Thermodynamic and Kinetic Data for Macrocycle Interaction with Neutral Molecules

Reed M. Izatt, Jerald S. Bradshaw, Krystyna Pawlak, Ronald L. Bruening, and Bryon J. Tarbet

Center for Chemical Separations, Department of Chemistry, Brigham Young University, Provo, Utah 84602

Received April 23, 1992 (Revised Manuscript Received July 13, 1992)

Contents

I.	Introduction	1261
II.	Thermodynamics of Neutrai Molecule-Macrocycle Interaction	1263
	A. Complexation of Neutral Molecules by Various Macrocycles	1263
	1. Coronands and Cryptands	1263
	2. Cyciophanes	1265
	3. Calixarenes	1267
	4. Cryptophanes	1267
	5. Miscellaneous	1268
	B. Selectivities	1269
	C. Solvent Effects	1270
	D. Heat Capacities, ΔC_{p}	1271
	E. Applications	1271
III.	Kinetics of Neutral Molecule-Macrocycle Interaction	1271
IV.	Suggestions for Future Work	1272
٧.	Charts I-XXXIX	1273
VI.	Tables I-III	1293
VII.	References	1350

I. Introduction

This review contains thermodynamic and kinetic data for the interaction of macrocycles with neutral molecules. To the best of our knowledge, the first papers reporting thermodynamic data for the interactions of macrocycles (other than porphyrins) with neutral molecules were published in 1972.^{1,2} Since that time, interest has increased particularly in the design of macrocycles with predetermined guest complexation properties and in the determination of thermodynamic and kinetic data for these interactions. The most important part of this review is the compilation of thermodynamic and kinetic data. These data provide a quantitative base for understanding the effect of macrocycle and guest parameters on the thermodynamic and kinetic stabilities of the resulting complexes. In turn, this understanding can lead to the rational design of new macrocycles and to predictions of their effectiveness in forming complexes of desired stabilities with guest species. In addition, the compilation makes apparent areas where data are missing and future work is needed. Particular effort has been made to include

literature from the former USSR, Eastern Europe, and the People's Republic of China.

No comprehensive review of data for these interactions has been published. There are several reviews containing compilations of some thermodynamic and kinetic data for neutral molecule-macrocycle interaction. These reviews are now listed together with the major areas of emphasis in each case.

(1) F. Diederich, "Complexation of Neutral Molecules by Cyclophane Hosts", 1988.³ The review discusses in particular the contribution provided by synthetic cyclophanes as hosts to the understanding of molecular complexation of neutral organic guest molecules in aqueous and organic solvents, the influence of organic solvents and electron donor-acceptor interactions on the stability of complexes, and the role of force field calculations together with computer graphics in the design of the effective hosts. Limited kinetic data and many tables with thermodynamic data are given. There are 252 references, the most recent are from 1987.

(2) F. Diederich, Cyclophanes, 1991.^{3a} The book containing over 670 references presents the latest developments in cyclophane chemistry. There is a detailed discussion on molecular recognition with emphasis on major driving forces which lead to complexation between cyclophanes and a variety of charged and uncharged organic molecules in water and organic solvents. Numerous tables with thermodynamic data for cyclophane-neutral molecule interaction are included. The book has also chapters on chiral recognition, catalytic processes, and solvents effects in molecular recognition.

(3) C. D. Gutsche, *Calixarenes*, 1989.⁴ Comprehensive information is given on calixarenes including background, synthesis, characterization and properties, conformations, introduction of functional groups, complex formation, and applications. In Chapter 6, interaction of calixarenes with neutral molecules is discussed, and some tables with thermodynamic data are given. The book contains numerous references, many of them are from 1988.

(4) A. Collet, "Cyclotriveratrylenes and Cryptophanes", 1987.⁵ The article contains 113 references and deals mostly with design, synthesis, geometry, optical activity, and complexation of the title compounds. There are two paragraphs on cryptophane interactions with neutral molecules and one table with thermodynamic data.

(5) F. de Jong and D. N. Reinhoudt, "Stability and Reactivity of Crown-Ether Complexes", 1980.⁶ Crown ether complexation with metal cations, protonated

^{*} Author to whom correspondence should be addressed: Dr. Reed M. Izatt, Department of Chemistry, Brigham Young University, Provo, UT 84602. Telephone: (801) 378-2315. Fax: (801) 378-5474.

Reed M. Izatt was born in Logan, UT. He received his B.S. degree at Utah State University in 1951 and his Ph.D. degree in 1954 with Professor W. Conard Fernelius in coordination chemistry at The Pennsylvania State University. After two years of postdoctoral work at Carnegie-Mellon University, he joined the Brigham Young University Chemistry Department in 1956. He delivered the Annual Sigma Xi lecture at BYU in 1966 and the Annual BYU Faculty Lecture in 1970. He was BYU Teacher of the Month in October 1974. He received the BYU Karl G. Maeser Research and Creative Arts Award in 1967 and was the recipient of an NIH Career Development Award (1967-1972), the Utah Award (American Chemical Society) in 1971, the Huffman Award (Calorimetry Conference) in 1983, the Willard Gardner Award of the Utah Academy of Sciences, Arts, and Letters in 1985, and the State of Utah Governor's Medal in Science in 1990. He is a Fellow of the American Association for the Advancement of Science and is Chairman of the Organizing Committee for the annual International Symposium on Macrocyclic Chemistry. His research interests include the design of novel molecular recognition systems for the selective separation of cations, anions, and neutral species; calorimetry applied to metal-ligand and nonelectrolyte interactions, particularly at elevated temperatures and pressures; and the compilation of thermodynamic data.

amines, arenediazonium salts, and racemic salts is discussed, as well as the chemical reactivity of metalcation complexes. This review contains a short paragraph discussing complexation of crown ethers with H_2O and organic neutral molecules. Two tables which contain thermodynamic data are included.

(6) D. N. Reinhoudt and H. J. den Hertog, Jr., "Complexation of Neutral Molecules by Synthetic Macroheterocyclic Hosts", 1988.⁷ This is a short review with 24 references in which the authors discuss selective complex formation of crown ethers and preorganized macrocycles with neutral molecules. The discussion is based on X-ray and NMR analysis. One table gives a limited number of thermodynamic data.

(7) J. Franke and F. Vögtle, "Complexation of Organic Molecules in Water Solution", 1986.⁸ The review deals with the complexation of organic molecules, anions, and cations inside cavities, niches, or pockets of macrocyclic hosts. One table contains a limited number of K values. There are 84 references, several of which were published in 1985.

(8) H. J. Schneider, "Mechanisms of Molecular Recognition: Investigations of Organic Host-Guest Complexes", 1991.⁹ This recently published review with 197 references indicates the importance of noncovalent interactions in organic host-guest complexes in solution. The text contains numerous thermodynamic data for complexation of macrocycles with organic cations, anions, and neutral molecules.

The compilation of thermodynamic (log K, ΔH , ΔS , ΔC_p) and kinetic (k_f , k_d , ΔH^* , ΔS^*) data is intended to be exhaustive. Included in the tables are data for the interaction of a wide variety of macrocycles with many

Jerald S. Bradshaw was born in Cedar City, UT, and received a B.A. degree at the University in 1955. After four years as an officer in the U.S. Navy, he enrolled in a Ph.D. program at UCLA. He received the Ph.D. in 1963 with Prof. Donald J. Cram on electrophilic substitution at saturated carbon. He received an NSF postdoctoral fellowship for the 1962-1963 academic year to work with Prof. George S. Hammond at the California Institute of Technology. After three years as a research chemist at Chevron Research in Richmond, CA, he joined the faculty at Brigham Young University in 1966. He was named Professor of the Year at BYU in 1975. He was U.S. National Academy of Sciences Exchange Professor for the academic year of 1972-1973 and the Summer of 1982, working with Prof. Miha Tisler at the University of Ljubljana, Yugoslavia. He also was a visiting professor with Dr. J. F. Stoddart at the University of Sheffield, England, in 1978, and a National Science Foundation Cooperative Research Fellow with Dr. L. F. Lindoy at James Cook University, Townsville, Australia, in 1988. He is a member of the American Chemical Society. He received the 1989 Utah Award from the Salt Lake and Central Utah sections of the American Chemical Society. He received the State of Utah Governor's Medal in Science in 1991. In 1992, he presented the Annual Faculty Lecture at BYU. His research interests include the synthesis and cation complexation properties of macrocyclic multidentate compounds, the photochemical reactions of heterocyclic compounds, and the preparation of new polysiloxanes for chromatography uses.

different neutral molecules. The reactions have been studied in a variety of solvents and under a variety of experimental conditions. The experimental conditions and some supplementary information are provided for each interaction listed. It is important to realize that the data are valid only at the specific conditions given. Few studies have been made at temperatures outside of the 20–30 °C range. The solvents used include H₂O (D₂O), various organic solvents, and various solvent mixtures. The abbreviations used in the tables can be understood by reference to the structures and names given in Charts I–XXXVII (macrocycles) and Charts XXXVIII and XXXIX (neutral molecules). The chart in which each macrocycle is located is indicated in the tables. The nomenclature used is defined in the charts.

This review is intended to be a companion to our earlier reviews¹⁰⁻¹² involving the thermodynamic and kinetic quantities associated with cation and anion interaction with macrocycles. In those reviews, the cation and anion parameters which affect macrocycleion complex stability are presented and discussed. Design features which enable one to achieve high selectivity of one ion over other similar ions are also discussed. Many of these same principles apply to the present review.

In this review, the relevant thermodynamic and kinetic data are tabulated, the factors are identified and discussed which enable workers to discriminate selectively among similar molecules, possible practical applications are presented, and opportunities for future work are given.

Krystyna Pawlak was born in Lithuania and received her M.D. degree at the Medical Academy in Gdansk, Poland, in 1964. She obtained her specialization in psychiatry at the Medical Academy in Gdansk and at the Institute of Neurology and Psychiatry in Warsaw. After five years of practicing medicine at the State Psychiatric Hospital, she served as a Director of the Outpatient Clinic for Alcoholics and Drug Addicts in Gdansk where she did research on pharmacodynamics of drugs used in the treatment of alcoholics. From 1973 to 1986, she was a consultant in the Outpatient Psychiatric Clinic in Gdynia and a sworn expert for the court. She was a member of the Polish Psychiatric Society. From 1981 to 1982, she was an observer in The Tower Hospital in Leicester, England. In 1986, she joined the chemistry research group at Brigham Young University. Her recent interests are in researching the known literature on the thermodynamics of macrocycle and cyclodextrin interactions with cations, anions, and neutral molecules and the compilation of thermodynamic data. In 1992 she became a member of Sigma Xi the Scientific Research Society.

Ronald L. Bruening was born in Salt Lake City, UT, and received his B.S. degree in chemical engineering at Brigham Young University in 1985. He obtained his M.S. degree in chemistry in 1986 and his Ph.D. in chemistry with Prof. R. M. Izatt in 1988 at BYU. He received the H. Tracy Hall Award as the outstanding graduating Ph.D. student in 1988 and Sigma Xi Outstanding Ph.D. Dissertation Award for College of Physical and Mathematical Sciences in 1989. From 1986 to 1988 he was a research assistant at BYU. Since 1988, he has been Vice-President of Research, IBC Advanced Technologies, Inc., Provo, UT, and a research associate at BYU. He is a member of the American Chemical Society, Sigma Xi, and Tau Beta Pi Honorary Engineering Society. His scientific interests involve macrocycle-mediated cation transport in membrane systems and cation determinations and separations in silica gel column systems.

II. Thermodynamics of Neutral Molecule–Macrocycle Interaction

Table I contains $\log K$, ΔH , and ΔS data and Table II contains ΔC_p data for the interaction of macrocycles with neutral molecules. The method used to determine the thermodynamic quantities is given in each case together with the temperature of measurement, the conditions (solvent, supporting electrolyte, buffer, pH), some supplementary information (e.g., equations), and the literature reference.

Byron J. Tarbet was born in Chicago, IL, and received his B.S. degree in chemistry at Brigham Young University in 1984. He obtained his Ph.D. in organic chemistry with Prof. J. S. Bradshaw in 1988 at BYU. From 1986 to 1988 he was a research assistant at BYU. Since 1988, he has been Manager of Organic Synthesis, IBC Advanced Technologies, Inc., Provo, UT, and a research associate at BYU. He is a member of the American Chemical Society. His scientific interests involve synthesis of compounds for use in separation systems.

A. Complexation of Neutral Molecules by Various Macrocycles

Studies on neutral molecule-macrocycle interactions have been far fewer in number than those on cationmacrocycle interactions. Although Pedersen²⁷⁹ discussed the possibility of complexation of thiourea and thiourea-related compounds by crown ethers and presented some results in 1971, only in recent years has this field received substantial attention. The motivation to study neutral molecule-macrocycle interactions is understandable because the function of neutral molecules is as important as that of charged molecules in many chemical and biological processes. In addition, there is increasing interest in the possibility of using macrocycles to separate certain neutral molecules from environmental systems.

1. Coronands and Cryptands

a. Crown Ethers. Crown ethers are capable of interacting with many neutral organic and inorganic guests that have acidic properties by formation of hydrogen bonds between the oxygen atoms of the polyethers and the hydrogen atoms of these guests. The organic guests and water act as proton donors, and the ether oxygen atoms of the macrocyclic ring act as proton acceptors. The formation of complexes of crown ethers with neutral organic compounds that have pronounced acidity (e.g., CHCl₃) also leads to a change in the conformation of the macrocyclic ring to one similar to that which it has in complexes with metal salts.²⁷

The ability of a crown ether to interact with molecules of proton-donor solvents in complexing reactions with metal ions has an appreciable effect on the thermodynamic parameters of these reactions. A study of the solvation of macrocyclic ethers by water and other organic solvents is therefore of considerable interest.

Golovkova and co-workers measured the abilities of crown ethers to coordinate with water in chloroform using a ¹H NMR method. They found the association constant order to be N₂18C6-1 (Chart II) > Cy₂18C6-1 (Chart II) > 18C6-1 (Chart II) > B₂18C6-1 (Chart II) > B₂24C8-1 (Chart III) > 15C5-1 (Chart I) > B15C5-1 (Chart I) > S₂18C6-1 (Chart III) > B12C4-1 (Chart I).¹⁹

The most stable complex with water among the 18membered oxygen-containing crown ethers was formed by $Cy_2 18C6-1$ (Chart II). In this case, the high stability is probably due to a strong retention of water in this macrocycle cavity, resulting from the steric arrangement of cyclohexyl rings.¹⁹ The thermodynamic stability of the 18C6-1 (Chart II)-water complex was higher than that of the B₂18C6-1 (Chart II)-water complex in which introduction of benzo units causes withdrawal of the electron density from the neighboring oxygen atoms.²⁷ Replacement of two oxygen atoms by sulfur to form 1,10-S₂18C6 (S₂18C6-1, Chart III) resulted in a significant reduction of complex stability in the reaction with water.¹⁹ The participation of sulfur atoms in hydrogen bonding is improbable, due to their weak electron-donor properties. On the other hand, replacement of two oxygen atoms by nitrogen in $1,10-N_218C6$ (N₂18C6-1, Chart II) enhanced the stability of the complex formed by this macrocycle with water. The greater stability is attributed to the higher electron donor strength of nitrogen compared to that of oxygen. The complex of 1,10-N₂18C6 (N₂18C6-1, Chart II) with water is formed through hydrogen bonds, N-H-O. The complexes of 18C6-1 (Chart II) and 1,10-S₂18C6 (S₂18C6-1, Chart III) are formed through oscillating O-H-O bonds.¹⁹ The stabilities of the complexes formed by interaction of either smaller or larger oxygen-containing macrocycles with water were lower than those of the complexes with the 18-membered macrocycles^{19,27} which was attributed to the less symmetrical structures of these complexes. This observation was also made by Reinhoudt and his co-workers⁵⁵ who examined complexation of 2,6-pyridinium crown ethers with water. However, both groups of workers note that the 18-membered cavity was apparently too small to accommodate a water molecule. The water molecule is situated above the plane of the macrocyclic ring, but the 18-membered ring has the correct number of heteroatoms for a complementary arrangement of donor and acceptor atoms for hydrogen bonding with water. The larger 2,6-pyridinium-21C7 (Py21C7-3, Chart III) macrocycle is suited to encapsulate one water molecule almost at the center of the cavity, but absence of an optimal arrangement of heteroatoms results in a rather asymmetrical conformation of the macroring.⁵⁵

The formation of hydrogen bonds in these complexes was established and confirmed by IR and NMR studies.^{19,27,40,44} The existence of water-crown hydrogen bonding has been demonstrated also by X-ray crystallography.^{55,280,281}

Formation of hydrogen bonds between host and guest also plays an important part in the complexation of crown ethers with other organic solvents. Reinhoudt and co-workers studied the structures and thermodynamic stabilities of complexes of simple crown ethers with small molecules that have relatively acidic hydrogen atoms, such as nitromethane, acetonitrile, and malononitrile.^{39,42} From the X-ray analysis of the 18C6-1 (Chart II) complex with nitromethane, it was concluded that C-H...O hydrogen bonds play an important role in the interaction between host and guest.⁴² The 18C6-1 (Chart II)-malononitrile (1:1) complex in C_6D_6 was found to be one of the most stable with $-\Delta G$ = 13.4 kJ mol^{-1.60} However, the stability of this complex is relatively low in comparison with the stabilities of

····

the corresponding complexes with charged guests, such as the alkylammonium cations ($-\Delta G = 22.2-32.6$ kJ mol⁻¹ in C₆D₆).²⁸² The analysis of thermodynamic results indicates the presence of a compensating effect of ΔH and $T\Delta S$: the more negative the enthalpy of binding is; the more negative the entropy contribution. Although a detailed interpretation of all parameters, including (de)solvation is not possible, it is very likely that part of the unfavorable entropy contribution is related to the necessity of attaining the proper organization of the bonding sites of the receptor molecule.⁷

Reinhoudt and co-workers have studied the complexation of urea with macrocyclic polyethers.⁴³ It was known from a previous study that the association constants of urea with macrocyclic polyethers in water were very low, e.g., for the 18C6-1 (Chart II)-urea complex log $K < 0.1.^{38}$ These workers found that proton-donating groups, e.g., carboxyl or pyridinium in the cyclic polyethers, facilitated the complexation of urea in water.43 An X-ray crystal structure of the 2-carboxyl-1,3-xylyl-30C9 ((1,3-B)30C9-2, Chart IV)urea complex revealed the complete encapsulation of the urea molecule in the macrocyclic cavity.43 The urea is bound via five hydrogen bonds of which four are formed between the urea NH₂ groups and ether oxygens and one between the urea oxygen and the carboxyl OH group of the crown ether. Although there is no proton transfer in the complex, the strong hydrogen bond between the oxygen atom of urea and the carboxyl group of the ligand plays an important role in stabilizing the complex.⁴¹

b. Hemispherands. The principle of preorganization is that the log K value for the host-guest complex formation is increased significantly, if the host and guest are organized for optimal interaction prior to binding.²⁸³ This principle is experimentally demonstrated with the synthesis of spherands designed to complex selectively with Li⁺ and Na⁺ cations.²⁸⁴ It has been shown that partially preorganized macrocycles such as hemispherands (e.g., see structure of Spher-18C3-1 in Chart V) are also capable of complexing neutral molecules.⁶¹ Reinhoudt and co-workers studied complexation of several hemispherands with malononitrile and found that the complexes formed were thermodynamically stable in organic solvents, $CDCl_3$ and C_6D_6 . The binding free energies ($-\Delta G = 5.0-11.3 \text{ kJ mol}^{-1}$) were favorable when compared with the stabilities of the corresponding complexes of flexible crown ethers.⁶⁰ X-ray studies of free and complexed hemispherands revealed that in the more preorganized hemispherands both the methoxy oxygen atoms and the heteroatoms of the polyether ring are involved in the hydrogen bonding of the guest.⁶⁰

c. Cryptands. Few complexes of cryptands with neutral molecules have been reported. Cryptand [2.2.2]-1 (Chart V) formed a less stable complex with water than either N₂18C6-1 (Chart II) or Cy₂18C6-1 (Chart II). This result is probably due to the less favorable steric situation which impedes the water molecules from entering into the three-dimensional cryptand [2.2.2]-1 cavity. On the other hand, cryptand [2.2.2]-1 formed more stable complexes with water than either 12-, 15-, or 24-membered macrocyclic polyethers.¹⁹ Complexation of cryptands [2.2.2]-1, [2.2.1]-1, and [2.1.1]-1 (all in Chart V) with bromine and iodine (X_2) was also studied.⁶² The formation of X⁺ ion complexes in chloroform was detected $(K = [X^+L]/[X_2][L])$. There was a correlation between cryptand cavity dimension and complex stability in the case of iodine. Cryptand cavity radii are 1.40, 1.15, and 0.80 Å for [2.2.2]-1, [2.2.1]-1, and [2.1.1]-1, respectively. The radius for I⁺ is 0.62 Å in the vapor phase and 0.83 Å in solution. The log K values for complexes with I₂ were 6.36, 6.73, and 7.48 for [2.2.2]-1, [2.2.1]-1, and [2.1.1]-1, respectively.⁶²

2. Cyclophanes

Water-soluble macrocyclic hosts of the cyclophane type have large cavities with well-defined sizes and shapes and regions of very pronounced hydrophobicity as potential binding sites for apolar guests in aqueous solution.⁸³ These properties as well as their substrate specificity, due to their intrinsic geometrical requirements for host-guest interactions, give them the potential to be superior enzyme models.^{3,285,286}

a. Monocyclic with Oxygen Donor Atoms. Diederich and co-workers synthesized a series of cyclophanes (see Charts VI-VIII) which are soluble in water in the pH = 7 region due to the presence of quaternary ammonium nitrogens and are excellent receptors for apolar aromatic guests. Quaternary ammonium nitrogens were provided by spiropiperidinium rings attached to the paracyclophane frame and were located remote from the cavity of the host to avoid perturbation of the hydrophobicity of its binding sites.⁸³ These macrocycles bound neutral and anionic aromatic guests more strongly than acyclic guests and aromatic guests bearing cationic (ammonium) residues.⁸⁵ Extensive NMR investigation of host complexation with aromatic guests indicated the formation of highly structured cavity inclusion complexes with exclusive 1:1 stoichiometry.83 Hydrophobic and van der Waals interactions which are based on solvation-desolvation processes were shown to be important forces for the complexation of neutral aromatic guests in water.^{83,85} Electron-donor-acceptor interactions which stabilize complexes between electron-rich cyclophane hosts and electron-deficient aromatic substrates appear to be important forces for complexation in organic solvents.^{68,78} Dougherty and co-workers found, however, that in the case of macrocycles constructed from electron-rich π systems (e.g., (1,4-B)₂32C4-2, Chart VIII), electron-donor-acceptor interactions with neutral molecules are even more important in aqueous solution than hydrophobic effects.87,88

Diederich and co-workers also synthesized optically active cyclophanes (e.g., Isoquin28C4-1 and 2, Chart VI) which form diastereomeric complexes with neutral molecules.^{71-74,76} So far, the optical resolution of neutral guests has almost exclusively been observed by free or immobilized cyclodextrins in aqueous solution.⁷²

Whitlock and co-workers reported the synthesis of monocyclic naphthalenophanes (Nap₂24C4-1 and Nap₂-28C4-1, Chart VI) which display charge-transfer complexation (a classical π - π interaction with the "face-edge" conformation).⁶³

b. Monocyclic with Nitrogen Donor Atoms. In general, this type of hydrophobic cyclophanes contains

rigid macrocyclic skeletons containing nitrogen donor atoms. Murakami and co-workers constructed the following five types of cyclophanes: (i) cyclophanes without flexible hydrocarbon chains (no data for the interactions of these cyclophanes with neutral molecules have been reported), (ii) cyclophanes with short or long flexible hydrocarbon chains branched at nitrogen atoms, e.g., $K_4(1,4-B)_4N_428C4-1$ and $K_4(1,4-B)_4N_428C4-3$, respectively, Chart IX, (iii) octopus cyclophanes with four or eight very long hydrocarbon chains, e.g., $K_4(1,4-B)_4N_4$ -28C4-5, Chart IX, (iv) tetraazacyclotetradecane-capped cyclophane, Cyclophane-30, Chart XIX, and (v) cubic cyclophanes, e.g., Cyclophane-31, Chart XIX.⁹⁶

The substrate-binding behavior of these cyclophane hosts was studied. Results showed that the most important driving force for molecular recognition in aqueous media is the hydrophobic interaction. These host molecules provide cavities that are deep and hydrophobic enough to incorporate hydrophobic substrates of various bulkiness through an induced-fit mechanism which originates from the flexible character of hydrocarbon chains. Moreover, when additional functional sites having noncovalent interactions (electrostatic, charge-transfer, and so on) were introduced into appropriate positions within host molecules, the host-guest interactions were expected to be much more enhanced.⁹⁵ Octopus cyclophanes (e.g., (1.4-B)₄N₄28C4-4, Chart IX) exhibited two different binding modes. For small molecules which can be completely incorporated into the macrocyclic cavity, the charge-transfer interactions contribute much more than hydrophobic interactions to the overall guest-binding process. For guest molecules larger than the macrocyclic cavity, the induced-fit mechanism resulting from the flexible hydrocarbon chains is much more important for guest recognition than charge-transfer interactions.94

Koga and co-workers synthesized a series of quaternary ammonium cyclophanes built either with diphenylmethane or naphthylphenylmethane units.^{109,110} Cyclophanes with diphenylmethane units (e.g., (1,4-B)₄N₄30C4-3, Chart X) selectively formed inclusion complexes with aromatic guests while cyclophanes with naphthylphenylmethane units (e.g., Nap(1,4-B)₂N₄-34C4-2, Chart XI), which have rigidly extended cavities, formed inclusion complexes with bulky aliphatic guests.^{109,110} Both kinds of cyclophanes discriminated among the aliphatic and aromatic guests on the basis of the steric fit between the host and guest.¹¹⁰

Schneider and co-workers have synthesized several cyclophane-type macrocycles.^{108,115,117-119,121} They found that the cyclophane ((1,4-B)₄N₄34C4-1, Chart X) bearing N⁺ charges on the inside of the cavity bound aromatic substrates 60 times stronger than aliphatic substrates of similar shape. Much smaller differences were observed with the same cyclophane bearing no charges in the vicinity of the substrate. NMR spectroscopic studies with aromatic ring current and electric field effect calculations indicated that naphthalene derivatives were encapsulated in the cavity of the charged cyclophane in a pseudoequatorial manner suitable for an N⁺… π interaction. The analysis of

solvent effects on host-guest equilibrium constants indicated a large van der Waals contribution to the binding of naphthalene with these types of cyclophanes. In the case of aliphatic substrates, the position of the N⁺ atom of the host in relation to the plane of the guest π -system is an important factor in this large difference in binding.¹¹⁹

c. Monocyclic with Various Donor Atoms. Hamilton and co-workers have developed a new class of biomimetic receptors for nucleotide base substrates by introducing multiple recognition sites into a macrocyclic structure. Their strategy was to assemble hydrogen bonding and hydrophobic groups (and ultimately electrostatic or reactive groups) within a macrocycle that can form a cavity complementary to the nucleotide base structure.^{127,128} They found that changing the complementarity of the hydrogen-bonding component allowed them to obtain selective receptors for thymine (NapPyN₂20C5-1 to -3, Chart XII),^{128,129} guanine (NapNaphthyrN23C7-1 and NapNaphthyr-N25C7-1, Chart XII),¹³⁴ and adenine (NapPy₂N₂23C6-1 and NapPy₂N₂25C6-1, Chart XII),¹³³ while the orientation of the aromatic π -stacking is influenced by the electronic characteristics of the interacting groups.¹³²

The guanine selective macrocyclic receptors (Nap-NaphthyrN23C7-1 and NapNaphthyrN25C7-1, Chart XII) containing naphthyridine and naphthalene units bound the guanine derivative, 2', 3', 5'-tri-O-pentanoyl-guanosine, by both hydrogen bonding and hydrophobic stacking interactions. Hamilton and co-workers found that the association constants for the formation of these complexes were more than 4-fold larger than that for the complex of 2', 3', 5'-tri-O-pentanoylguanosine with the simple naphthyridine which lacks the stacking component.¹³⁴ Similar binding enhancements have been observed in related ditopic receptors for thymine and adenine.¹³⁴

In addition to nucleotide base receptors, Shinkai and Hamilton and co-workers synthesized a macrocyclic receptor (NapPyN₂20C5-1, Chart XII) for flavins whose design also follows the multisite strategy. This receptor design is based on hydrophobic interaction (aromatic stacking) with the phenyl moieties and hydrogenbonding interaction with the pteridine moieties of guest molecules.¹³⁰ Other receptors for biologically interesting substrates synthesized by this group include one $(Nap(1,3-B)Py_2N_232C8-1, Chart XIII)$ with two separated hydrogen-bonding regions for longer dicarboxvlic acids¹³⁹ and several with six inwardly facing hydrogen bonds for barbiturates (e.g., (1,3-B)(1,4-B)₂Py₂N₄34C8-1, Chart XIII).¹⁴¹ Diederich and coworkers synthesized flavin cyclophanes (Flavinophane-1 and 2, Chart XIV) which mimic the active sites of flavoenzymes and in their oxidized forms demonstrate efficient binding of aromatic substrates via hydrophobic $\pi - \pi$ stacking.^{81,144,145}

New water-soluble cyclophanes incorporating the Tröger's base structural unit $((1,4-B)_4N_428C6-1, (1,4-B)_4N_430C6-1$ to -4, all in Chart XII) were prepared by Wilcox and co-workers.¹³⁵⁻¹³⁷ These chiral compounds had relatively rigid frames compared to those of other cyclophanes and were found to form inclusion complexes with benzene derivatives in aqueous solution.¹³⁷

d. Mono- and Bicyclic without Heteroatoms. Monoand bicyclic macrocycles without heteroatoms (see Chart XV) have been synthesized by Mourad and coworkers, and their complexation abilities with neutral molecules have been studied in organic solvents.¹⁴⁶⁻¹⁵⁴ The electron-donor cyclophanes (π -bases) formed charge-transfer π - π molecular complexes with electron acceptors (π -acids) such as tetracyanoethylene, dichlorodicyano-*p*-quinone, and chloranil. Stability constants for the formation of the molecular complexes in CH₂-Cl₂ increased as the difference in the acidic character of the electron acceptor and the basic character of the electron donor grew larger.^{148,149,154} With iodine, a weak δ -electron acceptor, the cyclophanes formed π - δ molecular complexes, but the interactions were weaker than those derived from complexation with strong π acids.¹⁴⁷

e. Polycyclic with Various Donor Atoms. Following the general scheme established by Lehn for the synthesis of cryptands,²⁸⁷ Diederich and co-workers prepared several spherical, suitably sized macrobicyclic cyclophanes (Cyclophane-1 to -4, Chart XVI) for the binding of larger arenes.^{82,155–157} The same group of scientists synthesized an optically active host ((20C6)(29C4)-1, Chart XVI) which has two, almost independent recognition sites, one being a cyclic polyether and the other a cyclophane. A change in solvent switched this ditopic macrobicycle from a good cation binder to an efficient receptor for neutral naphthalene derivatives.^{67,76,76}

Still and co-workers prepared enantioselective macrobicyclic hosts with large solvent-filled cavities. The hosts (Cyclophane-7 and -8, Chart XVII) have an amide binding site and additional functionality which distinguishes guest chiral substituents based on steric and hydrogen-bond-donating properties.^{160,161} Their complexation abilities in organic solvents were studied. Still and co-workers also synthesized two chiral macrotricyclic receptors (Cyclophane-9 and -10, Chart XVII), having only limited conformational flexibility and deep basketlike binding sites.¹⁶² The high selectivity of these hosts for certain L-amino acid derivatives over D-amino acid derivatives ($\Delta\Delta G = 12.6$ kJ mol⁻¹, CDCl₃) is reminiscent of that of certain naturally occurring enzymes for enantiomers.¹⁶²

Whitlock and co-workers reported the synthesis of bicyclic cyclophane-type macrocycles (Cyclophane-11 to -19, Chart XVII) possessing "phenol sticky cavities".163-166 These "phenol sticky" macrocycles bound acidic para-substituted phenols in nonpolar organic solvents with a high degree of electronic and chemical specificity. These properties are due to a combination of a concave oriented pyridine functional group capable of serving as a hydrogen-bond acceptor and a rigid cavity.¹⁶⁵ Ortho- and meta-substituted phenols did not fit into the cavities of these macrocycles.¹⁶⁴ Whitlock and co-workers also synthesized macrobicycles (Cyclophane-24 to -27, Chart XVIII) with incorporated concave-oriented and sterically encumbered phosphine oxide functional groups which are strong hydrogenbond acceptors.^{168,169} The complexation ability of these macrocycles with neutral organic guests was examined.

Vögtle and co-workers, by means of modular donor spacer strategy, were able to obtain macrobicyclic tris-(pyridine) hosts (e.g., Cyclophane-29, Chart XIX) with successively larger conically shaped cavities which exhibit remarkable selectivities for trihydroxybenzenes.¹⁷¹ Using the same techniques, they synthesized large macrobicyclic tris(catechol) hosts (e.g., Cyclophane-28, Chart XIX) for molecular recognition and transport of nucleobases.¹⁷⁰ The complexation study supports the existence of multiple hydrogen bonding between given guests and these hosts in a suitably sized cagelike cavity.^{170,171}

Tetraazacyclotetradecane-capped (Cyclophane-30, Chart XIX) and cubic (Cyclophane-31, Chart XIX) cyclophanes were designed by Murakami and coworkers.^{172,173} The cubic cyclophane behaved as a polycationic host in acidic aqueous media and exhibited size-sensitive and regioselective molecular discrimination that originates from the rigid geometry of its hydrophobic cavity.¹⁷³

3. Calixarenes

The term "calixarene" was introduced by Gutsche²⁸⁸ for a homologous series of macrocyclic phenol-formaldehyde condensates. It originated from the observation that the molecular models of the tetrameric members of the series have a chalicelike or cuplike appearance. Calixarenes (see Charts XX-XXII) are mainly receptors for small neutral molecules, although in deprotonated form they also bind cations.^{289,290}

Calixarene complexes with neutral molecules in the solid state were observed even before the basic structures of the calixarenes were established.²⁹¹⁻²⁹³ The data indicated that the extent of complexation depended on the para substituent of the calixarene, e.g., p-tert-butyl- and p-tert-amylcalix[4] arene appeared to form tighter complexes with toluene than did the p-hydro- and p-tert-octylcalix[4]arenes.¹⁸³ This correlated with X-ray crystallographic studies of Andreetti which showed that the unsubstituted calix[4]arene failed to form an endo-calix complex, possibly because its cavity was too shallow. The p-tert-octyl-substituted calix[4] arene failed to form an endo-calix complex because the para substituent folds back into the calix. On the other hand, the *p*-tert-butyl-substituted calix-[4] arene formed a tight endo-complex with toluene because tert-butyl groups extended the depth of the cavity but were not able to fold back into it.¹⁸³

Studies of the interaction, in both aqueous and organic solutions, between calixarenes and guest molecules, were reported only recently^{180,183,198,199} Water soluble calixarenes are most interesting because of their potential as enzyme mimics.

There exist only a few cases of the inclusion of guest molecules by calixarenes in organic media.^{4,180,183} This lack of examples is because host-guest-type complexation in organic media always involves competition between complexation and solvation of guests by solvent molecules.^{180,183} The driving force for inclusion of aliphatic amines by calix[4] arenes in polar solvents (acetone and acetonitrile) is postulated to be a combination of proton transfer and electrostatic attraction.¹⁸³ Among the most stable of the complexes formed by calixarene-neutral molecule interaction are those formed by "double cavity" calizarenes.^{4,177} The "double cavity" calixarenes (Double Cavity Calix-1 to -3, Chart XXII) are unusual in that they possess both an enforced cavity on the "lower rim" and a semiflexible cavity on the "upper rim". These macrocycles appear to behave both as hydrogen-bond donors, forming complexes with

amines, and hydrogen bond acceptors, forming complexes with acids and phenols. 4,177

Recently, Arimura and Shinkai synthesized calix[4 and 6]arenes bearing on the "lower rim" (S)-2-pyrrolidone units which have hydrogen-bonding sites as well as a chiral center. The formation of a molecular complex between calix[6]arene (Calix6-24C-18, Chart XXI) and ferrocenecarboxylic acid in chloroform, through hydrogen-bond interaction, was detected by induced circular dichroism.¹⁸⁰

The majority of host-guest chemistry of calixarenes, however, has been studied in aqueous solutions. The first-water soluble calixarene was prepared by Ungaro and co-workers²⁹⁴ by affixing carboxymethyl groups to the phenolic oxygen atoms at the "lower rim" of the calixarene; Shinkai and co-workers¹⁹⁹ introduced sulfonic acid groups in the para positions at the "upper rim"; Gutsche and co-workers¹⁸⁴ attached amino and carboxyl functions on the "upper rim". Studies of complexation in water gave some evidence that there is some size-shape complementarity between the guest molecules and the cavity of the calixarenes.^{184,186,196}

Resorcinol cyclotetramers (Calix4-16C-21 to -23, Chart XX), synthesized and examined by Schneider,^{189,190} Aoyama,¹⁹¹⁻¹⁹³ and Shinkai,¹⁹⁴ and their coworkers, are structurally related to calixarenes. These compounds have four independent binding sites composed of a pair of hydrogen-bonded OH groups on adjacent benzene rings.¹⁹¹ One of them, cyclotetramer "Calix4-16C-22", displayed a significant selectivity toward certain dicarboxylic acids in CDCl₃. This selectivty is due in part to its ability to interact with guests via two-point hydrogen bonding.¹⁹²

4. Cryptophanes

Cryptophanes, a new family of cavitands, were synthesized by Collet and co-workers. Cryptophanes (see Charts XXIII and XXIV), constructed from two cyclotriveratrylene caps connected to one another by three bridges, have an enforced, roughly spherical or ellipsoidal hydrophobic cavity and three windows in the equatorial region which allow guests to enter.^{203,204,208} The first member of the cryptophane family, the anti isomer cryptophane-A type (Cryptophane-2, Chart XXIII), was designed in the early 1980s to complex tetrahedral halomethanes and was followed by the preparation of a series of related cryptophane (B, C, D, etc.) types.^{5,295}

In general, two main stereoisomeric types (anti and syn) of cryptophanes have been synthesized. These cryptophanes contain three identical bridges of structure O-(Z)-O (where Z may be $(CH)_n$, $CH_2CH=$ $CHCH_2$, or $CH_2C=CCH_2$), and the R and R' substituents on the caps display either an anti or a syn relationship. In most cryptophanes, R = R', and the D3-anti and C3h-syn isomers have been identified. There also exist a pair of C3-anti and C3-syn isomers, with $R = CH_3$ and R' = H, and a pair with unsymmetrical bridges of structure $O(CH_2)_3S^{203}$

Collet and co-workers also studied the ability of cryptophanes to bind neutral halomethanes and hydrocarbons in lipophilic as well as in aqueous solvents. Cryptophanes showed selectivity among these guests, according to their shape, size,^{202,205,206,208} and even chirality (CHFClBr).²⁰²

In organic solvents, the apparent stability of the complexes depends on the intrinsic stability of the hostguest supermolecules as well as encompassed solventguest and solvent-host interactions.^{5,206,211} Cryptophane-4 (Chart XXIII, cryptophane-E type) formed stable complexes in tetrachloroethane with chloroform and other halomethanes that are 70-80 Å³ in size and with isobutane.²⁰⁹ The study showed that formation of these complexes was enthalpy driven and entropy disfavored, so their stability should be ascribed to attractive host-guest interactions provided by dispersion forces. The strength of complexes was enhanced by a good or almost ideal (e.g., for isobutane) complementarity between the host and the guests. By contrast, the complexation of smaller (CH_2Cl_2) or larger (>CH-ClBr₂) substrates is not enthalpy driven. These complexes therefore owe their stability to the operation of external factors. These factors may include solvophobic effects, as well as more subtle thermodynamic contributions such as specific heat and/or volume differences between the complexes and their separated components.²⁰⁹

In water or other hydrophilic solvents, the contribution of hydrophobic forces is expected to enhance the stability of the complexes between cryptophanes and neutral, lipophilic guests. In fact, isobutane appeared to be more than 500 times better bound by Cryptophane-6 (Chart XXIII, cryptophane-E type) in water than by Cryptophane-4 (Chart XXIII, cryptophane-E type) in tetrachloroethane. The hydrophobic contribution in this case (-15.9 kJ mol⁻¹) is close to that reported for CHCl₃ (-12.6 kJ mol⁻¹) regarding its complexation by Cryptophane-3 (Chart XXIII, cryptophane-A type) in tetrachloroethane and Cryptophane-5 (Chart XXIII, cryptophane-A type) in water.²⁰⁴

5. Miscellaneous

a. Cavitands and Carcerands. Cram^{214,215,217} and Dalcanale²¹⁶ and their co-workers have reported a series of highly preorganized synthetic organic compounds with enforced concave surfaces of molecular dimensions which they refer to as cavitands. The cavitands prepared by Cram and co-workers contained cylindrical wells of varying depths whose limited diameters allowed inclusion only of slim and linear guests. These workers studied complexation by these hosts (Cavitand-1 to -3, Chart XXV) of CS2 in chloroform and benzene.214 They also designed cavitands (Cavitand-4 and -5, Chart XXV) containing two binding cavities, one shaped like a box and the other like a bowl.²¹⁵ It was suggested that varying the substituents of the cavity rims could lead to bifunctional hosts having even stronger binding and dramatically different guest selectivities for each cavity.²¹⁵ Complexation of CD₃CN by each cavity of these cavitands in CCl₄ was examined. Shell closure of two cavitands created carcerands, a new family of large, rigidly hollow hosts.²¹⁹

The efforts of Dalcanale and co-workers resulted in a cavitand (Cavitand-6, Chart XXV) which, in organic solvents, selectively bound neutral aromatic compounds, such as benzene, toluene, chlorobenzene, fluorobenzene, and benzonitrile, but did not bind benzaldehyde, anisole, benzoic acid, and phenol. In addition, this macrocycle showed a solvation-temperature-driven equilibrium between extended (dominant at $T \leq -60$ °C) and vessellike (dominant at $T \geq +5$ °C) forms. This equilibrium could be intentionally switched using temperature.²¹⁶ Two forms of a temperaturedependent cavitand, kite and vase, were also observed by Cram and co-workers.^{296,297}

b. Porphyrins and Porphyrin Derivatives. Thermodynamic data have been reported for complexation of neutral molecules by porphyrins and macrocycles with porphyrin subunits built into their rings. Kano and co-workers compared the complexation of tetraarylporphyrins with quinones in organic solvents and water. They found that the stability of the complexes was much larger in water than in organic solvents. The thermodynamic parameters indicated that complexation in water was an enthalpically favorable process, suggesting that the van der Waals interactions were the main binding forces and that hydrophobic interaction did not play an important role in complex formation in water.²²⁰

Macrocyclic porphyrin dimers (Porphyrin-79 to -86, Chart XXXII)^{256,258,261} and trimers (Porphyrin-87 to -89, Chart XXXIII)^{224,245} have been synthesized and their complexation properties have been studied. A strong $\pi-\pi$ interaction between the two porphyrin moieties in the dimer makes the existence of the cavity possible and controls the geometry adopted by these systems. Porphyrin trimers, obtained by Sanders and co-workers, have a semi-preorganized cavity which can accommodate more than one organic guest and is flexible enough to bind guest molecules even when they do not fit the relaxed cavity.²⁴⁴ These conformational properties allow the trimeric porphyrins to mimic some aspects of enzymatic binding.²⁴⁴

Chiral doubly steroid-capped porphyrin (Porphyrin-95, Chart XXXV) bound a variety of functionalized amines via a combination of metal-amine and hydrogenbonding interactions. This material demonstrated both cooperative multipoint binding and metalloporphyrindirected catalysis of a selective acylation of a single hydroxy group in the cap.²⁴²

Recently, Diederich and co-workers designed porphyrin-bridged cyclophanes (Porphyrin-90 to -94, Charts XXXIII and XXXIV) which complex neutral guests such as aromatic hydrocarbons or pyridine derivatives.^{262,263} Porphyrin-93 (Chart XXXIV) bound arenes more strongly than similar cyclophanes that are not bridged by a porphyrin.²⁶³ The possible explanation is that aromatic substrates are exposed not only to the shielding cyclophane cavity but also to the strongly shielding region of the porphyrin ring. The porphyrinbridged cyclophanes can serve well as a synthetic model of cytochrome P-450 enzymes.²⁶³

c. Other. Among other macrocycles are those synthesized by Nolte and Reinhoudt and co-workers which have synthetic molecular clefts^{264,265} or metallo clefts.^{266,298} Macrocycles with synthetic clefts (Other-1 to -5, Chart XXXVI) bound dihydroxybenzenes in organic solvents. The guests were sandwiched between the o-xylylene walls of the host and form hydrogen bonds with the receptor. Dihydroxybenzenes, which have not only hydroxy groups but also electronwithdrawing groups, formed stronger hydrogen bonds and more stable complexes than those of the unsubstituted dihydroxybenzenes, e.g., $K = 70 \text{ M}^{-1}$ and $3 \times 10^5 \text{ M}^{-1}$ for catechol and 2,3-dicyanohydroquinone complexes with Other-4 (Chart XXXVI) in CDCl₃, respectively.²⁶⁴ One of the macrocycles with a molecular cleft (Other-5, Chart XXXVI)²⁶⁵ showed allosteric binding properties, and in organic solvents, bound 1,3dinitrobenzene more strongly by a factor of 6 in the presence of potassium thiocyanate. The enhancement is caused by the conversion of the macrocycle into the anti-anti conformer, and not by an ionic strength effect, as was verified in a control experiment. In the case of macrocycles with a metallo cleft (Other-6 to -12, Chart XXXVI), neutral guests may be coordinated in addition to an immobilized electrophilic metal cation provided the geometry for coordination of the cation is consistent with the geometry necessary for complexation of the neutral guest.²⁹⁸

Cyclotetrachromotropylene (Other-22, Chart XXX-VII) was designed by Poh and co-workers.^{274,276} This macrocycle resembles the calixarenes. A complexation study in water showed that hydrophobic interactions, as expected, are the driving forces for the complexation of cyclotetrachromotropylene with aromatic hydrocarbons, and the stability of the complexes is influenced by the size and polarizability of the guests.

Unsaturated tetraazamacrocyclic metal complexes that coordinate amine bases (Other-17 to -21, Chart XXXVII)²⁷¹⁻²⁷³ and vaulted macrobicyclic ligandtransition metal complexes (Other-13 to -16, Chart XXXVI) that act as hosts of alcohols and phenols^{269,270} have also been reported.

B. Selectivities

Achieving selective complexation between receptors and substrates of biochemical interest has been a driving force for the design of macrocycles capable of the selective binding of cations, anions, and neutral molecules. As in the case of cations and anions,^{11,12} selectivities of macrocycles toward neutral molecules are governed by many parameters.

Size-based selectivity is quite common among complexes of macrocycles with neutral molecules. Reinhoudt and co-workers studied complexation of malononitrile with the series of 15-33-membered 2,6pyridino crown ethers in organic solvents (CDCl₃ and C_6D_6) and found that the most stable complex was formed with the 18-membered macrocycle. This complex was isolated as a crystalline compound. For either smaller or larger ring sizes, the enthalpy change upon complexation becomes less favorable.³⁹ In the case of urea, good efficiencies for its extraction into chloroform required ring sizes $\geq 27.4^3$ Cyclophanes designed with two diphenylmethane units and two oligomethylene bridges via four nitrogens formed, in water, inclusion complexes with aromatic guests but not with aliphatic guests.^{106,109} X-ray analysis showed that the cavity of (1,4-B)₄N₄30C4-2 (Chart X) in its crystalline complexes has rectangularly shaped open ends (about 3.5×7.9 Å) with a depth of 6.5 Å.^{109,299} By CPK molecular model studies, selective complexation of the macrocycle with aromatic guests seems to be reasonable because the shorter side of this rectangle fits well with the thickness of the aromatic ring (3.4 Å).¹⁰⁹ A cubic cyclophane exhibited size-sensitive and regioselective molecular discrimination that originates from the rigid geometry of its hydrophobic cavity. Evaluation of the binding constants in acidic aqueous media showed that N-phenyl-1-naphthylamine fit the host cavity most tightly among the guest molecules examined, even though pyrene and perylene are more hydrophobic than N-phenyl-1-naphthylamine.¹⁷³

Selectivity based on the shape of host and neutral guests has been shown. Cavitands with a cylindrical cavity for linear guests like CS_2 were produced by Cram and co-workers.²¹⁴ Recently, very stable complexes of spherical cryptophane hosts with the halomethanes in $(CDCl_2)_2$ have been described by Collet and coworkers.^{207,210} Cryptophane-4 (Chart XXIII, cryptophane-E type) not only displayed a size recognition of CHCl₃ over CHCl₂Br by 1.3 kJ mol⁻¹, although the difference in volume of these two molecules is only 5%. but also efficiently recognized tetrahedral (sp³) vs flat (sp²) molecules.²⁰⁹ This cryptophane did not discriminate between isobutane and CHBr₂Cl, which have the same van der Waals volume, but formed more stable complex with CHCl₃ (tetrahedral) than with acetone (flat), although they have the same size.^{204,209} 2,4,6-Tri(4-pyridyl)-1,3,5-triazine has a good size and shape complementarity with the cavity of porphyrin trimers.²⁴⁴ Its binding constant to Porphyrin-87 (Chart XXXIII) in CH_2Cl_2 was greater than the square of its binding constant to Porphyrin-32 (Chart XXIX) and its 1:1 complex with Porphyrin-88 (Chart XXXIII) was so stable that it could be observed directly by fast atom bombardment mass spectroscopy (FABMS) (log K was about 10). In the Porphyrin-88 complex, analysis of ring-current-induced chemical shift changes showed the pyridyl groups were lying flat in the plane of the three zinc atoms.²⁴⁴ Vögtle and co-workers produced macrobicycles with a conical-shaped cavity which complexed in CH_2Cl_2 only certain trihydroxybenzenes e.g., 1.3.5and 1,3,4-trihydroxybenzenes, but not structurally related compounds or 1,2,3-trihydroxybenzene.¹⁷¹

Study of macrocycle interaction with neutral molecules shows that complementary positioning of recognition sites (particularly hydrogen bonding, $\pi - \pi$ interactive and hydrophobic groups) and other active groups into the macrocycle structure can lead to very strong and specific complexation.¹²⁷ According to this observation, the number, kind, and arrangement of donor atoms in macrocycle frameworks should play a role in the selectivity they show toward guests. For example, malononitrile formed in organic solvents $(CDCl_3 \text{ and } C_6D_6)$ the most stable complexes with 18membered macrocycles because the orientation of their binding sites is the most favorable compared with smaller or larger macrocycles.³⁹ The presence of a nitrogen atom in the macrocyclic ligand reduced the enthalpy of complexation with malononitrile from -59.4 kJ mol⁻¹ for 18C6-1 (Chart II) to -34.7 and -23.8 kJ mol⁻¹ for the complexation by 2,6-pyridino-18C6 (Py18C6-1, Chart II) and N18C6-1 (Chart II), respectively. These decreases can be due to stronger intraannular interactions in the uncomplexed 2,6-pyridino-18C6 (Py18C6-1, Chart II) (CH-N) and N18C6-1 (Chart II) (NH...O).³⁹ Amino acid-containing macrocycles bind water molecules additionally via two amide NHs acting as hydrogen-bond donors. The structural arrangement of these amide groups is important because the large distance between them decreases the possibility of forming hydrogen bonds with water.⁴⁰

Incorporation of benzene, cyclohexane, and pyridine rings into macrocyclic skeletons causes the macrocycles to become more rigid and may alter the binding strength and selectivity of the ligands. B18C6-1 (Chart II) formed a weaker complex than its nonaromatic analogues with malononitrile in CDCl₃ because of the electron-withdrawing properties of the benzo unit.³⁹ Among the 18-membered oxygen-containing macrocyclic polyethers, Cy₂18C6-1 (Chart II) formed the most stable complex with water in CHCl₃. Probably, the steric arrangement of the cyclohexyl rings in this isomer enhances the strong retention of water in the cavity of the crown ether.¹⁹

Chiral macrotricyclic receptors (see Cyclophane-8 to -10, Chart XVII) constructed by Still and co-workers^{161,162} bound diamides of certain amino acids in CDCl₃ with high selectivity which is dependent upon the nature of the amino acid side chain (\sim 8.4 kJ mol⁻¹ for serine vs alanine) and the type of N-alkyl substituent (>12.6 kJ mol⁻¹ for methyl vs *tert*-butyl). In addition, chiral groups incorporated into the correct location on the macrocyclic framework allowed the separation of optically active enantiomeric molecules. With Bocprotected (Boc = butoxycarbonyl), N-methylamide derivatives of the amino acids, enantioselectivity ranged from 7.1 to 12.6 kJ mol⁻¹ (ΔG) in CDCl₃ with the L isomer always being bound preferentially.¹⁶² Another chiral macrocycle, Cyclophane-7 (Chart XVII), produced by Still's group distinguished energetically and spectrally between certain enantiomeric amides in $C_6 D_6$.¹⁶⁰ Collet and co-workers achieved analytical optical resolution of CHFClBr in CDCl₃, as determined by ¹H NMR spectroscopy, by inclusion of the haloform within the cavity of chiral, suitably-sized Cryptophane-1 (Chart XXIII, cryptophane-C type).²⁰² The NMR chemical shifts of the (+) and (-) enantiomers of the guest were separated, allowing for an easy determination of the guest enantiomeric composition.²⁰²

Hamilton and co-workers, by varying the hydrogen bonding regions and electronic characteristics of the $\pi-\pi$ stacking groups in the macrocyclic structure, prepared selective receptors for nucleotide bases in CDCl₃,^{128,129,133,134} flavins in CHCl₃,¹³⁰ barbiturates in CDCl₃ and CH₂Cl₂,¹⁴¹ and dicarboxylic acids in CDCl₃.¹³⁹

Incorporation of alkyl groups into the "lower rim" of calixarenes synthesized by Shinkai and co-workers results in strong but nonselective binding sites. On the other hand, incorporation of alkyl groups into the "upper rim" results in relatively weak but selective binding sites.¹⁷⁸

The face-to-face zinc porphyrin complex (Porphyrin-85, Chart XXXII) displayed better selectivity toward 4,4'-bipyridine over diamines $H_2N(CH_2)_nNH_2$ in CH_2 - Cl_2 .^{260,261} This selectivity is attributed to the separation and relative orientation of the two functional groups in the guest and also to the rigidity of the host molecules.

Selectivities of macrocycles toward charged and neutral species are influenced by many parameters. However, in order to optimize neutral molecule-macrocycle interaction, it is important that the binding sites of the macrocycle be preorganized and be of the correct nature to interact with substrate binding sites.

C. Solvent Effects

The influence of the solvent on macrocycle interaction with neutral molecules is pronounced. The large difference in binding strength in various solvents results mainly from solvation-desolvation phenomena.^{64,67,82,84} Water is an exceptional medium because it provides the strongest solvophobic driving forces for complexation and shows specific substituent solvation effects.⁸⁴ Complexation in organic solvents is dependent on the ability of the solvent molecules to compete effectively with the guest for the cavity of the host.^{67,180}

Cryptophane-1 (Chart XXIII, cryptophane-C type) designed by Collet and co-workers bound CH₂Cl₂ with the apparent stability constant, $K = 2.6 \text{ M}^{-1}$ in CDCl₃ at 310-330 K,²⁰² and with apparent stability constant, $K = 325 \text{ M}^{-1}$ in $(\text{CDCl}_2)_2$ at 300 K.²⁰⁴ The reason for this significant difference in binding constants is that the first solvent, CDCl₃, is a strong competitor with the guest for the host cavity binding sites. On the other hand, the second, bulky $(CDCl_2)_2$ cannot easily enter the host cavity.^{5,204} Chapman and Still also observed that the binding cavity is sensitive to the size and shape of the solvent molecules and that large solvents do not penetrate and solvate the cavity as well as smaller ones. By using properly sized solvents, a binding site need not be extensively desolvated to accept and bind a smaller or more appropriately shaped substrate.¹⁵⁹

The influence of the solvent on complexation of macrocyclic polyethers with malononitrile was studied by comparing complexation in CDCl₃ and C₆D₆.³⁹ For example, in the interaction of 18C6-1 (Chart II) with malononitrile, ΔH (kJ mol⁻¹) and ΔS (J K⁻¹ mol⁻¹) are, respectively, for CDCl₃ -22 and -46 and for C₆D₆ -59 and -154. The larger enthalpy and entropy changes upon complexation in CDCl₃ reflect the greater polarity of CDCl₃, which means stronger solvation of both malononitrile and crown ether. These solvent interactions must be broken before complexation can occur, resulting in a less favorable enthalpy change. Desolvation of both the crown ether and malononitrile prior to complexation results in a positive entropy change.

