Carboranes Other than C₂B₁₀H₁₂

BOHUMIL ŠTÍBR

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 250 68 Řež near Prague, Czechoslovakia

Received July 9, 1991 (Revised Manuscript Received January 13, 1992)

Contents

I.	Introduction	225
II.	General and Theoretical Considerations	226
III.	Monocarbaboranes	228
	1. Small Monocarbaboranes	228
	2. Eight- to Eleven-Vertex Monocarbaboranes	229
	3. Twelve-Vertex Monocarbaboranes	233
IV.	Dicarbaboranes	234
	1. Small Dicarbaboranes	234
	2. Eight- to Ten-Vertex Dicarbaboranes	239
	3. Eleven-Vertex Dicarbaboranes	242
٧.	Tri- and Tetracarbaboranes	244



Carboranes are a class of carbon-containing polyhedral boron-cluster compounds that have been known since the 1960s^{1,2} as a relatively younger subdiscipline of boron cluster chemistry.³ Earlier pioneering work in this area and later experimental extensions of carborane chemistry¹ have shown that carbon and boron atoms are virtually interchangeable within wide, but well-defined limits.^{1,2-7} Thus, carboranes are generally defined as boron cluster compounds with one or more polyhedral boron vertices replaced by carbon.

In most cases known so far, the presence of cage carbon centers usually enhances chemical stability of carboranes in comparison with equivalent borane structures. The ingenious recognition by Hawthorne in 1965⁸ that carboranes with open polyhedral structures can act as polyhapto ligands to form extremely stable sandwich-type complexes with transition metals has also initiated a vast area of metallacarborane chemistry⁶ (for more recent reviews see refs 7f,g, 9–10, for example), with structures and bonding principles that have influenced so much the recent development of organometallic and inorganic-cluster chemistry.⁴

The extreme stability of many carborane compounds has also led to intensive studies by industrial research groups aimed at developing novel carborane-based polymers designed for special uses. Much of the recent practical interest has also been derived from the relatively broad chemical flexibility of carborane compounds toward modifications with "biologically active" organic substituents, leading to compounds targeted for use in neutron capture therapy (see refs 12, 13 for example).

The presence of carbon atoms in an electron-deficient deltahedral moiety also dictates novel structural features never encountered in comparable polyborane chemistry. In particular are the open-structured carboranes of the nido and arachno classes that are increasingly attracting the attention of both experimental and theoretical chemists. The differences outlined

Bohumil Štĺbr, born in 1940 at Slany, Town of Hops, Czechoslovakia, graduated in Inorganic Chemistry at the Institute of Chemical Technology in Pardubice in 1962. He has been active in the area of cluster boron chemistry in the Institute of Inorganic Chemistry of the Czechoslovak Academy of Sciences since 1963, especially in the area of carborane and heteroborane chemistry. His present position is Principal Research Fellow. In 1972 he worked for six months with M. F. Hawthorne (University of California, Los Angeles) in the area of metallacarborane chemistry, and for six months in 1989 with N. N. Greenwood and J. D. Kennedy (University of Leeds, UK) as a Royal Society Fellow in the area of metallacarborane and heteroborane clusters. He is a founding member of the Anglo-Czech Polyhedral Collaboration (ACPC) in the above area, which began in 1987.

above immediately engender novel reaction principles applicable to both the skeletal and exoskeletal reaction spheres. Taking these and related factors into account, carborane chemistry offers an immense chemical and structural diversity, well comparable to that of organic chemistry. The former chemistry, being much younger and much more underdeveloped in comparison with the latter, is expected to provide chemists with still unsuspected reaction and structural principles, especially in conjunction with metallacarborane and inorganic cluster chemistry.

The aim of this review is to cover carborane chemistry since approximately 1980, when the last comprehensive review appeared.⁵ The reader should also note that many partial reviews relating to general carborane chemistry have appeared that included the work of individual groups,^{7,11,14-18} brief annual reviews,^{19,20} or specialized structural^{21,22} aspects. Organic carborane derivatives were reviewed by Koester²³ to reflect the state-of-the-art up to approximately 1984. The recent chemistry of the twelve-vertex C₂B₁₀H₁₂ carboranes is exempted from this review since it is discussed in another contribution to this issue, although some nido compounds of this class will be mentioned in the context of the chemistry of smaller-cage carborane systems.

Inspection of the literature over the reviewed period (approximately 1980 to early 1991) suggests that dominating trends in the carborane area have been the

development of simple, rational synthetic strategies for the preparation of the known carboranes, detailed studies of exoskeletal reactivity leading to designed syntheses, and detailed structural studies using NMR and X-ray diffraction techniques. Less frequently have been made attempts to synthesize structurally novel carborane-cage systems through many new reaction principles, such as metal-promoted cluster condensation, ¹⁴⁻¹⁶ regiospecific cluster degradation and cagegrowth reactions, ¹⁸ have been developed to demonstrate the immense versatility of such synthetic approaches.

The carborane area, especially that of smaller-cage systems, has also attracted the attention of several groups of theoretical chemists who have justified the experimentally obtained structural data via various methods of quantum chemistry at different computational levels. Of these the most valuable are the computations directly related to "real" experimental results and high-level ab initio calculations which probe subtle details of cluster geometries which are not always available from direct structural investigations.

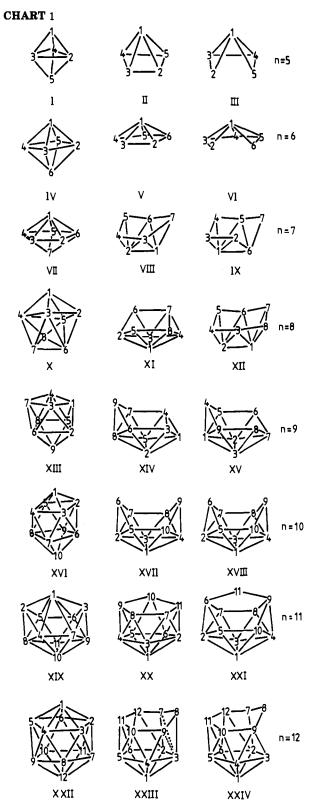
This review deals with the chemistry of individual compounds sequenced approximately according to the cage size and the number of cage carbon atoms. However, the author is aware of the inconveniences that such an approach can bring, especially in discussing general synthetic principles and strategies, and has tried to keep these to a minimum. In the process of compiling this review, it became also apparent that the numbering conventions for carborane molecules were sometimes not consistent from author to author, particularly in structural work. The author, although being aware of the complex five-part descriptor nomenclature system²⁴ suggested for unambiguous, structurally definitive description of deltahedral structures, has opted for the usual closo, nido, and arachno convention used in much of the original literature. Where difficulties arise, the reader is advised to consult the general numbering schemes used in structures I-XXIV (section II below) and other structural drawings. A brief survey of recent theoretical work that is related to the general bonding and structural aspects of carborane chemistry has also been incorporated.

The author hopes that not only will boron cluster chemists find in this review, in conjunction with other reviews of this issue, basic synthetic and structural interrelations intrinsic to carborane species but also some inspiration for their work.

II. General and Theoretical Considerations

Polyhedral carborane cluster structures may be regarded as being based on {BH} and {CH} units held together by multicenter bonding. Alternatively, carborane structures can be derived from those of equivalent borane types via notional replacement of one or more {BH} units by the equivalent number of isolobal CH} groups. Taking the earlier reported electron count and cluster arguments into consideration, we can define a basic prototype (BP) (see refs 7b, 27 for example) of a given n-vertex polyborane cluster as a compound having only n exoskeletal hydrogen atoms. Thus we arrive to a series of $[B_nH_n]^{c-}$ anions which represent a basic set of closo (c=2), nido (c=4), arachno (c=6), and hypho (c=8) borane anions with n+(c/2) skeletal bond pairs.

An isolobal replacement by x {CH} units as outlined above then generates a series of carborane BP's of the general formula $[C_xB_{n-x}H_n]^{x-c}$. For instance, in the case of tetracarbaboranes (x=4) this approach leads to a series of $[closo\text{-}C_4B_{n-4}H_n]^{2+}$, $[nido\text{-}C_4B_{n-4}H_n]^0$ (neutral species), $[arachno\text{-}C_4B_{n-4}H_n]^{2-}$, and $[hypho\text{-}C_4B_{n-4}H_n]^{4-}$ tetracarbaborane BP's. This approach also readily suggests that a formal replacement of all boron vertices (n=x) engenders "nonclassical" carbocationic compounds. Te


There is one more consequence of this formalism to be briefly mentioned that consists in a formal, sequential addition of protons (see refs 7b, 11c, 28 for example), which does not change the total number of cage electrons, to any of the $[C_rB_{n-r}H_n]^{r-c}$ BP's. As an example, for the nine-vertex series of nido-dicarbaboranes (n = 9, x = 2, and c = 4), this formalism leads to compounds $[C_2B_9H_{11}]^{2-}$, $[C_2B_9H_{12}]^{-}$, and $C_2B_9H_{13}$; some positional isomers of these are already known. It should also be noted that the "extra protons" thus added are typically accommodated in the open part of a given structure (see refs 27b,d for example). Several authors have recently used EHMO,29 MNDO, and ab initio30-32 calculations to rationalize the positions of bridging protons in existing boranes and carboranes or of protons added to boranes in real or hypothetical situations.

The principal architectural feature intrinsic to carboranes is a closed deltahedral (fully triangulated) framework of closo (n+1) skeletal electron pairs) compounds [general structures I, IV, VII, X, XIII, XIX, and XXII (Chart 1)] from which nido (n+2), arachno (n+3), and hypho (n+4) compounds can be derived by formally removing one, two, and three vertices of higher cage connectivity, respectively. 11c,d,26

This concept is seen from the general structures I-XXIV (Chart 1). For instance, the removal of the vertex 1 from the closo six-vertex structure IV immediately generates the five-vertex nido structure II and, generally, removal of x vertices from the n+x structure leads to n-vertex nido to hypho structures, when x=1,2, and 3, respectively. Application of this formal procedure (the "debor principle") leads, for instance, to the general nido (II, V, VIII, XI, XIV, XVII, XX, and XXIII) and arachno (III, VI, IX, XII, XV, XVIII, XXI, and XXIV) structures which are indeed adopted by almost all carborane species dealt with in this paper. A modified CNPR (Coordination Number Pattern Recognition) and fragment systematics for the nido carboranes has recently appeared. 11c

As discussed in more detail in previous work, ¹⁻⁶ the deltahedral constitution of borane and carborane cluster compounds is a direct consequence of the involvement of the three-center, two-electron bonding dictated by boron's electron deficiency. In this respect, no attempt is made to portray the structures in terms of localized two-center, two-electron bonds. Unless otherwise stated, the structures presented in this review will be drawn in terms of the usual "ball and stick" descriptions that should only indicate bonding connectivities within individual cages. (Black circles indicate carbon; small black circles extra protons; and white circles denote boron positions. Terminal hydrogens are omitted for clarity.)

The reader should be reminded that each cage boron and carbon contributes three atomic orbitals and two

and three electrons, respectively, to the cluster bonding proper, while the fourth orbital is used for exoskeletal two-electron, two-center bonding. Thus, the combination of Lipscomb's topological theory³ and the polyhedral skeletal electron pair theory (PSEPT)^{11c,26b,d} yields the basic relation (n + (c/2) = s + t + x + y) between the number of skeletal electron pairs [(n + (c/2)]] and the usual styx symbols (s = number of bridging hydrogens, <math>t = number of two-electron three-center bonds, <math>y = number of two-electron, two-center bonds, and x = number of two-electron by Lipscomb, where

c = 2, 4, 6, and 8 for closo, nido, arachno, and hypho compounds, respectively.

Over the period reviewed, the Lipscomb's topological theory³ and the PSEPT concept, as simple and ingenious concepts usually are, have been extended into many areas, such as nonconventional borane, metallaborane, and inorganic-cluster chemistry.³³ Another extension has been suggested by Chinese theoreticians.³⁴ With increasing cluster symmetry and cluster size the original localized-bond treatments³ become less adequate and molecular orbital descriptions are then generally held to be more suitable. A brief summary of the recently developed methods related to carborane chemistry might help the reader to get a basic orientation in this field.

Dewar and McKee³⁵ reported MNDO calculations on some of the known monocarbaboranes, nido-2-CB₅H₉ and [closo-1-CB₁₁H₁₂]⁻, closo-dicarbaboranes C₂B_{n-2}H_{n+2} (n=6, 9-11), $[C_2B_9H_{12}]^-$, and $[C_2B_9H_{11}]^{2-}$, and the C₃B₃H₇ tricarbaborane. On the basis of MO calculations Jemmis^{36,37} proposed a "six-electron rule" to substantiate the previously recognized fact that carbon atoms usually tend to adopt the least connected positions in carborane structures. ^{11c,26a,c} Stabilities of selected closo-carborane isomers were correlated with the orbital overlap preferences of {BH} and {CH} cluster units. Whereas the latter group was found to prefer bonding to three or four-membered boron rings, the former prefers five-membered rings.

EHMO calculations of carborane stabilities based on topological charge stabilization (TCS) considerations, reported by Ott and Gimarc, 38 predicted a qualitative ordering of stabilities of positional isomers among various classes of closo-C₂B_{n-2}H_n (for n=5-12) carboranes. The TCS rule states that the positions of cluster carbons in a structure are related to the distribution of atomic charges that are determined by connectivity or topology for an isoelectronic, isostructural, and homoatomic reference system.

The AM1 calculations reported by Dewar³⁹ are an improvement upon the MNDO method because the latter overestimates the repulsive interactions between atoms. The systems studied included a range of small monocarba- and dicarbaborane cages CB₅H₇, CB₅H₉, C₂B₃H₅, and C₂B₄H₆. Of general relevance and applicability to carborane chemistry are the recent EHMO calculations by Wade et al., 27 who included a wide range of basic prototype compounds of the close to arachno series, and predicted relative stabilities and isomer preferences. A number of calculations aimed at rationalizing the endo bridging hydrogen positions in nido and arachno boron-cage systems^{27b} and explaining the long-established observation^{7b,26a,c} that no hydrogen bridges are allowed between carbon and boron and why the {CH2} group is preferred in arachno carborane systems have been reported and are of special theoretical significance for carborane chemistry.

Stone^{40,41} has outlined the theoretical basis for the tensor surface harmonic (TSH) concept which is of general applicability to all closed cluster systems. The method yields a general proof of the electron-counting rules for boron cluster compounds and similar transition metal cluster compounds. It also substantiates the common preference for triangulated polyhedral struc-

tures. This theory has been generalized for nido and arachno cages⁴² and extended to allow quantitative assessment of MO energy levels in various boron-cluster compounds^{43–46} including closo carboranes, metallaboron, and inorganic cages.^{47–49}

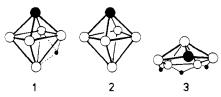
Another useful approach to the theoretical treatment of metallic clusters, which is generally applicable to carborane compounds, is Teo's topological electron-counting (TEC) theory.^{50–52} This is based on Euler's theorem and the effective atomic number (EAN) rule and has been used to predict electron counts for a wide range of polyhedral clusters. The TEC theory was generalized⁵³ and its arguments were merged with those of the PSEPT by Teo⁵⁴ and Mingos.⁵⁵

The application of the graph theory by $\operatorname{King}^{56-58}$ to the area of polyhedral systems has proved of general interest. Among other aspects, this topological and group-theoretical approach was used to distinguish between inherently rigid clusters and those for which one or more diamond–square–diamond (DSD) rearrangement processes⁵⁹ are possible. This was done on the basis of purely geometrical arguments. An interesting approach to cage energetics and rearrangement mechanisms in boron-cage species has been reported by Fuller and Kepert, 60,61 who used a simple relation between bond energy and internuclear distances. The bonding in closed borane structures (n = 5-12) is considered to be a function of the sum of possible n(n-2)/2 interboron interactions.

A considerable amount of theoretical work has been reported on cluster-rearrangement processes. Usually variations of the Lipscomb's DSD concept⁵⁹ seem to offer the most acceptable explanations although other alternatives have been suggested. Theoretical aspects of carborane rearrangement (DSD) mechanisms have been recently reviewed by Gimarc and Ott.⁶² Stone and Wales⁶³ applied the TSH concept to cluster rearrangements in boranes to show that this theory can provide very simple selection rules for distinguishing between symmetry-allowed or symmetry-forbidden processes. Wales and Mingos^{11d,64} have extended and generalized this appraoch for many metallaborane and inorganic clusters.

In carborane chemistry, NMR spectroscopy is the most widely used experimental method for structure investigation in the carborane area. A very useful chapter by Kennedy^{65a} on boron NMR, with emphasis on polyhedral-boron-containing species, has appeared in an important textbook which seems destined to become a standard reference work in multinuclear NMR for chemists. Heřmánek et al. 17,65b and Teixidor 66 have defined and reviewed empirical rules for predicting $\delta(^{11}B)$ chemical shift values which are of general significance for ¹¹B NMR signal assignments within a broad variety of closed and open borane/carborane clusters. The rules are based on various effects including those related to hybridization,65 bridging hydrogens, 65 endo- and exo-cluster substituents, coordination number, 65,66 cluster shape, 66 and antipodal atoms. 65 These predictive rules have partially lost their value since the introduction of the novel two dimensional NMR techniques, such as [¹¹B–¹¹B]-COSY^{67–69} and [¹H–¹H]-COSY⁷⁰ spectroscopy. These techniques usually allow unambiguous ¹H and ¹¹B signal assignments for most borane and carborane compounds.

Boron-11 NMR shifts have also been the subject of various quantum chemical treatments, such as INDO,⁷¹ Fenske-Hall,⁷² and IGLO⁷³ calculations. A mechanism of the antipodal effect⁶⁵ has been recently postulated on the basis of an analysis of the calculated electron densities⁷⁴ and substantiated by the Fenske-Hall MO treatment.⁷²


Onak et al. 75 correlated the aromatic-solvent-induced ¹H NMR shifts (ASIS effect) observed for a series of closo-dicarbaboranes (n = 3-10) to PRDDO-derived hydrogen charges (Q). Linear correlations between $\Delta \tau$ and Q markedly improve when nearest-neighbor cage hydrogen effects are considered. From these relationships a procedure was developed to obtain the hydrogen charges from $\Delta \tau$ values only. The same group 76 correlated the magnitude of ¹J(¹¹B-¹H) values for individual boron atoms in *closo*-carboranes (n = 5-12) with both the number of adjacent cage carbon atoms and cage "umbrella" angles (θ). These latter contribute significantly to changes in the observed ${}^{1}J({}^{11}B-{}^{1}H)$ value. A good agreement between predicted and experimental values of coupling constants was achieved for nonfluxional carboranes. Williams et al. 7,77 reported a useful correlation between ¹³C and ¹¹B NMR shift values for boron hydrides and corresponding nonclassical carbocationic compounds. Dolanský et al. 78 correlated electronic structures and 11B NMR shifts for selected nine-vertex mono- and dicarbaboranes with parameters obtained from STO-3G and CNDO/2 calculations.

III. Monocarbaboranes

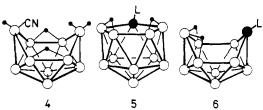
Monocarbaboranes, compounds of the general formulas closo- $CB_{n-1}H_{n+1}$, nido- $CB_{n-1}H_{n+3}$, and arachno- $CB_{n-1}H_{n+5}$ for neutral compounds, are still a less explored area of carborane chemistry, but many examples of new smaller-cage types of monocarbaboranes have been reported over the last decade. Typical synthetic routes are based either on methods involving one-carbon insertion into a borane moiety or, more commonly, on diverse variants of boron- or carbon-degradation reactions.

1. Small Monocarbaboranes

The smallest cage monocarbaborane that has been isolated is $closo-1-\overline{CB}_5H_7$ (1), and it is surprising that the deprotonated form, the parent [closo-1-CB₅H₆] anion (2), has not yet been reported. Brint and Sangchakr³² have carried out comparative MNDO calculations on 2 and the isoelectronic borane and thiaborane systems $[B_6H_6]^{2-}$ and SB_5H_5 . No new chemistry of 1 has been discussed in the recent literature, perhaps due to the difficulties associated with its preparation. A theoretical study by McKee⁷⁹ has appeared, describing hydrogen scrambling reactions for 1. Barrier lengths were calculated at the MP2/6-31G* level on 3-21G optimized geometries and were corrected for differences in zero-point energy. The extra hydrogen in structure 1 was predicted to migrate in the vicinity of boron atoms with a barrier of 14.8 kcal/mol. In contrast to the results of the earlier reviewed⁵ electron diffraction study, which found the extra hydrogen almost perfectly face bridging, calculations at the HF/3-21G level point to the hydrogen bridging between two borons [B(2,3) or B(2,6)] and only weakly interacting with the third boron. Brint et al.³⁰ have calculated the geometry of closo-1-CB₅H₇ at the MNDO-6-80 level and found a good agreement with the experimental bond lengths.

More recent chemistry has been associated with that of the nido congener of the above compounds, nido-2- CB_5H_9 (3). DeKock and Jasperse³¹ used MNDO calculations to estimate the proton affinities for 3 and predicted carbon protonation. Sneddon et al. ^{80,81} isolated a mixture of the positional isomers of 3, 2-R'-3-RCH₂-2- CB_5H_7 and 2-R'-4-RCH₂-2- CB_5H_7 from the thermolysis at 355 °C of cis-2-RCH=C(R')- B_5H_8 compounds (derivatives of nido- B_5H_9 , see structure II, R,R' = Me,Me; H,Me; or Me,H). The mechanistic study unequivocally points to the cage-boron addition to the α -carbon of the alkene. Thus the α -carbon is incorporated into the cage, while the β -carbon forms an RCH₂ group.

$$RCH = C(R')B_5H_8 \rightarrow R'-RCH_2CB_5H_7 \qquad (1)$$


2. Eight- to Eieven-Vertex Monocarbaboranes

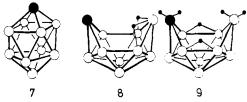
The traditional source for this class of monocarbaboranes is the $[6\text{-NC-}arachno\text{-}B_{10}H_{13}]^{2-}$ anion⁸² (4) which, according to the recently reported X-ray diffraction study,⁸³ displays a unique endo configuration of the CN group. This arrangement accounts for the observed direct insertion of the CN carbon into the cage on protonation with hydrochloric acid⁸⁴ which produces 7-H₃N-nido-7-CB₁₀H₁₂ (structure 5, L = H₃N) and 6-H₃N-nido-6-CB₉H₁₁ (structure 6, L = H₃N):

$$[B_{10}H_{13}CN]^{2-} + 2H^{+} \rightarrow H_{3}NCB_{10}H_{12}$$
 (2)

$$[B_{10}H_{13}CN]^{2-} + 2H_3O^+ + H_2O \rightarrow H_3NCB_9H_{11} + B(OH)_3 + 2H_2$$
 (3)

Equations 2 and 3 suggest that the latter reaction is accompanied by partial cluster degradation, evidently due to hydrolytic removal of the B(9) vertex in structure 4. The ratio of 5 and 6, resulting from reactions 2 and

3 seems to be primarily controlled by temperature and acid concentration. Both compounds 5 and 6 (L = H_3N) were separated by tedious chromatographical procedures as their N-methyl derivatives until a more efficient method was developed. This method relies on the sharply different reaction rates of the amminates 5 and 6 with acetone. The predominant product, $6-Me_2C=NH-nido-6-CB_9H_{11}$, is then easily separable from unreacted 5. The N-isopropylidene group can be smoothly removed to regenerate the above mentioned H_3N derivative of 6. Reactions at the ni-


trogen center led to the isolation of the $[6\text{-}H_2N\text{-}nido-6\text{-}CB_9H_{11}]^-$ anion and $6\text{-}Me_2S\text{-}nido-6\text{-}CB_9H_{11}$ (both of structure 6).87

The trimethylamine derivative of 6 has been used recently to prepare the [closo-1-CB₉H₁₀]⁻ anion (structure 7) by treatment with excess piperidine (70°, 3 days)⁸⁸ in 68% yield:

$$Me_3NCB_9H_{11} + pipe. \rightarrow$$

$$Me_3N + [pipe.H]^+[CB_9H_{10}]^-$$
 (4)

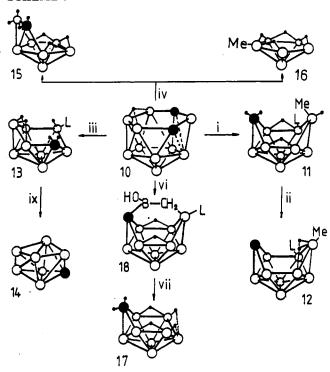
The reaction, eq 4, represents a straightforward nido to closo conversion and is a convenient alternative to the previously reported^{84a,b} method of Knoth. A structural study88 of 7 made on the ionic compound $[(\eta^5-C_5Me_5)_2Ir_2Cl_3]^+[1-CB_9H_{10}]^-$ led to the following mean cage distances: C(1)-B 155.5, B-B(upper belt) 182.0, B-B(interbelt) 179.5, B-B(lower belt) 185.9, and B(10)-B 162.5 pm; the B(7)-B(8) distance was found to be considerably longer at 191.7 (37) pm than the equivalent bond length in the isoelectronic [B₁₀H₁₀]²⁻ anion,89 which is indicative of a partial cage opening, a phenomenon often encountered in metallaborane chemistry. Anion 7 was also used by Russian workers for the preparation of a series of salts with a variety of miscellaneous countercations that included those of alkali metals⁹⁰ and complex cations of Co(II) and Ni(II) (complexed by benzoylhydrazine and (m-nitrobenzoyl)hydrazine).91,92

Of key importance for the synthesis of nine- and ten-vertex species of the monocarbaborane family is the high-yield (80%) preparation of the parent [nido-6- CB_9H_{12}]⁻ anion (8)^{84c} from the reaction between 6 (L = Me₃N) and sodium metal in liquid ammonia (eqs 5 and 6).

$$Me_3NCB_9H_{11} + 3e^- \rightarrow Me_3N + [CB_9H_{10}]^{3-} + \frac{1}{2}H_2$$
(5)

$$[CB_9H_{10}]^{3-} + 2H_2O \rightarrow [CB_9H_{12}]^{-} + 2OH^{-}$$
 (6)

Anion 8 (trimethylammonium salt) was found to react almost quantitatively with sodium in liquid ammonia in a straightforward nido \rightarrow closo conversion leading to the isolation of the [arachno-6-CB₉H₁₄]⁻ anion (9), ^{93,94} an analogue of the prototype borane anion [B₁₀H₁₄]²⁻ (see schematic structure XVIII):


$$[CB_9H_{12}]^- + 2e^- \rightarrow [CB_9H_{12}]^{3-}$$
 (7)

$$[CB_9H_{12}]^{3-} + 2H_2O \rightarrow [CB_9H_{14}]^{-} + 2OH^{-}$$
 (8)

It should be noted that the trianions involved in eqs 5 and 7 are proposed intermediates based on the stoichiometry of these reactions but neither has been isolated so far.

