field grew in sophistication, however, studies re­
vealed relaxation behavior that could not be explained 
by this relatively straightforward approach. In typical 
organic systems, for example, one invariably encounters 
the general dominance of the 13C and 1H dipole-dipole 
interaction. This mechanism, which involves pairwise 
interactions among spins, requires a density matrix 
treatment and the associated formalism contained in 
this review. The experimental conditions under which 
the full impact of coupled spin relaxation may be ob­
served involve perturbing and measuring the return to 
equilibrium of separate lines of a spin multiplet. To 
obtain information on the various relaxation channels 
available, even for relatively simple coupled spin sys­
tems, placed new demands on early workers in this field, 
but the benefits of such additional effort eventually 
proved to be of great value in the type and quality of 
information that may be obtained on molecular dy­
namics in liquids. It has been our purpose in this review 
to illustrate the nature of molecular motional infor­
mation that is available from multiplet spin relaxation 
studies. The opportunity to provide intimate details 
of anisotropic molecular reorientation of not only rigid 
molecules but also of internal segmental motion in 
flexible chains would now seem to more than justify the 
additional effort of securing coupled relaxation data. 

The opportunity to provide a complete dynamical 
profile, at least in principle, for all magnetic nuclei in 
a flexible molecule creates new opportunities for those 
interested in the effect of microscopic molecular mot­
ions and their impact on chemical and physical prop­
erties. With the emergence of two, three, and higher 
dimensional spectroscopy has come the realization that 
the same multiple relaxation pathways, important in 
coupled relaxation, now influence the multiple coher­
ences common to these multidimensional experiments. 
The field of coupled relaxation in one dimension passed 
through a period of time when the unusual features 
encountered in these early experiments were considered 
more anomalies than the rule. Considerable early de­
bate centered on the relative importance of the devia­

tions in spin behavior due to cross-correlated interac­
tions and the anomalous character of the data; ensuing 
years would seem to have proven that major multiplet 
spin magnetizations can indeed be induced in even 
simple spin systems and hopefully we have been suc­
cessful in identifying some of the interesting physical 
and chemical features that these techniques provide on 
all degrees of molecular motion, both internal and 
overall. Recent coupled relaxation effects observed in 
two and higher dimensional NMR spectra would now 
seem to suggest that anomalous spin behavior in these 
interesting experiments may be more the rule than the 
exception. Furthermore, the spin preparations used in 
multidimensional NMR spectroscopy involve spectral 
perturbations that are similar to the experiments used 
to introduce magnetization into interesting relaxation 
channels. Thus, coupled relaxation parameters are 
likely to become readily available from the impressive 
multidimensional NMR studies now in progress on 
macromolecules with weights of many thousands of 
Daltons. The two-dimensional format provides ex­
panded capability to obtain simultaneously information 
on numerous magnetic spin sites within a molecule and, 
therefore, have the potential to provide extensive dy­
namical maps of relatively large molecular systems of 
both industrial and biomedical importance. Our hope 
is that such a rich and diverse source of anisotropic 
motional information for numerous nuclei in a single 
molecule will result in the view that this type of data 
is a virtue to be sought after and not merely an incon­
venience or a problem impeding investigators trying to 
extract structural information from multiplet intensi­
ties. 
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