Diederich and co-workers have studied the complexation of a macrobicyclic cyclophane (Cyclophane-3, Chart XVI) with pyrene in water and 17 organic solvents covering the entire polarity range.¹⁵⁶ They found that complexation strength decreased steadily from water $(\Delta G = -39.3 \text{ kJ mol}^{-1})$ to nonaqueous polar protic solvents, to dipolar aprotic solvents, and to apolar solvents like carbon disulfide ($\Delta G = -5.4 \text{ kJ mol}^{-1}$). Binding was strongest in solvents with low molecular polarizability and with high cohesive interactions such as water.¹⁵⁶ Recently, this group of scientists measured calorimetrically the enthalpy changes for the above cyclophane interaction with pyrene in 12 solvents over a wide range of solvent polarities and observed that complexation is enthalpy driven in all media.⁷⁹ The reaction exothermicity generally increased from apolar solvents, to dipolar aprotic solvents, to protic solvents. The study showed that reactions having similar ΔG values in two solvents, e.g., acetone and N,N-dimethylacetamide, can differ dramatically in their enthalpic and entropic terms.⁷⁹ For example, in the reaction of Cyclophane-3 (Chart XVI) with pyrene, ΔG (kJ mol⁻¹), ΔH (kJ mol⁻¹), and ΔS (J K⁻¹ mol⁻¹), respectively, were in acetone – 18.0, -27.6, and -31.8 and in N,N-dimethylacetamide -18.4, -8.4, and +33.1.79

Two types of guest-binding behavior were observed in octopus cyclophanes $((1,4-B)_4N_428C4-2 \text{ and } -3, \text{ Chart})$

Macrocycle Interaction Data

IX) having L-aspartate residues. The type of behavior was determined by the nature of the media used for preparation of cyclophane stock solutions.⁹⁸ First, when an aqueous stock solution of the macrocycle was injected into an aqueous buffer containing a guest, the hostguest complexation immediately reached an equilibrium state as monitored by fluorescence spectroscopy. Concurrently, the chiral L-aspartate residues of the host underwent conformational changes so as to attain effective guest incorporation. ¹H NMR spectroscopy indicated that the guest molecule was incorporated into the three-dimensional cavity provided intramolecularly by the macrocyclic ring and the eight hydrocarbon chains. When, in turn, an organic stock solution of the macrocycle was injected into an aqueous buffer containing a guest, time-dependent and biphasic complexation behavior was observed. This behavior is consistent with fast incorporation of a guest molecule into the hydrophobic host cavity followed by slow and longrange conformational changes of the host, as induced by the incorporated guest.⁹⁸

D. Heat Capacities, ΔC_p

The availability of heat capacity changes for neutral molecule-macrocycle interaction should be helpful in better understanding the nature of the interactions between the solvent and the macrocycle, neutral molecule, and resulting host-guest complex. In addition, information may be derived concerning the internal modifications of the guest and host upon complexation. Unfortunately, few ΔC_p values are available.

Dougherty and co-workers performed variable-temperature NMR studies on the interaction of macrocyclic cyclophanes with a variety of guests and found significant heat capacity effects.⁸⁹ The origin of the binding forces changed from entropic at lower (21 °C) to enthalpic at higher (61 °C) temperatures. The magnitude of ΔC_p in this study reflected a dependence on solvent and on the electronic and structural properties of the guests. ΔC_p was larger in water than in chloroform, and methylated guests in aqueous media had much higher values for ΔC_p compared with nonmethylated guests.⁸⁹

Diederich and co-workers in their calorimetric studies found that all inclusion reactions between a macrocyclic cyclophane, $(1,4-B)_430C4-3$ (Chart VII), and various benzene derivatives displayed negative heat capacity values in both water and methanol.⁷⁹ The largest negative ΔC_p values were measured for the complexation of benzene derivatives that possess a molecular dipole and hydroxy substituents, e.g., *p*-nitrophenol and *p*-cresol, and therefore interact strongly with their solvent cages.⁷⁹

E. Applications

Macrocycle complexation with neutral molecules is a relative young area in macrocyclic chemistry. Interest in this research area is strongly stimulated by the possibility of applications in separation processes; conversion of chemical reactions into optical or electronic signals; the mimicking of enzymes in their capability to bind substrates rapidly, selectively, and reversibly; and the catalyzing of chemical reactions.

The following are examples of possible applications. Hamilton and co-workers have developed a new class

of biomimetic receptors for nucleotide base substrates.¹²⁸ The understanding of the key features of nucleotide recognition could lead to the design of "synthetic repressor" molecules that might artificially activate or control genes.¹²⁷ The hydrophobic cage provided by octopus cyclophanes is highly apolar and acts to repress the molecular motion of guests. The results imply that octopus cyclophanes can be used as effective apoenzyme models for simulation of enzymatic functions.^{102,103} Chiral recognition in diastereomeric host-guest complexes has great potential as an efficient, nondestructive method to separate optical isomers in crystallization, distribution, transport, and chromatographic experiments. So far, the resolution of neutral guests has almost exclusively been observed by free or immobilized cyclodextrins in aqueous solution.71,72,74,76

III. Kinetics of Neutral Molecule–Macrocycle Interaction

Studies on the thermodynamics of neutral moleculemacrocycle interaction, although many fewer in number than in the case of cation-macrocycle interaction, are much more numerous than those on the kinetics of neutral molecule-macrocycle interaction. Few mechanistic studies of the reactions between neutral molecules and macrocycles have been reported. Kinetic and activation parameters for neutral molecule-macrocycle interactions are given in Table III, together with the method, temperature, and solvent used in their determination. When necessary, relevant equations are also given under the conditions heading.

Muchova and Holba studied the kinetics of reaction of several crown ethers with iodine³⁰¹ and KI³⁰⁰ in chloroform. They found that, in the case of iodine, rate constants and their temperature dependence indicated formation of molecular complexes (crown ether...I₂) and (crown ether...I⁺)I⁻ according to the scheme:

crown + I₂
$$\rightleftharpoons$$
 (crown…I₂) → (crown…I⁺) Γ \rightleftharpoons
(crown…I⁺)I₃⁻ → (crown…I⁺) + I₃⁻ (1)

With increasing temperature, the equilibrium concentration of one or the other complex, or both, decreased. This effect is ascribed to the decomposition of an unstable complex. The most likely species to decompose is the complex (crown…I₂) in which iodine is coordinated to the crown by a weak van der Waals bond. As the rate-determining step, the authors propose either the slow decomposition of the complex (crown…I₂) or the slow dissociation of the complex (crown…I⁺)I₃^{-.301}

Pizer examined the dynamics of cryptand protonation in aqueous solution according to the reaction: [2.2.2]- $1 + H_2O \Rightarrow H^+$ [2.2.2]- $1 + OH^-$ by temperature-jump techniques and found that the achieved rate constants can permit the determination of the extent to which the ligand imposes dynamic constraints on the complexation process and is significant in understanding previously observed slow rates of metal cryptate formation.³⁰²

Using cavitand structures, Cram and co-workers synthesized carcerands which have large enough dimensions to sterically inhibit dissociation of their complexes with neutral molecules and permit isolation and characterization of these complexes. The term "constrictive binding" was suggested for this phenomenon. 305

Kinetics of neutral molecule coordination to macrocycle-metal complexes has been studied. Chung and Chang²³ examined the complexation reactions of the aqua(rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)copper(II), $CuL(H_2O)^{2+}$ blue isomer, with neutral monodentate molecules. The first step of the reaction is a diffusion-controlled interaction by the neutral molecule to form an outer-sphere complex. The second step is the associative interchange of H_2O and neutral molecule within the outer-sphere complex.²³ Sanders and co-workers have studied complexation of zinc-porphyrin dimers with triethylenediamine and found the large variation of behavior (uni- or bimolecular exchange processes) to be due to isomeric forms of dimers and the concentration of triethylenediamine.256

IV. Suggestions for Future Work

Several needs become apparent upon reviewing the work compiled in this review. First, there are few kinetic data for the interaction of neutral guests with macrocyclic hosts. These data would be useful for the characterization of these systems. For example, it would be of interest to compare rate data for these systems with those for cation-macrocycle interaction.^{11,12} Second, few log K and ΔH values have been reported as a function of temperature. A knowledge of these quantities over a wide temperature range would be useful in identifying and understanding reaction driving forces and solvent-solute interactions. Third, few $\Delta C_{\rm p}$ values are available. These values obtained in a variety of solvent media could provide valuable information concerning solvent effects in host-guest interactions. Finally, there is a need for greater involvement of modern analytical chemistry techniques in the study of promising systems and in finding uses for them. For example, the demonstrated selectivities could lead to development of sensing agents, separation systems, and recovery systems.

The design and synthesis of macrocycles which are selective toward specific neutral organic molecules have

been demonstrated with many examples. Use of the design principles provided in these studies could lead to the preparation of hosts targeted toward specific guests of environmental and industrial interest. Application of such systems to practical problems could provide innovative solutions to many difficult problems.

Examination of the log K data in this review reveals that few workers check their experimental procedure by using a standard chemical system. In most cases, this is understandable because few log K values for neutral molecule-macrocycle interactions have been determined in more than one laboratory. An important need is for one or more standard reactions to be studied in multiple laboratories. This has been done for metalligand interaction.³⁰⁶ The desirability of standard reactions is evident when one considers the large number of log K values being determined and the value of accurate data in providing information which will serve as a basis for future ligand design. Calibration of equipment by using such reactions would insure that many errors would not go undetected.

Similar comments can be made concerning the determination of ΔH and ΔS values. A careful study by us³⁰⁷ compared log K and ΔH values determined by ¹H NMR and calorimetry. The results showed that log K values determined by the two methods were in good agreement, but the corresponding ΔH values were not. Values of ΔH determined from the variation of log K with temperature differed appreciably from those determined calorimetrically. There is concern that ΔH values of low accuracy may be produced from temperature variation studies. Conclusions drawn from these data could lead to incorrect models. Thus, it would be desirable to have and use standard systems to calibrate procedures.

Acknowledgments. Appreciation is expressed to Mrs, Daria J. Zamecka-Krakowiak for the preparation of the charts and to Dr. Krzysztof E. Krakowiak and Dr. Zenon Pawlak for valuable comments. Partial financial support is acknowledged from the Office of Naval Research and IBC Advanced Technologies, Inc.

Py15C5-1

S215C5-1

 $R = N = CH \cdot [2 - HOC_6 H_4]$

Chemical Reviews, 1992, Vol. 92, No. 6 1273

Macrocycle Interaction Data

5

Macrocycle Interaction Data

ĊH,

ĊН

Spher-18C3-1

n=1 Spher-24C4-1

n=2

Spher-Py18C3-1

Spher-Pyrano18C4-1

1. Coronands and Cryptands (cont.) c. Cryptands

[2.1.1]-1

[2.2.1]-1

[2.2.2]-1

CHART VI

2. Cyclophanes a. Monocyclic with Oxygen Donor Atoms

 $Nap_428C4-1$ X = CH₂CH₂N(C₂H₅)⁺₃Cl⁻ (RR)

 $X = NC_2H_5$ (+) Isoquin28C4-2 $X = N(C_2H_5)^+_2 Cl^{-}(+)$

Y = 1,4-cyclohexane

Izatt et al.

CHART IX

- 2. Cyclophanes (cont.)
 - b. Monocyclic with Nitrogen Donor Atoms

(1,4-B)3N321C3-1 R = CH2-[2,3-(OH)2-4-CH2N+. (CH3)(C14H29)2C6H2] (1,4-B)3N321C3-2 (1,4-B)₃N₃21C3-1 with coordinated Fe³⁺

- $K_4(1,4-B)_4N_428C4-1$ R = (CH₂)₂CO₂H K₄(1,4-B)₄N₄28C4-2 $R = (CH_2)_{10}CO_2H$ $K_4(1,4-B)_4N_429C4-3$ $R = (CH_2)_{10}N(CH_3)_3^+ Br^ K_4(1,4-B)_4N_429C4-4$ R = (CH₂)₁₀N(CH₃)⁺/₃ I $\begin{array}{l} \mathsf{H} = \{\mathsf{O}_{2216}\mathsf{N}(\mathsf{C}_{33}^{-1}) \\ \mathsf{K}_{4}(1,4-\mathsf{B})_{4}\mathsf{N}_{4}29\mathsf{C}_{4}\mathsf{C}_{5} \\ \mathsf{R} = (\mathsf{C}_{4})_{2}\mathsf{C}(\mathsf{O})\mathsf{N}\mathsf{H}\mathsf{C}\mathsf{H}[(\mathsf{C}_{4})_{4}\mathsf{N}\mathsf{H}_{3}^{+}\mathsf{C}_{1}^{-1}] \\ \mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{C}_{14}\mathsf{H}_{29})_{2} \\ \mathsf{K}_{4}(1,4-\mathsf{B})_{4}\mathsf{N}_{4}2\mathsf{B}\mathsf{C}_{4}\mathsf{C}_{6} \\ \mathsf{R} = \mathsf{C}(\mathsf{C}_{14}\mathsf{H}_{29})_{2} \\ \end{array}$ $\begin{array}{l} R = (CH_2)_2 C(O) NH(CH_2)_4 CH[NHC(O) - \\ (CH_2)_5 N(CH_3)_3^+ Br \ [C(O)N(C_{14}H_{29})_2 \end{array} \end{array}$
- (1,**4-B)₄N₄28C4-1** A = N-C(O)-[4-CO₂HC₆H₄] (1,**4-B)₄N₄29C4-2** $A = N - C(O)CH_2$ (CH3)3N⁺CH2C(O)NHCHC(O)N(C14H20)2 Br (1,4-B)₄N₄28C4-3 A = N--C(O) (CH3)3N⁺CH2C(O)NHCHCH2C(O)N(C,4H29)2 Br $(1,4-B)_4N_428C4-4$ A = NCH₂-[1,4-C₆H₄]-CH₂-N(CH₃)CH₂C₆H₅
- 4 PFc

Py4(1,4-B)228C4-1

(1,4-B)4N433C4-1

(1,4-B)₄N₆30C6-1

Py2(1,4-B)4N432C6-1 $\mathbf{R} = \mathbf{C}(\mathbf{O})\mathbf{CH}_{2}\mathbf{N}(\mathbf{CH}_{3})_{3}^{\dagger}\mathbf{CI}^{\dagger}$

 $(1,4-B)_4N_434C4-1$ A = N(CH₃) $^+_2$ Cl $(1,4-B)_4N_434C4-2$ A = N-SO₂-[3-SO₃ C₆H₄] $(1,4-B)_4N_434C4-3$ A = N-CO-[2-CO₂ C₆H₄] (1,4-B)4N434C4-4 A = NH or $A = N-[4-SO_2C_6H_4CH_3] \text{ or } A = N(CH_3)^{\frac{1}{2}}CI^{-1}$

CHART X

- 2. Cyclophanes (cont.)
 - b. Monocyclic with Nitrogen Donor Atoms (cont.)

(1,4-B)4N430C4-2 A = NH2CI (1,4-B)4N430C4-3 $A = N(CH_3)^{+}_2CI$

ĊН

(1,4-B)4(1,3-B)2N432C4-1

CHART XI

- 2. Cyclophanes (cont.) b. Monocyclic with Nitrogen Donor Atoms (cont.)

Cy2(1,4-B)4N434C4-1

$$\begin{split} &Nap_2(1,4-B)_2N_434C4-1\\ &n=4;R=H\\ &Nap_2(1,4-B)_2N_434C4-2\\ &n=4;R=CH_3\\ &Nap_2(1,4-B)_2N_436C4-1\\ &n=5;R=CH_3\\ &Nap_2(1,4-B)_2N_438C4-1\\ &n=6;R=CH_3 \end{split}$$

Cholaphane-1 Choiaphane-1 $R_1, R_2 = H$ Choiaphane-2 $R_1, R_2 = C(0)CH_3$ Choiaphane-3 $R_1 = C(0)CH_3; R_2 = CH_2C_6H_5$ Choiaphane-4 $R_1 = C(0)CH_2; R_2 = H$ $R_1 = C(O)CH_3; R_2 = H$ Cholaphane-5 $R_1 = H; R_2 = CH_2C_6H_5$

CHART XII

2. Cyclophanes (cont.) c. Monocyclic with Various Donor Atoms

(1,4-B)4N438C4-1

CHART XIII 2. Cyclophanes (cont.) c. Monocyclic with Various Donor Atoms (cont.)

NapPy3N432C8-1

CHART XIV 2. Cyclophanes (cont.) c. Monocyclic with Various Donor Atoms (cont.)

(NapPyN220C5)2-1

 $\begin{array}{l} \text{Nap(1,3-B)Py_2N_332C8-1} \\ A, Y = O; B = NH; X = H_2 \\ \text{Nap(1,3-B)Py_2N_332C8-2} \\ A = NH; B, X = O; Y = H_2 \\ \text{Nap(1,3-B)Py_2N_33C8-1} \\ \text{A, B = NH; X, Y = O} \end{array}$

O' C₂H₅ C CH₂ CH-СН O₂Ċ ČO2 2 Na⁺ Flavinophane-1 (oxidized)

0

Flavinophane-2 (reduced)

(1,3-B)(1,4-B)₂Py₂N₄34C8-1

CHART XV

2. Cyclophanes (cont.) d. Mono and Bicyclic without Heteroatoms

> (1,4-B)₂12C-1 R₁, R₂, R₃ = H (1,4-B)₂12C-2

(1,4-B)212C-3

(1,4-B)212C-4

 $\begin{array}{l} (\textbf{1,4-B)_2 12C-11} \\ R_1,\,R_3,\,R_6,\,R_8=\text{H}; \\ R_2,\,R_4,\,R_5,\,R_7=\text{CH}_3 \end{array}$

(1,4-B),12C-12

(1,4-B)212C-13

 $R_3, R_4, R_6 = H$ (1,4-B)₂12C-14

(1,4-B)212C-15

 $R_1, R_3, R_6 = H;$ $R_2, R_4, R_5, R_7, R_8 = CH_3$

R1. R2, R5, R7, R8 = CH3;

 $R_1, R_2, R_3, R_5, R_6, R_7, R_8 = CH_3; R_4 = H$

R₃, R₄, R₅, R₆ = CH₃

 $R_1 = CHO; R_2, R_7, R_8 = H;$

(1,4-B)212C-35

(1,4-B)212C-36

Ŕ=H

 $R = CH_3$

 $R_1 = H; R_2, R_3 = i - C_3 H_7$

 $R_1, R_3 = i \cdot C_3 H_7; R_2 = H$

 $R_1, R_2 = H; R_3 = t-C_4H_9$ (1,4-B)₂12C-5

 $R_{1}, R_{2} = H; R_{3} = Si(CH_{3})_{3}$

 $\begin{array}{l} \textbf{(1,3-B)(1,4-B)11C-1} \\ \textbf{R}_1, \textbf{R}_4 = \textbf{H}; \textbf{R}_2, \textbf{R}_3 = \textbf{t}\textbf{\cdot}\textbf{C}_4\textbf{H}_9 \\ \textbf{(1,3-B)(1,4-B)11C-2} \\ \textbf{R}_1 = \textbf{t}\textbf{C}_4\textbf{H}_5; \textbf{R}_2, \textbf{R}_3, \textbf{R}_4 = \textbf{H} \\ \textbf{(1,3-B)(1,4-B)11C-3} \\ \textbf{R}_1, \textbf{R}_3 = \textbf{H}; \textbf{R}_2, \textbf{R}_4 = \textbf{t}\textbf{\cdot}\textbf{C}_4\textbf{H}_9 \end{array}$

(1,4-B)212C-32

(1,4-B)212C-34

 $\begin{array}{l} (1,4\text{-}B)_212C\text{-}6\\ R_1, R_5=CH_3; R_2, R_3, R_4=H\\ (1,4\text{-}B)_212C\text{-}6\\ R_1, R_2, R_4, R_5=CH_3; R_3=H\\ (1,4\text{-}B)_212C\text{-}6\\ R_1, R_2, R_4, R_5=CH_3; R_3=CHO\\ (1,4\text{-}B)_212C\text{-}9\\ R_1=CHO; R_2, R_3, R_4, R_5=H\\ (1,4\text{-}B)_212C\text{-}10\\ R_1, R_5=CO_2CH_3; R_2, R_3, R_4=H \end{array}$

- (1,4-B),12C-16 R1 = CH=NC6H5; R2, R3, R4 = H (1,4-B),12C-17 $R_1 = CH = N - [4 - C|C_6H_4]; R_2, R_3, R_4 = H$ (1,4-B)212C-18 $R_1 = CH=N-[4-CH_3C_6H_4]; R_2, R_3, R_4 = H_1$ (1,4-B)-12C-19 R₁ = CH=N-[4-OCH₃C₆H₄]; R₂, R₃, R₄ = H (1,4-B)212C-20 R1, R2 = CH=NC6H5; R3, R4 = H (1,4-B)212C-21 $R_1, R_2 = CH = N - [4 - CIC_6 H_4]; R_3, R_4 = H$ (1,4-B),12C-22 $R_1, R_2 = CH = N - [4 - CH_3C_6H_4]; R_3, R_4 = H$ (1,4-B)212C-23 R₁, R₂ = CH=N-[4-OCH₃C₆H₄]; R₃, R₄ = H (1,4-B)212C-24 $R_1, R_3 = CH = NC_6H_5; R_2, R_4 = H$ (1,4-B)212C-25 $R_1, R_3 = CH = N \cdot (4 - C|C_6H_4|; R_2, R_4 = H)$ (1,4-B)212C-26 $R_1, R_3 = CH = N - [4 - CH_3C_6H_4]; R_2, R_4 = H$ (1,4-B)212C-27 $R_1, R_3 = CH=N-[4-OCH_3C_6H_4]; R_2, R_4 = H$ (1,4-B)212C-28 $R_{1}, R_{4} = CH = NC_{6}H_{5}; R_{2}, R_{3} = H$ (1,4-B)212C-29 R₁, R₄ = CH=N-[4-CIC₆H₄]; R₂, R₃ = H (1.4-B)-12C-30 $R_1, R_4 = CH = N - [4 - CH_3C_6H_4]; R_2, R_3 = H$ (1,4-B)212C-31
- $R_1, R_4 = CH = N [4 OCH_3C_6H_4]; R_2, R_3 = H$

CHART XVI

2. Cyclophanes (cont.) e. Polycyclic with Various Donor Atoms

Cyclophane-3 X = H₂ Cyclophane-4 X = O 1280

Cyclophane-5

Cyclophane-6

 $R = NO_2$

R=I

Macrocycle Interaction Data

CHART XVil

2. Cyciophanes (cont.) e. Polycyclic with Various Donor Atoms (cont.)

Cyciophane-13 $X = N; R = N(CH_3)_2$ (meso) Cyclophane-14 X = N-oxide; R = H (meso)

Cyclophane-9 X = O Cyclophane-10 X = S

> Cyclophane-18 R = H

> Cyclophane-19 R = N(CH₃)₂

CHART XVIII

2. Cyclophanes (cont.) e. Polycyclic with Various Donor Atoms (cont.)

Cyclophane-20 X = C; Y = $(CH_2)_4$ Cyclophane-21 X = C; Y = CH_2OCH_2 Cyclophane-22 X = C; Y = $CH_2O(CH_2)_2OCH_2$ Cyclophane-23 X = NH; Y = CH_2OCH_2

Cyclophane-26 $X = C \equiv C - C \equiv C$ Cyclophane-27 $X = (CH_2)_4$

Cyclophane-24 $X = C \equiv C - C \equiv C$ Cyclophane-25 $X = (CH_2)_4$

CHART XIX

2. Cyclophanes (cont.) e. Polycyclic with Various Donor Atoms (cont.)

Cyclophane-30 m = 3; n = 2 or m = 2; n = 3

Cyclophane-32 A = N; R = CH(CH3)2 Cyclophane-33 $A = NCH_3^+; R = CH(CH_3)_2$

ÓR. DRA R2O OR₃ Callx4-16C-1 $R_1, R_3 = H; R_2, R_4 = CH_3$ Calix4-16C-2 $R_1, R_2, R_3, R_4 = (CH_2)_3SO_3Na$ Callx4-16C-3 $R_1, R_2, R_3 = H;$ $R_4 = C(0) - [3,5 - (NO_2)_2C_6H_3]$ Callx4-16C-4 $R_{1}, R_{3} = H;$ $R_2, R_4 = C(O) - [3,5-(NO_2)_2C_6H_3]$ Callx4-16C-5 $\begin{array}{l} \text{Callstart 10C-3} \\ \text{R}_1, \text{R}_3 = \text{H}; \\ \text{R}_2 = \text{C}(\text{O})\text{-}[3,5\text{-}(\text{NO}_2)_2\text{C}_6\text{H}_3] \\ \text{R}_4 = \text{C}\text{H}_2\text{-}[3,5\text{-}(\text{NO}_2)_2\text{C}_6\text{H}_3] \\ \text{Callstart 16C-6} \\ \text{Callst$ $R_1, R_3 = CH_3;$ $R_2, R_4 = CH_2C(O)OCH_2-[1-Pyrene]$ Callx4-16C-7 $\begin{array}{l} \text{Call} \text{R}_1, \text{R}_3 = \text{C}_3\text{H}_7; \\ \text{R}_2, \text{R}_4 = \text{CH}_2\text{C}(\text{O})\text{OCH}_2\text{-}[1\text{-Pyrene}] \\ \text{Call} \textbf{x4-16C-8} \end{array}$ $R_1, R_3 = H;$ $R_2, R_4 =$ ö Ĥ Ó HO нó R HO Callx4-16C-21 $R = CH_3; X = H$ Callx4-16C-22

CHART XX

3. Calixarenes

Callx4-16C-9 $X = t - C_4 H_9$ Callx4-16C-10 $X = CH_2CH=CH_2$ Calix4-16C-11 4-toluenesulfonate of Calix4-16C-10 Calix4-16C-12 $X = (CH_2)_2OH$ Callx4-16C-13 4-toluenesulfonate of Calix4-16C-12 Calix4-16C-14 $X = (CH_2)_2 CO_2 H$ Callx4-16C-15 $X = CH_2N(CH_2CH=CH_2)_2$

Callx4-16C-16

 $X = -CH_2$

R = (CH₂)₁₀CH₃; X = H Callx4-16C-23

R = CH3; X = N=N-[4-SO3 C6H4]

Ġн

он но

он

1282

Calix4-16C-17 R₁ = H; R₂ = CH₃; X, Y = H Callx4-16C-18 $R_1 = H; R_2 = CH_3;$ $X = H; Y = t - C_4 H_9$ Callx4-16C-19 $R_{1}, R_{2} = C_{4}H_{9};$ X,Y = SO₃Na Call x4-16C-20

Callx4-18C-1

ÓR

OR

Calix6-24C-12 $R = C_6H_{13}; X = SO_3^{-}M^{+}$ $(M^{+}=H^{+},Na^{+}, or NH_4^{+})$

Callx6-24C-13

Callx6-24C-14

Callx6-24C-15

Calix6-24C-16

Callx6-24C-17

Calix6-24C-18

R = -

 $R = CH_2CO_2H$; X = H

 \dot{O} X = t-C₄H₉ H

 $R = CH_2CO_2H$; $X = t-C_4H_9$

 $R = C_{12}H_{25}; X = SO_3^+ M^+$ (M⁺= H⁺.Na⁺, or NH₄⁺)

 $R = (CH_2)_3SO_3Na; X = C_4H_9$

 $R = (CH_2)_3SO_3Na; X = t-C_4H_9$

OR RO

 $\begin{array}{l} \mbox{Callx6-24C-6} \\ R = CH_2CO_2H \\ \mbox{Callx6-24C-7} \\ R = CH_3 \\ \mbox{Callx6-24C-8} \\ R = C_4H_9 \\ \mbox{Callx6-24C-9} \\ R = C_6H_{13} \\ \mbox{Callx6-24C-10} \\ R = C_{12}H_{25} \\ \mbox{Callx6-24C-11} \\ R = CH_2C4C-11 \\ R = CH_2C4C-11 \\ \end{array}$

CHART XXII 3. Calixarenes (cont.)

Callx7-29C-1 X = $(CH_2)_2CO_2H$ Callx7-29C-2 X = $CH_2N(CH_2CH=CH_2)_2$

Double Calix-1 X, Y = CH_2 Double Calix-2 X, Y = C(O) Double Calix-3 X = CH_2 : Y = C(O)

 $\begin{array}{l} \textbf{Callx8-32C-1} \\ \textbf{R} = \textbf{H}; X = (CH_2)_2CO_2\textbf{H} \\ \textbf{Callx8-32C-2} \\ \textbf{R} = \textbf{H}; X = CH_2N(CH_2CH=CH_2)_2 \\ \textbf{Callx8-32C-3} \\ \textbf{R} = CH_2CO_2\textbf{H}; X = \textbf{H} \\ \textbf{Callx8-32C-4} \\ \textbf{R} = C_4H_5; X = SO_3Na \\ \textbf{Callx8-32C-5} \\ \textbf{R} = (CH_2)_3SO_3Na; X = t\cdot C_4H_9 \\ \textbf{Callx8-32C-6} \\ \textbf{R} = CH_2CH(CH_3)C_2H_5; X = SO_3Na \end{array}$

Calix6-24C-19 R₁, R₂ = CH₃ Calix6-24C-20 R₁ = H; R₂ = C₆H₁₃ Calix6-24C-21 R₁ = H; R₂ = CH₂CO₂H

CHART XXIII 4. Cryptophanes

Cryptophane-1 R = H Cryptophane-2 R = OCH₃

Cryptophane-3

CHART XXIV 4.Cryptophanes (cont.)

Cryptophane-7 (±) Cryptophane-8 (meso)

Cryptophane-5 n = 2 Cryptophane-6 n = 3

Cryptophane-9 R = H Cryptophane-10 R = OTosyl

CHART XXV 5. Miscellaneous a. Cavitands and Carcerands

Cavitand-9 R = C₅H₁₁

Cavitand-10

Carcerand-1 R = (CH₂)₂C₆H₅

CHART XXVII 5. Miscelaneous (cont.) a. Cavitands and Carcerands (cont.)

 $\label{eq:carcerand-2} \begin{aligned} & \mathsf{R} = \mathsf{CH}_2\mathsf{CH}_2\mathsf{C}_6\mathsf{H}_5 \\ & \mathsf{X} = \mathsf{CH}_2\mathsf{CH}_2\mathsf{C}_6\mathsf{H}_5 \\ & \mathsf{Carcerand-3} \\ & \mathsf{R} = \mathsf{CH}_2\mathsf{CH}_2\mathsf{C}_6\mathsf{H}_5 \\ & \mathsf{X} = \mathsf{CH}=\mathsf{N}_1\mathsf{1},\mathsf{3},\mathsf{C}_6\mathsf{H}_4\mathsf{I},\mathsf{N}=\mathsf{CH} \end{aligned}$

CHART XXVIII

5. Miscelaneous (cont.) b. Porphyrines and Porphyrin Derivatives

Porphyrin-1 $R = C_6H_5$ Porphyrin-2 $R = 2 \cdot HOC_6H_4$ Porphyrin-3 $R = 3 \cdot HOC_6H_4$ Porphyrin-4 $R = 4 \cdot CH_3C_6H_4$ Porphyrin-5 $R = 2 \cdot NH_2C_6H_4$ Porphyrin-6

Porphyrin-5 R = 2-NHCOCH₃C₆H₄ Porphyrin-7 R = 4-N⁺(CH₃)₃C₆H₄, Cl⁻

Porphyrin-8

Porphyrin-9 $R = C_6H_5$; X = Mg(II) Porphyrin-10 $R = C_6H_5$; X = Co(II) Porphyrin-11 Porphyrin-14 Porphytin-11 $R = C_6H_5$; X = Ni(II) Porphytin-12 $R = C_6H_5$; X = Cu(II) Porphytin-13 $\begin{array}{l} \text{Porphyminis} \\ \text{R} = C_{6}H_{5}; X = Zn(II) \\ \text{Porphymin-14} \\ \text{R} = C_{6}H_{5}; X = Cd(II) \\ \text{Porphymin-15} \\ \text{R} = C_{6}H_{5}; X = Hg(II) \\ \text{Porphymin-15} \end{array}$ Porphyrin-16 $R = 3-CH_3C_6H_4$; X = Zn(II) **Porphyrin-17** $R = 4-CH_3C_6H_4$; X = Zn(II) Porphyrin-18 R = 3-OCH₃C₆H₄; X = Zn(II) **Porphyrin-19** $R = 4-OCH_3C_6H_4$; X = Zn(II) Porphyrin-20 $R = 3 - CO_2 CH_3 C_6 H_4$. X = Zn(II)Porphyrin-21 R = 3-FC₆H₄; X = Zn(II) Porphyrin-22 $R = 4 - FC_6H_4$; X = Zn(II)Porphyrin-23 R = 3-CłC₆H₄: X = Zn(II) Porphyrin-24 $R = 4 - CIC_6H_4; X = Zn(II)$ Porphyrin-25

 $R = 3 \cdot BrC_6H_4; X = Zn(II)$

Ř

 $\begin{array}{l} \mbox{Porphyrin-26} \\ \mbox{X} = VO(II) \\ \mbox{Porphyrin-27} \\ \mbox{X} = M(II)CI \\ \mbox{Porphyrin-28} \\ \mbox{X} = Fe(II)CI \\ \mbox{Porphyrin-29} \\ \mbox{X} = XI(II) \\ \mbox{Porphyrin-31} \\ \mbox{X} = Zn(II) \\ \end{array}$

CHART XXIX

5. Miscelaneous (cont.) b. Porphyrines and Porphyrin Derivatives (cont.)

Porphyrin-32 $R = C_2H_5$ Porphyrin-33 $R = (CH_2)_2CO_2CH_3$

Porphyrin-36 X = 2HPorphyrin-37 $X = Rh(III)CH_2COCH_3$

Porphyrin-34 X = 2HPorphyrin-35 $X = Rh(III)CH_2COCH_3$

 $\begin{array}{l} \mbox{Porphyrin-38} \\ R = H; X = Mg(II) \\ \mbox{Porphyrin-39} \\ R = H; X = Fe(II) \\ \mbox{Porphyrin-40} \\ R = H; X = Ni(II) \\ \mbox{Porphyrin-41} \\ R = C(O)CH_3 : X = Fe(II) \\ \mbox{Porphyrin-42} \\ R = C(O)CH_3 : X = Ni(II) \\ \mbox{Porphyrin-43} \\ R = CH_2 = CH_2 : X = Fe(II) \end{array}$

Porphyrin-44 R = CH=CH₂ : X = Fe(II) Porphyrin-45 R = CH=CH₂ : X = Ni(II) Porphyrin-46 R = C(O)CH; X = Ni(II) Porphyrin-47 R = C₂H₅OCO₂-CH X = Ni(II) Porphyrin-48 R = C1; X = Mg(II) Porphyrin-49 R = NO₂; X = Mg(II)

CH. снсн. Ġн CH RO2C(CH2)2 (CH2)2CO2R Porphyrin-50 R = H; X = Mn(III)Ci R₁ Porphyrin-51 R = H; X = Fe(III)CI Porphyrin-52 R = H; X = Co(III)CI Porphyrin-53 R = CH₃: X =VO(II) Porphyrin-54 R = CH₃; X = Ni(II) Porphyrin-55 R = CH3; X = Cu(II) Porphyrin-56 $R = CH_3, X = Zn(II)$

CHART XXX

сн,снон

5. Miscelaneous (cont.)

b. Porphyrines and Porphyrin Derivatives (cont.)

CH.

 $\begin{array}{c} CH=CH_3 \\ CH_3 \\ CH_3 \\ H_3 \\ CH_3 \\$

Porphyrin-71 X = Mg(II) **Porphyrin-72** X = Zn(II)

Ċ₆H₅

C₂H₅ CH₃ CH RO2C(CH2)2 Porphyrin-57 $\mathbf{R} = \mathbf{H}; \mathbf{X} = \mathbf{Mn}(\mathbf{II})$ Porphyrin-58 $\mathbf{R} = \mathbf{H}; \mathbf{X} = \mathbf{Mn}(\mathbf{III})$ Porphyrin-59 R = H; X = Mn(III)CI Porphyrin-60 $\mathbf{R} \neq \mathbf{H}; \mathbf{X} = \mathbf{Zn}(\mathbf{H})$ Porphyrin-61 R = ČH3; X = Mg(II) Porphyrin-62 $R = CH_3$; X = Fe(II)

 $\begin{array}{l} \textbf{Porphyrin-66} \\ R_1, R_3, R_5, R_7 = CH_3 \\ R_2, R_4, R_6, R_8 = C_2H_5 \\ X = VO(II) \\ \textbf{Porphyrin-67} \\ R_1, R_4, R_5, R_8 = CH_3 \\ R_2, R_3, R_6, R_7 = C_2H_5 \\ X = Mg(II) \end{array}$

Ç₆H₅

 $\begin{array}{l} x = mg(n) \\ Porphynin-68 \\ R_1, R_3, R_5, R_7 = CH_3 \\ R_2, R_6 = C_2H_5 \\ R_4, R_8 = (CH_2)_2CO_2CH_3 \\ X = Zn(II) \end{array}$

Porphyrin-63

Porphyrin-65

C₂H

CH₃

R = CH3: X = Ni(II)

Porphyrin-64 R = CH₃; X = Cu(II)

R = cholesteryi; X = Mg(ii)

Porphyrin-70 R = (CH₂)₂CO₂CH₃

(CH₂)₂CO₂R

,Н,

CHART XXXI

5. Miscelaneous (cont.) b. Porphyrines and Porphyrin Derivatives (cont.)

Porphyrin-78

CHART XXXII

5. Miscelaneous (cont.) b. Porphyrines and Porphyrin Derivatives (cont.)

Porphyrin-85 $R = C_2H_5$ $A = OCH_2[1.3-C_6H_4]CH_2O$ Porphyrin-86 $\mathbf{R} = (CH_2)_2 CO_2 CH_3$ $\mathbf{A} = C = C - C = C$

CHART XXXIII 5. Miscellaneous (cont.) b. Porphyrin and Porphyrin Derivatives (cont.)

Porphyrin-90

CHART XXXIV 5. Miscellaneous (cont.) b. Porphyrin and Porphyrin Derivatives (cont.)

Porphyrin-93 A = NC₂H₅; X = 2H Porphyrin-94 A = NC₂H₅⁺ Br⁻: X = Fe-Br

CHART XXXV 5. Miscellaneous (cont.) b. Porphyrin and Porphyrin Derivatives (cont.)

CHART XXXVI 5. Miscellaneous (cont.) c. Other

Other-1 R = H Other-2 $R = CH_2C_6H_5$

Other-6 R = (CH₂)₃ Other-7 R = (CH₂)₄ Other-8 R = (CH₂)₂O(CH₂)₂

UO,

H₂O

Other-9 n≈2 Other-10 n ≈ 3 Other-11

n = 4 Other-12

n ≈ 5

-C₆H₅

C₆H₅-

ö

Other-13 $R = 1.3 \cdot C_6H_4$ Other-14 $R = 1.4 \cdot C_6H_4$ Other-15 R = 3,6-Durene Other-16 R = 9,10-Anthracene

NaO₁S

NaO₃S

2',3',5'-tri-O-pentanoyiguanosine R = pentanoyl

Chemical Reviews, 1992, Vol. 92, No. 6 1291

guest-1

Macrocycle Interaction Data

B

Nomenclature for CHARTS I-XXXIX

B - benzo, 18C6-1 - 18-crown-6. Calix - calixarene, Cy - cyclohexano,
Isoquin - isoquinoline, K - keto. N - nitrogen (heteroatom). Nap -
naphthalene, Naphthyr - naphthyridine, Py - pyridine, S - sulphur
(heteroatom), Spher - spherand

VI. Tables I-III

Table I. Log K, ΔH , and ΔS Values for Neutral Molecule-Macrocycle Interaction in Solution

ligand (chart)	neutral molecule ^a	log K ^b	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , °C	conditions ^d	ref
			Coronands	s and Cry	ptands			
			a. Cr	own Eth e	rs			
12C4-1 (I)	Br ₂	0.34	NMR			22	CCl_4/C_2H_5Br (3:1 v/v) (Br ₂ competes with $CHCl_3$)	13, 1 (for conditions)
	I_2	0.36	Spec			25	CCL	14
	I_2	0.73	Spec	-17.4		25	cyclohexane	15
	$\overline{I_2}$	0.68	Spec			30	cyclohexane	15
	ICI	ppt	Spec			25	CCL	14
	ICl	2.25	Cal	-26	-147	25	CeHe	16
	ICl	1.11(M ₂ L)	Cal	-26		25	$C_{6}H_{6}$ (M + ML <-> M ₂ L)	16
	Xe	-1.09	¹²⁹ Xe NMR		53.7	31	CDCl ₃	17
	tetrachloro-1,4- benzoquinone	0.06	Spec			25	CCl4	18
	tetrailuoro-1,4-	0.50	0			05	0.01	
100101	benzoquinone	0.76	Spec			25		18
1204-2 (1)		2.45		-24	-115	25		16
D10041 (D)		$1.76(M_2L)$		-23		25	$C_6H_6 (M + ML <-> M_2L)$	16
B12U4-1 (I)	H ₂ O	0.35	NMR			30	CHCl ₃	19
$>BS_{2}12C4-1$ (1)		1.89	Spec	-25	-29	25		20
$S_{4}12U4-1(1)$	12	1.48	Spec			24		21
$N_414C 4-1 (1)$	12	5.01	Spec			24	$CCl_4 (2l_2 + L ->$	
	I_2	4.51	Spec			24	$LI^{(1_3)}$ CHCl ₃ (2I ₂ + L ->	22
	I_2	5.15	Spec			24	$CH_2Cl_2 (2I_2 + L -> LI^+ I_3)$	22
	I_2	4.88	Spec			24	DCE $(2I_2 + L \rightarrow LI^+ \cdot I_3)$	22
N ₄ 14C4-2 (I)	ammoni a	1. 9 5	Kin			25	H_2O , 0.2 M NaClO ₄ [M + CuL(H ₂ O) ²⁺ blue	
	ammoni a	1.92	Spec			25	$< > MCuL^{4+} + H_2O$ $H_2O, 0.2 \text{ M NaClO}_4$ $[M + CuL(H_2O)^{2+}$ blue	23
	aniline	0.73	Kin			25	<-> $MCuL^{2+} + H_2O$] H_2O , 0.2 M NaClO ₄	23
	aniline	0.73	Spec			25	$[M + CuL(H_2O)^{2^+}blue$ <-> $MCuL^{2^+} + H_2O$] $H_2O = 0.2 M NeClO.$	23
			Spec			20	$[M + CuL(H_2O)^{2+}blue$ <-> MCuL ²⁺ + H ₂ O]	23
	dimethylamin e	2.69	Kin			25	$H_2O, 0.2 \text{ M NaClO}_4$ [M + CuL(H ₂ O) ²⁺ blue	00
	dimethylamin e	2.71	Spec			25	$H_2O_1 0.2 \text{ M NaClO}_4$ [M + CuL(H ₂ O) ²⁺ blue	20
	ethylamine	2.62	Kin			25	<-> $MCuL^{2+} + H_2O$] H ₂ O, 0.2 M NaClO ₄ [M + CuL(H ₂ O) ²⁺ blue	23
	ethylamine	2.62	Spec			25	<-> $MCuL^{2+} + H_2O$] H ₂ O, 0.2 M NaClO ₄ [M + CuL (H-O) ²⁺ blue	23
	methylamine	2.60	Kin			25	<-> MCuL ²⁺ + H ₂ O] H ₂ O, 0.2 M NaClO ₄	23
	methylamine	2.61	Spec			25	$[M + CuL(H_2O)^2]$ blue <-> MCuL ²⁺ + H ₂ O] H ₂ O, 0.2 M NaClO ₄	23
	piperidine	3.10	Kin			25	$[M + CuL(H_2O)^{2+}blue$ <-> MCuL ²⁺ + H ₂ O] H ₂ O, 0.2 M NaClO ₄	23
	piperidine	3.0 9	Spec			25	$[M + CuL(H_2O)^{2+}blue$ <-> $MCuL^{2+} + H_2O$] H ₂ O, 0.2 M NeClO.	23
	nvridine	-0.10	Kin			95	$[M + CuL(H_2O)^{2+}blue$ <-> $MCuL^{2+} + H_2O$] H ₂ O 0.2 M NaClO	23
	pyridine	-0.10	Spec			25	$[M + CuL(H_2O)^{2+}blue <-> MCuL^{2+} + H_2O] H_2O, 0.2 M NaClO.$	23
	• • • • • • • •		· • • • •				$[M + CuL(H_2O)^{2+}blue <-> MCuL^{2+} + H_2O]$	23

Table I (Continued)

ligand (chart)	neutral moleculeª	log K ^b	method	ΔH kJ/mol	ΔS J/K,mol	<i>т</i> , °С	conditions ^d	ref
<u></u>	trimethylamine	1.81	Kin			25	H ₂ O, 0.2 M NaClO ₄	· · · · · · · · · · · · · · · ·
							$[M + CuL(H_2O)^{2+}blue$	0.0
	trimethylamine	1.82	Spec			25	$H_{2}O_{1}O_{2}O_{2}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	20
							$[M + CuL(H_2O)^{2+}blue$	
N 1404 9 (I)	т	4.16	S			00	$<-> MCuL^{2+} + H_2O]$	23
$N_4 I 4 U 4 - 3 (I)$ $S_1 I 4 C 4 - 1 (I)$	12 To	4.10	Spec			22 94	$CHCl_3 (2I_2 + L -> LI^{+}I_3^{-})$ CHCl_	24 91
(1, 3 - B)15C4-1(I)	H ₂ O	0.90	NMR			22	CDCl ₃	25
N ₄ 15C4-1 (I)	I ₂	3.78	Spec			22	$CHCl_{3} (2I_{2} + L ->$	
15C5 1 (I)	¥.0		TD	-117		25	$LI^{+}I_{3}$	24
1505-1 (1)	H ₂ O	0.70	NMR	-11.7		30	CHCl ₃	20 27
	Br_2	-0.10	NMR			22	CCl_4/C_2H_5Br (3:1 v/v),	
							(Br ₂ competes with	13, 1 (for $a = 13$, 1
	I,	0.34	Spec			25	CCL	14
	I_2	0.68	Spec			25	cyclohexane	15
	I_2	0.59	Spec	-12.4	-28.9	35	cycloh ex ane	15
		0.54	Spec			45	cyclohexane	15
	ICI	2.03	Spec	-97	-176	20 25	CoHe	14 16
	ICI	$1.69(M_2L)$	Cal	-26	1.0	25	$C_6 H_6 (M + ML <-> M_2L)$	16
	ICI	1.20(M ₃ L)	Cal	-17		25	$C_6H_6(M + M_2L <-> M_3L)$	16
	Xe	-1.09	¹²⁹ Xe NMR		53.7	31	CDCl ₃	17
	eosine	0.43	Spec			25 25	H ₂ U MaOH	28
	methanol	2.00	IR	-15.1		25 25	CCL	26 26
	phenol	1.96	IR	-23.8	-42.3	25	CCL	26
	tetrachloro-1,4-		~					
	benzoquinone	0.10	Spec			25	CCI4	18
	cvanopyrazine	~-1.0	Spec			25	CH ₂ Cl ₂	29
	tetrafluoro-1,4-	_						-
	benzoquinone	0.77	Spec			25	CCl ₄	18
	benzoquinone	-0.538	NMR			31.6	CDCl ₃	30
B15C5-1 (I)	H₂O	0.46	NMR			30	CHCl ₃	19
	ICI	1.56	Cal	-25	-183	25	C ₆ H ₆	16
	ICI 2 3-dichloro-5 6-	$1.18(M_2L)$	Cal	-24		25	$C_6H_6 (M + ML <-> M_2L)$	16
	dicvano-1.4-							
	benzoquinone	0.81	Spec			11.5	CH ₂ Cl ₂	31
	2,3-dichloro-5,6-							
	alcyano-1,4-	0.61	Spec	-26.8	-82.0	17	CH ₂ Cl ₂	31
	2,3-dichloro-5,6-	0.01	Spec	20.0	-02.0		0112012	01
	dicyano-1,4-							
	benzoquinone	0.41	Spec			25	CH_2Cl_2	31
	1.3-indandione	0.20	Spec			3	CH ₂ Cl ₂	32
	2-dicyanoethylene-	0.20	Spec			0	011/01/	02
	1,3-indandione	-0.14	Spec	-16.4	-69 .0	12	CH_2Cl_2	32
	2-dicyanoethylene-	-0.30	Snec			25	CH ₂ Cl ₂	32
	9-dicyanomethylene-	0.00	Spec			-0		02
	2,4,7-trinitro-	0.10	a					
	fluorene 9. dievenomethylene	0.18	Spec			4	CH ₂ Cl ₂	33
	2,4,7-trinitro-							
	fluorene	-0.10	Spec			11	CH ₂ Cl ₂	33
	9-dicyanomethylene-							
	fluorene	-0.40	Spec	-16.68	-63.4	25	CH ₂ Cl ₂	33
	picric acid	0.211	NMR			21	CDCl ₃	34
	tetracyanoethylene	-0.040	Spec			10	CH ₂ Cl ₂	35
	tetracyanoethylene	0.123	Spec Spec			22	CH ₂ Cl ₂	35
	tetracyanoethvlene	0.110	Spec	8.46	26.3	10-32	CH ₂ Cl ₂	35
	2,3,5,6-tetra-		~					-
	cyanopyrazine	0.63	Spec			1	CH ₂ Cl ₂	29
	cyanopyrazine	0.48	Spec			11.5	CH ₂ Cl ₂	2 9
	2,3,5,6-tetra-	0.10			aa -	05		~~
	cyanopyrazın e	0.18	Spec	-21.3	-68.1	25		29

Table I (Continued)

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
	tetrafluoro- 1,4-benzoquinone	-0.208	NMR			31.6	CDCl ₃	30
	2,4,5,7-tetranitro- 9-fluorenone	0.46	Spec			4	CH_2Cl_2	33
	2,4,5,7-tetranitro- 9-fluorenone	0.3 9	Spec			11	CH_2Cl_2	33
	9-fluorenone 1.3.5-trinitro-	0.20	Spec	-12.1	-36.6	25	CH_2Cl_2	33
	benzene 1.3.5-trinitro-	-0.1 99	NMR	-12.1	-43.5	31.5	CDCl ₃	36
	benzene 2,4,7-trinitro-	-0.289	NMR			50	CDCl ₃	36
	9-fluorenone 2,4,7-trinitro-	0.37	Spec			4	CH_2Cl_2	33
	9-fluorenone 2,4,7-trinitro-	0.30	Spec			11	CH_2Cl_2	33
	9-fluorenone 2,4,6-trinitro-	-0.22	Spec	-14.8	-54	25	CH ₂ Cl ₂	33
	toluene urea	-0.585 non e	NMR Polg	-13.17	-42.1	30 25	DCE MeOH, 0.1 M Et ₄ NI	37
B15C5-2 (I)	nicric acid	0.211	NMR			21	(RD as indicator)	38 34
B15C5-3 (I)	picric acid	0.128	NMR			21	CDCl ₃	34
B15C5-4 (I)	picric acid	0.232	NMR			21	CDCl ₃	34
B15C5-5 (I)	picric acid	0.045	NMR			21	CDCl ₃	34
B15C5-6 (I)	picric acid	0.034	NMR			21	CDCl ₃	34
B15C5-7 (I)	picric acid	0.176	NMR			21		34
B1505-8 (1)	picric acid	0.127	NMR			21		34
B15C5-10 (I)	pierie acid	0.208	NMR			21		34
B15C5-11 (I)	picric acid	1.30	NMR			21	CDCl ₃	34
B15C5-12 (I)	picric acid	1.61	NMR			21	CDCl ₃	34
Py15C5-1 (I)	malononitrile	1.20	NMR	-26.4	-66.0	25	C_6D_6	7, 3 9
	malononitrile	1.04	NMR	-6.69	-2.81	25	CDCl ₃	7, 39
$S_{2}15C5-1$ (I)		2.24	Spec	-30.5	-40	25		20
$BS_{2}15C5-1$ (II)		1.93	Spec	-22	-18	25		20
$K_4N_217C5-1$ (II) (1,3-B)18C5-1	H_2^{12}	1.30	NMR			24 22	CDCl ₃	40
(II)	H ₂ O	1.15	NMR			22	CDCl ₃	25
	malononitrile	1.04	NMR	-21.8	-53.4	25	CDCl ₃	39, 41
	malononitrile	1.00	NMR	-19.7	-46.3	25	C ₆ D ₆	39, 41
	nitromethane	-0.03	NMR			9 17		42
	nitromethane	-0.12	NMR			27	C ₆ D ₆	42
	nitromethane	-0.28	NMR			36	C ₆ D ₆	42
(1.3-B)18C5-2	nitromethane	(ML)	NMR	-15.1	-54.4	9-36	C_6D_6	42
(II)	malononitrile urea	1.04 -0.39	NMR Pot	-7.95	-7.02	25 25	C ₆ D ₆ H ₂ O	7, 39, 41 43
(1,3-B)18C5-3 (II)	malononitril e	1.5 9	NMR	-50.2	-13 9	25	C_6D_6	7, 39, 41
(1,3-B)18C5-4 (II)	malononitril e	0.70	NMR	-18.4	-47.7	25	C_6D_6	39, 41
(1,3-B)18C5-5	malononitrile	0.70	NMR	-18.8	-50.5	25	CDCl ₃	39, 41
(II)	malononitrile	1.04	NMR	-19.2	-44.9	25	C_6D_6	39, 41
1000 1 (II)	malononitrile	nm	NMR			25	CDCl ₃	39, 41
1806-1 (11)	П₂О Н_О	1.19	IR	-113		20 25		44 96
	H ₂ O	0.70	NMR	-11.0		30	CD ₂ Cl ₂	27
	H₂Ō	1.88	NMR			-5	CHCl ₃	27
	H_2O	1.51	NMR			10	CHCl ₃	27
	H₂O	1.04	NMR	-35.8	-98	30	CHCl ₃	27
	Br ₂	U	NMK			22	(Br ₂ competes with CHCl ₂)	13, 1 (for conditions)
	I2	0.45	Spec			25	CCL	14
	I ₂	0.55	Spec	-14	-16	25	CCL	20
	I_2	0.69	Spec			25	cyclohexane	15
		0.59	Spec	-13.7	-32.6	35	cyclohexane	15
	12 Io	0.53	Spec			40 45	cyclonexane cyclohexane	15
	\overline{I}_2	0.41	ŨV	-34.3		20	$C_6H_5Cl(external complex)$	45