A conceptually different and efficient route to nine-and ten-vertex compounds of the monocarbaborane family is outlined in Scheme 1. All reactions in Scheme 1 are based on selective removal of a defined number of boron vertices together with one cage carbon atom from the $[nido-7,9-C_2B_{10}H_{13}]^-$ anion⁹⁵⁻⁹⁸ (structure 10

SCHEME 1

in Scheme 1). The structure of this anion has been determined by using X-ray methods⁹⁷ and in solution by using NMR.⁹⁸ Treatment of anion 10 in aqueous THF with trimethylamine^{95,99a} (path i in Scheme 1) resulted in the isolation of 9(endo)-Me-8-Me₃N-arachno-6-CB₉H₁₂ (structure 11 in Scheme 1). This compound is an asymmetrically substituted ligand derivative of the parent anion (9) with the endo-Me group generated from one of the skeletal carbons in structure 10 upon hydrolytic degradation of the B(8) vertex:

$$[C_{2}B_{10}H_{13}]^{-} + H_{3}O^{+} + 2H_{2}O + Me_{3}N \rightarrow Me_{3}N \cdot CH_{3}CB_{9}H_{12} + B(OH)_{3} + H_{2}$$
(9)

A straightforward arachno \rightarrow nido conversion was observed in the reaction of 11 with acetone in the presence of potassium carbonate (path ii in Scheme 1). This generated the nido analogue of 11, 9-Me-8-Me₃N-nido-6-CB₉H₁₀ (structure 12 in Scheme 1) in high yield (85%):

$$\begin{array}{c} Me_{3}N\cdot MeCB_{9}H_{12} + Me_{2}CO \rightarrow \\ Me_{2}CHOH + Me_{3}N\cdot MeCB_{9}H_{10} \end{array} (10)$$

The molecular structure of a structurally similar compound, the $[8\text{-HO-9-Me-}nido\text{-}6\text{-CB}_9H_{10}]^-$ anion (8,9-disubstituted derivative of 8), was determined by X-ray diffraction^{99b} on its PPh⁴⁺ salt [selected bond distances: C(6)-B(5) 152.0 (6), C(6)-B(7) 152.8 (5), B(5)-B(10) 189.5 (6), B(7)-B(8) 1.962 (5), B(8)-B(9) 179.1 (5), and B(9)-B(10) 178.5 (6) pm].

Acid-promoted degradation of 10 in the presence of Lewis bases as in eq 11 (path iii in Scheme 1) resulted in the degradation of one carbon and two boron vertices from structure 10, with the formation of a series of nine-vertex ligand derivatives of the 6(exo)-L-ara-chno-4-CB₈H₁₂ type (structure 13 in Scheme 1, L = Me₃N, Me₂S, urotropine, and py; yields 20–60%):^{95,99a}

$$\begin{array}{c} [C_{2}B_{10}H_{13}]^{-} + H_{3}O^{+} + 4H_{2}O + L \rightarrow \\ LCB_{8}H_{12} + B(OH)_{3} + CH_{3}B(OH)_{2} + 2H_{2} \end{array} (11)$$

These compounds are structurally similar and isoelectronic to arachno dicarbaboranes of the $C_2B_7H_{13}$ series (structures 59 and 60 in section IV).

The action of sodium hydride on 13 (L = Me₃N) in THF at 60 °C (path ix in Scheme 1) resulted in the formation of the first representative of the eight-vertex closo series of monocarbaboranes, the [1-closo-CB₇H₈]⁻ anion⁹⁵ (structure 14 in Scheme 1) (yield 60%). This was found to exhibit fluxional NMR behavior in solution within a wide temperature range⁹⁵ as does its borane-prototype congener [closo-B₈H₈]²⁻¹⁰⁰

Another result of the degradation reactions of 10 is the formation of the first eight-vertex arachno-monocarbaborane 4-CB₇H₁₃ (structure 15 in Scheme 1) and the earlier reported¹⁰¹ 2-Me-nido-B₆H₉ (structure 16 in Scheme 1) borane upon acidification of 10 with dilute hydrochloric acid (path iv in Scheme 1).⁹⁵ The ultimate product 16 is probably formed by degradation of the B(5) boron from the cage of 15.

$$\begin{array}{c} [\mathrm{C_2B_{10}H_{13}}]^- + \mathrm{H_3O^+} + 7\mathrm{H_2O} \rightarrow \\ \mathrm{CB_7H_{13}} + \mathrm{CB_3B(OH)_2} + 2\mathrm{B(OH)_3} + 3\mathrm{H_2} \ (12) \end{array}$$

$$[C_2B_{10}H_{13}]^- + H_3O^+ + 10H_2O \rightarrow CH_3B_6H_9 + CH_3B(OH)_2 + 3B(OH)_3 + 5H_2$$
 (13)

Scheme 1 (paths vi and vii) also shows another useful variation of a $[C_2B_{10}H_{13}]^-$ -based synthesis of lower-cage monocarbaborane systems. This reaction sequence is a convenient preparation of the parent nine-vertex arachno-monocarbaborane 4-CB₈H₁₄ (structure 17 in Scheme 1) (yield ca. 50%, based on the starting o-carborane). The reaction of anion 10 with dimethyl sulfide and concentrated hydrochloric acid initially produces the unique compound μ -6,9-[B(OH)CH₂]-9-Me₂S-arachno-6-CB₉H₁₁ (structure 18 in Scheme 1) as an isolable intermediate: 102

$$[C_{2}B_{10}H_{13}]^{-} + H_{3}O^{+} + Me_{2}S \rightarrow Me_{2}SB(OH)CH_{2}CB_{9}H_{11} + H_{2} (14)$$

$$Me_2SB(OH)CH_2CB_9H_{11} + 4H_2O \rightarrow CB_8H_{14} + CH_3B(OH)_2 + B(OH)_3 + Me_2S + 2H_2$$
(15)

Compound 18 then undergoes rapid hydrolytic degradation (eq 15) to give carborane 17 as a sole product. Moreover, this carborane can be converted in 90% yield into $[nido-6-CB_9H_{12}]^-$, by the action of sodium tetrahydroborate in boiling THF: 102

$$CB_8H_{14} + BH_4^- \rightarrow [CB_9H_{12}]^-$$
 (16)

The reaction sequence according to eqs 14–16 is a new and safe synthetic route to nine- and ten-vertex monocarbaboranes from the commercially available ocarborane or at least a good alternative to the previously reported^{84c} synthesis of compounds 17 and 8. Reaction 17 (80% yield), which is in fact a reverse process of reaction 16, is promoted by ferric chloride.^{84c}

$$[CB_9H_{12}]^- + H_3O^+ + 2H_2O \rightarrow CB_8H_{14} + B(OH)_3 + 2H_2$$
 (17)

Howarth et al.¹⁰³ have measured the two-dimensional NMR spectra of 4-CB₈H₁₄ and its anion, [4-CB₈H₁₃] (structure 19), to confirm the original signal assignments^{84c} and to assign all ¹H NMR resonances of the cluster {BH} units in both compounds. The former compound is known to lose dihydrogen upon thermo-

TABLE 1. Monocarbaboranes with 6-10 Cage Atoms

structure	measured data	ref(s)
3	¹ H, ¹¹ B, MS	80, 81
3	¹ H, ¹¹ B, MS	80, 81
3	¹ H, ¹¹ B, MS	80, 81
3	¹ H, ¹¹ B, MS	80, 81
14	¹ H, ¹¹ B	95, 99a
15	¹ H, ¹¹ B, ^a MS	95
11	¹ H, ^a ¹¹ B, ^a MS	95, 99a
20	¹ H, ^a ¹¹ B, ^a MS	84c, 104
17	¹ H, ^a ¹¹ B, ^a MS	84c, 103
7	¹ H, ¹¹ B, XR	95, 99a
8	¹ H, ¹¹ B ^a	84c, 87
6	¹ H, ¹¹ B, ^a MS	84c, 87
1 2	¹ H, ^a ¹¹ B, ^a MS, mp	95, 99
9	¹ H, ¹¹ B, ^a MS	93, 94
9	¹ H, ^a ¹¹ B, ^a XR	99
11	¹ H, ^a ¹¹ B, ^a MS, mp	95, 99a
	3 3 3 3 14 15 11 20 17 7 8 6 12 9	3 1H, 11B, MS 3 1H, 11B, MS 3 1H, 11B, MS 3 1H, 11B, MS 14 1H, 11B 15 1H, 11B, a MS 11 1H, a 11B, a MS 20 1H, a 11B, a MS 17 1H, a 11B, a MS 7 1H, 11B, x R 8 1H, 11Ba 6 1H, 11B, a MS 12 1H, a 11B, a MS 14 11B, a MS 17 1H, a 11B, a MS 18 1H, 11Ba 19 1H, a 11B, a MS 10 1H, a 11B, a MS 11 1H, a 11B, a MS

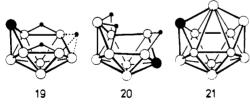
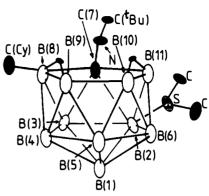

 a 2-D measurements. bL = Me $_3$ N, Me $_2$ S, Py. cL = H $_3$ N, Me $_3$ N, Me $_2$ C—NH, Me $_2$ S, and NH $_2$ -.

TABLE 2. Compounds of the Eleven-Vertex Lenido-7-CB₁₀H₁₁X Type (Cage Structure 5)

compound [X, L]	measured data	ref(s)
H, 7-H ₃ N	mp, ¹ H, ¹¹ B, R _F	105
H, 7-Me ₃ N	$^{1}\text{H}, ^{11}\text{B}, R_{F}$	105
$H, 7-Me_2C=NH$	mp, ${}^{1}H$, ${}^{11}B$, R_{F} , IR	105
$H, 7-(CH_2)_5C=NH$	mp, ${}^{1}H$, ${}^{11}B$, R_{F} , IR	105
$H, 7-PhC(PhCH_2)=NH$	mp, ${}^{1}H$, ${}^{11}B$, R_{F} , IR	105
H, 7-Me ₂ S	mp, ${}^{1}H$, ${}^{11}B$, R_{F} , IR	105
$H, 7-(CH_2)_6N_4$	mp, ${}^{1}H$, ${}^{11}B$, R_{F}	105
H, 7-HOCONH ₂	mp, ${}^{1}H$, ${}^{11}B$, R_{F} , IR	105
H, 7-MeCONH ₂	mp, ${}^{1}H$, ${}^{11}B$, R_{F} , IR	105
H, 7-PhCONH ₂	mp, ¹ H, ¹¹ B, TLC, IR	105
H, [7-NH ₂]	11 B	105
8-C ₆ H ₁₁ , 7- ^t BuNH ₂ , 2-Me ₂ S	mp, ¹ H, ¹¹ B, IR, XR	106
H, 8-Me ₂ S	mp, ¹ H, ¹¹ B, ^a IR	107
H, 8-PPh ₃	mp, ¹ H, ¹¹ B, ^a IR, XR	107
7-(Me ₃ Si) ₂ CH, 8-Me ₂ S	mp, ¹ H, ¹¹ B, ^a IR	108
7-(Me ₃ Si) ₂ CH, 8-PPh ₃	mp, ¹ H, ¹¹ B, ^a IR	109


lysis at 350 °C and to generate nido-1-CB₈H₁₂ (20),^{84c} whose structure and its relation to the binary borane anion [nido-B₉H₁₂]⁻ (schematic structure XIV) has been confirmed unambiguously by [^{11}B - ^{11}B]-COSY NMR spectroscopy. 104

Selected compounds of the six- to ten-vertex series of monocarbaboranes are listed in Table 1.

The eleven-vertex series of monocarbaboranes is represented by the parent anions $[closo-2-CB_{10}H_{11}]^-$ (21) and $[nido-7-CB_{10}H_{13}]^-$ (22) reviewed earlier. The usual synthesis of these monocarbaboranes starts from 7-ligand derivatives of anion 22, 7-L-nido-7-CB₁₀H₁₂ (5) (L = H₃N and Me₃N), which are accessible from nido-B₁₀H₁₄ as in eq 2^{84} or from the reaction of decaborane with isonitriles. S

The author's group 105 has employed the H_3N derivative of 5 to prepare a series of compounds of the same type by using various chemical modifications of the exoskeletal H_3N group. These reactions afforded compounds with modified ligands on the carbon vertex in

Figure 1. Schematic representation of the 2-Me₂S-7- t BuNH₂-8-C₆H₁₁-nido-7-CB₁₀H₁₀ structure. ¹⁰⁶ Selected mean exocage distances were B(2)-S 188.9 (9), mean S-C(Me) 179.9, C(7)-N 147.3 (9), and N-C(t Bu) 149.8 (9) pm. For mean cage distances see Table 3.

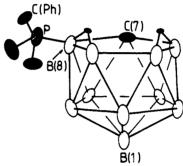


Figure 2. Simplified representation of the structure of 8-PPh₃-nido-7-CB₁₀H₁₂ (23). Selected exocluster bond distances were ¹⁰⁷ B(8)-P 194.8 (4), P-C(Ph) 180.3, and C-C(Ph) 137.6 pm. For numbering see Figure 1 and for mean cage distances Table 3.

structure 5 (L = Me_2C =NH, (CH₂)₅C=NH, PhCH₂ (PhCH=)N, Me_2S , urotropine, HOCOCH₂NH₂, MeCONH₂, PhCONH₂), with yields varying from 11 to 92%. These "organic-like" reactions demonstrate chemical flexibility of the exoskeletal H₃N group for designed syntheses of compounds for targeted research. Measured properties for individual compounds of the eleven-vertex nido series are summarized in Table 2. Boron-substituted compounds of the general nido-7-L7-CB₁₀H₁₂ type are available from boron-substituted precursors derived from both $\{nido$ -B₁₀ $\}$ and $\{nido$ -CB₁₀ $\}$ cage systems. Thus, 2- Me_2S -7- 4BuNH_2 -8-(cyclohexyl)-nido-7-CB₁₀H₁₀ was prepared 106 by a variation of the original isocyanide synthesis. The structural details of this compound were determined by X-ray crystallography, as shown in Figure 1.

Another positional isomer of the same series, 8-Me₂S-nido-7-CB₁₀H₁₂ (see the PPh₃ analogue 23 in Figure 2), was prepared¹⁰⁷ from the reaction between [7-CB₁₀H₁₃]⁻ and dimethyl sulfide in the presence of concentrated sulfuric acid:

$$[CB_{10}H_{13}]^- + Me_2S + H^+ \rightarrow Me_2SCB_{10}H_{12} + H_2$$
 (18)

The dimethyl sulfide derivative was converted to 8-

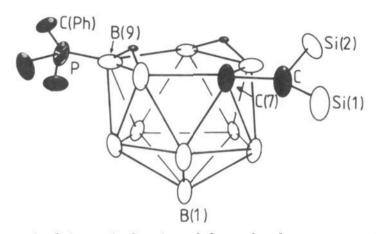


Figure 3. Schematic drawing of the molecular structure of 7-(Me₃Si)₂CH-9-PPh₃-nido-7-CB₁₀H₁₁ (24). Selected exocage distances were 109 B(9)-P 192.8 (5), C(7)-C 156.2 (7), mean C-Si 189.6, and C(Me)-Si 186.8 pm. For numbering see Figure 1 and for cage distances Table 3.

TABLE 3. Comparison of Mean Cage Distances (pm) for Structurally Determined Eleven-Vertex Nido Compounds of the L-7-CB₁₀H₁₁X| Type (Cage Structure 5)

distance	L X	$2-Me_2S-7-NH_2^tBu$ $8-C_6H_{11}^a$	8-PPh ₃ ^b	$9-PPh_3-7-(Me_3Si)_2CH^2$
B(1)-B		177.1	174.5	176.8
B-B (lower belt)		175.8	177.5	176.7
B-B (interbelt)		178.2	176.6	178.0
C-B (interbelt)		171.1	170.1	170.0
C-B (open face)		167.4	163.5	165.6
B-B (bridge)		187.2	184.6	187.1
B(9)-B(10)		187.8	185.9	186.8

^a From ref 106. ^b From ref 107. ^c From ref 109.

 PPh_3 -nido-7- $CB_{10}H_{12}$ (23) by refluxing with triphenylphosphine in benzene (80% yield).¹⁰⁷ The simplified molecular structure of 23, as determined by X-ray diffraction, is depicted in Figure 2.

A new route to monocarbaboranes of the *inido-7-* CB_{10} type is provided by the reaction of decaborane (14) and bis(trimethylsilyl)acetylene in boiling benzene¹⁰⁸ in the presence of dimethyl sulfide (eq 19). This leads to $9-Me_2S-7-(Me_3Si)_2CH-nido-7-CB_{10}H_{11}$ (see similar structure 24 in Figure 3) (28% yield) and 5-Me₂S-6- $[(Me_3Si)_2C=CH]$ -nido- $B_{10}H_{11}$ (21%). While the latter compound is a product of hydroboration at the B(6) site of the decaborane cage (schematic structure XVII), the former is apparently formed by direct one-carbon insertion into the area of the cage defined by the B-(5,6,9,10) atoms in structure XVII.

$$(Me_3Si)_2C_2 + B_{10}H_{14} + Me_2S \rightarrow Me_2S \cdot (Me_3Si)_2CHCB_{10}H_{11} + H_2$$
 (19)
 $B_2C_2 + B_{10}H_{12} \cdot (SMe_2)_2 \rightarrow Me_2S_2 + B_{10}H_{11} + H_2$ (19)

 $R_2C_2 + B_{10}H_{12} \cdot (SMe_2)_2 \rightarrow R_2C_2B_{10}H_{10} + 2Me_2S + H_2$ (20)

The reaction depicted in eq 19 contrasts with the long-established^{1,2,5} two-carbon insertion process (eq 20) leading to twelve-vertex dicarbaboranes. Inspection of the former equation also indicates that the carbon insertion is accompanied by the $\alpha \rightarrow \beta$ migration of the silyl substituent along the C=C bond of the primary hydroboration intermediate. Ligand exchange between the Me₂S derivative and triphenylphosphine yielded the corresponding 9-PPh₃-7-(Me₃Si)₂CH-nido-7-CB₁₀H₁₁ analogue (24) (80% yield), 109 the X-ray structure of which is outlined in Figure 3. Bond distances for structurally determined compounds of the {nido-L-7- $CB_{10}H_{12}$ type are in Table 3.

In the light of previous⁵ and recent¹¹⁰ review work, compounds of the {nido-L-7-CB₁₀} type are used exclusively to generate monocarbaboranes of the eleven-

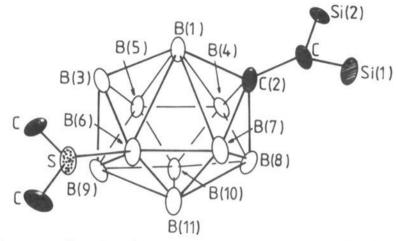


Figure 4. Simplified molecular structure of 2-(Me₃Si)₂CH-6-Me₂S-closo-2-CB₁₀H₉ (25).¹⁰⁸ Selected exocage bond lengths were B(6)-S 189.5 (5), mean C(Me)-S 177.9, C(2)-C 153.2, and mean C(Me)-Si 185.4 pm. For cage distances see Table 4.

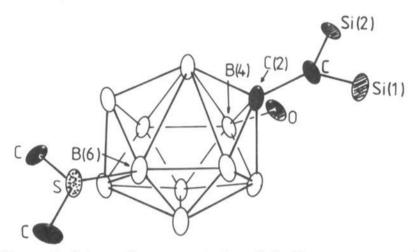


Figure 5. Schematic representation of the X-ray structure of 2-(Me₃Si)₂CH-4-HO-6-Me₂S-closo-2-CB₁₀H₉ (26).¹⁰⁸ Selected exocage bond lengths are B(6)-S 189.4 (4), B(4)-O 138.4 (5), C-C(2) 154.2 (4), C-Si 190.1 (4), and mean C(Me)-Si 186.3 (5) pm. For numbering see Figure 4 and for cage distances Table

vertex closo series, typified by the $[closo-2-CB_{10}H_{11}]^{-}$ anion (21), by reaction with suitable reagents which result in the net removal of two cage electrons. Recent work in this area represents a continuation of this strategy and has brought another useful synthetic variation.

Two groups 18,107 have modified the preparation of the parent anion 21 by treatment of 8-Me₂S-nido-7-CB₁₀H₁₂ with basic reagents. The best result has been achieved by sodium hydride:107

$$Me_2SCB_{10}H_{12} + H^- \rightarrow [CB_{10}H_{11}]^- + Me_2S + H_2$$
 (21)

Reaction 21 represents a straightforward nido → closo conversion accompanied by expulsion of Me₂S. Thermal dehydrogenation of 8-Me₂S-7-CB₁₀H₁₂ in boiling toluene afforded 4-Me₂S-closo-2-CB₁₀H₁₀, ¹⁰⁷ a 4-substituted derivative of 21. A similar thermal treatment of the 9-Me₂S-7-(Me₃Si)₂CH-7-CB₁₀H₁₁ derivative afforded 108 6-Me₂S-2-(Me₃Si)₂CH-closo-2-CB₁₀H₉ (25), i.e. 2,6-disubstituted derivative of 21. A 4-hydroxy derivative of the last compound, 4-HO-6-Me₂S-2-(Me₃Si)₂- $2-CB_{10}H_8$ (26), was obtained as a minor product from the thermolysis reaction in the solid state. A variation of the reaction represented in eq 21 was observed with $9-Me_2S-7-(Me_3Si)_2CH-7-CB_{10}H_{11}$ and NaH (or Li-BHEt₃) in THF. The product was a silylated derivative of 21, the $[2-(Me_3Si)_2CH-2-CB_{10}H_{10}]^-$ anion (27), which was isolated as Cs⁺, Li⁺, Na⁺, and [Cp₂Co]⁺ salts. 108 Structures of the closo compounds 25-27 have been analyzed by X-ray crystallography and, simplified, they are depicted in Figures 4-6.

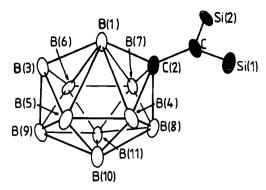


Figure 6. Schematic drawing of the X-ray structure of $[Cp_2Co]^+[2-(Me_3Si)_2CH-closo-2-CB_{10}H_{10}]^-$ (27). Selected mean exocage bond distances are ¹⁰⁸ C-C(2) 154.0 (6), mean C-Si 190.3, and mean C(Me)-Si 185.5 pm. For cage distances see Table 4.

TABLE 4. Mean Cage Bond Distances (pm) for Crystallographically Determined Derivatives of the Eleven-Vertex *closo-*{2-CB₁₀} Type (Data from Ref 108)

	compound		
	25 ^a	26 ^b	27°
C(2)-B(1)	164.6 (5)	165.6 (6)	164.1 (8)
C(2)-B(4,5)	159.2	157.6	159.2
C(2)-B(8)	169.3 (6)	170.3 (6)	168.2 (7)
B(1)-B(3)	174.7 (3)	177.5 (6)	170.4 (9)
B(1)-B(6,7)	198.6	199.7	203.0
B(8)-B	176.5	178.1	178.1
B(9)-B	177.0	176.3	175.4
B(10)-B(11)	181.8 (7)	180.6 (6)	179.5 (9)
B(4,5)-B(10,11)	176.6	178.2 (6)	177.2
B(6,7)-B(10,11)	175.7	175.4	176.2
B(4 or 5)-B(7 or 6)	164.7	165.2	164.5

 oData for 2-(Me₃Si)₂CH-6-Me₂S-closo-2-CB₁₀H₉. bData for 2-(Me₃Si)₂CH-4-HO-6-Me₂S-closo-2-CB₁₀H₈. cData for [Cp₂Co]⁺[2-(Me₃Si)₂CH-closo-2-CB₁₀H₁₀]⁻.