Table I (Continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ligend (chert)	neutral molecule	log Kb	method	ΔH k.I/mol	ΔS	T °C	conditionsd	rof
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		T	10g A	TIN	05.1	0/11-1101	1, 0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12 To	0.08		-35.1 ~0		20 20	DCE (external complex)	45 45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ICI	2.10	Spec	Ū		25	CCl ₄	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ICl	1.56	Cal	-29	-225	25	C ₆ H ₆	16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$1.26(M_2L)$	Cal	-29		25	$C_{6}H_{6}$ (M + ML <-> M ₂ L)	16
ectonitrile 0.10 NMR 9 CLD W 42 ectonitrile 0.23 (M) NMR 17 C.D, (M + ML <> ML) 42 ectonitrile 0.23 (M) NMR 17 C.D, (M + ML <> ML) 42 ectonitrile 0.32 (M) NMR 21 C.D, (M + ML <> ML) 42 ectonitrile 0.41 (M) NMR -25.1 92.1 28 C.H, 42 ectonitrile 0.41 (M + ML <> ML) Spec 25 C.H, 47 ectonitrile -0.24 (M + ML <> Spec 25 C.H, 47 ectonitrile -0.24 (M + ML <> Spec 25 C.H, 48 M-ectylaulfa- none UV 25 C.HCla 48 methoxazole none UV 25 C.HCla 48 ecid 0.33 NMR 24.5 C.DCla 48 4-aminobenzoic 0.40 NMR 25 C.HCla 48 <t< td=""><td></td><td>acetonitrile</td><td>$0.85(M_3L)$ 0.32</td><td>NMR</td><td>-91</td><td></td><td>20 25</td><td>$C_{6}\Pi_{6}$ (M + M₂L <-> M₃L)</td><td>16 46</td></t<>		acetonitrile	$0.85(M_3L)$ 0.32	NMR	-91		20 25	$C_{6}\Pi_{6}$ (M + M ₂ L <-> M ₃ L)	16 46
sectonitrile $0.22 (M_L)$ NMR θ C_{D} (M + ML <> M_L) 42 sectonitrile $-0.02 (M_L)$ NMR 17 C_{D} (M + ML <> M_L) 42 sectonitrile $-0.32 (M_R)$ NMR 17 C_{D} (M + ML <> M_L) 42 sectonitrile $-0.44 (M_R)$ NMR 28 C_{D} (M + ML <> M_L) 42 sectonitrile $-0.44 (M_R)$ Spec 25 CHQ (M + ML <> M_L) 47 sectonitrile $-0.24 (M_R)$ Spec 25 CHQ (M + ML <> M_L) 47 sectonitrile $-0.24 (M_R)$ Spec 25 CHQ (M + ML <> M_L) 47 sectonitrile $-0.24 (M_R)$ Spec 25 CHQ (M + ML <> M_L) 48 Maetyinithe none UV 25 $CHCl_h$ 48 Maetonitrile $none$ UV 25 $CHCl_h$ 48 Maetonitrile $0.33 (MR (M + M - M + M + M + M + M + M + M + M + $		acetonitrile	-0.10	NMR			9	C_6D_6	42
sectonitrile -0.22 NMR 17 CuD ₀ (M + ML <> ML) 42 sectonitrile -0.03 NMR 27 CuD ₀ (M + ML <> ML) 42 sectonitrile -0.01 NMR 27 CuD ₀ (M + ML <> ML) 42 sectonitrile -0.01 NMR 27 CuD ₀ (M + ML <> ML) 42 sectonitrile -0.04 Spec 25 CH ₀ 47 42 sectonitrile -0.24 Spec 25 CHCl ₁ 48 methoxazola none UV 25 CHCl ₂ 48 Mathoxazola none UV 25 CHCl ₃ 48 Mathoxazola none UV 25 CHCl ₃ 48 sulfacoszola 0.80 NMR 24.5 CDCl ₃ 48 sulfacoszola 0.93 NMR 24.5 CDCl ₃ 48 sulfacoszola 0.91 V 25 CHCl ₃ 48		acetonitrile	$0.23(M_2L)$	NMR			9_	$C_6 D_6 (M + ML <-> M_2 L)$	42
action in the construct of the second construction of the second consecond consecond construction of the second construction of the		acetonitrile	-0.22	NMR			17	$C_6 D_6$	42
actionitring -0.44 NMR -36 CDs 42 actionitring 0 Spec -25.1 -9.36 C.Dq 42 actionitring 0.59(M,ML) Spec 25 C.Hq 47 actionitring -0.40 Spec 25 C.Hq 47 actionitring -0.24 Spec 25 C.Hq 47 actionitring -0.24 Spec 25 C.HCla 48 Manetoxinola none UV 25 C.HCla 48 Mathematical none UV 25 C.HCla 48 Mathematical none UV 25 C.HCla 48 aufinotazzole 0.80 NMR 24.5 CDCla 48 aufinotazzole 0.81 UV 25 C.HCla 48 aufinotazzole 0.91 UV 25 C.HCla 48 aufinotazzole 0.91 NMR 24.5 CDCla 50 </td <td></td> <td>acetonitrile</td> <td>$-0.05(101_{2}L)$</td> <td>NMR</td> <td></td> <td></td> <td>27</td> <td>C_6D_6 (M + ML <-> M₂L) C_6D_2</td> <td>42 49</td>		acetonitrile	$-0.05(101_{2}L)$	NMR			27	C_6D_6 (M + ML <-> M ₂ L) C_6D_2	42 49
acetonitrile (ML) NMR -25.1 -92.1 92.6 C_D1 42 acetonitrile -0.59(ML) Spec 25 C_H4 47 acetonitrile -0.24 Spec 25 CHCls 47 acetonitrile -0.24 Spec 25 CHCls 48 MacOb none UV 25 CHCls 48 MacObisite 0.80 NMR 24.5 CDCls 48 MacObisite 0.81 UV 25 CHCls 48 Addressite 0.91 UV 25 CHCls 48 Addressite 0.91 UV 25 CHCls 59 chioroform 2.91 Polg 25 HqO, 0.10 M KCl 49		acetonitrile	-0.44	NMR			36	$C_6 D_6$	42
ectonitrile 0. Spec 25 CkH ₄ (M + ML <> M_L) 47 actonitrile -0.40 Spec 25 CHCl ₅ 47 actonitrile -0.24 Spec 25 CHCl ₅ 48 methonine none UV 25 CHCl ₅ 48 N*acetylaufa none UV 25 CHCl ₅ 48 N*acetylaufa none UV 25 CHCl ₅ 48 N*acetylaufa none UV 25 CHCl ₅ 48 *aufisozaole 0.80 NMR 24.5 CDCl ₅ 48 *aufisozaole 0.33 NMR 24.5 CDCl ₅ 48 *chioroaniline none UV 25 CHCl ₈ 48 *chioroaniline none UV 25 CHCl ₈ 48 *chioroaniline none UV 25 CHCl ₈ 48 *chioroaniline none UV 25 Holo, 0.11 M KCl		acetonitrile	(ML)	NMR	-25.1	-9 2.1	9-36	C_6D_6	42
Determining < 0.04 (M) Spec 23 Cara (M + Mi <> M(L) 47 (M + Mi <> M(L) 48 (M + M + M + M) 41 (M + M + M) 41 (M + M + M) 41 (M + M + M)		acetonitrile	0	Spec			25	C_6H_6	47
acctionitrile -0.24 Spec 23 Me ₂ CO 47 Wacetylaufa- methoxazole none UV 25 CHCl ₃ 48 Macetylaufa- methoxazole none UV 25 CHCl ₃ 48 N*acetylaufa- methoxazole none UV 25 CHCl ₃ 48 N*acetylaufa- methoxazole 0.80 NMR 24.5 CDCl ₃ 48 autifisozazole 0.83 UV 25 CHCl ₃ 48 autifisozazole 0.83 UV 25 CHCl ₃ 48 autifisozazole 0.81 UV 25 CHCl ₃ 48 autifisozazole 0.81 UV 24.5 CDCl ₃ 48 autifisozazole 0.81 UV 24.5 CDCl ₃ 48 chloroform 2.91 Polg CHCl ₃ 49 50 chloroform 2.91 Polg 25 H ₂ O 625 H ₂ O 25 dimethyl sufate 0.		acetonitrile	< -0.39(1012L)	Spec			25 25	$C_6 H_6 (M + ML <-> M_2L)$ CHCl ₂	47 47
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		acetonitrile	-0.24	Spec			25	Me ₂ CO	47
dimethoxine none UV 25 CHCls 48 methoxacole none UV 25 CHCls 48 M*acetylsulfa- methoxypyridsine none UV 25 CHCls 48 N*acetyl- sulfacesacle 0.80 NMR 24.5 CDCls 48 4-aminobenzoic acid 0.83 UV 25 CHCls 48 4-aminobenzoic acid 0.33 NMR 24.5 CDCls 48 4-chioroaniline -0.33 NMR 25 CHCls 48 4-chioroaniline -0.33 NMR 25 CHCls 48 4-chioroaniline -0.32 NMR 25 CHCls 48 6-chioroform 2.91 Polg 25 Hol, 0.10 M KCl 49 chioroform 2.91 Polg 25 Hol, 0.025 M MaNPB 50 chioroform 2.91 Spec 25 Hol 40 dimethyl casize -0.32 NMR 25		N ⁴ -acetylsulfa-						A111	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		dimethoxine	none	UV			25	CHCl ₃	48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		methoxazole	none	UV			25	CHCl	48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N^4 -acetylsulfa-		•••			20	011013	
		methoxypyridazine	none	UV			25	CHCl ₃	48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		sulfisoxazole	0.80	NMR			24.5	CDCl ₃	48
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		sulfisoxazole	0.83	UV			25	CHCl ₃	48
		4-aminobenzoic acid	0.33	NMR			24.5	CDCl ₃	48
acid 0.91 ∇V 25 CHC_3 48 4-chloroaniline none UV 24.5 CHC_3 48 4-chloroaniline none UV 25 H_2O , 0.1 M KC1 49 chloroform 2.91 Polg 25 H_2O , 0.1 M KC1 49 chloroform 2.90 Polg 25 H_2O , 0.02 M Me ₄ NBr 50 chloroform 2.91 Polg 25 H_2O , 0.02 M Me ₄ NBr 50 dimethyl carbonate -0.10 NMR 26 C_4D_0 28 51 dimethyl carbonate -0.22 NMR 28 C_4D_0 28 eosin' 2.01 Spec 25 M_2O 28 malononitrile 1.25(MgL) NMR 9 C_4D_6 42 malononitrile 2.83 NMR 9 C_4D_6 42 malononitrile 1.26(MgL) NMR 27 C_6D_6 MH L <> M_2L) 42 malononi		4-aminobenzoic	0.01	T 187			05		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		acid A-chlorospiline	-0.33	UV NMR			25 24 5		48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-chloroaniline	none	UV			24.0	CHCl	48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		chloroform	2.18	Polg			25	H ₂ O, 0.1 M KCl	49
		chloroform	2. 9 1	Polg			25	(apparent K) H ₂ O, $I \rightarrow 0$ (KCl)	50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		chloroform	2.90	Polg			25	(extrapolated K) H ₂ O, 0.025 M Me ₄ NBr	50 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		chloroform	2.91	Polg			25	H ₂ O, 0.025 M Bu ₄ NBr	50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		dimethyl carbonate	-0.10	NMR			25	C ₆ D ₆	51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		dimethyl oxalate	-0.22	NMR NMR			28	$C_{6}D_{6}/CCL_{4}$ (40:10 v/v)	51
eosin'2.01Spec25MeOH28malononitrile2.83NMR9 $C_{c}D_{6}$ 42malononitrile1.25(M_L)NMR9 $C_{c}D_{6}$ (M + ML <> M_L)42malononitrile2.59NMR17 $C_{6}D_{6}$ (M + ML <> M_L)42malononitrile1.08(M_L)NMR17 $C_{c}D_{6}$ (M + ML <> M_L)42malononitrile2.20NMR-59.4-15425 $C_{6}D_{6}$ (M + ML <> M_L)42malononitrile1.04(M_L)NMR27 $C_{c}D_{6}$ (M + ML <> M_L)42malononitrile1.04(M_L)NMR27 $C_{c}D_{6}$ (M + ML <> M_L)42malononitrile1.69(M_L)NMR36 $C_{c}D_{6}$ (M + ML <> M_L)42malononitrile0.95(M_2L)NMR36 $C_{c}D_{6}$ (M + ML <>> M_L)42malononitrile0.95(M_2L)NMR36 $C_{c}D_{6}$ (M + ML <>> M_L)42malononitrile0.96(M_2L)NMR22.2-46.325CCL_339, 41methanolIR-14.625CCL_42642intromethane0.86NMR24.5CDCL_348-intromethane0.69(M_2L)NMR9 $C_{c}D_{6}$ (M + ML <> M_2L)42intromethane0.69(M_2L)NMR17 $C_{c}D_{6}$ (M + ML <> M_2L)42intromethane0.69(M_2L)NMR27 $C_{c}D_{6}$ (M + ML <> M_2L)42intromethane0.69(M_2L)NMR17 <td< td=""><td></td><td>eosin^e</td><td>1.35</td><td>Spec</td><td></td><td></td><td>28 25</td><td>C6D6 H2O</td><td>28</td></td<>		eosin ^e	1.35	Spec			28 25	C6D6 H2O	28
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		eosin ^e	2.01	Spec			25	MeOH	28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		malononitrile	2.83	NMR			9	C_6D_6	42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		malononitrile	$1.25(M_2L)$	NMR NMP			9 17	$C_6D_6 (M + ML <-> M_2L)$	42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		malononitrile	2.59 1.08(M ₂ L)	NMR			17	$C_{e}D_{e}$ (M + ML <-> M_{e}L)	42 42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		malononitrile	2.20	NMR	-59.4	-154	25	C ₆ D ₆	39, 41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		malononitrile	$1.04(M_2L)$	NMR			25	$C_6D_6 (M + ML <-> M_2L)$	41
Informulation1.04 (MgL)NMR21 $G_{0}D_{0} (M + ML <> M_{1}L)$ 42 malononitrile1.89NMR36 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 malononitrile1.49NMR-22.2-46.325 $CDCl_{3}$ 39, 41methanolIR-14.625 CCL_{4} 264-nitroaniline0.86NMR24.5 $CDCl_{3}$ 48nitromethane0.48NMR9 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.69(MgL)NMR9 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.60(MgL)NMR17 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.60(MgL)NMR17 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.60(MgL)NMR17 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.40(MgL)NMR27 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.18(MgL)NMR36 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.18(MgL)NMR36 $C_{0}D_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.18(MgL)Spec25 $C_{0}H_{0} (M + ML <> M_{2}L)$ 42 nitromethane0.11Spec25 $C_{0}H_{0} (M + ML <>> M_{2}L)$ 42 nitromethane0.18(MgL)Spec25 $C_{0}H_{0} (M + ML <>> M_{2}L)$ 42 nitromethane0.11Spec25 $C_{0}H_{0} (M + ML <>> M_{2}L)$ 42 <td></td> <td>malononitrile</td> <td>2.18 1.04(M-L)</td> <td>NMR NMR</td> <td></td> <td></td> <td>27 97</td> <td>C_6D_6</td> <td>42</td>		malononitrile	2.18 1.04(M-L)	NMR NMR			27 97	C_6D_6	42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		malononitrile	1.89	NMR			36		42 42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		malononitrile	0.95(M ₂ L)	NMR			36	$C_6 D_6 (M + ML <-> M_2 L)$	42
InternationIR-14.625 CCL_4 264-nitroaniline0.86NMR24.5 $CDCl_3$ 484-nitroaniline0.93UV25 $CHCl_3$ 48nitromethane0.48NMR9 C_6D_6 42nitromethane0.69(M_2L)NMR9 C_6D_6 42nitromethane0.26NMR17 C_6D_6 42nitromethane0.60(M_2L)NMR17 C_6D_6 42nitromethane0.60(M_2L)NMR27 C_6D_6 42nitromethane0.40(M_2L)NMR27 C_6D_6 42nitromethane0.40(M_2L)NMR36 C_6D_6 42nitromethane0.18(M_2L)NMR36 C_6D_6 42nitromethane0.18(M_2L)NMR36 C_6D_6 42nitromethane0.11Spec25 C_6H_6 47nitromethane0.15(M_2L)Spec25 C_6H_6 47nitromethane0.11Spec25 C_6H_6 47nitromethane0.12(M_2L)NR3625 CCl_4 26sulfadimethoxine1.70Sol-UV10 C_6H_6 52sulfadimethoxine0.87NMR24.5 $CDCl_3$ 48sulfadimethoxine0.80UV10 $CHCl_3$ 52		malononitrile	1. 49	NMR	-22.2	-46.3	25	CDCl ₃	39, 41
4-nitroaniline0.93UV210CbC1348nitromethane0.48NMR9 C_6D_6 42nitromethane0.69(M_2L)NMR9 C_6D_6 (M + ML <-> M_2L)42nitromethane0.26NMR17 C_6D_6 (M + ML <-> M_2L)42nitromethane0.60(M_2L)NMR17 C_6D_6 (M + ML <-> M_2L)42nitromethane0.60(M_2L)NMR27 C_6D_6 (M + ML <-> M_2L)42nitromethane0.08NMR27 C_6D_6 (M + ML <-> M_2L)42nitromethane0.40(M_2L)NMR27 C_6D_6 (M + ML <-> M_2L)42nitromethane0.18(M_2L)NMR36 C_6D_6 42nitromethane0.18(M_2L)NMR36 C_6D_6 42nitromethane0.18(M_2L)NMR36 C_6D_6 42nitromethane0.11Spec25 C_6H_6 47nitromethane0.15(M_2L)Spec25 C_6H_6 47phenol1.90IR-24.7-46.425CCl, 4sulfadimethoxine0.87NMR24.5CDCl_348sulfadimethoxine0.80UV10CHCl_352sulfadimethoxine0.80UV25CHCl_448		4-nitroaniline	0.86	IR NMR	-14.0		25 24 5	CDCla	26 48
nitromethane0.48NMR9 C_6D_6 42nitromethane0.69(M_2L)NMR9 C_6D_6 (M + ML <-> M_2L)42nitromethane0.26NMR17 C_6D_6 (M + ML <-> M_2L)42nitromethane0.60(M_2L)NMR17 C_6D_6 (M + ML <-> M_2L)42nitromethane0.08NMR27 C_6D_6 (M + ML <-> M_2L)42nitromethane0.08NMR27 C_6D_6 (M + ML <-> M_2L)42nitromethane0.05NMR36 C_6D_6 42nitromethane0.18(M_2L)NMR36 C_6D_6 42nitromethane0.18(M_2L)NMR36 C_6D_6 42nitromethane0.11Spec25 C_6H_6 47nitromethane0.15(M_2L)Spec25 C_6H_6 47nitromethane0.15(M_2L)Spec25 C_6H_6 42nitromethane0.15(M_2L)Spec25 C_6H_6 42sulfadimethoxine1.70Sol-UV10 C_6H_6 52sulfadimethoxine0.87NMR24.5CDCl_348sulfadimethoxine0.80UV25CHCl_b48		4-nitroaniline	0.93	UV			25	CHCl ₃	48
nitromethane $0.69(M_2L)$ NMR 9 C_6D_6 $(M + ML <-> M_2L)$ 42 nitromethane 0.26 NMR 17 C_6D_6 $M + ML <-> M_2L)$ 42 nitromethane $0.60(M_2L)$ NMR 17 C_6D_6 $(M + ML <-> M_2L)$ 42 nitromethane 0.08 NMR 27 C_6D_6 $M + ML <-> M_2L)$ 42 nitromethane $0.40(M_2L)$ NMR 27 C_6D_6 $M + ML <-> M_2L)$ 42 nitromethane 0.05 NMR 27 C_6D_6 42 nitromethane $0.18(M_2L)$ NMR 36 C_6D_6 42 nitromethane 0.11 Spec 25 C_6H_6 47 nitromethane $0.15(M_2L)$ Spec 25 C_6H_6 47 phenol 1.90 IR -24.7 -46.4 25 CCI_4 26 sulfadimethoxine 1.70 Sol-UV 10 C_6H_6 52 sulfadimethoxine 0.87 NMR 24.5 $CDCI_3$ 48 sulfadimethoxine 0.80 UV 25 $CHCI_5$ 48		nitromethane	0.48	NMR			9	C ₆ D ₆	42
Intromethane 0.20 NMR 17 C_6D_6 42 nitromethane 0.08 NMR 17 C_6D_6 42 nitromethane 0.08 NMR 27 C_6D_6 42 nitromethane $0.40(M_2L)$ NMR 27 C_6D_6 42 nitromethane $0.40(M_2L)$ NMR 27 C_6D_6 42 nitromethane 0.05 NMR 36 C_6D_6 42 nitromethane $0.18(M_2L)$ NMR 36 C_6D_6 42 nitromethane $0.18(M_2L)$ NMR 36 C_6D_6 42 nitromethane $0.18(M_2L)$ NMR 36 C_6D_6 42 nitromethane 0.11 $Spec$ 25 C_6H_6 47 nitromethane $0.15(M_2L)$ $Spec$ 25 C_6H_6 47 nitromethane $0.15(M_2L)$ $Spec$ 25 CCl_4 26 sulfadimethoxine 1.70 $Sol-UV$ 10 C_6H_6 52 sulfadimethoxine 0.87 NMR 24.5 $CDCl_3$ 48 sulfadimethoxine 1.02 $Sol-UV$ 10 $CHCl_3$ 52 sulfadimethoxine 0.80 UV 25 $CHCl_4$ 48		nitromethane	$0.69(M_2L)$	NMR NMR			9 17	$C_6D_6 (M + ML <-> M_2L)$	42
nitromethane 0.08 NMR 27 C_6D_6 42 nitromethane $0.40(M_2L)$ NMR 27 C_6D_6 42 nitromethane -0.05 NMR 36 C_6D_6 42 nitromethane $0.18(M_2L)$ NMR 36 C_6D_6 42 nitromethane (ML) NMR 36 C_6D_6 42 nitromethane (ML) NMR -31.8 -105 $9-36$ C_6D_6 42 nitromethane 0.11 Spec 25 C_6H_6 47 nitromethane $0.15(M_2L)$ Spec 25 C_6H_6 47 nitromethane $0.15(M_2L)$ Spec 25 C_6H_6 47 sulfadimethoxine 1.90 IR -24.7 -46.4 25 CCl_4 26 sulfadimethoxine 0.87 NMR 24.5 $CDCl_3$ 48 sulfadimethoxine 1.02 Sol-UV 10 $CHCl_3$ 52 sulfadimethoxine 0.80 UV 25 $CHCl_4$ 48		nitromethane	0.60(M ₂ L)	NMR			17	$C_6 D_6 (M + ML <-> M_2 L)$	42
nitromethane $0.40(M_2L)$ NMR 27 C_6D_6 (M + ML <-> M_2L) 42 nitromethane -0.05 NMR 36 C_6D_6 42 nitromethane $0.18(M_2L)$ NMR 36 C_6D_6 (M + ML <-> M_2L) 42 nitromethane(ML)NMR -31.8 -105 $9-36$ C_6D_6 42 nitromethane 0.11 Spec 25 C_6H_6 47 nitromethane $0.15(M_2L)$ Spec 25 C_6H_6 (M + ML <-> M_2L) 47 phenol 1.90 IR -24.7 -46.4 25 CCl_4 26 sulfadimethoxine 1.70 Sol-UV 10 C_6H_6 52 sulfadimethoxine 1.02 Sol-UV 10 $CHCl_3$ 52 sulfadimethoxine 0.80 UV 25 $CHCl_4$ 48		nitromethane	0.08	NMR			27	C ₆ D ₆	42
Intromethane -0.00 1UMR 30 C_6D_6 42 nitromethane $0.18(M_2L)$ NMR 36 C_6D_6 $M + \text{ML} <-> M_2L$ 42 nitromethane (ML) NMR -31.8 -105 $9-36$ C_6D_6 42 nitromethane 0.11 Spec 25 C_6H_6 47 nitromethane $0.15(M_2L)$ Spec 25 C_6H_6 47 phenol 1.90 IR -24.7 -46.4 25 CC_4 26 sulfadimethoxine 1.70 Sol-UV 10 C_8H_6 52 sulfadimethoxine 0.87 NMR 24.5 $CDCl_3$ 48 sulfadimethoxine 1.02 Sol-UV 10 $CHCl_3$ 52 sulfadimethoxine 0.80 UV 25 $CHCl_4$ 48		nitromethane	0.40(M ₂ L)	NMR NMP			27 36	$C_6D_6 (M + ML \leftrightarrow M_2L)$	42
nitromethane(ML)NMR-31.8-1059-36 C_6D_6 42 nitromethane0.11Spec25 C_6H_6 47nitromethane0.15(M2L)Spec25 C_6H_6 47phenol1.90IR-24.7-46.425CCl ₄ 26sulfadimethoxine1.70Sol-UV10 C_6H_6 52sulfadimethoxine0.87NMR24.5CDCl ₃ 48sulfadimethoxine1.02Sol-UV10CHCl ₃ 52sulfadimethoxine0.80UV25CHCl ₄ 48		nitromethane	0.18(M ₂ L)	NMR			36	$C_6 D_6 (M + ML <-> M_9 L)$	42 42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		nitromethane	(ML)	NMR	-31.8	-105	9-36	C ₆ D ₆	42
Introduction 0.10(M2L) Spec 25 $C_{6}H_{6}$ (M + ML <-> M2L) 47 phenol 1.90 IR -24.7 -46.4 25 CCl ₄ 26 sulfadimethoxine 1.70 Sol-UV 10 $C_{6}H_{6}$ 52 sulfadimethoxine 0.87 NMR 24.5 CDCl ₃ 48 sulfadimethoxine 1.02 Sol-UV 10 CHCl ₃ 52 sulfadimethoxine 0.80 UV 25 CHCl ₅ 48		nitromethane	0.11	Spec Spec			25 25		47
sulfadimethoxine 1.70 Sol-UV 10 C ₈ H ₆ 52 sulfadimethoxine 0.87 NMR 24.5 CDCl ₃ 48 sulfadimethoxine 1.02 Sol-UV 10 CHCl ₃ 52 sulfadimethoxine 0.80 UV 25 CHCl ₄ 48		phenol	1.90	Spec IR	-24.7	-46.4	25 25	$\bigcup_{6 = 16} (M \neq ML <-> M_2L)$ CCL	47 26
sulfadimethoxine0.87NMR24.5CDCl348sulfadimethoxine1.02Sol-UV10CHCl352sulfadimethoxine0.80UV25CHCl448		sulfadimethoxine	1.70	Sol-UV			10	C ₆ H ₆	52
sumatimethoxine 1.02 Sol-UV 10 CHCl ₃ 52 sulfadimethoxine 0.80 UV 25 CHCl ₂ A		sulfadimethoxine	0.87	NMR			24.5		48
		sulfadimethoxine	0.80	UV			10 25	CHCl ₃	52 48
ligand (shart)	neutral malegula		methods	ΔH k I/mol	ΔS	<i>τ</i> • C	conditions	raf	
-----------------------------	----------------------------	------------	------------------	-------------------	----------------	---------------------	--	---------------	
inganu (chart)			Sel UV	K 0/ III01	5/ K•m01	1, 0			
	sullamerazine	nш	501-U V			10	$C_6 \Pi_6$ (poor solubility of guest)	52	
	sulfamerazine	1.35	Sol-UV			10	CHCl ₃	52	
	sulfamethizole	nm	Sol-UV			10	C_6H_6 (poor solubility	59	
	sulfamethizole	1.05	Sol-UV			10	CHCl ₃	52 52	
	sulfamethomidine	1.54	Sol-UV			10	C ₆ H ₆	52	
	sulfamethomidine	0.82	NMR			24.5	CDCl ₃	48	
	sulfamethomidine	1.31	Sol-UV			10	CHCl ₃	52	
	sulfamethoxazole	none	Sol-UV			10	Cricia CeHe	40 52	
	sulfamethoxazole	0.89	NMR			24.5	CDCl ₃	48	
	sulfamethoxazole	1.00	Sol-UV			10	CHCl ₃	52	
	sulfamethoxazole	0.92	UV			25	CHCl ₃	48	
	sulfamethoxy-	1.47	Sol-UV			10	CeHe	52	
	sulfamethoxy-	1.11	001 0 1				0	02	
	pyridazine	0.50	NMR			24.5	CDCl ₃	48	
	sulfamethoxy-	1 00	0.1137			10	CHO	50	
	pyridazine sulfemethory	1.03	S01-U V			10	CHCI3	52	
	pyridazine	0.67	UV			25	CHCl ₃	48	
	sulfamonomethoxine	2.22	Sol-UV			10	C ₆ H ₆	52	
	sulfamonomethoxine	1.15	Sol-UV			10	CHCl ₃	52	
	sulfamilamide	0.83 nm	UV Sol-UV			25 10	C-H ₂ (noor solubility	48	
	sunannannue	1111	501-0 4			10	of guest)	52	
	sulfanilamide	1.69	Sol-UV			10	CHCl ₃	52	
	sulfaphenazole	1.62	Sol-UV			10	C ₆ H ₆	52	
	sulfaphenazole	0.74	NMR Sol UV			24.5 10		48 52	
	sulfaphenazole	0.82	UV			25	CHCl	48	
	sulfathiazole	nm	Sol-UV		,	10	C ₆ H ₆ (poor solubility		
			0.1177				of guest)	52	
	sulfathiazole	1.32 nm	Sol-UV Sol-UV			10	C-H- (noor solubility	52	
	sumsomnume	пш	501-0 4			10	of guest)	52	
	sulfisomidine	0.74	Sol-UV			10	CHCl ₃	52	
	sulfisoxazole	1.91	Sol-UV			10	C ₆ H ₆	52	
	sulfisoxazole	1.13	Sol-UV			10 25		52 48	
	tetrachloro-1.4-	0.04	01			20	energ		
	benzoquinone	0.11	Spec			25	CCl ₄	18	
	2,3,5,6-tetra-	0.00	0			05			
	cyanopyrazine	~-0.82	Spec			25		29	
	benzoquinone	0.63	Spec			25	CCl ₄	18	
	tetrafluoro-1,4-		•						
	benzoquinone	-0.523	NMR			31.6		30	
	urea	0.2-0.7	Polg			25	MeUH, U.I M Et4NI (RD		
							producible value of K)	38	
Cy ₂ 18C6-1 (II)	H ₂ O		IR	-12.6		25	CCl ₄	26	
	H ₂ O	1.31	NMR			30	$CHCl_3$	19	
	nbr	~0	Spec			20	LH^+,Br^-	2	
	Br_2	0.80	NMR			22	CCl_4/C_2H_5Br (3:1 v/v)	-	
	_		a				(Br ₂ competes with CHCl ₃)	1	
	Br ₂	>3	Spec	-34.3	-27.6	25	$CHCl_3$ (LH ⁺ ,Br ⁻ + Br ₂	9	
	malononitrile	1.80	NMR	-36.0	-85.6	25	CeDe	2 39. 41	
	malononitrile	1.63	NMR	-23.4	-46.3	25	CDCl ₃	39, 41	
	methanol	0.00	IR	-15.5	00 T	25	CCl ₄	26	
B18C6-1 (II)	phenoi malononitrile	2.29	NMR	-24.3 -33.5	-38.1 -82.8	25 25	CoDe	∠o 39. 41	
B1000-1 (11)	malononitrile	1.70	NMR	-22.6	-43.5	25	ČĎČl₃	39, 41	
D 4000 1 (T)	tetracyanoethylene	0.41	UV			20	CHCl ₃	53	
B ₂ 18C6-1 (II)	H₂U H₂O	1 81	IK NMP	-7.9		25 4		26 54	
	H ₂ O	0.89	NMR	-55.7	-167	30	CHCl ₃	27, 54 (logK)	
	HBr	2.32	Spec			25	$CHCl_3$ (L + HBr <->		
	Bra	4 57	Snee			25	LH [*] ,Br [*]) CHCl, (LH+ B* + B*-	2	
	212	3.01	opec			20	<-> LH ⁺ ,Br ₃ ⁻)	2	
	ICl	2.08	Cal	-22	-117	25	C_6H_6	16	

1 1 1 1		1 774		ΔH	ΔS		10.4	
ligand (chart)	neutral molecule ^a	log K°	method	kJ/mol	J/K•mol	<i>T</i> , °C	conditions ^a	ref
	ICl	$1.80(M_2L)$	Cal	-22		25	$C_6H_6 (M + ML <-> M_2L)$	16
	2,3-dichloro-5,6-							
	dicyano-1,4-		~			_		
	benzoquinone	1.10	Spec			0	CH_2Cl_2	31
	2,3-dichloro-5,6-							
	dicyano-1,4-	0.05	S	90.90	55 9	10	CH CI	01
	2 3 dichloro 5 6	0.95	Spec	-20.39	-99.2	10		31
	2,3-uiciiioro-5,5-							
	benzoquinone	0.69	Snec			25	CH-Cl-	91
	2-dicvanoethylene-	0.00	Spec			20	0112012	01
	1.3-indandione	0.49	Spec			3	CH ₂ Cl ₂	32
	2-dicyanoethylene-							
	1,3-indandione	0.35	Spec	-15. 9	-46.9	12	CH_2Cl_2	32
	2-dicyanoethylene-		_					
	1,3-indandione	0.33	Spec			25	CH_2Cl_2	32
	9-dicyanomethylene-							
	2,4,7-trinitro-	0.05	0			-		
	fluorene	0.37	Spec			5	CH ₂ Cl ₂	33
	9-dicyanomethylene-							
	2,4,/-trimtro-	0.16	Snee			10	CH.Cl.	20
	9 dicyanomethylene.	0.10	spec			10		33
	2 4 7-trinitro-							
	fluorene	-0.07	Spec	-10.04	-35	25	CH ₂ Cl ₂	33
	malononitrile	none	NMR			25	$C_{e}D_{e}$ (insoluble	41
							in C_6D_6)	39.
	malononitrile	2.05	NMR	-19.7	-26.7	25	CDCl ₃	39, 41
	methanol		IR	-10.5		25	CCL	26
	phenol	1.35	IR	-16.7	-31.0	25	CCl4	26
	tetracyanoethylene	0.65	UV			20	CHCl ₃	53
	tetracyanoethylene	0.153	NMR			11	CH_2Cl_2	35
	tetracyanoethylene	0.065	NMR			24	CH ₂ Cl ₂	35
	tetracyanoethylene	-0.007	NMR	10.79	29.7	34		35
	2 3 5 6-totre		INIMIC	-10.72	-33.7	11-34	CH_2Cl_2	30
	cvenonvrezine	0.74	Spec			0.5	CH-Ch	20
	2.3.5.6-tetra-	0.14	opec			0.0	0112012	20
	cvanopyrazine	0.51	Spec			11.5	CH ₂ Cl ₂	29
	2,3,5,6-tetra-							
	cyanopyrazine	0.35	Spec	-20.7	-67.2	25	CH_2Cl_2	2 9
	tetrafluoro-1,4-		_					
	benzoquinone	none	NMR			31.6	CDCl ₃ (inadequate	
	0.455.4.4						solubility in CDCl ₃)	30
	2,4,5,7-tetranitro-	0.00	9			-		
	9-Huorenone 9 4 5 7 totropitro	0.60	Spec			Ð	CH_2Cl_2	33
	9.fluorenone	0.45	Spec			10	CH.CI.	22
	2 4 5 7-tetranitro-	0.40	Spec			10	0112012	00
	9-fluorenone	0.29	Spec	-15.27	-46	25	CHaCla	33
	1,3,5-trinitro-							00
	benzen e	0.038	NMR			31.5	DCE	36
	2,4,7-trinitro-							
	9-fluorenone	0.51	Spec			5	CH_2Cl_2	33
	2,4,7-trinitro-		~				GTT G	
	9-Huorenone	0.26	Spec			10	CH_2Cl_2	33
	2,4,7-trimitro-	-0.15	Spec	20 57	71 0	95	CH.Cl.	00
	2 4.6-trinitro-	-0.15	Spec	-20.07	-71.5	20		33
	toluene	0.017	NMR	-12.5	-40.9	30	DCE	37
B ₂ 18C6-2 (II)	HBr	1.30	Spec			25	$CHCl_3$ (L + HBr <->	
	_						LH ⁺ ,Br ⁻)	2
	Br_2	4.57	Spec			25	$CHCl_3$ (LH ⁺ ,Br ⁻ + Br ₂	
D 1000 1 (II)	-1 - 4 - 1						<> LH ⁺ ,Br ₃)	2
Py18C6-1 (II)	malononitrile	1.63	NMR	-34.7	-85.6	25		7, 39
		1.49	Pot	-10.0	-4.21	20	\mathbf{U}_{13}	7, 39
Pv18C6-2 (II)	11 70	<-1.0	Pot			25	H_{10} , 0.1 M Et NCI	43
Py18C6-3 (II)	H ₂ O	1.59	Pot			25	H ₂ O	55
•	H_2O	2.42	Pot			25	85.4 wt% EtOH/H2O	55
	H ₂ O	2.54	Pot			25	51.2 wt% MeOH/H ₂ O	55
N18C6-1 (II)	malononitrile	1.53	NMR	-23.8	-50.5	25	C ₆ D ₆	39, 41
NT 10/00 1 /TT	malononitrile	nm	NMR			25		39, 41
1121000-1 (11)	n2U	2.01	NINK			30		18

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , °C	conditions ^d	ref
N ₆ 18C6-1 (III)	catechol	2.20(H ₂ MH ₃ L)Polg				25	H ₂ O, 0.2 M NaClO ₄ ,	
• • •							pH 7.6-8.5 (0.05-0.2 M TRIS), $(H_2M + H_3L^{3+}$	50
	cimetidine	2.74(MH ₃ L)	Polg			25	$H_2O_1 0.2 \text{ M NaClO}_4$ (M + Hal ³⁺ <-> MHal ³⁺)	57
	cimetidine	2.89(MH ₃ L)	Pot			25	$(M + H_3L^{3+})$ H ₂ O, 0.2 M NaClO ₄ $(M + H_3L^{3+})$ -> MH ₃ L ³⁺)	57
	dim a prit ^e	4.12(MH ₃ L)	Pot			25	$H_2O, 0.2 \text{ M NaClO}_4$ (M + $H_3L^{3+} <-> MH_3L^{3+}$)	57
	dichloroiso- proterenol	2.93(MH ₃ L)	Polg			25	H ₂ O, 0.2 M NaClO ₄ , pH 7.6-8.6 (0.1 M TRIS)	-
	dopa	3.57(H₃MH₃L)	Polg			25	$(M + H_3L^{\circ+} <-> MH_3L^{\circ+})$ H ₂ O, 0.2 M NaClO ₄ , pH 7.8-8.6 (0.05-0.2 M TRIS), (H ₃ M + H ₃ L ³⁺)	56
	2-ethylamino-						$H_3MH_3L^{3+}$)	56
	pyridine famotidine ^e	none 4.00(MH ₃ L)	? Polg			25 25	H ₂ O, 0.2 M NaClO ₄ H ₂ O, 0.2 M NaClO ₄	57
	histamine	3.05(MH ₃ L)	Polg			25	$(M + H_3L^{3+} <-> MH_3L^{3+})$ H ₂ O, 0.2 M NaClO ₄	57
	metiamide ^e	1.63(MH ₃ L)	Pot			25	$(M + H_3L^{3+} <-> MH_3L^{3+})$ $H_2O, 0.2 M NaClO_4$	57
	nordim a prit ^e	3.78(MH ₃ L)	Pot			25	$(M + H_3L^{3+} <-> MH_3L^{3+})$ $H_2O, 0.2 M NaClO_4$	57
	ranitidine ^e	3.79(MH ₃ L)	Pot			25	$(M + H_3L^{3+} <-> MH_3L^{3+})$ H ₂ O, 0.2 M NaClO ₄	57
	resorcinol	3.11(H₂MH₃L)	Polg			25	$(M + H_3L^{3+} <-> MH_3L^{3+})$ H ₂ O, 0.2 M NaClO ₄ , pH 7.6-8.8 (0.1 M TRIS) (H ₂ M + H ₃ L ³⁺ <->	57
	thiour ea	2.34(MH ₃ L)	Pot			25	$H_2MH_3L^{3+})$ $H_2O, 0.2 M NaClO_4$	56
	urea	1.66(MH ₃ L)	Polg			25	$(M + H_3L^{3+} <-> MH_3L^{3+})$ H ₂ O, 0.2 M NaClO ₄	57
	veratraldehyde	2.40(MH ₃ L)	Polg			25	$(M + H_3L^{3+} <-> MH_3L^{3+})$ H ₂ O, 0.2 M NaClO ₄ , pH 8.0-8.6 (0.03-0.06 M borate). (M + H_3L^{3+} <->	57
						••	MH_3L^{3+}	56
$S_{2}18C6-1$ (III)	H ₂ O Io	0.38 2.41	NMR Spec	-34	-49	30 25	CHCl ₃ CCL	19 20
$BS_{2}18C6-1$ (III) (1.3-B)21C6-1	I_2	1.97	Spec	-24.5	-26	25	CCl ₄	20
(III) (1.3-B)21C6-2	H ₂ O	1.15	NMR			22	CDCl ₃	25
(III)	malononitrile	0.70	NMR	-16.3	-40.7	25	C_6D_6	39, 41
Py21C7-1 (III)	malononitrile	0.70	NMR NMR	-21.8	-59.0	25 25		7,39
Pv21C7-2 (III)	urea	-0.12	Pot	-17.2	-00.0	25 25	H_2O , 0.1 M Et ₄ NCl	43
Py21C7-3 (III)	H ₂ O	0.78	Pot			25	H ₂ O	55
	H ₂ O	1.48	Pot			25	85.4 wt% EtOH/H ₂ O	55
K N 0107 1 (III)	H ₂ O	1.52	Pot			25	51.2 wt% MeOH/H ₂ O	55
$K_4N_221C7-2$ (III) (1.3-B)24C7-1	H_2O H_2O	2.24 1.81	NMR			22 22	CDCl ₃ CDCl ₃	40 40
(III) 24C8-1 (III)	H2O tetrafluoro-1,4-	1.30	NMR			22	CDCl ₃	25
Cy ₂ 24C8-1 (III)	benzoquinone H ₂ O	-0.252	NMR IR	-12.1		31.6 25	CDCl ₃ CCl ₄	30 26
	methanol phenol	2.3 9	IR IR	-14.6 -23.4	-33.1	25 25		26 26
B ₂ 24C8-1 (III)	H_2O H_2O	0.75	IR NMR	-10.9		25 30	CCL CHCl ₃	26 19
	2,3-uichioro-3,8- dicvano-1.4-							
	benzoquinone 2,3-dichloro-5,6-	1.15	Spec			0	CH ₂ Cl ₂	31
	dicyano-1,4- benzoquinone 2,3-dichloro-5,6-	0.98	Spec	-18.5	-56.4	9.5	CH_2Cl_2	31
	benzoquinone	0.88	Spec			25	CH ₂ Cl ₂	31

ligand (chart)	neutral moleculeª	log K ^b	method	ΔH kJ/mol	ΔS J/K•mol	<i>T</i> , °C	conditions ^d	ref
	2-dicyanoethylene- 1,3-indandione	0.80	Spec			3	CH ₂ Cl ₂	32
	2-dicyanoethylene- 1,3-indandione	0.71	Spec	-20.6	-57.4	10	CH ₂ Cl ₂	32
	2-dicyanoethylene- 1,3-indandione 9-dicyanomethylene-	0.60	Spec			25	CH ₂ Cl ₂	32
	2,4,7-trinitro- fluorene 9-dicyanomethylene- 2,4,7-trinitro-	0.35	Spec			3	CH_2Cl_2	33
	fluorene 9-dicyanomethylene- 2.4.7-trinitro-	0.23	Spec			11	CH ₂ Cl ₂	33
	fluorene	0.13	Spec	-7.23	-21.7	25	CH_2Cl_2	33
	methanol phenol 2356-tetre-	1.95	IR IR	-14.2 -21.8	-36. 9	25 25	CCl ₄ CCl ₄	26 26
	cyanopyrazine	0.85	Spec			2	CH_2Cl_2	2 9
	cyanopyrazine	0.72	Spec			11	CH_2Cl_2	2 9
	cyanopyrazine	0.53	Spec	-10.4	-25.0	25	CH_2Cl_2	2 9
	2,4,5,7-tetranitro- 9-fluorenone	0.60	Spec			3	CH_2Cl_2	33
	2,4,5,7-tetranitro- 9-fluorenone	0.48	Spec			11	CH ₂ Cl ₂	33
	2,4,5,7-tetranitro- 9-fluorenone	0.43	Spec	-9 .0	-22	25	CH_2Cl_2	33
	2,4,7-trinitro- 9-fluorenone	0.57	Spec			3	CH_2Cl_2	33
	2,4,7-trinitro- 9-fluorenone 2,4,7-trinitro-	0.48	Spec			11	CH_2Cl_2	33
	9-fluorenone urea	0.18 1.1	Spec Polg	-16.6	-50. 9	25 25	CH ₂ Cl ₂ MeOH, 0.1 M Et ₄ NI	33
Py24C8-1 (III)	malononitrile	•0.48	NMR	-18.0	-50.5	25	C_6D_6	36 7, 39 7, 30
Py24C8-2 (III)	urea	-0.26	Pot	-1.90	-19.7	25 25	H_2O , 0.1 M Et ₄ NCl	7, 39 43
Py24C8-3 (III)	H₂O H₂Ci	0.60 1.23	Pot Pot			25 25	H₂O 85.4 wt% EtOH/H₀O	55 55
_	H ₂ O	1.32	Pot			25	51.2 wt% MeOH/H ₂ O	55
K ₄ N ₂ 24C8-1 (III)	H ₂ O	large	NMR			22	$CDCl_3$ (K too large to be measured)	40
$K_4N_224C8-2$ (III) $K_4N_224C8-3$ (III) (1.3-B)27C8-1	H ₂ O H ₂ O	3.19 1.36	NMR NMR			22 22	CDCl ₃ CDCl ₃	40 40
(III) B27C9-1 (IV)	H ₂ O	1.36	NMR Polg			22 25	CDCl ₃ MeOH 0.1 M Et.NI	25
$P_{\rm W} = 27 C \Theta_{-1} (IV)$	melononitrile	0.48	NMR	-146	-30 3	25	(Rb as indicator)	38 7 20
1 92/00-1 (10)	malononitrile	nm	NMR	-14.0	-00.0	25 25	CDCl ₃	39
Py27C9-2 (IV)	urea H O	0.10	Pot			25	H_2O , 0.1 M Et ₄ NCl	43
Py2/09-3 (IV)	H ₂ O H ₂ O	0.30	Pot			25 25	$85.4 \text{ wt}\% \text{ EtOH/H}_{2}O$	55 55
	H ₂ O	1.00	Pot			25	51.2 wt% MeOH/H ₂ O	55
(1,3-B)30C9-1 (IV) (1,3-B)30C9-2	H ₂ O	1.67	NMR			22	CDCl ₃	25
(IV)	urea	-0.10	Pot			25	H ₂ O	43
B ₂ 30C10-1 (IV)	tetrafluoro-1,4- benzoquinone	none	NMR			31.6	CDCl ₃ (inadequate solubilty in CDCl ₃)	30
	1,3,5-trinitro- benzene	0.301	NMR	-20.43	-61.3	31.5	DCE	36
	1,3,5-trinitro- benzene	0.137	NMR			45	DCE	36
	2,4,0-trinitro- toluene	-0.070	NMR			30	DCE	37
Py30C10-1 (IV)	malononitrile	0.48	NMR	-13.4	-35.1	25	$\overline{C_6D_6}$	7, 3 9
	malononitrile	nm 0.15	NMR Pot			25 25	$CDCl_3$	3 9
Py30C10-2 (IV)	urea	0.06	Pot			25	H_2O , 0.1 M Et4NCl	43 43

ligand (chart)	neutral molecules		methods	ΔH k.I/mol	ΔS	т ° С	conditioned	
inganu (chart)	neutral molecule-	log A.	method	KU/ IIIQI	9/ К•Щ01	1, 0	CONCISIONS	IGI
(1,3-B)33C10-1 (IV)	urea	-0.17	Pot			25	H ₂ O	43
Py33C11-1 (IV)	malononitrile	0.60	NMR	-16.7	-44.9	25	C_6D_6	7, 39
(NI 1906)/D1505) 1	maiononitrile	nm	NMR			25	CDCI ₃	7, 39
(IN61000)(D1000)-1	cetechol	9 18	Polg			25	H-O 0.2 M NoCIO	
(1)	Catecnor	2.10	roig			20	nH 7-8 (TRIS)	58 59
		1 0.	J	10	-1 / /		pii : 0 (1110)	00, 00
		I. Cor	onanas an	a Orypta	nas (cont.)		
			b. Hem	ispheranc	is		_	
Spher-18C3-1 (V)	malononitrile	1.49	NMR	-33.9	-85.6	25	C_6D_6	60, 61
0.1 D 1000 1	malononitrile	1.45	NMR	-35.1	-89.9	25	CDCl ₃	60, 61
Spher-Py18C3-1	-1					05		a 0
(V)	malononitrile	nm	NMR	10.7	40.1	20		60
Spher Dy18C4.1	maionomitme	0.50	INIVIA	-19.7	-49.1	20	CDCI3	00
(V)	melononitrile	1 49	NMR	-163	-96 7	25	C-D-	60 61
(•)	malononitrile	2.02	NMR	-16.3	-16.8	25	CDCl	60, 61
Spher-Pyrano-					20.0			00, 01
18C4-1 (V)	malononitrile	1.58	NMR	-23.8	-49.1	25	$C_6 D_6$	60
	malononitril e	nm	NMR			25	CDCl ₃	60
Spher-21C4-1 (V)	malononitrile	1.20	NMR	-25.9	-63.2	25	C_6D_6	6 0
	malononitril e	1.18	NMR	-7.53	-2.81	25	CDCl ₃	60
		1. Cor	onands an	d Crypta	nds (cont.))		
						,		
[9 1 1] 1 (37)	т	7 40	C. UI	yptands		059	$CHCI = 2 (B_{11}) NCIO $	
[2.1.1]-1 (V)	12	1.40	VOIT			201	(K = [1+1]/[1] [1])	60
[9 9 1]-1 (V)	T.	6 73	Volt			952	$(\mathbf{X} = [1^{\circ} \mathbf{L}]/[1]_2(\mathbf{L}])$	62
[2.2.1]-1 (*)	12	0.75	VOIL			20:	(K = [1+1]/[1,1[1])	69
[2, 2, 2] - 1 (V)	H-O	1.17	NMR			30	$(\mathbf{R} = [\mathbf{I} \ \mathbf{L}] / [\mathbf{I}_{2}] [\mathbf{L}])$	19
	I ₂	6.36	Volt			25?	CHCl. $I = ?$ (Bu, NClO ₄)	10
	-2	0.00				201	$(K = [I^+L]/[I_0][L])$	62
	IC1	(ML)	Cal	-67		25	C ₆ H ₆	16
	ICl	(M_2L)	Cal	-65		25	$C_{6}H_{6} (M + ML <-> M_{2}L)$	16
	1054 1014	a. Monoc	2. Cyc cyclic with	lophanes Oxygen	Donor Ato	ms		
Nap ₂ 24C4-1 (VI)	1,3,5-trinitro-	0.44	NIMD			0	CDCI	<u></u>
Nep-98C4-1 (VI)	1 2 5 tripitro-	2.44	NNR			1	CDCI ₃	63
14ap22004-1 (VI)	henzene	1.88	NMR			2	CDCI	83
(1.4-B) ₄ 28C4-1	Dellizene	1.00	1414114			÷	CDCI3	00
(VI)	1.4-diamino-							
	benzene	<1	NMR			20	D ₂ O	64
	1,4-dicyanobenzene	3.18	NMR	-25.5	-20.0	20	D_2O	3, 64
	1,4-dimethoxy-							
	benzene	1.89	NMR			20	D_2O	3
	1,4-dimethoxy-	41.00				~~	5.0	• •
	Denzene	<1.93	NMR			20	D_2O	64
	1,4-01metnyl-	<1.03	NMP			90	D-0	64
	dimethyl 1 4-benzene.	1.90	TATATE			20	D_2O	04
	dicarboxvlate	3.28	NMR			20	D ₀ O	64
	1.4-dinitrobenzene	3.13	NMR			20	D_2O	64
	ethyl anthranilate	2.30	Fluor			19.5	H ₂ O	3,65
	4-nitrophenol	2.78	NMR			20	D_2O	64
	4-nitrotoluene	2.78	NMR			20	D_2O	3, 64
	<i>p</i> -tolunitrile	2.62	NMR			20	D_2O	64
(1 4 D) 0004 0	<i>p</i> -xylene	<1.93	NMR			20	D_2O	64
(1,4-B) ₄ 2804-2	1 4 diaminahanana	1 00	NIMD			00	DO	
(1)	1,4-diaminobenzene	1.32	NMR	-30.5	- 47 1	20	D_2O	64 65 66 67 69
	1.4-dimethoxy-	0.01	141411	-00.0		20	D20	00,00,007,08
	benzene	2.57	NMR	-23.8	-31.4	20	D ₂ O	64.66.67 68
	dimethyl 1,4-benzene-							,,,,
	dicarboxylate	3.32	NMR	-33.5	-49.9	20	D_2O	64,66,67,68
	hydroquinone	1.48	NMR			20	D_2O	64
	4-nitrophenol	3.34	NMR	-42.3	-79.9	20		64, 66
	4-nitrotoiuene	J.JJ 2 11	NMK	-30.0	-07.0	20	D₂O	64,66,67,68
	p-Aylene guest-1	2.46	ESR	-20.0	-51.4 16.7	20	$H_{0} \cap (K \text{ is for hert})$	04,00,07,68
	0		*					

complexation with guest phenyl group)

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>Т</i> , °С	conditions ^d	ref
Nap ₄ 28C4-1 (VI)	guest-6° guest-7°	none none	NMR NMR			20 20	MeOD-d ₃ /D ₂ O (40:60 v/v) MeOD-d ₃ /D ₂ O (40:60 v/v)	70 70
Isoquin28C4-1 (VI)	N-acetyl-	weak	NMR			30	MeOD-d ₃ /0.5 aq. KD ₂ PO ₄	
. ,	tryptophane 2,6-dicyano-	binding considerable	NMR			30	(40:60 v/v) MeOD-d ₃ /0.5 aq. KD ₂ PO ₄	71
	naphthalene	binding					(40:60 v/v)	71
	2,6-dimethoxy- naphthalene	co nsidera ble binding	NMR			30	MeOD-d ₃ /0.5 aq. KD ₂ PO ₄ (40:60 v/v)	71
	naphthalene	none	NMR			30	MeOD- $d_3/0.5$ aq. KD ₂ PO ₄ (40:60 v/v)	71
	mandelic acid	weak binding	NMR			30	MeOD-d ₃ /0.5 aq. KD ₂ PO ₄ (40:60 v/v)	71
	2-cyano-6-methoxy-	0.50				00	MOD 1/05 . KD DO	
	naphthalene	2.53	NMR			30	MeOD- $d_3/0.5$ aq. KD ₂ PO ₄ (44:56 v/v)	71, 72
	quinine	none	NMR			30	MeOD- $d_3/0.5$ aq. KD ₂ PO ₄ (40:60 v/v)	71
	<i>p</i> -tolunitrile	weak binding	NMR			30	MeOD-d ₃ /0.5 ag. KD ₂ PO ₄	
	tryptophane	none	NMR			30	(40:60 v/v) MeOD-d ₂ /0.5 eq. KD ₂ PO ₄	71
	d yptophane	none	1410110			00	(40:60 v/v)	71
	guest-2 ^e	~1.70	NMR			30	MeOD- $d_3/0.5$ aq. KD ₂ PO ₄ (40:60 v/v)	71, 72
Isoquin28C4-2								•
(VI)	2-cyano-6-methoxy-	0.50				00		50
	naphthalene	2.53	NMR			20	MeOD- d_3/D_2U (40:60 v/v)	73
	guest-2°	~ 1.70 ~ 2.48	NMR			30	$M_{e}OD_{-}d_{3}/D_{2}O(40.60 \text{ v/v})$	71 79 73
	guest-4	~ 2.48	NMR			30	$MeOD-d_3/D_2O (40:60 v/v)$ $MeOD-d_3/D_2O (40:60 v/v)$	71,72,73
Nap ₂ (1,4-B) ₂ - 29C4-1 (VII)	guest-2"	3.40	NMR			20	$MeOD-d_{3}/0.1 M DCl$ (40:60 v/v)	74
	guest-3 ^e	3. 49	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	74
	guest-5°	3.00	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	74
	guest-6°	3.40	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	74
	guest-8 ^e	3.45	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	74
Nap ₂ (1,4-B) ₂ - 29C4-2 (VII)	guest-2 ^e	3.32	NMR			20	MeOD- $d_3/0.1$ M DCl (40:60 $v(v)$)	74
	guest-3e	3.32	NMR			20	$MeOD-d_{2}/D_{2}O$ (40:60 v/v)	74
	guest-5 ^e	2.89	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	74
	guest-6 ^e	3.15	NMR			20	$MeOD - d_3/D_2O$ (40:60 v/v)	74
	guest-8 ^e	3.25	NMR			20	$MeOD - d_3/D_2O$ (40:60 v/v)	74
Nap ₂ (1,4-B) ₂ - 29C4-3 (VII)	2-cvano-6-methoxy-							
20010(11)	naphthalene	~4.77	NMR			20	D_2O (extrapolated K)	75
	naphthalene	3.30	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	75, 76
	naphthalene	2.61	NMR			20	MeOD- d_3/D_2O (60:40),	75
	2-cvano-6-methoxy-						0.1 M KCI	10
	naphthalene	1. 9 0	NMR			20	MeOD-d ₃ /D ₂ O (80:20), 0.1 M KCl	75
	2-cyano-6-methoxy- naphthalene	1.08	NMR			20	$MeOD-d_3$	75
(1,4-B)430C4-1 (VII)	1 1 diawanahanzana	9.15	NMR			20	M_{e} O_{D} d_{e} $/D_{e}O_{e}$ (40.60 y/y)	64 68
(*11)	1,4-dicyanobenzene	1.20	NMR			20 20	MeOD- d_3 MeOD- d_3	64
	naphthalene	3.08	Fluor			1 9 .5	H ₂ O	65, 77
	1,4-aimethoxy- benzene	1.98	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64, 68
	1,4-dimethoxy- benzene	<<1	NMR			20	$MeOD-d_3$	64
(1,4-B) ₄ 30C4-2 (VII)	2-amino-6-nitro-							
	naphthalene 2-amino-6-nitro-	2.01	NMR			30	$MeOD-d_3$	68, 78
	naphthalene 2-amino-6-nitro-	2.02	NMR			30	$MeOD-d_3$	64
	naphthalene	0.60	NMR			30	Me_2SO-d_6	64

ligand (chart)	neutral molecule ^a	log K ^b	method ^c	ΔH kJ/mol	ΔS J/K·mol	<i>T</i> , °C	conditions ^d	ref
······	2-bromo-6-methoxy-							
	naphthalene	2.07	NMR			30	$MeOD-d_3$	64
	naphthalene 2-cyano-6-methoxy-	2.07	NMR			30	$MeOD-d_3$	68 , 78
	naphthalene	2.08	NMR			30	MeOD-d ₃	64
	6-cvano-2-naphthol	2.20	NMR			30	MeOD-da	78
	6-cvano-2-naphthol	2.22	NMR			30	MeOD-d	64
	6-cyano-2-naphthol	0.85	NMR			30	MesSO-de	64
	6-cvano-2-naphthol	~0.81	NMR			30	MesSO-de	04
	2 6-diamino-	0.01					(estimated K)	78
	naphthalene 2 6-diamino-	1.52	NMR			30	$MeOD-d_3$	68, 78
	naphthalene 2.6-diamino-	1.43	NMR			30	$MeOD-d_3$	64
	naphthalene	-0.40	NMR			30	Me ₂ SO-d ₆	64
	1 4-dicyanobenzene	3.20	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64. 68
	1,4-dicyanobenzene 2.6-dicyano-	2.11	NMR			20	$MeOD-d_3$	64
	naphthalene 2,6-dicyano-	2.44	NMR	-31.8	-59.0	30	$MeOD-d_3$	68, 78
	naphthalene 2.6-dicyano-	2.43	NMR			30	$MeOD-d_3$	64
	naphthalene	~1.06	NMR			30	Me_2SO-d_6 (estimated K)	78
	naphthalene	1.20	NMR			30	Me_2SO-d_6	64
	naphthalene 2 6-dihydroxy-	1.38	NMR			30	$MeOD-d_3$	68, 78
	naphthalene	1.36	NMR			30	$MeOD-d_3$	64
	benzene	2.76	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64, 68
	benzene 2.6-dimethoxy-	1.48	NMR			20	$MeOD-d_3$	64
	naphthalene 2.6-dimethoxy-	1.67	NMR			30	$MeOD-d_3$	68, 78
	naphthalene 2.6-dimethoxy-	1.72	NMR			30	$MeOD-d_3$	64
	naphthalene	~0.20	NMR			30	Me_2SO-d_6 (estimated K)	78
	2,6-dimethoxy- naphthalene	0.30	NMR			30	Me ₂ SO-d ₆	64
	dimethyl 1,4-benzene-							
	dicarboxylate 2,6-dimethyl-	3.62	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64
	naphthalene 2.6-dimethyl-	1.83	NMR			30	$MeOD-d_3$	64, 78
	naphthalene dimethyl	0.60	NMR			30	Me_2SO-d_6	64
	2,6-naphthalene- dicarboxylate	2.27	NMR			30	$MeOD-d_3$	64.68.78
	dimethyl 2.6-naphthalene-							,,
	dicarboxylate dimethyl 2.6-	1.11	NMR			30	Me_2SO-d_6	64
	naphthalenedione dimethyl	1.81	NMR			30	MeOD-d ₈	64
	2,0-hapithalene- disulfonate 2.6-dimethylthio-	1. 96	NMR			30	$MeOD-d_3$	64
	naphthalene 2.6-dinitro-	2.21	NMR			30	$MeOD-d_3$	64
	naphthalene 2.6-dinitro-	2.33	NMR			30	$MeOD-d_3$	64,68,78
	naphthalene 6-methoxy-2-	0 .9 5	NMR			30	Me_2SO-d_6	64
	naphthoic acid 6-methoxy-2-	2.13	NMR			30	$MeOD-d_3$	64, 78
	naphthoic acid 2-methoxy-6-nitro-	0.48	NMR			30	Me_2SO-d_6	64
	naphthalene	2.04	NMR			30	$MeOD-d_3$	68, 78

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> . ℃	conditions ^d	ref
	2-methoxy-6-nitro-							- •-
	naphthalene 2-methyl-6-	2.05	NMR			30	$MeOD-d_3$	64
	naphthaldehyde	1.99	NMR			30	$MeOD-d_3$	78
	diacetate	2.04	NMR			30	$MeOD-d_3$	64, 78
	dicarboxamide	1.46	NMR			30	$MeOD-d_3$	64
	dicarboxylic acid	2.32	NMR			30	$MeOD-d_3$	64, 78
	dicarboxylic acid	0.70	NMR			30	Me_2SO-d_6	64
	dimethanol	1.30	NMR			30	$MeOD-d_3$	64, 78
	disulfonamide	1.60	NMR			30	$MeOD-d_3$	64
	4-nitrophenol N,N,N',N'-	3.08	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64
	tetraethyl							
	2,6-n a phthal e ne- dicarboxamid e	<1	NMR			30	$MeOD-d_3$	64
(1,4-B) ₄ 30C4-3 (VII)	n-cresol	3 51	NMR	-38 1	-62.7	20	DaO	64 66
(•)	p-cresol	0.01	Cal	-44.4	-84.3	20	H_2O	79
	p-cresol		Cal	-46.0		26	H ₂ O	79
	<i>p</i> -cresol		Cal	-51. 9		37	H ₂ O	79
	naphthalene	3.85	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64
	naphthalene	1.49	NMR			20	MeOD-d ₃	64, 68
	1,4-diaminobenzene	2.55	NMR	-29.7	-52.8	20	D ₂ O	64, 66
	1,4-dicyanobenzene	3.89	NMR	-39.7	-61.3	20	D_2O	64,66, 67,68
	1,4-dicyanobenzene			-43.1	-72.8	20	H ₂ U H ₂ O	79 79
	1,4-dicyanobenzene		Cal	-45.6		37	H₂O	79
	1,4-dicyanobenzene	2.5 9	NMR			20	MeOD- d_3/D_2O (40:60 v/v)	64, 68
	1,4-dicyanobenzene 2,6-dicyano-	1.38	NMR	-17.6	-34.2	20	$MeOD-d_3$	64,66,67,68
	n a phthalene 1,4-dim e tho x y-	1.89	NMR			20	$MeOD-d_3$	64, 68
	benzene 1,4-dimethoxy-	4.01	NMR	-42.7	-68.4	20	D_2O	64,66,67,68
	benzene 1,4-dimethoxy-		Cal	-41.8	-65.7	20	H ₂ O	7 9
	benzene 1,4-dimethoxy-		Cal	-42.3		26	H ₂ O	7 9
	benzene 1,4-dimethoxy-		Cal	-43.5		35	H ₂ O	7 9
	benzene 1,4-dimethoxy-	2.53	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64, 68
	benzene 1,4-dimethoxy-	0 .9 0	NMR	-18.4	-45.6	20	$MeOD-d_3$	64,66,67,68
	benzene 1,4-dimethoxy-		Cal	-8.4		8	МеОН	79
	benzene 1,4-dimethoxy-		Cal	-15.1		14	МеОН	79
	benzene 2,6-dimethoxy-		Cal	-15.5	-35.7	20	MeOH	79
	naphthalene 2,6-dimethoxy-	3.65	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64
	naphthalene dimethyl	1.08	NMR			20	$MeOD-d_3$	64, 68
	1,4-benzene- dicarboxylate dimethyl	5.07	NMR	-44.8	-57.0	20	D_2O	64,66,67,68,79
	1,4-benzene- dicarboxylate dimethyl-		Cal	-49.4	-71.4	20	H₂O	79
	1,4-Denzene- dicarboxylate dimethyl		Cal	-49.8		26	H ₂ O	79
	dicarboxylate		Cal	-53.6		37	H₂O	7 9

ligand (chart)	neutral moleculeª	$\log K^b$	method	ΔH kJ/mol	∆S J/K•mol	<i>Т</i> , °С	conditions ^d	ref
	dimethyl							
	1,4-benzene-							
	dicarboxylate	3.32	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64
	dimethyl							
	1,4-benzene-	1 28	NIMD			90	Moon d	C.4
	1 4-dinitrohenzene	3.80	NMR	-30 7	-61 3	20	D_{-0}	04 64 66
	1.4-dinitrobenzene	0.00	Cal	-41.0	-65.7	20	H ₂ O	79
	1.4-dinitrobenzene		Čal	-41.4	00.1	26	H ₂ O	79
	1,4-dinitrobenzene		Cal	-43.5		35	H ₂ O	79
	hydroquinon e	2.75	NMR			20	D_2O	64
	hydroquinone	2.71	NMR	-43.9		20	D_2O	7 9
	hydroquinone		Cal	-43.1	-94.2	20	H ₂ O	79
	hydroquinone			-46.9		26		79 70
	A-nitronhenol	4 36	NMR	-40.1	-827	20	D_2O	19 64 66
	4-nitrophenol	4.00	Cal	-41.8	-02.1	15	H ₂ O	79
	4-nitrophenol		Cal	-43.9	-65.7	20	H ₂ O	79
	4-nitrophenol		Cal	-45.6		26	H ₂ O	79
	4-nitrophenol		Cal	-48.1		30	H ₂ O	79
	4-nitrophenol		Cal	-53. 6		35	H ₂ O	79
	4-nitrophenol	3.00	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	64
	4-nitrophenol	1.00	NMR	40.0	E1 0	20	MeOD-a ₃	64
	4-nitrotoluene	4.48	Col	-40.2	-01.3	20		54,00,07,08 70
	4-mitrotoluene		Cal	-36.8	-30.0	26	H_2O	79
	4-nitrotoluene		Cal	-37.7		37	H ₂ O	79
	p-tolunitrile	4.48	NMR	-41.0	-54.2	20	D_2O	64.66
	p-tolunitrile		Cal	-33. 9	-30.0	20	H ₂ O	79
	<i>p</i> -tolunitrile		Cal	-35.6		26	H ₂ O	79
	<i>p</i> -tolunitrile		Cal	-38.5		35	H ₂ O	79
	p-xylene	3.97	NMR	-31.0	-29.9	20	D_2O	64,66,67,68
	<i>p</i> -xylene			-30.1	-27.1	20	H ₂ O	79 70
	<i>p</i> -xylene		Cal	-31.4		20 37	H ₂ O	79 70
(1.4-B)₄30C4-4	p-xylene		Cai	01.0		0.		10
(VII)	benzaldehyde	2.38	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	80, 81
	2-cyano-o-methoxy-	A 18	NMR			20	M_{0} D_{1} d_{2}/D_{2} O_{1} $(A_{0}, 6_{0}, w/w)$	80.81
	1.4-dicvanobenzene	3.06	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	80, 81
	2-naphthaldehyde	3.80	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	80, 81
(1,4-B) ₄ 30C4-5	- •							
(VII)	benzaldehyde	2.08	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	80, 81
	2-cyano-6-methoxy-	0.00	ND (D					aa at
	naphthalene	3.08	NMR			20	MeOD- a_3/D_2O (40:60 V/V)	80, 81
	2-nephthaldebyde	2.04	NMR			20	$M_{0}OD_{-}d_{3}/D_{2}O(40.60 v/v)$	80,81
Nep.30C4-1 (VII)	z-naphinaluenyue	2.57	NMR			20	$MeOD-d_3/D_2O(40.00 v/v)$	70
1149400011(11)	guest-7 ^e	2.51	NMR			20	$MeOD-d_3/D_3O$ (40:60 v/v)	70
Nap ₂ (1,4-B) ₂ -	8							
31C4-1 (VII)	guest-6°	2.60	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	70
	guest-7 ^e	2.75	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	70
IsoquinNap31C4-1	0							
(VIII)	2-cyano-o-methoxy-	3 33	NMP			20	M_{0} D_{1} d_{1} D_{2} D_{1} d_{1} d_{2} d_{3} d_{4} d_{2} d_{3} d_{4} d_{3} d_{4} d_{3} d_{4} d_{3} d_{4} d_{4} d_{3} d_{4} d_{4	79
	maphinalene	0.00 9 Q1	NMR			20	$M_{0}OD_{-}d_{3}/D_{2}O(40.00 \text{ V/V})$	13
	8 acot-2	2.01	1 11/110			20	(40:60 v/v)	73
	guest-3 ^e	3.03	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	73
	guest-5°	2.62	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	73
	guest-6°	2.67	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	73
	guest-8°	2.95	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	73
Incomin Nan 21 C4 2	guest-9"	2.30	NMR			20	$MeOD-d_3/D_2O(50:50 v/v)$	73
(VIII)	2-cvano-6-methoxy-							
(****	naphthalene	3.33	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	73
	guest-2"	2.97	NMR			20	MeOD-d ₃ /0.01 M DCl	
							(40:60 v/v)	73
	guest-3°	3.05	NMR			20	MeOD- a_3/D_2O (40:60 v/v)	73
	guest-o"	2.00	NMD			20	$M_{0} O D_{-} d_{2} / D_{2} O (40.60 \text{ v}/\text{v})$	(3 73
	guest-8	2.00	NMR			20	$MeOD-d_0/D_0O (40.00 V/V)$	73
	guest-9	2.36	NMR			20	$MeOD-d_3/D_2O$ (50:50 v/v)	73
(1,4-B) ₄ 32C4-1	-					• -		
(VIII)	fluoranthene	< 0.30	NMR			30		82
	nuorantnene	2.04	INIVIR			3 ∪	IVIEUD-03	62

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
	naphthalene	~1.15	NMR			30	MeOD-d ₂	82
	pervlene	2.92	Tit-EAS			30	MeOH	3.82
	pyrene	~2.08	NMR			30	MeOD-d ₃	82
	pyrene	~1.20	NMR			30	Me ₂ SO-d _e	82
(1.4-B) ₄ 32C4-2	P <i>J</i> 							
(VIII)	1-adamantanol	2.20	Fluor			19.5	H ₂ O	3, 83
	azulene	4.32	Solv Extr-EAS		20-22	H_2O	3,83,84	
	biphenyl	4.34	Solv Extr-EAS		20-22	H_2O	3,83,84	
	1,5-bis(dimethyl-							
	amino)n a phthalene	3.99	Sol-UV			20-22	H ₂ O, 0.015 M K ₂ CO ₃	
	.						pH ~11	3, 85
	trans-1,4-cyclo-		***					
	hexanedimethanol	2.70	Fluor			19.5	H_2O	3, 85
	1,3-dinydroxy-	0.00	121			10 5		0 00
	naphthalene	3.99	Fluor			19.5	H_2O	3, 83
	2,0-umyuroxy-	4.0	NMP			20	D-0	00
	2 7 dibydroxy	4.0	1414114			30	D_2O	00
	2,1-uillyuloxy-	4 28	Fluor			19.5	H-0	2 82
	1.(dimethylamino).	4.20	1 1001			10.0	1120	0,00
	naphthalene	3.97	Solv Extr-EAS		20-22	H ₀ O	3 83	
	1-(dimethylamino)-	0.01					0,00	
	naphthalene	3.97	Fluor			19.5	H ₂ O	83
	1.5-dimethyl-							
	naphthalene	4.52	Sol-EAS			20-22	H ₂ O	3.83
	2,6-dimethyl-						-	-,
	naphthalene	4.42	Sol-EAS			20-22	H ₂ O	3, 83
	durene	3.30	Sol-EAS			20-22	H ₂ O	83
	durene	3.28	Solv Extr-EAS		20-22	H ₂ O	3,83,84	
	fluoranthene	6.08	Sol-EAS			20-22	H ₂ O	83
	fluoranthen e	6.26	Solv Extr-EAS		20-22	H₂O	3,83,84	
	naphthalene	4.20	Fluor			19 .5	H ₂ O	83
	naphthalene	4.18	Sol-EAS			20-22	H ₂ O	83
	naphthalene	4.08	Solv Extr-EAS		20-22	H ₂ O	3,83,84	
	perylene	7.20	Sol-EAS			20-22	H ₂ O	3,83,84
	pyrene	6.04	Sol-EAS		00.00	20-22	H ₂ O	83
	pyrene	0.20	SOIV EXIT-EAS		20-22	H ₂ U	3,83,84 M-OD	0.00
	pyrene	1.60	INIVIR			30	$MeOD-a_3$	3,86
	pyrene	none	NMR			30	Ma-SO-da	96
	N.N.N'.N'-tetra-						110200-06	
	methylbenzidine	4.23	Sol-UV			20-22	H ₂ O, 0.015 M K ₂ CO ₃	
	•						pH ~11	3, 85
Nap ₄ 32C4-1							-	
(VIII)	guest-6°	2.66	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	70
	guest-7°	2.64	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	70
(1, 4-B)₂32C4-1								
(VIII)	isoquinoline	0.15	NMR			22	CDCl ₃	87
	quinoline	none	NMR			22	$CDCl_3$	87
(1,4-B) ₂ 32C4-2						~~		~~
(VIII)	indole	3.15	NMR			22	D_2O , $pD \sim 9$ (borate-d)	88
	isoquinoline	4.07	NMR	41.0	10	22	$D_2O, pD \sim 9 (borate-d)$	87,88
	lanidina	4.70	NMD	-41.0	-40	20	$D_2O, pD \sim 9 (borate-d)$	89
	lepidine	4.00	NMP	-41.0	-28	22	D_2O , $pD \sim 9$ (borate-d)	80
	1-methylindole	3 3 2	NMR	-41.0	-30	20	$D_2O, pD \sim 9 (borate-d)$	88 02
	1-methylindole	2 93	NMR	-67	34	25	$D_2O, pD \sim 9 (borate-d)$	80
	1-methyl-	2.00	1111110	-0.1	04	20	D ₂ O, pD ··· J (borate-d)	00
	isoquinoline	4.74	NMR			22	D_2O_1 pD ~9 (borate-d)	88
	quinaldine	4.04	NMR			22	$D_2O, pD \sim 9$ (borate-d)	88
	quinoline	4.00	NMR			22	D_2O , pD ~9 (borate-d)	87, 88
	quinoline	4.40	NMR	-46	-71	25	D_2O , pD ~9 (borate-d)	89
$(1,4-Cy)_232C4-1$								
(VIII)	indole	3.20	NMR			22	D_2O , pD ~9 (borate-d)	88
	isoquinoline	4.66	NMR	10.1	10	22	D_2O , $pD \sim 9$ (borate-d)	88
	lanidine	4.6Z	NMP	-12.1	40	20	$D_2 Q$, $pD \sim 9$ (borate-d)	89
	lepidine	4.40 1 69	NMP	19	100	22	$D_2 O, pD \sim \forall (borate d)$	80 80
	1-methylindale	4.02	NMR	4.4	100	20 99	D_2O , $pD \sim 0$ (borate-d) D_2O $pD \sim 0$ (borate-d)	88
	1-methylindole	3.67	NMR	1.3	75	25	D_2O , $pD \sim 9$ (borate-d)	89
	1-methyl-	0.01	- 147669	1.0		20	-20, p2 -0 (oviate-u)	
	isoquinoline	5.00	NMR			22	D_2O , pD ~9 (borate-d)	88
	quinaldine	4.30	NMR			22	D_2O , pD ~9 (borate-d)	88
	quinoline	4.34	NMR			22	$D_2O, pD \sim 9$ (borate-d)	88
	quinoline	4.70	NMR	-31.4	-16	25	D_2O , pD ~9 (borate-d)	89

ligand (chart)	neutral molecule	log Kb	method	ΔH k.I/mol	ΔS	T °C	conditions	raf
ingario (citar t)	neuriar morecure	log n	meniou	AU/ MOI	0/ IX/III01	1, 0		161
Nap ₂ (1,4-B) ₂ - 34C4-1 (VIII)	camphor	2.16	NMR			20	$MeOD-d_3/D_2O$ (50:50 v/v)	9 0
	acid	2.91	NMR			20	MeOD- d_3/D_2O (50:50 v/v) 0.01 M Na ₂ CO ₂	90
	cholic acid	2.16	NMR			20	$\frac{MeOD-d_3/D_2O}{0.01 \text{ M Na}_2CO_3}$	90
	cortisone	3.18	NMR			20	$MeOD-d_3/D_2O$ (50:50 v/v)	90
	deoxycholic acid	2.40	NMR			20	MeOD-d ₃ /D ₂ O (50:50 v/v) 0.01 M Na ₂ CO ₃	68, 9 0
	hydrocortisone	3.04	NMR			20	$MeOD-d_3/D_2O$ (50:50 v/v)	90
	lithocholic acid	3.85	NMR			20	$\frac{MeOD-d_3/D_2O}{0.01} (50:50 \text{ v/v})$	68, 9 0
	testosterone ursodeoxycholic	3.55	NMR			20	$MeOD-d_3/D_2O$ (50:50 v/v)	9 0
	acid	3.24	NMR			20	$\begin{array}{c} MeOD-d_3/D_2O \ (50:50 \ v/v) \\ 0.01 \ M \ Na_2CO_3 \\ \end{array}$	9 0
	guest-10 ^e	2.92	NMR			20	$\begin{array}{c} MeOD-d_3/D_2O (50:50 \text{ v/v}) \\ 0.01 \text{ M } Na_2CO_3 \\ \end{array}$	90
	guest-11 ^e	2.66	NMR			20	$MeOD-d_3/D_2O(50:50 v/v)$	90
	guest-12 ^e	2.72	NMR			20	$\begin{array}{c} MeOD-d_3/D_2O (50:50 \text{ v/v}) \\ 0.01 \text{ M Na}_2CO_3 \\ Magain OD A (50.50 \text{ v/v}) \\ 0.01 \text{ M Na}_2CO_3 \\ Magain OD A (50.50 \text{ v/v}) \\ 0.01 \text{ M Na}_2CO_3 \\ 0.01 M N$	9 0
	guest-13 ^e	2.30	NMR			20	$\begin{array}{c} \text{MeOD-}d_3/D_2\text{O} (50:50 \text{ v/v}) \\ 0.01 \text{ M Na}_2\text{CO}_3 \\ \text{MeOD} (50.50 \text{ v/v}) \\ \end{array}$	9 0
	guest-14 ^e	2.57	NMR			20	$\begin{array}{c} MeOD-d_3/D_2O \ (50:50 \ v/v) \\ 0.01 \ M \ Na_2CO_3 \\ \end{array}$	9 0
	guest-15"	2.64	NMR			20	$\begin{array}{c} MeOD-d_3/D_2O (50:50 \text{ v/v}) \\ 0.01 \text{ M Na}_2CO_3 \\ \end{array}$	90
	guest-16 ^e	2.63	NMR			20	MeOD-d ₃ /D ₂ O (50:50 v/v) 0.01 M Na ₂ CO ₃	9 0
			2. Cycloph	nanes (con	t.)			
		h. Monoc	velic with	Nitrogen I	Donor Atom	18		
(1.4-B) ₈ N ₃ 21C3-1		0						
(IX)	1-(2-pyridylazo)- 2-naphthol	5.87	Spec			30	H_2O , 0.1 M KCl,	01 00
$(1,4-B)_{3}N_{3}21C3-2$	1-(2-puridularo)-						PH 8 (0.01 M HEPES)	91, 92
(111)	2-naphthol	7.58	Spec			30	H2O, 0.1 M KCl pH 8 (0.01 M HEPES)	9 3
$K_4Py_2(1,4-B)_2N_4$ -								
26C4-1 (IX)	N-benzyl-1,4-dihydro-	0.15	731			00	M. COMI O (FOF ())	
	nicotinamide	3.15	Fluor			30	Me_2SO/H_2O (5:95 V/V), 0.1 M KCl, pH 10	04 05
	indole	3.83	Fluor			30	Me_2SO/H_2O (5:95 v/v), pH 10 (0.01 M CAPS)	94, 90 05
	indole	3.63	Fluor			30	Me_2SO/H_2O (5:95 v/v),	90
							0.1 M KCl, pH 10 (0.01 M CAPS)	94
	N-phenyl-1-amino- naphthalene	2.86	Fluor			30	Me_2SO/H_2O (5:95 v/v),	
	-						0.1 M KCl, pH 10 (0.01 M CAPS)	94, 95
$K_4Py_2(1,4-B)_2N_4-$								•
26C4-2 (IX)	N-benzyl-1,4-di-	9 7 6	Elman			20	M. SO/H O (5:05 ()	
	nyaronicotinamiae	0.70	Fluor			30	Me_2SO/H_2O (5:95 V/V), 0.1 M KCl, pH 10	04.05
	indole	4.11	Fluor			30	(0.01 M CAPS) $Me_2SO/H_2O (5:95 \text{ v/v}),$ H = 10 (0.01 M CAPS)	94, 90
	indole	3.66	Fluor			30	Me_2SO/H_2O (5:95 v/v),	90
							0.1 M KCl, pH 10 (0.01 M CAPS)	94
	N-phenyl-1-amino-	none	Flue			30	Me.SO/H.O (5.05 v/v)	
	Hapmingions	none	riuur			00	0.1 M KCl, pH 10	94 05
(1.4-B) ₄ N ₄ 28C4-1							(0.01 M OAL 0)	<i>0</i> -2, 70
(IX)	N-phenyl-1-amino- naphthalene	2.7 9	Fluor			30	H ₂ O, 0.1 M KCl,	
							pH 10 (0.01 M CAPS)	96

ligand (chart)	neutral molecule ^a	$\log K^b$	method	ΔH kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
(1,4-B) ₄ N ₄ 28C4-2								
(IX)	N-phenyl-1-amino- naphthalene	5.00	Fluor			30	H₂O, 0.1 M KCl, pH 8 (0.01 M HEPES)	97, 98
	N-phenyl-2-amino- naphthalene	5.36	Fluor			30	H ₂ O, 0.1 M KCl,	07 09
(1,4-B) ₄ N ₄ 28C4-3							ph 8 (0.01 M HEFES)	91,90
(IX)	N-phenyl-1-amino- naphthalene	5.32	Fluor			30	H₂O, 0.1 M KCl, pH 8 (0.01 M HEPES)	98
	N-phenyl-2-amino- naphthalene	5.15	Fluor			30	H ₂ O, 0.1 M KCl, pH 8 (0.01 M HEPES)	98
(1,4-B)4N428C4-4 (IX)	N-phenyl-1-amino- naphthalene	3.32	Fluor			30	H ₂ O, 0.1 M KCl, pH 4 (contate buffer)	90
K4(1,4-B)4N4-							pir 4 (acetate Durier)	55
28C4-1 (IX)	N-benzyl-1,4-di- hydronicotinamide	none	Fluor			30	Me2SO/H2O (5:95 v/v), 0.1 M KCl, pH 10	
	indol e	3.40	Fluor			30	(0.01 M CAPS) $Me_2SO/H_2O (5:95 v/v),$	94, 95
	indole	3.18	Fluor			30	pH 10 (0.01 M CAPS) Me ₂ SO/H ₂ O (5:95 v/v), 0.1 M KCl, pH 10	95
	Mark and A surface						(0.01 M CAPS)	94, 96
	N-phenyl-1-amino- naphthalene	none	Fluor			30	Me ₂ SO/H ₂ O (5:95 v/v), 0.1 M KCl, pH 10	
K4(1.4-B)4N4-							(0.01 M CAPS)	94, 95
K4(1,4-B)4N4- 28C4-2 (IX)	N-benzyl-1,4-di- hydronicotinamide	3.30	Fluor			30	Me ₂ SO/H ₂ O (5:95 v/v), 0.1 M KCl, pH 10	
	indole	3.40	Fluor			30	(0.01 M CAPS) Me ₂ SO/H ₂ O (5:95 v/v),	94,95,96
	indole	3.18	Fluor			30	pH 10 (0.01 M CAPS) Me ₂ SO/H ₂ O (5:95 v/v), 0.1 M KCl, pH 10	95
	N7						(0.01 M CAPS)	94, 96
	naphthalene	3.20	Fluor			30	Me ₂ SO/H ₂ O (5:95 v/v), 0.1 M KCl, pH 10	
	1-(2-pyridylazo)-						(0.01 M CAPS)	94,95,96
	2-naphthol	3.17	Spec			3 9 .4	Me ₂ SO/EtOH/H ₂ O (10:1:89 v/v) 0.15 M KCl, pH 10.29	100
$K_4(1,4-B)_4N_4-$ 28C4-3 (IX)	1-(2-pyridylezo)-							
2004-0 (IA)	2-naphthol	2.55	Spec	2.55		30	EtOH/MeOH/H ₂ O (5:2:95 v/v),	101
K4(1,4-B)4N4-							0.1 W KCI, pH 8.7	101
28C4-4 (IX)	N-phenyl-1-amino- naphthalene	3.66	Fluor			30	EtOH/H ₂ O (5:95 v/v), 0.1 M KCl, pH 6	
	1-(2-pyridylazo)-						(0.01 M MES)	95,96,102
K (1 A D) N	2-naphthol	2.51	Spec			30	H ₂ O, 0.1 M KCl, pH 6 (0.01 M MES)	96
28C4-5 (IX)	N-phenyl-1-amino- naphthalene	6.11	Fluor			30	EtOH/H ₂ O (5:95 v/v), 0.1 M KCl, pH 6	
	1-(2-pyridylazo)-						(0.01 M MES)	95,96,102
	2-naphthol	5.57	Spec			30	EtOH/H ₂ O (5:95 v/v), 0.1 M KCl, pH 6 (0.01 MES)	96, 103

Table I (Continued) ΔH ΔS $\log K^b$ kJ/mol J/K·mol ligand (chart) neutral molecules method T. °C conditionsd ref K4(1,4-B)4N4-28C4-6 (IX) N-phenyl-1-amino-Fluor 30 EtOH/H₂O (5:95 v/v), naphthalene 5.41 0.1 M KCl, pH 8 (0.01 M HEPES) 96, 103 30 6.08 EtOH/H₂O (0.1:99.9 v/v) pyrene Fluor 0.1 M KCl. pH 8 (0.01 M HEPES) 92,96,103 30 EtOH/H₂O (0.1:99.9 v/v) pyrene 6.38(M₂L) Fluor 0.1 M KCl, pH 8 (0.01 M HEPES) $(M + ML <-> M_2L)$ 92,96,103 Py4(1,4-B)2-1,2-dimethoxy-28C4-1 (IX) ? 0.90 MeCN 104 benzene Spec 1,3-dimethoxy-? 0.90 Spec MeCN 104 benzene 1.4-dimethoxy-? 1.23 MeCN 104, 105 benzene Spec (1,4-B)₄N₄30C4-1 2,7-dihydroxy-(X) 3.45 25 H₂O, pH 1.95 Fluor naphthalene (KCl/HCl buffer) 106, 107 (1,4-B)₄N₄30C4-2 27 3.00 NMR D_2O 108 (X) benzene 3.92 NMR 27 D_2O 108 biphenyl 2,7-dihydroxy-? naphthalene 2.90 NMR $MeOD-d_3/0.33 M$ 109 DCl-D₂O (10:40) naphthalene 3.65 NMR 27 D_2O 108 27 tetralin 3.23NMR D_2O 108 toluene 3.01 NMR 27 D_2O 108 (1,4-B)₄N₄30C4-3 2,7.dihvdroxy-(X) NMR 28 3.18 D_2O 109, 110 naphthalene $(1,4-B)_4N_630C6-1$? 4-acetylphenol 0.81 NMR $D_2O/DCl, pH < 3$ 111 (X) ? $D_2O/DCl, pH < 3$ 1.23 NMR 111 4-chlorophenol ? p-cresol 1.76 NMR $D_2O/DCl, pH < 3$ 111 ? NMR $D_2O/DCl, pH < 3$ 1.18 111 4-methoxyphenol ? 4-nitrophenol 0.46 NMR $D_2O/DCl, pH < 3$ 111 $(1,4-B)_4(1,3-B)_2$ -N₄32C4-1 (X) 1,4-benzoquinone 2.00 NMR room CDCl₃/MeOD-d₃ (90:10) 112 NMR CDCl₃ 3.08 112 1,4-benzoquinone room Py2(1,4-B)4N4-1.30 NMR 25 D_2O 113 4-nitrophenol 32C6-1 (X) (1,4-B)₄N₄33C4-1 2,7-dihydroxy- (\mathbf{X}) naphthalene 2.41 Fluor 25 H₂O, pH 1.95 (KCl/HCl buffer) 106, 107 (1,4-B)₄N₄34C4-1 (X) 1-aminonaphthalene 3.33 NMR 25 D_2O 114 25 2.77 $MeOD-d_3/D_2O$ (20:80 v/v) 1-aminonaphthalene NMR 115 benzene 1.77 NMR 25 D_2O 116 25 $MeOD-d_3/D_2O$ (5:95 v/v) 1.75 NMR 117 benzene benzyl bromide 1.40 NMR 30 Diox-H₂O (50:50) 118 2-bromomethyl-0.54 NMR 30 Diox-H₂O (50:50) naphthalene 118 1.76 NMR p-cresol 25 $MeOD-d_3/D_2O$ (20:80 v/v) 119 25 dansylamide 3.70 Fluor H₂O 120 3.68 Fluor 25 H₂O, pH \sim 7 121 dansylamide Fluor 25 H_2O , [L] = <0.001 M dansylamide 3.68 121 H₂O, 0.1 M NaCl dansylamide 3.69 Fluor 25 121 25 dansylamide 3.45 NMR $MeOD-d_3/D_2O$ (20:80 v/v) 122 25 Fluor dansylamide 2.97 $MeOH/H_2O$ (20:80 v/v), pH ~7 121 dansylamide 2.11 NMR 25 MeOD- d_3/D_2O (50:50 v/v), 121 pH ∼7 dansylamide 3.20 NMR 25 $MeOD-d_3/D_2O$ (50:50 v/v) 120

Fluor

NMR

Sol

3.45

1.17

2.54

dansylamide

4.4-diaminodi-

phenylmethane

decalin

25

25

25

 $MeOH/H_2O$ (10:90 v/v),

 $MeOD-d_3/D_2O$ (5:95 v/v)

pH ~7

H₂O

121

117

119, 123

ligand (chart)	neutral moleculeª	log K ^b	method	ΔH kJ/mol	ΔS J/K•mol	<i>T</i> , °C	conditions ^d	ref
	dichloromethane	<0.18	NMR			25	MeOD-d ₃ /D ₂ O (10:90 v/v)	117
	2,7-ulfiyuroxy-	2 95	NMR			28	D-0	110
	dijodomethane	1.32	NMR			25	$MeOD-d_{0}/D_{0}O(10.90 \text{ v/v})$	117
	3.5-dimethyl-	1.02	1 11/11/			20		
	cyclohexanol	0.37-0.81	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	119
	3.5-dimethylphenol	1.98	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	119
	diphenylamine	2.54	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	117
	trans-4-methyl-							
	cyclohexanol 1-methyl-	0.59	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	119
	naphthalene 2-methyl-	3.15	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	122
	naphthalene	3.01	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	122
	n a phthalene	3.0 9	NMR			25	D_2O	116
	n a phthalene	3.33	NMR			25	D_2O	114
	naphthalene	2.93	Sol			25	H₂O	119, 123
	naphthalene	3.03	NMR			25	$MeOD-d_3/D_2O$ (10:90 v/v)	117
	naphthalene	2.93	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	119,122,123
	naphthalene	2.96	NMR			25	MeOD- d_3 /D ₂ O (20:80 v/v) pH ~7	115, 121
	naphthalene	2.86	Fluor			25	MeOH/H ₂ O (20:80 v/v) 0.01 M NeCl	122
	naphthalene	1.88	NMR			25	MeOD- d_3/D_2O (50:50 v/v) pH ~7	121
	naphthalene	0 .9 0	NMR			25	MeOD- d_3/D_2O (80:20 v/v)	191
	nenhthoic ecid	3 16	NMR			25	$\mathbf{D}_{\mathbf{n}}$	114
	1-nenhthol	3.68	NMR			25	D_2O	114
	1-nephthol	3 15	NMR			25	M_{0} D_{1} d_{1} D_{2} O_{1} M_{0} M_{1} M_{1} M_{2} M_{1} M_{2} M_{2} M_{1} M_{2} M_{2	199 199
	2-nephthol	3 33	NMR			25	$D_{2}O(20.00 \sqrt{10})$	122, 120
	2-naphthol	2.86	NMR			20	M_{a} $(D_{a}d_{a}/D_{a})$ (20.80 w/w)	110 199 199
	nitronbenyl	2.00	141/11/			20	$10100D-43/D_20(20.00 \sqrt{3})$	119,122,120
	acetate	2.05	NMR			25	MeOD- d_3/D_2O (10:90 v/v)	191
	nitronhenvl						pirior	121
	acetate	1.81	NMR			25	MeOD- d_3/D_2O (20:80 v/v) pH ~7	191
	nitrophenyl						P11	101
	acetate	1.58	NMR			25	MeOD- d_3/D_2O (30:70 v/v) pH ~7	121
	5.6.7.8tetra-						F ·	
	hydro-2-naphthol	1.98	NMR			25	$MeOD-d_{0}/D_{2}O(20:80 v/v)$	119
	tetralin	2.44	NMR			25	D ₂ O	116
	tetralin	1.98	Sol			25	H ₂ O	119, 123
	tetralin	2.27	NMR			25	$MeOD-d_0/D_0O(20:08 v/v)$	119
	toluene	2.10	NMR			25	$D_{2}O$	116
	guest-17 ^e	7.34	Fluor			25?	H ₂ O (ethidium bromide	
	Basser						as indicator)	124
	guest-18 ^e	4.77	Fluor			25?	H ₂ O (ethidium bromide as indicator)	124
	guest-19 ^e	4.40	Fluor			25?	H_2O (ethidium bromide as indicator)	124
	guest-20*	5.14	Fluor			25?	H_2O (ethidium bromide as indicator)	124
(1.4-B)₄N₄34C4-2								
(X)	1-aminonaphthalene	2.58 1.32	NMR NMR			25 25	$MeOD-d_3/D_2O$ (20:80 v/v) $MeOD-d_2/D_2O$ (20:80 v/v)	115
	3.5-dimethyl-							
	cyclohexanol 3.5-dimethylphenol	0. 66- 1.10 1.17	NMR NMR			25 25	$\frac{MeOD-d_3/D_2O}{MeOD-d_3/D_2O} (20:80 \text{ v/v})$	119 119
	trans-4-methyl-	0.73-1.25	NMR			25	$MeOD-d_{0}/D_{0}O(20:80 v/v)$	119
(1 4-B).N.34C4-3	naphthalene	2.27	NMR			25	$MeOD-d_3/D_2O (20:80 v/v)$	115, 119
(X)	1-aminonaphthalene	2.02	NMR			25	$MeOD-d_3/D_3O$ (20:80 v/v)	115
(/	naphthalene	2.35	NMR			25	$MeOD-d_3/D_2O$ (20:80 v/v)	115
(1,4-B)ANA34C4-4								
(X)	β -estradiol	1.32	NMR			25?	$MeOD-d_3/D_2O$ (50:50 v/v)	125
	5,6,7,8-tetrahvdro-							
	2-naphthol	2.00	NMR			25?	$MeOD-d_3/D_2O$ (20:80 v/v)	125
Cy ₂ (1,4-B) ₄ N ₄ -		-	3					
34C4-1 (XI)	2,7-dihydroxy- naphthalene	3.63	Fluor			25	H ₂ O, pH 1.95	107
							(INON TIOT DUILET)	101

Table I (Continue	ed)
-------------------	-----

ligand (chart)	neutral moleculeª	log K ^b	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
$Cy_2(1,4-B)_4N_4-$								
34C4-2 (XI)	2,7-dihydroxy- naphthalene	3.63	Fluor			25	H₂O, pH 1.95 (KCl/HCl buffer)	106
Nap ₂ (1,4-B) ₂ N ₄ - 34C4-1 (XI)	2,7-dihydroxy- naphthalene	2.30	NMR			?	MeOD- <i>d</i> ₃ /0.33 M DCl-D ₂ O (10:40)	109
Nap ₂ (1,4-B) ₂ N ₄ - 34C4-2 (XI)	2,7-dihydroxy- naphthalene	2.48	NMR			?	D ₂ O	109
	2,7-dihydroxy-	0 50	NMD			00		110
Nap2(1,4-B)2N4- 36C4-1 (XI)	2,7-dihydroxy-	2.02	NMD			20		110
Nap ₂ (1,4-B) ₂ N ₄ - 38C4-1 (XI)	naphthalene 2,7-dihydroxy-	2.40	NMR			28	D ₂ O	110
(1.4-B)/N/38C4-1	naphthalene	2.49	NMR			28	D_2O	110
(XI)	naphthalene tetralin	2.63 2.10	NMR NMR			25 25	D ₂ O D ₂ O	116 116
(XI)	guest-21°	3.24	NMR			25?	CDCl ₃	126
Chol a phane-2 (XI)	guest-21°	none	NMR			25?	CDCl3 (no significant spectra changes)	126
Chol a phane-3 (XI)	guest-21 ^e	none	NMR			25?	CDCl ₃ (no significant spectra changes)	126
Cholaphane-4 (XI)	guest-21°	none	NMR			25?	CDCl ₃ (no significant spectra changes)	126
Cholaphane-5 (XI)	guest-21	2.85	NMR	hanas (aa	nt)	25?	CDCl ₃	126
		a Man	2. Cyclop	Verioue	ni.) Donor Ator	0.9		
NapPyN220C5-1		C. 191010		i various.	Donor Awa	118		
(XII)	N-butylthymine ^e	2.46	NMR			25	CDCl ₃	127,128,1 29
	guest-22 ^e	3.65	Fluor			25	CDCl ₃	130
	guest-23 ^e	none	Fluor			25	CDCl ₃	130
	guest-24°	3.54 none	Fluor			20 25		130
NenPvN.20C5-2	guest-20	none	riuor			20	CDC13	130
(XII) NapPyN220C5-3	N-butylthymine ^e	2.76	NMR			25	CDCl ₃	129, 131
(XII) NapPyN₂20C5-4	N-butyltnymine*	2.14	NMR			25	CDCI ₃	129, 131
(XII) NepPyN_22C5-1	guest-27°	3.20	NMR			25	$CDCl_3$	132
(XII)	N-butyltymine ^e	2.40	NMR			25	CDCl ₃	127
(XII) NapPy ₂ N ₂ 25C6-1	9-butyl adenine	1.86	Spec			25	CDCl ₃	133
(XII) NapNaphthyrN-	9-butyl a denine ^e	3.51	Spec			25	CDCl ₃	133
23C7-1 (XII) NapNaphthyrN-	2',3',5'-tri-O- pentanoylguanosine ^e	2.85	NMR			25	CDCl ₃	134
25C7-1 (XII)	2',3',5'-tri-O- pentanoylguanosine ^e	2.73	NMR			25	CDCl ₃	127, 134
(XII)	<i>p</i> -cresol 4-cyanophenol	1.05 1.70	NMR NMR			25 25	D_2O D_2O	135 135
	acid	1.74	NMR			25	D ₂ O	135
(1.4-B)/N/30C6-1	2,4,6-trimethyl- phenol	1.10	NMR			25	D_2O	135
(XII)	p-cresol 4-cyanophenol 4-toluenosulfonio	1.22 1.48	NMR NMR			25 25	$\begin{array}{c} D_2 O \\ D_2 O \end{array}$	135 1 3 5
	acid	1.82	NMR			25	D₂O	135

ligand (chart)	neutral molecule ^a	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>Т</i> , °С	conditions ^d	ref
	2,4,6-trimethyl- phenol	1.15	NMR			25	D ₂ O	135
(1,4-B)4N430C6-2 (XII)	p-cresol	1.72	NMR			25?	D2O, pD 1.9 (0.1 M KCl/DCl buffer)	136
	4-cyanophenol	2.22	NMR			25?	D ₂ O, pD 1.9 (0.1 M KCl/DCl buffer)	136
	1,3-dihydroxy- naphthalene	2.52	NMR			25?	D ₂ O, pD 2.3	100
	4-methoxyphenol	1.77	NMR			25?	(0.1 M KCl/DCl buffer) D ₂ O, pD 1.9 (0.1 M KCl/DCl buffer)	136
	4-nitrophenyl-	2.15	NMR			257	(0.1 Wired/Def burler)	130
	4-toluenesulfonic	2.52	NMR			25?	$D_{0}O_{1}D_{1}O_{2}O_{1}O_{2}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	100
	2,4,6-trimethyl-					20.	(0.1 M KCl/DCl buffer)	136
(1 4 D) N 9000 9	phenol	2.00	NMR			25?	D2O, pD 1.9 (0.1 M KCl/DCl buffer)	136
(XII)	<i>p</i> -cresol	1.64	NMR			25?	D ₂ O, pD 1.9	100
	4-cyanop he nol	1.82	NMR			25?	(0.1 M KCl/DCl buffer) D ₂ O, pD 1.9 (0.1 M KCl/DCl buffer)	136
	1,3-dihydroxy- naphthalene	2.30	NMR			25?	D ₂ O, pD 2.3 (0.1 M KCl/DCl buffer)	136
	4-tol uenes ulfonic a cid	2.40	NMR			25?	D_2O , pD 1.9 (0.1 M KCl/DCl buffer)	136
	2,4,6-trimethyl- phenol	1.85	NMR			25?	D ₂ O, pD 1.9 (0.1 M KCl/DCl buffer)	136
(1,4-B) ₄ N ₄ 30C6-4	1					.	(0.1 1.1 1.0 1, 2 01 Suller)	100
(XII)	p-cresol p-cresol	1.64 1.63	NMR NMR			25 25	D_2O D_2O , pD 1.8 (KCI/DCI buffer)	135
	4-cyanophenol	1.82	NMR			25	D_2O	137
	4-cyanophenol	1.89	NMR			25	D ₂ O, pD 1.8 (KCl/DCl buffer)	137
	4-toluenesulfonic acid	2.40	NMR			25	D2O, pD 1.8 (KCl/DCl buffer)	137 135
	2,4,6-trimethyl- phenol 2.4.6 trimethyl	1.82	NMR			25	D ₂ O	135
	phenol	1.88	NMR			25	D_2O , pD 1.8 (KCI/DCI buffer)	197
N ₄ S ₂ 30C6-1 (XII)	(-) menthol	3.40	NMR			20	$D_2O, pD 9 (ND_4+Cl/ND_3)$ buffer)	138
	(+) menthol	3.30	NMR			20	D_2O , pD 9 (ND ₄ +Cl ⁻ /ND ₃) buffer)	138
	(+) isomenthol	3.00	NMR			20	D_2O , pD 9 (ND ₄ +Cl-/ND ₃ buffer)	138
Nap(1,3-B)Py2N2- 32C8-1 (XIII)	diethylmalonic acid ethylmalonic acid	3.04 3.86	NMR NMR			25 25	CDCl₃ CDCl₃	139 139
Nap(1,3-B)Py ₂ N ₂ - 32C8-2 (XIII) Nap(1,3-B)Py ₂ N ₄ -	barbital	2.49	NMR			25	CDCl ₃	140
32C8-1 (XIII)	barbital	5.13	NMR			25	CDCl ₃	127
	barbital	5.40	Spec			25	CH ₂ Cl ₂	140
	cyclic urea"	2.60	NMK NMP			20 95		140
	menhoherhitel	2.54	NMR			20 25		140
	phenobarbital	5.45	NMR			25	CDCl	127
N	thiobarbital	2.87	NMR			25	CDCl ₃	140
$\begin{array}{c} \text{NapPy}_{3} \mathbb{N}_{4} 32 \mathbb{C}^{5-1} \\ \text{(XIII)} \\ (1,3-B)(1,4-B)^{-} \\ \mathbb{D}_{3} \mathbb{C}^{5-1} \\ \mathbb{D}_{3} \mathbb{C}^{5-1} \end{array}$	barbital	4.61	Spec			25	CH_2Cl_2	140
г у21443408-1 (XIII)	barbital	6.14	NMR			25	CDCI	197 141
\ ,	barbital	5.78	Spec			25	CH ₂ Cl ₂	140

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
· · · · · · · · · · · · · · · ·	mephobarbital	2.83	NMR			25	CDCl ₃	127, 140, 141
Py6Pd436C4-1	phenobarbital	5.29	NMR			25	CDCl ₃	27, 141
(XIII)	1,4-benzene- dimethenol	<1	NMR			25	D-0	149
	1,4-bis(methoxy-	~1	141110			20	D ₂ 0	142
	methyl)benzene 1.2-dimethoxy-	1.00	NMR			25	D_2O	142
	benzene	1.48	NMR			25	D_2O	142
	benzene	2.76	NMR			25	D_2O	142
	1,4-dimethoxy-	2 52	NMR			25	ኬብ	149
	1,4-dimethoxy-	2.02					5,0 D.0	
	cyclonexane 4-methoxybenzyl	none	NMR			25	D_2O	142
	methyl sulfoxide	2.23	NMR			25	D_2O	142
	2-pentanol	1.48	NMR			25	D_2O	142
	1,3,5-tri- methoxybenzene	2.88	NMR			25	D	142 143
D. D. 0004 4		2.00				20	270	,
$Py_6Pt_436C4-1$ (XIII)	1,2-dimethoxy-							
	benzene	1.30	NMR			25	D_2O	142
	benzene	2.74	NMR			25	D_2O	142
	1,4-dimethoxy- benzene	2.41	NMR			25	D ₂ O	142
$(NapPyN_{2}20C5)_{2}-1$		4.01				05		100
(XIV) Flavinophane-1	guest-28°	4.31	NMR			20	CDCI3	132
(XIV)	6-cyano-2-naphthol	2.21	NMR			20	D_2O , pD 10.4 (borate-d) (apparent K)	81 144 145
	6-methoxy-							01,111,110
	2-naphthoic acid	2.97	NMR			22	D_2O , pD 10.4 (borate-d) (apparent K)	81, 145
	6-methoxy-	9.45	NMP			00	D.O. nD 10.4 (horate d)	,
	2-naphthoi	2.40				22	(apparent K)	145
	2-naphthol	2.16	NMR			22	D_2O , pD 10.4 (borate-d) (apparent K)	145
Flavinophane-2		0.00	212 (D					
(XIV)	6-cyano-2-naphthol	2.39	NMR			20	D_2O , pD 10.4 (borate- a) (true K)	144
	6-cyano-2-naphthol	2.36	NMR			22	D_2O , pD 10.4 (borate-d)	81 145
	6-methoxy-							01, 140
	2-naphthoic acid	2.46	NMR			22	D_2O , pD 10.4 (borate-d) (true K)	81, 145
	6-methoxy-	0.51	NIMD			00		,
	2-naphtnoi	2.31	NMR			22	$D_2O, pD 10.4 (borate-a)$ (true K)	145
	2-n a phthol	2.30	NMR			22	D_2O , pD 10.4 (borate-d) (true K)	145
			2. Cvclo	ophanes (cont.)			140
		d. Mono	- and Bi-c	yclic with	out Hetero	atoms		
(1,3-B)(1,4-B)- 11C-1 (XV)	2 3-dichloro-5 6-di-							
	cyanobenzoquinone	2.08	Spec			20	CH_2Cl_2	146
(1,3-B)(1,4-B)-	tetracyanoethylene	1.89	Spec			20	CH ₂ Cl ₂	146
11C-2 (XV)	2,3-dichloro-5,6-di-	1 97	Spec			20	CH-Cl-	146
	tetracyanoethylene	1.81	Spec			20 20	CH_2Cl_2	146
(1,3-B)(1,4-B)- 11C-3 (XV)	2.3-dichloro-5.6-di-							
	cyanobenzoquinone	1.86	Spec			20 20	CH ₂ Cl ₂	146
(1,4-B) ₂ 12C-1	-	1.14	opec			20		110
(XV)	12 2,3-dichloro-5.6-di-	0.37	Spec			25	CH ₂ Cl ₂	147
	cyanobenzoquinone	0.83	Spec			25 25	CH ₂ Cl ₂ CH ₂ Cl ₂ (epperent K)	148 149
		0.00	~ ~ ~ ~ ~				(whhere are	

lineral (about)	mantenal an alaquilad	les Vb		ΔH	ΔS	T •C	a am ditti am ad	
ligand (chart)	neutral molecule	log A.	method	KJ/mol	J/K·mol	<i>T</i> , U	conditions	rei
(1,4-B) ₂ 12C-2 (XV)	2,3-dichloro-5,6-di-	~ • •	2					
	cyanobenzoquinone	2.14	Spec			20	CH ₂ Cl ₂	146
(1 4-B)-19C-3 (XV)	2 3-dichloro-5 6-di-	1.94	spec			20		140
(1,4-D)2120-0 (111)	cvanobenzoquinone	2.11	Spec			20	CH ₂ Cl ₂	146
	tetracyanoethylene	1.91	Spec			20	CH_2Cl_2	146
(1,4-B) ₂ 12C-4 (XV)	2,3-dichloro-5,6-di-		-					
	cyanobenzoquinone	1.98	Spec			20	CH ₂ Cl ₂	146
(1.4.B)-19C-5 (XV)	2 3-dichloro-5 6-di-	1.85	Spec			20	OH_2OI_2	146
(1,4-1)/2120-0 (111)	cvanobenzoquinone	1.96	Spec			20	CH ₂ Cl ₂	146
	tetracyanoethylene	1.83	Spec			20	CH ₂ Cl ₂	146
(1,4-B) ₂ 12C-6 (XV)	I ₂	0.54	Spec			25	CH ₂ Cl ₂	147
	2,3-dichloro-5,6-di-	0.95	8			05		140
	cyanobenzoquinone	0.80	Spec			20 25	CH_2Cl_2 CH_2Cl_2 (apparent K)	148
(1.4-B),12C-7 (XV)	I ₉	0.97	Spec			25	CH ₂ Cl ₂ (apparent K)	145
(_,,,,	2,3-dichloro-5,6-di-							
	cyanobenzoquinone	1.01	Spec			25	CH_2Cl_2	148
	2,3-dichloro-5,6-di-	4.00	0			07	OTT 01 () (17)	
	cyanobenzoquinone	4.93	Spec			25	CH_2Cl_2 (apparent K)	149
	benzoquinone	3.28	Spec			25	$CH_{0}Cl_{0}$ (apparent K)	149
	tetrachloro-1,4-	0.20	-poo				ongong (apparent) ny	
	benzoquinone	0.90	Spec			25	CH_2Cl_2	148
	tetracyanoethylene	4.42	Spec			25	C_6H_6 (apparent K)	149
	tetracyanoethylene	1.99	Spec			22	CH_2Cl_2 CH_Cl_2 (appropriate K)	150
	tetracyanoethylene	4.00	Spec			25 25	$(C_0H_1)_0O$ (apparent K)	149
(1,4-B)212C-8 (XV)	I ₂	0.81	Spec			25	CH ₂ Cl ₂	147
(1,4-B)212C-9 (XV)	I ₂	0.12	Spec			25	CH_2Cl_2	147
$(1,4-B)_{2}12C-10$ (XV)	I ₂	0.11	Spec			25	CH_2Cl_2	147
$(1,4-B)_{2}12C-11$ (XV) $(1,4-B)_{-}12C$ 12 (XV)	tetracyanoethylene	2.04	Spec			22	CH_2Cl_2	150
$(1, 4 - D)_{2} = 2 - 12 (XV)$	1.3-indandione	1.87	Spec			22	CHaCla	150
	tetracyanoethylene	2.18	Spec			22	CH ₂ Cl ₂	150
(1,4-B)212C-13 (XV)	2-dicyanoethylene-		_					
	1,3-indandione	1.26	Spec			22	CH ₂ Cl ₂	150
(1 4-B)-19C-14 (XV)	2-dicyanoethylene	2.05	Spec			22		150
(1,4-0)2120-14 (211)	1.3-indandione	2.02	Spec			22	CH ₂ Cl ₂	150
	tetracyanoethylene	2.52	Spec			22	CH_2Cl_2	150
(1,4-B) ₂ 12C-15 (XV)	2,3-dichloro-5,6-di-		~					
(1 A D) 190 16 (XX)	cyanobenzoquinone	0.87	Spec			25	CH_2Cl_2	148
(1,4-D)2120-10 (AV)	cvanobenzoquinone	3.83	Spec			25	CH ₂ Cl ₂	151
	tetracyanoethylene	3.97	Spec			25	CH ₂ Cl ₂	151
(1,4-B) ₂ 12C-17 (XV)	2,3-dichloro-5,6-di-		_				-	
	cyanobenzoquinone	3.7 9	Spec			25	CH_2Cl_2	151
$(1,4-B)_{2}12U-18(XV)$	2,3-alchioro-5,5-al-	3.08	Spec			25	CH-Cl.	151
	tetracvanoethvlene	3.99	Spec			25	CH ₂ Cl ₂	151
(1,4-B) ₂ 12C-19 (XV)	2,3-dichloro-5,6-di-							
(1 4 D) 100 00 (3737)	cyanobenzoquinone	4.52	Spec			25	CH_2Cl_2	151
$(1,4-B)_2 12C-20$ (XV)	2,3-dichloro-5,6-di-	1 11	Snec			9 9	CH-CI-	159
(1.4-B) ₉ 12C-21 (XV)	2.3-dichloro-5.6-di-	1.11	opec			22	0112012	102
(-,,	cyanobenzoquinone	0.99	Spec			22	CH_2Cl_2	152
$(1,4-B)_{2}12C-22$ (XV)	2,3-dichloro-5,6-di-		a					
(1 4-B)-19C-93 (XV)	2 3-dichloro-5 6-di-	1.12	Spec			22	CH_2Cl_2	152
(1,1 0)2120 20 (111)	cyanobenzoquinone	1.14	Spec			22	CH ₂ Cl ₂	152
(1,4-B) ₂ 12C-24 (XV)	2,3-dichloro-5,6-di-		-				• •	
(1 A.B. 100 95 (NV)	cyanobenzoquinone	0.98	Spec			22	CH ₂ Cl ₂	152
$(1,4-D_212)(XV)$	2,3-aichior0-3,5-al-	0.97	Spec			22	CH ₂ Cl ₂	152
(1,4-B)212C-26 (XV)	2,3-dichloro-5,6-di-		~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	104
	cyanobenzoquinone	1.05	Spec			22	CH_2Cl_2	152
(1,4-B) ₂ 12C-27 (XV)	2,3-dichloro-5,6-di-	1 10	Shee			00	CH.CL	150
(1.4-B),12C-28 (XV)	2.3-dichloro-5.6-di-	1.10	spec			22		192
<u></u>	cyanobenzoquinone	1.00	Spec			22	CH ₂ Cl ₂	152
(1,4-B) ₂ 12C-29 (XV)	2,3-dichloro-5,6-di-	0.00	0					
	cyanobenzoquinone	0.96	Spec			22	UH ₂ Ul ₂	152