TABLE 5. Monocarbaborane Compounds of the Eleven-Vertex L-closo-2-CB₁₀H₂X Type

x	L	structure	measured data	ref(s)
Н	H-	21	¹ H, ¹¹ B, IR, UV, DTA	11, 112
H	$4-Me_2S$	21-type	¹ H, ¹¹ B, MS	107
2-(Me ₃ Si) ₂ CH	6-Me ₂ S	25	¹ H, ¹¹ B, MS, XR	108
2-(Me ₃ Si) ₂ CH 4-HO	6-Me ₂ S	26	¹ H, ¹¹ B, MS, XR	108
$2-(Me_3Si)_2CH$	H-	27	¹ H, ¹¹ B, XR	108

Kuznetsov et al.^{111,112} have extended the cationic chemistry of 21 by isolating salts with various countercations [including all alkali metals, R_4N^+ (R = Me, Et, and nBu), and PPh_4^+] and determined some of their properties. Selected compounds of the eleven-vertex series of monocarbaboranes are in Tables 2 and 5, and selected mean bond distances for structurally determined compounds are in Tables 3 and 4.

3. Tweive-Vertex Monocarbaboranes

Compounds of the twelve-vertex closo family, represented by the parent $[closo\text{-}1\text{-}CB_{11}H_{12}]^-$ anion (28), have been extensively studied in recent times. Structural work has been reported for a variety of compounds that contain 28 as the main cluster constituent. Reed's group has found this anion to be the least coordinating of ligands for the complexation of transition metals, such as Ag and Fe. The complexes included $[(\eta^1\text{-}C_6H_6)Ag(closo\text{-}1\text{-}CB_{11}H_{12})]\cdot C_6H_6,^{113}$ [Fe(TPP) $(closo\text{-}1\text{-}CB_{11}H_{12})]\cdot C_7H_8,^{114,115}$ [Ir(CO)(PPh₃)₂Ag $(closo\text{-}1\text{-}CB_{11}H_{12})],^{116,117}$ and $[Cp(CO)_2\text{FeCB}_{11}H_{12}],^{117}$ all of which

TABLE 6. Comparison of Mean Cage Bond Distances (pm) for Crystallographically Determined Compounds of the {closo-1-CB₁₁} Type (Cage Structures 29 and 30)

	29ª	29 ^b	30°	30 ^d
C(1)-B	170.1	169.8	172.3	172.3
B-B (upper belt)	177.3	175.7	178.1	177.0
B-B (interbelt)	178.3	175.3	176.5	175.4
B-B (lower belt)	178.6	178.3	177.6	176.4
B(12)-B	177.6	177.0	177.6	176.8

^a Data for $AgCB_{11}H_{12}$ from ref 113. ^b Data for $Fe(TPP)CB_{11}H_{12}$ from ref 115. ^c Data for 1-Me₃N-1-CB₁₁H₁₁ from ref 127. ^d Data for NMe₄+[1-Me₂N-1-CB₁₁H₁₁][−] from ref 129.

were structurally characterized via X-ray diffraction studies. The complexes contain a σ -bonded carborane anion with a common [M-H-B₁₁CH₁₁] structural motif (29), whose intrinsic feature is the M-H-B(12) bridging group (for selected bond distances of some structurally determined compounds of the $\{closo\text{-CB}_{11}\}$ type, see Table 6).

Kuznetsov et al.¹¹⁸⁻¹²² have extended the cation-modification approach to the chemistry of 28 in order to isolate a series of salts with alkali metals and cobalt and nickel cations complexed by (*m*-nitrobenzoyl)-hydrazine, 2,2'-bipyridine, and *o*-phenanthroline. They characterized these salts by DTA, IR spectra, and elemental analyses.

The author's group has developed an alternative synthetic route to the compounds of the {closo-1-CB₁₁} series, based on cluster-expansion reactions between the $7-L-nido-7-CB_{10}H_{12}$ (L = H_3N and Me_3N) compounds and triethylamine borane at elevated temperatures (180-200 °C). Variations of this method have generated compounds of the 1-L-closo-1-CB₁₁H₁₁ type (30) (L = $\rm H_3N$ and Me₂NH), $^{123-125}$ both of which can be methylated to give 1-Me₃N-1-CB₁₁H₁₁. As documented by ¹⁰B-tracer studies, ¹²⁶ the reaction is site-selective, in agreement with a clean insertion of one boron vertex into the open pentagonal face of the {nido-CB₁₀}-type cage (5 or 22). Thus, reactions of $[nido-7-CB_{10}H_{13}]^-$ and 7-Me₃N-7-CB₁₀H₁₂ with Et₃N¹⁰BH₃ produced [closo-1- $CB_{11}H_{12}$ and [1-Me₃N-closo- $CB_{11}H_{11}$] compounds regiospecifically labeled by ¹⁰B at the B(2) position. ¹²⁶ However, the same reaction with 8-PhCH₂-7-Me₃N-7- $CB_{10}H_{11}$ results in the rearrangement of the benzyl substituent to yield 1-Me₃N-7-PhCH₂-1-CB₁₁H₁₀. ¹²⁶

Useful variants of the capping reaction described above are the direct formation of the parent [1-CB₁₁-H₁₂] anion by the treatment of 8-Me₂S-nido-7-CB₁₀H₁₂ with $^{\rm n}$ Bu₃P·BH₃ $^{\rm 107}$ and the thermal-decomposition reaction (eq 22). $^{\rm 126}$ This reaction, combined with the

$$[BH_2(NMe_3)_2]^+[7-CB_{10}H_{13}]^- \rightarrow Me_3N-1-CB_{11}H_{11} + Me_3N + 2H_2$$
 (22)

electrophilic substitution of 28 by treatment with H_2NSO_3H , ¹²⁶ yields all three possible B-substituted isomeric derivatives of the L-closo-1-CB₁₁H₁₁ type, 2-, 7-, and 12-Me₃N-1-CB₁₁H₁₁.

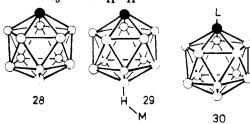


TABLE 7. Substituted Derivatives of the [closo-1-CB₁₁H₁₂] Anion (Cage Structure 28)

substituent(s)	measured data	ref(s)
H- (parent)	¹ H, ¹¹ B, IR, DTA	112-122
1-H ₂ N	1 H, 11 B, R_{F}	125
1-MeHN	$^{1}\mathrm{H},\ ^{11}\mathrm{B},\ R_{F}$	124
1-O-HC=NMe	1 H $,$ 11 B $,$ IR $,$ R_{F}	124
1-Ph(O)C=NMe	$^{1}\mathrm{H},\ ^{11}\mathrm{B},\ \mathrm{IR},\ R_{F}$	124
1-HO	$^{1}\text{H}, ^{11}\text{B}, R_{F}$	125
1-MeO	$^{1}\text{H}, ^{11}\text{B}, R_{F}$	125
7,8,9,10,11,12-D ₆	${}^{1}\mathrm{H}, {}^{11}\mathrm{B}, R_{F}$	125
7,8,9,10,12-Cl ₅	${}^{1}\text{H}, {}^{11}\text{B}, R_{F}$	125
7,8,9,10,11,12-Cl _s	$^{1}\mathrm{H},\ ^{11}\mathrm{B},\ R_{F}$	125
7,8,9,10,11,12-Br ₆	${}^{1}\mathrm{H}, {}^{11}\mathrm{B}, R_{F}$	125
12-I	$^{1}H, ^{11}B, R_{F}$	125
7,12-I ₂	$^{1}\mathrm{H,}^{'}$ $^{11}\mathrm{B,}$ $R_{F}^{''}$	125
1-HS.1-MeS	$^{1}\text{H}, ^{11}\text{B}, R_{F}$	125

TABLE 8. Compounds of the L-close-1-CB₁₁H₁₁ Type

	THE DESCRIPTION OF SHEET OF SHEET OF SHEET OF SHEET				
L	measured data	ref(s)			
1-H ₃ N	¹ H, ¹¹ B, MS, R _F	125			
1-MeH₂N	1 H, 11 B, MS, R_{F}	12 3			
1-Me₂ĤN	${}^{1}\text{H}, {}^{11}\text{B}, \text{MS}, R_{F}$	123, 124			
1-Me ₃ N	${}^{1}H$, ${}^{11}B$, MS, R_{F} , XR	123-125			
1-Me ₃ N-7-PhCH ₂	1 H, 11 B, MS, R_{F} , mp	126			
7-Me ₃ N	¹ H, ¹¹ B, MS, R _F	125			
1-MeEtHN	¹ H, ¹¹ B, MS, R _F	125			
1-HOHC=NMe	1 H, 11 B, MS, R_{F} , IR	125			
1-Ph(HO)C=NMe	1 H, 11 B, IR, MS, R_{F}	125			
1-Me ₂ S	1 H, 11 B, IR, MS, R_{F}	125			
12-Me₂S	1 H, 11 B, IR, MS, R_{F}	125			
$12\text{-}(MeS)_2CH_2$	1 H, 11 B, IR, MS, R_{F}	125			
1-, 7-, and 12-Me ₃ N	¹ H, ¹¹ B, MS, R _F	126			
•	-				

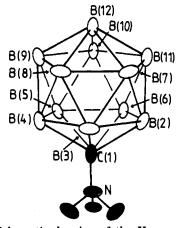
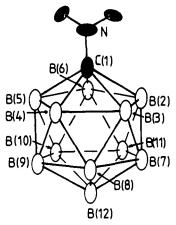
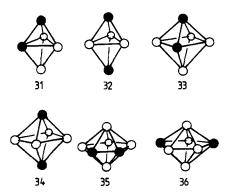


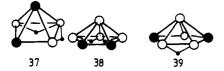
Figure 7. Schematic drawing of the X-ray structure of 1-Me₃N-closo-1-CB₁₁H₁₁ (30). Selected mean exocage bond lengths were ¹²⁷ C(1)-N 154.7 (1) and C(Me)-N 151.2 pm, the mean angle about the N atom being 110.17°. For selected cage distances see Table 6.

Compounds of the 1-L-closo-1-CB₁₁H₁₁ type (30) (L = H₃N and Me₂NH) have been used to isolate a broad range of further ligand-derivatives of the same family (L = [MeHN]⁻, MeH₂N, HO—HC—NMe, [O—HC—NMe]⁻, MeEtHN, Ph(HO)C—NMe, [Ph(O)C—NMe]⁻, Me₂S, HO⁻, and MeO⁻) on reactions of the exoskeletal amine group^{124,125} (for other data see Tables 7 and 8). A detailed insight into the structures of compounds of this class has been provided by X-ray diffraction studies on 1-Me₃N-1-CB₁₁H₁₁1^{27,128} (Figure 7) and the [1-Me₂N-1-CB₁₁H₁₁]⁻ anion¹²⁹ (Figure 8). Selected interatomic distances for some structurally determined compounds of the {closo-1-CB₁₁} type are in Table 6.

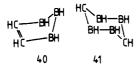



Figure 8. Schematic representation of the X-ray structure of NMe₄⁺ [1-Me₂N-closo-1-CB₁₁H₁₁]⁻ (deprotonized 30).¹²⁹ The mean bond angle about the N atom at 112° indicates an almost regular sp³ disposition of N–C bonds with no substantial donation of the lone electron pair on the nitrogen center to the cage. For cage bond lengths see Table 6.

IV. Dicarbaboranes


The chemistry of dicarbaboranes, i.e. of compounds of general formulas closo- $C_2B_{n-2}H_n$, nido- $C_2B_{n-2}H_{n+2}$, arachno- $C_2B_{n-2}H_{n+4}$, and hypho- $C_2B_{n-2}H_{n+6}$ for neutral species, is the oldest and most investigated area of carborane chemistry. This class of compounds is generally available from carbon cluster-expansion reactions, most typically from the reactions of alkynes with various borane substrates, 1,2,5 from boron-degradation procedures involving larger-cage carborane species, or alternatively from metal-promoted cluster condensation reactions. The smallest-cage dicarbaboranes ever isolated are the two isomeric five-vertex $C_2B_3H_5$ compounds while the largest ones are the isomeric $C_2B_{10}H_{12}$ carboranes (excluding coupled-cage or conjuncto species).

1. Smail Dicarbaboranes


Much of the recent chemistry of the small dicarbaboranes (n=5-7) has concerned the previously reported^{1,2,5} compounds 1,2- and 1,5-closo-C₂B₃H₅ (31 and 32), 1,2- and 1,6-closo-C₂B₄H₆ (33 and 34), 2,3- and 2,4-closo-C₂B₅H₇ (35 and 36), and some nido structured species, such as 1,2-C₂B₃H₇ (37), 2,3-C₂B₄H₈ (38), and the $[2,4-C_2B_4H_7]^-$ anion (39). Indeed, most of the chemistry has been derived from compounds 31, 36, and 38, evidently due to their relative availability. It is interesting to note that small-sized arachno- and hypho-carboranes have not yet been prepared.

Most of the chemistry of this field has been in two areas: exopolyhedral substitution reactions (for a partial review, see refs 7d and 11e,f) and the designed syntheses of metalladicarbaborane clusters (for recent review, see ref 16). Except for the innovative work based on metal-promoted cluster condensation reactions, 15 relatively little attention has been paid to the development of novel skeletal chemistry of small carboranes.

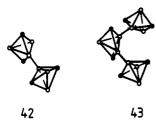
The small size of these compounds has attracted considerable attention from theoretical chemists. Gimarc and Ott¹³⁰ have investigated the DSD rearrangement mechanism for the C₂B₃H₅ carborane system at the EHMO level to show that the rearrangements of this type⁵⁹ are blocked by HOMO/LUMO crossing, indicating that these processes face a very high activation energy barrier. It was suggested that the closo five-vertex dicarbaborane isomers should be stereochemically rigid. The same result was achieved by the THS⁶³ and ab initio^{131a} calculations, the latter indicating a HOMO/LUMO crossing of ca. 80 kcal mol⁻¹. A mechanism based on the rotation of two equatorial atoms (2 and 3) about an axis in the equatorial plane and a new cyclopentene-like structure 40 with three unsaturated boron centers for the 1,2-isomer were also considered. 131a Relative energies have been calculated for the C₂B₃H₅, C₂B₃H₄Me, and C₂B₃H₂F₃ systems in the isomeric forms 1,5-trigonal bipyramidal (closo), 1,2-planar, 1,2-trigonal bipyramidal (closo), 2,3-square pyramidal, 1,3-planar, and 2,3-trigonal bipyramidal (closo). The 1,5-closo form, 32, was found considerably more stable than the other structures, for C₂B₃H₅ and C₂B₃H₄Me, but the 1,2-planar and 1,5-trigonal bipyramidal forms are about equally stable for $C_2B_3H_2F_3$. 131b

Semenov calculated electronic structures and localized MO's for 1,5-C₂B₃H₅ and 1,2- and 1,6-C₂B₄H₆,¹³²⁻¹³⁴ and McKee¹³⁵ carried out ab initio calculations on the rearrangement mechanisms in the C₂B₄H₆ and C₂B₅H₇ dicarbaborane systems. McKee¹³⁶ has also carried out ab initio calculations on the cage (nido) (38) and chair hexagonal (41) forms of $C_2B_4H_8$ at the MP2/6-31G* + ZPC/3-21G level and found that the 41 form was 56.5 kcal mol⁻¹ higher in energy than the usual structure 38. Whelan and Brint reported¹³⁷ geometry-optimized ab initio calculations at the STO-3G level on the molecules 2,3- and 1,6- $C_2B_4H_6$ and [2,3- and 1,6- $C_2B_4H_7$]⁺ and found good agreement between the experimental and calculated proton affinities. The site of protonation is determined by the distribution of the HOMO and is predictable on symmetry grounds. Similar calculations by DeKock and Jasperse³¹ at the MNDO and selected ab initio 3-21G levels predicted carbon protonation for $1.5-C_2B_3H_5$ and B-B edge protonation for $1.6-C_2B_4H_6$ and 2,4-C₂B₅H₇, from calculated proton affinities.

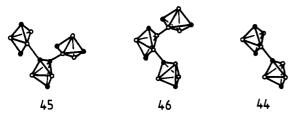
TABLE 9. Substituted Derivatives of close-1,5-C₂B₃H₅ (Cage Structure 32)

$substituent(s)^a$	measured data	ref(s)	
1,5-Me ₂ -2,3,4-Et ₃	¹¹ B, ¹³ C	143	
1,2,3,4,5-Et ₅	¹¹ B, ¹³ C	143	
2-R	¹ H, ¹¹ B, MS, IR	144	
$2,3,4-R_3$	¹ H, ¹¹ B, MS, IR	144	
$2-\mathbf{R}^1$	¹ H, ¹¹ B, MS, IR	144	
$2-R^2$	¹ H, ¹¹ B, MS, IR	144	
$2-\mathbb{R}^3$	¹ H, ¹¹ B, MS, IR	144	
2-R4	1 H, 11 B, MS, IR, R, PES, R_{v}	145-147	
$2,3-(\mathbf{R}^4)_2$	¹ H, ¹¹ B, MS, IR, PES, R _v	145, 146	
1-R4	¹ H, ¹¹ B, MS, IR, R _v	146	
$1,2-(R^4)_2$	¹ H, ¹¹ B, MS, IR, R,	146	
$2 \cdot R^4 \cdot 3 \cdot R^5$	1 H, 11 B, MS, IR, R_{v}	146	
2-R ⁶	¹ H, ¹¹ B, MS, IR, R _v	146	

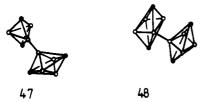
 ${}^{a}R = cis$ -2-but-2-enyl; $R^{1} = 2$ -but-1-enyl; $R^{2} = trans$ -1-but-1enyl; R^3 = ethenyl; R^4 = 2'-[1',5'- $C_2B_3H_4$]; R^5 = 1'-[1',5'- $C_2B_3H_4$]; $R^6 = 2' - [1', 6' - C_2 B_4 H_5].$


Dixon¹³⁸ has actually measured proton affinities for $1.6 \cdot C_2 B_4 H_6$ (208 ± 4 kcal mol⁻¹) and $2.4 \cdot C_2 B_5 H_7$ (173) ± 1 kcal mol-1) by using pulsed ion cyclotron resonance (ICR) methods combined with bracketing techniques. Gal'chenko et al. have determined standard enthalpies of combustion and vaporization for both compounds. 139 Other authors have considered the bonding within 1,2and 1,6-C₂B₄H₆ by using the Roby projection density method.¹⁴⁰ The general pentagonal pyramidal (structure VI) cage skeletal rearrangement was considered by Huttner et al.,141 who suggested a "tandem isomerisation mechanism" via a trigonal prismatic intermediate. Ab initio calculations by McKee¹⁴² at the HF/3-21 level were aimed at studying the interaction of the closo- and nido-carboranes C₂B₃H₅ and C₂B₃H₇ with ammonia. The hypothetical nido-C₂B₃H₅·NH₃ adduct was found to be less stable than the corresponding arachno species $C_2B_3H_7\cdot NH_3$.

Koester and Wrackmeyer¹⁴³ report δ (¹¹B) and δ (¹³C) NMR shift values and some ${}^{1}J({}^{11}B-{}^{13}C)$ and ${}^{1}J({}^{11}B-{}^{11}B)$ coupling constants for a series of selected pentaalkyl derivatives of 32, of the general formula 1,5-R2'-2,3,4- R_3 -1,5- C_2B_3 (for individual compounds see Table 9).


Alkylation of the small carboranes closo-1,5- $C_2B_3H_5$, $-1,6-C_2B_4H_6$, and $-2,4-C_2B_5H_7$, and $nido-2,3-C_2B_4H_8$ by alkynes (acetylene or 1- or 2-butyne), catalyzed by complexes of the general formula [(RC₂R')Co₂(CO)₆] (R, R' = H, Me, or Et), yielded a series of the corresponding boron-substituted alkenyl (RHC=CR'-) carboranes (for individual compounds see Tables 9-12). The degree of substitution can be controlled by varying the reaction conditions, and products have been obtained, ranging from single substitution at only one boron site to complete substitution at all boron positions. The overall reaction corresponds to a catalyzed BH addition of the carborane to the alkyne in a cis fashion. Internal alkynes were found to be more reactive than terminal and 1-butyne was found to give predominantly Markovnikov addition. 144

The coupled compounds $2:2'-[1,5-C_2B_3H_4][1',5' C_2B_3H_4$] (42) and 2:2',3':2"-[1,5- $C_2B_3H_4$][1',5'- $C_2B_3H_3$][1",5"- $C_2B_3H_4$] (43) have been prepared from the pyrolysis of 32. 145 The structures 42 and 43 have been explored using the MNDO quantum chemical approach. The experimental and calculated results clearly show that both of these conjuncto species are coupled by exopolyhedral B-B bonds and demonstrate that, with respect to rotation, 42 possesses a single


stable conformation of D_{2d} symmetry resulting from a π -type interaction across the exopolyhedral B-B bond. 145

Under similar conditions, Astheimer and Sneddon isolated 42, 43, and a number of previously unknown low-yield products that included a boron–carbon linked compound 1:2'-[1,5-C₂B₃H₄][1',5'-C₂B₃H₄] (44) together with two boron–carbon- and boron–boron-linked species, 2:2",1':2"-[1,5-C₂B₃H₄][1',5'-C₂B₃H₃][1",5"-C₂B₃H₄] (45) and 2:2',3':1"-[1,5-C₂B₃H₄][1',5'-C₂B₃H₄][1'',5"-C₂B₃H₄] (46). The pyrolysis of 1,6-C₂B₄H₆ did not give

any linked products; however, the copyrolysis with 1,5- $C_2B_3H_5$ was found to give a coupled, mixed-cage carborane 2:2'-[1,5- $C_2B_3H_4$][1',6'- $C_2B_4H_6$] (47) in 65% yield. Later, the same group substantially improved the synthetic route to compound 42 and also isolated 2:2'-[1,6- $C_2B_4H_5$][1',6'- $C_2B_4H_5$] (48) in quantitative yields via platinum(II) dibromide-catalyzed dehydrocoupling reactions of the corresponding carboranes 32 and 34. Sneddon et al. 148 have used high-resolution

¹⁰B and ¹¹B NMR to determine the details of boronboron coupling along the intercage B-B bonding vector in the coupled-cage derivatives of 32 and in the previously reported ¹⁴⁹ conjuncto derivatives of 36.

viously reported¹⁴⁹ conjuncto derivatives of 36.

DeKock et al.¹⁵⁰ reported MO and bond energy calculations which probed the changes that occurred when arachno-B₄H₁₀ reacts with acetylene to form hydrogen and the two isomeric six-vertex closo-carboranes 33 and 34. Bragin et al.¹⁵¹ reported the vibrational spectra of 1,6-C₂B₄H₆ and assigned the vibrational fundamentals in the IR and Raman spectra. Hosmane et al.¹⁵² prepared the 1,2-bis(trimethylsilyl) derivative of closo-1,2-C₂B₄H₆, 1,2-(Me₃Si)₂-1,2-C₂B₄H₄, in quantitative yield via oxidative removal of the {Sn} vertex from the [2,3-(Me₃Si)₂-closo-1,2,3-SnC₂B₄H₄] stannadicarbaborane, with stoichiometric amounts of either PtCl₄ or PtCl₂ at room temperature:

$$2(Me_{3}Si)_{2}SnC_{2}B_{4}H_{4} + PtCl_{4} \rightarrow Pt^{0} + 2(Me_{3}Si)_{2}C_{2}B_{4}H_{4} + 2SnCl_{2} (23)$$

$$(Me_{3}Si)_{2}SnC_{2}B_{4}H_{4} + PtCl_{2} \rightarrow Pt^{0} + (Me_{3}Si)_{2}C_{2}B_{4}H_{4} + SnCl_{2} (24)$$

TABLE 10. Substituted Derivatives of closo-1,6- $C_2B_4H_6$ (Cage Structure 34)

substituent(s)a	measured data	ref(s)
\mathbb{R}^b	¹ H, ¹¹ B, MS, IR	144
2-R1	¹ H, ¹¹ B, MS, IR	147
2-Cl	¹ H, ¹¹ B, MS	153, 155
2,4-Cl ₂	¹ H, ¹¹ B, MS	153, 155
2,3,4,5-Cl ₄	¹ H, ¹¹ B, ¹³ C, IR	167
2-Br	¹ H, ¹¹ B	155
2,4-Br ₂	¹ H, ¹¹ B	15 5
$2-Br_2B$	¹ H, ¹¹ B	154
$2,2-[\mathbf{B}_{2}\mathbf{H}_{5}]$	${}^{1}\mathrm{H}, {}^{11}\mathrm{B}, {}^{c}\mathrm{MS}$	156

 o R = cis-2-but-2-enyl; R¹ = 2'-[1',6'-C₂B₄H₆]. b All possible mono- to tetrasubstituted B-alkyl compounds. c Inclusive of [11 B- 11 B]-COSY measurements.