ligand (chart)	neutral molecule	log Kb	methods	ΔH	ΔS	T °C	conditions	rof
$\frac{1}{(1 + P)} \frac{1}{100} \frac{1}{(1 + P)} \frac{1}{100} \frac{1}{(1 + P)} \frac{1}{(1 $	2.2 disklore 5.6 di	log A.	method	KJ/ MOI	J/ K•moi	1, C	conutions	161
$(1,4-D)_{2}12(-30)(AV)$	2,3-aichioro-5,6-ai-	1.04	Spec			22	CH ₂ Cl ₂	152
(1,4-B) ₂ 12C-31 (XV)	2,3-dichloro-5,6-di-							
(1 4-B)-19C-39 (XV)	cyanobenzoquinone 2 3-dichloro-5 6-di-	1.08	Spec			22	CH ₂ Cl ₂	152
$(1,4-D)_{2}^{-1}Z(-5Z(AV))$	cyanobenzoquinone	1. 9 0	Spec			20	CH_2Cl_2	153
	tetracyanoethylene	1.71	Spec			20	CH_2Cl_2	153
$(1,4-B)_2$ 12C-33 (XV)	2-dicyanoethylene-	1.37	Snec			20	CH ₂ Cl ₂	153
	2,3-dichloro-5,6-di-	1.07	opec			20	0112012	100
	cyanobenzoquinone	1.96	Spec			20	$\rm CH_2 Cl_2$	153
	tetrachioro-1,4-	1.47	Spec			20	CH ₂ Cl ₂	153
	tetracyanoethylene	1.77	Spec			20	CH ₂ Cl ₂	153
	7,7,8,8-tetracyano-	1.00	S			90		150
(1.4-B)•12C-34 (XV)	2-dicvanoethylene-	1.08	Spec			20		199
(1,1 2),2120 01 (11))	1,3-indandione	1.38	Spec			20	CH_2Cl_2	153
	2,3-dichloro-5,6-di-	1 00	0			00		150
	cyanopenzoquinone tetrachloro-1.4-	1.99	Spec			20		153
	benzoquinone	1.52	Spec			20	CH_2Cl_2	153
	tetracyanoethylene	1.81	Spec			20	CH_2Cl_2	153
	7,7,8,8-tetracyano-	1 17	Spec			20	CH.Cl.	153
(1,4-B)212C-35 (XV)	2,3-dichloro-5,6-di-	1.11	opec			20	0112012	100
	cyanobenzoquinone	3.85	Spec			25	CH_2Cl_2	154
	tetrabromo-1,4	3 32	Spec			25	CH ₂ Cl ₂	154
	tetrachloro-1,4-	0.02	opec			20	0112012	104
	benzoquinone	3.28	Spec			25	CH_2Cl_2	154
(1.4-B)-19C-36 (XV)	2 3-dichloro-5 6-di-	3.40	Spec			25	CH ₂ Cl ₂	154
(1,4-1)/2120-00 (111)	cyanobenzoquinone	5.53	Spec			25	CH_2Cl_2	154
	tetrabromo-1,4-	0.01	0			05		1.5.4
	benzoquinone tetrachloro-1.4-	3.91	Spec			25		154
	benzoquinone	3.88	Spec			25	CH_2Cl_2	154
	tetracyanoethylene	3. 9 3	Spec			25	CH_2Cl_2	154
			2. Cycloph	anes (con	it.)			
		e. Polycy	clic with V	arious D	onor Atom	8		
(20C6)(29C4)-1 (XVI)	2-cyano-6-methoxy-	~5	NMR			20	$H_{0}\Omega$ (extrapolated K)	75
	2-cyano-6-methoxy-	Ū	1111111			20		10
	naphthalene	3.65	NMR			20	$MeOD-d_3/D_2O$ (40:60 v/v)	67,75,76
	2-cyano-6-methoxy-	264	NMR			20	$M_{a}\Omega D_{a} d_{a} / D_{a}\Omega (40.60 v/v)$	
	naphthalene	2.04	1414110			20	0.1 M KCl	67,75,76
	2-cyano-6-methoxy-							
	naphthalene	2.15	NMR			20	$MeUD-a_3/D_2U$ (40:60 v/v) 0.05 M KCl	67 75 76
	2-cyano-6-methoxy-						0.00 11 1101	01,10,10
.	naphthalene	1.38	NMR			20	MeOD-d ₃	67,75,76
Cyclophane-1 (XVI)	4-nitro-1-naphthol	3.18	NMR NMR			25 25	$M_{0}OD_{1}d_{3}/D_{2}O(30:70 v/v)$ $M_{0}OD_{2}d_{2}/D_{2}O(30:70 v/v)$	155 155
Cyclophane-3 (XVI)	durene	1.43	Fluor			30	MeOH	3, 82
-,,	fluoranthene	3.04	NMR			30	Me_2CO-d_6	82
	fluoranthene	4.86	Fluor			30	MeOH	3, 82
	naphthalene	<1	NMR			30	Me_2CO-d_6	82
	naphthalene	2.08	Fluor			30	MeOH	3, 82
	naphthalene	<1	NMR			30	Me_2SO-d_6	82
	pervlene	1.43	NMR			30 30	$C_{e}D_{e}$	82 82
	perylene	1.62	NMR			30	CDČl₃	82
	perylene perylene	2.56 5.29	NMR			30 10	DMF-d7 EtOH	82 82
	perylene	5.03	Fluor			20	EtOH	82
	perylene	4.80	Fluor	-44.8	-56.1	30	EtOH	3, 82
	perviene perviene	4.53 4.28	Fluor			40 50	EtOH EtOH	82 82
	perylene	3.34	Fluor			30	Me ₂ CO	82
	perylene	3.18	NMR			30	Me_2CO-d_6	82
	perylene	J.U4	Fluor			30	Men	J,00,02

ligand (chart)	neutral moleculeª	log K ^b	method	ΔH kJ/mol	∆S J/K•mol	<i>T</i> , °C	conditions ^d	ref
· · · · · · · · · · · · · · · · · · ·	perylene	2.90	NMR			30	Me ₂ SO-d ₆	82
	perylene	2.18	NMR			30	THF-d8	82
	pyrene	~4	Sol-EAS			20-22	H ₂ O, 0.5 M KH ₂ PO ₄	3
	pyrene	1.08	NMR			30	C_6D_6	68,82,156
	pyrene	1 00	Cal	-3.35	9.67	30	C ₆ H ₆	79
	pyrene	1.63	NMR	19.0	11.0	30		68,82,156
	pyrene	2.08	NMP	-13.0	-11.0	30		79 69 156
	pyrene	0.95	NMR			30	CD_2CI_2	68 82 156
	nvrene	3.04	NMR			30	DMAC/MesSO-de	00,02,100
	p <i>j</i> 10 110						(90:10 v/v)	68, 156
	pyrene	3.17	Cal	-8.37	33.1	30	DMAC	79
	pyrene	2.20	NMR			30	$DMF-d_7/Me_2SO-d_6$	
							(90:10 v/v)	68, 156
	pyrene		Cal	-15.5	-11.0	30	DMF	79
	pyrene	2.20	NMR			30	DMF-d ₇	68,82,156
	pyrene	4.42	NMR	40.0	08.8	30	EtOD- a_5	82
	pyrene	4 40	Fluor	-40.0	-01.1	30	ELOH F+OH	79
	pyrene	4.40	Tit-EAS			30	EtOH EtOH	00,02,100 82
	nvrene	5.26	Fluor			30	ethylene glycol/MesSO	02
	p <i>j</i> 1 0110	0.20	1 1001			00	(90:10 v/v)	68, 156
	pyrene	4.48	Fluor			30	$Form/Me_2SO$ (90:10 v/v)	68, 156
	pyrene	3.17	Cal	-27.6	-31.8	30	Me ₂ CO	79
	pyrene	3.08	Fluor			30	Me ₂ CO	68,82,156
	py re ne	2.92	Tit-EAS			30	Me ₂ CO	82
	pyrene	2.95	NMR			30	Me_2CO-d_6	82
	pyrene	4.52	NMR			30	$MeOD-d_3$	82
	pyrene	4.62	Cal	-50.2	-77.3	30	MeOH	79
	pyrene	4.04	THUOF			30	MeOH	3,08,82,100
	nyrene	678	Fluor			30	$Me_{O}N$	82
	pyrenc	0.10	11001			00	$0.001 \text{ M Na} CO_{\circ}$	68 156
	pyrene	2.81	Cal	-26.8	-34.5	30	Me ₂ SO	79
	pyrene	2.84	NMR			30	Me_2SO-d_6	68,82,156
	pyrene	4.18	Fluor			30	N-methylacetamide/	
							Me_2SO (90:10 v/v)	68, 156
	pyrene		Cal	-37.7	-44.2	30	N-methylacetamide	79
	pyrene	3.68	Fluor	<u>.</u>		30	NMF/Me_2SO (90:10 v/v)	68, 156
	pyrene		Cal	-23.4	-6.90	30		79 70
	pyrene	1 09	NMR	-12.0	-4.14	30	1 П.F ТИБ. <i>А.</i>	19 68 89 156
	nvrene	5.62	Fluor			30	2.2.2-trifluoroethenol/	00,02,100
	pyrone	0.02	11401			00	$Me_{2}SO/(99:1 v/v)$	68, 156
	pyrene		Cal	-83.7	-168	30	2.2.2-trifluoroethanol	79
Cyclophane-4 (XVI)	naphthalene	4.08	Sol-EAS			20-22	H ₂ O, 0.5 M KH ₂ PO ₄	82, 157
	naphthalene	4.20	Solv Extr-EAS			20-22	H_2O , 0.5 M KH_2PO_4	3, 82
	naphthalene	1.40	NMR			30	$MeOD-d_3$	82
	perylene	<0.48	NMR			30	CDCl ₃	82
	perylene	1.04	NMR			30	$DMF-d_7$	82
	perylene	2.75	TIL-EAS			30		68, 82
	pergiene	6.61	Sol-EAS			30 20-22	$H_{1}O_{1}O_{2}SO_{2}G_{6}$	02 89 157
	pyrene pyrene	6.49	Solv Extr-EAS			20-22	$H_{2}O_{1}O_{2}O_{3}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4$	3 82
	pyrene	<1	NMR			30	$DMF-d_7$	82
	pyrene	1.74	NMR			30	MeOD-d ₃	82
	pyrene	1.81	Tit-EAS			30	MeOH	3, 82
	pyrene	1.43	NMR			30	Me_2SO-d_6	82
	pyrene	<3 0	NMR			30	THF-d ₈	82
Cyclophane-5 (XVI)	N-acetylmethyl- L-histidine N-acetylmethyl-	1.32	NMR			25?	CDCl ₃	158
	L-phenylalanine	none	NMR			25?	CDCl ₃	158
	4-aminopyridine	2.20	NMR			25?	CDCl ₃	158
	aniline	none	NMR			25?	CDCl ₃	158
	benzimidazole	3.37	NMR			25?	CDCl ₃	158
	benzotriazole	3.08	NMK			25?		158
	1midazole 2-methyl-	3.30	NMR			257		158
	uenzimiaazole	1.34 none	NMR			207 252		158
	2-methylimidazole	2.53	NMR			25?	CDCl	158
	4-methylimidazole	3.12	NMR			25?	CDCl ₃	158
	pyrazole	none	NMR			25?	CDCl ₃	158
	pyridine	none	NMR			25?	CDCl ₃	158

				ΔH	ΔS			
ligand (chart)	n eutral mole cule ^a	$\log K^b$	method	kJ/mol	J/K•mol	<i>T</i> . °C	conditions ^d	ref
	2-pyridinol	2.71	NMR			25?	CDCl ₃	158
	3-pyridinol	2.86	NMR			25?	CDCl ₃	158
	4-pyridinol	3.56	NMR			25?	CDCl ₃	158
	pyrrole	none	NMR			25?	CDCl ₃	158
Cyclophane-6	FJ = = = = = = = = = = = = = = = = = = =						02 0-5	
(YVI)	imidezole	1 82	UV			25	<i>t</i> -BuOH	150
$(\mathbf{X}\mathbf{V}\mathbf{I})$	incidencia	0.75				20	t-buon	100
	imidazole	2.70				20	t-bulyi methyi ester	109
	imidazole	3.91	UV			25	CH ₃ CCI ₃	159
	imidazole	2.69	UV			25	CHCl ₃	15 9
	imidazole	2.38	UV			25	CH_2Cl_2	15 9
	imidazole	5.11	UV			25	(CHCl ₂) ₂	159
	imidazole	1.94	UV			25	Diox	159
	imidazole	none	ŪV			25	MeCN	159
	imidazola	1.89	UV			25	2.Me.THF	150
	imidazole	2 10	UV			25	2.9. Martur	150
		2.19				20	2,2-10162-1111	150
	imidazoie	2.21				20	2,0-1vie ₂ -1 HF	109
	imidazole	3.03	UV			25	2,2,5,5-Me ₄ -THF	159
	imidazole	1.11	UV			25	<i>i</i> -PrOH	15 9
	imidazole	2.02	UV			25	tetrahydropyran	15 9
	imidazole	1.46	UV			25	THF	15 9
Cyclophane-7								
(XVII)	B _n NHCOH	2.36	NMR			27	CeDe	160
(21 + 11)	BrNHCOM	2.00	NMP			27	C.D.	160
	Dillilioome D-NHCOCE	2.01	NMD			27		160
	DINHCOUF ₃	none				21		100
	BnNHCOEt	1.70	NMR			27	C_6D_6	160
	BnOAlaNHCOMe(R)	1.32	NMR			27	C_6D_6	160
	BnOAlaNHCOMe(S)	1.67	NMR			27	C_6D_6	160
	MeNHCOMe	2.31	NMR			27	$C_6 D_6$	160
	MeNHCOBn	1.59	NMR			27	CeDe	160
	MeOPGlyNHCOMe(B)	1.50	NMR			27	C.D.	160
	MoOPGlyNHCOMe(S)	1 30	NMP			27	C.D.	160
	1 New CUM ANUCOMe(S)	1.00	NIMD			21		100
	1-NapCHMeNHCOMe(R)	1.00	NNR			21	C ₆ D ₆	100
	1-NapCHMeNHCUMe(S)	1.87	NMR			27	C ₆ D ₆	160
	PhCHMeNHCOMe(R)	1.91	NMR			27	C_6D_6	160
	PhCHMeNHCOMe(S)	2.22	NMR			27	$C_6 D_6$	160
	PhCHMeNHCOH(R)	2.08	NMR			27	C_6D_6	160
	PhCHMeNHCOH(S)	2.32	NMR			27	C ₆ D ₆	160
	PhCHMeNHCOEt(R)	1.13	NMR			27	CeDe	160
	PhCHMeNHCOEt(S)	1.31	NMR			27	C ₂ D ₂	160
Curlenhane 8	I IIOIIMEIAIIOOEt(6)	1.01	1414110			21	C ⁶ D ⁶	100
Cyclophane-o		1 00	NIMD			05		101
$(\mathbf{X}\mathbf{V}\mathbf{II})$		1.00	NNR			20		101
	Ac-L-Ala-NHBn	1.73	NMR			25		101
	Ac-D-Ala-OBn	0.63	NMR			25	CDCI ₃	161
	Ac-L-Al a -OBn	0. 9 3	NMR			25	CDCl ₃	161
	Ac-D-Ala-OBn	2.15	NMR			25	C_6D_6	161
	Ac-L-Ala-OBn	2.54	NMR			25	C_6D_6	161
	Ac-D-Ala-D-Ala-OBn	1.09	NMR			25	CDCl ₃	161
	Ac-D-Ale-I-Ale-OBn	1 23	NMR			25	CDCl	161
	Act Ale D Ale OBn	1.64	NMP			25	CDCL	161
		1.04	NIMD			20		101
	AC-L-AIA-L-AIA-ODI	1.09				20		101
	Ac-D-Ala-NH-t-Bu	0.76	NMR			25		161
	Ac-L-Ala-NH-t-Bu	1.72	NMR			25	CDCl ₃	161
	Ac-D-Ala-NH-t-Bu	2.43	NMR			25	C_6D_6	161
	Ac-L-Al a-NH- t-Bu	3.21	NMR			25	C_6D_6	161
	N-t-butylacetamide	1.09	NMR			25	CDCl	161
	N-methylacetamide	2 44	NMR			25	CDCL	161
	PhAc.D. Ale.NHMe	1.40	NMR			25	CDCL	161
	DhAor Ale NUMe	1 4 9	NMD			25	CDCL	161
0	r nac-l-ala-innivie	1.40	INIMIC			20	CDC13	101
Cyclopnane-9								
$(\mathbf{X}\mathbf{V}\mathbf{II})$	N-Boc-D-Ala-NHMe	1.54	NMR			25	$CDCI_3$ (Boc =	
							butoxycarbonyl)	162
	N-Boc-L-Ala-NHMe	2.7 9	NMR			25	$CDCl_3$ (Boc =	
							butoxycarbonyl)	162
	N-Boc-D-Leu-NHMe	1.17	NMR			25	$CDCl_3$ (Boc =	
							hutoxycarbonyl)	162
	N-Boost - Leu-NHMe	9 70	NMR			25	$CDCl_{0}$ (Boc =	
	DOC-11-120-14111416	2.10	- 41722V			20	hutozvogrhonyl)	169
	N Boo D Son NUME	2 02	NMD			95	CDCl. (Box -	102
	M-DOC-D-Ser-INFIME	0.20	MINIK			20		100
			11/5			05	outoxycardonyl)	102
	N-Boc-L-Ser-NHMe	>4.55	NMR			25	$UDUI_3$ (Boc =	
							butoxycarbonyl)	162
	N-Boc-D-Thr-NHMe	2.64	NMR			25	$CDCl_3$ (Boc =	
							butoxycarbonyl)	162

ligand (chart)	neutral molecules	log Kb	method	ΔH k.I/mol	ΔS	T °C	conditioned	-of
Igano (chart)	neutral molecule-	log A.	method	KJ/ MOI	J/ K•moi	1, 0	Conditions ⁵	rei
	N-Boc-L-Thr-NHMe	large	NMR			25	CDCl ₃ (K too large	
							(Boc = butoxycerbonyl)	162
	N-Boc-D-Val-NHMe	1.10	NMR			25	$CDCl_3$ (Boc =	102
							butoxycarbonyl)	162
	N-Boc-L-Val-NHMe	2.93	NMR			25	$CDCl_3$ (Boc =	
Cuelonhana 10 (XVII)	M As D Ale NUMA	1.09	NMD			95	butoxycarbonyl)	162
Cyclophane-10 (XVII)	N-Ac-D-Ala-NHMe	2.90	NMR			20 25		162
	N-Ac-D-Ala-NH-t-Bu	1.47	NMR			25	CDCl ₃	162
	N-Ac-L-Ala-NH-t-Bu	2.20	NMR			25	CDCl ₃	162
	N-Boc-D-Ala-NHMe	1.25	NMR			25	$CDCl_3$ (Boc =	
	N Des t Ale NUMe	0.96	NIMD			95	butoxycarbonyl)	162
	W-DUC-L-Ald-ININIC	2.00				20	butoxycarbonyl)	162
	N-Boc-L-Al a-NHB n	1.03	NMR			25	$CDCl_3$ (Boc =	102
							butoxycarbonyl)	162
	N-Boc-L-Ala-NH-t-Bu	none	NMR			25	$CDCl_3$ (Boc =	
	M Dee p Leu NUMe	1 10	NIMO			05	butoxycarbonyl)	162
	W-DOC-D-Leu-INTINIE	1.10	NMR			25	$CDCI_3$ (Boc =	169
	N-Boc-L-Leu-NHMe	3.01	NMR			25	$CDCl_{2}$ (Boc =	102
							butoxycarbonyl)	162
	N-Boc-D-Ser-NHMe	2.7 9	NMR			25	$CDCl_3$ (Boc =	
			20.00			~~	butoxycarbonyl)	162
	N-Boc-L-Ser-NHMe	>4.48	NMR			25	$CDCl_3$ (Boc =	160
	N-Boc-L-Ser(OBn)-						butoxycarbonyi)	102
	NHMe	2.27	NMR			25	$CDCl_3$ (Boc =	
							butoxycarbonyl)	162
	N-Boc-D-Thr-NHMe	2.35	NMR			25	$CDCl_3$ (Boc =	
	N-Boost - Thr-NHMe	>4 55	NMR			95	CDCl. (Bee =	162
	IN-DOC-1-1 III-INIINIE	~4.00	141411			20	butoxycarbonyl)	162
	N-Boc-D-Val-NHMe	1.10	NMR			25	$CDCl_3$ (Boc =	102
							butoxycarbonyl)	162
	N-Boc-L-Val-NHMe	3.23	NMR			25	$CDCl_3$ (Boc =	1.00
Cyclophene-11 (XVII)	1-ovenonhenol	2 01	NMP			2	Dutoxycarbonyl)	162
Cyclophane-11 (XVII)	6-nitro-2-naphthol	2.32	NMR			?	CDCl ₂	163
	3-nitrophenol	2.06	NMR			?	CDCl ₃	163
	4-nitrophenol	3.37	NMR			?	CDCl ₃	163
	4-propoxybenzoic	0.00				•		
Cyclophene 12 (XVII)	acia A-gyanophanol	0.90	NMR			? ?		163
Cyclophane-12 (X VII)	3-nitrophenol	1.72	NMR			?	CDCl ₃	163
	4-nitrophenol	2.85	NMR			?	CDCl ₃	163
	4-propoxybenzoic							
O	acid	0.85	NMR			?		163
Cyclopnane-13 (XVII)	4-cyanophenol 4-(2' 4'-dinitro-	3.99	INIVIR			<i>:</i>	CDCI ₃	104
	phenylazo)phenol	4.10	NMR			?	CDCl ₃	164
	4-nitrophenol	4.20	NMR			?	CDCl ₃	163
	4-nitrophenol	4.14	NMR			?	CDCl ₃	164
	4-nitrophenol	4.15	NMR			?		165
	4-nitrophenol	4.30	INIVIR			:	CDCI ₃ (competitive NMR)	100
	azo)phenol	3.53	NMR			?	CDCl ₃	164
	4-propoxybenzoic					_		
Coulombana 14 (NVIII)	acid	3.76	NMR			?	CDCl ₃	164
Cyclophane-14 (XVII)	4-nitropnenol	4.04 2.30	NMR			? ?	CDCl ₃	163
Cyclopilano 10 (11 / 11)	3-nitrophenol	2.15	NMR			?	CDCl ₃	163
	4-nitrophenol	3.06	NMR			?	CDCl ₃	163
Cyclophane-16 (XVII)	4-cyanophenol	1.97	NMR			?	CDCl ₃	163
	o-nitrophenol	1.28	NMR			, ?	CDCl ₃	163
	4-propoxybenzoic	20.02	~ ~			•	01013	100
-	acid	0.90	NMR			?	CDCl ₃	163
Cyclophane-17 (XVII)	4-carboethoxyphenol	~1.70	NMR			?	CDCl ₃	166
	4-cyanophenol 4-cyanophenol	3.04 3.06	NMR			: ?	CDCl ₃	164
	4-(2',4'-dinitro-	5.00	1414110			•	02013	10.5
	phenylazo)phenol	3.34	NMR			?	CDCl ₃	164
	4-nitrophenol	3.78	NMR			?	CDCl ₃	163,165

ligand (chart)	neutral molecule ^a	log K ^b	method	kJ/mol	J/K·mol	<i>T</i> , ℃	conditions ^d	ref
	4-nitrophenol	3.48	NMR			?	CDCl ₃	164, 166
	4-(4'-nitrophenyl- azo)phenol 4-(4'-nitrophenyl-	2.70	NMR			?	CDCl ₃	166
	azo)phenol phenol	$2.72 \\ \sim 1.30$	NMR NMR			? ?	CDCl ₃ CDCl ₃	164 166
Cuelenhene 19	4-propoxybenzoic acid	<2	NMR			?	CDCl ₃	1 64
(XVII)	4-nitrophenol 4-nitrophenol	3. 99 4.67	NMR NMR			? ?	CDCl ₃ CDCl ₃ (competitive NMR)	165 165
Cyclophane-19 (XVII)	6-nitro-2-naphthol	3.85	NMR			?	CD ₂ Cl ₂	165
	4-nitrophenol 4-nitrophenol	4.38 4.98	NMR NMR			? ?	CD ₂ Cl ₂ CD ₂ Cl ₂ (competitive NMR)	165 165
Cyclophane-20 (XVIII)	adenosine	4.00	Spec			20	$H_2O, I = constant$ (0.01 M (CH ₃) ₂ As(O)Na, pH 7.8 0.01 M Ne ₂ SO)	167
Cyclophane-21							pri 7.6, 0.01 WI Wa2504)	107
(XVIII)	adenosine	3.87	Spec			20	H_2O , $I = \text{constant}$ (0.01 M (CH ₃) ₂ As(O)Na, pH 7 8 0.01 M Na-SO.)	167
	cytidine	3. 9 4	Spec			20	$H_2O, I = constant$ (0.01 M (CH ₃) ₂ As(O)Na,	107
	2'-deoxyuridine	4.06	Spec			20	pH 7.8, 0.01 M Na ₂ SO ₄) H ₂ O, $I = \text{constant}$ (0.01 M (CH ₃) ₂ As(O)Na,	167
	guanosine	4.30	Spec			20	pH 7.8, 0.01 M Na ₂ SO ₄) H ₂ O, $I = \text{constant}$ (0.01 M (CH ₂) A ₈ (O) Ne	167
	thymidine	3.86	Spec			20	(0.01 M (0.13)2 $B(0)/(a, b)$ pH 7.8, 0.01 M Na ₂ SO ₄) H ₂ O, <i>I</i> = constant (0.01 M (0.14) A ₂ (0.14)	167
	uridine	4.05	Spec			20	(0.01 M (CH_{3}) ₂ As(O)Na, pH 7.8, 0.01 M Na ₂ SO ₄) H ₂ O, $I = \text{constant}$	167
Cyclonhane-22							$(0.01 \text{ M} (CH_3)_2As(0)Na,$ pH 7.8, 0.01 M Na ₂ SO ₄)	167
(XVIII)	adenosine	3.86	Spec			20	$H_2O, I = constant$ (0.01 M (CH ₃) ₂ As(O)Na, pH 7.8, 0.01 M Na ₂ SO ₄)	167
Cyclophane-23 (XVIII)	adenosine	3. 99	Spec			20	H ₂ O, $I = \text{constant}$ (0.01 M (CH ₃) ₂ As(O)Na,	105
Cyclophane-24							pH 7.8, 0.01 M Na ₂ SU ₄)	167
(ŽVIII)	4-cyanophenol	2.08	³¹ P NMR 31D NMP			25 25	CDCl ₃	168
Cyclophane-25	pentafluorophenol	1.80	³¹ P NMR			25 25	CDCl ₃	168
(XVIII)	4-cyanophenol	1.98	³¹ P NMR			25 05	CDCl ₃	168
Cuelenhana 26	entafluorophenol	1.87	³¹ P NMR			25 25	CDCl ₃	168
(XVIII)	acetic acid acetic acid	2.58 0.30(M ₂ L)	³¹ P NMR ³¹ P NMR			25 25	CDCl ₃ (endo complex) CDCl ₃ (exo complex)	168
	benzoic acid	nm	¹ H NMR			25	$(M + ML <-> M_2L)$ CDCl ₃ (no substantial	168
	4-cyanophenol	2.06	¹ H NMR			25	spectra changes) CDCl ₃ (endo complex)	168 168
	4-cyanophenol	2.69(M ₂ L)	H NMR			25	$(M + ML <-> M_2L)$ (DCL (and complex)	168 168
	4-cyanophenol	2.06(M ₂ L)	³¹ P NMR			25 25	$CDCl_3$ (endo complex) $CDCl_3$ (exo complex) $(M + ML <-> M_2L)$	168
	3,4-difluorophenol 3,4-difluorophenol	2.44 1.85(M ₂ L)	¹ H NMR ¹ H NMR			25 25	CDCl ₃ (endo complex) CDCl ₃ (exo complex)	168
	2,6-dimethyl-	9.40	SID NIMP			95	$(M + ML \leftrightarrow M_2L)$	168
	4-nitrophenol 2,6-dimethyl- 4-nitrophenol	2.40 0.78(Mata)	31P NMR			20 25	CDCl ₂ (endo complex)	100
		0.10(111211)	T 1414114			20	$(M + ML < -> M_2L)$	168

				ΛH	٨S			
ligand (abort)	neutral molecules	log Kb	method	k.I/mol	J/K-mol	TOC	conditions	rof
ilganu (chart)	neutrai molecule	log A	method	K0/ moi	0/13-1101	1, 0		
	2,4-dinitrophenol	nm	¹ H NMR			25	CDCl ₃ (no substantial	
	· •						spectra changes)	168
	4-fluorophenol	1.77	¹ H NMR			25	CDCl ₂ (endo complex)	168
	4-fluorophenol	1.18(M ₂ L)	¹ H NMR			25	CDCl ₂ (exo complex)	
	- nuclophenoi						(M + ML < ML)	168
	6-nitro-2-nenhthol	9 91	IH NMR			25	CDCl. (and complex)	169
	6 mitro 2 namhthol	2.21 9.50(M.T)	ILI NIMD			20	CDCl ₃ (endo complex)	100
	6-nitro-2-naphtnoi	2.00(1012L)	-H MMR			20	$CDCI_3$ (exo complex)	100
		0.55					$(M + ML < -> M_2L)$	168
	4-nitrophenol	2.55	¹ H NMR			25	$CDCl_3$ (endo complex)	168
	4-nitrophenol	$2.51(M_2L)$	'H NMR			25	$CDCl_3$ (exo complex)	169
							$(M + ML <-> M_2L)$	168, 16 9
	4-nitrophenol	2.56	³¹ P NMR			25	$CDCl_3$ (endo complex)	168
	4-nitrophenol	$2.57(M_2L)$	³¹ P NMR			25	$CDCl_3$ (exo complex)	
	-						$(M + ML < -> M_2L)$	168
	4-[(p-nitrophenyl)-							
	azolphenol	2.34	¹ H NMR			25	CDCl ₂ (endo complex)	168
	4-[(p-nitronhenvl)-							100
	azolphenol	2.31(M.L.)	¹ H NMR			25	CDCl. (exa complex)	
	azojpnenor	2.01(11122)				20	(M + MI < N M I)	169
	4 mitnethionhanal	-	ILI NIMD			05	$(1VI + 1VIL <-> 1VI_2L)$	108
	4-nitrotniopnenoi	nm	-H MMR			20	CDCI3 (no substantial	100
			1				spectra changes)	168
	pentafluorophenol	1.97	¹ H NMR			25	$CDCl_3$ (endo complex)	168
	pentafluorophenol	$1.81(M_2L)$	¹ H NMR			25	$CDCl_3$ (exo complex)	
							$(M + ML <-> M_2L)$	168
	pentafluorophenol	2.22	³¹ P NMR			25	$CDCl_3$ (endo complex)	168
	pentafluorophenol	$1.62(M_2L)$	³¹ P NMR			25	CDCl ₃ (exo complex)	
		•••••				-	$(M + ML < M_{I})$	168
	nhenol	1.26	¹ H NMR			25	CDCl ₂ (endo complex)	168
	phenol	$0(M_{\rm H})$	¹ H NMR			25	CDCl. (exo complex)	169
	phenoi	0(141211)	11 141414			20	(M + MI < NI)	160
	1 (Aniflanana						$(WI + WIL < > WI_2L)$	108
	4-(triffuoro-	0.54				05		
	metnyi)phenol	2.54	'H NMR			25	CDCl ₃ (endo complex)	168
	4-(trifluoro-							
	methyl)ph e nol	2.52(M ₂ L)	¹ H NMR			25	CDCl ₃ (exo complex)	168
							$(M + ML <-> M_2L)$	168
	4-(trifluoro-							
	methyl)phenol	2.30	³¹ P NMR			25	$CDCl_3$ (endo complex)	168
	4-(trifluoro-							
	methyl)phenol	1.71(M ₂ L)	³¹ P NMR			25	CDCl ₂ (exo complex)	168
							$(M + ML < M_L)$	168
Cyclophene-27	benzoic scid	nm	¹ H NMR			25	CDCl. (no substantial	100
(YVIII)	Senzone acru					20	spectre changes)	169
	4 avenaphenal	0.95	ILI NMD			95	CDC1 (and commiss)	100
	4-cyanophenol	2.00 1.00/M T \				20	CDCl ₃ (exo complex)	109
	4-cyanophenoi	1.93(14121)				20	$(DCl_3 (endo complex))$	1.00
		a aa	21D 313 (D				$(M + ML < -> M_2L)$	168
	4-cyanophenol	2.69	^a P NMR			25	$CDCl_3$ (exo complex)	168
	4-cyanophenol	$2.10(M_2L)$	³¹ P NMR			25	$CDCl_3$ (endo complex)	
							$(M + ML <-> M_2L)$	1 68
	3,4-difluorophenol	2.26	¹ H NMR			25	$CDCl_3$ (exo complex)	168
	3,4-difluorophenol	$1.67(M_2L)$	¹ H NMR			25	$CDCl_3$ (endo complex)	
	-						$(M + ML < -> M_2L)$	168
	2.6-dimethyl-						•	
	4-nitrophenol	2.69	³¹ P NMR			25	CDCl ₂ (exo complex)	168
	2.6-dimethyl-							
	4-nitrophenol	0.70(M ₂ L)	³¹ P NMR			25	CDCl. (endo complex)	
	4 millophener	0.10(101222)	1 111111			20	(M + MI < NI)	169
	9.4 dinitronhanol	*****	ILI NMD			95	(101 + 1012)	100
	2,4-unitrophenoi	nm	-H MMR			20	CDCI3 (no substantial	100
	(f]	1 40	ITT MAKE			0.5	spectra changes)	168
	4-nuorophenol	1.40				20	CDCl ₃ (exo complex)	168
	4-fluorophenol	$1.38(M_2L)$	'H NMR			25	CDCl ₃ (endo complex)	
							$(M + ML <-> M_2L)$	168
	6-nitro-2-naphthol	2.65	¹ H NMR			25	CDCl ₃ (exo complex)	168
	6-nitro-2-n a phthol	$2.05(M_2L)$	¹ H NMR			25	CDCl ₃ (endo complex)	
							$(M + ML <-> M_2L)$	168
	4-nitrophenol	2.94	¹ H NMR			25	$CDCl_3$ (exo complex)	168,169
	4-nitrophenol	2.36(M ₂ L)	¹ H NMR			25	$CDCl_3$ (endo complex)	169
	•	· - /				-	$(M + ML < -> M_{2}L)$	168
	4-nitrophenol	2.99	³¹ P NMR			25	CDCl ₃ (exo complex)	168
	4-nitrophenol	2.42(M.L)	³¹ P NMR			25	CDCl ₃ (endo complex)	
		()					$(M + ML < -> M_{a}L)$	168
	4-[(p-nitronhenvl)-						(100
	azolphenol	2.48	¹ H NMR			25	CDCla (exo complex)	168
	4-[(p-nitronhenvl)-					20	Caro compier)	100
	azolphenol	1.89(M-L)	IH NMP			25	CDCl. (endo complex)	
		T.00(141317)					(M + ML < ML)	169
							(171 · 1711 · ··· 181211)	100

					ΔH	ΔS			
	ligand (chart)	neutral molecule ^a	$\log K^b$	method	kJ/mol	J/K•mol	<i>T</i> , ℃	conditions ^d	ref
Control partial complexity 14 MMR 16 168 pertaflucorphenol 2.43 ¹⁴ MMR 25 CDC1, (endo complex) 168 pertaflucorphenol 2.55 ¹⁴ NMR 25 CDC1, (endo complex) 168 pertaflucorphenol 2.55 ¹⁴ NMR 25 CDC1, (endo complex) 168 diffuor		4-nitrothionhenol	nm	¹ H NMR			25	CDCl ₂ (no substantial	
		4 maonnopnonoi					20	spectra changes)	168
		pentafluorophenol	2.43	¹ H NMR			25	CDCl ₃ (exo complex)	168
$ \begin{array}{c} \mbox{pertaffuorophanol}{2.55} & \mbox{"P} NMR & \mbox{"D} CDC, (seco complex) \\ \mbox{CDC}, (seco complex) \\ \mbox{(d} + ML <> M_L) \\ \mbox{(d} + ML <> M_L \\ \mbox{(d} + ML \\ \mbox{(d} + $		pentafluorophenol	$1.84(M_2L)$	¹ H NMR			25	CDCl ₃ (endo complex)	
		-	. –					$(M + ML <-> M_2L)$	168
		pentafluorophenol	2.55	³¹ P NMR			25	$CDCl_3$ (exo complex)	168
(M + ML <> M_L) 168 4.(trifluro- methyliphenol 2.36 ¹ H NMR 25 CDCls (exo complex) 168 4.(trifluro- methyliphenol 1.81(M_L) ¹ H NMR 25 CDCls (exo complex) 168 4.(trifluro- methyliphenol 2.33 ¹⁴ P NMR 25 CDCls (exo complex) 168 2.v(VIII) 4.(trifluro- methyliphenol 2.33 ¹⁴ P NMR 25 CDCls (exo complex) 168 2.v(VIII) scenine 2.4-diminopurine 2.4-diminopurine 2.4-dimydroxy- petrine 4.28 Sol-UV 257 CH-Cls 170 2.4-dimydroxy- petrine 4.38 Sol-UV 257 CH-Cls 170 2.4-dimydroxy- petrine 4.30 Sol-UV 257 CH-Cls 170 2.4-dimydroxy- petrine 3 Sol-UV 257 CH-Cls 170 2.4-dimydroxy- petrine 3 Sol-UV 257 CH-Cls 171 2.4-dimydroxy- mapithalene 4.71 Fluor 0 DH/H_Q (10:09 / W, 0.01 M H2PES) 172 2.v(lophano- mapithalene 4		pentafluorophenol	1.96(M₂L)	³¹ P NMR			25	CDCl ₃ (endo complex)	
$ \begin{array}{c} \label{eq:complex} & -4-(trifture-methyliphenol 2.35 ^{1} H NMR & 25 CDCls (end complex) (A + ML <> $								$(M + ML <-> M_2L)$	168
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4-(trifluro-		1			~ -		
		methyl)phenol	2.35	'H NMR			25	$CDCl_3$ (exo complex)	168
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4-(trilluoro-	1 01/M T)	ILI NIMD			95	CDCL (and complex)	
		metnyi)phenoi	1.01(1V12L)	-H NMR			20	(M + ML < ML)	169
		4-(trifluoro-							100
		methyl)phenol	2.33	³¹ P NMR			25	$CDCl_3$ (exo complex)	168
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4-(trifluoro-							
$ \begin{array}{c} Cyclophane-28 \\ (XVII) \\ Cyclophane-28 \\ (XVII) \\ Photon equation (A, A, B, C) \\ (XVII) \\ Photon equation (A, C) \\ Photon (A, C) \\ Photon (A, C) \\ Photon (A, C) \\ $		methyl)phenol	$1.74(M_2L)$	³¹ P NMR			25	$CDCl_3$ (endo complex)	
$ \begin{array}{c} Cyclophane-28 \\ (XVII) \\ Cyclophane-28 \\ (XVII) \\ Ze-Giaminopurine 4.57 \\ Ze-Giaminopurine 4.57 \\ Sol-UV \\ Ze-Giaminopurine 4.58 \\ Sol-UV \\ Ze-Giaminopurine 4.38 \\ Sol-UV \\ Ze-Giaminopurine 4.40 \\ Sol-UV \\ Ze-Giaminopurine 4.38 \\ Sol-UV \\ Ze-Giaminopurine 4.39 \\ Sol-UV \\ Ze-Giaminopurine $								$(M + ML <-> M_2L)$	168
(XVIII) adenine 4.38 NoI-UV 257 CH4Cla 170 2.6-diaminopurine 4.64 Sol-UV 257 CH4Cla 170 2.6-diaminopurine 4.64 Sol-UV 257 CH4Cla 170 2.4-dihydroxy- 2.57 CH4Cla 170 170 pbridine 4.3 Sol-UV 257 CH4Cla 170 Ovelophane-29 pbioroglucinol 4.04 Sol-UV 257 CH4Cla 170 VCUD uracil <3	Cyclophane-28	. .		~					
cyclophane -30 2,4-diminopurie guanie 4.57 4.4 Sol-UV 257 CH ₂ Cl ₅ 170 cyclophane -20 (XLX)	(XVIII)	adenine	4.28	Sol-UV			25?	CH ₂ Cl ₂	170
2.6-diaminopurine 4.84 Soi-UV 251 CH2Cig 1/0 guanine 2.4.8 Soi-UV 257 CH2Cig 1/0 pierdine 4.00 Soi-UV 257 CH2Cig 1/0 cyclophane-28 XIX Cyclophane-28 CH2Cig 1/0 1/0 Cyclophane-31 N-phenyl-1-amino- naphthalene 4.71 Fluor 30 EtOH/H4O (10:90 v/v), 0.1 M KCl, pH 8 1/12 Cyclophane-31 1.3-dihydroxy- naphthalene none Fluor 30 H4O, I = 0.1 (KCl), pH 4 (001 M acetate) 0.1 M KCl, pH 8 1/2 Cyclophane-31 1.3-dihydroxy- naphthalene none Fluor 30 H4O, I = 0.1 (KCl), pH 4 (001 M acetate) 99 1-(dimethyl- aminonaphthalene 3.48 Fluor 30 H4O, I = 0.1 (KCl), pH 4 (001 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 2.95 Fluor 30 H4O, I = 0.1 (KCl), pH 4 (001 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 2.95 Fluor 30 H4O, I = 0.1 (KCl), pH 4 (001 M acetate) 97,99,173 <		cytosine	4.57	Sol-UV			25?		170
		2,6-diaminopurine	4.64	Sol-UV			201		170
Appendix Sol-UV 287 CH_CL 170 melamine 4.00 Sol-UV 257 CH_CL 170 cyclophane-28 vareil <3		guanine	4.30	301-U V			20 !		170
prefamile 4.00 Sol. UV 257 CH/CL 100 prefine 4.70 Sol. UV 257 CH/CL 170 Cyclophane-20 XIX phloroglucinol 4.04 Sol. UV 257 CH/CL 170 Cyclophane-30 N-phenyl-1-amino-nephthalene 4.71 Fluor 30 EtOH/H ₂ O (10.90 v/v), 0.1 M KCl, pH 8 172 Cyclophane-31 XIX naphthalene 4.71 Fluor 30 EtOH/H ₂ O (10.90 v/v), 0.1 M KCl, pH 8 172 Cyclophane-31 XIX naphthalene 4.71 Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 99 1(dimethyl- amino)naphthalene 3.48 Fluor 90 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 perylene 2.85 Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 4.94 Fluor 91 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 yprene 3.75 Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acet		2,4-ulliyuroxy-	<3	Sol-UV			257	CH ₂ Cl ₂	170
pterime 4.70 Sol-UV 257 CH-Cli 100 Cyclophane-29 phloroglucinol 4.04 Sol-UV 257 CH-Cli 170 Cyclophane-20 phloroglucinol 4.04 Sol 25 CH-Cli 171 Cyclophane-31 N-phenyl-1-amino- naphthalene 4.71 Fluor 30 EtOH/H ₂ O (10.90 v/v), 0.1 M KCl, pH 8 172 Cyclophane-31 1.3-dihydroxy- naphthalene none Fluor 30 H ₄ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 96 namino)naphthalene 4.43 Fluor 30 H ₄ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 99 naphthalene 3.48 Fluor 30 H ₄ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 perylene 2.85 Fluor 30 H ₄ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 2.95 Fluor 30 H ₄ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 V-phenyl-1-amino- naphthalene 4.94 Fluor 30 H ₄ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173<		melamine	4.00	Sol-UV			25?	CH ₂ Cl ₂	170
Cyclophane-30 (XIX) uracii $< 3^{\circ}$ Sol-UV 257 CH ₂ Cl ₂ 170 Outomase-29 (XIX) phloroglucinol 4.04 Sol 25 CH ₂ Cl ₂ 171 Outomase-20 (XIX) N-phenyl-1-amino- maphthalene 4.71 Fluor 30 EtOH/H ₂ O (10:90 v/v), 0.1 M KCl, pH 8 (0.01 M HEPES) 172 (0.01 M HEPES) 172 (0.01 M HEPES) 96 Cyclophane-31 (XIX) 1.3-dihydroxy- maphthalene none Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 0.1 M KCl, pH 8 (0.01 M acetate) 172 (0.01 M HEPES) 96,99 1-(dimethyl- amino)maphthalene 3.48 Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 perylene 2.85 Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- maphthalene 2.95 Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- maphthalene 4.94 Fluor 30 H ₂ O, I = 0.1 (KCl), pH 4 (0.01 M acetate) 97,99,173 Viciphane-32 (XIX) p-phenylalanine nm Fluor 30		pterine	4.70	Sol-UV			25?	CH ₂ Cl ₂	170
$ \begin{array}{c} Cyclophane-39\\ (XIX) \\ Cyclophane-30\\ (XIX) \\ Cyclophane-30\\ (XIX) \\ Cyclophane-30\\ (XIX) \\ Cyclophane-30\\ (XIX) \\ Cyclophane-31\\ (XIX) \\ absorb an absorb halene \\ cyclophane-31\\ (XIX) \\ cyclophane-31\\ (XIX) \\ cyclophane-31\\ (XIX) \\ cyclophane-31\\ (XIX) \\ cyclophane-32\\ (XIX) \\ cyclophane-$		uracil	<3	Sol-UV			25?	CH ₂ Cl ₂	170
$ \begin{array}{ccc} (XIX) & phoroglucinol & 4.04 & Sol & 25 & CH_5Cl_8 & 171 \\ \hline (XIX) & naphthalene & 4.01 & Fluor & 30 & EtOH/H_5O (10:90 v/v), \\ or 1 M KCl, pH 8 & 172 & 00.1 M HCPES) & 96 \\ \hline (XIX) & 1,3-dihydroxy- \\ naphthalene & none & Fluor & 30 & H_5O, I = 0.1 (KCl), \\ pH 4 (0.01 M acctate) & 96,99 \\ \hline (XIX) & 1,3-dihydroxy- \\ naphthalene & 1.43 & Fluor & 30 & H_5O, I = 0.1 (KCl), \\ pH 4 (0.01 M acctate) & 96,99 \\ \hline (XIX) & 1,0-10 & 100$	Cyclophane-29								
	(XIX)	phloroglucinol	4.04	Sol			25	CH_2Cl_2	171
$ \begin{array}{cccc} (XIX) & N-phenyl-1-amino-naphthalene & 4.71 & Fluor & 30 & EtOH/H_O (10:90 v/v), \\ 0.1 M KCl, pH 8 & 172 \\ (0.01 M HEPES) & 96 \\ \hline \\ (XIX) & 1,3-dihydroxy-naphthalene & none & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 172 \\ (0.01 M HEPES) & 96,99 \\ \hline \\ 1-(dimethyl-amino)naphthalene & 4.43 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 99 \\ \hline \\ naphthalene & 3.48 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 99 \\ \hline \\ naphthalene & 3.48 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ perylene & 2.85 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 97,99,173 \\ \hline \\ N-phenyl-1-amino-naphthalene & 2.95 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ n-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 97,99,173 \\ \hline \\ N-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 97,99,173 \\ \hline \\ V-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 97,99,173 \\ \hline \\ (XIX) & P-phenylalanine & nm & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 97,199,173 \\ \hline \\ (XIX) & P-phenylalanine & 2.90 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (1.001 M acetate) & 175 \\ \hline \\ (XIX) & P-phenylalanine & 2.90 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (1.001 M acetate) & 175 \\ \hline \\ (XIX) & P-tyrtophan & 2.85 & Fluor & 30 & H_O, I = 0.1 (KCl), \\ pH 4 (1.001 M acetate) & 175 \\ \hline \\ (XIX) & methyl yellow & 5.81 & Spec & 30 & H_O, I = 0.1 (KCl), \\ pH 7 (0.01 M HEPES) & 176 \\ \hline \\ \end{array}$	Cyclophane-30	_							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(XIX)	N-phenyl-1-amino-							
Cyclophane-31 (XIX) 1.3-dihydroxy- naphthalene none Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 96 1(dimethyl- amino)naphthalene 4.43 Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 99 1(dimethyl- amino)naphthalene 3.48 Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 99 naphthalene 3.48 Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 97,99,173 perylene 2.85 Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 2.95 Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 97,99,173 N-phenyl-2-amino- naphthalene 4.94 Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 97,99,173 yorene 3.75 Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 97,99,173 KIX) p-phenylalanine nm Fluor 30 H ₄ O, $I = 0.1$ (KCl), pH 4 (001 M acetate) 97,99,173 KIX) p-phenylalanine nm Fluor<		naphthalene	4.71	Fluor			30	$EtOH/H_2O$ (10:90 v/v),	150
								(0.01 M HEDES)	172
Cyclophane-31 (XIX) 1,3-dihydroxy- naphthalene none Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 0.1 M KCl, pH 8 172 (0.01 M HEPES) 96,99 1-(dimethyl- amino)naphthalene 3.48 Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 99 naphthalene 3.48 Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 perylene 2.85 Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 2.95 Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 4.94 Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-2-amino- naphthalene 4.94 Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 yprene 3.75 Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 (XIX) p-phenylalanine nm Fluor 30 $H_4O, I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 (XIX) p-thenylalanine nm Fluor 30 $H_4O, I = 0.1$ (K	Cuelonhone 21							(0.01 M HEPES)	90
$\begin{array}{ccccc} (1115) & h_{2}O(II) (102) & none & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 0.1 M KCl), \\ pH 4 (0.01 M accetate) & 96,99 \\ \hline \\ 1-(dimethyl-amino)naphthalene & 4.43 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 99 \\ naphthalene & 3.48 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ perylene & 2.85 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ naphthalene & 2.95 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ naphthalene & 4.94 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ naphthalene & 4.94 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ N-phenyl-1-amino-naphthalene & 4.94 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ naphthalene & 4.84 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ N-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ N-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ N-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ N-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ N-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 97,99,173 \\ N-phenyl-2-amino-naphthalene & 4.84 & Fluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 175 & Pluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4 (0.01 M accetate) & 175 & Pluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4.1 (0.01 M accetate) & 175 & Pluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4.1 (0.01 M accetate) & 175 & Pluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4.1 (0.01 M accetate) & 175 & Pluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4.1 (0.01 M accetate) & 175 & Pluor & 30 & H_{2}O, I = 0.1 (KCl), \\ pH 4.1 (0.01 M accetate) & 175 & Pluor & 10 & Pl$	(XIX)	1.3. dihydroxy.							
Indiminist Intermediate Procession	(1111)	naphthalene	none	Fluor			30	H_2O , $I = 0.1$ (KCl).	
								pH 4 (0.01 M acetate)	
								0.1 M KCl, pH 8	172
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								(0.01 M HEPES)	96,99
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-(dimethyl-		-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		amino)naphthalene	4.43	Fluor			30	$H_2U, I = 0.1$ (KCI),	00
Implification 5.45 Fluor 30 Fluor 30 Fluor 97,99,173 perylene 2.85 Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 2.95 Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 3 (0.01 M acetate) 97,99,173 N-phenyl-1-amino- naphthalene 4.94 Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 N-phenyl-2-amino- naphthalene 4.84 Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 yvrene 3.75 Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 4 (0.01 M acetate) 97,99,173 (XIX) D-phenylalanine nm Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 97,173,174 (XIX) D-phenylalanine 2.90 Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 L-tryptophan 2.85 Fluor 30 H ₂ O, $I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 H ₂ O, $I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176 </td <td></td> <td>nenhthalana</td> <td>2 49</td> <td>Fluor</td> <td></td> <td></td> <td>20</td> <td>H_{0} $I = 0.1$ (KCl)</td> <td>99</td>		nenhthalana	2 49	Fluor			20	H_{0} $I = 0.1$ (KCl)	99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		naphtnatene	0.40	Fluor			50	$nH_4 (0.01 \text{ M ecetate})$	97 99 173
Product		nervlene	2.85	Fluor			30	$H_{2}O, I = 0.1$ (KCl).	01,00,110
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		porytone	2.00	1 1401				pH 4 (0.01 M acetate)	97.99.173
naphthalene2.95Fluor30 $H_2O, I = 0.1 (KCl), pH 3 (0.01 M acetate)$ 97,99N-phenyl-1-amino- naphthalene4.94Fluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,99N-phenyl-2-amino- naphthalene4.84Fluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,99,173pyrene3.75Fluor30 $H_3O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,99,173pyrene3.75Fluor30 $H_3O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,173,174Cyclophane-32 (XIX)D-phenylalaninenmFluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,173,174Cyclophane-32 (XIX)D-phenylalanine2.90Fluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 175L-phenylalanine2.90Fluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 175D-tryptophan2.85Fluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 175Cyclophane-33 (XIX)methyl yellow5.81Spec30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 175Cyclophane-33 (XIX)methyl yellow5.81Spec30 $H_2O, I = 0.1 (KCl), pH 7 (0.01 M HEPES)$ 176		N-phenyl-1-amino-						•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		naphthalene	2.95	Fluor			30	$H_2O, I = 0.1$ (KCl),	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								pH 3 (0.01 M acetate)	97,99
naphthalene 4.94 Fluor 30 $H_20, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,99,173 N-phenyl-2-amino- naphthalene 4.84 Fluor 30 $H_20, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,99,173 pyrene 3.75 Fluor 30 $H_20, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,99,173 Cyclophane-32 (XIX) D-phenylalanine nm Fluor 30 $H_20, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ 97,173,174 Cyclophane-32 (XIX) D-phenylalanine nm Fluor 30 $H_20, I = 0.1 (KCl), pH 4.1 (0.01 M acetate)$ 175 L-phenylalanine 2.90 Fluor 30 $H_20, I = 0.1 (KCl), pH 4.1 (0.01 M acetate)$ 175 D-tryptophan 2.85 Fluor 30 $H_20, I = 0.1 (KCl), pH 4.1 (0.01 M acetate)$ 175 L-tryptophan nm Fluor 30 $H_20, I = 0.1 (KCl), pH 4.1 (0.01 M acetate)$ 175 Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 $H_20, I = 0.1 (KCl), pH 7 (0.01 M HEPES)$ 176 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 $H_20, I = 0.1 (KCl), pH 7 (0.01 M HEPES)$ 176		N-phenyl-1-amino-		-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		naphthalene	4.94	Fluor			30	$H_2O, I = 0.1$ (KCI),	07 00 179
N-pinelyi-2-amino- naphtalene4.84Fluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ pH 4 (0.01 M acetate)97,99,173 97,173,174cyclophane-32 (XIX)D-phenylalaninenmFluor30 $H_2O, I = 0.1 (KCl), pH 4 (0.01 M acetate)$ pH 4 (0.01 M acetate)97,173,174Cyclophane-32 (XIX)D-phenylalaninenmFluor30 $H_2O, I = 0.1 (KCl), pH 4.1 (0.01 M acetate)$ pH 4.1 (0.01 M acetate)175L-phenylalanine2.90Fluor30 $H_2O, I = 0.1 (KCl), pH 4.1 (0.01 M acetate)$ pH 4.1 (0.01 M acetate)175D-tryptophan2.85Fluor30 $H_2O, I = 0.1 (KCl), pH 4.1 (0.01 M acetate)$ pH 4.1 (0.01 M acetate)175Cyclophane-33 (XIX)methyl yellow5.81Spec30 $H_2O, I = 0.1 (KCl), pH 7 (0.01 M HEPES)$ 1761761-(2-pyridylazo)- 2-naphthol6.00Spec30 $H_2O, I = 0.1 (KCl), pH 7 (0.01 M HEPES)$ 176176		Mahanul 2 amina						pri 4 (0.01 M acetate)	97,99,173
Implification4.04Filtor500 $H_{20}, I = 0.1 \text{ (KCl)}, \\ pH 4 (0.01 \text{ M acetate}) 97,99,173 \\ H_2O, I = 0.1 (KCl), \\ pH 4 (0.01 \text{ M acetate}) 97,173,174 \\ 0.01 \text{ M acetate}) 97,173,174 \\ 0.01 \text{ M acetate}) 97,173,174 \\ 1phenylalanineCyclophane-32(XIX)D-phenylalaninenmFluor30H_2O, I = 0.1 (KCl), \\ pH 4.1 (0.01 \text{ M acetate}) 175 \\ 1phenylalanineD-phenylalanine2.90Fluor30H_2O, I = 0.1 (KCl), \\ pH 4.1 (0.01 \text{ M acetate}) 175 \\ 1tryptophanD-tryptophan2.85Fluor30H_2O, I = 0.1 (KCl), \\ pH 4.1 (0.01 \text{ M acetate}) 175 \\ 1tryptophanCyclophane-33(XIX)methyl yellow5.81Spec301-(2-pyridylazo)-2-naphthol6.00Spec30H_2O, I = 0.1 (KCl), \\ pH 7 (0.01 \text{ M HEPES}) 176 \\ 17$		nephthalene	4 84	Fluor			30	$H_{0}O_{1}I = 0.1$ (KCl)	
$\begin{array}{c cccc} pyrene & 3.75 & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ pH 4 (0.01 M acetate) & 97,173,174 \\ \hline \\ Cyclophane-32 \\ (XIX) & D-phenylalanine & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & I-phenylalanine & 2.90 & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & 2.85 & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & I-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & 1.600 & Spec & 30 & H_2O, I = 0.1 (KCl) \\ & D-tryptoph$		naprimaiene	4.04	1 1001			00	pH 4 (0.01 M acetate)	97.99.173
$\begin{array}{c ccccc} pH 4 & (0.01 \text{ M acetate}) & 97,173,174 \\ \hline pH 4 & (0.01 \text{ M acetate}) & 97,173,174 \\ \hline Cyclophane-32 \\ (XIX) & D-phenylalanine & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & L-phenylalanine & 2.90 & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & 2.85 & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & L-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & L-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & pH 4.1 (0.01 \text{ M acetate}) & 175 \\ & L-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & pH 4.1 (0.01 \text{ M acetate}) & 175 \\ \hline Cyclophane-33 \\ (XIX) & methyl yellow & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & 0.01 \text{ M HEPES} & 176 \\ \hline \end{array}$		pvrene	3.75	Fluor			30	$H_2O, I = 0.1$ (KCl).	0,00,2.0
$\begin{array}{cccc} Cyclophane-32 \\ (XIX) & D-phenylalanine & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & PH 4.1 (0.01 M acetate) & 175 \\ & L-phenylalanine & 2.90 & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & D-tryptophan & 2.85 & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & L-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & L-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & PH 4.1 (0.01 M acetate) & 175 \\ & L-tryptophan & nm & Fluor & 30 & H_2O, I = 0.1 (KCl), \\ & PH 4.1 (0.01 M acetate) & 175 \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 6.00 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylazo)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylaz)-2-naphthol & 5.81 & Spec & 30 & H_2O, I = 0.1 (KCl), \\ & 1-(2-pyridylaz)-2-naphthol & 5.81 & Spec & 30 & Spec & 30 & Spec & 30 & S$		FU						pH 4 (0.01 M acetate)	97,173,174
(XIX) D-phenylalanine nm Fluor 30 $H_2O, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 L-phenylalanine 2.90 Fluor 30 $H_2O, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 D-tryptophan 2.85 Fluor 30 $H_2O, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 L-tryptophan nm Fluor 30 $H_2O, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176	Cyclophane-32							-	
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	(XIX)	D -phenylalanine	nm	Fluor			30	$H_2O, I = 0.1$ (KCl),	
L-phenylalanine 2.90 Fluor 30 $H_20, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 D-tryptophan 2.85 Fluor 30 $H_20, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 L-tryptophan nm Fluor 30 $H_20, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 $H_20, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 $H_20, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176				***				pH 4.1 (0.01 M acetate)	175
$\begin{array}{c ccccc} & \text{D-tryptophan} & 2.85 & \text{Fluor} & 30 & \text{H}_2\text{O}, I = 0.1 (\text{KCl}), \\ & \text{pH 4.1 (0.01 M acetate)} & 175 \\ & \text{H}_2\text{O}, I = 0.1 (\text{KCl}), \\ & \text{pH 4.1 (0.01 M acetate)} & 175 \\ & \text{H}_2\text{O}, I = 0.1 (\text{KCl}), \\ & \text{pH 4.1 (0.01 M acetate)} & 175 \\ & \text{H}_2\text{O}, I = 0.1 (\text{KCl}), \\ & \text{pH 4.1 (0.01 M acetate)} & 175 \\ & \text{H}_2\text{O}, I = 0.1 (\text{KCl}), \\ & \text{pH 4.1 (0.01 M acetate)} & 175 \\ & \text{I-(2-pyridylazo)-} \\ & 2-\text{naphthol} & 6.00 & \text{Spec} & 30 & \text{H}_2\text{O}, I = 0.1 (\text{KCl}), \\ & \text{pH 7 (0.01 M HEPES)} & 176 \\ \end{array}$		L-phenylalanine	2.90	Fluor			30	$H_2O, I = 0.1$ (KCI),	175
D-tryptophan 2.85 Fluor 30 $H_{20}, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 L-tryptophan nm Fluor 30 $H_{20}, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 $H_{2}O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 $H_{2}O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176		D. taranton han	0.05	Fluor			20	H_{10} $I = 0.1$ (KC)	175
L-tryptophan nm Fluor 30 $H_2O, I = 0.1$ (KCl), pH 4.1 (0.01 M acetate) 175 Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176		D-tryptopnan	2.00	FILLOI			50	nH 4 1 (0.01 M acetate)	175
Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 H_2O , $I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 175 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 H_2O , $I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176		L-tryptophan	nm	Fluor			30	$H_{2}O, I = 0.1$ (KCl).	110
Cyclophane-33 (XIX) methyl yellow 5.81 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176								pH 4.1 (0.01 M acetate)	175
(XIX) methyl yellow 5.81 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176 1-(2-pyridylazo)- 2-naphthol 6.00 Spec 30 $H_2O, I = 0.1$ (KCl), pH 7 (0.01 M HEPES) 176	Cyclophane-33							- · · · ·	
pH 7 (0.01 M HEPES)1761-(2-pyridylazo)- 30 $H_2O, I = 0.1$ (KCl),2-naphthol 6.00 Spec 30 H2O, I = 0.1 (KCl), $nH 7 (0.01 M HEPES)$ 176	(XIX)	methyl yellow	5.81	Spec			30	$H_2O, I = 0.1$ (KCl),	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 (0						pH 7 (0.01 M HEPES)	176
2-naphthol 0.00 Spec 0.01 $ng 0.1 = 0.1$ (KCl), nH 7 (0.01 M HEPES) 176		1-(2-pyridylazo)-	6.00	Spec			20	$H_0 I = 0.1 (KO)$	
		2-maphtmon	0.00	opec			00	pH 7 (0.01 M HEPES)	176

				ΔH	ΔS			
ligand (chart)	neutral molecule ^a	$\log K^{\circ}$	method	kJ/mol	J/K•mol	<i>T</i> , °C	conditionsd	ref
			2 Coline	20202				
Coling 16C 1			5. Calixa	renes				
(XX)	1-butvlimidazole	none	NMR			25	CDCl	177
(1111)	imidazole	1.15	NMR			25	CDCl	177
	1-methylimidazole	0.70	NMR			25	CDCl	177
	4-methylimidazole	0.95	NMR			25	CDCl ₃	177
Calix4-16C-2	•						Ū	
(XX)	pyrene	5.7 9	Fluor			30	H ₂ O	178
Calix4-16C-3								
(XX)	imidazole	1.08	NMR			25	CDCl ₃	177
Calix4-16C-4		_						
(XX)	imidazole	decomp	NMR			25	$CDCl_3$	177
Calix4-16U-5	•••••••••••••••••••••••••••••••••••	0.95	NIMO			05		
$(\mathbf{A}\mathbf{A})$	1 methylimidenele	0.60	NMR			25		177
Calized 16C-6	1-methylimidazole	0.00	INIVIA			20	CDCI3	177
$(\mathbf{X}\mathbf{X})$	acatic acid	2 48	Fluor			95	CH.Cl.	170
(AA)	benzoic acid	2.48	Fluor			25	CH ₂ Cl ₂	179
	chloroacetic acid	2.74	Fluor			25	CH ₂ Cl ₂	179
	dichloroacetic					20	0112012	110
	acid	2.91	Fluor			25	CH ₂ Cl ₂	179
	trichloroacetic							
	acid	3.08	Fluor			25	CH_2Cl_2	179
	trifluoro ace tic							
	acid	3.28	Fluor			25	CH_2Cl_2	17 9
Calix4-16C-7								
(XX)	acetic acid	2.48	Fluor			25	CH_2Cl_2	179
	benzoic acid	2.48	Fluor			25	CH_2Cl_2	17 9
	chloroacetic acid	3.36	Fluor			25	CH_2Cl_2	179
	dichloroacetic acid	3.73	Fluor			25	CH_2Cl_2	179
	2,6-dinyaroxy-	9.94	Flores			05		1 50
	A mitrobenzoio soid	0.04	Fluor			20		179
	4-mtrobenzoic aciu	2.12	Fluor			20		179
	acid	4 04	Fluor			25	CH.CL	170
	trifluoroacetic	1.01	1 1401			20	0112012	175
	acid	4.15	Fluor			25	CH ₂ Cl ₂	179
Calix4-16C-8								2.00
(XX)	ferrocenecarboxylic							
	acid	none	CD			20	CHCl ₃	180
Calix4-16C-9			_					
(XX)	t-butylamine	4.68	Spec			25?	MeCN	181, 182
0.11. / 100.10	neopentylamine	4.78	Spec			25?	MeCN	181, 1 82
Calix4-16C-10	• • • • • • • •					•		
(XX)	acetone	none	NMR			coales-	CDCI	100
	ecetonitrile	2020	NMD			cent	CDCI3	183
	acecontrine	none				coates-	ריחריו.	199
	anisole	none	NMR			coales.	CDCI3	100
			1111110			cent	CDCl	183
	t-amvlamine	4.70	Spec			25?	MeCN	181, 182
	benzonitrile	none	NMR			coales-		,
						cent	CDCl ₃	183
	bromobenzene	none	NMR			coales-	-	
			-			cent	$CDCl_3$	183
	<i>n</i> -butylamine	4.98	Spec			25?	MeCN	181, 182
	t-butylamine	4.67	Spec			25?	MeCN	181, 182
	t-butylcyclo-		NIMD					
	nexanoi	none	NMR			coales-	CDCI	100
	4-t-butylphenol	none	NMP				CDCI3	163
	4-t-batyipnenoi	none	INIVILL			cont	CDCI	193
	neopentylamine	4.48	Spec			25?	MeCN	181, 182
	nitrobenzene	none	NMR			coales-		101, 102
						cent	$CDCl_3$	183
	phenylacetylene	none	NMR			coales-		-
						cent	$CDCl_3$	183
	(trichloromethyl)-		111.00					
	benzene	none	NMR			coales-		100
	(trifluoromathul)					cent	CDCI3	103
	henzene	none	NMR					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1 72722 V			cent	CDCl.	183
							0	

ligand (chart)	neutral molecule ^e	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
	(trimethylaceto)- nitrile	none	NMR			coales-		
	n-xylene	none	NMR			cent coales-	CDCl ₃	183
Cali=4-16C-11	p-sylelle	none	111111			cent	$CDCl_3$	183
(XX)	acetone	none	NMR			coales-	CDCI.	192
	acetonitrile	none	NMR			coales-		192
	anisole	none	NMR			coales-		100
	benzonitrile	none	NMR			coales-		100
	bromobenzene	none	NMR			coales-		100
	<i>t</i> -butylcyclo- h <b>exa</b> nol	none	NMR			coales-		103
	4-t-butylphenol	none	NMR			cent coales-		183
	nitrobenzene	none	NMR			cent coales-	CDCl ₃	183
	phenylacetylene	none	NMR			cent coales-	CDCl ₃	183
	(trichloromethyl)-					cent	$CDCl_3$	183
	benzene	none	NMR			co <b>ales-</b> cent	CDCl ₃	183
	(trifluoromethyl)- benzene	none	NMR			coales-	CDCl	183
	(trimethylaceto)- nitrile	none	NMR			coales-		
	p-xylene	none	NMR			cent coales-	$\mathrm{CDCl}_3$	183
Calix4-16C-12	•					cent	CDCl ₃	183
(XX)	benzonitrile	none	NMR			co <b>ale</b> s- cent	MeCN/H2O (3:1)	183
	benzonitrile	none	NMR			co <b>ale</b> s- cent	$Me_2SO/H_2O(3:1)$	183
	chloroform	none	NMR			coales- cent	MeCN/H2O (3:1)	183
	chloroform	none	NMR			coales- cent	$Me_2SO/H_2O(3:1)$	183
	4-nitrophenol	none	NMR			coales- cent	MeCN/H ₂ O (3:1)	183
	4-nitrophenol	none	NMR			coales-	$Me_{3}SO/H_{2}O(3:1)$	183
	toluene	none	NMR			coales-	MeCN/H ₂ O (3.1)	183
	toluene	none	NMR			coales-	MesSO/HeO (3:1)	183
	(trichloromethyl)- benzene	none	NMR			coales-	MaCN/H-Q (2.1)	199
	(trichloromethyl)- benzene	none	NMR			coales-		100
Calix4-16C-13						cent	$Me_2SO/H_2O$ (3:1)	183
(XX)	benzonitrile	none	NMR			coales- cent	MeCN/H2O (3:1)	183
	benzonitrile	none	NMR			coales- cent	Me ₂ SO/H ₂ O (3:1)	183
	chloroform	none	NMR			coales- cent	MeCN/H2O (3:1)	183
	chloroform	none	NMK			coales- cent	$Me_2SO/H_2O$ (3:1)	183
	4-nitrophenol	none	NMR			coales- cent	MeCN/H ₂ O (3:1)	183
	4-nitropnenol	none	NMK			coales- cent	$Me_2SO/H_2O$ (3:1)	183
	toluene	none	NMK			coales- cent	MeCN/H2O (3:1)	183

				$\Delta H$	$\Delta S$			
ligand (chart)	neutral moleculeª	log K ^b	method ^c	kJ/mol	J/K•mol	<i>T</i> , ⁰C	conditions ^d	ref
	4 . 1		NIMD					
	toluene	none	NMR			coales-		
						cent	$Me_2SO/H_2O$ (3:1)	183
	(trichloromethyl)-							
	benzene	none	NMR			coales-		
						cent	$MeCN/H_2O$ (3:1)	183
	(trichloromethyl)-							
	henzene	none	NMR			coeles-		
	Delizenc	none	1111110			coales-	Ma-SO/H-O (2.1)	199
0-1:-4 100 14						Cent	$Me_{2}SO/H_{2}O(3.1)$	100
	41		0.1 137			070		
(XX)	anthracene	none	Sol-UV			25?	$H_2O$ , 0.01 M $K_2CO_3$	184
	coronene	none	Sol-UV			25?	$H_2O$ , 0.01 M $K_2CO_3$	184
	decacyclene	none	Sol-UV			25?	$H_2O$ , 0.01 M $K_2CO_3$	184
	durene	none	Sol-UV			25?	H ₂ O, 0.01 M K ₂ CO ₃	184
	fluoranthene	none	Sol-UV			25?	H ₂ O, 0.01 M K ₂ CO ₃	184
	naphthalene	none	Sol-UV			25?	H ₂ O, 0.01 M K ₂ CO ₂	184
	pervlene	none	Sol-UV			25?	H ₀ O 0.01 M K ₂ CO ₂	184
	nhononthrane	none	Sol-UV			257	$H_{0}$ 0.01 M $K_{0}$	194
	phenantinene	none	Sol UV			20.	$H_{0}$ 0.01 M K CO	104
Caline 100 15	pyrene	none	301-U V			201	$H_2O$ , 0.01 M $K_2CO_3$	184
Callx4-10C-15			0.1137					
$(\mathbf{X}\mathbf{X})$	anthracene	none	S01-UV			25?	$H_2O$ , 0.01 M HCl	184
	coronene	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	decacyclene	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	dur <b>e</b> ne	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	fluoranthene	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	naphthalene	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	nervlene	none	Sol-UV			25?	$H_{0}$ 0.01 M HCl	184
	nhenenthrone	none	Sol-UV			252	H ₂ O, 0.01 M HOI	194
	phenantmrene	none				201	$H_2O$ , 0.01 M HCl	104
a 1:	pyrene	none	501-U V			25 (	$H_2O$ , 0.01 M HCI	184
Calix4-16C-16			~					
(XX)	t-butylamine	2.60	Spec			25?	MeCN	181
Calix4-16C-17								
(XX)	imidazole	1.00	NMR			25	CDCl ₂	177
Calix4-16C-18							•	
$(\mathbf{X}\mathbf{X})$	imidezole	1.00	NMR			25	CDCI	177
(1111)	1-mothylimidazola	0.70	NMP			25	CDCI	177
	4 motherlimidazole	0.70	NIMD			20		177
0.1: 1.100.10	4-methylimidazole	0.78	INIVIR			20	CDCI ₃	177
Calix4-16C-19			-					
$(\mathbf{X}\mathbf{X})$	anthrol blue ^e	3.26	Photo'I'it			30	H ₂ O, pH 5.5	
							$(MH^+ + L <-> MH^+L)$	185,186,187
	phenol blue	4.67	PhotoTit			30	H ₂ O, pH 6.4	
	-						$(MH^{+} + L < -> MH^{+}L)$	185.186.187
	pyrene	6.55	Fluor			30	H ₂ O	178,187,188
Celix4-16C-20	F	0.00					20	110,101,100
( <b>VV</b> )	imidazolo	none	NMP			95	CDCL	177
(AA) Caling 16C 91	imidazoie	none				20	CDC13	1//
Callx4-100-21	0 -(1-1							
(XX)	2-methyl-	0.01	<b>ND (D</b>					
	2-propanol	0.81	NMR			25	D ₂ O, 0.5 M N <b>a</b> OD	123,189,190
Calix4-16C-22								
(XX)	cis-4-t-butyl-							
	cyclohexanol	0.89	NMR			25	CDCl ₃	191
	trans-4-t-butyl-						-	-
	cyclohexanol	0.92	NMR			25	CDCI	191
	cycloheranol	1.04	NMR			25	CDCI	191
	ais-1.2-avelo-	1.04	1111110			20	CDOIS	191
	homemodial	0.40	NIMD			05	CDCI	101
	nexanedio	2.42	INIVIR			25	CDCI3	191
	trans-1,2-cyclo-							
	hexanediol	2.03	NMR			25	CDCI ₃	191
	cis-1,3-cyclo-							
	hexanediol	2.0 <del>9</del>	NMR			25	CDCl ₃	191
	trans-1,3-cyclo-							
	hexanediol	2.26	NMR			25	CDCl ₃	191
	cis-1.4-cvclo-							
	hexanediol	3.02	NMR			25	CDCl	191
	trans-1 4-evelo-							
	herenedial	9 1 1	NMP			25	CDCI	101
	alutoric toid	2.11 5.00	NIMD			20		100
	giutaric acia	9.09	TATAL			20		192
	giutaric acid		NIX (D					
	monomethyl ester	1.49	NMK			25	CDCI ₃	192
	2,5-hexanediol	1.56	NMR			25	CDCl ₃	191
	2,4-pentanediol	1.63	NMR			25	CDCl₃	191
	pimelic acid	3.04	NMR			25	CDCl ₃	192
	valeric acid	1.85	NMR			25	CDCl ₃	192
	vitamin B ₁₂	2.36	Solv Extr-					
			Spec			25?	CeHe	193
			A = 5   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A				JV	

ligand (chart)	neutral molecule ^a	log Kb	method	ΔH k.I/mol	ΔS J/K·mol	T. ℃	conditions	ref
	guest-26	2.32	Solv Extr-		0/ It-mor	1, 0		
Calim 4 16C 92	Bacst Do	2.02	Spec			25?	$C_6H_6$	1 <b>9</b> 3
(XX)	adamantane	4.30	Spec			30	H ₂ O, pH 5.4	194
()	coronene	4.66	Spec			30	H ₂ O, pH 5.4	194
	pyrene	4.57	Spec			30	H ₂ O, pH 5.4	1 <b>94</b>
Calix4-18C1-1		4.00	0			059	MON	101
(XX)	t-Dutylamine	4.23	Spec			25? 25?	MeCN MacN	181
Calix5-20C-1	neopentylamme	4.10	spec			20:	MECIN	101
(XXI)	anthracene	3.96	Sol-UV			25?	H ₂ O, 0.01 M K ₂ CO ₃	184, 195
	coronene	none	Sol-UV			25?	$H_2O$ , 0.01 M $K_2CO_3$	184
	decacyclene	none	Sol-UV			25?	$H_2O_1 0.01 M K_2CO_3$	184
	durene	none	Sol-UV			25?	$H_2O_1 0.01 \text{ M } K_2CO_3$	184
	naphthalene	3.57	Sol-UV			25?	$H_{2}O_{1} 0.01 M K_{2}OO_{3}$	184, 195
	perylene	<2	Sol-UV			25?	$H_2O$ , 0.01 M $K_2CO_3$	184, 195
	phenanthrene	none	Sol-UV			25?	H ₂ O, 0.01 M K ₂ CO ₃	184
	pyren <b>e</b>	<2	Sol-UV			25?	$H_2O$ , 0.01 M $K_2CO_3$	1 <b>84,</b> 1 <b>9</b> 5
Calix5-20C-2	anthreasure	2.05	Sal UV			959	HO AN MHCI	184 105
(AAI)	coronene	0.00 none	Sol-UV			25?	$H_{2}O, 0.01 \text{ M HCl}$	184, 195
	decacvclene	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	durene	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	fluoranthene	3.30	Sol-UV			25?	$H_2O$ , 0.01 M HCl	184, 195
	naphthalene	3.52	Sol-UV			25?	$H_{2}O, 0.01 \text{ M HCl}$	184, 195
	perylene phenenthrene	NORe	Sol-UV			25?	$H_{2}O, 0.01 \text{ M HCl}$	184, 195
	pvrene	<2	Sol-UV			25?	$H_{2}O, 0.01 \text{ M HCl}$	184, 195
Calix6-24C-1								
(XXI)	anthracene	4.11	Sol-UV			25?	$H_2O_1 0.01 M K_2CO_3$	184,195,196
	coronene	none	Sol-UV			25?	$H_2O_1 0.01 \text{ M } K_2CO_3$	184
	durene	none	Sol-UV			25?	$H_{2}O_{1}O_{1}O_{1}O_{1}O_{1}O_{2}O_{3}O_{2}O_{3}O_{2}O_{3}O_{2}O_{2}O_{3}O_{2}O_{2}O_{2}O_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	184
	fluoranthene	3.53	Sol-UV			25?	$H_2O_1 0.01 M K_2CO_3$	184, 196
	naphthalene	3.57	Sol-UV			25?	H ₂ O, 0.01 M K ₂ CO ₃	184,195,196
	perylene	<2	Sol-UV			25?	$H_2O_1 0.01 M K_2CO_3$	184,195,196
	phenanthrene	3.48	Sol-UV			25?	$H_{2}O_{1}O_{1}O_{1}MK_{2}CO_{3}$	184, 196
Caliz6-24C-2	pyrene	<b>\</b> 2	301-U V			20:	$H_2O_1 0.01 M K_2OO_3$	104,150,190
(XXI)	anthracene	3.20	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
·	coronene	none	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
	decacyclene	none	Sol-UV			25?	$H_2O$ , 0.01 M HCl	184
	durene	none	Sol-UV			25?	$H_{2}O, 0.01 \text{ M HC}$	184
	nanhthalene	3.65	Sol-UV			25?	$H_{2}O_{1} 0.01 M HCl$	184, 195
	perylene	<2	Sol-UV			25?	H ₂ O, 0.01 M HCl	184, 195
	phenanthrene	3.28	Sol-UV			25?	H ₂ O, 0.01 M HCl	184
<b>a</b> w <b>a a a</b>	pyrene	<2	Sol-UV			25?	H ₂ O, 0.01 M HCl	184, 195
Calix6-24C-3	N hanzul 1 4 di							
(AAI)	hvdronicotinamide	2.75	Kin			30	H ₂ O, pH 6.3 (0.01 M	
							phosphate)	197, 198
Calix6-24C-4			0					
(XXI)	phenol blue	2.75	Spec			30	H ₂ O	188, 199
(XXI)	<i>t</i> -butylamine	5.90	Spec			25?	MeCN	181
(11111)	neopentylamine	5.90	Spec			25?	MeCN	181
Calix6-24C-6			-					
(XXI)	N-benzyl-1,4-di-	0.10	17:			00		
	nyaronicotinamide	3.13	Kin			30	$H_2O$ , pH 0.3 (0.01 M	197 198
	N-benzvl-1.4-di-						phosphace/	107, 100
	hydronicotinamide	3.01	Kin			<b>3</b> 0	H ₂ O, pH 4 (0.01 M	
							acetate)	197, 198
Callx6-24C-7	N-henzyl-1 4-di-							
(19191)	hydronicotinamide	2.46	Kin			30	H ₂ O, pH 4 (0.01 M	
		-					acetate)	197, 198
0-1:-0.040.0	pyrene	4.08	Fluor			30	H ₂ O	178
Calix6-24C-8 (XXI)	anthrol blue	3.97	PhotoTit			30	H ₂ O, pH 5.5	
(= <b>b</b> 4 <b>b</b> 4/	Universit DIUU	0.01	1 1000110				$(MH^+ + L < -> MH^+L)$	185,186,187
	phenol blue	4.75	PhotoTit			30	H ₂ O, pH 6.4	105 100 105
							(MH ⁺ + L <-> MH ⁺ L)	180,186,187

				$\Delta H$	$\Delta S$		<b>1</b> 4	
ligand (chart)	neutral molecule ^a	log K°	method	kJ/mol	J/K·mol	<i>T</i> , ℃	conditions ^a	ref
Calix6-24C-9	py <b>re</b> ne	6.59	Fluor			30	H ₂ O	178,187,188
(XXI) Calix6-24C-10	pyrene	6.36	Fluor			30	H ₂ O	178
(XXI)	N-benzyl-1,4-di- hydronicotinamide N-benzyl-1 4-di-	3.46	Fluor			30	H₂O, pH 10.11	197, 198
	hydronicotinamide	3.33	Kin			30	H2O, pH 6.3 (0.01 M phosphate)	197, 1 <b>9</b> 8
Calix6-24C-11 (XXI)	1-butanol	nm	CD			20	H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	
	cyclohexanol	1. <b>9</b> 0	CD			20	phosphate H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	200
	1-decanol	3.71	CD			20	phosphate) H2O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187, 201
							phosphate)	187, 200
	2,2-dimethyl- 3-hexanol	2.40	CD			20	H2O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	
	1-dodecanol	4.15	CD			20	phosphate) H2O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187
	ethanol	nm	CD			20	phosphate) H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187, 200
	1-heptanol	3.08	CD			20	phosphate $H_2O/DMF$ (98.6:1.4 v/v) pH 6.9 (0.067 M	200
	1-hexanol	2.15	CD			20	phosphate) $H_2O/DMF$ (98.6:1.4 v/v) PH 6.9 (0.067 M	1 <b>85</b> ,187,201
	1-octanol	3.89	CD			20	phosphate) $H_2O/DMF$ (98.6:1.4 v/v) pH 6.9 (0.067 M	185,187,200,201
0.1:00.00.10							phosphate)	185,187,200,201
Calix6-24C-12	0 anilina							
(AAI)	2-anilino-	5 09	Fluor			20	ч.о	199 100
	orange OT	7.36	Sol			30	H ₂ O	188 199
Calix6-24C-13		1.00				00	1120	100, 100
(XXI)	2-anilino-							
	naphthalene	5.53	Fluor			30	H₂O	188, 199
	orange OT	5.72	Sol			30	H ₂ O	188, 199
Cal:-6 94C 14	phenol blue	5.30	Spec			30	H₂O	188, 199
(XXI) Calix6-24C-15	pyr <b>e</b> ne	5.80	Fluor			30	H ₂ O	178
(XXI) Calix6-24C-16	pyrene	6.61	Fluor			30	H ₂ O	178
(XXI)	anthracene	3.30	Sol-UV			25?	$H_2O$ ( $K_2CO_3$ )	196
	fluoranthene	3.83	Sol-UV			25?	$H_2O$ ( $K_2CO_3$ )	196
	naphthalene	3.30	Sol-UV			25?	$H_2O(K_2CO_3)$	196
	perylene	3.52	Sol-UV			25?	$H_2O(K_2CO_3)$	196
	pnenanthrene	3.07	Sol-UV			201	$H_2 \cup (K_2 \cup U_3)$	196
Celix6-24C-17	pyrene	4.10	301-U V			20 :	$H_2O(K_2CO_3)$	190
(XXI)	anthracene	none	Sol-UV			25?	H ₂ O (K ₂ CO ₂ )	196
()	fluoranthene	none	Sol-UV			25?	$H_{2}O$ ( $K_{2}CO_{3}$ )	196
	naphthalene	none	Sol-UV			25?	$H_2O(K_2CO_3)$	196
	perylene	none	Sol-UV			25?	$H_2O(K_2CO_3)$	1 <b>96</b>
	phenanthrene	none	Sol-UV			25?	$H_2O$ ( $K_2CO_3$ )	196
	pyrene	none	Sol-UV			25?	$H_2O$ ( $K_2CO_3$ )	196
Calix6-24C-18	fam							
(AAI)	acid	2.83	CD			20	CHCl ₃	180
	acid	none	CD			20	MesSO	180
	ferrocene methyl ferrocene-	none	ČD			20	CHCl ₃	180
	carboxylate	none	CD			20	CHCl ₃	180

#### $\Delta H$ $\Delta S$ J/K·mol neutral molecule^a $\log K^b$ method kJ/mol *T*, ℃ conditions^d ref ligand (chart) Calix6-24C-19 (XXI) anthracene 3.98 Sol-UV 25? $H_2O$ (1.5x10⁻³ M $K_2CO_3$ ) 196 Sol-UV 25?H₂O (6x10-3 M anthracene 3.54 $K_2CO_3$ ) 196 H₂O (K₂CO₃) 25? <2 Sol-UV 196 fluoranthene 3.38 Sol-UV 25? $H_2O (K_2CO_3)$ 196 naphthalene Sol-UV 25? 196 <2 $H_2O$ ( $K_2CO_3$ ) perylene pyrene <2 Sol-UV 25? $H_2O(K_2CO_3)$ 196 Calix6-24C-20 25?Sol-UV $H_2O$ ( $K_2CO_3$ ) 196 (XXI) anthracene none Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 fluoranthene none Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) naphthalene none 196 Sol-UV 25? none $H_2O$ ( $K_2CO_3$ ) 196 perylene Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 phenanthrene none none Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 **pyrene** Calix6-24C-21 Sol-UV 25? $H_2O(K_2CO_3)$ 196 (XXI) anthracene none Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 fluoranthene none Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 naphthalene none perylene Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 none Sol-UV 25?phenanthrene none $H_2O$ ( $K_2CO_3$ ) 196 Sol-UV 25? H₂O (K₂CO₃) 196 pyrene none Calix7-28C-1 H₂O, 0.01 M K₂CO₃ (XXII) anthracene 4.04 Sol-UV 25?184, 195 H₂O, 0.01 M K₂CO3 Sol-UV 25?184 coronene none decacvclene none Sol-UV 25? H₂O, 0.01 M K₂CO₃ 184 Sol-UV 25? H₂O, 0.01 M K₂CO₃ 184 3.59 durene fluoranthene 3.56 Sol-UV 25?H₂O, 0.01 M K₂CO₃ 184, 195 Sol-UV 25? H₂O, 0.01 M K₂CO₃ 184, 195 3.59 naphthalene perylene 3.95 Sol-UV 25?H₂O, 0.01 M K₂CO₃ 184, 195 phenanthrene H₂O, 0.01 M K₂CO₃ 3.95 Sol-UV 25?184 25? Sol-UV 184, 195 pyrene 4.04 H₂O, 0.01 M K₂CO₃ Calix7-28C-2 Sol-UV 25? 184, 195 3.92 H₂O, 0.01 M HCl (XXII) anthracene Sol-UV 25?H₂O, 0.01 M HCl 184 coronene none Sol-UV 25? 184 H₂O, 0.01 M HCl decacyclene none Sol-UV 25? H₂O, 0.01 M HCl 184 durene 3.59 Sol-UV 25?H₂O, 0.01 M HCl 184, 195 fluoranthene 3.48 3.48 Sol-UV 25? H₂O, 0.01 M HCl 184, 195 naphthalene Sol-UV 25? H₂O, 0.01 M HCl 184, 195 perylene 4.00 phenanthrene 3.95 Sol-UV 25?H₂O, 0.01 M HCl 184 25? H₂O, 0.01 M HCl 3.95 Sol-UV 184, 195 pyrene Calix8-32C-1 Sol-UV 25? 196 4.15 $H_2O$ ( $K_2CO_3$ ) (XXII) anthracene H₂O, 0.01 M K₂CO₃ Sol-UV 25? 184 anthracene 3.97 Sol-UV 25? H₂O, 0.01 M K₂CO₃ 184 coronene none Sol-UV H₂O, 0.01 M K₂CO₃ 25?184 decacyclene none Sol-UV 25? H₂O, 0.01 M K₂CO₃ 184 durene 3.45 fluoranthene Sol-UV 25?H₂O, 0.01 M K₂CO₃ 184,195,196 4.15 25?naphthalene 2.79 Sol-UV H₂O, 0.01 M K₂CO₃ 184,195,196 184,195,196 Sol-UV H₂O, 0.01 M K₂CO₃ 3.92 25?perylene phenanthrene Sol-UV 25? H₂O, 0.01 M K₂CO₃ 184, 196 3.61 pyrene Sol-UV 25? H₂O, 0.01 M K₂CO₃ 184,195,196 4.64 Calix8-32C-2 3.88 Sol-UV 25? H₂O, 0.01 M HCl 184 (XXII) anthracene none Sol-UV 25?H₂O, 0.01 M HCl 184 coronene decacyclene none Sol-UV 25?H₂O, 0.01 M HCl 184 Sol-UV 3.45 25?H₂O, 0.01 M HCl 184 durene H₂O, 0.01 M HCl 184, 195 Sol-UV 25?fluoranthene 4.18 H₂O, 0.01 M HCl Sol-UV 25? 184, 195 naphthalene 3.04 Sol-UV 25? H₂O, 0.01 M HCl 184, 195 perylene 4.00 25? Sol-UV H₂O, 0.01 M HCl 184 phenanthrene 3.61 Sol-UV 25? H₂O, 0.01 M HCl 184, 195 4.56 pyrene Calix8-32C-3 (XXII) anthracene 4.46 Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 196 fluoranthene 4.20 Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) $H_2O$ ( $K_2CO_3$ ) 196 naphthalene 3.48 Sol-UV 25?Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 perylene 4.60 Sol-UV phenanthrene $H_2O(K_2CO_3)$ 196 25? 4.30 4.86 Sol-UV 25? $H_2O$ ( $K_2CO_3$ ) 196 **pyrene** Calix8-32C-4 30 anthrol blue^e **PhotoTit** (XXII) 4.18

H₂O, pH 5.5 (MH⁺ + L <-> MH⁺L) 185,186,187

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
	phenol blue	4.13	PhotoTit			30	H ₂ O, pH 6.4	105 100 105
Q-1: 0 000 F	pyrene	6.75	Fluor			30	$(MH^{+} + L < -> MH^{+}L)$ $H_2O$	178,185,186
(XXII)	pyrene	5.57	Fluor			30	H ₂ O	178
(XXII)	1-butanol	nm	CD			20	H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	
	cyclohexanol	nm	CD			20	phosphate H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	200
	1-decanol	3.04	CD			20	phosphate) H2O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187
	2,2-dimethyl- 3-hexanol	1. <b>9</b> 0	CD			20	prosprate) H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187, 200
	1-dodecanol	4.00	CD			20	phosphate) H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187
	ethanol	nm	CD			20	phosphate) H ₂ O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187, 200
	1-heptanol	nm	CD			20	phosphate H2O/ _D MF (98.6:1.4 v/v) pH 6.9 (0.067 M	200
	1-hexanol	'nm	CD			20	phosphate) H2O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187, 200
	1-octanol	1.85	CD			20	phosphate) H2O/DMF (98.6:1.4 v/v) pH 6.9 (0.067 M	187, 200
Double Calix-1							phosphate)	187, 200
(XXII)	2-aminopropanol	none	NMR			25	CDCl ₃	177
	2-bromophenol 4-bromophenol 2-bromopropionic	non <b>e</b> 1.00	NMR NMR			25 25	CDCl ₃ CDCl ₃	177 177
	acid n-butylamine	1.00 non <b>e</b>	NMR NMR			25 25	CDCl ₃ CDCl ₃	177 177
	4-n-butylbenzoic							
	acid butyric acid dibromoacetic	1.08 non <b>e</b>	NMR NMR			25 25	CDCl ₃ CDCl ₃	177 177
	acid 2,4-dinitrophenol	1.18 non <b>e</b>	NMR NMR			25 25	CDCl ₃ CDCl ₃	177 177
	amine 4-methoxyphenyl-	none	NMR			25	CDCl ₃	177
	ethylamine	none	NMR			25	CDCl ₃	177
	imidazole neopentylamine	1.23 none	NMR NMR			25 25	CDCl ₃ CDCl ₃	177 177
	4-nitro-3,5-di-		200					
	methylphenol	none	NMR			25	CDCl ₃	177
	2-nitrophenol	none	NMR			25	CDCl ₃	177
	3-nitrophenol	1.07	NMD			20		177
	nhenol	none	NMR			20 25	CDCl ₃	177
	pyridine	none	NMR			25		177
Double Calix-2	F J							<b>-</b>
(XXII)	2-aminopropanol	1.30	NMR			25	CDCl ₃	4, 177
	3-aminopropanol	1.18	NMR			25	CDCl ₃	4, 177
	aniline	none	NMR			25	CDCl ₃	177
	bromoacetic acid	0.70	NMR			25	CDCl ₃	4, 177
	2-bromophenol	none	NMR			25	CDCl ₃	4, 177
	4-promopnenoi 2-bromopropionic	1.32	NMR			25		4, 177
	aciu n-butulomine	1.10	NMP			20 05		177
	sec-hutvlamine	1.00 none	NMR			20 25		4,177 4 177
	t-butylamine 4-n-butylbenzoic	none	NMR			25	CDCl ₃	177
	acid	1.11	NMR			25	CDCl ₃	177

_

ligand (chart)	neutral moleculeª	log K ^b	method	ΔH kJ/mol	∆S J/K•mol	<i>T</i> , °C	conditions ^d	ref
	4-t-butylbenzoic				<u></u>			
	<b>a</b> cid butyric acid	none 1.26	NMR NMR			25 25	$\begin{array}{c} \mathrm{CDCl}_3 \\ \mathrm{CDCl}_3 \end{array}$	177 177
	3-chioropropionic	0.70	NMR			25	CDCI	4 177
	2.4.6-collidine	none	NMR			25		177
	4-cvanophenol	1.49	NMR			25	CDCl ₃	4, 177
	4-cyanopyridine	none	NMR			25	CDCl ₃	4, 177
	dibromoacetic acid dichloroacetic	0.70	NMR			25	CDCl ₃	4, 177
	acid	0.78	NMR			25		4, 177
	2 A-dinitrophenol	none	NMR			20 25	CDCl ₃	4,177
	2-hydroxypropyl-	1 04	NMR			25		4 177
	imidazole	1.20	NMR			25	CDCl ₃	4. 177
	iodoacetic acid	0.95	NMR			25	CDCl ₃	4, 177
	isobutylamin <b>e</b>	1.11	NMR			25	CDCl ₃	4, 177
	isobutyric acid	0.85	NMR			25	CDCl ₃	177
	isopropylamine	1.11	NMR			25	CDCl ₃	4, 177
	2,6-lutidin <del>e</del> 4-methoxybenzyl-	none	NMR			25	CDCl ₃	4, 177
	amine 4-methoxyph <b>e</b> nyl-	1.28	NMR			25		4, 177
	ethylamine 4-methoxyphenyl-	1.20	NMR			25		4, 177
	propylamine	1.28	NMR			25	CDCl ₃	4, 177
	neopentylamine 4-nitro-3,5-di-	none	NMR			25		4, 177
	methylphenol	none	NMR			20		4, 177
	2-nitrophenol	none	NMD			20		4,117
	5-nitrophenol	1.00	NMR			20		4,177
	a-introphenoi	0.85	NMR			20	CDCl	177
	4-nicoline	0.78	NMR			25	CDCl	4, 177
	pyridine	1.52	NMR			25	CDCla	4, 177
	4-trifluoro- methylphenol	1.32	NMR			25	CDCl ₃	4, 177
	trimethylacetic acid	none	NMR			25	CDCl ₃	177
Double Calix-3								
(XXII)	2-aminopropanol 4-bromophenol	none 1.20	NMR NMR			25 25	CDCl₃ CDCl₃	177 177
	2-bromopropionic	1 11	NMR			25	CDCI	177
	n-butylamine	none	NMR			25	CDCl	177
	butyric acid	none	NMR			25	CDCl ₃	177
	dibromoacetic							
	acid	1.28	NMR			25	CDCl ₃	177
	imidazole 4-methoxybenzyl-	1.23	NMR			25	CDCl ₃	177
	amine	none	NMR			25	CDCl ₃	177
	4-nitrophenol	1.68	NMR			25	CDCl ₃	177
	phenol	0.70	NMR			25		177
	pyriaine	none	4. Crvt	tonhanes		20		177
Cryptophane-1				Pinanos				
(XXIII)	(+)bromochloro- fluoromethane	-0.52	NMR			5 <b>9</b>	$CDCl_3$ (apparent K)	202, 203
	(-)bromochloro- fluoromethane	-0.66	NMR			5 <b>9</b>	$CDCl_3$ (apparent K)	202, 203
	Dromochloro- fluoromethane	1.58	NMR			27	(CDCl ₂ ) ₂	203, 204
	bromochloromethene	-0.00 9 95	NMR			-00 97	(CDCla)	200 202 204
	chloroform	1.03	NMR	-26.8	-66 9	27	(CDCla)a	203, 204
	chloroform	~-1	NMR	-20.0	-00.0	37-57	?	200, 204
	dibromomethane	-0.82	NMR			-50	$CDCl_3$ (apparent K)	205
	dibromomethane	1.76	NMR			27	(CDCl ₂ ) ₂	203, 204
	dibromomethane	-0.15	NMR			37-57	$CDCl_3$ (apparent K)	202
	dichloromethane	0.26	NMR			-50	$CDCl_3$ (apparent K)	205, 206
	dichloromethane	~2.51	NMR			27	$UDUI_3$ (estimated K)	203, 204
	dichloromethere	0.41 9.57	NMD	16.2	-4.9	37-57 97	(CDCla (apparent K)	202 204
	iodomethane	1.76	NMR	-10.0	7.4	27	$(CDCl_2)_2$	203, 204
						-	· -·-	, =

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	ΔS J/K·mol	<i>T</i> . ⁰C	conditions ^d	ref
Currtonhone ?								
(XXIII)	chloroform	2.41	NMR	-34.3	-66.9	27	(CDCla)a	203 204 207
(111111)	dibromomethane	2.55	NMR	-5.4	-29.3	27	$(CDCl_2)_2$	203, 204
	dichloromethane	2.70	NMR	-13.8	4.2	27	$(CDCl_2)_2$	203.204.207
Cryptophane-3								,,,,,
(XXIII)	dichloromethane	$\sim -0.72$	NMR			<b>below</b> -53	CDCl ₃ (apparent K)	208
	dichloromethane	~-0.55	NMR			<b>a</b> bove 27	$CDCl_3$ (apparent K)	208
	dichlorom <b>e</b> thane	0.26	NMR			-50	$CDCl_3$ (apparent K)	206
Cryptophane-4								
(XXIII)	acetone	0.95	NMR			27	(CDCl ₂ ) ₂	204, 209
	fluoromethene	0 1 1	NIMD			97		910
	hromochloro.	2.11	TATATL			21	(CDC12)2	210
	fluoromethane	2.20	NMR			27	(CDCla)a	204
	bromodichloro-	2.20				2.	(02012)2	204
	methane	2.48	NMR	-21.8	-25	27	(CDCl ₂ ) ₂	204, 209
	bromoform	1.68	NMR	-5.9	17	27	(CDCl ₂ ) ₂	204, 209
	bromoform	1.60	NMR			27	$(CDCl_2)_2$	210, 211
	<i>i</i> -butane	2.04	NMR	-15. <del>9</del>	-13	27	$(CDCl_2)_2$	204, 209
	<i>i</i> -butane	2.06	NMR	-15.9	-13	27	$(CDCl_2)_2$	210
	carbon							
	tetrachloride	0.87	NMR			27	$(CDCl_2)_2$	204, 20 <del>9</del>
	carbon	0.95	NMD			97		010
	chloredibromo-	0.60	INIVIR			21	$(CDCl_2)_2$	210
	methene	2 11	NMR	-63	17	97	(CDCl.)	204 200
	chlorodibromo-	2.11	1111110	-0.0	11	21	(CDC12)2	204, 205
	methane	2.08	NMR			27	(CDCla)a	210
	chloroform	2.70	NMR	-25.1	-29	27	$(CDCl_2)_2$	204, 209
	chloroform	2.67	NMR	-28.9	-46	27	$(CDCl_2)_2$	210, 211
	2-chloro-2-methyl-							•
	propane	-0.58	NMR			27	$(CDCl_2)_2$	204, 209
	dibromomethane	2.19	NMR			27	$(CDCl_2)_2$	20 <del>9</del>
	dichloromethane	2.04	NMR	4.2	25	27	$(CDCl_2)_2$	204, 209
	dichloromethane	2.08	NMR			27	(CDCl ₂ ) ₂	210, 211
	2,2-dichloropropane	-0.07	NMR			27	$(CDCl_2)_2$	204, 209
	1 1 1 strichloro-	1.75	INIVIR			27	$(CDCl_2)_2$	209
	ethane	0.15	NMR			97	(CDCla)a	201 200
Cryptophane-5	conano	0.10				21	(02012)2	204, 209
(XXIII)	chloroform	3.8 <del>9</del>	NMR			27	D,0	203.204.207
	dichloromethane	3.70	NMR			27	$D_2O$	203,204,207
Cryptophane-6								
(XXIII)	<i>n</i> -butane	3.78	NMR			27	$D_2O$	203, 204
	<i>i</i> -butane	4.78	NMR			27	$D_2O$	203, 204
0	<i>i</i> -buten <b>e</b>	3.08	NMR			27	$D_2O$	203, 204
(VVIV)	honsone	9	NMD			01	(001)00	010
(AAIV)	chloroform	~ 3 4 89	NMR			-21 -20	$(CCl_3)CO$	212
	cubane	3.60	NMR			-20	(CCl ₃ )CO (direct study)	212
	dichloromethane	4.11	NMR			-20	(CCl ₂ )CO (competition	212
							study)	212
	2-methyl-2-propanol	4.20	NMR			-20	(CCl ₃ )CO (direct study)	212
	propylene oxide	3.78	NMR			-20	(CCl ₃ )CO (competition	
							study)	212
	1,1,2,2-tetra-							
0	chloroethane	$\sim$ 1-2	NMR			21	(CCl ₃ )CO	212
(YYIV)	aubana	<b>non</b> 0	NMD			20 + -		
(AAIV)	cuballe	none	INIMIC			-20 10	(CCl.)-CO	919
	dichloromethane	none	NMR			-20 to	(0013)200	212
						40	(CCl _s ) ₂ CO	212
Cryptophane-9								
(XXIV)	<b>a</b> cetonitrile	0-1	NMR			22	CDCl ₃	213
	ethanol	<0.70	NMR			22	CDCl ₃	213
<b>a</b> ( ) <b>to</b>	methanol	1.71	NMR	-35.6	-88	22	$CDCl_3$	213
(XXVI)	N.	9	NIMP			40	CDCI	010
(AA VI)		~2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NMP			-40 -40		213
	acetonitrile	nm	NMR			22	CDCl	213
	methanol	1.04	NMR	-27.6	-75	22	CDCl ₃	213
			5 M	incellon-	0110			2
			. O. 1.	1				
Contord 1 /VVI	anhon disula-	0.41	a. Uavitano	is and Ca	arcerands	61		014
Cavitanu-1 (AAV)	carbon uisuinae	0.41	TATAT	-14.0	-01.2	-01		214

				$\Delta H$	$\Delta S$			
ligand (chart)	neutral moleculeª	$\log K^b$	method	kJ/mol	J/K•mol	<i>T</i> , ℃	conditions ^d	ref
	1 1: 10:1-	0.00	NILO			<u> </u>		
	carbon disulfide	-0.09	NMR			-23	CDCl ₃	214
	carbon disulfide	-0.66	NMR			27	CDCl ₃	214
	carbon disulfide	-0.74	NMR			27	$C_6D_6$	214
Cavitand-2 (XXV)	carbon disulfide	0. <b>9</b> 1	NMR			-23	CDCl ₃	214
Cavitand-3 (XXV)	carbon disulfide	1.12	NMR			-23	CDCl ₃	214
Cavitand-4 (XXV)	<b>acetonitrile-d</b> $_3$	2.20	NMR			0	$CCL + 0.3\% v/v Me_{4}Si$	215
	acetonitrile-d ₃	1.65	NMR	-26.8	-56.9	27	$CCL + 0.3\% v/v Me_sSi$	215
	acetonitrile-d	1.34	NMR			55	CCL + 0.3% v/v Mesi	215
Cavitand-5 $(XXV)$	acetonitrile-d.	2.50	NMR			õ	CCL + 0.3% v/v MesSi	215
currana o (IIII)	acetonitrile-do	1.95	NMR	-25.9	-477	27	$CCl_{1} + 0.3\% v/v Me.Si$	215
	acetonitrile-d.	1.50	NMP	-20.0	-31.1	55	CCL + 0.3% v/v Metsi	210
Constand & (VVV)	acetomtme-ug	1.00	NMD			00	COL + 0.5% V/V ME(SI Ma CO d	016
$\operatorname{Cavitand-0}(\mathbf{A}\mathbf{A}\mathbf{V})$	Denzene	1.62	NMR			20	$Ne_2 CO - d_6$	210
	lluorobenzene	3.36	NMR			25	$Me_2CO-a_6$	216
	toluene	1.93	NMR			25	$Me_2CU-d_6$	216
Cavitand-7 (XXV)	Cavitand-7	$\sim 10.01$	NMR			-18?	$H_2O$ (extrapolated K)	217
	Cavitand-7 ⁷	5.81	NMR			-18	$CDCl_3$	217
	Cavitand-7 ^f	4.94	NMR			12	$CDCl_3$	217
	Cavitand-7 ^f	~9.43	NMR			-18?	MeOH (extrapolated $K$ )	217
	Cavitand-9/	5.42	NMR			-18	CDCla	217
Cavitand-8 (XXV)	Cavitand-7 ^f	none	NMR			-18?	CDCl	217
	Cevitend-9/	none	NMR			-18?	CDCL	217
Constand Q (XXV)	Cavitand 0/	1 27	NMD			-10:	CDCl ₂ /MarCO.d.	217
Cavitanu-9 (AAV)	Cavitanu-9	4.07	INIVILL			-10	(75.95  m/m)	017
	0 1 10		NUCD	10 5		•	(75:25  V/V)	217
	Cavitand-9		NMR	-16.7	8.4	?	$CDCl_3/Me_2CU-a_6$	
							(90:10  v/v)	217
	Cavitand-9/	>4.8	NMR			-18	$CDCl_3/MeOD-d_3$	
							75:25 v/v)	217
	Cavitand-9 [/]		NMR	-15.5	12.6	?	$CDCl_3/MeOD-d_3$	
							(90:10  v/v)	217
	Cevitend-9/	4 55	NMR			-18	CDCl _e /MeNO ₂ -d ₂	
	Carnana v	1.00	1111110			10	(75.95  w/w)	917
	Constand 0/	2.95	NMD			46	(10.20 V/V)	017
	Cavitand Of	0.00	NMD			-40		017
	Cavitand-9	3.12	NMR			-30		217
	Cavitand-9	3.66	NMR			-32		217
	Cavitand-9	3.49	NMR			-20	CDCl ₃	217
	Cavitand-9 [/]	3. <b>49</b>	NMR			-18	CDCl ₃	217
	Cavitand-9/	3.36	NMR			-10	$CDCl_3$	217
	Cavitand-9 [/]		NMR	-15.9	4.6	-46 to		
						-10	CDCl ₃	217
	Cavitand-9/	3.12	Kin			12	CDCl	217
	Cevitend-9/	4 14	NMR			-46	CD-Cl.	217
	Cavitand-0	3 37	NMP			-46	toluene-d-	917
Constand 10	Cavitanu-9	0.07	1414114			-40	widene-ue	217
	- 41 - 1 4 - 4 -	0.00	NIMO			01		010
(XXVI)	etnyl acetate	0.09	NMR			21	$CD_2Cl_2$	218
	nitrobenzene- $a_5$	-0.23	NMR			21	$CD_2Cl_2$	218
	toluene-d ₈	0.26	NMR			21	$CD_2Cl_2$	218
	p-xylene-d ₁₀	0.20	NMR			21	$CD_2Cl_2$	218
Carcerand-1								
(XXVI)	$N_2$	$\sim 2.26$	NMR			22	CDCl ₃	219
(	0	~1.64	NMR			22	CDCl	219
	Xe	~2.30	NMR			22	CDCl	219
		2.07						
			5. Miscellar	neous (cont	)			
		h Pornh	vrins and P	orphyrin I	Derivatives			
Pornhurin-1		5. I 01 pi	Jimo ana i	0. p.1. j. 1.	50111401103			
	1 4 house outiness	0.99	Saaa			15	CH CI	000
	1,4-benzoquinone	-0.22	spec			15		220
	4,6-dinitro-		0				<b></b>	
	benzofuroxan	1.75	Spec	-16.8	-22.9	25	$CH_2Cl_2$	221
	2,4,5,7-tet <b>ra</b> -							
	nitrofluorenone	2.06	Spec	-12.7	-31.8	25	$CH_2Cl_2$	222
	2,4,7-trinitro-							
	fluorenone	2.00	Spec	-3.3	26. <del>9</del>	25	$CH_2Cl_2$	223
Porphyrin-2			•					
(XXVIII)	1.4-benzoquinone	0.51	Spec			15	MeCN	220
Pornhyrin-3	1,1 00.2044	0.01	~pro					
(XXVIII)	1 4-henzoquinone	0.38	Spec			15	MeCN	220
Pornhurin_4	1,1-Demoquinone	0.00	Spec			10	2729/11	220
	1 4 homesonteres	0.49	<b>F</b> 1			05	Ma CO (annount K)	004
(AA VIII)	1,4-benzoquinone	0.40	FILLOF			20 05	Ma CO (apparent A)	444 004
	1,4-Denzoquinone	-0.52	Spec			20	$Me_2 CO (apparent K)$	224
	1,4-Denzoquinone	-0.30	Spec			20	wie200 (ground state	001
<b></b>							complex)	224
Porphyrin-5			~					
(XXVIII)	1,4-benzoquinone	-1.70	Spec			15	MeCN	220
Porphyrin-6								
(XXVIII)	1,4-benzoquinone	0.89	Spec			7	CH ₂ Cl ₂	220