A variety of boron substitution reactions of closo-1,6- $C_2B_4H_6$ was reported by Onak et al. ^{153–155} Fehlner et al. ⁷² have calculated ¹¹B NMR shifts for this compound and its halo derivatives, 2-X-1,6- $C_2B_4H_5$ (X = F, Cl, and Br), using the Fenske–Hall MO method. Some of the measured properties of the substituted derivatives of closo-1,6- $C_2B_4H_6$ are summarized in Table 10.

An important platinum(II) dibromide-catalyzed cage growth reaction between 1,6- $C_2B_4H_6$ and excess diborane (48 h, room temperature) in decane, ¹⁵⁶ followed by repeated vacuum fractionation of the reaction products, yielded a cage-coupled carborane 2:1',2-[1,6- $C_2B_4H_5$][B_2H_5] (49). This compound is, however,

unstable at 40 °C and reconverts to 34 and diborane. Inspired by this work, McKee, 157 using ab initio calculations, investigated the structure and energetics of carborane- and borane-coupled cages linked together by a B-B bond or a pair of hydrogen bridges. In general, these structures were found to be only slightly perturbed from the corresponding noncoupled molecules. From model calculations of $1,6-C_2B_4H_6$ and $1,5-C_2B_3H_5$ reacting with $\{BH_3\}$, 157 activation barriers were estimated for the exchange of terminal hydrogens between the carborane and B_2H_6 . In contrast to $1,6-C_2B_4H_6/B_2H_6$, a low barrier (ca. 10 kcal mol⁻¹) was predicted for the exchange in $1,5-C_2B_3H_5/B_2H_6$.

Grimes et al. reported a new bench-scale synthetic route to the substituted derivatives of 38, consisting in the reaction between pentaborane(9) and alkynes in the presence of triethylamine: 158,159

$$B_5H_9 + R_1C = CR_2 \rightarrow R_1R_2C_2B_4H_6 + Et_3N \cdot BH_3$$
 (25)

The pentaborane can be generated in situ from $[B_3H_8]^-$ and HCl, and all subsequent reactions can be carried out in the same vessel. Apart from acetylene, a broad range of alkynes can be used¹⁶⁰⁻¹⁶⁴ in reaction 25 to obtain derivatives of 38 (see Table 11), many of which have been later employed in designed syntheses of multifunctional metalladicarbaborane and -tetracarbaborane (see section V) systems.^{14,16} When the openchain dialkynes $EtC = C(CH_2)_n C = CEt$ (n = 4 and 6),

TABLE 11. Substituted Derivatives of nido-2,3-C₂B₄H₈ (Cage Structure 38)

$substituent(s)^a$	measured data	ref(s)
1-R ¹	¹ H, ¹¹ B, MS, IR, R _n	144
4-R ¹	¹ H, ¹¹ B, MS, IR, R _v	144
5-R ¹	¹ H, ¹¹ B, MS, IR, R _n	144
2,3-Et ₂	¹ H, ¹¹ B, MS, IR	159, 160
2,3-(PhCH ₂) ₂	¹ H, ¹¹ B, MS, IR	161
2-Ph(CH ₂) ₃	¹ H, ¹¹ B, IR	162
2-R ²	¹ H, ¹¹ B, IR	163
2,3-R ²	¹ H, ¹¹ B, IR	163
2-R ³	¹ H, ¹¹ B, IR	163
2,3-R ³	¹ H, ¹¹ B, IR	163
2,3- ⁿ Bu ₂	¹ H, ¹¹ B, ¹³ C, IR, MS	164
$2,3-({}^{i}C_{5}H_{11})_{2}$	¹ H, ¹¹ B, ¹³ C, IR, MS	164
$2,3-({}^{n}C_{6}H_{13})_{2}$	¹ H, ¹¹ B, ¹³ C, IR, MS	164
2,3-Ph ₂	¹ H, ¹¹ B, ¹³ C, IR, MS	164
2-Me ₃ Si	¹ H, ¹¹ B, ²⁹ Si, MS	166-169
2-Me ₃ Si-3-Me	¹ H, ¹¹ B, ²⁹ Si, MS	166
$2-(\mathbf{Me}_3\mathbf{Si})_2$	¹ H, ¹¹ B, ²⁹ Si, MS	166, 167
2,3,4-Et ₃	¹ H, ¹¹ B, IR, MS	172
2,3-Et ₂ -4-PhCH ₂	¹ H, ¹¹ B, IR, MS	172
2,3-Et ₂ -4-MeC ₆ H ₄ CH ₂	¹ H, ¹¹ B, IR, MS	172
2,3-Et ₂ -4-Ph(CH ₂) ₃	¹ H, ¹¹ B, IR, MS	172
2,3-(PhCH ₂) ₂ -4-Me	¹ H, ¹¹ B, IR, MS	172
2,3,4-(PhCH ₂) ₃	¹ H, ¹¹ B, IR, MS	172

 $^{\rm o}{\rm R}^1=cis$ -2-but-2-enyl; R² = 1-indenylmethyl; R³ = 9-fluorenylmethyl.

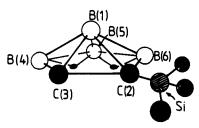


Figure 9. Representation of the GED structure of 2-Me₃Si-nido-2,3-C₂B₄H₇. Bond lengths in the basal plane of the cage were ¹⁶⁸ C-C 146.0 (11), C-B 154.4 (8), and B-B 175.8 (16) pm, while mean distances to the B(1) apex were C-B 183.2 and B-B 172.4 pm. All C-Si distances were close to 188 pm, and the Si atom was nearly in the basal plane.

trialkyne $HC = C(CH_2)_5C = C(CH_2)_5C = CH$, and the cyclic dialkynes $CH_2(CH_2)_4C = C(CH_2)_nC = C-(n = 4-6)$ were used as reaction components, ¹⁶⁵ all available C = C units were transformed to carborane $\{nido-C_2B_4\}$ moieties. The corresponding carborane oligomers were fully characterized by NMR. IR. and mass spectra.

fully characterized by NMR, IR, and mass spectra. Hosmane et al. 166,167 reported a high-yield reaction between silylated acetylenes, Me₃SiC=CR (R = Me₃Si, Me, or H), and pentaborane(9) which generated the corresponding disubstituted 2-Me₃Si-3-R-nido-2,3-C₂B₄H₆ at elevated temperatures. Heating liquid 2,3-(Me₃Si)₂-2,3-C₂B₄H₆ with solid NaHF₂ at 140 °C or with HCl resulted in partial desilylation to produce 2-Me₃Si-2,3-C₂B₄H₇ in 90% and 62% yields, 168 respectively. The molecular structure of this compound was determined in the gas phase by electron diffraction as presented schematically in Figure 9.

With the HCl procedure used in the preparation of the last compound, but at higher temperatures (160–170° for 4 days), the parent carborane 38 was obtained¹⁶⁹ in improved yields (30%) along with 2,3,4,5-Cl₄-closo-1,6-C₂B₄H₂. The area of the trimethylsilylated derivatives of 38, inclusive of their main group metal chemistry has been recently reviewed by Hosmane and Maguire. ^{11f} Von Arx et al. ¹⁷⁰ employed 2-Me₃Si-2,3-C₂B₄H₇ in THF at room temperature as a

source of hydrogen to reduce a series of ketones to the corresponding alcohols.

Fessler et al.¹⁷¹ have studied bridge deprotonation of the substituted 2,3-R,R'-2,3-C₂B₄H₆ (R = alkyl, arylmethyl, or phenyl; R' = R or H) species by the hydride anion and determined the reaction rates and activation parameters as a function of individual substituents. The reaction was found to be independent of the metal hydride present and to be primarily dependent on the steric inhibition caused by the substituent. Davies et al.¹⁷² have also found that alkylation of the [2,3-R₂-2,3-C₂B₄H₅]⁻ ions with organic halides (R'X) proceeds in a highly regiospecific manner to generate enantiomeric 4-R'-2,3-R₂-C₂B₄H₅ carboranes (for individual compound see Table 11). The alkylation is proposed to proceed via bridged $\mu(4,5)$ -R'-2,3-R₂-2,3-C₂B₄H₅ intermediates, which rapidly rearrange to the corresponding 4-substituted compounds.

Hosmane et al. reported the syntheses of the disily-lated $[2,3-(Me_3Si)_2-nido-2,3-C_2B_4H_4]^{2-173}$ and $[2,3-(Me_3Si)_2-nido-2,3-C_2B_4H_5]^-$ anions.¹⁷⁴ The latter compound was structurally characterized by an X-ray diffraction study and multinuclear NMR spectra as $(C_4H_8ONa^+)_2$ $[2,3-(Me_3Si)_2-nido-2,3-C_2B_4H_5^-]_2$.

Abdou et al.¹⁷⁵ reported an interesting "decapitation" of the B(1) vertex in closo-2,4- $C_2B_5H_7$ (36) yielding the $[nido-2,4-C_2B_4H_7]^-$ anion (39). This was accomplished by prolonged action of lithium dimethylamide on 36.

Of the "small dicarbaborane" compounds, probably the most studied has been the most accessible compound of the class, i.e. closo-2,4-C₂B₅H₇ (36).^{1,5} Recent chemistry of its substituted derivatives has recently been reviewed by Onak.^{7d,11e} This review will therefore outline only general features of the chemistry along with the most recent developments in the area.

Carborane 36 is the compound on which the first two-dimensional NMR study in the area of boroncluster compounds was performed.^{67a} Durso et al.¹⁷⁶ have recently used microwave techniques to determine the structure and dipole moment of 5-F-closo-2,4- $C_2B_5H_6$ (for structure see 36). They found that the interboron distances are comparable with those obtained for the parent compound1.5 and the relatively short B-F distance (133.0 (3) pm) was interpreted in terms of partial double-bond character. Previous work by Onak et al.7d on the electrophilic substitution reactions of 36 have generated a number of chlorinated and methylated derivatives, and more detailed studies on the preparation, thermal rearrangements, and kinetic stabilities of the substituted derivatives of 36 have now been reported.

A number of halogenated (X = Cl, Br, and I) derivatives of 36 (for individual compounds see Table 12) were prepared from reactions between 36 and the corresponding halogens with or without the AlCl₃ catalyst. ^{153,177} The $\Delta\delta(^{11}B)$ additivity constants for individual halogens and cage positions were derived. ¹⁷⁷ Using competition studies, Nam and Onak ¹⁵⁵ estimated the relative reactivities for closo-dicarbaboranes 1,6-C₂B₄H₆, 2,4-C₂B₅H₇, 1,10-C₂B₈H₁₀, and some of their derivatives, toward electrophilic reagents of the type RX/AlCl₃ (RX = MeCl, EtCl, Cl₂, and Br₂). The 2,4-C₂B₅H₇ carborane was found to be most reactive with alkyl substituents generally enhancing and halogen substituents decreasing the reactivity. The nature and

TABLE 12. Substituted Derivatives of closo-2,4-C₂B₅H₇ (Cage Structure 36)

substituent(s)a	measured data	ref(s)
\mathbb{R}^b	¹ H, ¹¹ B, MS, IR, R _v	144
$\mathbf{R_{2}}^{b}$	${}^{1}\text{H}, {}^{11}\text{B}, \text{MS, IR, } R_{v}$	148
\mathbb{R}_{3}^{b}	¹ H. ¹¹ B. MS. IR. R.	148
$R_4{}^o$	1 H, 11 B, MS, IR, R_{v}	148
$1,3,5,6,7$ - \mathbf{R}_{5}	¹ H, ¹¹ B, MS, IR, R _v ¹ H, ¹¹ B, MS, IR, R _v	148
1-R1	¹¹ B, ¹ <i>J</i> [¹¹ B– ¹¹ B]	148
3-R ¹	¹¹ B, ¹ J[¹¹ B- ¹¹ B] ¹ H, ¹¹ B	148
3-Ph	¹ H, ¹¹ B	154
$3-R^2$	¹¹ B, ¹ <i>J</i> [¹¹ B– ¹¹ B]	148
1- and 5-F	¹ H, ¹¹ B, MW ¹ H, ¹¹ B	176, 179, 187, 188
$3,5-F_2$	¹ H, ¹¹ B	187, 188
Cl, Br, Ib	¹H, ¹¹B	153, 177, 155, 179, 154, 188, 190
Cl_2 , Br_2 , $\operatorname{I}_2{}^b$	¹ H, ¹¹ B	153, 154, 155, 177, 179,
2,2,2	, -	188, 190
2-Cl-4-Br	¹ H, ¹¹ B	155
5-Cl-6-Br	¹ H, ¹¹ B	179, 188
1-I-5,6-Br ₂	¹¹ B	179
1,7-I ₂ -5,6-Br ₂	¹¹ B	179
1,7-I ₂ -3,5,6-Br ₃	¹¹ B	179
Me ^b	¹ H, ¹¹ B	155, 188, 189
$Me_2{}^b$	¹ H, ¹¹ B	155
$Me_3^{{}^{\mathtt{b}}}$	¹ H, ¹¹ B	155
Me₄ ^b	¹ H, ¹¹ B	155
1,3,5,6,7-Me ₅	¹ H, ¹¹ B	155
Et ^b	¹ H. ¹¹ B	155, 178, 185
Et ₂ ^b	¹ H, ¹¹ B	155, 178, 185
1-Me-5-Et	¹ H, ¹¹ B ¹ H, ¹¹ B	155
5-Me-6-Et	¹ H, ¹¹ B	155
$1-Me-5,6-Et_2$	¹H, ¹¹B	155
Me-Cl ^b	¹ H, ¹¹ B	155, 191
3-Me-5-I	¹H, ¹¹B	155, 185
l-Me-5,6-Cl ₂	¹H, ¹¹B	155
3-Me-5,6-Cl ₂	¹H, ¹¹B	155
Cl - \mathbf{Et}_2^b	11B	178
5-[HO(CF ₃) ₂ C]	¹ H, ¹¹ B, ¹⁹ F, MS, IR	182
3*1 E3 C/(C/E 0 /0C/)		

 $^{o}R=$ cis-2-but-2-enyl; $R^{1}=3^{\prime}\text{-}[2^{\prime},4^{\prime}\text{-}C_{2}B_{5}H_{6}];$ $R^{2}=5^{\prime}\text{-}[2^{\prime},4^{\prime}\text{-}C_{2}B_{5}H_{6}],$ b All possible combinations of B-substituted derivatives.

cage position of the substituents on $2,4\text{-}C_2B_5H_7$ appear to have little or no influence on the site of further substitution.

Ethylation of 2,4-C₂B₅H₇ and 3-Cl-2,4-C₂B₅H₆ by EtCl/AlCl₃ has produced a series of 5-Et, 5,6-Et₂, 3-ClEt, and 3-ClEt₂ derivatives of 36 (see Table 12). 178 The action of interhalogens, ICl or IBr, in the presence of AlCl₃, on 2,4-C₂B₅H₇ and its haloderivatives was found to produce predominantly B-iodo products. In contrast, in the absence of the catalyst, the same reaction generates B-chloro and B-bromo derivatives, which is indicative of a different (radical type) reaction mechanism. 179 Nam and Onak 154 also reported the reactions between 2,4-C₂B₅H₇ and boron trihalides, BX₃ (X = Cl, Br, and I), or BPh_3 at elevated temperatures (120-270 °C). These produced 3-, 5-, and $3.5-X_2$ -substituted products in reasonable yields (1-52%), depending on the site of substitution. The formation of these products was suggested to involve a four-membered intermediate formulated as 50.

Beltram et al. ¹⁸⁰ investigated and assigned the HeI photoelectron (PES) spectra of 5-X and 5,6- X_2 derivatives of 36 (X = Cl, Br, and I). Besides the inductive effects, π -type interactions between cluster surface (π -

endo) orbitals and filled halogen p orbitals successfully account for the effects of halogen substitution on the PES of the substituted carborane. Nam et al. ¹⁸¹ reported several types of previously unobserved long- and short-range spin couplings in 2,4-C₂B₅H₇ from the resolution-enhanced proton and ¹¹B NMR spectra of a wide range of 2,4-C₂B₅H₇ derivatives.

Free-radical substitution of the $2,4\text{-}C_2B_5H_7$ cage was reported by Astheimer and Sneddon¹⁸² in the gas-phase photolysis reaction at 3000 Å with hexafluoroacetone. This resulted in the formation of both 5-[HO(CF₃)₂C] and 5-[HO[C(CF₃)₂]₂O] derivatives of 36. Zhigach et al.¹⁸³ reported a synthesis of carbon-substituted 2,4-R₂-2,4-C₂B₅H₅ compounds (R = D, Me₃Si, HMe₂Si, ClMe₂Si, BrMe₂Si, MeOMe₂Si, and EtOMe₂Si) along with some oligomeric silylated compounds.

Siwapinyoyos and Onak ^{184,185} studied the reaction of 3- and 5-Cl-2,4-C₂B₅H₆ with Lewis bases (L = Me₃N and Me₃P) yielding a nido-structured L·ClC₂B₅H₆ adduct. The addition of BCl₃ to this intermediate generated an ionic compound formulated as [3- or 5-L-closo-2,4-C₂B₅H₆]⁺[BCl₄]⁻ (see structure 35 for numbering), the net result being the elimination of chlorine from the exocage position. A similar reaction of Me₃N

$$LClC_2B_5H_6 + BCl_3 \rightarrow [LC_2B_5H_6]^+[BCl_4]^-$$
 (26)

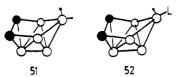
with the 1-Cl derivative of 36 proceeds with more difficulty, but once formed, the 1:1 adduct combines with BCl₃ to give the rearranged product [3-Me₃N-closo-2,4-C₂B₅H₆]⁺[BCl₄]⁻. An unusual substituent-exchange reaction was observed in the study of the 5-Br-2,4-C₂B₅H₆/Me₃N reaction system in dichloromethane. The Me₃N·5-Br-2,4-C₂B₅H₆ adduct underwent quantitative Br/Cl exchange with CH₂Cl₂ to form 5-Cl-2,4-C₂B₅H₆ and [Me₃NCH₂Cl]⁺Br⁻. This last reaction, resulting in the net front displacement of bromine by chlorine by the action of trimethyl amine, has initiated a useful and unprecedent cage substituent-exchange strategy.

In an extension of this work, 187,188 a site-specific halogen exchange reaction was observed between Bhaloderivatives of 36 and tetraalkylammonium halides (NBu₄⁺, NCH₂PhEt₃⁺) in various solvents. The exchange appears possible only when the "reagent" halide ion is smaller than the leaving exocage halide. Thus, 3-I, 5-Br, and 3.5-I₂ derivatives of 36 are quantitatively converted to the corresponding B-fluoro derivatives, 3-F, 5-F, and 3,5-F₂. Both 3- and 5-I-2,4- $C_2B_5H_6$ react with Br to give the respective 3- and 5-Br isomers. Similarly, the 5-Br isomer is converted to 5-Cl-2.4-C₂B₅H₆ in the presence of Cl⁻. The same halide reacts also with Me₃N·5,6-Br₂C₂B₅H₅ to give both 5-Cl-6-Br- $2,4-C_2B_5H_5$ and $5,6-Cl_2-2,4-C_2B_5H_5$. The rate of the substitution varied, in correspondence with the expected nucleophilicity trend F- > Cl- > Br- in nonaqueous solvents. Another interesting $Br \rightarrow F$ exchange reaction was observed between 5-Br-2,4-C₂B₅H₆ or Me₃N·5-Br-2,4-C₂B₅H₆ and Et₂NSF₃ in nonaqueous solvents.¹⁷⁹

One of the best examined areas of the 2,4-C₂B₅H₇ chemistry are the substituent-rearrangement reactions that include a number of mono-, di-, and trisubstituted derivatives. Heating individual isomers always generates equilibrium mixtures of rearranged products (for more detailed reviews see refs 7d and 11e). The relative abundance of each isomer is dictated by the thermo-

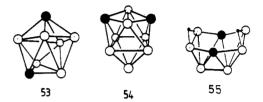
TABLE 13. Theoretically Predicted and Experimental Stability Orders for Mono- and Disubstituted Derivatives of closo-2,4-C₂B₅H₇ (Cage Structure 36)

		experimental
substituent(s)	predicted stabilities	stabilities
B-monomethyl	3 > 5 > 1 ^a	$3 > 1 > 5^b$
$B_{*}B'$ -dimet h yl	1, 3 > 3, 5 > 1, 7 > 1,	1, 3 > 3, 5 > 1, 7 >
	$5 > 5, 6^a$	$1, 5 > 5, 6^{c}$
B-methyl- B' -chloro	1, 3 > 5, 3 > 3, 5 > 3,	1, 3 > 3, 5 > 3, 1 >
	1 > 1, 5 > 5, 6 > 1,	5, 3 > 1, 5 > 5, 6
	$7 > 5, 1^a$	$> 5, 1 > 7^{c}$
B-monoethyl	$3 > 1 > 5^d$	$3 > 1 > 5^e$
<i>B,B'-</i> diethyl	1, 3 > 3, 5 > 1, 7 > 1,	1, 3 > 3, 5 > 1, 7 >
	$5 > 5, 6^d$	$1, 5 > 5, 6^e$
B-monochloro	$3 > 5 > 1^{af}$	$3 > 5 > 1^{cs}$
	$5 > 3 > 1^h$	
B-monobromo	$3 > 5 > 1^d$	$3 > 5 > 1^i$
<i>B</i> -monoiodo	$5 > 3 > 1^d$	$3 > 5 > 1^i$
B,B'-dichloro	3, 5 > 1, 3 > 5, 6 > 1,	3, 5 > 1, 3 > 5, 6 >
	$5 > 1, 7^a$	1, $5 > 1$, $7^{c,g}$
B,B'-dibromo	3, 5 > 1, 3 > 5, 6 > 1,	3, 5 > 5, 6 > 1, 3 >
	$5 > 1, 7^d$	1, 5 > 1, 7^i
<i>B,B'</i> -diiodo	5, 6 > 3, 5 > 1, 5 > 1,	5, 6 > 3, 5 > 1, 5 >
	$3 > 1, 7^d$	1, $3 > 1$, 7^i


^aMNDO level, data from ref 192. ^bData from ref 189. ^cData from ref 191. dMNDO level, data from ref 193. Data from ref 178. Gaussian-86 calculations, data from ref 193. Data from refs 153 and 190. ^hGaussian-86, STO-3G level, data from ref 180. Data from ref 177.

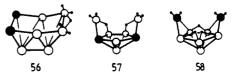
dynamic stability at a given temperature. These studies $^{153,177,178,189-191}$ produced a vast number of 2,4-C₂B₅H₇ derivatives (see Table 13) of varying stabilities. The experimental data were compared with results from MNDO^{192,193} and ab initio calculations at different levels. 180,193 The comparison of experimental and theoretical stabilities for individual isomer sets of monoand disubstituted compounds is outlined in Table 13. The results are consistent with a DSD type of so called "degenerate" rearrangement (without change in cagecarbon positions) which was also endorsed by ab initio SCF MO calculations by Ott et al. 194 The last workers have also predicted the expected order of stabilities for closo-C₂B₅H₇ isomers: 2,4 > 2,3 > 1,2 > 1,7.

Beck et al. 195,196 have developed a new moderate-yield (50-60%) route to $2,3-\text{Et}_2-closo-2,3-\text{C}_2\text{B}_5\text{H}_5$ (cage structure 35 above) by inserting a boron vertex into the open face of nido-2,3-Et₂-2,3-C₂B₄H₆ (cage structure 38) by reaction with Et₃NBH₃ at 140 °C. The insertion of the boron atom at the B(7) apex was confirmed by ¹⁰B tracer study. 2,3-Et₂-closo-2,3-C₂B₅H₅ is also available from the reaction of Li⁺[nido-2,3-Et₂-2,3-C₂B₄H₅] with Me₂S·BH₃, or alternatively, from the treatment of Na⁺Li⁺[2,3-Et₂-nido-2,3-C₂B₄H₄]²⁻ with Me₂SBHBr₂. Reaction of the dianion with PhBCl₂ or MeBBr₂ produced the expanded B-monosubstituted compounds $1-R-2,3-Et_2-closo-2,3-C_2B_5H_4$ (R = Ph and Me, respectively). Halogenation of 2,3-Et₂-2,3-C₂B₅H₅ with bromine at room temperature resulted in the exclusive formation of the 5-Br-2,3-Et₂ derivative. The 2,3-Et₂ derivative of 35 undergoes rearrangement to the 2,4isomer in high yield at 350 °C.


A cage-opening reaction of 2,3-Et₂-closo-2,3-C₂B₅H₅ with 1 equiv of LiBEt₃H resulted in the formation of the first seven-vertex nido-carborane, the [4,5-Et₂-3,4- $C_2B_4H_6$] anion¹⁹⁷ (cage structure 51). A similar type $closo \rightarrow nido$ reaction with excess trimethylphosphine 196 gave 7-Me₃P-4,5-Et₂-nido-4,5-C₂B₅H₅ (cage structure 52, L = PMe₃). Both structures 51 and 52 contain a $\{BH_2\}$

group, held to be exceptional for all nido-dicarbaboranes examined to date.

2. Eight- to Ten-Vertex Dicarbaboranes


Eight- and nine-vertex compounds include the previously reviewed^{1,5} closo-dicarbaboranes 1,7-C₂B₆H₈ (53) and 1,7-C₂B₇H₉ (54) and the arachno-structured nido- $3.6-C_2B_6H_{10}$ species (55)⁵ (general structures X, XIII, and XII, respectively).

Theoretical chemists have predicted possible DSDtype rearrangement pathways for the dodecahedral (D_{2d}) and tricapped trigonal prismatric (D_{3h}) structures of 53 and 54. Wales and Stone⁶³ have shown that the THS theory is very useful in rationalizing the energy barriers to skeletal rearrangement in B₈H₈²⁻ (general structure X) for which a single DSD process leads to a transition state of distorted $C_{2\nu}$ geometry (bicapped trigonal prism). Gimarc and Ott¹⁹⁸⁻²⁰⁰ report ab initio SCF MO calculations at the STO-3G level to analyze geometries and possible rearrangement pathways for all possible isomeric closo-C₂B₆H₈ and -C₂B₇H₉ dicarbaboranes. King²⁰¹ has used graph theory arguments to account for rearrangements in the eight- to ten-vertex systems.

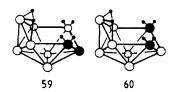
O'Neill and Wade²⁰² have considered the bonding in nine-vertex D_{3h} (structure XIII) clusters, including $[B_9H_9]^{2-}$ and $C_2B_7H_9$ in terms of edge-bonding or antibonding characteristics of the nondegenerate tenth and eleventh MO's. Skeletal bonding was found to be strongest when there are 20 skeletal bonding electrons present. Gimarc and Ott²⁰³ have shown that a rearrangement mechanism involving a single DSD process for $[B_9H_9]^{2-}$ or $C_2B_9H_{11}$ is forbidden by the principle of conservation of orbital symmetry but a double DSD process is allowed.

Beck and Sneddon¹⁹⁶ reported the formation of ethyl-substituted derivatives of 53 and 54, 1,7-Et₂-1,7- $C_2B_6H_6$, and 1,7-Et₂-1,7- $C_2B_7H_7$, from the reaction between 2,3-Et₂-C₂B₄H₆ and Et₃N·BH₃ at 170 °C. The author's group prepared the first representative of the eight-vertex arachno-dicarbaborane family, the [4,5- $C_2B_6H_{11}$] anion (56), from the degradation of 1.2-C₂B₈H₁₀ (structure 61 below) in 5% aqueous sodium hydroxide (47% yield).²⁰⁴ Another member of the

eight-vertex arachno family of dicarbaboranes, the

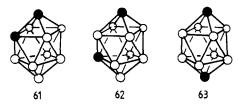
TABLE 14. Eight- and Nine-Vertex Dicarbaboranes

compound	cage structure	measured data	ref(s)
1,7-Et ₂ C ₂ B ₆ H ₆	53	¹ H, ¹¹ B, MS	196
1,7-Et ₂ C ₂ B ₇ H ₇	54	¹ H, ¹¹ B, MS	196
$[4,5-C_2B_6H_{11}]^{-1}$	56	¹ H, ¹¹ B ^a	204
$2,4-C_2B_6H_{12}$	57	¹ H, ¹¹ B, ¹³ C, MS	156
$3.6-C_2B_6H_{10}$	55	¹¹ B	156
$[7,8-C_2B_6H_{13}]^-$	58	¹ H, ¹¹ B, MS	205
4,5-C ₂ B ₇ H ₁₃ ⁵	59	¹ H, ¹¹ B, ^a ¹³ C, MS	206-208
$4,6-C_2B_7H_{13}^{13}$	60	¹ H, ¹¹ B, ^a ¹³ C, MS	210


^a2-D measurements. ^b Inclusive of 6-halo derivatives. ^c Inclusive of 3-halo and 3,5-dihalo derivatives.

uniquely structured $2,4\text{-}\mathrm{C}_2\mathrm{B}_6\mathrm{H}_{12}$ (57) was isolated by Corcoran and Sneddon¹⁵⁶ from the platinum dibromide-catalyzed cage-growth reaction between *closo*-1,5- $\mathrm{C}_2\mathrm{B}_3\mathrm{H}_5$ and diborane at room temperature. The reaction is suggested to proceed via insertion of one more boron into an unisolated coupled-cage [1,5- C_2 - $\mathrm{B}_3\mathrm{H}_4$][$\mathrm{B}_2\mathrm{H}_5$] species. Dehydroisomerization of 57 at 65 °C leads directly to nido-3,6- $\mathrm{C}_2\mathrm{B}_6\mathrm{H}_{10}$ dicarbaborane (55) and represents a new preparative route to this compound. Jelinek et al.²⁰⁵ have developed a high-yield preparation of the first hypho-dicarbaborane, the [7,8- $\mathrm{C}_2\mathrm{B}_6\mathrm{H}_{13}$] anion (58) (so-called "helmet anion") from the degradation reaction between arachno-4,5- $\mathrm{C}_2\mathrm{B}_7\mathrm{H}_{13}$ (structure 59 below) and an aqueous solution of the cyanide anion.

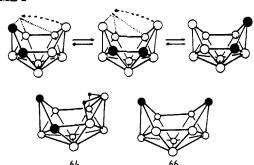
The author's group published an efficient synthetic route to the nine-vertex $arachno-4,5-C_2B_7H_{13}$ dicarbaborane (59) based on the reaction of the $[7,8-C_2B_9H_{12}]^-$ anion with formaldehyde in the presence of acid.²⁰⁶


$$[C_2B_9H_{12}]^- + H_3O^+ + 5H_2O + CH_2=O \rightarrow C_2B_7H_{13} + 2B(OH)_3 + CH_3OH + 2H_2$$
 (27)

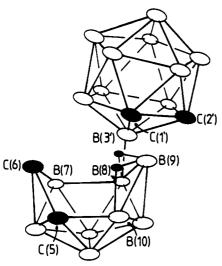
The reaction (eq 27) is in agreement with the degradation of two adjacent B(9) and B(10) vertices from structure 74; a possible reaction path was proposed from a deuterium-tracer study²⁰⁷ of a wide range of deuterated derivatives of 74. Two papers^{207,208} have dealt with the revision of the structure of carborane 59, which was for a long time held as nido- $C_2B_7H_{11}$. Jelinek et al.²⁰⁹ reported halogenation reactions of 59 with hydrogen halides and halogens leading to 6(exo)-substituted species. The reactions were consistent with the socalled EINS (electrophile-induced nucleophilic substitution) mechanism. Similar halogenation of the isomeric 4,6-C₂B₇H₁₃ (60) species²¹⁰ have generated mono-(3-X) and disubstituted (3,5-X₂) derivatives of 60 (X = Cl, Br, and I). Selected compounds of the eight- and nine-vertex family of dicarbaboranes are presented in Table 14.

The ten-vertex closo series of dicarbaboranes includes the well-known isomeric 1,2-, 1,6-, and 1,10- $\rm C_2B_8H_{10}$ compounds (structures 61–63). Gimarc and Ott^{198–200} have employed ab initio SCF calculations to analyze bond distances and predict total energies and the order of stabilities of the four unknown $\rm C_2B_8H_{10}$ isomers.

DSD-type rearrangement pathways among all seven isomers were also outlined. Other authors²¹¹ reported a MNDO theoretical study of 1,10- $C_2B_8H_{10}$ to demonstrate the straightforward similarity of related structures, such as $[B_{10}H_{10}]^{2-}$, 1,10- $(N_2)_2B_{10}H_8$, and 1-SB₉H₉.


The dimethyl derivative of 61, 1,2-Me₂-1,2-C₂B₈H₈, was prepared by the usual lithiation/methylation route. The same species is generated in 33% yield from an interesting reaction between the coupled-cage nido-1:2'-[B₅H₈]₂ borane and 2-butyne at 60 °C in the presence of 2,6-lutidine. Atavin et al. 4 determined the molecular structure of the 1,10-isomer via the gasphase electron-diffraction technique. The bond distances were C-B 160.2 (2), B-B (tropical) 185.0 (5), and B-B (intertropical) 182.9 (4) pm. Temperature dependence of the Raman spectrum of the plastic solid 1,10-C₂B₈H₁₀ was measured in order to investigate the phase transition-orientational-disorder properties of this compound. Nam and Onak isolated the 2-Cl derivative of 63 from competitive reactions between carboranes 36 and 63 and the Cl₂/AlCl₃ chlorination system.

Of the nido ten-vertex dicarbaboranes the most studied is the most available compound of this family, $5.6-C_2B_8H_{12}$ (64). It was converted into the levorotatory isomer in a one-way conversion reaction by using (+)-N-methylcamphidine (NMC) as the resolving agent:²¹⁶


$$(\pm)\text{-5,6-C}_2B_8H_{12} + \underset{solution}{NMC} \rightleftharpoons \\ (+)\text{-NMCH}^+[(-)\text{-5,6-C}_2B_8H_{11}]^- \xrightarrow{\text{HCl}} (-)\text{-5,6-C}_2B_8H_{12} \\ \text{solid}$$
 (28)

The reaction according to eq 28 yields only the levorotatory form on acidification of the solid diastereomer in 85% yield (based on 64). On the other hand, once isolated, (–)-64 is racemized on deprotonation by basic reagents. This is in agreement with fluxional behavior of the $[5,6\text{-}C_2B_8H_{11}]^-$ anion in solution. A reasonable explanation seems to be the "B(9)-vertex-flip" mechanism outlined in Scheme 2.

SCHEME 2

Shore et al.²¹⁷ reported the synthesis of the dimethyl derivative of 64 from the reaction between arachno-

Figure 10. Simplified structure of 8:3'-[nido-5,6- $C_2B_8H_{11}$][closo-1',2'- $C_2B_{10}H_{11}$] (65). Selected interatomic distances in the {nido-5,6- $C_2B_8H_{11}$ } subunit were²²⁰ C(5)-C(6) 145.7 (2), C(5)-B(1) 165.7 (2), C(5)-B(2) 169.2, C(5)-B(10) 175.1 (2), C(6)-B(2) 169.1 (2), C(6)-B(7) 150.8 (2), and B-B (mean) 179.3 pm.

 $Et_2O\cdot B_9H_{13}$ and 2-butyne in diethyl ether at ambient temperature. The reaction was consistent with the removal of one $\{BH_3\}$ unit from the general structure XV.

$$Et_2O \cdot B_9H_{13} + 4Me_2C_2 \rightarrow Me_2C_2B_8H_{10} + B(MeC = CC(Me)H)_3 (29)$$

The author's group reported²¹⁸ the definitive assignments in the ¹¹B NMR spectrum of 64 on the basis of data from its substituted derivatives. One of the interesting derivatives of 64 is a conjuncto species 8:3'- $[5,6-C_2B_8H_{11}][1',2'-C_2B_{10}H_{11}]$ (65) which was isolated from a mild thermolysis of $7,8-C_2B_9H_{13}$ (structure 73 below) in boiling benzene²¹⁹ (10% yield). A more detailed insight into the structure of 64 is provided by the X-ray diffraction study²²⁰ of 65 (see Figure 10).

The structure of another nido compound of the tenvertex carborane series, the $[6,9-C_2B_8H_{10}]^2$ dianion (66), was definitely assigned via high-field NMR measurements²²¹ that confirmed gross structural similarity of 66 to the arachno congener $6,9-C_2B_8H_{14}$ (67). The author's group has substantially improved the synthesis of 67 by heating 64 with sodium borohydride in ethanolic KOH.²²² The AlCl₃-catalyzed halogenation of 67 was found to proceed exclusively at the B(1) site^{222,223} to afford a series of 1-substituted (X = Cl, Br, and I) derivatives. Of interest is the synthesis of 5-substituted haloderivatives of 67 from the reaction between 66 and anhydrous hydrogen halides:^{223,224}

$$[C_9B_8H_{10}]^{2-} + 3HX \rightarrow XC_9B_8H_{13} + 2X^-$$
 (30)

The overall mechanistic pathway of reaction 30, involving the stereoselective addition of HX to the C-B bond in 66, was proposed on the basis of a deuterium-tracer study. A variation of the reaction 30 using sulfuric acid led to the isolation of 5.5'-X-(arachno-6.9-C₂B₈H₁₃)₂ compounds (X = O and OSO₃O) (68). Of the two possible diastereomeric conformations, 68a and 68b (simplified structures oriented open face up), the formation of the less sterically hindered 68a was con-

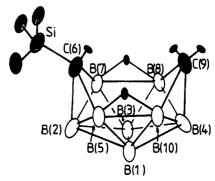


Figure 11. Schematic drawing of the molecular structure of 6(exo)-Me₃Si-arachno-6,9-C₂B₈H₁₃ (69). Selected exocage distances were²²⁷ C(6)-Si 189.1 (2) and C(Me)-Si 185.2 pm. For selected cage bond distances see Table 16.

TABLE 15. Ten-Vertex Dicarbaboranes

compound	cage structure	measured data	ref(s)
1,2-Me ₂ -1,2-C ₂ B ₈ H ₈	61	¹ H, ¹¹ B, MS	212, 213
$1,10-C_2B_8H_{10}^a$	63	GED^b	214
$[6,9-C_2B_8H_{10}]^{2-}$	66	¹ H, ¹¹ B	221
5,6-C ₂ B ₈ H ₁₂ c	64	11 B	218
$[5,6-C_2B_8H_{11}]^-$	64 ^d	¹ H, ¹¹ B	216a
5,6-Me ₂ -5,6-C ₂ B ₈ H ₁₀	64	¹¹ B, MS	217
6,9-C ₂ B ₈ H ₁₄ ^e	67	¹ H, ¹¹ B, MS, mp	222, 223
6-Me ₃ Si-6,9-C ₂ B ₈ H ₁₃	67	¹ H, ¹¹ B,/ MS, mp	227
$5,5'-X-6,9-(C_2B_8H_{13})_2$	68a	¹ H, ¹¹ B, MS, XR, mp	223-226

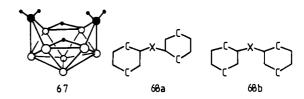
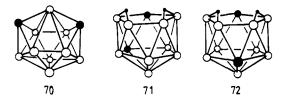

^a Inclusive of the 2-Cl derivative. ^b Gas-phase electron diffraction. ^c Inclusive of the 4-, 8-, and 10-Cl and 2-Ph derivatives. ^d Deprotonized. ^e Inclusive of the 1- and 5-halo derivatives. ^f 2-D measurements.

TABLE 16. Selected Mean Cage Bond Distances (pm) for the Structurally Determined Derivatives of arachno-6,9-C₂B₈H₁₄ (Cage Structure 67)

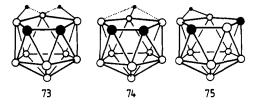
	68a	69 ^b	
C-B(open face)	174	173.3	
C-B(2 or 4)	166	164.8	
B(1 or 3)-B(2 or 4)	173	173.5	
B(2 or 4)-B(open face)	178	176.7	
B(1)-B(3)	180	179.5	
B(1 or 3)-B(open face)	179	178.9	
B-B(bridging positions)	188	188.5	

^a Data for the 5,5'-O derivative from ref 226. ^b Data for the 6-(exo)-Me₃Si derivative from ref 227.

firmed by X-ray diffraction analysis²²⁶ of the oxygen derivative.


Wermer et al.²²⁷ reported the formation of the 6-(exo)-substituted derivative of 67, 6(exo)-Me₃Si-6,9-C₂B₈H₁₃ (structure 69 in Figure 11; for selected bond distances, see Table 16) from the cage-expansion reaction between [2,3-(Me₃Si)₂-nido-2,3-C₂B₄H₅]⁻ (see deprotonized structure 38) and pentaborane(9).

Measured structural data and selected cage distances for characteristic ten-vertex dicarbaborane compounds characterized over the reviewed period are in Tables 15 and 16, respectively.


3. Eleven-Vertex Dicarbaboranes

The only closo compound of this series that has been reported is the parent $2,3\text{-}\mathrm{C}_2B_9H_{11}$ dicarbaborane (70), with both cage carbons occupying the least connected cluster sites. Theoretical chemists^{38,198} have calculated optimal geometries and the order of stabilities for all possible $20~\mathrm{C}_2B_9H_{11}$ isomers²²⁸ and have analyzed possible DSD rearrangement pathways.

In addition to the structure of the 2,3-Me₂ derivative of 70,⁵ Leonowicz and Scholer²²⁹ determined the molecular structure of a trisubstituted derivative, 4,7-(HO)₂-10-Br-2,3-C₂B₉H₈. The structure exhibits severe distortions from the idealized $C_{2\nu}$ symmetry, evidently due to the back-donation effects from the substituents. In comparison with the 2,3-Me₂ isomer, the B(1)-B(4) distances are lengthened by 32 pm and the configuration of this cage seems to be intermediate between the closo $C_{2\nu}$ structure 70 and the $C_{5\nu}$ icosahedral fragment (see general structure XX).

The neutral nido-dicarbaboranes of the eleven-vertex series (general structure XX) are represented by the isomeric species $2.7 \cdot C_2B_9H_{13}$ (71) (known only as alkylated derivatives²³⁰), $2.9 \cdot C_2B_9H_{13}$ (72), and 7.8- $C_2B_9H_{13}$ (73) reviewed earlier.⁵ The two extra protons in these species can be accommodated without difficulties in the open pentagonal face. Formal or real removal of one proton leads to the popular "dicarbollide" anions, of which previously reported were the isomeric $[7.8 \cdot C_2B_9H_{12}]^-$ (74) and $[7.9 \cdot C_2B_9H_{12}]^-$ (75) species. The last two compounds are readily available from the well-established [1.2.5] degradation of the isomeric [1.2.5] and [1.7.5] and [1.7.5] degradation. The

long standing problem of the location of the extra hydrogen in structure 74 has recently been resolved by means of high-level NMR^{231,232} and X-ray²³¹ studies that confirmed its H(10) endo position with some coupling to the B(9) and B(11) boron sites, as indicated in 74. The latest work²³² also points to two endo protons, H(9) and H(11), with some partial sharing to the B(10) center in structure 73. No coupling of the extra hydrogen to the carbon atoms in structures 73–75 was observed in the [¹H–¹H]-COSY NMR spectra.²³² Leites et al.²³³ reported the detection of this peculiar extra hydrogen in the Raman spectra of the anions 74 and 75 without structural interpretation. Shevchenko et al.^{234–236} have quenched anion 74 with various ammine complexes of Co(III) and Cr(III) and determined DTA, IR, and UV properties of the isolated salts. Two groups^{231,237} have

calculated the MO structure of 74 and its deprotonated analogue, $[7.8-C_2B_9H_{11}]^{2-}$.

The ready availability of 74 has recently led to a relatively extensive exploration of its exoskeletal substitution chemistry. Antipin et al. 238 determined the structure of the 9,10,11-Me₃ derivative of 74 by X-ray diffraction. Zakharkin et al.²³⁹ prepared a series of 9-benzyl-substituted derivatives of 74, and its 7,8-Me₂ analogue, by treatment of the $[7.8-R_2-7.8-C_2B_9H_9]^{2-}$ dianions with benzyl halogenides $R'C_6H_4CH_2X$ (R' = H, o-Me, m-Me, p-Me, p-Br; X = Cl, Br) in liquid ammonia. Repeated benzylation gave 9,11-dibenzylated isomers and iodination in THF gave the 9- and 9,11-I2 derivatives. An X-ray diffraction study of the 7-Ph derivative of 74 was reported by Yanovski^{240a} and that of 7-(closo-1',2'-C₂B₁₀H₁₁)·74 [Rh(PPh₃)₃+ salt] by Knobler et al. ^{240b} The TLC properties of other C-substituted anions of the 74 type on silica plates were reported by Serino and Hawthorne.²⁴¹ Of interest are the fluorinated derivatives of 74 that arise from stereoselective degradation of the corresponding fluoroderivatives of o-carborane.242

One of the most versatile reagents based on 74 is the 7,8-dimercapto derivative, 7,8-(HS)₂-7,8-C₂B₉H₉ (76), which was prepared by Teixidor et al. 243,244 from the corresponding 1,2-(HS)₂ derivative of o-carborane and structurally characterized by an X-ray diffraction analysis. 244 The two mercapto groups have proved to be reactive and versatile reaction centers, particularly toward alkylating and oxidizing reagents. Thus, oxidation with KI₃ gave a disulfide product 7,7':8,8'-(S₂)₂-[7,8-C₂B₉H₁₀][7',8'-C₂B₉H₁₀] (schematic structure 77), whose molecular structure is in agreement with the low-energy anti disposition of the two {C₂B₉} subclusters. 244

Reflux of 76 with ethanol in the presence of dichloromethane²⁴⁵ afforded a product with an expanded 10-membered intercage ring, $7.7':8.8'-(SCH_2S)_2-[7.8-C_2B_9H_{10}][7'.8'-C_2B_9H_{10}]$ (simplified structure 78). The

same authors^{246,247} have also built up exomacropolycyclic rings on the 74 moiety from a general reaction involving 1,2-(HS)₂-1,2- $C_2B_{10}H_{10}$ as a starting material at high dilution of the reagents:

$$(HS)_2C_2B_{10}H_{10} + 3EtOH + 3OH^- + ClCH_2(CH_2OCH_2)_nCH_2Cl \rightarrow 2Cl^- + B(OEt)_3 + [CH_2(CH_2OCH_2)_nCH_2S_2C_2B_9H_{10}]^- + 3H_2O + H_2$$
(31)

Moderate yields of the desired compounds were obtained in the form of sodium salts. As shown by the X-ray diffraction study of the derivative with n=3, the sodium ion is encapsulated in the exocyclic ring in a crown ether manner via bonding to the O and S centers, as in 79 [Na-S 294.2 (2) and Na-O (mean) 239.0 pm]. The synthesis as in eq 31 was extended²⁴⁷ by using other alkylene dihalide-like reagents, such as $(Cl(CH_2)_2NTs(Ts=tosyl), Br(CH_2)_nBr(n=3,4)$, to give the corresponding exocyclic products.

Allcock et al.²⁴⁸ have prepared 7-substituted cyclotriphosphazene derivatives of 74, 80, and 81 (X =

 $C_5H_{10}N$ and $R=[7,8-C_2B_9H_{11}]$) by the degradation of the o-carborane analogues. Miszusawa et al. ²⁴⁹ prepared 7-R-substituted derivatives of 74 ($R=p-NH_2C_6H_4$ and $p-SCNC_6H_4$) and converted the last p-isothiocyanatophenyl compound into $[7-p-SCNC_8H_4-9-I-7,8-C_2B_9H_{10}]^-$. The structure of this derivative was determined by an X-ray diffraction study [selected exocluster distances were B(9)-I 221.4 (8) and C(7)-C(Ph) 150.1 pm]. The aim of the study was to develop a new multifunctional compound for boron neutron capture therapy (BNCT) with high affinity to antibody proteins. Numerous other derivatives of 74 substituted by amino acid and peptide functionalities have been recently reviewed by Hawthorne ²⁵⁰ and will not be discussed here.

Hawthorne²⁵⁰ and will not be discussed here.

Zakharkin et al.²⁵¹ report an interesting silylation of [7,8-C₂B₉H₁₁]²⁻ with PhMe₂SiCl in THF and isolated either exo or endo 10-PhMe₂Si derivatives of 74, depending on reaction conditions. The last compound has no extra hydrogen in the open part of the cluster. Plešek et al.²⁵² have prepared the [1-H₃B-closo-1,2-C₂B₁₀H₁₁]⁻ anion by heating 74 with excess Et₃NBH₃ at 200 °C. The anion can be hydrolyzed by hydrochloric acid to give quantitatively 1,2-C₂B₁₀H₁₂.

Selected substituted derivatives of 74 are in Table 17, and selected mean interatomic distances for the structurally determined compounds in Table 18.

An interesting variation of the earlier reviewed⁵ cage rearrangements among substituted derivatives of 74 and 75 (see ref 253 for example) was investigated^{254,255} by Zakharkin et al.:

$$[8-R-7,9-R'_{2}-7,9-C_{2}B_{9}H_{9}]^{-} \xrightarrow{+H^{+} \atop -H^{+}}$$

$$11-R-2,7-R'_{2}-2,7-C_{2}B_{9}H_{10} \xrightarrow{(1)^{-2H^{+}} \atop (2)^{-}+H^{+}}$$

$$[9-R-7,8-R'_{2}-7,8-C_{2}B_{9}H_{10}]^{-}$$

$$R = \text{Me or PhCH}_{2}; R' = \text{Me or H}$$

$$(32)$$

All of the compounds in eq 32, interconvertible by protonation and deprotonation, were characterized by NMR. An X-ray diffraction study of the 11-PhCH₂-2,7-Me₂-2,7-C₂B₉H₁₀ derivative²⁵⁵ [cage structure 71, selected cage distances: C(2)-C(7) 165.0 (6), C(2)-B(3,6) (mean) 167.3, C(7)-B(8,11) (mean) 164.4, and mean B-B(bridging sites) 184.9 pm] has confirmed unambiguously the 71 constitution. The "protonation rearrangement" outlined in eq 32 is applicable only for the substituted derivatives of 75, while the parent compound 75 is known to undergo dehydrogenative rearrangement to closo-2,3-C₂B₉H₁₁ (70) under comparable conditions.²⁵⁶ Leites et al.²⁵⁷ detailed the preparable conditions. ration of the 11-Me derivative of 71 and reported vibrational spectra of this compound. Bushby and Hawthorne²⁵⁸ isolated the isomeric [2,9-C₂B₉H₁₂] anion (deprotonated structure 72)²⁵⁹ upon degradation of 1,10-C₂B₁₀H₁₂ with potassium hydroxide in the presence of 18-crown ether.