ligand (chart)	neutral moleculeª	log K ^b	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ℃	conditions ^d	ref
	1,4-benzoquinone	0.61	Spec			15	MeCN	220
Porphyrin-7 (XXVIII)	1.4-nanhthoquinone	1.11	Snec			20	MeOH	220
()	1,4-benzoquinone	2.17	Fluor			20	H ₂ O	220
	1,4-benzoquinone	2.18	Spec			20	H ₂ O	220
	1,4-benzoquinone	1.93	Fluor	-34	-73	25	H ₂ O	220
	1,4-benzoquinone	1.92	Fluor			30 35		220
	1,4-benzoquinone	0.43	Spec			20	MeOH	220
Porphyrin-8	· -		-					
(XXVIII)	1,4-benzoquinone	1.90	Spec			20	H ₂ O	220
	1,4-benzoquinone	1.85	Fluor	-28	-56	20 25	H ₂ O H ₂ O	220
	1,4-benzoquinone	1.83	Fluor	20		30	H ₂ O	220
	1,4-benzoquinone	1.80	Fluor			35	H ₂ O	220
	1,4-benzoquinone	0.60	Spec			20	MeOH	220
	4-nitrophenol	3.11	Fluor	-46.1	-99.9	20 10	HO	220
	4-nitrophenol	3.05	Fluor		0010	15	H ₂ O	225
	4-nitrophenol	2.89	Fluor			20	H ₂ O	225
	4-nitrophenol	2.74	Fluor			25	H ₂ O	225
Porphyrin-9	4-nitropnenoi	2.00	Fluor			30	H ₂ O	225
(XXVIII)	3-acetylpyridine	3.26	Spec			25	$CH_2Cl_2$ , 0.1 M $Bu_4NClO_4$	226
	3-acetyipyridine	$-0.22(N_{2}L)$	Spec			25	$(M + ML = M_{0}L)$	226
	4-acetylpyridine	3.38	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	226
	4-acetylpyridine	$-0.22(M_{2}L)$	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	
	9 aminonmidina	2.05	Snee			05	$(\mathbf{M} + \mathbf{ML} = \mathbf{M}_2 \mathbf{L})$	226
	2-aminopyridine	-0.16(M ₂ L)	Spec			20 25	$CH_2CI_2, 0.1 \text{ M Bu}_4NCIO_4$ CH_2CI_2, 0.1 M Bu}_NCIO_4	226
		·····					$(M + ML = M_2L)$	226
	3-bromopyridine	2.63	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	226
	3-bromopyridine	-0.36(M ₂ L)	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	004
	3-chloropyridine	2.49	Spec			25	$(M + ML - M_2L)$ CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	226 226
	3-chloropyridine	-0.10(M ₂ L)	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	
	0	0.00	0			05	$(\mathbf{M} + \mathbf{ML} = \mathbf{M}_2 \mathbf{L})$	226
	3-cyanopyridine	$0.16(M_{0}L)$	Spec			25 25	$CH_2CI_2, 0.1 \text{ M } Bu_4NCIO_4$ $CH_2CI_2, 0.1 \text{ M } Bu_4NCIO_4$	226
	o ogunopyrianio	0.10(1.122)	opec			20	$(M + ML = M_2L)$	226
	4-cyanopyridine	2.33	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	226
	4-cyanopyridine	-0.02(M ₂ L)	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	000
	3.5-dichloro-						$(\mathbf{W} + \mathbf{W} \mathbf{L} = \mathbf{W}_2 \mathbf{L})$	226
	pyridine	1.88	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	226
	3,5-dichloro-		~					
	pyridine	$-0.14(M_2L)$	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	000
	4-(N.N-dimethyl-						$(WI + WIL - WI_2L)$	220
	amino)pyridine	4.49	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	226
	4-(N,N-dimethyl-	0.00/ <b>M</b> T )	<b>G</b>			05		
	ammo)pyriaine	U.23(1VI2L)	Spec			20	$(M + ML = M_{0}L)$	226
	imidazole	4.98	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	226
	imidazol <b>e</b>	$0.21(M_2L)$	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	
	2 A lutiding	4 99	S			05	$(\mathbf{M} + \mathbf{ML} = \mathbf{M}_2\mathbf{L})$	226
	3.4-lutidine	4.23 -0.89(M ₂ L)	Spec Spec			25 25	$CH_2CI_2, 0.1 M Bu_4NCIO_4$ $CH_2CI_2, 0.1 M Bu_4NCIO_4$	220
	-,	·····				20	$(M + ML = M_2L)$	226
	1-methylimidazole	5.40	Spec			25	$CH_2Cl_2$ , 0.1 M $Bu_4NClO_4$	226
	1-metnylimidazole	$-0.96(M_2L)$	Spec			25	$(M + M) = M_{1}$	226
	2-methylimidazole	5. <b>76</b>	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	226
	2-methylimidazole	4.15(M ₂ L)	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	00.0
	2-nicoline	9 47	Snec			25	$(M + ML = M_2L)$ CH ₂ Cl ₂ 0.1 M Bu NClO	226 226
	2-picoline	-0.20(M ₂ L)	Spec			25 25	$CH_2Cl_2, 0.1 M Bu_1NClO_4$	220
	-		-				$(M + ML = M_2L)$	226
	3-picoline	4.19	Spec			25 25	$CH_2Cl_2$ , 0.1 M Bu ₄ NClO ₄	226
	o promie	-0.00(1412L)	opec			20	$(M + ML = M_{2}L)$	226
	4-picoline	4.21	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	226
	4-picoline	$-0.80(M_2L)$	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	000
							(1v1 - 1v11) - 1v12L)	220
				$\Delta H$	$\Delta S$			
----------------	-------------------------------	-----------------------	----------	---------------	-----------------	--------------	-------------------------------------------------------------------	-------------
ligand (chart)	neutral molecule ^a	$\log K^{\flat}$	method	kJ/mol	J/K•mol	<i>T</i> , ℃	conditions ^d	ref
	nineridine	4.33	Spec	<u> </u>		25	CH ₂ Cl ₂ 0.1 M BuyNClO	228
	piperidine	-0.52(M-L)	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu NClO	220
	piperiaitie	-0.02(141 <u>2</u> L)	spec			20	$(M \rightarrow MI - MI)$	000
	manarden a antela		S			90	$(\mathbf{W} + \mathbf{W}\mathbf{L} - \mathbf{W}1_{2}\mathbf{L})$	220
	propylene oxide	~-0.0	Spec			20		221
	propylene suilide	0.00	Spec			20	CH (actimated K)	227
	pyridine	3.3U	Spec	10.0	41	29.9	$C_{6}\Pi_{6}$ (estimated A)	228
	pyridine	$-0.24(M_2L)$	Spec	-10.9	-41	29.9	$C_6H_6$ (M + ML <-> M ₂ L)	228
	pyridine	3.63	Spec			25	$CH_2Cl_2, 0.1 \text{ M Bu}_4NClO_4$	226
	pyridine	$-0.73(M_2L)$	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	
			<u> </u>				$(M + ML = M_2L)$	226
	pyridine	$-0.78(M_2L)$	Spec	-9.92	-47.7	30	2,6-lutidine	
							$(M + ML <-> M_2L)$	229
Porphyrin-10								
(XXVIII)	N,N'-dimidazolyl-		-					
	methane	3. <b>48</b>	Spec			-20	DMF	230
	4,6-dinitro-		_					
	benzofuroxan	2.02	Spec	-8.7	9.2	25	$CH_2Cl_2$	221
	1-methylimidazole	3.4	Spec			-20	DMF	230
	4-picoline	3.11	Spec			-20	DMF	230
	2,4,5,7-tetra-							
	nitrofluorenone	2.76	Spec	-2.8	43.2	25	$CH_2Cl_2$	222
	1,3,5-trinitro-							
	benz <b>e</b> ne	1. <b>9</b> 3	Spec	-14.0	-10.0	25	CHCl₃	231
	2,4,7-trinitro-		-					
	fluorenone	2.70	Spec	-3.2	40.8	25	$CH_2Cl_2$	223
Porphyrin-11								
(XXVIII)	4-aminopyridine	2.57	Spec	-31.8	-59	25	CHCl ₃	232
	4-cyanopyridine	2.86	Spec	-18.0	-4	25	$C_6H_6$	232
	4-cyanopyridine	2.57	Spec	2 <b>9</b> .3	146	25	CHCl ₃	232
	4,6-dinitro-							
	benzofuroxan	1.74	Spec	-13.8	-13.2	25	$CH_2Cl_2$	221
	methyl 4-pyridine-							
	acetate	3.15	Spec	6.3	25	25	CHCl₃	232
	4-picoline	3.08	Spec	-27.6	-33	25	C ₆ H ₆	232
	pyridine	3.15	Spec	-26.4	-2 <del>9</del>	25	C ₆ H ₆	232
	pyridine	3.01	Spec	-17.6	0	25	CHCl₃	232
	4-pyridin <b>e</b> -							
	carboxaldehyde	2.27	Spec	25.1	130	25	CHCl ₃	232
	2,4,5,7-tetra-							
	nitrofluorenone	2.25	Spec	-5.5	24.7	25	$CH_2Cl_2$	222
	1,3,5-trinitro-							
	benz <b>e</b> ne	1.23	Spec	-30.0	-80.0	25	CHCl₃	231
	2,4,7-trinitro-							
	fluorenone	2.15	Spec	-8.5	12.7	25	$CH_2Cl_2$	223
Porphyrin-12								
(XXVIII)	4,6-dinitro-		_					
	benzofuroxan	1.89	Spec	-18.9	-27.15	25	$CH_2Cl_2$	221
	pyridine	-1.3	Spec			29.9	C ₆ H ₆	228
	2,4,5,7-tetra-							
	nitrofluorenone	2.65	Spec	-5.3	33.0	25	$CH_2Cl_2$	222
	1,3,5-trinitro-							
	benzene	1.65	Spec	-20.0	-34.5	25	CHCl ₃	231
	2,4,7-trinitro-		-					
	fluorenone	2.64	Spec	-1.0	46.9	25	$CH_2Cl_2$	223
	2,4,7-trinitro-		-					
	fluorenone	2.75	Spec	-2.7	43.5	25	CHCl ₃	223
	2,4,7-trinitro-		-					
	fluorenone	2.74	Spec	-2.6	43.6	25	Diox	223
	2,4,7-trinitro-							
	fluorenone	2.03	Spec	-8.2	16.8	25	toluene	223
	2,4,7-trinitro-		<b>a</b>					
	fluorenone	2.70	Spec	-4.0	38.1	25	ethyl acetate	223
Porphyrin-13			0			~-	<b>GTT (1)</b>	
(XXVIII)	3-acetylpyridine	3.31	Spec			25		233
	3-acetylpyridine	3.19	Spec			20	$CH_2Cl_2$ , 0.1 M BU4NClO4	233
	4-acetyipyridine	3.51	Spec			25		233
	4-acetylpyridine	3.27	Spec			25	$OH_2OI_2$ , 0.1 M Bu ₄ NClO ₄	233
	z-aminopyridine	2.87	Spec			25		233
	z-aminopyridine	2.76	Spec	F.0.0	100	25	$OH_2OI_2$ , 0.1 M Bu ₄ NClO ₄	233
	4-aminopyridine	4.62	Spec	-58.2	-109	25	C6H6	232
	4-aminopyridine	4.00	Spec	01.0		25		234
	4-aminopyridine	3.02	Spec	-21.3	-4	20 95		232
	4-aminopyriaine	4.0/	Spec			20	CH.CL. A 1 M D. MCIO	200
	ammopyriume	7.7 <i>7</i>	Spec			20	$C_1U_2$ , $U_1$ in Butine $U_4$	233 02 ⊑
	allisuic	HOHE	opec			<b>44</b>	06116	230

ligand (short)	neutral malecules	log Kb	methods	ΔH k I/mol	ΔS I/K-mol	π • C	aanditianad	f
iigand (chart)	hangaldahuda		Spee	KJ/ MOI	J/ K•moi	24	C.H.	1025
	benzhydrol	0.39	Spec			24		235
	benzyl alcohol	1.21	Spec			24	C ₆ H ₆	235
	3-bromopyridine	3.14	Spec			25	CH ₂ Cl ₂	233
	3-bromopyridine	3.06	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	233
	1-butanol	1.06	Spec			24	C ₆ H ₆	235
	2-Dutanol	1.03	Spec			24		235
	4-butyrolectone	0.00	Spec			24 94		230
	3-chloropyridine	3.11	Spec			25	CH ₂ Cl ₂	233
	3-chloropyridine	3.00	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	233
	2,4,6-collidine	1.82	Spec			25	C ₆ H ₆	234
	o-cresol	none	Spec			24	C ₆ H ₆	235
	m-cresol	-0.40	Spec			24	$C_6H_6$	235
	<i>p</i> -cresol	-0.41	Spec			24		235
	3-cyanopyriuine	2.00	Spec			20 25		234
	3-cyanopyridine	2.70	Spec			25	$CH_{0}Cl_{0} = 0.1 M Buy NClO_{1}$	233
	4-cyanopyridine	2.20	Spec	-18.0	-4	25	CaHe	232
	4-cyanopyridine	2.90	Spec			25	C ₆ H ₆	234
	4-cyanopyridine	2.05	Spec	-20.1	-4	25	CHCl ₃	232
	4-cyanopyridine	3.00	Spec			25	CH ₂ Cl ₂	233
	4-cyanopyridine	2.84	Spec			25	$CH_2Cl_2, 0.1 M Bu_4NClO_4$	233
	cyclonexanol	0.97	Spec			24		235
	3.5-dichloro-	0.00	spec			24	C ₆ H ₆	230
	pyridine 3.5-dichloro-	2.45	Spec			25	$CH_2Cl_2$	233
	pyridine	2.50	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	233
	diethyl ether N,N'-diimidazolyl-	0.16	Spec			24	C ₆ H ₆	235
	methane 4-(N,N-dimethyl-	4.67	Spec			24	C ₆ H ₆	230
	amino)pyridine 4-(N,N-dimethyl-	4.84	Spec			25	$CH_2Cl_2$	233
	amino)pyridine dimethylformamide	4.61	Spec Spec			25 24	$C_{6}H_{6}$	233 235
	imidazole 1,2-dimethyl-	5.57	Spec			25	CH ₂ Cl ₂	233
	imidazole	5.47	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	233
	dimethylsulfoxide	2.85	Spec			24	$C_6H_6$	235
	dimethylsulfoxide	3.58	Spec	-36.4	53.6	25	cycloh <b>exane</b>	236
	4,6-dinitro-		a					
	benzofuroxan 4,4'-dipyridyl-	1.15	Spec	-14.0	-25.1	25		221
	methane	4.17	Spec			24		230
	ethanoi	0.04	Spec			24	$C_6 \Pi_6$	230
	imidazole	5.11	Spec			25	CHaCla	233
	imidazole	5.28	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	233
	imidazol <b>e</b>	4.69	Spec	-50.6	-80	25	C ₆ H ₅ Cl	237
	imidazole	4.92	Spec	-40.6	-42	25	1-chlorobutane	237
	3,4-lutidine	4.15	Spec			25	CH ₂ Cl ₂	233
	3,4-lutidine	3.98	Spec			25	$CH_2Cl_2, 0.1 \text{ M Bu}_4NClO_4$	233
	methalloi methyl ethyl ketone	-0.04	Spec			24 94	$C_6 \Pi_6$	230
	1-methylimidazole	4.66	Spec			24	CeHe	230
	1-methylimidazole	5.38	Spec			25	CH ₂ Cl ₂	233
	1-methylimidazole	5.16	Spec			25	CH ₂ Cl ₂ , 0.1 M Bu ₄ NClO ₄	233
	2-methylimidazole	5.45	Spec			25	CH ₂ Cl ₂	233
	2-methylimidazole	5.32	Spec			25	$CH_2Cl_2$ , 0.1 M $Bu_4NClO_4$	233
	2-methyl-1- propanol 2-methyl-2-	0. <b>94</b>	Spec			24	$C_6H_6$	235
	propanol methyl 4-pyridine-	0.60	Spec			24	C ₆ H ₆	235
	acetate 7-oxabicyclo-	3.23	Spec	-19.7	-4	25	CHCl ₃	232
	[2.2.1]heptane	2.68	Spec	-29.7	<b>49</b> .0	25	cyclohexane	236
	1-pentanol perfluoro-1,1- dibudroathanol	1.06	Spec			24 94		235
	phenol	-0.72	Spec			24 24	CeHe	230 235
	2-picoline	2.30	Spec			25	C ₆ H ₆	234
							-	

Table	I	(Continued)

ligand (shart)	neutral malegules	log Kb	methods	ΔH k I/mol	$\Delta S$	<i>π</i> • ∩	conditioned	
ligand (chart)	neutral molecule"		mernou.	KJ/ MOI	J/K·moi	1, 50		rei
	2-picoline 2-picoline	2.36	Spec Spec			25 25	$CH_2Cl_2$ $CH_2Cl_2$ 0.1 M But NClO	233
	2-picoline	2.45	Spec	-33.5	-67	25	C ₆ H ₅ Cl	237
	2-picoline	2.75	Spec	-32.2	-56	25	1-chlorobutane	237
	3-picoline	3.81	Spec			25 25		234
	3-picoline	3.76	Spec			25	$CH_2Cl_2$ , 0.1 M Bu ₄ NClO ₄	233
	4-picoline	4.08	Spec			24	C ₆ H ₆	230
	4-picoline	4.02	Spec			25 25		234
	4-picoline	3.80	Spec			25 25	$CH_2CI_2$ CH ₂ Cl ₂ , 0.1 M Bu ₂ NClO ₄	233
	piperidine	5.05	Spec			25	C ₆ H ₆	234
	piperidine	5.09	Spec			25	CH ₂ Cl ₂	233
	piperigine pronvlene oxide	4.90	Spec			25 20	$C_{a}H_{a}$	200 227
	propylene sulfide	0.48	Spec			20	C ₆ H ₆	227
	pyridine	3.60	Spec	-36.8	-54	25	C ₆ H ₆	232
	pyridine	3.78	Spec			25 25	C ₆ H ₆	234
	pyridine	3.57	Spec	-38.5	-59	29.9	C ₆ H ₆	228
	pyridine	2.79	Spec	-16.7	0	25	CHCl ₃	232
	pyridin <b>e</b>	3.82	Spec			25	CH ₂ Cl ₂	233
	pyriaine pyridine	3.84	Spec			25 25	$CH_2Cl_2$ $CH_2Cl_2 = 0.1 M B_{11} NClO_2$	239
	pyridine	3.68	Spec			25	$CH_2Cl_2$ , 1.24×10 ⁻² M	200
			-				Bu ₄ NClO ₄	239
	pyridine	3.75	Spec	-43.5	-71	25 25	C ₆ H ₅ Cl	237
	pyridine	4.40	Spec	-41.8	56.5	25	cvclohexane	236
	pyridine	3.68	Spec	-38.9	-59	25	toluene	237
	4-pyridine-	0.04	0			05	C H	004
	carboxaldenyde tetrahydrofuran	3.24	Spec Spec			25 24	$C_6 \Pi_6$ $C_8 H_8$	234 235
	tetrahydrothiophene	1.98	Spec	-28.0	56.1	25	cyclohexane	236
	tetramethylene	0.74	0				C U	005
	sulloxide	2.74	Spec			24	C ₆ n ₆	235
	methylthiourea	1.08	Spec	-23.4	-57.7	25	C ₆ H ₆	240
	1,1,3,3-tetra-	1 00	0	07.0		05	C II	940
	2 4 5 7 tetre	1.86	Spec	-27.2	-55.0	25	C ₆ <b>R</b> ₆	240
	nitrofluorenone	1.89	Spec	-9.4	4.5	25	CH ₂ Cl ₂	222
	1,3,5-trinitro-		-					
	benzene	-0.30	Spec	-120	-406	25	CHCl ₃	231
	benzene	2.01	Spec			25	ether	231
	2,4,7-trinitro-		-		_			
	fluorenone	1.97	Spec	-6.6	15.7	25	CHCl ₃	223
	2,4,7-trimtro- fluorenone	1.60	Spec	-6.3	9.4	25	CH ₂ Cl ₂	223
	2,4,7-trinitro-					-		
	fluorenone	1.7 <del>9</del>	Spec	-11.2	-3.74	25	ethyl acetate	223
	2,4,7-trinitro- fluorenone	1.79	Spec	-11.7	-4.9	25	Diox	223
	2,4,7-trinitro-	1.10	opec		1.0	20		
	fluorenone	1.76	Spec	-12.3	-7.8	25	toluene	223
	triphenylcarbinol	none 1 49	Spec Spec	-32.2	-81.2	24 25	C ₆ H ₆ C ₆ H ₆	235
Porphyrin-14	ti piteny pitospititie	1.72	opec	-02.2	-01.2	20	08116	240
(XXVIII)	4-aminopyridine	4.73	Spec			25	C ₆ H ₆	241
	t-butylthiirane	1.60	Spec			20 25	C ₆ H ₆	227
	epichlorohvdrin	<<-1	Spec			20	CeHe	227
	4-picoline	3.83	Spec			25	C ₆ H ₆	241
	propylene oxide	~-0.3	Spec			20 20	C ₆ H ₆	227 227
	pvridine	3.51	Spec			20 25	C ₆ H ₆	241
	pyridine	3.43	Spec	-36.4	-54	2 <b>9</b> .9	C ₆ H ₆	228
	2,4,5,7-tetra- nitrofluorenone	9 <u>9</u> 9	Snee	-30	40 7	25	CH.Ch	<u> </u>
	1,3,5-trinitro-	2.02	opec	-0.0		20	V112V12	
	benzene	2.10	Spec	-13.0	-33	25	ether	231
	2,4,7-trinitro- fluorenone	2.77	Spec	-2.1	45.7	25	CH ₂ Cl ₂	223

linend (about)	wavetral walessiled	lan Vh	mathods	$\Delta H$	$\Delta S$	T •C	oon ditioned	
ligand (chart)	neutral molecule"	log A°	method	KJ/ MOI	J/ K•m01	1, 0	conditions	rei
Porphyrin-15 (XXVIII)	4-aminopyridine 4-cyanopyridine 3-picoline 4-picoline pyridine pyridine	2.92 0.22 1.41 1.62 1.21 1.08	Spec Spec Spec Spec Spec Spec	-20.5	-46	25 25 25 25 25 29.9	C6H6 C6H6 C6H6 C6H6 C6H6 C6H6 C6H6	241 241 241 241 241 241 228
Porphyrin-16 (XXVIII)	pyridine	3.80	Spec			25	C ₆ H ₆	238
(XXVIII)	pyridine 1,4-benzoquinone 1,4-benzoquinone 1,4-benzoquinone	3.72 0.48 -0.30 -0.15	Spec Fluor Spec Spec			25 25 25 25	C ₆ H ₆ Me ₂ CO (apparent K) Me ₂ CO (apparent K) Me ₂ CO (ground state complex)	238 224 224 224
Porphyrin-18 (XXVIII) Descharin 10	pyridine	3.84	Spec			25	C ₆ H ₆	238
(XXVIII) Porphyrin-20	pyridin <b>e</b>	3.69	Spec			25	C ₆ H ₆	238
(XXVIII)	4-ethylpyridine imidazole 3,5-lutidine purine pyrazine N-oxide pyridine 3-pyridinol 4-pyridinol tropine	4.38 4.51 3.61 2.86 4.04 4.08 3.11 1.70	NMR/UV NMR/UV NMR/UV NMR/UV NMR/UV NMR/UV NMR/UV NMR/UV			20 20 20 20 20 20 20 20 20 20	CDCl ₃ /CHCl ₃ CDCl ₃ /CHCl ₃	242 242 242 242 242 242 242 242 242 242
(XXVIII) Porphyrin-22	pyridin <b>e</b>	<b>4.09</b>	Spec			25	C ₆ H ₆	238
(XXVIII) Porphyrin-23	pyridine	3. <b>9</b> 1	Spec			25	C ₆ H ₆	238
(XXVIII) Porphyrin-24	pyridine	4.14	Spec			25	C ₆ H ₆	238
(XXVIII) Porphyrin-25	pyridine	4.04	Spec			25	C ₆ H ₆	238
(XXVIII) Porphyrin-26	pyridine	4.19	Spec			25	C ₆ H ₆	238
(XXVIII) Porphyrin-27	pyridin <b>e</b>	-0. <b>9</b> 2	Spec			25	CDCl ₃	243
(XXVIII) Porphyrin-28	pyridin <b>e</b>	0.40	Spec			25	CDCl ₃	243
(XXVIII) Porphyrin-29	pyridine	0.7	Spec			25	CDCl₃	243
(XXVIII) Porphyrin-30	pyridine	2.7	Spec			25	CDCl ₃	243
(XXVIII) Porphyrin-31	pyridin <b>e</b>	-1.1	Spec			25	CDCl ₃	243
(XXVIII) Porphyrin-32	pyridin <b>e</b>	3.76	Spec			25	CDCl ₃	243
(XXIX)	4,4'-bipyridine 1,2-bis(4-pyridyl)-	3.38	Spec			25?	$CH_2Cl_2$ (microscopic K)	244
	ethane pyridine 246-tri(4-pyridyl)-	3.63 3.45	Spec Spec			25? 25?	CH ₂ Cl ₂ (microscopic K) CH ₂ Cl ₂ (microscopic K)	244 244
Pornhyrin-33	1,3,5-triazine	3.11	Spec			25?	CH ₂ Cl ₂ (microscopic K)	244
(XXIX)	4,4'-bipyridine 1,2-bis(4-pyridyl)-	3. <del>9</del>	Spec			25?	$CH_2Cl_2$	245
	ethane 1,3-bis(4-pyridyl)-	4.1	Spec			25?	CH ₂ Cl ₂	245
	propane pyridine	4.2 3.7	Spec Spec			25? 25?	$CH_2Cl_2$ $CH_2Cl_2$	245 245
Pornhyrin-34	1,3,5-triazine	3. <del>9</del>	Spec			25?	$CH_2Cl_2$	245
(XXIX)	9,10-anthraquinone 9,10-anthraquinone 9,10-anthraquinone 9,10-anthraquinone 9,10-anthraquinone anthrone anthrone	3.95 3.30 2.93 2.36 2.30 1.20 1.08	NMR NMR NMR UV NMR NMR	-33.1	-66	-30 -15 0 25 25 -15 0	CDCl ₃ CDCl ₃ CDCl ₃ CDCl ₃ CHCl ₃ CDCl ₃ CDCl ₃ CDCl ₃	246 246 246 246 246 246 246 246

······				ΔH	$\Delta S$			······
ligand (chart)	neutral moleculeª	$\log K^b$	method	kJ/mol	J/K·mol	<i>T</i> , °C	conditions ^d	ref
	anthrone	0.62	NMR	-21 8		25	CDCl	946
	anthrone	0.67	UV	-1.0		25	CHCI	240 9 <b>4</b> 6
	1.4-benzoquinone	2.68	NMR			-30	ČDCl ₃	246
	1,4-benzoquinone	2.38	NMR			-15	CDCl ₃	246
	1,4-benzoquinone	2.11	NMR			0	CDCl ₃	246
	1,4-benzoquinone	1.74	NMR	-23.4	-46	25	CDCl ₃	246
	1,4-benzoquinone	1.65	UV			25	CHCl ₃	246
	2-chloro-1,4-							
	benzoquinone	3.15	NMR			-30	CDCl ₃	246
	2-chloro-1,4-	0 50	<b>NIN (T</b>					<b></b>
	benzoquinone	2.76	NMR			-15	CDCI ₃	246
	2-CDIOPO-1,4-	2 40	NMD			٥	CDCL	940
	Denzoquinone	2.49	INIMIR			0	CDCI3	240
	2-cillor0-1,4-	2.08	NMR	-27 9	-52	25	CDCl	94G
	1 4-cyclohexane-	2.00		-21.2	-02	20	00013	240
	dione	1.34	NMR			-15	CDCl ₂	246
	1,4-cyclohexane-					-*		
	dione	1.23	NMR			0	CDCl ₃	246
	1,4-cyclohexane-	_					-•	
	dione	1.00	NMR	-12.1	-21	25	CDCl ₃	246
	cyclohexanone	-0.42	NMR			-15	CDCl ₃	246
	cyclohexanone	-0.49	NMR	<b>-</b>		0	CDCl ₃	246
	cyclohexanone	-0.62	NMR	-7.53	-37	25	$CDCl_3$	246
	2,5-dichloro-1,4	0.77						040
	benzoquinone	3.75	NMK			-30	CDCI ₃	246
	2,5-aichioro-1,4	2 10	NIMD			15	CDCL	940
	2 5 dichloro 1 4	9.19	INIVIR			-10		240
	2,0-uichioro-1,4-	9 81	NMR			0	CDCI	94 <b>6</b>
	2.5-dichlara-1.4-	2.01	TATATL			v		<b>240</b>
	benzoquinone	2.34	NMR	-35.1	-74	25	CDCl	246
	2.3-dimethoxy-5-	2.01	1 14122V	00.1	••	20	02013	210
	methyl-1.4-							
	benzoguinone	1.54	NMR	-25.1	-56	25	CDCl ₃	246
	2,3-dimethoxy-5-	-					-	-
	methyl-1,4-						_	
	benzoquinone	1.32	NMR			40	CDCl ₃	246
	2,3-dimethoxy-5-							
	methyl-1,4-		<b>111 (T</b>					<u></u>
	benzoquinone	1.11	NMR			55	CDCI ₃	246
	2,5-dimethyl-1,4-	0 1 5	NIMD			00	CDCI	040
	penzoquinone	3.15	INIMIK			-30	CDCI3	246
	2,0-uimetnyi-1,4-	979	NMP			_15	CDCI	940
	2 5-dimethyl-1 4-	2.10	TATATL			-10		240
	2,0-uimeniyi-1,4-	2.52	NMR			0	CDCl	24A
	2.5-dimethyl-1.4	2.02	1 11728 V			v	01013	210
	benzoquinone	2.04	NMR	-28.5	-56	25	CDCl ₂	246
	2-methyl-1.4-			2010				
	benzoguinone	2.98	NMR			-30	CDCl ₃	246
	2-methyl-1,4-						·	-
	benzoquinone	2.65	NMR			-15	CDCl ₃	246
	2-methyl-1,4-						<b></b>	
	benzoquinone	2.38	NMR			0	CDCl ₃	246
	2-methyl-1,4-					<b>a</b> -	05.00	<b>.</b>
	benzoquinone	1.94	NMR	-26.4	-51	25	CDCl ₃	246
	1,2-naphthoquinone	1.23	NMK			-15		246
	1,2-naphthoquinone	1.11	NMK	10.0	10	U 0=		246
	1,2-naphthoquinone	U.94 3 50	NMR	-10.8	-19	20		246
	1,4-naphthoquinone	0.09 971	NMP			-30	CDCl ₃	240
	1 4-nephthoquinone	2.11	NMR	-34 7	-74	-10	CDCl	240 946
	tetrachloro-1.4-	2.20	1 41411 <i>1</i>	-07.1	-13	20		270
	benzoquinone	2.60	NMR	-36.0	-72	25	CDCl ₃	246
	tetrachloro-1,4-							
	benzoquinone	2.26	NMR			40	CDCl ₃	246
	tetrachloro-1,4-						-	
	benzoquinone	2.00	NMR			55	$CDCl_3$	246
	tetrafluoro-1,4-	0.7-	10.00	<u> </u>		07		<b></b>
	benzoquinone	2.57	NMR	-33.5	-63	25	CDCl ₃	246
	tetralluoro-1,4-	0.90	NND			40	CDCI	040
	tetrefluoro_1 4-	2.30	TAINIL			<b>4</b> U		240
	benzoguinone	2.04	NMR			55	CDCl.	246
	· · · · · · · · · · · · · · · · · · ·							

ligand (chart)	neutral molecule ^a	$\log K^b$	method	ΔH kJ/mol	∆S J/K•mol	<i>T</i> , °C	conditions ^d	ref
	tetramethoxy-1,4- benzoquinone	1.60	NMR			-30	CDCl ₃	246
	tetramethoxy-1,4- benzoquinone	1.43	NMR			-15	CDCl ₃	246
	tetramethoxy-1,4- benzoquinone	1.23	NMR			0	CDCl ₃	246
	tetramethoxy-1,4- benzoquinone	0.89	NMR	-18.0	-44	25	CDCl ₃	246
	tetramethoxy-1,4- benzoquinone	0. <b>9</b> 0	UV			25	CHCla	246
	tetramethyl-1,4- benzoquinone	2.62	NMR	-37.7	-77	25	CDCl ₃	246
	tetramethyl-1,4- benzoquinone	2.23	NMR			40	CDCl ₃	2 <b>46</b>
	tetramethyl-1,4- benzoquinone	1.95	NMR			55	CDCl ₃	246
Porphyrin-35	2 aminohanzoia acid	9 15	Spec			٥	CHCI	9.47
(AAIA)	2-aminobenzoic acid	2.89	Spec	-25.9	-35.1	15	CHCla	241 947
	2-aminobenzoic acid	2.64	Spec	20.0	00.1	30	CHCl	247
	2-aminobenzoic acid	2.47	Spec			45	CHCl	247
	4-aminobenzoic acid	3.59	Spec			0	CHCl	247
	4-aminobenzoic acid	3.33	Spec			15	CHCl	247
	4-aminobenzoic acid	3.11	Spec	-25.1	-22.6	30	CHCl ₃	247
	4-aminobenzoic acid	2.91	Spec			45	CHCl	247
	2-aminobenzoic acid methyl ester	3.47	Spec			0	CHCla	247
	2-aminobenzoic acid methyl ester	3.20	Spec	-25.9	-28.9	15	CHCl ₃	247
	2-aminobenzoic acid methyl ester	2. <b>94</b>	Spec			30	CHCl ₃	247
	4-aminobenzoic acid methyl ester	3.65	Spec			0	CHCl ₃	247
	4-aminobenzoic acid methyl ester	3.3 <del>9</del>	Spec	-23.0	-15.1	15	CHC13	247
	4-aminobenzoic acid	0.15	<b>G</b> .				01101	<b>.</b>
	4-aminoheptane	3.17 5.59	Spec Spec			30 15	CHCl ₃ CHCl ₃	247 248
Pornhyrin-36	methyl ester	5.20	Spec			15	CHCl ₃	248
(XXIX)	9,10-anthraquinone	1.49	NMR			-30	CDCl ₃	246
	9,10-anthraquinone	1.32	NMR			-15	CDCl ₃	246
	9,10-anthraquinone	1.11	NMR			0	$CDCl_3$	246
	9,10-anthraquinone	0.77	NMR	-15.9	-36	25	CDCl ₃	246
	anthrone	1.36	NMR			-30	CDCl ₃	246
	anthrone	1.08	NMR			-15	CDCl ₃	246
	anthrone	0. <b>9</b> 0	NMR			0	CDCl ₃	246
	anthrone	0.65	NMR	-17.2	-45	25	CDCl ₃	246
	1,4-benzoquinone	1.11	NMR			-30	$CDCl_3$	246
	1,4-benzoquinone	0.91	NMR			-15	CDCl ₃	246
	1,4-benzoquinone	0.73	NMR			0	CDCl ₃	246
	1,4-benzoquinone tetramethyl-1,4-	0.51	NMR	-15.1	-41	25		246
	benzoquinone tetramethyl-1,4	1.15	NMR			-30		246
	tetramethyl-1,4-	0.94	NMR			-15		246
	tetramethyl-1,4-	0.76	NMR	-17.9	49	0		246
Porphyrin-37	2-aminohenzoic ecid	5.47	Spec	-17.2	-40	25	CHCl	240
(	2-aminobenzoic acid	5.08	Spec	-39.3	-38.9	15	CHCI	247
	2-aminobenzoic acid	4.71	Spec		00.0	30	CHCI	247
	2-aminobenzoic acid	4.40	Spec			45	CHCI	247
	4-aminobenzoic acid	3.73	Spec			0	CHCI	247
	4-aminobenzoic acid	3.50	Spec	-23.4	-14.6	15	CHCl	247
	4-aminobenzoic acid	3.27	Spec	-		30	CHCl ₃	247
	4-aminobenzoic acid 2-aminobenzoic acid	3.08	Spec			45	CHCl ₃	247
	methyl ester 2-aminobenzoic acid	4.61	Spec			0	CHCl ₃	247
	methyl ester	4.25	Spec	-38.1	-52.3	15	CHCl ₃	247

Porphyrin-47

Porphyrin-49 (XXIX)

Porphyrin-50

pyridine

pyridine

pyridine

(XXIX) Porphyrin-48

(XXIX)

(XXX)

ref

247

247

247

247

248

248

229

229

229

229

229

249

250

250

250

250

250

249

249

251

249

249

249

249

249

251

229

249

249

250

250

250

250

250

250

249

251

251

251

229

229

243

249, 250

249, 250

249, 250

249, 250

249, 250

#### Table I (Continued) $\Delta H$ $\Delta S$ $\log K^b$ method kJ/mol J/K•mol T, °C ligand (chart) neutral molecule^a conditionsd 2-aminobenzoic acid 3.88 30 CHCl₃ methyl ester Spec 4-aminobenzoic acid 0 3.67 CHCl₃ methyl ester Spec 4-aminobenzoic acid 3.47 CHCl₃ Spec -23.8-16.7 15 methyl ester 4-aminobenzoic acid CHCl₃ 3.24 30 methyl ester Spec 4-aminoheptane 5.46 Spec 15 CHCl₃ L-leucine 6.70 15 CHCl₃ ethyl ester Spec Porphyrin-38 30 $-0.82(M_2L)$ 2,6-lutidine (XXIX) 4-ethylpyridine Spec $(M + ML <-> M_2L)$ 30 2,6-lutidine 4-methoxypyridine Spec -0.46(M₂L) $(M + ML <-> M_2L)$ 2.6-lutidine 30 4-picoline $-0.80(M_2L)$ Spec $(M + ML <-> M_2L)$ $-0.61(M_2L)$ Spec -16.3 -62.3 30 2.6-lutidine pyridine $(M + ML <-> M_2L)$ 4-vinylpyridine $-1.05(M_2L)$ Spec 30 2.6-lutidine $(M + ML < > M_2L)$ Porphyrin-39 4-carboxy-n-butyl-(XXIX) pyridine $3.52(M_2L)$ Spec -28.0-29 25 $C_{6}H_{6} (2M + L <-> M_{2}L)$ -72.8 -184 25 $CCL_4 (2M + L < M_2L)$ 4-cyanopyridine $3.08(M_2L)$ Spec 4-cyanopyridine $3.52(M_2L)$ Spec -28.9 -29 25 $C_{6}H_{6} (2M + L <-> M_{2}L)$ $1.54(M_2L)$ -50.2-138 25 $CHCl_3 (2M + L <-> M_2L)$ 4-cyanopyridine Spec 25 4-picoline $2.79(M_2L)$ Spec -31.4 -50 $CCL_4 (2M + L <-> M_2L)$ 2.42(M₂L) 3.3 54 25 $C_{6}H_{6}(2M + L <-> M_{2}L)$ Spec 4-picoline 25 $CCL_4 (2M + L <-> M_2L)$ pyridine 2.64(M₂L) Spec -59.4 -146 pyridine 1.76(M₂L) Spec 25 -14.6 -17 $C_6H_6 (2M + L <-> M_2L)$ 25 $C_6H_6$ (2M + L <-> M₂L) pyridine $2.57(M_2L)$ Spec -10.0 17 4-vinylpyridine 2.86(M₂L) 25 $C_{e}H_{e}$ (2M + L <-> M_{2}L) Spec -6.7 33 Porphyrin-40 piperidine -23.0 -110 25 $CHCl_3 (2M + L <-> M_2L)$ (XXIX) $-1.69(M_2L)$ Spec Porphyrin-41 (XXIX) 4-carboxy-n-butyl-3.67(M₂L) $C_6H_6 (2M + L <-> M_2L)$ 29.3 176 25 pyridine Spec 25 $C_6H_6 (2M + L < > M_2L)$ 4-cyanopyridine $1.25(M_2L)$ Spec 31.4 134 $C_{6}H_{6}$ (2M + L <-> M₂L) 4-picoline $1.10(M_2L)$ Spec 25 -10.9 -17 25 $C_6H_6 (2M + L <-> M_2L)$ pyridine $1.32(M_2L)$ Spec -31.4 134 4-vinylpyridine $2.64(M_2L)$ 25 $C_6H_6 (2M + L <-> M_2L)$ Spec -15.1 0 Porphyrin-42 -32.6 -114 25 $CHCl_3 (2M + L <-> M_2L)$ (XXIX) piperidine -0.25(M₂L) Spec Porphyrin-43 2,6-lutidine -17.8 -70.3 30 (XXIX) pyridine -0.61(M₂L) Spec $(M + ML <-> M_{2}L)$ 4-aminopyridine $5.65(M_2L)$ Spec -67.4 -117 25 $C_6H_6 (2M + L <-> M_2L)$ Porphyrin-44 4-carboxy-n-butyl-(XXIX) $2.93(M_2L)$ -42.3 -84 25 $C_6H_6 (2M + L <-> M_2L)$ pyridine Spec -293 25 $CCL_{4}$ (2M + L <-> M₂L) 4-cyanopyridine $3.45(M_2L)$ Spec -107 3.01(M₂L) -37.725 $C_{6}H_{6}(2M + L <-> M_{2}L)$ 4-cyanopyridine Spec -67 $2.71(M_2L)$ 25 $CHCl_3 (2M + L <-> M_2L)$ 4-cyanopyridine Spec -80.8 -218 4-picoline $2.79(M_2L)$ Spec -103 -29325 $CCl_4 (2M + L <-> M_2L)$ 4-picoline $6.60(M_2L)$ -58.6 -67 25 $C_6H_6 (2M + L <-> M_2L)$ Spec $1.10(M_2L)$ 25 4-picoline Spec -51.0 -151 $CHCl_{3}$ (2M + L <-> M₂L) 25 pyridine $0.44(M_2L)$ Spec -66.9 -209 $CCL_4 (2M + L <-> M_2L)$ pyridine 25 $1.32(M_2L)$ Spec -13.8 -21 $C_{6}H_{6} (2M + L <-> M_{2}L)$ 25 -45.2 $CHCl_3 (2M + L <-> M_2L)$ pyridine $0.22(M_2L)$ Spec -146 25 4-vinylpyridine $3.74(M_2L)$ Spec -31.0 -33 $C_6H_6 (2M + L <-> M_2L)$ Porphyrin-45 (XXIX) -1.39(M₂L) Spec -21.8-99.6 25 $CHCl_3 (2M + L <-> M_2L)$ piperidine Porphyrin-46 (XXIX) piperidine

25 -32.6-107  $CHCl_3 (2M + L <-> M_2L)$  $0.15(M_2L)$ Spec piperidine -1.70(M₂L) Spec -18.0 -88.3 25  $CHCl_3 (2M + L <-> M_2L)$ 30 2,6-lutidine  $-0.55(M_2L)$ Spec -16.3-64.4  $(M + ML <-> M_2L)$ -0.49(M₂L) Spec -16.7-64.4 30 2,6-lutidine  $(M + ML <-> M_2L)$ 0.34 25 CDCl₃ Spec

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , ⁰C	conditions ^d	ref
Porphyrin-51 (XXX)	pyridin <b>e</b>	0.9	Spec			25	CDCl ₃	243
Porphyrin-52 (XXX)	pyridine	3. <del>9</del>	Spec			25	CDCl ₃	243
Porphyrin-53 (XXX)	pyridine	-1.0	Spec			25	CDCl ₃	243
Porphyrin-54 (XXX)	py <b>r</b> idin <b>e</b>	1.5	Spec			25	CDCl ₃	243
(XXX)	pyridine	-2.1	Spec			25	CDCl ₃	243
(XXX) Porphyrin-57	py <b>r</b> idin <b>e</b>	2.97	Spec			25	CDCl ₃	243
(XXX) Porphyrin-58	pyridine	1.58(M ₂ L)	Spec			25?	$H_2O (2M + L <-> M_2L)$	252
(XXX)	pyridin <b>e</b> pyridine	-1.23 0.27(M ₂ L)	Spec Spec			25? 25?	$H_2O (2M + L <-> ML)$ $H_2O (M + ML <-> M_2L)$	252 252
Porphyrin-59 (XXX)	pyridin <b>e</b>	0.54	Spec			25	CDCl ₃	243
(XXX)	py <del>r</del> idin <del>e</del>	2.47	Spec			25	CDCl ₃	243
(XXX)	pyridin <b>e</b>	-1.15(M ₂ L)	Spec	-16.6	-77.0	30	2,6-lutidine	000
Porphyrin-62 (XXX)	4-carboxy-n-butyl- pyridine 4-cyanopyridine 4-picoline nyridine	3.15(M₂L) 2.79(M₂L) 3.74(M₂L) 2.42(M₄L)	Spec Spec Spec Spec	-37.2 -49.0 -36.4 -21.8	-63 -100 -50 -25	25 25 25 25	$(M + ML <-> M_{2}L)$ $C_{6}H_{6} (2M + L <-> M_{2}L)$ $C_{6}H_{6} (2M + L <-> M_{2}L)$ $C_{6}H_{6} (2M + L <-> M_{2}L)$ $C_{4}H_{4} (2M + L <-> M_{4}L)$	229 249 249 249 249
Porphyrin-63	4-vinylpyridine	3.67(M ₂ L)	Spec	-42.7	-67	25	$C_6H_6(2M + L <-> M_2L)$	249
(XXX)	piperidi <b>ne</b> piperidine	-2.04(M ₂ L) -2.08(M ₂ L)	Spec Spec	-11.7 -20.3	-78.7 -105	25 34	$\begin{array}{l} {\rm CHCl_3}\;({\rm 2M}+L<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	251 253
(XXX) Porphyrin-65	piperidine	-0.89	Spec	-9.62	-48.5	34	THF	253
(XXX)	pyridine	$-0.84(M_2L)$	Spec	-15.8	-68.2	30	2,6-lutidine (M + ML <-> M₂L)	229
Porphyrin-66 (XXX)	pyridine	2.30	Spec			25	Diox	254
(XXX)	piperidine	$-1.02(M_2L)$	Spec	-9.54	-50.2	30	2,6-lutidine $(M + ML <-> M_2L)$	22 <del>9</del>
	pyriaine	$-1.17(1V1_{2}L)$	Spec	-12.2	-02.8	30	$(M + ML <-> M_2L)$	229
Porphyrin-68	pyrronume	-1.02(1¥12L)	Spec	-10.3	-02.7	30	$(M + ML <-> M_2L)$	229
(XXX)	pyridine triethylene-	3.46	UV			25?	$CH_2Cl_2$	255, 2 <b>56</b>
	diamine triethylene-	5.38(1)	UV	-62	-103	25?	$CH_2Cl_2$	256
Porphyrin-69	diamine	≥4(2)	UV			25?	$\rm CH_2 Cl_2$	256
(XXX)	H ₂ O aniline benzyl alcohol benzylamine dimethylaniline <i>n</i> -heptylamine 1-octanol phenol quinoline	4.47 1.66 3.46 4.43 1.02 5.19 3.66 1.19 4.12	Spec Spec Spec Spec Spec Spec Spec Spec			25? 25? 25? 25? 25? 25? 25? 25? 25? 25?	C ₆ H ₆ C ₆ H ₆	252, 257 252, 257 252, 257 252, 257 252, 257 252, 257 252, 257 252, 257 252, 257 252, 257
Porphyrin-70 (XXX)	pyridine	-1.13(M ₂ L)	Spec	-10.7	-57.3	30	2,6-lutidine	
Porphyrin-71 (XXX)	pyridin <b>e</b>	3.60	Spec	10.0		29.9	$C_6H_6$ (estimated K)	229
Porphyrin-72	pyriaine	-U.U8(M ₂ L) 3 72	Spec	-10.9	-38	29.9 20 0	$U_6H_6 (M + ML <-> M_2L)$	228
Porphyrin-73 (XXXI)	N.Ndiimidezolul-	0.12	ohec	-01.1	-04	4J.J	∪6Ω6	220
	methane	>6.6	Spec			18	$C_6H_6$ (4 coordination <-> 5 coordination)	230

ligand (chart)	neutral moleculeª	log K ^b	method	∆ <i>H</i> kJ/mol	ΔS J/K·mol	<i>т</i> , °С	conditions ^d	ref
	N,N-diimidazolyl- methane	<b>4.9</b> 0	Spec			18	$C_6H_6$ (K = averged value for two porphyrin moieties), (5 coordination <-> 6 coordination)	230
	N,N'-diimidazolyl- methane	5.1	Spec			18	DMF (5' coordination	230
	N,N-diimidazolyl- methane	3.7	Spec			18	<-> 5 [#] coordination) DMF (K = averged value for two porphyrin moieties), (5 [#] coordination <->	230
	dimethylformamide 1-methylimidazole	1.23 3.5	Spec Spec			? 18	6 coordination) $C_6H_6$ $C_6H_6$ (K = averged value for two porphyrin moieties), (4 coordination $\leq ->$	230 230
	1-methylimidazole	<b>4.9</b> 0	Spec			18	5 coordination) $C_6H_6$ (K = averged value for two porphyrin moieties), (5 coordination $<->$	230
Porphyrin-74							6 coordination)	230
(XXXI)	methane 4.4'-dipyridyl-	6.6	Spec			-20	DMF	230
	methane 1-methylimidazole	6.7 3.3	Spec Spec			-20 -20	DMF DMF ( $K$ = averged value for two porphyrin moieties)	230 230
Porphyrin-75 (XXXI)	4,4'-dipyridyl- methane	2.0 <del>9</del>	Spec			24	DMF	230
Porphyrin-76 (XXXI)	<i>N,N</i> '-diimidazolyl- methane	7.5	Spec			24	C ₆ H ₆	230
	4,4'-dipyridyl- methane 1-methylimidazole 1-methylimidazole 4-picoline	6.6 4.7 4.93(M₂L) 4.13 4.20(M₂L)	Spec Spec Spec Spec Spec			24 24 24 24 24 24	$C_6H_6$ $C_6H_6$ $C_6H_6$ $C_6H_6$ $C_6H_6$	230 230 230 230 230
Porphyrin-77 (XXXI)	4,4'-bipyridine	3.26	Spec			25?	CH ₂ Cl ₂	258
	1,2-bis(4- piperidyl)ethane	4.52	Spec	<b>-6</b> 0	-120	25?	CH ₂ Cl ₂	258
	ethane piperidine pyrazine pyridine triethylamine	3.63 4.08 2.26 3.11 4.69	Spec Spec Spec Spec Spec	-60	-120	25? 25? 25? 25? 25?	CH ₂ Cl ₂ CH ₂ Cl ₂	258 258 258 258 258 258
(XXXI)	4,4'-bipyridine	2.88	Spec			25?	$CH_2Cl_2$	258
	piperidyl)ethane 1,2-bis(4-pyridyl)-	4.15	Spec	-50	-100	25?	$CH_2Cl_2$	258
	ethane piperidine pyrazine pyridine triethylamine must 294	3.11 3.61 1.64 2.56 4.36 3.11	Spec Spec Spec Spec Spec Spec	-55	-100	25? 25? 25? 25? 25? 25?	CH ₂ Cl ₂ CH ₂ Cl ₂	258 258 258 258 258 258
Porphyrin-79 (XXXII)	pyridine pyridine triethylene-	2.01 1.34(M ₂ L)	UV UV			25? 25?	CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂	256 256
Porphyrin-80	diamine	~6	UV			25?	CH ₂ Cl ₂	256
(XXXII)	pyridine pyridine triethylene-	2.01 1.34(M ₂ L)	UV UV			25? 25?	CH ₂ Cl ₂ CH ₂ Cl ₂	256 256
Porphyrin-81	diamine	~7				25?	CH ₂ Cl ₂	256 255
(AAAII)	4-t-outylpyridine	2.03	UV			20 î		200

		1 754		$\Delta H$	$\Delta S$	<b>m</b> • 0	1+.+	
ligand (chart)	neutral molecule ^a	log K ^o	method	kJ/mol	J/K·mol	T, °C	conditions	ref
	4-t-butylpyridine	$2.06(M_2L)$	UV			25?	CH ₂ Cl ₂	255
	pyridine	2.02	UV			25?	CH ₂ Cl ₂	255, 256
	pyridine	2.31(M ₂ L)	ŬV			25?	CHICL	255 256
	triethylene.	2.02(1.122)	•			201	0	200, 200
	diamine	7 87	UV	-77	-121	257	CH-Cl. (quest bound	
	diamine	1.01	01		-121	20.	inside equity)	956
	tricthylone						marge cavity)	200
	diamina	5 90	1137			059	CH Cl. (mast have d	
	diamine	0.00	Uv			20?	CH ₂ Cl ₂ (guest bound	
<b>D</b> 1 · 00							outside cavity)	256
Porphyrin-82			<b>a</b>					
(XXXII)	4,4'-bipyridine	3.58	Spec			25?	CH ₂ Cl ₂ (guest bound	
			_				outside cavity)	258
	4,4'-bipyridine	$2.98(M_2L)$	Spec			25?	CH ₂ Cl ₂ (guest bound	
							ou <b>tside cav</b> ity)	258
	4,4'-bipyridine	3.11	Spec			25?	CH ₂ Cl ₂ (guest bound	
							inside cavity)	258
	1,2-bis(4-						•	
	piperidyl)ethane	6.71	Spec	-70	-120	25?	CH ₂ Cl ₂	258
	1.2-bis(4-							200
	nineridyl)ethane	nm(MaL)	Snec			25?	CH ₂ Cl ₂	258
	1.2-bis(A-pyridyl)-	11111(111 <u>2</u> 11)	Spec			20.	0112012	200
	athone	5 71	Snee			959	CH.CL	959
	1.0 bis(4 memided)	0.71	spec			20:		208
	1,2-018(4-pyridyl)-		0			050		
	etnane	$nm(N_2L)$	Spec			201		258
	piperidine	4.56	Spec			25?	CH ₂ Cl ₂	258
	piperidine	$3.95(M_2L)$	Spec			25?	$CH_2Cl_2$	258
	pyrazine	2.78	Spec			25?	$CH_2Cl_2$	258
	pyrazine	$2.18(M_2L)$	Spec			25?	$CH_2Cl_2$	258
	pyridine	3.61	Spec			25?	$CH_2Cl_2$	258
	pyridine	$3.04(M_2L)$	Spec			25?	$CH_2Cl_2$	258
	triethvlene-		•					
	diamine	6.11	Spec	-100	-230	25?	CH ₂ Cl ₂	258
	triethylene-	0.22			200	201	0111011	200
	diamine	3.11(M.L.)	Snec			252	CH-Ch	959
Dombumin 82	dialitile	J.II(1412L)	opec			20:	$C11_{2}C1_{2}$	200
vvvvi	10 bis (4 mentional)	4 50						
(AAAII)	1,2-018(4-pyridyl)-	4.00	0			050		
	etnane		Spec			25?	CH ₂ Cl ₂	258
	1,2-bis(4-pyridyl)-		~					
	ethane	$nm(M_2L)$	Spec			25?	$CH_2Cl_2$	258
	pyridine	2.54	Spec			25?	$CH_2Cl_2$	258
	pyridine	$2.26(M_2L)$	Spec			25?	$CH_2Cl_2$	258
Porphyrin-84								
(XXXII)	4,4'-bipyridine	3.26	Spec			25?	CH ₂ Cl ₂ (guest bound	
							outside cavity)	258
	4.4'-bipyridine	2.66(M ₂ L)	Spec			25?	CH ₂ Cl ₂ (guest bound	
	, 10	• • •	•				outside cavity)	258
	4.4'-bipyridine	3.00	Spec			25?	CH ₂ Cl ₂ (guest bound	
	-, <b>F</b> J	0.00	~P···				inside cavity)	258
	1 2-bis(4-							200
	nineridul)ethana	5 50	Snee	-50	-65	959	CH.Cl.	959
	1.9 bis/4	0.00	Spec	-00	-00	20:	0112012	200
	1,2-018(4-	mm(M,I)	Snee			959	CH_CL	050
	1.0 bis(4 minidal)		spec			20:	$CH_{2}CI_{2}$	200
	1,2-Dis(4-pyridyl)-	0.50	a			050		
	ethane	3.59	Spec			25?	$CH_2Cl_2$	258
	1,2-bis(4-pyridyl)-		~					
	ethane	$nm(M_2L)$	Spec			25?	$CH_2Cl_2$	258
	pip <b>er</b> idin <b>e</b>	3. <b>9</b> 5	Spec			25?	$CH_2Cl_2$	258
	piperidine	3.32(M ₂ L)	Spec			25?	$CH_2Cl_2$	258
	pyrazine	1.84	Spec			25?	$CH_2Cl_2$	258
	pyrazine	1.23(M ₂ L)	Spec			25?	$CH_2Cl_2$	258
	pyridine	2.98	Spec			25?	$CH_2Cl_2$	258
	pyridin <b>e</b>	$2.52(M_2L)$	Spec			25?	$CH_2Cl_2$	258
	triethylene-		-					-
	diamine	5.38	Spec	<b>-9</b> 5	-210	25?	CH ₂ Cl ₂	258
	triethvlene-			-				
	diamine	4.00(M.L)	Spec			25?	CH ₂ Cl ₂	258
	guest-26e	5.41	Spec			257	CH ₂ Cl ₂	258 250
	guest-26°	nm(MaL)	Spec			25?	CH ₂ Cl ₂	258 250
Porphyrin-85	Broot PC	(1111)	opec			201	~~12\~12	200, 208
(XXXII)	n-hutvlamine	3 70	Snec			25	CH ₂ Cl ₂	960 941
(12121211)	1 A diaminobutone	5.79	Spec			20	CH-Cl-	200, 201
	1.9-diaminosthan-	5.78	Spec			20	CH-Cl-	200, 201
	1.7-diaminobentarie	6.09	Spec			20		200, 201 921
	1.7-diaminoheptane	6.00	Spec			20		201
	1, -uiaminoneptane	0.00	Spec			20 05		200
	1,0-ulaminonexane	0.40	spec			20		200, 261

ligand (chart)	neutral moleculeª	$\log K^b$	method	ΔH kJ/mol	ΔS J/K•mol	<i>т</i> . °С	conditions ^d	ref
	1.0 diamina atoma	E 40				05	CH CI	000 001
	1,8-diaminooctane	0.40	Spec			20		260, 261
	1,5-diaminopentane	6.00	Spec			20		260, 261
	4,4'-aipyriaine	1.40	Spec			20		260, 261
Porphyrin-86	pyridine	3.15	Spec			25		260, 261
(XXXII)	4,4'-bipyridine 1,2-bis(4-pyridyl)-	8.8	Spec		r	25?	CH ₂ Cl ₂	245
	ethane 1.3-bis(4-pyridyl)-	6.1	Spec			25?	CH ₂ Cl ₂	245
	propane	5.1	Spec			25?	CH ₂ Cl ₂	245
	pyridine 2.4.6-tri(4-pyridyl)-	3.7	Spec			25?	CH ₂ Cl ₂	245
Domhumin 87	1,3,5-triazine	3.8	Spec			25?	CH ₂ Cl ₂	245
(XXXIII)	4,4'-bipyridine	4.20	Spec			25?	CH ₂ Cl ₂ (microscopic K)	244
	ethane	6.65	Spec			25?	$CH_2Cl_2$ (microscopic K)	244
	pyridin <b>e</b>	3.41	Spec			25?	$CH_2Cl_2$ (microscopic K)	244
	pyridine	$3.41(M_2L)$	Spec			25?	CH ₂ Cl ₂ (microscopic K)	244
	2,4,6-tri(4-pyridyl)- 1.3.5-triazine	7.64	Spec			25?	$CH_{2}Cl_{2}$ (microscopic K)	244
Porphyrin-88		4.00				059		944
(XXXIII)	4,4'-bipyridine 4,4'-bipyridine	4.30 3.43(M ₂ L)	Spec Spec			25? 25?	$CH_2Cl_2$ (microscopic K) $CH_2Cl_2$ (microscopic K)	244 244
	ethane	6.63	Spec			25?	$CH_2Cl_2$ (microscopic K)	244
	1,2-bis(4-pyridyl)-	0 45 (D.C.T.)	<b>G</b>			059	OII Ol (missionaria K)	044
	etnane	3.45(IV12L)	Spec			201	CH ₂ Cl ₂ (microscopic K)	244
	pyriaine	3.41 9.41/M T	Spec			201	$CH_2Cl_2$ (microscopic K) CIL Cl. (microscopic K)	244
	pyridine	$3.41(M_2L)$ $2.46(M_1L)$	Spec			201	$CH_2Cl_2$ (microscopic $K$ )	244 944
	2 4 6-tri(4-pyridyl)-	5.40(113L)	spec			201	CH2Cl2 (microscopic K)	244
Downhumin 80	1,3,5-triazine	>9	Spec			25?	$CH_2Cl_2$ (microscopic K)	244
(XXXIII)	4,4'-bipyridine	4.9	Spec			25?	$CH_2Cl_2$	245
	ethane	7.5	Spec			25?	CH ₂ Cl ₂	245
	1,3-Dis(4-pyriuyi)-	8.8	Snec			252	CH ₂ Cl ₂	945
	nyridine	3.6	Spec			25?	CH _a Cl _a	245
	2.4.6-tri(4-nvridvl)-	0.0	opec			20.	0112012	210
	1,3,5-triazine	10.0	Spec			25?	$CH_2Cl_2$	245
Porphyrin-90								
(XXXIII)	3,5-lutidine	<1	NMR			20	$MeOD-d_3$	262
	3,5-lutidine	<1	UV			20	MeOH	262
	pyridin <b>e</b>	1.95	NMR			20	$MeOD-d_3$	262
<b>D</b> 1	pyridine	1.85	UV			20	MeOH	262
Porphyrin-91	numidina	3 67	NMP			20	CDCL	969
(AAAIV) Pornhyrin-92	pyriaine	3.07	INIVIA			20		202
(XXXIV) Pornhurin-93	pyridin <b>e</b>	1. <b>99</b>	NMR			20	$MeOD-d_3$	262
(XXXIV)	acenaphthylene	3.02	NMR			20	$MeOD-d_3/D_2O/CD_3CO_2D$	263
	anthracene	2.66	NMR			20	(95:4.85:0.15  V/V) MeOD-d ₃ /Me ₂ SO-d ₆ /D ₂ O/CD ₃ CO ₂ D	203
	naphthalene	2.52	NMR			20	(90:5:4.85:0.15 v/v) MeOD-d ₃ /D ₂ O/CD ₃ CO ₂ D	263
	nhenenthrene	3 1 9	NMR			20	(95:4.85:0.15 v/v) MaOD da/DaO/CDaCOaD	263
	phenantiment	0.12				20	(95:4.85:0.15 v/v)	263
<b>D</b> 1 1 4	pyrene	2.20	NMR			20	(95:4.85:0.15  v/v)	263
Porphyrin-94		4.60	T 137			90	0.0.0 to: fluore other of	
	pnenantnrene	4.00	UV			20	(high-spin complex)	263
rorpnyrin-95	A at hulmmidine	9 79	NMD /T IV			90	CDCL/CHCL	949
(AAAV)	eunyipyriaine	2.10 195	NIMP/UV			20		242 949
	2 5-lutidine	4.67	NMP/IN			20	CDCl./CHCl.	242 949
		4.01	NIME / UV			20		272 949
	purme	0.02				20		442 040
	pyrazine /v-oxide	4.04	INIVIR/UV			20		242
	pyriaine	0.40	NMR/UV			20		24Z
	a-pyridinol	0.10	NMK/UV			20		242
	4-pyriainol	4.64	NMR/UV			20		242
	tropine	2.54	NMR/UV			20	CDCI ₃ /CHCI ₃	242