Another well-known category of the eleven-vertex nido-dicarbaborane family are species of the type

TABLE 17. Derivatives of [nido-7,8-C₂B₉H₁₂] (Cage Structure 74)

substituent(s)	measured data	ref(s)
Н	¹ H, ^a ¹¹ B, ^a XR, Ram,	231-236, 239
	UV, DTA	
7-Ph	XR	240a
$7-(1',2'-C_2B_{10}H_{11})$	XR	240b
9,10,11-Me ₃	XR	238
9-RC _a H₄CH ₂ ^b	¹ H, ¹¹ B	239
7.8-Me ₂ -9-RC _e H ₄ CH ₂ ^b	¹H, ¹¹B	239
9-I and 9,11-I ₂	¹H, ¹¹B	239
9,11-(PhĆH ₂) ₂	¹H, ¹¹B	239
$7:7',8:8'-(S_2)_2$	¹ H, ¹¹ B, XR	244
7:7',8:8'-(SCH ₂ S) ₂	¹ H, ¹¹ B, ¹³ C	245
7,8-SCH ₂ (CH ₂ OCH ₂) _n CH ₂ S ^c	¹ H, ¹¹ B, ¹³ C, XR	246, 247
7-p-NH ₂ C ₆ H ₄	¹ H, ¹¹ B, IR	249
7-p-SCNC ₆ H ₄	¹ H, ¹¹ B, IR	249
7-p-(SCNC ₆ H ₄)-9-I	¹ H, ¹¹ B, IR, XR	249
7,8-Me ₂ -9-I	¹ H, ¹¹ B, IR	239
10(exo and endo)-Me ₂ PhSi	¹ H, ¹¹ B, mp	251
6-F	¹ H, ¹¹ B, ¹⁹ F	242
1,6-F ₂	¹ H, ¹¹ B, ¹⁹ F	242
1,5-F ₂ 1,5,6-F ₃	¹ H, ¹ B, ¹⁹ F	242
1,5,6,10-F ₄	¹ H, ¹¹ B, ¹⁹ F	242
1,0,0,10-1.4	11, 13, F	444

^a2-D measurements. ^bR = H, o-Me, m-Me, p-Me, and p-Br. ^cn = 1-3.

TABLE 18. Mean Cage Distances (pm) for Selected Derivatives of [nido-7,8-C₂B₉H₁₂] (Structure 74)

		substituent/s					
	Ha	\mathbb{R}^b	R1 c	\mathbb{R}^{2d}	R3 e	R4/	R58
C(7)-C(8)	154.2	158.4	158.1	159.4	159.6	152.3	163.0
C-B(interbelt)	171.7	172.0	170.1	172.5	173.1	174.7	174.0
C-B(open face)	161.0	164.0	165.5	162.3	161.2	161.2	168.0
B(1)-B	177.9	174.2	178.7	177.0	176.6	178.4	178.0
B-B(lower belt)	177.1	175.4	176.8	177.2	177.2	178.9	179.0
B-B(interbelt)	177.5	175.3	177.8	178.1	178.5	177.4	180.0
B-B(open face)	183.3	181.0	180.4	182.5	180.3	179.4	174.0

^a Data from ref 231. ^bR = 7-Ph, data from ref 240a. ^cR¹ = 7,8-(HS)₂, data from ref 243. ^dR² = 7:7',8:8'-(S₂)₂, data from ref 244. ^cR³ = 7,8-SCH₂(CH₂OCH₂)₃CH₂S, data from ref 246. ^fR⁴ = 7-(p-SCNC₆H₄)-9-I, data from ref 249. ^gR⁵ = 7-(1',2'-C₂B₁₀H₁₁), data from ref 240b.

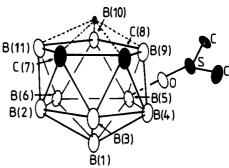


Figure 12. Representation of the structure of 5-Me₂SO-nido-7,8-C₂B₉H₁₁. Selected exocluster bond lengths were²⁸¹ B(5)-S 188.0 (4), mean C(Me)-S 175.4, and S-O 145.4 (2). The extra hydrogen is supposed to cap the open pentagonal face. For mean cage distances see Table 20.

 ${\rm LC_2B_9H_{11}}$ (L = Lewis base).^{5,260} The presence of L and the two cage carbons dictates many isomeric structural variations with one extra hydrogen in the open part of the general structure XX. Grushin et al.²⁶¹ have reported the synthesis of 5-Me₂SO-7,8-C₂B₉H₁₁ (for X-ray structure see Figure 12) from the reaction between closo-PhIC₂B₁₀H₁₁ and dimethyl sulfoxide. Leites et al. have assigned the vibrational characteristics of the extra hydrogen atom in the structure of the former compound.²⁶² The X-ray diffraction study of the asym-

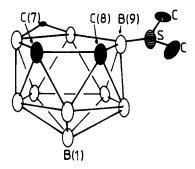


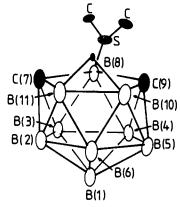
Figure 13. Schematic drawing of the molecular structure of 9-Me₂S-nido-7,8-C₂B₉H₁₁. Selected exocage bond distances were²⁶³ B(9)-S 188.4 (3) and mean C(Me)-S 178.2 pm. For characteristic cage distances see Table 20.

TABLE 19. Eleven-Vertex Carboranes of the L-nido-7,8-C₂B₉H₁₁ Type

L	cage structure	measured data	ref(s)
5-Me ₂ SO	74	IR, Ram, XR, mp	261, 262
9-Me ₂ S	74	XR, ¹ H, ¹¹ B ^a	98, 263
9-Ph ₂ PH	74	¹ H, ¹¹ B, ³¹ P, ¹³ C	266
9-Ph ₂ PMe	74	¹ H, ¹¹ B, ³¹ P, ¹³ C	266
9-Ph ₃ P	74	¹ H, ¹¹ B, ³¹ P, XR	266, 267
10(endo)-Ph2PH	83	¹ H, ¹¹ B, ³¹ P, ¹³ C	266
10(exo)-Ph2PH	82	¹ H, ¹¹ B, ³¹ P, ¹³ C	266
10(exo)-Ph2PMe	82	¹ H, ¹¹ B, ³¹ P, ¹³ C	266
10(exo)-Ph ₃ P	82	¹ H, ¹¹ B	266

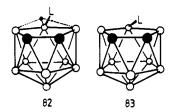
metrically substituted 9-Me₂S-7,8-C₂B₉H₁₁ derivative was reported by Cowie et al. ²⁶³ (see Figure 13). The data point to a localized B(10)-H-B(11) hydrogen bridge, which is also in agreement with the recently reported 2-D NMR measurements. ⁹⁸ The author's group has recently reported the preparation of the last compound from the degradation of 10 with aqueous FeCl₃ in the presence of dimethyl sulfide. ⁹⁸

A symmetrical variation of these structures is that of $10\text{-Me}_2\mathrm{S}(\mathrm{CH}_2)_2\mathrm{O}(\mathrm{CH}_2)_2\mathrm{O}-7.8\text{-}\mathrm{C}_2\mathrm{B}_9\mathrm{H}_{11},^{264}$ which was prepared from the reaction between 73 and dimethyl sulfide in boiling dioxane. The extra hydrogen atom was found to be bound to the B(9, 10, and 11) atoms in an asymmetric fashion (see schematic structure 82). ²⁶⁵


The reaction between Ph_2PCl and 74 in THF^{266} gave $9\text{-}Ph_2PH\text{-}7,8\text{-}C_2B_9H_{11}$ via transfer of the extra hydrogen to the P center. In contrast to the monoanion 74, the same reaction with the $[7,8\text{-}C_2B_9H_{11}]^2$ - dianion produced exo (82) and endo (83) isomers of $10\text{-}Ph_2PH\text{-}7,8\text{-}C_2B_9H_{11}$ that differ substantially in the location of the H(10) hydrogen. The endo isomer can be converted into the exo species by heating in THF. Methylation of the Ph_2PH ligand in the 9- and Ph_2PH ligand in the 9- and 10-(exo)- Ph_2PH -7,8- Ph_2PH -7,8-

Selected compounds of the L-7,8- $C_2B_9H_{11}$ type are listed in Table 19 and salient bond distances are in Table 20.

TABLE 20. Mean Cage Bond Distances for Selected Compounds of the L-nido-7,8-C₂B₂H₁₁ Type


	ligand				
	L1 a	L^{2b}	L^{3c}	L ^{4 d}	L ^{5 e}
C(7)-C(8)	153.8	152.8	153.6	154.9	154.7
C-B(interbelt)	169.6	172.0	178.0	178.0	171.3
C-B(open face)	160.8	159.7	160.8	160.9	159.8
B(1)-B	177.1	177.0	176.3	176.3	176.7
B-B(lower belt)	175.5	176.5	175.6	176.0	176.4
B-B(interbelt)	177.6	177.1	177.6	176.6	176.5
B-B(open face)	182.2	181.1	184.3	179.9	182.8

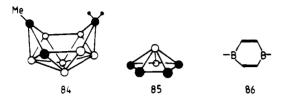
 $^aL^1$ = 5-Me₂SO, data from ref 261 (see Figure 12). $^bL^2$ = 9-Me₂S, data from ref 263 (see Figure 13). $^cL^3$ = 10-Me₂S(CH₂)₂O-(CH₂)₂O, data from ref 264. $^dL^4$ = 9-Ph₂PMe, data from ref 266. $^eL^5$ = 10(exo)-PH₂PMe, data from ref 266.

Figure 14. Schematic drawing of the structure of 8-Me₂S-nido-7,9-C₂B₉H₁₁. Selected distances are²⁸⁸ S-B(8) 188.6 (4), mean C(Me)-S 179.0, mean C-B(open face) 164.2, mean C-B(interbelt) 167.5, B(10)-B(11) 184.1 (6), and other B-B(mean) 177.5 pm.

Šubrtová et al.²⁶⁸ have reported the X-ray diffraction analysis of the previously reported cage²⁶⁰ isomer, 8-Me₂S-nido-7,9-C₂B₉H₁₁ (see Figure 14).

V. Tri- and Tetracarbaboranes

Tricarbaboranes can be notionally derived by replacing three $\{BH^-\}$ units by $\{CH\}$ groups in the corresponding $[B_nH_n]^{4-}$ and $[B_nH_n]^{6-}$ borane prototypes. This formal procedure leads, after protonation, to the neutral species nido- $C_3B_{n-3}H_{n+1}$ and arachno- $C_3B_{n-3}H_{n+3}$.


The only new tricarbaborane reported over the reviewed period is the methyl derivative of nido- $C_3B_7H_{11}$, viz. 6-Me-5,6,9- $C_3B_7H_{10}$ (84). This compound was prepared by Sneddon et al.²⁶⁹ from an interesting one-carbon insertion reaction between acetonitrile and the $[arachno-4,6-C_2B_7H_{12}]^-$ anion as in eq 33, followed by the protonation of the resulting anion:

$$[C_2B_7H_{12}]^- + MeCN \rightarrow [CH_3C_3B_7H_9]^- + NH_3$$
 (33)

Compound 84 is so far the only representative of the ten-vertex family of tricarbaboranes. In this context

it should be noted that the compound, originally formulated as $5,6,10\text{-Me}_3\text{-}5,6,10\text{-}nido\text{-}C_3B_7H_8$ by the author's group,²⁷⁰ was later proved to be an isomeric tetracarbaborane compound, $6,11\text{-Me}_2\text{-}arachno5,6,10,11\text{-}C_4B_7H_{11}$ (see structure 91).

Much more chemistry has been generated over the past 10 years in the area of tetracarbaboranes, more specifically compounds of the general formulas nido- $C_4B_{n-4}H_n$ and arachno- $C_4B_{n-4}H_{n+2}$. The smallest representative of this class of carboranes is the long-known^{2,5} six-vertex nido-2,3,4,5- $C_4B_0H_6$ compound (85).

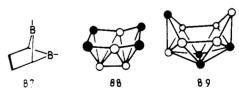
The recent chemistry of 85 derives from numerous polyalkyl-substituted derivatives, of which the preparation is in part discussed in ref 271. Depending on the nature of substituents, these compounds can also exist in the classical nonpolyhedral form 86 (1,6-diboracy-clohexadiene) and 87 (bicyclohexane).

Wrackmeyer²⁷¹ reported ¹¹B and ¹³C NMR data for a long series of peralkylated derivatives of 85, R₆C₄B₂ (where R is a combination of Me, Et, and Pr substituents on carbon and boron) and gathered all available NMR information from these measurements. Van der Kerk et al.²⁷² have isolated peralkylated derivatives of 85, of the general formula $1,6-Me_2-2,3,4,5-R_4-C_4B_2$ (R = Me and Et), from the so-called methylborylene-generating system, 2-C₈K/MeBBr₂, in the presence of alkynes R₂C₂ (room temperature, 6 days). The nidotetracarbaboranes were isolated only for R = Me, other alkynes giving the corresponding derivatives of structure 86. Other authors, 273 however, failed to reproduce the preparation of these last diboracyclohexadienes, obtaining instead the corresponding peralkylated compounds of type 85 in the presence of 3-hexyne and 5decyne (R = Et or Bu). Herberich et al.274 have reported the first amino derivative of 85, 1-Me-6-iPr₂N-2,3,4,5-C₄B₂H₄, which is available from the reaction of $\text{Li}_2[(^1\text{Pr}_2\text{N})\text{BC}_4\text{H}_4]^{2-}$ with MeBBr₂.

No representative of the seven-vertex class of tetracarbaboranes has so far been reported, but two groups 275,276 have found efficient routes for the synthesis of the C-peralkyl derivatives of the eight-vertex nido-tetracarbaborane 4,5,7,8- $C_4B_4H_8$ (88). The first method, by Fehlner, 275 consists of the photolysis of the nido- $[1,1,1-(CO)_3-FeB_4H_4]$ ferraborane (20 °C, 360 nm) in the presence of alkynes to give the $R_4C_4B_4$ compounds (R = Me and Ph). Although a different structure was suggested, 275 the constitution 88 proposed by Mirabelli and Sneddon 276 is in better agreement with the NMR data and the carborane stability rules. 26a,c The above reaction generates also a number of other products inclusive of higher polycarbaborane species, such as $Me_6C_6B_4H_4$ and $Me_8C_8B_4H_4$, as identified by mass spectroscopy.

An efficient route to the C-peralkyl derivatives of 88 is the reaction between 2,3-Et₂-2,3-nido-C₂B₄H₆ (cage structure 38 above) and 2-butyne in the presence of NiCl₂ and sodium hydride in THF.²⁷⁶ The authors suggest a reasonable mechanism, consisting of a met-

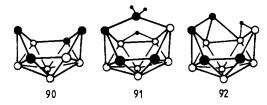
TABLE 21. Eleven-Vertex nido-C₄B₇H₁₁ and arachno-C₄B₇H₁₃ Tetracarbaboranes

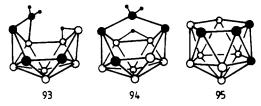

isomer substituent	cage structure	measured data	ref(s)
nido		•	
1,2,8,10	97	¹ H, ¹¹ B, ¹³ C, IR, MS, R ₀	146
2,7,8,11	95	¹ H, ¹¹ B, ^a MS	279
7,8,9,10	96	¹ H, ¹¹ B, ^a MS	279
arachno			
5,6,10,11-Me ₄ ^b	91	¹ H, ¹¹ B, ^a IR, MS, XR	280
iso-5,6,10,11-Me,	93	¹ H, ¹¹ B, ^a IR, MS, XR	280
5,6,9,11°	94	¹ H, ¹¹ B, a MS	270
6,11-Me ₂ -5,6,10,11	91	¹ H, ¹¹ B, ^a MS	270

^a2-D measurements. ^bInclusive of the 9-Br derivative. ^cInclusive of the 9,11-Me₂ derivative.

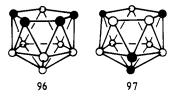
al-promoted fusion of the alkyne with the $\{C_2B_4\}$ cage via an intermediate $[(Me_2C_2)Ni(2,3-Et_2-2,3-C_2B_4H_4)]$ complex, which is decomposed to $4,5-Me_2-7,8-Et_2-4,5,7,8-C_4B_4H_4$ at room temperature:

$$[(Me_2C_2)Ni(Et_2C_2B_4H_4)] \rightarrow Ni^0 + Me_2Et_2C_4B_4H_4$$
(34)


As far as the author is aware, no representatives of the nine-vertex family of tetracarbaboranes have been reported to date. Of the ten-vertex species of this class, two nido compounds of the proposed cage structures 89 and 90 have been prepared. The structural arrangement as in 89 was assigned by Koester et al.²⁷⁷ to the perethylated compound Et₄C₄B₆Et₆ that was prepared from an interesting cage-fusion reaction between Et₅-closo-1,5-C₂B₃ (cage structure 32 above) and potassium metal, followed by oxidation with iodine. A similar reaction of the 1,5-Me₂-1,5-C₂B₃Et₃ derivative of 32 was found to proceed via the Me₄C₄B₆Et₆ hexaboraadamantane, which on heating to 160 °C was transformed to the isomeric nido-tetracarbaborane 1,3,4,6-Me₄C₄B₆Et₆.²⁷⁸ Both peralkylated carboranes thus prepared are fluxional in solution and were suggested to adopt the unprecendented cage structure 89 with three carbon atoms at high-connectivity positions. Williams has also proposed other structural alternatives for the peralkylated derivatives of 89.11c In agreement


with Williams' stability rules 26a,c is the parent *nido*-carborane 5,6,8,9-C₄B₆H₁₀ (90), which was isolated in low yield (3%) as a side product from the reaction between 4,5-C₂B₇H₁₃ (59) and acetylene. 279

Relatively more explored has been the area of the eleven-vertex tetracarbaboranes (for individual compounds see Table 21). Finster and Grimes²⁸⁰ reported the first species of this series, 5,6,10,11-Me₄-arachno-5,6,10,11-C₄B₇H₉, which is a tetramethyl derivative of cage structure 91. The compound was prepared from the degradation of the twelve-vertex Me₄C₄B₈H₈ carborane (cage structure 98 below) by ethanol in air (40-60%). Direct bromination of Me₄-91 with AlCl₃/Br₂ in CS₂ led to its 9-Br derivative (numbering as in XXI), of which the structure was determined by X-ray diffraction [selected cage bond distances in the open part were C(6)-C(11) 154.6 (6), C(5)-C(6) 161.1 (5),

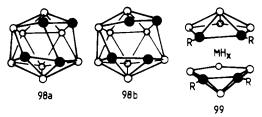

C(5)-C(10) 151.6 (4), C(6)-B(7) 184.6 (6), B(9)-C(10) 169.8 (5), B(9)-C(11) 161.6 (6), B(8)-B(9) 193.7 (6), and B(7)-B(8) 181.1 (6) pm (numbering as in XXI)].

Deprotonation of Me_4 -91 with NaH in THF led to an interesting rearrangement of the C(11) apex to generate an isomeric anion iso-[5,6,10,11- Me_4 -5,6,10,11- $C_4B_7H_8$]-(92), which gave the neutral carborane 93 on protonation. Someric with carboranes 91-93 is the parent carborane arachno-5,6,9,11- $C_4B_7H_{13}$ (94), which was isolated by the author's group as the main product from the reaction of dicarbaborane 59 with acetylene (hexane, 120 °C, yield 15%). This reaction is accompanied by the formation of nido-2,7,8,11- $C_4B_7H_{11}$ (95) and compound 90 already mentioned above. A similar re-

action with 2-butyne yielded the 9,11-Me₂ derivative of 94 (30%) and the 6,11-Me₂ analogue of 93 (15%). Heating of an anion generated by the deprotonation of 94 (NaH/Et₂O)²⁷⁹ resulted in the formation of another isomeric eleven-vertex *nido*-tetracarbaborane, the symmetrically structured 7,8,9,10-C₄B₇H₁₁ compound (96). Isomeric with compounds 95 and 96 is the parent nido-1,2,8,10-C₄B₇H₁₁ (97),¹⁴⁶ which is one of the products from the gas-phase thermolysis of 31 in a hot-cold reactor (400 °C, 5%).

The most systematically explored area of tetracarbaborane chemistry is undoubtedly that of the C-substituted derivatives of the twelve-vertex nido-2,3,7,8- $C_4B_8H_{12}$ carborane (98) (numbering as in XXII), which has not yet been isolated in the parent form. The relevant chemistry has already been reviewed by Grimes, 10,14 and therefore only new and general features will be briefly mentioned.

The compounds $R_4C_4B_8H_8$ (R = Me, Et, "Pr, "Bu, ${}^iC_5H_{11}$, and " C_6H_{13}) 164,281,282 are known to be fluxional in solution between structures 98a and 98b. Structure 98a with the two quadrilateral open faces is that found in the solid phase for R = Me, 281 while structure 98b with the open hexagonal face was found in the solid phase for R = Et. 282 From variable-temperature NMR measurements, the ΔH and ΔS parameters for the 98a \rightarrow 98b conversion, which involves a cleavage of a framework C-C bond, were determined to be small (for


TABLE 22. Selected Tetracarbaboranes of the nido-R₄C₄B₈H₈ Type (Structures 98a and 98b)

R	measured data	ref(s)
Mea	¹ H, ¹¹ B, IR, MS, XR	281, 282, 284
Et	¹ H, ¹¹ B, IR, MS, XR	282, 284
${}^{\mathrm{n}}\mathrm{C}_{3}\mathrm{H}_{7}$	¹ H, ¹¹ B, IR, MS	282
ⁿ Bu ⊤	¹ H, ¹¹ B, IR, MS	164
$^{\mathrm{i}}\mathrm{C_{5}H_{11}}$	¹ H, ¹¹ B, IR, MS	164
${}^{\mathrm{n}}\mathrm{C_6H_{13}}$	¹ H, ¹¹ B, IR, MS	164
$PhCH_2$	¹ H, ¹¹ B, IR, MS, XR	283
\mathbb{R}^{1b}	¹ H, ¹¹ B, IR, MS	163
\mathbb{R}^{2c}	¹ H, ¹¹ B, IR, MS	163

^aInclusive of the 4-ferrocenyl derivative. ^b \mathbf{R}^1 = indenylmethyl. ^c \mathbf{R}^2 = fluorenylmethyl.

R=Me, Et, and ^{n}Pr). 282 Compounds with bulkier substituents, such as $R=PhCH_{2}$, 172,283 indenylmethyl, fluorenylmethyl, 163 and also oligomeric derivatives, 165 are nonfluxional in solution and adopt the more open configuration 98b.

As discovered by Grimes et al. more than a decade ago, 10,14 all carboranes of the type 98 have been prepared from the transition metal-promoted face-to-face fusion of the two $\{nido-2,3-R_2-2,3-C_2B_4H_4^{2-}\}\$ ligands of the closo complexes $[(R_2C_2B_4H_4)MH_x]$ $[MH_x=FeH_2$ or CoH) (99), which are then quantitatively converted to the $R_4C_4B_8H_8$ carboranes on air oxidation in THF. The

fusion mechanism has been extensively probed, revealing the existence of a paramagnetic diiron intermediate complex 14,16 that contains both low-spin and high-spin Fe(II). 284,285 The fusion process was found to be intramolecular, with respect to the carborane ligands 284 and has been extended to the trisubstituted carboranes of the type 2,3,4-R₃-nido-2,3-C₂B₄H₅ to obtain hexasubstituted $R_6C_4B_8H_6$ compounds. 172 Most representative compounds of the 98 type, generated from the fusion process are listed in Table 22.

Some of the homosubstituted carboranes 98 (R = Me, Et, and PhCH₂) were structurally characterized by X-ray diffraction, and another crystallographically characterized compound is the *B*-ferrocenyl-substituted derivative of Me₄C₄B₈H₈, viz. 4-[$(\eta^5$ -C₅H₅)Fe(η^5 -C₅H₄)]-2,3,7,8-Me₄C₄B₈H₇. ²⁸⁶ Open-face bond distances in selected compounds of types 98a and 98b are given in Table 23.

A new, open area of transition metal-promoted fusion reactions is the attempt to prepare fused products via mixed-ligand complexes of the [(2,3-R₂-2,3-C₂B₄H₄)FeL] type, where L is a different cage-borane ligand.²⁸⁷ For instance, simultaneous treatment of the [2,3-Me₂-2,3-C₂B₄H₄]⁻ and [B₅H₈]⁻ anions with FeCl₂ in THF gave, after the usual workup, low yields of supraicosahedral tetracarbaboranes identified as Me₄C₄B_xH_x (x = 9-11) in addition to the usual compound of the Me₄-98 type.

Another variation of a fusion reaction leading to mixed-substituted derivatives of the $R_2R'_2C_4B_8H_8$ type is the recently reported²⁸⁸ series of reactions between the complexes $[(R_2C_2B_4H_4)Fe(\eta^6-C_8H_{10})]$ and the salts

TABLE 23. Selected Cage Bond Distances (in pm with ESD's in Parentheses) for nido-R₄C₄B₈H₈ Tetracarbaboranes

		R		
	Mea	Me ^b	Et ^c	PhCH ₂ ^d
C(2)-C(3)	143 (1)	149.3 (6)	136.2 (6)	140.7 (1)
C(2)-B(1)	166 (1)	172.0 (6)	173.2 (8)	174.8 (2)
C(2)-B(6)	170 (1)	165.3 (8)	162.7 (6)	165.0 (2)
C(2)-B(11)	173 (1)	164.1 (7)	218.1 (6)	217.5 (3)
C(3)-C(7)	153 (1)	151.5 (8)	288.6 (2) ^e	285.8 (1) ^e
C(3)-B(1)	170(1)	166.6 (7)	166.9 (6)	168.1 (3)
C(3)-B(4)	215 (1)	225.6 (6)	160.3 (8)	158.1 (2)
C(3)-B(8)	150(1)	149.0 (6)	140.8 (7)	141.8 (1)
C(7)-B(11)	215 (1)	219.7 (7)	157.4 (6)	156.5 (2)
C(7)-B(12)	162 (1)	167.3 (7)	165.6 (7)	167.9 (3)
C(8)-B(4)	169 (1)	168.4 (6)	214.5 (7)	213.1 (2)
C(8)-B(9)	170 (1)	167.7 (7)	167.2 (7)	164.7 (2)
C(8)-B(12)	171 (1)	169.5 (7)	176.3 (6)	174.7 (2)

^aData from ref 280 (structure 98a). ^b4-Ferrocenyl derivative (structure 98a), data from ref 286. Data from ref 282 (structure 98b). d Data from ref 283 (structure 98b). Nonbonding distances.

 $Na^{+}[2,3-R'_{2}-2,3-C_{2}B_{4}H_{5}]^{-}$ (R = Et, "Bu, PhCH₂; R' = Me, Et, "Bu, PhCH₂) at 150 °C in the absence of solvent. Multinuclear NMR studies of the carboranes thus prepared indicated an equilibrium between the 98a and 98b forms in solution.

Hosmane et al.²⁸⁹ have reported an interesting highyield (82%) and stereospecific fusion reaction (without involvement of a transition-metal complex) between two molecules of 2,3-(Me₃Si)₂-nido-2,3-C₂B₄H₆, induced by heating at 210 °C:

$$2(Me_3Si)_2C_2B_4H_6 \rightarrow (Me_3Si)_2C_4B_8H_{10} + 2Me_3SiH$$
 (35)

The reaction is believed to involve the Me₃Si^{*} radical and the isolated product is of structure 98a and is nonfluxional in solution.

Acknowledgments. The author thanks the Czechoslovak Academy of Sciences (grant 43204), and Borax Research Ltd. (Chessington, UK) for support and Drs. J. D. Kennedy (School of Chemistry, University of Leeds, UK) and T. R. Spalding (University College of Cork, Ireland) for helpful discussions.

References

- (1) Grimes, R. N. Carboranes; Academic: New York, 1970; references therein.
- Onak, T. In Boron Hydride Chemistry; Muetterties, E. L., Ed.; Academic: New York, 1973; p 349, and references therein.
- (3) Lipscomb, W. N. Boron Hydrides; Benjamin: New York,

- Histomb, W. R. Boron Hydrites; Benjamin. New York, 1963.

 Wilkinson, G., Stone, F. G. A., Abel, E., Eds. Comprehensive Organometallic Chemistry; Pergamon: Oxford, 1982.

 Onak, T. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, 1982; Chapter 5.4, pp 411-458, and references therein.

 Grimes, R. N. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, 1982; Chapter 5.5, pp 459-542 and references therein.

 (a) Liebman, J. F., Greenberg, A., Williams, R. E., Eds. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; VCH Publishers, Inc.: New York, 1988. (b) Stibr, B.; Plešek, J.; Heřmánek, S. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH Publishers: New York, 1988; Chapter 3, pp 35-70. (c) Corcoran, E. W.; Sneddon, L. G. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH Publishers: New York, 1988; Chapter 4, pp 71-90. (d) Onak, T. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH Boron and the Boranes; Liebman, J. F., Greenberg, A., Wil-

- liams, R. E., Eds.; VCH Publishers: New York, 1988; Chapter 7, pp 125-150. (e) Williams, R. E.; Prakash, G. K. S.; Field, L. D.; Olah, G. A. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH Publishers: New York, 1988; Chapter 9, pp 191-224. (f) Grimes, R. N. Molecular Structure and Energetics, Vol. 5, Advances in Boron. York, 1988; Chapter 9, pp 191-224. (f) Grimes, R. N. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH Publishers: New York, 1988; Chapter 11, pp 235-264. (g) Hosmane, N.; Maguire, J. A. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH Publishers: New York, 1988; Chapter 14, pp 297-328. (h) Beaudet, R. A. Molecular Structure and Energetics, Vol. 5, Advances in Boron and the Boranes; Liebman, J. F. 5, Advances in Boron and the Boranes; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH Publishers: New York, 1988; Chapter 20, pp 417-490.

 (a) Hawthorne, M. F.; Young, D. C.; Wegner, P. A. J. Am. Chem. Soc. 1965, 87, 1818. (b) Hawthorne, M. F. J. Orga-

- nomet. Chem. 1975, 100, 97.

 (9) Grimes, R. N. Pure Appl. Chem. 1982, 54, 43.

 (10) Grimes, R. N. Acc. Chem. Res. 1983, 16, 22.

 (11) (a) Olah, G. A., Wade, K., Williams, R. E., Eds.; Electron Deficient Boron and Carbon Clusters; John Wiley & Sons: New York, 1991. (b) Williams, R. E. Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; John Wiley & Sons: New York, 1991; Chapter R. E., Eds.; John Wiley & Sons: New York, 1991; Chapter 2, pp 11-93. (c) Wade, K. Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; John Wiley & Sons: New York, 1991; Chapter 3, pp 95-111. (d) Mingos, D. M. P. Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; John Wiley & Sons: New York, 1991; Chapter 5, pp 143-164. (e) Onak, T.; Fuller, K. Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; John Wiley & Sons: New York, 1991; Chapter 7, pp 183-194. (f) Hosmane, N. S.; Maguire, J. A. Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; John Wiley & Sons: New York, 1991; Chapter 9, pp 215-235. (12) Mizusawa, E. A.; Dahlman, H. L.; Bennett, S. J.; Hawthorne, M. F. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 3011. (13) Goldenberg, D. M.; Sharkey, R. M.; Primus, F. J.; Mizusawa, E. A.; Hawthorne, M. F. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 560.
- 81, 560.

- (14) Grimes, R. N. Adv. Inorg. Chem. Radiochem. 1983, 26, 55.
 (15) Sneddon, L. G. Pure Appl. Chem. 1987, 59, 837.
 (16) Grimes, R. N. Pure Appl. Chem. 1987, 59, 847. (b) Grimes,

- (15) Sneddon, L. G. Pure Appl. Chem. 1987, 59, 837.
 (16) Grimes, R. N. Pure Appl. Chem. 1987, 59, 847. (b) Grimes, R. N. Pure Appl. Chem. 1991, 63, 369.
 (17) Heřmánek, S., Ed. Boron Chemistry. Proceedings of the Sixth International Meeting on Boron Chemistry, June 22-26, Bechyně, Czechoslovakia; World Scientific Publishing Co. PTE, Ltd.: Singapore, 1987.
 (18) Štibr, B.; Plešek, J.; Jelinek, T.; Baše, K.; Janoušek, Z.; Heřmánek, S. ref 17; pp 175-206.
 (19) Leach, J. B. Organomet. Chem. 1981, 9, 55; Organomet. Chem. 1982, 10, 48-63; Organomet. Chem. 1983, 11, 61. (b) Morris, J. H. Organomet. Chem. 1984, 12, 52. (c) Spalding, T. R. Organomet. Chem. 1985, 13, 38; Organomet. Chem. 1986, 14, 40; Organomet. Chem. 1987, 15, 39; Organomet. Chem. 1988, 16, 39; Organomet. Chem. 1989, 17, 35. (d) Housecroft, C. E. Organomet. Chem. 1989, 17, 35. (d) Housecroft, C. E. Organomet. Chem. 1989, 18, 37.
 (20) (a) Massey, A. G. R. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., Sect. A: Inorg. Chem. 1980, 77, 23. (b) Welch, A. J. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., Sect. A: Inorg. Chem. 1981, 78, 39. (c) Welch, A. J. Annu. Rep. Prog. Chem., Sect. A: Inorg. trex, R. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 1986, 83, 53. (h) Greatrex, R. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 1987, 84, 54.
- (21) Mastryukov, V. S.; Dorofeeva, O. V.; Vilkov, L. B. Usp. Khim. 1980, 12, 2377.
- (22) Kirilova, N. I.; Yanovski, A. I.; Struchkov, Yu. T. Itogi Nauki Tekh., Ser.: Kristallokhim. 1981, 15, 130.
- (23) Koester, R. In Houben-Weyl, Methoden der Organischen
- (23) Koester, R. In Houben-Weyl, Methoden der Organischen Chemie; Organobor Verbindungen III; Band XIII/3c; Kropf, H., Ed.; G. Thieme Verlag: Stuttgart, 1984; pp 92-214.
 (24) Casey, J. B.; Evans, W. J.; Powell, W. H. Inorg. Chem. 1983, 22, 2228; Inorg. Chem. 1983, 22, 2236.
 (25) (a) Elian, M.; Hoffman, R. Inorg. Chem. 1975, 14, 1058. (b) Hoffman, R. Science (Washington, D.C.) 1981, 211, 995.
 (26) (a) Williams, R. E. Inorg. Chem. 1971, 10, 210. (b) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1. (c) Williams, R. E. Adv. Inorg. Chem. Radiochem. 1976, 18, 67. (d) Wade, K. In Metal Interactions with Boron Clusters: Grimes, R. N.
- In Metal Interactions with Boron Clusters; Grimes, R. N., Ed.; Plenum Press: New York, 1982; Chapter 1, pp 1-41. (a) Porterfield, W. W.; Jones, M. E.; Gill, W. R.; Wade, K. Inorg. Chem. 1990, 29, 2914. (b) Porterfield, W. W.; Jones,

- M. E.; Wade, K. Inorg. Chem. 1990, 29, 2919. (c) Porterfield, W. W.; Jones, M. E.; Wade, K. Inorg. Chem. 1990, 29, 2923. (d) Porterfield, W. W.; Jones, M. E.; Wade, K. Inorg. Chem. 1990, 29, 2927.
- (28) Williams, R. E. Lecture SA9 presented at the IMEBORON VI Meeting, Bechyně, June 22-26, 1987.
 (29) Mitchell, G. F.; Welch, A. J. J. Chem. Soc., Dalton Trans.
- 1987, 1017
- (30) Brint, P.; Healy, E. F.; Spalding, T. R.; Whelan, T. J. Chem. Soc., Dalton Trans. 1981, 2515.
- (31) DeKock, R. L.; Jasperse, C. P. Inorg. Chem. 1983, 22, 3843.
 (32) Brint, P.; Sangchakr, B. J. Chem. Soc., Dalton Trans. 1988, 105.
- (a) Cox, D. N.; Mingos, D. M. P.; Hoffman, R. J. Chem. Soc., Dalton Trans. 1981, 1788.
 (b) Mingos, D. M. P. J. Organomet. Chem. 1983, 251, C13.
 (c) Mingos, D. M. P. J. Chem. Soc., Chem. Commun. 1983, 706.
 (d) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311.
 (e) Mingos, D. M. P. Inorg. Chem. 1982, 4, 114. 198<u>5,</u> 24, 114.
- 1985, 24, 114.
 (34) (a) Tang, A.; Li, Q. Huaxue Tongbao 1984, 23, 4132. (b) Tang, A. Youji Huaxue 1984, 227. (c) Chen, Z.; Xu, G. Huaxue Xuebao 1984, 93, 479. (d) Tang, A.; Li, Q. Int. J. Quantum Chem. 1986, 29, 579.
 (35) Dewar, M. J. S.; McKee, M. L. Inorg. Chem. 1980, 19, 2662.
 (36) Jemmis, E. D. J. Am. Chem. Soc. 1982, 104, 7017.
 (37) Jemmis, E. D.; Pavankumar, P. N. V. Proc. Indian Acad. Sci., Chem. Sci. 1984, 93, 479.

- Chem. Sci. 1**984**, 93, 479. (38) Ott, J. J.; Gimarc, B. M. J. Am. Chem. Soc. 1986, 108, 4303.
- (39) Dewar, M. J. S.; Jie, C.; Zoebish, E. G. Organometallics 1988,
- (40) Stone, A. J. Mol. Phys. 1980, 41, 1339 Stone, A. J. Inorg. Chem. 1981, 20, 563.
- (42) Stone, A. J.; Alderton, M. J. Inorg. Chem. 1982, 21, 2297.
 (43) Brint, P.; Cronin, J. P.; Seward, E.; Whelan, T. J. Chem. Soc., Dalton Trans. 1983, 975.
- (44) Ceulemans, A.; Fowler, P. W. Inorg. Chim. Acta 1985, 105,
- (45) Fowler, P. W. Polyhedron 1985, 4, 2051.
 (46) Fowler, P. W.; Portefield, W. W. Inorg. Chem. 1985, 24, 3511.
 (47) Johnston, R. L.; Mingos, D. M. P. Polyhedron 1986, 12, 2059.
- (48) Johnston, R. L.; Mingos, D. M. P. J. Chem. Soc., Dalton
- Trans. 1987, 647. Johnston, R. L.; Mingos, D. M. P. J. Chem. Soc., Dalton
- Trans. 1987, 1445. Teo, B. K. Inorg. Chem. 1984, 23, 1251
- (51) Teo, B. K.; Longoni, G.; Chung, F. R. K. Inorg. Chem. 1984,
- (52) Teo, B. K. Inorg. Chem. 1985, 24, 1627.

- (53) Teo, B. K. Inorg. Chem. 1985, 24, 4209.
 (54) Teo, B. K. Inorg. Chem. 1985, 24, 115.
 (55) Mingos, D. M. P. Inorg. Chem. 1985, 24, 114.
 (56) King, R. B. In Chemical Applications of Topology and Graph Theory; Elsevier: Amsterdam, 1983.
 (57) Viana D. R. M. Marchen, 1983.
- (57) King, R. B. Inorg. Chim. Acta 1986, 116, 125.
 (58) King, R. B. Inorg. Chem. 1988, 27, 1941.
- (59) Lipscomb, W. N. Science (Washington, D.C.) 1966, 153, 373.
- (60) Fuller, D. J.; Kepert, D. L. Inorg. Chem. 1982, 21, 163.
 (61) Fuller, D. J.; Kepert, D. L. Polyhedron 1983, 2, 749.
- (62) Gimarc, B. M.; Ott, J. J. Main Group Met. Chem. 1989, 12,
- (63) Wales, D. J.; Stone, A. J. Inorg. Chem. 1987, 26, 3845.
- (64) Wales, D. J.; Mingos, D. M. P. Inorg. Chem. 1989, 28, 2748. (65) (a) Kennedy, J. D. In Multinuclear NMR; Mason, J., Ed.; Plenum: New York, 1983; Chapter 8. (b) Hermanek, S.; Jelinek, T.; Plešek, J.; Štibr, B.; Fusek, J.; Mareš, F. ref 17;
- pp 26-73.

 (66) Teixidor, F.; Vinas, C.; Rudolph, R. W. Inorg. Chem. 1986, **25**. 3339.
- (67) (a) Finster, D. C.; Hutton, W. C.; Grimes, R. N. J. Am. Chem. Soc. 1980, 102, 400.
 (b) Venable, L. T.; Hutton, W. C.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 29.
- (68) Reed, D. J. J. Chem. Res., Synop. 1984, 106, 29.
 (69) Jacobsen, G. B.; Meina, D. G.; Morris, J. H.; Thomson, C.; Andrews, S. J.; Reed, D.; Welch, A. J.; Gaines, D. F. J. Chem. Soc., Dalton Trans. 1985, 1645.
 (70) Fontaine, X. L. R.; Kennedy, J. D. J. Chem. Soc., Chem. Commun. 1986, 779.
 (71) Filis D. D. Chem. Y. C. D. L. D. Chem. Trans. Trans.
- (71) Ellis, P. D.; Chou, Y. C.; Dobh, P. A. J. Magn. Reson. 1980, *39*, 529.
- (72) Fehlner, T. P.; Czech, P. T.; Fenske, R. F. Inorg. Chem. 1990,
- Schleyer, P. v. R.; Bühl, M.; Fleischer, U.; Koch, W. Inorg. Chem. 1990, 29, 153. Heřmánek, S.; Hnyk, D.; Havlas, Z. J. Chem. Soc., Chem.
- Commun. 1989, 1859.

 Jarvis, W.; Inman, W.; Powell, B.; Distefano, E. W.; Onak, T. J. Magn. Reson. 1981, 43, 302.
- (76) Jarvis, W.; Abdou, Z. J.; Onak, T. Polyhedron 1983, 2, 1067.

- (77) Williams, R. E.; Field, L. D. In Boron Chemistry-4; Parry, R. W., Kodama, G., Eds.; Pergamon: New York, 1980.
 (78) Dolanský, J.; Heřmánek, S.; Zahradník, R. Collect. Czech. Chem. Commun. 1981, 46, 2479.
 (79) McKee, M. L. J. Phys. Chem. 1989, 93, 3426.
 (80) Wilczynski, R.; Sneddon, L. G. J. Am. Chem. Soc. 1980, 102, 2021.

- (81) Wilczynski, R.; Sneddon, L. G. Inorg. Chem. 1981, 20, 3955.
 (82) Knoth, W. H.; Muetterties, E. L. J. Inorg. Nucl. Chem. 1961,
- (83) Baše, K.; Alcock, N. W.; Howarth, O. W.; Powell, H. R.; Harrison, A. T.; Wallbridge, M. G. H. J. Chem. Soc., Chem. Commun. 1988, 341.
- (a) Knoth, W. H. J. Am. Chem. Soc. 1967, 84, 1276. (b) Knoth, W. H. Inorg. Chem. 1971, 10, 598. (c) Baše, K.; Štibr, B.; Dolanský, J.; Duben, J. Collect. Czech. Chem. Commun. 1981, 46, 2345.
- (a) Hyatt, D. E.; Owen, D. A.; Todd, L. J. Inorg. Chem. 1966, 5, 1749. (b) Knoth, W. H.; Little, J. L.; Lawrence, J. F.; Scholer, F. R.; Todd, L. J. Inorg. Synth. 1968, 11, 33. Duben, J.; Plzák, Z.; Štibr, B. Chem. Listy 1980, 74, 643. Jelinek, T.; Štibr, B.; Plešek, J.; Heřmánek, S. J. Organomet. Chem. 1986, 307, C13.

- Chem. 1986, 307, C13.
 (88) Nestor, K.; Kennedy, J. D.; Thornton-Pett, M.; Štibr, B.; Jelinek, T. Collect. Czech. Chem. Commun., in press.
 (89) Fuller, D. J.; Kepert, B. L.; Skelton, B. V.; White, A. H. Aust. J. Chem. 1987, 40, 2097.
 (90) Masoeydov, S. F.; Tsimerinova, T. V.; Solntsev, K. A.; Kuznetsov, N. T. Koord. Chem. 1984, 10, 1174.
 (91) Kayumov, A. G.; Goeva, L. V.; Solntsev, K. A.; Kuznetsov, N. T. Zh. Neorg. Khim. 1988, 33, 1201.
 (92) Kayumov, A. G.; Solntsev, K. A.; Goeva, L. V.; Kuznetsov, N. T.; Ellert, O. G. Zh. Neorg. Khim. 1988, 33, 1771.
 (93) Štibr, B.; Jelinek, T.; Plešek, J.; Heřmánek, S. J. Chem. Soc., Chem. Commun. 1987, 963.
 (94) Fontaine, X. L. R.: Kennedy, J. D.: Thornton-Pett M. Na-
- (94) Fontaine, X. L. R.; Kennedy, J. D.; Thornton-Pett, M.; Nestor, K.; Stibr, B.; Jelinek, T.; Baše, K. J. Chem. Soc., Dalton Trans. 1990, 2887.
 (95) Plešek, J.; Jelinek, T.; Štibr, B.; Heřmánek, S. J. Chem. Soc., Chem. Commun. 1988, 348.

- Chem. Commun. 1988, 348.
 (96) Dunks, G. B.; Wiersema, R. J.; Hawthorne, M. F. J. Am. Chem. Soc. 1973, 95, 3174.
 (97) Getman, T. D.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1990, 29, 158.
 (98) Plešek, J.; Stibr, B.; Fontaine, X. L. R.; Kennedy, J. D.; Heřmánek, S.; Jelinek, T. Collect. Czech. Chem. Commun. 1991, 56, 1618.
 (99) (a) Plešek, J.; Stibr, B.; Fontaine, V. I. B.; Heřmánek, S.; Jelinek, T. Collect. Czech. Chem. Commun.
- (a) Plešek, J.; Štibr, B.; Fontaine, X. L. R.; Heřmánek, S.; Jelinek, T.; Kennedy, J. D. Collect. Czech. Chem. Commun., to be submitted. (b) Subrtová, V.; Petřiček, V. Acta Crystopa (b) Subrtová, V.; Petřiček, V. Acta Crystopa (c) Subrtová, V. Subrtová
- tallogr. 1990, C46, 2419.

 (100) Klanberg, F.; Eaton, D. R.; Guggenberger, L. J.; Muetterties, E. L. Inorg. Chem. 1967, 6, 1271.

 (101) Brice, V. T.; Johnson, H. D., II; Shore, S. G. J. Chem. Soc.,
- Chem. Commun. 1972, 1128
- (102) Plešek, J.; Holub, J.; Jelinek, T.; Štibr, B.; Heřmánek, S.; Kennedy, J. D. Main Group Met. Chem., to be submitted.
 (103) Howarth, O. W.; Jasztal, M. J.; Taylor, J. G.; Wallbridge, M.
- G. H. Polyhedron 1985, 4, 1461.

 (104) Heřmánek, S.; Fusek, J.; Stibr, B.; Plešek, J.; Jelinek, T. Polyhedron 1986, 11, 1873.

 (105) Jelinek, T.; Štibr, B.; Plešek, J.; Heřmánek, S. Collect. Czech. Chem. Commun. 1985, 50, 1376.
- (106) Hernandez, D. M.; Huffman, J. C.; Todd, L. J. Inorg. Chem. 1987, 26, 213.
- (106) Hernandez, D. M.; Huffman, J. C.; Todd, L. J. Inorg. Chem. 1987, 26, 213.
 (107) Quintana, W.; Sneddon, L. G. Inorg. Chem. 1990, 29, 3242.
 (108) Ernest, R. L.; Quintana, W.; Rosen, R.; Caroll, P. J.; Sneddon, L. G. Organometallics 1987, 6, 80.
 (109) Quintana, W.; Ernest, R. L.; Caroll, P. J.; Sneddon, L. G. Organometallics 1988, 7, 166.
 (110) Sivaev, I. B.; Kayumov, A. G.; Yakushev, A. B.; Solntsev, K. A.; Kuznetsov, N. T. Koord. Khim. 1989, 15, 1466.
 (111) Masoeydov, S. F.; Popov, A. L.; Solntsev, K. A.; Kuznetsov, N. T. Zh. Neorg. Khim. 1985, 30, 98.
 (112) Masoeydov, S. F.; Popov, A. L.; Solntsev, K. A.; Kuznetsov, N. T. Zh. Anal. Chem. 1985, 39, 2088.
 (113) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1988, 107, 5955.
 (114) Shelly, K.; Reed, C. A.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. Inorg. Chem. 1987, 26, 3022.
 (115) Gupta, G. P.; Lang, G.; Lee, Y. Ja.; Scheidt, W. R.; Skelly, K.; Reed, C. A. Inorg. Chem. 1987, 26, 3022.
 (116) Liston, D. J.; Reed, C. A.; Eigenbrot, C. W.; Scheidt, W. R. Inorg. Chem. 1987, 26, 2739.
 (117) Liston, D. J.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1989, 111, 6643.
 (118) Masoeydov, S. F.; Tsimerinova, T. V.; Solntsev, K. A.; Kuznetsov, N. T. Zh. Neorg. Khim. 1984, 29, 1421.
 (119) Kaymov, A. G.; Goeva, L. V.; Solntsev, K. A.; Kuznetsov, N. T. Zh. Neorg. Khim. 1988, 33, 1201.

- (120) Kaymov, A. G.; Solntsev, K. A.; Goeva, L. V.; Kuznetsov, N. T.; Ellert, O. G. Zh. Neorg. Khim. 1988, 33, 1771.
 (121) Kaymov, A. G.; Solntsev, K. A.; Goeva, L. V. Zn. Neorg. Khim. 1988, 33, 1936.
- (122) Kaymov, A. G.; Yakushev, A. B.; Solntsev, K. A. Zh. Neorg. Khim. 1988, 33, 2587.
- (123) Plešek, J.; Jelinek, T.; Drdáková, E.; Heřmánek, S.; Štibr, B.
- Collect. Czech. Chem. Commun. 1984, 49, 1559. (124) Plešek, J.; Jelinek, T.; Štibr, B. Polyhedron 1984, 3, 1351. (125) Jelinek, T.; Plešek, J.; Heřmánek, S.; Štibr, B. Collect. Czech.
- Chem. Soc. 1986, 51, 819.
 (126) Jelinek, T.; Plešek, J.; Mareš, F.; Heřmánek, S.; Štibr, B.
 Polyhedron 1987, 6, 1981.
- (127) Malý, K.; Šubrtová, V.; Petříček, V. Acta Crystallogr. 1987,
- 43, 593. (128) Yakushev, A. B.; Sivaev, I. B.; Kuznetsov, I. Yu.; Butman, L. A.; Kuznetsov, N. T. Zh. Negrg. Khim. 1988, 33, 1398.
- (129) Novāk, C.; Šubrtovā, V.; Petřiček, V.; Hummel, L.; Hašek, J. Collect. Czech. Chem. Commun. 1990, 55, 653.
- (130) Gimarc, B. M.; Ott, J. J. Inorg. Chem. 1986, 25, 83. (131) (a) McKee, M. L. Theochem 1988, 45, 191. (b) Graham, G. D.; Marynick, D. S.; Lipscomb, W. N. J. Am. Chem. Soc. 1980, 102, 2939.
- (132) Semenov, S. G. Teor. Eksp. Khim. 1987, 23, 451.
 (133) Semenov, S. G. Zh. Struct. Khim. 1981, 22, 164.
- (134) Semenov, S. G. Vest. Leningr. Univ., Ser. 4: Fiz. Khim. 1987,
- (135) McKee, M. L. J. Am. Chem. Soc. 1988, 110, 5317.
 (136) McKee, M. L. J. Phys. Chem. 1989, 93, 1265.
- (137) Whelan, T.; Brint, P. J. Chem. Soc., Faraday Trans. 2 1985, 81, 267
- (138) Dixon, D. A. Inorg. Chem. 1980, 19, 593.
 (139) Gal'chenko, G. L.; Tamm, N.; Brykina, E. P.; Bekker, P. B.; Petrunin, A. B.; Zhigach, A. F. Zh. Fiz. Khim. 1985, 59, 2689.
- (140) Cruicklhank, D. W. J.; Chablo, A.; Eisenstein, M.; Reidy, P. L. Acta Chem. Scand. 1988, A42, 530.
- (141) Huttner, G.; Knoll, K.; Faessler, T.; Berke, H. J. Organomet. Chem. 1988, 340, 223.

- (142) McKee, M. L. Inorg. Chem. 1988, 27, 4241.
 (143) Koester, R.; Wrackmeyer, B. Z. Naturforsch. 1981, 36B, 704.
 (144) Wilczynski, R.; Sneddon, L. G. Inorg. Chem. 1982, 21, 506.
- (145) Andersen, E. L.; Dekock, R. L.; Fehlner, T. P. J. Am. Chem. Soc. 1980, 102, 2644. (146) Astheimer, R. J.; Sneddon, L. G. Inorg. Chem. 1983, 22, 1928. (147) Corcoran, E. W., Jr.; Sneddon, L. G. J. Am. Chem. Soc. 1984,

- (148) Anderson, J. A.; Astheimer, R. J.; Odom, J. D.; Sneddon, L. G. J. Am. Chem. Soc. 1984, 106, 2275.
- (149) Plotkin, J. S.; Astheimer, R. J.; Sneddon, L. G. J. Am. Chem. Soc. 1979, 101, 4155.
- (150) DeKock, R. L.; Fehlner, T. P.; Housecroft, C. E.; Lubben, T. V.; Wade, K. *Inorg. Chem.* 1982, 21, 25.
 (151) Bragin, J.; Urevig, D. S.; Diem, M. J. Raman Spectrosc. 1982,
- (152) Hosmane, N. S.; Barreto, R. D.; Tolle, M. A.; Alexander, J. J.; Quintana, W.; Siriwardane, U.; Shore, S. G.; Williams, R. E. Inorg. Chem. 1990, 29, 2698.
 (153) Takimoto, C.; Siwapinyoyos, G.; Fuller, K.; Fung, A. P.; Liaw, L.; Jarvis, W.; Millhauser, G.; Onak, T. Inorg. Chem. 1980, 19, 107
- 19, 107,
- (154) Nam, W.; Onak, T. Inorg. Chem. 1987, 26, 48. (155) Nam, W.; Onak, T. Inorg. Chem. 1987, 26, 1581.
- (156) Corcoran, E. W., Jr.; Sneddon, L. G. J. Am. Chem. Soc. 1985, 107, 7446.
- (157) McKee, M. L. J. Am. Chem. Soc. 1988, 110, 4208.
- (158) Hosmane, N. S.; Grimes, R. N. Inorg. Chem. 1979, 18, 3294. (159) Maynard, R. B.; Borodinski, L.; Grimes, R. N. Inorg. Synth.
- 1983, 22, 211.
- (160) Spencer, J. T.; Grimes, R. N. Organometallics 1987, 6, 323.
 (161) Spencer, J. T.; Grimes, R. N. Organometallics 1987, 6, 328.
 (162) Swisher, R. G.; Sinn, E.; Grimes, R. N. Organometallics 1985,
- 4, 890.
- (163) Fessler, M. E.; Spencer, J. T.; Lomax, J. F.; Grimes, R. N. Inorg. Chem. 1988, 27, 3069.
- (164) Boyter, H. A., Jr.; Grimes, R. N. Inorg. Chem. 1988, 27, 3075.
 (165) Boyter, H. A., Jr.; Grimes, R. N. Inorg. Chem. 1988, 27, 3080.
 (166) Hosmane, N. S.; Sirmokadam, N. N.; Mollenhauser, N. M. J. Organomet. Chem. 1985, 279, 359.

- Organomet. Chem. 1985, 279, 359.
 (167) Hosmane, N. S.; Mollenhauser, N. M.; Cowley, A. H.; Norman, N. C. Organometallics 1985, 4, 1194.
 (168) Hosmane, N. S.; Maldar, M. N.; Potts, S. B.; Rankin, D. W. H.; Robertson, H. E. Inorg. Chem. 1986, 25, 1561.
 (169) Hosmane, N. S.; Islam, M. S.; Burns, E. G. Inorg. Chem. 1987, 26, 3236.
 (170) Von Arx, U.; Pradhan, P. R.; Keese, R. Chimia 1986, 40, 13.
 (171) Fessler, M. E.; Whelan, T.; Spencer, J. T.; Grimes, R. N. J. Am. Chem. Soc. 1987, 109, 7416.
 (172) Davies, J. H.; Grimes, R. N. Inorg. Chem. 1988, 27, 4213.

- (172) Davies, J. H.; Grimes, R. N. Inorg. Chem. 1988, 27, 4213.

- (173) Hosmane, N. S.; de Meester, P.; Siriwardane, U.; Islam, M. S.; Chu, S. S. C. J. Chem. Soc., Chem. Commun. 1986, 1421.
- (174) Hosmane, N. S.; Siriwardane, U.; Zhang, G.; Zhu, H.; Maguire, J. A. J. Chem. Soc., Chem. Commun. 1989, 1128.
- (175) Abdou, Z. J.; Gomez, F.; Abdou, G.; Onak, T. Inorg. Chem. 1**988**, *27*, 3679.
- (176) Durso, S. S.; Sheeks, R. A.; O'Gorman, E. V.; Beaudet, R. A. Inorg. Chem. 1989, 28, 1615. (177) Ng, B.; Onak, T.; Banuelos, T.; Gomez, F.; Distefano, E. W.
- Inorg. Chem. 1985, 24, 4091
- (178) Nam, W.; Abdou, Z. J.; Lee, H.; Banuelos, T.; Onak, T. Inorg. Chem. 1989, 28, 669.
- (179) Gomez, A.; Onak, T.; Arias, J.; Alfonso, C. Main Group Met. Chem. 1990, 13, 237.
- (180) Beltram, G. A.; Jasperse, C.; Cavanaugh, M. A.; Fehlner, T. P. Inorg. Chem. 1990, 29, 329.
 (181) Nam, W.; Soltis, M.; Gordon, C. L.; Onak, T. J. Magn. Reson.
- 1984, 59, 399. (182) Astheimer, R. J.; Sneddon, L. G. Inorg. Chem. 1984, 23, 3207.
- (188) Zhigach, A. F.; Petrunin, A. B.; Bekker, D. B. Zh. Obsch. Khim. 1980, 50, 2727.
- (184) Siwapinioyos, G.; Onak, T. P. J. Am. Chem. Soc. 1980, 102,
- (185) Siwapinyoyos, G.; Onak, T. Inorg. Chem. 1982, 21, 156.
 (186) Fuller, K.; Onak, T. J. Organomet. Chem. 1983, 249, C6-C8.
 (187) Ng, B.; Onak, T. J. Fluorine Chem. 1985, 27, 119.

- (188) Ng, B.; Onak, T.; Fuller, K. Inorg. Chem. 1985, 24, 4371. (189) Oh, B.; Onak, T. Inorg. Chem. 1982, 21, 3150. (190) Abdou, Z. J.; Soltis, M.; Oh, B.; Siwap, G.; Banuelos, T.; Nam, W.; Onak, T. Inorg. Chem. 1985, 24, 2363.
- (191) Abdou, Z. J.; Abdou, G.; Onak, T.; Lee, S. Inorg. Chem. 1986, 25, 2678.
- (192) O'Gorman, E.; Banuelos, T.; Onak, T. Inorg. Chem. 1988, 27,
- (193) Onak, T.; O'Gorman, E.; Banuelos, T.; Alfonso, C.; Yu, M.
- Inorg. Chem. 1990, 29, 335. (194) Ott, J. J.; Brown, C. A.; Gimarc, B. M. Inorg. Chem. 1989, 28, 4269.
- (195) Beck, J. S.; Kamn, A. P.; Sneddon, L. G. Organometallics
- 1986, 5, 2552.
 (196) Beck, J. S.; Sneddon, L. G. Inorg. Chem. 1990, 29, 295.
 (197) Beck, J. S.; Quintana, W.; Sneddon, L. G. Organometallics 1988, 7, 1015.
- (198) Ott, J. J.; Gimarc, B. M. J. Comput. Chem. 1986, 7, 673.
 (199) Gimarc, B. M.; Ott, J. J. J. Am. Chem. Soc. 1987, 109, 1388.
 (200) (a) Gimarc, B. M.; Dai, B.; Ott, J. J. J. Comput. Chem. 1989, 10, 14. (b) Gimarc, B. M.; Ott, J. J. Stud. Phys. Theor.

- 10, 14. (b) Gimarc, B. M.; Ott, J. J. Stud. Phys. Theor. Chem. 1987, 51, 285.

 (201) King, R. B. Inorg. Chem. 1986, 25, 506.

 (202) O'Neill, M. E.; Wade, K. Polyhedron 1983, 2, 963.

 (203) Gimarc, B. M.; Ott, J. J. Inorg. Chem. 1986, 25, 2708.

 (204) Jelinek, T.; Štibr, B.; Heřmánek, S.; Plešek, J. J. Chem. Soc., Chem. Commun. 1989, 804.
- (205)Jelinek, T.; Plešek, J.; Heřmánek, S.; Štibr, B. Main Group Met. Chem. 1987, 10, 397.
- (207)
- Štibr, B.; Plešek, J.; Heřmánek, S. Inorg. Synth. 1983, 22, 237. Heřmánek, S.; Jelinek, T.; Plešek, J.; Štibr, B.; Fusek, J. Collect. Czech. Chem. Commun. 1988, 53, 2742.
- (208) Heřmánek, S.; Jelinek, T.; Plešek, J.; Štibr, B.; Fusek, J. J. Chem. Soc., Chem. Commun. 1987, 927.
 (209) Jelinek, T.; Plešek, J.; Mareš, F.; Heřmánek, S.; Štibr, B. Polyhedron 1987, 6, 1737.
- (210) Jelinek, T.; Hermanek, S.; Štibr, B.; Plešek, J. Polyhedron 1986, 5, 1303.
- (211) MacCurtain, J.; Brint, P.; Spalding, T. R. J. Chem. Soc.,
- Dalton Trans. 1985, 2591.
 (212) Wong, E. H.; Nalband, G. T. Inorg. Chim. Acta 1981, 53,
- (213) Briguglio, J. J.; Carroll, P. J.; Corcoran, E. W., Jr.; Sneddon, L. G. Inorg. Chem. 1986, 25, 4618.
 (214) Atavin, E. G.; Mastryukov, V. S.; Golubinskii, A. V.; Vilkov, L. V. J. Mol. Struct. 1980, 65, 259.
- (215) Bukalov, S. S.; Leites, L. A. J. Raman Spectrosc. 1985, 16,
- (a) Štibr, B.; Plešek, J.; Zobáčová, A. Polyhedron 1982, 1, 824. (b) Plešek, J.; Heřmánek, S.; Štibr, B. Pure Appl. Chem. 1**99**1, 63, 399.
- (217) Lawrence, S. H.; Wermer, J. R.; Boocock, S. K.; Banks, M. A.; Keller, P. C.; Shore, S. G. Inorg. Chem. 1986, 25, 367.
 (218) Stibr, B.; Heřmánek, S.; Janoušek, Z.; Plzák, Z.; Dolanský, J.; Plešek, J. Polyhedron 1982, 1, 822.
 (219) Janoušek, Z.; Plešek, J.; Stibr, B.; Heřmánek, S. Collect. Czech. Chem. Commun. 1983, 48, 228.
 (220) Subrtová V. Linek A. Hašek, J. Acta Crystallogs. 1982.
- Šubrtová, V.; Linek, A.; Hašek, J. Acta Crystallogr. 1982, B38, 3147.
- (221) Stibr, B.; Janoušek, Z.; Baše, K.; Plešek, J.; Zakharova, I. A. Collect. Czech. Chem. Commun. 1984, 49, 1891.
- Janoušek, Z.; Plešek, J.; Heřmánek, S.; Štíbr, B. Polyhedron 1985, 4, 1797. (222)

(223) Štibr, B.; Janoušek, Z.; Plešek, J.; Jelinek, T.; Heřmánek, S. Collect. Czech. Chem. Commun. 1987, 52, 103.

- (224) Štibr, B.; Janoušek, Z.; Plešek, J.; Jelinek, T.; Heřmánek, S. J. Chem. Soc., Chem. Commun. 1985, 1365.
 (225) Štibr, B.; Plešek, J.; Jelinek, T.; Heřmánek, S.; Solntsev, K. A.; Kuznetsov, N. T. Collect. Czech. Chem. Commun. 1987,
- (226) Kuznetsov, Yu. I.; Solntsev, K. A.; Butman, L. A.; Kuznetsov, N. T.; Štibr, B.; Plešek, J.; Jelinek, T. Koord. Khim. 1989, 15,
- (227) Wermer, J. R.; Hosmane, N. S.; Alexander, J. J.; Siriwardane, U.; Shore, S. G. *Inorg. Chem.* 1986, 25, 4351.
 (228) Gimarc, B. M.; Dai, B.; Warren, D. S.; Ott, J. J. J. Am. Chem. Soc. 1990, 112, 2597.

Leonowicz, M. E.; Scholer, F. R. Inorg. Chem. 1980, 19, 122. Struchkov, Yu. T.; Antipin, M. Yu.; Stanko, V. I.; Brattsev, V. A.; Kirilova, N. L.; Knyazev, S. P. J. Organomet. Chem. 1**977**, *141*, 133.

(231) Buchanan, J.; Hamilton, E. J. M.; Reed, D.; Welch, A. J. Chem. Soc., Dalton Trans. 1990, 677.
(232) Fontaine, X. L. R.; Greenwood, N. N.; Heřmánek, S.; Jelinek, T.; Kennedy, J. D.; Nestor, K.; Štibr, B.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1990, 681.
(233) Leites, L. A.; Bukalov, S. S.; Vinogradova, L. I.; Kalinin, V. I.; Kobel'kova, N. I.; Zakharkin, L. I. Izv. Akad. Nauk SSSR, Soc. Khim. 1984, 954.

Kobel Roya, N. I.; Zaknarkin, L. I. 120. Akad. Natur SSSR, Ser. Khim. 1984, 954.
 Shevchenko, Yu. N.; Davidenko, N. K.; Svitsyn, R. A.; Yashina, N. I.; Egorova, N. V. Zh. Neorg. Khim. 1980, 25, 2180.
 Shevchenko, Yu. N.; Yashina, N. I.; Svitsin, R. A.; Egorova, N. V. Zh. Obsch. Khim. 1981, 51, 1258.
 Shevchenko, Yu. N.; Yashina, N. I. Zh. Obsch. Khim. 1981, 10500

51, 2582.

(237) Goursot, A. S.; Penigault, E.; Chermette, H.; Fripiat, J. G. Can. J. Chem. 1986, 64, 1752.
(238) Antipin, M. Yu.; Struchkov, Yu. T.; Kirillova, N. I.; Knyazev, S. P. Cryst. Struct. Commun. 1980, 9, 599.
(239) Zakharkin, L. I.; Zhigareva, G. G.; Antonovich, V. A. Zh. Obsch. Khim. 1980, 50, 1026.
(240) (200) (201

(240) (a) Yanovski, A. I.; Struchkov, Yu. T.; Kalinin, V. N.; Zakharkin, L. I. Zh. Strukt. Khim. 1982, 23, 77. (b) Knobler, C. A.; Marder, T. B.; Misusawa, E. A.; Teller, R. G.; Behnken, P. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1984, 106, 2990.

(241) Serino, A. J.; Hawthorne, M. F. J. Chromatogr. 1984, 291,

(242) Lebedev, V. N.; Balagurova, E. V.; Polyakov, A. V.; Yanovski, A. I.; Struchkov, Yu. T.; Zakharkin, L. I. Metalloorg. Khim. 1989, 2, 940.

(243) Vinas, C.; Butler, W. M.; Teixidor, F.; Rudolph, R. W. Or-

ganometallics 1984, 3, 503. Vinas, C.; Butler, W. M.; Teixidor, F.; Rudolph, R. W. Inorg. Chem. 1986, 25, 4369.

Teixidor, F.; Rudolph, R. W. J. Organomet. Chem. 1983, 241,

(246) Teixidor, F.; Vinas, C.; Rius, J.; Miravitlles, C.; Casabó, J. Inorg. Chem. 1990, 29, 149.
 (247) Teixidor, F.; Romerosa, A. M.; Rius, J.; Miravitlles, C.; Casabó, J.; Vinas, C.; Sanches, E. J. Chem. Soc., Dalton Trans. 1990, 525.

Allcock, H. R.; Scopelianos, A. G.; Whittle, R. R.; Tollefson, N. M. J. Am. Chem. Soc. 1983, 105, 1316. (248)

(249) Mizusawa, E. A.; Thompson, M. R.; Hawthorne, M. F. Inorg. Chem. 1**985**, 24, 1911.

Chem. 1985, 24, 1911.
(250) Hawthorne, M. F. Pure Appl. Chem. 1991, 63, 327.
(251) Zakharkin, L. I.; Zhigareva, G. G.; Ol'chevskaya, V. V.; Antonovich, V. A. Metalloorg. Khim. 1990, 3, 556.
(252) Plešek, J.; Jelinek, T.; Heřmánek, S.; Štibr, B. Collect. Czech. Chem. Commun. 1986, 51, 81.
(253) Knyazev, S. P.; Brattsev, V. A.; Stanko, V. I. Dokl. Akad. Nauk SSSR, Ser. Khim. 1977, 234, 857.

(254) Zakharkin, L. I.; Zhigareva, G. G.; Antonovich, V. A.; Yanovskii, A. I.; Struchkov, Yu. T. Izv. Akad. Nauk SSSR, Ser.

Khim. 1984, 1672.
 (255) Zakharkin, L. I.; Zhigareva, G. G.; Antonovich, V. A.; Yanovski, A. I. Zh. Obsch. Khim. 1986, 56, 2066.
 (256) Wiesboeck, R. A.; Hawthorne, M. F. J. Am. Chem. Soc. 1964,

(257) Leites, L. A.; Bukalov, S. S.; Vinogradova, L.; Knyazev, S. P.; Strelenko, Yu. A. Izv. Akad. Nauk SSSR, Ser. Khim. 1986,

(258) Bushby, D. C.; Hawthorne, M. F. Inorg. Chem. 1982, 21, 4101.
(259) Plešek, J.; Heřmánek, S. Chem. Ind. (London) 1973, 381.
(260) Plešek, J.; Janoušek, Z.; Heřmánek, S. Collect. Czech. Chem.

Commun. 1978, 43, 2862.
(261) Grushin, V. V.; Tolstaya, T. P.; Yanovski, A. I.; Struchkov, Yu. T. Izv. Akad. Nauk SSSR, Ser. Khim. 1984, 855.

(262) Leites, L. A.; Bukalov, S. S.; Grushin, V. V. Izv. Akad. Nauk SSSR, Ser. Khim. 1989, 2639.
 (263) Cowie, J.; Hamilton, E. J. M.; Laurie, J. C. V.; Welch, A. J. Acta Crystallogr. 1986, C44, 1648.
 (264) Subrtová, V.; Petřiček, V.; Hummel, L. Acta Crystallogr. 1980, C45

1989, C45, 1964. (265) Plešek, J.; Štibr, B.; Heřmánek, S. Unpublished results. (266) Antonovich, V. A.; Petrovskii, P. V.; Yanovskii, A. I.; Polyakov, A. V.; Struchkov, Yu. T. Metalloorg. Khim. 1989, 2,

1274.

1274.
(267) Kim, K. M.; Do, Y.; Knobler, C. B.; Hawthorne, M. F. Bull. Korean Chem. Soc. 1989, 10, 321.
(268) Subrtová, V.; Novák, C.; Linek, A.; Hašek, J. Acta. Crystallogr. 1984, C40, 1955.
(269) Kang, S. O.; Furst, G. T.; Sneddon, L. G. Inorg. Chem. 1989, 12, 2339.
(270) Štibr, B.; Jelinek, T.; Janoušek, Z.; Heřmánek, S.; Drdáková, E.; Plzák, Z.; Plešek, J. J. Chem. Soc., Chem. Commun. 1987, 1108. 1106.

Wrackmeyer, B. Z. Naturforsch. 1982, 37B, 412

(272) Van der Kerk, S. M.; Budzelaar, P. H. M.; van Eekeren, A. L. M. Polyhedron 1984, 3, 271

(273) Schroegel, R.; Wrackmeyer, B. Polyhedron 1985, 4, 885.
(274) (a) Herberich, G. E.; Ohst, H.; Meyer, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 969. (b) Angew. Chem. 1984, 96, 975.
(275) Fehlner, T. P. J. Am. Chem. Soc. 1980, 102, 3424.

(276) Mirabelli, M. G. L.; Sneddon, L. G. Organometallics 1985, 5,

(277) (a) Koester, R.; Seidel, G.; Wrackmeyer, B. Angew. Chem. 1984, 96, 520. (b) Angew. Chem., Int. Ed. Engl. 1984, 23, 512.

(278) (a) Koester, R.; Seidel, G.; Wrackmeyer, B. Angew. Chem. 1985, 97, 317. (b) Koester, R.; Seidel, G.; Wrackmeyer, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 326.

Stibr, B.; Jelinek, T.; Drdáková, E.; Heřmánek, S.; Plešek, J. Polyhedron 1988, 7, 669.

(280) Finster, D. C.; Grimes, R. N. J. Am. Chem. Soc. 1981, 103,

(281) Freyberg, D. P.; Weiss, R.; Grimes, R. N. Inorg. Chem. 1977, 16, 1847

Venable, T. L.; Maynard, R. B.; Grimes, R. N. J. Am. Chem. (282)

Soc. 1984, 106, 6187.

(283) Spencer, J. T.; Pourian, M. R.; Butcher, R. J.; Sinn, E.; Grimes, R. N. Organometallics 1987, 6, 335.

(284) Maynard, R. B.; Grimes, R. N. J. Am. Chem. Soc. 1982, 104,

5983.

Grimes, R. N.; Maynard, R. B.; Sinn, E.; Brewer, G. A.; Long, G. J. J. Am. Chem. Soc. 1982, 104, 5987.
Grimes, R. N.; Maxwell, W. M.; Maynard, R. B.; Sinn, E. (285)

(286)

(287)(288)

Inorg. Chem. 1980, 19, 2981.

Hosmane, N. S.; Grimes, R. N. Inorg. Chem. 1980, 19, 3482.

Fonda, K. K.; Grimes, R. N. Polyhedron 1990, 9, 949.

Hosmane, N. S.; Denghan, M.; Davis, S. J. Am. Chem. Soc. (289)1984, 106, 6435.