# 1344 Chemical Reviews, 1992, Vol. 92, No. 6

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	ΔS J/K•mol	<i>T</i> , °C	conditions ^d	ref
			5. Miscel	laneous (co	ont.)			
<u></u>			C.	Other				
Other-1 (XXXVI)	catechol	2.70	NMR			25	CDCI ₃	264
	nyaroquinone	2.74	NMR			25		264
Other 9 (VVVVI)	resorcinol	3.31 <1.70	NMD			20		264
Other-2 (AAAVI)	bydroquinone	<1.70	NMR			20		204
	resorcing	1 70	NMR			20	CDCla	204
Other-3 (XXXVI)	catechol	1.60	NMR			25	CDCl	264
	hydroguinone	3.73	NMR			25	CDCl ₂	264
	resorcinol	3.30	NMR			25	CDCl ₃	264
Other-4 (XXXVI)	2-bromohydro-							
	quinone	3.26	NMR			25	CDCl ₃	264
	catechol	1.85	NMR	-22.0	-36	25	CDCl ₃	264
	2-chlorohydro-	• • •					<b>a a</b>	
	quinone	3.18	NMR			25	CDCl ₃	264
	4,5-dibromo-	0.00	NIMD			05		
	Catecnol	3.08	NMR			25	CDCI ₃	264
	2,3-010romo-	9.15	NMP			95	CDCL	964
	2,5-dibromo-	5.10	1414110			20	CDCI3	204
	hydroquinon <b>e</b> 2.3-dichloro-	nm	NMR			25	CDCl ₃	264
	hydroquinone	2.86	NMR			25	CDCl ₃	264
	hydroquinone	nm	NMR			25	CDCl ₃	264
	2,3-dicyano-	0.00	<b>NIX (D</b>					
	nyaroquinone	3.62	NMR			25	(80:20 v/v)	264
	2,3-alcyano-	5.26	NMD			95	CDC1 (colorlated K)	004
	2 3 dioveno	0.00	INIMIN			20	CDCI3 (calculated A)	264
	hydroguinone	5.48	Sol			25	CDCL	964
	hydroquinone	1.08	NMR			25	$CDCl_3/MeCN-d_3$	204
	hudroguinone	0.01	NMD			95	(80:20 V/V)	264
	hydroquinone	2.81	NMR			20		264
	resorcinol	3.00	NMR			20		204
Other-5 (XXXVI)	1.3-dinitro-	0.70	1414110			20	CDC13	204
	benzene	-0.52	UV			25?	$CHCl_3/Me_2SO$ (75:25 v/v)	
	1.3-dinitro-						without KSCN	265
	benzene	-0.30	UV			25?	CHCl ₃ /Me ₂ SO (75:25 v/v)	
							in presence of	
							4 equivalents of KSCN	265
	1,3-dinitro-							
	ben <b>zene</b>	0.08	UV			25?	$CHCl_3/Me_2SO$ (90:10 v/v)	
	10111						without KSCN	265
	1,3-dinitro-	0.00	T 137			052	CHCI (Ma SO (00:10 ()	
	benzene	0.80	UV			25:	$CHCl_3/Me_2SU(90:10 V/V)$	
							(L is converted into	
							anti-anti conformer)	265
Other-6 (XXXVI)	4-aminopyridine	3.89	Polg			20	MeCN. 01 M Et. NClO	266
	aniline	<1.87	Polg			20	MeCN. 01 M Et.NClO	266
	benzamide	2.81	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	benzonitrile	2.16	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	benzylamine	3.43	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	4-t-butylpyridine	3.12	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	isoquinoline	2.70	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	2,6-lutidine	<1.87	Polg			20	MeCN, 01 M $Et_4NCIO_4$	266
	metnyi pnenyi	9.75	Dolg			20	MACN OF MEANICIO	000
	N-nhenvluree	<1.87	Polg			20	MeCN. 01 M Et.NCIO	400 266
	4-picoline	3.23	Polg			20	MeCN. 01 M Et. NCIO	266
	pyridine	2.73	Polg			20	MeCN, 01 M Et.NClO	266
	pyridine N-Oxide	4.70	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
Other-7 (XXXVI)	4-aminopyridine	>4.18	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	aniline	<1.87	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	benzamide	3.37	Polg			20	MeCN, 01 M Et4NClO4	266
	benzulamina	2.63	Polg Dolg			20	MCN OF METANCIO	266
	Ast-butylamine	0.00 9.57	Polg			20	MACN OF M ETANDIDA	200
	isoquinoline	2.69	Polg			20	MeCN. 01 M Et.NClO	266
	• • • • • •						· · · · · · · · · · · · · · · · · · ·	

				$\Delta H$	$\Delta S$			
ligand (chart)	neutral moleculeª	$\log K^b$	method	kJ/mol	J/K•mol	<i>T</i> , °C	conditions ^d	ref
<u></u>	2,6-lutidine	2.13	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	sulfoxide	2.51	Pole			20	MeCN, 01 M Et. NCIO	266
	N-phenylurea	2.55	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	4-picoline	2.99	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	pyridine	2.90	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
Other O (VVVVI)	pyridine N-oxide	>4.70	Polg			20	$M_{\bullet}CN, 01 M Et_{\bullet}NClO_{\bullet}$	266
Utner-8 (XXXVI)	4-aminopyriaine	4.14 <1 87	Polg			20	MeCN, 01 M Et4NCIO4	200
	benzamide	<1.87	Polg			20	$MeCN. 01 M EtaNCIO_4$	266
	benzonitrile	<1.87	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	benzylamine	3.48	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	4-t-butylpyridine	<1.87	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	isoquinoline	<1.87	Polg			20	$M_{\bullet}CN, 01 M Et_{\bullet}NCIO_{\bullet}$	266
	z,o-iuuuine methyl phenyl-	<b>\1.07</b>	LOIR			20	Mech, of M Etholog	200
	sulfoxide	<1.87	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	4-picoline	2.80	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	N-phenylurea	<1.87	Polg			20	MeCN, 01 M Et ₄ NClO ₄	266
	pyridine munidine Manida	<1.87	Polg			20	$M_{\bullet}CN, 01 \text{ M Et}_{4}NClO_{4}$	266
Other-9 (XXXVI)	pyriaine iv-oxiae	<b>~4</b> .70 <b>&lt;</b> 2	NMR			20 25	CDCl.	200
Omer-0 (22222 +1)	urea	≤2.70	Solv Extr			25?	CHCl ₃	268
Other-10 (XXXVI)	urea	≥8	NMR			25	CDCl ₃	267
	urea	≥5.78	Solv Extr			25?	CHCl ₃	268
Other-11 (XXXVI)	urea	≥8.40	NMR Salar Fasta			25		267
Other-12 (XXXVI)	urea	≥0.00 ≥6	NMR			207 25	CDCl ₂	200
Omei-12 (2222271)	urea	≥ <b>4</b> .30	Solv Extr			25?	CHCl ₃	268
Other-13 (XXXVI)	1-butanol	0.90	NMR			~30	$D_2O$	269
Other-14 (XXXVI)	1-butanol	0.57	NMR			~30	$D_2O$	269
Other-15 (XXXVI)	benzyl alcohol	0.72				~30	D ₂ O	269
	1-butanol	0.02	NMR			$\sim 30$ $\sim 30$	$D_2 O$ $D_2 O$ (estimated K)	209
	2-methyl-2-propanol	-0.11	NMR			~30	$D_2O$ (continuou $R$ )	269
	1-propanol	0.89	NMR			~30	$\mathbf{D_2O}$	269
Other-16 (XXXVI)	1-butanol	0. <b>49</b>	NMR			~30	$D_2O$	26 <b>9</b>
Other-17 (XXXVII)	4-aminopyridine	2.60	Spec	-33.6	-63	25	methyl benzoate [M +	271
						~-	$C_0(II)L <-> MC_0(II)L]$	
	4-cyanopyridine	0.307	Spec	-26.8	-84	25	methyl benzoate $[M + C_0(II)]$	271
	4-dimethylamino-						00(II)2 (* III00(II)2]	
	pyridin <b>e</b>	2.87	Spec	-36.9	-68	25	methyl benzoate [M +	271
		0.044	a	05.0	00	05	Co(II)L <-> MCo(II)L]	0.51
	2,6-lutidine	-0.044	Spec	-25.8	-88	25	Co(II)L <-> MCo(II)L]	271
	morpholine	2.08	Spec			25	methyl benzoate $[M + Co(II)]$	271
	2-picoline	0.225	Spec	-24.4	-84	25	methyl benzoate $[M + Co(H)]$	271
	3-picolin <b>e</b>	1.26	Spec	-37.2	-78	25	methyl benzoate [M +	271
	4-picoline	1.65	Spec	-37.0	-93	25	Co(II)L <-> MCo(II)L] methyl benzoate [M +	271
	piperidine	2.3 <del>9</del>	Spec			25	Co(II)L <-> MCo(II)L] methyl benzoate [M +	271
	• 1•	1.00	a	45.0	100	07	$C_0(II)L <-> MC_0(II)L]$	0.51
	pyridine	1.26	Spec	-45.2	-126	25	Co(II)L <-> MCo(II)L]	271
Other-18 (XXXVII)	4-aminopyridine	2.23	Spec			30	DCE $[M + C_0(II)L <->$	
< <i>,</i>		0.59	g			00	MC ₀ (II)L]	272
	4-cyanopyriaine	0.78	Spec			30	$MC_{0}(II)L]$	272
	4-dimethylamino- pyridine	2.74	Spec			30	DCE $[M + Co(II)L <->$	
	2,6-lutidine	0.025	Spec			30	$\frac{MCo(II)L}{DCE} [M + Co(II)L <->$	272
	2-picoline	0.43	Spec			30	MCo(II)L] DCE [M + Co(II)L <->	272
	3-nicoline	2.12	Spec			30	$MC_0(II)L]$ DCE [M + Co(II)L <->	272
	4 minolin-	1.00	Spec			90		272
	4-picoune	1.80	spec			30	$MC_0(II)L$	272

ligand (chart)	neutral moleculeª	log K ^b	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , °C	conditions ^d	ref
	pyridine	1.46	Spec		<u> </u>	30	DCE $[M + Co(II)L <->$	
	<b>F5</b>		•				MCo(II)L]	272
Other-19	Anninonmidine	0 20	Snee			95	DCE $IM \neq C_0(III)I CN < N$	
	4-aminopyriume	2.02	opec			20	MC ₀ (III)LCN]	273
	4-cyanopyridine	0.42	Spec			25	DCE $[M + Co(III)LCN <->$	
	2 6-lutidine	-0.73	Snec			25	$MC_0(III)LCN = DCE [M + C_0(III)LCN < ->$	273
	2,0-101101116	-0.75	opec			20	MCo(III)LCN]	273
	2-picolin <b>e</b>	-0.58	Spec			25	DCE $[M + Co(III)LCN <->$	
	4 missilins	1 99	Snoo			95	$MC_0(III)LCN$	273
	4-picomie	1.00	Spec			20	MCo(III)LCN	273
	pyridine	1.41	Spec			25	DCE $[M + Co(III)LCN <->$	
Other 90							MCo(III)LCN]	273
(XXXVII)	4-aminopyridine	2.35	Spec			30	DCE $[M + Co(II)L <->$	
(							MCo(II)L]	272
	4-cyanopyridine	0.30	Spec			30	DCE $[M + C_0(II)L <->$	070
	4-dimethylamino-						MCO(II)L]	272
	pyridine	2.77	Spec			30	DCE $[M + Co(II)L <->$	
		0.00	<b>a</b> .				MC ₀ (II)L]	272
	2,6-lutidine	0.22	Spec			30	DCE [M + Co(II)L <-> MCo(II)L1	979
	2-picoline	0.33	Spec			30	DCE $[M + C_0(II)L <->$	212
	- - · · ·		<b>a</b>				MC ₀ (II)L]	272
	3-picoline	1.83	Spec			30	DCE $[M + Co(II)L < ->$ MCo(II)L1	979
	4-picolĭne	1.85	Spec			30	DCE $[M + Co(II)L <->$	212
	-		-				MCo(II)L]	272
	pyridine	1.48	Spec			30	DCE $[M + Co(II)L <->$	979
Other-21								212
(XXXVII)	4-aminopyridine	2.45	Spec			25	DCE $[M + Co(III)LCN <->$	
	4 anonomidina	0.45	8			05	$MC_0(III)LCN$	273
	4-cyanopyriaine	0.40	Spec			20	MC _o (III)LCN	273
	2,6-lutidine	-0.95	Spec			25	DCE $[M + C_0(III)LCN <->$	2.0
	0	0 50	8			05	$MC_0(III)LCN$	273
	2-picoline	-0.70	Spec			20	MCo(III)LCN	273
	4-picoline	1. <b>9</b> 0	Spec			25	DCE $[M + Co(III)LCN <->$	2.0
		1.40	8			95	$MC_0(III)LCN$	273
	pyriaine	1.40	spec			20	$MC_0(III)LCN$	273
Other-22								2.0
(XXXVII)	acenaphthene	3.20	Sol-EAS			27-29	H ₂ O	274, 275
	azulene	4.30 4.18	Calc'd			20-22	$H_2O$ . (K calculated	214, 210
							from transport rates)	275
	biphenyl	2.90	Sol-EAS			27-29	H ₂ O H ₂ O	276
	durene	4.85 3.20	Calc'd			20-23	$H_2O$ $H_2O$ , (K calculated	214, 210
							from transport rates)	275
	durene	2.08	Sol-EAS			27-29	$H_2O$	274, 275
	nuorantnene	0.20	Calcu			20-22	from transport rates)	275
	fluorene	3.56	Sol-EAS			27-29	H ₂ O	274, 275
	naphthalene	4.20	Calc'd			20-22	$H_2O$ , (K calculated	975
	naphthalene	2.65	Sol-EAS			27-2 <del>9</del>	H ₂ O	274, 275
	phenanthrene	4.15	Sol-EAS			27-29	H ₂ O	274, 275
	py <b>re</b> ne	6.32	Calc'd			20-22	$H_2O_1$ (K calculated from transport rates)	975
	pyrene	4.63	Sol-EAS			27-2 <del>9</del>	H ₂ O	274, 275
Other-23			<b>C</b>			0		0.55
(XXXVII) Amphotericin B	pnenoi biue cholesterol	4.00 6.88	Spec			? 30	n2U, pri 9.5 MeCN/H2O (5:95)	277 278
buoteridui D	cholesterol	6.23	Spec			30	MeCN/H ₂ O (25:75)	278
	cholesterol	4.72	Spec			<b>3</b> 0	PC/cholesterol	079
	ergosterol	6.18	Spec			30	(3:1) vesicies MeCN/H ₂ O (5:95)	278
	ergosterol	6.00	Spec			30	MeCN/H ₂ O (25:75)	278

ligand (chart)	neutral moleculeª	$\log K^b$	method	∆H kJ/mol	∆S J/K•mol	<i>T</i> , °C	conditions ^d	ref
	ergosterol	5.84	Spec			30	PC/argostarol	
	ergosteror	0.04	opec			00	(3.1) vesicles	278
	desmosterol	4.11	Spec			30	PC/desmosterol	2.0
							(3:1) vesicles	278
	lanosterol	3.73	Spec			30	PC/lanosterol	
			• • •				(3:1) vesicles	278
	stigmasterol	4.38	Spec			30	PC/stigmasterol	
	-		-				(3:1) vesicles	278
	$\beta$ -sitosterol	4.66	Spec			30	PC/β-sitosterol	
							(3:1) vesicles	278
Amphotericin B			_					
Borate	cholesterol	4.60	Spec			30	PC/cholesterol	
			-				(3:1) vesicles	278
	desmosterol	4.28	Spec			30	PC/desmosterol	
			~				(3:1) vesicles	278
	ergosterol	4.54	Spec			30	PC/ergosterol	
			a				(3:1) vesicles	278
	stigmasterol	4.18	Spec			30	PC/stigmasterol	050
	0 1 1 1	4.00	0			00	(3:1) vesicles	278
	p-sitosteroi	4.30	spec			30	PC/p-sitosterol	070
Ammhataniain D							(3:1) vesicles	278
Ampnotericin B	abalasteral	5.91	Snee			30	PC/abalastaral	
Metnyi Ester	cholesterol	5.61	Spec			30	(3.1) vesicles	978
	desmosterol	5 48	Spec			30	PC/desmosterol	210
	desmoster of	0.40	opec			00	(3.1) vesicles	278
	ergosterol	5.99	Spec			30	PC/ergosterol	2.0
	0180300101	0.00	opee				(3:1) vesicles	278
	lanosterol	5.46	Spec			30	PC/lanosterol	
		•••••					(3:1) vesicles	278
	stigmasterol	5.57	Spec			30	PC/stigmasterol	
	3						(3:1) vesicles	278
	$\beta$ -sitosterol	5.64	Spec			30	PC/ <i>β</i> -sitosterol	
	•		-				(3:1) vesicles	278

^a Neutral Molecules: The names of neutral molecules are in alphabetical order except for H₂O, HBr, KCl, Cl₂, Br₂,I₂, ICl, and Xe which are listed in this order. Ac = acetyl, Ala = alanine, Bn = benzyl, Boc = butoxycarbonyl, t-Bu = tert-butyl, Et = ethyl, Leu = leucine, Me = methyl, Ph = phenyl, Ser = Serine, Thr = Threonine, Val = valine. b Reactions: The log K values are for 1:1 interactions unless consecutive reactions occur. Interactions of the1:1 type are either of neutral molecule (M)-ligand (L) type (ML, no further designation) or of less common neutral molecule-protonated-ligand type (indicated by MHL, etc., placed in parentheses following the  $\log \bar{K}$  value). Two kinds of consecutive reactions have been reported. The more numerous is that in which a neutral molecule interacts consecutively with the macrocycle to form  $M_2L$  species. Where this occurs, the second reaction is indicated by placing the reaction product (M2L, etc.,) in parentheses after the log K value. The second, represented here by only one case (Porphyrin-68), is that in which the macrocycle interacts consecutively with neutral molecule. This interaction is indicated by (1) and (2) placed after the log K value. When no complexation between neutral molecule and macrocycle occurs, this fact is denoted by "none"; "nm" means the measured values were too small to determine log K; "ppt" or "decomp" means the value of log K was not determined because of precipitation or decomposition, respectively. Methods: Cal = calorimetry, Calc'd = calculated value, CD = induced circular dichroism, EAS = electronic absorption spectra, Fluor = fluorescent spectroscopy, IR = infrared spectroscopy, Kin = kinetic (calculated from kinetic data), NMR = nuclear magnetic resonance spectroscopy, Int - initiated spectroscopy, Rin - Americ (calculated from Americ = solid-liquid extraction, Solv Extr = liquid-liquid extraction, Spec = spectrophotometry, Tit-EAS = electronic absorption titration, UV = ultraviolet spectroscopy, Volt = voltammetry. ^d Conditions: M = neutral molecule, L = ligand, borate-d = deuterated borate buffer, Bu = n - butyl, t - BuOH = tert - butyl alcohol, CAPS = 3 - cyclohexylamino - 1 - propanesulfonate, DCE = 1, 2 - dichloroethane, DMAC - 2 - dichlo= N,N-dimethylacetamide, DMF = N,N-dimethylformamide, DMF- $d_7$  = deuterated N,N-dimethylformamide, Diox = 1,4-dioxane,  $Et = ethyl, EtOH = ethanol, EtOD-d_5 = deuterated ethanol, Form = formaldehyde, HEPES = 4-(2-hydroxyethyl)-1-piperazineethane-sulfonate, Me = methyl, MeCN = acetonitrile, MeCN-d_3 = deuterated acetonitrile, Me_2CO = acetone, Me_2CO-d_6 = deuterated acetone, Me_$  $MeNO_2$  = nitromethane, MeOH = methanol,  $MeOD-d_3$  = deuterated methanol, MES = 2-(N-morpholino)ethanesulfonate,  $Me_2SO$ = dimethyl sulfoxide,  $MeSO-d_6$  = deuterated dimethyl sulfoxide, 2-Me-THF = 2-methyltetrahydrofuran, 2,2-Me₂-THF = 2,2dimethyl sunorade,  $MeSO-a_6^{-1} = ucutaria cu ductaria (a) and (b) and (c) and (c)$ 

Izatt e	et ai.
---------	--------

Tab	le II.	$\Delta C_{\rm p}$	Values f	for Neutra	l Molecule-N	[acrocyclo	e Interactior	1 in Solution
-----	--------	--------------------	----------	------------	--------------	------------	---------------	---------------

		$\Delta C_{p,a}$			••••	
ligand (chart)	neutral molecule	J/mol·K	method	<i>T</i> , °C	conditions	ref
(1,4-B) ₄ 30C4-3 (VII)	<i>p</i> -cresol	-460	Cal	20	H ₂ O	79
	1,4-dicyanobenzene	~0	NMR	2.8 - 42.8	$D_2O$	66
	1,4-dicyanobenzene	-126	Cal	20	H ₂ O	7 <del>9</del>
	1,4-dimethoxybenzene	-84	Cal	20	H ₂ O	79
	dimethyl 1,4-benzene-				-	
	dicarboxylate	-251	Cal	20	H ₂ O	79
	1,4-dinitrobenzene	-167	Cal	20	H ₂ O	79
	hydroquinone	-251	Cal	20	H ₂ O	79
	4-nitrophenol	-209	Cal	20	H ₂ O	79
	4-nitrotoluene	-544	Cal	20	H ₂ O	79
	<i>p</i> -tolunitrile	-293	Cal	20	H ₂ O	79
	<i>p</i> -xylene	-84	Cal	20	H ₂ O	79
(1,4-B) ₂ 32C4-2 (VIII)	isoquinolin <b>e</b>	-105	NMR	21-61	$D_2O$ , pD ~9 (borate-d)	89
	lepidin <b>e</b>	-544	NMR	21-61	$D_2O, pD \sim 9$ (borate-d)	89
	1-methylindole	-502	NMR	21-61	$D_2O$ , pD ~9 (borate-d)	89
	quinoline	-50	NMR	21-61	$D_2O, pD \sim 9$ (borate-d)	89
(1,4-Cy) ₂ 32C4-1 (VIII)	isoquinoline	-255	NMR	21-61	$D_2O, pD \sim 9$ (borate-d)	89
· · · · · · · · · · · · · · · · · · ·	lepidine	-7 <b>9</b> 5	NMR	21-61	$D_2O$ , pD ~9 (borate-d)	89
	1-methylindole	-502	NMR	21-61	$D_2O, pD \sim 9$ (borate-d)	89
	quinoline	-163	NMR	21-61	$D_2O$ , pD ~9 (borate-d)	89
Cyclophane-3 (XVI)	pyrene	-502	Cal	15-35	MeÓĤ	79

^a Reactions:  $C_p$  values are for 1:1 interactions. ^b Methods: NMR = nuclear magnetic resonance spectroscopy, Cal = calorimetry. ^c Conditions: MeOH = methanol, borate-d = deuterated borate buffer.

Table III. Kinetic Parameters for Neutral Molecule-Macrocycle Interaction in Solution

ligand (chart)	neutral molecule	$k_{\rm f},~{ m M}^{-1}~{ m s}^{-1}$	k _d , s ⁻¹	∆H [‡] ,ª kJ/mol	∆S ^t ,ª J/K•mol	method ^b	<i>T</i> , °C	conditions	ref
N ₄ 14C4-2 (I)	ammoni <b>a</b>	141	1.59			Spec	25	$H_2O, I = 0.2 (NaClO_4)$	
								$[M + CuL(H_2O)^{2+}blue <-> MCuL^{2+} + H_2O]$	23
	aniline	10.7	1.98			Spec	25	$H_2O, I = 0.2 (NaClO_4)$ [M + CuL(H ₂ O) ²⁺ blue	
	dimethyl							$<-> MCuL^{2+} + H_2O]$	23
	amine	846	1.73			Spec	25	$H_2O, I = 0.2 (NaClO_4)$	
						_		$[M + CuL(H_2O)^{2+} blue <-> MCuL^{2+} + H_2O]$	23
	ethylamine	687	1.64			Spec	25	$H_2O, I = 0.2 (NaClO_4)$ [M + CuL(H ₂ O) ²⁺ blue	
	methylamine	648	1.62			Spec	25	<-> $MCuL^{2+} + H_2O$ ] H ₂ O $I = 0.2$ (NeClO ₁ )	23
	meanymme	040	1.02			Spec	20	$[M + CuL(H_2O)^{2+}blue$	
	piperidine	2325	2.86			Spec	25	$4 = 0.2 (NaClO_4)$	23
								$[M + CuL(H_2O)^{2+}blue  <-> MCuL^{2+} + H_2O]$	23
	pyridine	1.55	2.08			Spec	25	$H_2O, I = 0.2 (NaClO_4)$ [M + CuL(H_2O) ²⁺ blue	
	فسأسب مغاميا							<-> MCuL ²⁺ + H ₂ O]	23
	amine	<b>9</b> 8.0	1.51			Spec	25	$H_2O, I = 0.2$ (NaClO ₄ )	
								$[M + CuL(H_2O)^{2+} blue <-> MCuL^{2+} + H_2O]$	23
15C5-1 (I)	KI	0.09x10 ⁻²		60.7		Spec	25	$CHCl_3$ , [L] = 0.60x10 ⁻² M	300
	KI	0.11x10 ⁻²				Spec	25	$CHCl_3$ , [L] = 0.92×10 ⁻² M	300
	KI	0.50x10 ⁻²				Spec	16	$(H) = 0.52 \times 10^{-1} M$ CHCl ₃ ,	000
	KI	7.05x10 ⁻²				Spec	40	$[L] = 1.82 \times 10^{-1} M$ CHCl ₃ ,	300
	KI	1.01x10 ⁻²				Spec	<b>2</b> 5	$[L] = 1.82 \times 10^{-2} M$ CHCl ₃ ,	300
	KI	1.10x10 ⁻²				Spec	25	$[L] = 10.83 \times 10^{-2} M$ CHCl ₃ ,	300
	KI	2.04x10 ⁻²				Spec	32	$[L] = 12.40 \times 10^{-2} M$ CHCl ₃ ,	300
	KI	1.27x10 ⁻²				Spec	25	$[L] = 12.40 \times 10^{-2} M$ CHCl ₃ ,	300
	I ₂	1.42x10 ⁻³				Spec	16	$[L] = 14.53 \times 10^{-2} M$ CHCl ₃ ,	300
	$I_2$	0.88x10 ⁻³				Spec	25	$[L] = 0.83 \times 10^{-2} M$ CHCl ₃ ,	301
	- I2	0.64x10 ⁻³				Spec	32	$[L] = 0.83 \times 10^{-2} M$ CHCl ₃ .	301
	 T.	1 25×10-3				Spec	25	$[L] = 0.83 \times 10^{-2} M$	301
	+2 T	1.50-10-3				Spec	20	$[L] = 1.90 \times 10^{-2} \text{ M}$	301
	12	1.59x10*				Spec	25	$[L] = 5.02 \times 10^{-2} \text{ M}$	301
	12	4.73x10 ⁻³				Spec	16	$[L] = 7.14 \times 10^{-2} M$	301
	$I_2$	3.17x10 ⁻³				Spec	25	$CHCl_3,$ [L] = 7.14x10 ⁻² M	301
	$I_2$	1.22 <b>x</b> 10 ⁻³				Spec	40	$CHCl_3$ , [L] = 7.14x10 ⁻² M	301
18C6-1 (II)	$I_2$	1.04x10 ⁻³				Spec	25	$CHCl_3$ , [L] = 0.83x10 ⁻² M	301
	$I_2$	3.57x10 ⁻³				Spec	25	$CHCl_3$ , [L] = 7.14x10 ⁻² M	301
	$I_2$	2.53x10 ⁻³				Spec	32	$CHCl_3$ , [L] = 7.14x10 ⁻² M	301
	$I_2$	1.56x10 ⁻³				Spec	40	$CHCl_3$ , [L] = 7.14x10 ⁻² M	301
B ₂ 18C6-1 (II)	I ₂	0.57 <b>x</b> 10 ⁻³				Spec	16	$CHCl_3$ , [L] = 0.83x10 ⁻² M	301
	$I_2$	0.38x10 ⁻³				Spec	25	$CHCl_3$ , [L] = 0.83×10 ⁻² M	301
	$I_2$	0.16x10 ⁻³				Spec	40	$CHCl_3,$ [L] = 0.83×10-2 M	301
[2.2.2]-1 (V)	H₂O	≤10 ³	≤108			TJ	25	$H_2O, I = 0.1 (Me_4NCl)$ (L + H_2O <-> HL)	302
									004

14610 111 (00									
ligand (chart)	neutral molecule	k _f , M ⁻¹ s ⁻¹	k _d , s ⁻¹	ΔH [‡] ,ª kJ/mol	∆S [‡] ,ª J/K•mol	method ^b	<i>T</i> , °C	conditions	ref
(1,4-B) ₄ 32C4-2 (VIII)	pyrene	~9x10 ⁸	495			NMR	20	D ₂ O	303
(XXIV)	ethanol		$t_1/_2=40min$			NMR	22	CDCl ₃	213
(XXV) Carcerand-1	Cavitand-9 ^d	1.4x10 ⁵	106			NMR	12	CDCl ₃	217
(XXVI)	Xe		2.5x10 ⁻⁴ min ⁻¹			NMR	22	CD ₂ Cl ₂ or CDCl ₃	
	acetonitrile		$t_1/_2 = \sim 13h$			NMR	22	$\begin{array}{l} (t_1/2 = 47 \text{ h}) \\ CD_2Cl_2 \end{array}$	219 219
	carbon disulfide		$t_1/_2 => 400h$			NMR	22	$CD_2Cl_2$	21 <b>9</b>
	dibromo- methane		$t_1/_2 =>400h$			NMR	22	$CD_2Cl_2$	21 <b>9</b>
	acetamide		3.4x10 ⁻⁴ min ⁻¹			NMR	140	$1,2,4-Cl_3C_8H_3$ (t ₁ / ₂ = 34 h)	21 <del>9</del>
	<i>N,N</i> -dimethyl- formamide		8.5x10 ⁻⁴ min ⁻¹			NMR	140	$1,2,4-Cl_3C_6H_3$ $(t_1/2 = 14 h)$	219
	dimethyl sulfoxid <b>e</b>		nm			NMR	140	1,2,4-Cl ₃ C ₆ H ₃ (immeasurably slow)	219
	dimethyl sulfoxide		4.8x10 ⁻⁴ min ⁻¹			NMR	1 <b>9</b> 5	$1,2,4-Cl_3C_6H_3$ $(t_1/2 = 24 h)$	219
Carcerand-2 (XXVII)	<b>a</b> cetonitrile		0.02min ⁻¹			NMR	80	$(CDCl_2)_2$	
	acetonitrile		0.05min ⁻¹			NMR	<b>9</b> 0	$(M_2L \rightarrow M + ML)$ $(CDCl_2)_2$ $(M_1L \rightarrow M + ML)$	304
	<b>ace</b> tonitrile		0.13min ⁻¹			NMR	100	$(M_{2}L \rightarrow M + ML)$ $(CDCl_{2})_{2}$ $(M_{2}L \rightarrow M + ML)$	304:
	<b>a</b> cetonitrile		1.8 min ⁻¹			NMR	110	$(M_{2}L \rightarrow M + ML)$ $(CDCl_{2})_{2}$ $(M_{2}L \rightarrow M + ML)$	304
Carcerand-3 (XXVII)	ferrocene		$t_{1/2}$ =19.6h			NMR	25	CDCl ₃	305
Dombonia 12	hexachioro- butadiene		$t_1/_2 = 3.2h$			NMR	25	CDCl ₃	305
(XXVIII)	imidazole 2-picoline 2-picoline pyridine pyridine pyridine pyridine	3.2x10 ⁹ 6.9x10 ⁸ 1.6x10 ⁹ 8.3x10 ⁸ 1x10 ⁹ 3.5x10 ⁹ 3.2x10 ⁹	2.5x10 ⁴ 5.1x10 ⁴	31.4 7.5 43.9(d) 9.83 16.3 28.0	41.4 43.9 -41.0 -8.8 34.3	TJ TJ TJ TJ TJ TJ TJ	25 -32.2 25 9.8 25 25 25	1-chlorobutane 1-chlorobutane chlorobenzene chlorobenzene 1-chlorobutane toluene	237 237 237 237 237 237 237 237
Porphyrin-7 (XXXII)	triethylene- diamine	5x10 ⁴				Spec	27	(CHCl ₂ ) ₂ (bimolecular	201
Porphyrin-80 (XXXII)	triethylene- diamin <b>e</b>	1 <b>x</b> 10 ⁵				Spec	27	(CHCl ₂ ) ₂ (bimolecular	200
Porphyrin-81 (XXXII)	triethylene- diamine			94(d)	77(d)	NMR	27	(CDCl ₂ ) ₂ (unimolecular exchange mechanism)	256

^a Generally, the  $\Delta H^*$  and  $\Delta S^*$  values are calculated from  $k_f$  data. In those cases where these values are based on  $k_d$  values, a d is placed in parentheses following the value. ^b Methods: NMR = nuclear magnetic resonance spectroscopy, Spec = spectrophotometry, TJ = temperature jump. ^c Conditions: M = neutral molecule, L = ligand, Me = methyl,  $t_1/_2$  = half-life. ^d For structure see Chart XXV.

#### VII. References

- (1) Shchori, E.; Jagur-Grodzinski, J. Isr. J. Chem. 1972, 10, 935-940.
- (2) Shchori, E.; Jagur-Grodzinski, J. J. Am. Chem. Soc. 1972, 94, 7957-7962.
- (3) Diederich, F. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1988, 27, 362–386; Angew. Chem. 1988, 100, 372. (a) Diederich, F.

Cyclophanes; Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, 1991.

- (4) Gutsche, C. D. Calizarenes; Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, 1989.
- (5) Collet, A. Tetrahedron 1987, 43, 5725-5759.

## 1352 Chemicai Reviews, 1992, Voi. 92, No. 6

- (97) Murakami, Y. In Inclusion Phenom. Mol. Recognit., [Proc. Int. Symp.], 5th; Atwood, J. L., Ed.; Plenum: New York, 1990; pp 107-117.
- (98) Murakami, Y.; Kikuchi, J.; Ohno, T.; Hayashida, O.; Kojima, M. J. Am. Chem. Soc. 1990, 112, 7672-7681.
- (99)Murakami, Y.; Kikuchi, J.; Ohno, T.; Hirayama, T.; Hisaeda, Y.; Nishimura, H.; Snyder, J. P.; Steliou, K. J. Am. Chem. Soc. 1991, 113, 8228-8242.
- (100) Murakami, Y.; Nakano, A.; Miyata, R.; Matsuda, Y. J. Chem. Soc., Perkin Trans. 1 1979, 1669-1676
- (101) Murakami, Y.; Nakano, A.; Akiyoshi, K.; Fukuya, K. J. Chem. Soc., Perkin Trans. 1 1981, 2800-2808.
- (102) Murakami, Y.; Kikuchi, J.; Suzuki, M.; Takaki, T. Chem. Lett. 1984. 2139-2142.
- (103) Murakami, Y.; Kikuchi, J.; Suzuki, M.; Matsuura, T. J. Chem. Soc., Perkin Trans. 1 1988, 1289-1299.
- (104) Reddington, M. V.; Spencer, N.; Stoddart, J. F. In Inclusion Phenom. Mol. Recognit., [Proc. Int. Symp.], 5th; Atwood, J. L., Ed.; Plenum: New York, 1990; pp 41-48.
- (105) Stoddart, J. F. In Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, H. J., Durr, H., Eds.; VCH: New York, 1991; pp 251-263.
- (106) Koga, K.; Odashima, K. J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 53-60.
- (107) Odashima, K.; Soga, T.; Koga, K. Tetrahedron Lett. 1981, 22, 5311-5314.
- (108)Schneider, H. J.; Kramer, R.; Theis, I.; Zhou, M. J. Chem. Soc., Chem. Commun. 1990, 276-278
- (109) Kawakami, H.; Yoshino, O.; Odashima, K.; Koga, K. Chem. Pharm. Bull. 1985, 33, 5610-5613.
- (110) Odashima, K.; Kawakami, H.; Miwa, A.; Sasaki, I.; Koga, K. Chem. Pharm. Bull. 1989, 37, 257-259.
- (111) Saigo, K. In Supramolecular Assemblies. New Developments in Biofunctional Chemistry; Collective Report on Special Research Project; Yoshikawa, S., Project Dir.; Murakami, Y., Ed.; Mita Press: Tokyo, 1990, pp 75-82.
- (112) Hunter, C. A. J. Chem. Soc., Chem. Commun. 1991, 749-751.
- (113) Fornasier, R.; Reniero, F.; Scrimin, P.; Tonellato, U. J. Inclusion Phenom. 1988, 6, 175-181.
- (114) Schneider, H. J.; Theis, I. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1989, 28, 753-754; Angew. Chem. 1989, 101, 757.
- (115) Schneider, H. J.; Blatter, T. Angew, Chem., Int. Ed. Engl. (Engl.
- (115) Schneider, H. J.; Blatter, T. Angew. Chem., Int. Ed. Digl. (Eng. Chem., Transl.) 1988, 27, 1163-1164; Angew. Chem. 1988, 100, 1211.
   (116) Schneider, H. J.; Blatter, T.; Cuber, U.; Juneja, R.; Schleistel, T.; Schneider, U.; Theis, I.; Zimmermann, P. In Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, U. Dire, M. Dier, VCH. 1001, pp. 20-56. H. J., Durr, H., Eds.; VCH: New York, 1991; pp 29-56. (117) Schneider, H. J.; Blatter, T.; Zimmermann, P. Angew. Chem., Int.
- Ed. Engl. (Engl. Transl.) 1990, 29, 1161–1162; Angew. Chem. 1990, 102, 1194.
- (118) Schneider, H. J.; Busch, R. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1984, 23, 911-912; Angew. Chem. 1984, 96, 910.
- (119) Schneider, H. J.; Blatter, T.; Simova, S.; Theis, I. J. Chem. Soc., Chem. Commun. 1989, 580-581.
- (120) Schneider, H. J.; Pöhlmann, J. Bioorg. Chem. 1987, 15, 183-193.
- (121) Schneider, H. J.; Kramer, R.; Simova, S.; Schneider, U. J. Am. Chem. Soc. 1988, 110, 6442-6448.
- Schneider, H. J.; Philippi, K.; Pöhlmann, J. Angew. Chem., Int. (122)Ed. Engl. (Engl. Transl.) 1984, 23, 908–910; Angew. Chem. 1984, 96, 907.
- (123) Schneider, P. J.; Blatter, T.; Kramer, R.; Kumar, S.; Schneider, U.; Theis, I. In Inclusion Phenom. Mol. Recognit., [Proc. Int. Symp.], 5th; Atwood, J. L., Ed.; Plenum: New York, 1990; pp 65-74.
- (124) Schneider, H. J.; Blatter, T.; Theis, I. Unpublished results (cited: Schneider, H. J. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1991, 30, 1417–1436; Angew. Chem. 1991 103, 1419).
- (125) Kumar, S.; Schneider, H. J. J. Chem. Soc., Perkin Trans. 2 1989, 245-250.
- (126) Bonar-Law, R. P.; Davis, A. P.; Murray, B. A. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1990, 29, 1407-1408; Angew. Chem. 1990, 102. 1497
- (127) Hamilton, A. D.; Muehldorf, A.; Chang, S. K.; Pant, N.; Goswami, S.; van Engen, D. J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 27–38.
- (128) Hamilton, A. D.; van Engen, D. J. Am. Chem. Soc. 1987, 109, 5035-5036.
- (129) Muehldorf, A. V.; van Engen, D.; Warner, J. C.; Hamilton, A. D. J. Am. Chem. Soc. 1988, 110, 6561-6562.
- (130)Shinkai, S.; He, G. X.; Matsuda, T.; Hamilton, A. D.; Rosenzweig, H. S. Tetrahedron Lett. 1989, 30, 5895–5898.
- (131) Hamilton, A. D. In Inclusion Phenom. Mol. Recognit., [Proc. Int. Symp.], 5th; Atwood, J. L., Ed.; Plenum: New York, 1990; pp 57-64.
- (132) Hamilton, A. D.; Little, D. J. Chem. Soc., Chem. Commun. 1990, 297-300.
- (133) Goswami, S.; Hamilton, A. D.; van Engen, D. J. Am. Chem. Soc. **1989**, 111, 3425-3426.
- (134)Hamilton, A. D.; Pant, N. J. Chem. Soc., Chem. Commun. 1988, 765-766.

- (135) Wilcox, C. S.; Cowart, M. D.; Sucholeiki, I.; Bukownik, R. R.; Lynch, (135) Wilcox, C. S.; Cowart, W. D.; Suchoustal, I.; Busowink, S. L.; Lyana, V. In Inclusion Phenom. Mol. Recognit., [Proc. Int. Symp.], 5th; Atwood, J. L., Ed.; Plenum: New York, 1990; pp 27-40.
  (136) Cowart, M. D.; Sucholeiki, I.; Bukownik, R. R.; Wilcox, C. S. J. Am.
- Chem. Soc. 1988, 110, 6204-6210.
- (137) Wilcox, C. S.; Cowart, M. D. Tetrahedron Lett. 1986, 27, 5563-5566
- (138) Webb, T. H.; Suh, H.; Wilcox, C. S. J. Am. Chem. Soc. 1991, 113, 8554-8555
- (139) Garcia-Tellado, F.; Goswami, S.; Chang, S. K.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 7393-7394
- (140) Chang, S. K.; van Engen, D.; Fan, E.; Hamilton, A. D. J. Am. Chem. Soc. 1991, 113, 7640-7645.
- (141) Chang, S. K.; Hamilton, A. D. J. Am. Chem. Soc. 1988, 110, 1318-1319.
- (142) Fujita, M.; Yazaki, J.; Ogura, K. Tetrahedron Lett. 1991, 32, 5589-5592.
- (143) Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc. 1990, 112, 5645-5647
- (144) Seward, E.; Diederich, F. Tetrahedron Lett. 1987, 28, 5111-5114. (144) Seward, E. M.; Hopkins, R. B.; Sauerer, W.; Tam, S. W.; Diederich, F. J. Am. Chem. Soc. 1990, 112, 1783-1790.
- (146) Mourad, A. E.; Hassan, A. E. A.; Dannheim, J. Bull. Chem. Soc. Jpn. 1989, 62, 1379-1381.
- (147) Mourad, A. E. Bull. Pol. Acad. Sci. Chem. Pub. 1986, 33, 483-489.
- (148) Mourad, A. E.; Nour-el-Din, A. M. Gazz. Chim. Ital. 1983, 113, 213-216.
- (149) Mourad, A. E.; Nour-el-Din, A. M.; Mahmoud, M. R. Spectrochim. Acta 1982, 38A, 993-996
- (150) Mourad, A. E.; Eltamany, E. H.; Hopf, H. Z. Phys. Chem. (Leipzig) 1986, 267, 937-944.
- (151) Mourad, A. E.; Nour-el-Din, A. M. Spectrochim. Acta 1983, 39A, 533-536
- (152) Mourad, A. E.; Nour-el-Din, A. M.; Abdel-Nabi, H. A. Gazz. Chim. Ital. 1986, 116, 381-384.
- (153) Mourad, A. E.; Raulfs, F. W.; Hopf, H. Monatsh. Chem. 1985, 116, 701–709
- (154) Mourad, A. E.; Nour-el-Din, A. M. Spectrochim. Acta 1983, 39A, 289 - 292
- (155) Diederich, F.; Schürmann, G.; Chao, I. J. Org. Chem. 1988, 53, 2744 - 2757
- (156) Smithrud, D. B.; Diederich, F. J. Am. Chem. Soc. 1990, 112, 339-343.
- (157) Diederich, F.; Dick, K. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1984, 23, 810-812; Angew. Chem. 1984, 96, 789.
- Kilburn, J. D.; MacKenzie, A. R.; Still, W. C. J. Am. Chem. Soc. (158)1988, 110, 1307-1308.
- Chapman, K. T.; Still, W. C. J. Am. Chem. Soc. 1989, 111, 3075-(159)3077.
- (160) Sanderson, P. E. J.; Kilburn, J. D.; Still, W. C. J. Am. Chem. Soc. 1989, 111, 8314-8315.
- (161) Liu, R.; Sanderson, P. E. J.; Still, W. C. J. Org. Chem. 1990, 55, 5184-5186.
- (162) Hong, J. I.; Namgoong, S. K.; Bernardi, A.; Still, W. C. J. Am. Chem. Soc. 1991, 113, 5111-5112.
- Neder, K. M.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1990, 112, (163)9412-9414.
- (164) Sheridan, R. E.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1988, 110, 4071-4073
- (165)Whitlock, B. J.; Whitlock, H. W. J. Am. Chem. Soc. 1990, 112, 3910-3915
- (166) Sheridan, R. E.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1988, 110, 7120-7121.
- (167)Claude, S.; Lehn, J. M.; Schmidt, F.; Vigneron, J. P. J. Chem. Soc., Chem. Commun. 1991, 1182-1185.
- (168)Friedrichsen, B. P.; Powell, D. R.; Whitlock, H. W. J. Am. Chem. Soc. 1990, 112, 8931-8941.
- (169) Friedrichsen, B. P.; Whitlock, H. W. J. Am. Chem. Soc. 1989, 111, 9132-9134.
- (170) Seel, C.; Vögtle, F. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1991, 30, 442-444; Angew. Chem. 1991, 103, 433.
  (171) Embeyer, R.; Vögtle, F. Angew. Chem., Int. Ed. Engl. (Engl. Transl.)
- 1989, 28, 79-81; Angew. Chem. 1989, 101, 95.
- (172) Murakami, Y.; Kikuchi, J.; Tenma, H. J. Chem. Soc., Chem. Commun. 1985, 753–755.
- (173) Murakami, Y.; Kikuchi, J.; Ohno, T.; Hirayama, T. Chem. Lett. 1989, 881-884.
- (174) Murakami, Y.; Kikuchi, J.; Ohno, T.; Hirayama, T.; Hisaeda, Y.; Nishimura, H. Chem. Lett. 1991, 1657-1660.
- (175) Murakami, Y.; Ohno, T.; Hayashida, O.; Hisaeda, Y. J. Chem. Soc., Chem. Commun. 1991, 950–952.
- Murakami, Y.; Ohno, T.; Hayashida, O.; Hisaeda, Y. Chem. Lett. (176)1991, 1595-1598.
- (177) Gutsche, C. D.; See, K. A. J. Org. Chem. 1992, 57, 4527-4539
- Shinkai, S.; Kawabata, H.; Arimura, T.; Matsuda, T.; Satoh, H.; (178) Manabe, O. J. Chem. Soc., Perkin Trans. 1 1989, 1073-1074
- (179) Aoki, I.; Sakaki, T.; Tsutsui, S.; Shinkai, S. Tetrahedron Lett. 1992, 33, 89-92
- (180) Arimura, T.; Shinkai, S. Bull. Chem. Soc. Jpn. 1991, 64, 1896-1900.

- (181) Gutsche, C. D.; Iqbal, M.; Alam, I. J. Am. Chem. Soc. 1987, 109, 4314-4320.
- (182) Gutsche, C. D.; Iqbal, M.; Nam, K. S.; See, K.; Alam, I. Pure Appl. Chem. 1988, 60, 483-488.
- (183) Bauer, L. J.; Gutsche, C. D. J. Am. Chem. Soc. 1985, 107, 6063-6069.
- Gutsche, C. D.; Alam, I. Tetrahedron 1988, 44, 4689-4694. (184)
- (185) Shinkai, S. J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 193-201.
- Shinkai, S.; Araki, K.; Manabe, O. J. Chem. Soc., Chem. Commun. (186)1988, 187-189.
- (187) Shinkai, S.; Manabe, O. Nippon Kagaku Kaishi 1988, 1917–1924.
   (188) Arimura, T.; Shinkai, S.; Matsuda, T. Yuki Gosei Kagaku-Kyokaishi
- 1989, 47, 523-534.
- Schneider, H.J.; Guttes, D.; Schneider, U. Angew. Chem., Int. Ed. (189)Engl. (Engl. Transl.) 1986, 25, 647-649; Angew. Chem. 1986, 98, 635.
- (190) Schneider, H. J.; Güttes, D.; Schneider, U. J. Am. Chem. Soc. 1988, (10), 6449–6454. (191) Kikuchi, Y.; Kato, Y.; Tanaka, Y.; Tol, H.; Aoyama, Y. J. Am.
- Chem. Soc. 1991, 113, 1349-1354.
- Tanaka, Y.; Kato, Y.; Aoyama, Y. J. Am. Chem. Soc. 1990, 112, (192)2807-2808
- Aoyama, Y.; Tanaka, Y.; Toi, H.; Ogoshi, H. J. Am. Chem. Soc. (193)**1988**, 110, 634-635.
- (194) Manabe, O.; Asakura, K.; Nishi, T.; Shinkai, S. Chem. Lett. 1990, 1219-1222.
- (195) Gutsche, C. D.; Alam, I.; Iqbal, M.; Mangiafico, T.; Nam, K. C.; Rogers, J.; See, K. A. J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 61-72.
- Alam, I.; Gutsche, C. D. J. Org. Chem. 1990, 55, 4487-4489. (196)
- (197) Shinkai, S. Pure Appl. Chem. 1986, 58, 1523-1528.
- (198) Shinkai, S.; Koreishi, H.; Mori, S.; Sone, T.; Manabe, O. Chem. Lett. 1985, 1033-1036.
- (199) Shinkai, S.; Mori, S.; Koreishi, H.; Tsubaki, T.; Manabe, O. J. Am. Chem. Soc. 1986, 108, 2409-2416.
- (200) Shinkai, S. In Calixarenes: a Versatile Class of Macrocyclic Compounds; Vicens, J., Böhmer, V., Eds.; Kluwer Academic
- Publisher: Boston, 1991; pp 173-198. (201) Shinkai, S.; Arimura, T.; Satoh, H.; Manabe, O. J. Chem. Soc., Chem. Commun. 1987, 1495-1496.
- (202)Canceill, J.; Lacombe, L.; Collet, A. J. Am. Chem. Soc. 1985, 107, 6993-6996.
- Collet, A.; Dutasta, J. P.; Lozach, B. In Advances in Supramolecular (203)Chemistry; Gokel, G. E., Ed.; JAI Press Inc., in press
- Collet, A.; Dutasta, J. P.; Lozach, B. Bull. Soc. Chim. Belg. 1990, (204) 99. 617–633.
- Canceill, J.; Cesario, M.; Collet, A.; Guilhem, J.; Pascard, C. J. Chem. Soc., Chem. Commun. 1985, 361-363. Canceill, J.; Lacombe, L.; Collet, A. C. R. Acad. Sci. Paris, Ser. 2 (205)
- (206) 1984, 298, 39-42.
- Canceill, J.; Lacombe, L.; Collet, A. J. Chem. Soc., Chem. Commun. (207)1987, 219-221.
- (208) Canceill, J.; Cesario, M.; Collet, A.; Guilhem, J.; Riche, C.; Pascard, C. J. Chem. Soc., Chem. Commun. 1986, 339-341.
- Canceill, J.; Cesario, M.; Collet, A.; Guilhem, J.; Lacombe, L.; Lozach, (209)B.; Pascard, C. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1989, 28, 1246–1248; Angew. Chem. 1989, 101, 1249.
- (210) Canceill, J.; Lacombe, L.; Collet, A. C. R. Acad. Sci. Paris, Ser. 2 1987, 304, 815-818.
- (211) Canceill, J.; Lacombe, L.; Collet, A. J. Am. Chem. Soc. 1986, 108, 4230-4232.
- (212) Cram, D. J.; Tanner, M. E.; Keipert, S. J.; Knobler, C. B. J. Am. Chem. Soc. 1991, 113, 8909-8916.
- (213) Tanner, M. E.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1992, 57, 40-46.
- (214) Cram, D. J.; Stewart, K. D.; Goldberg, I.; Trueblood, K. N. J. Am. Chem. Soc. 1985, 107, 2574-2575.
- (215) Tucker, J. A.; Knobler, C. B.; Trueblood, K. N.; Cram, D. J. J. Am. Chem. Soc. 1989, 111, 3688-3699.
- (216) Dalcanale, E.; Soncini, P.; Bacchilega, G.; Ugozzoli, F. J. Chem. Soc., Chem. Commun. 1989, 500-502
- (217) Bryant, J. A.; Ericson, J. L.; Cram, D. J. J. Am. Chem. Soc. 1990, 112, 1255-1256.
- (218) Cram, D. J.; Tunstad, L. M.; Knobler, C. B. J. Org. Chem. 1922, 57, 522-535.
- (219) Cram, D. J.; Tanner, M. E.; Knobler, C. B. J. Am. Chem. Soc. 1991, 113, 7717-7727
- (220) Kano, K.; Hayakawa, T.; Hashimoto, S. Bull. Chem. Soc. Jpn. 1991, 64, 778-784.
- Chandrashekar, T. K.; Krishnan, V. Can. J. Chem. 1984, 62, 475-(221)480.
- (222) Chandrashekar, T. K.; Krishnan, V. Inorg. Chim. Acta 1982, 62, 259-264.
- (223) Chandrashekar, T. K.; Krishnan, V. Bull. Soc. Chim. Fr., Part 1 1984, 42–48. Yamada, S.; Sato, T.; Kano, K.; Ogawa, T. Photochem. Photobiol.
- (224)(225) Kano, K.; Hashimoto, S. Bull. Chem. Soc. Jpn. 1990, 63, 633–635.
  (226) Kadish, K. M.; Shiue, L. R. Inorg. Chem. 1982, 21, 1112–1115.
  (227) Dumas, P.; Guerin, P. Can. J. Chem. 1978, 56, 925–930.

- (228) Miller, J. R.; Dorough, G. D. J. Am. Chem. Soc. 1952, 74, 3977-3981.
- (229) Storm, C. B.; Corwin, A. H.; Arellano, R. R.; Martz, M.; Weintraub, R. J. Am. Chem. Soc. 1966, 88, 2525–2532. (230) Tabushi, I.; Kugimiya, S.; Kinnaird, M. G.; Sasaki, T. J. Am. Chem.
- Soc. 1985, 107, 4192-4199.
- (231) Chandrashekar, T. K.; Krishnan, V. Inorg. Chem. 1981, 20, 2782-2786.(232) Cole, S. J.; Curthoys, G. C.; Magnusson, E. A.; Phillipe, J. N. Inorg.
- Chem. 1972, 11, 1024-1028. (233) Kadish, K. M.; Shiue, L. R.; Rhodes, R. K.; Bottomley, L. A. Inorg.
- Chem. 1981, 20, 1274-1277. (234) Kirksey, C. H.; Hambright, P.; Storm, C. B. Inorg. Chem. 1969, 8,
- 2141-2144.
- (235) Nardo, J. V.; Dawson, J. H. Inorg. Chim. Acta 1986, 123, 9-13.
- (236) Vogel, G. C.; Stahlbush, J. R. Inorg. Chem. 1977, 16, 950–953.
   (237) Caldin, E. F.; Field, J. P. J. Chem. Soc., Faraday Trans. 1 1982, 78, 1923–1935.
- (238) Vogel, G. C.; Beckmann, B. S. Inorg. Chem. 1976, 15, 483-484. (239) Nappa, M.; Valentine, J. S. J. Am. Chem. Soc. 1978, 100, 5075-
- 5080.
- (240) Vogel, G. C.; Dearby, L. A. Inorg. Chem. 1973, 12, 936-939.
- (241) Kirksey, C. H.; Hambright, P. Inorg. Chem. 1970, 9, 958-960.
- (242) Bonar-Law, R. P.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1991, 574-577
- (243) Hambright, P. Chem. Commun. 1967, 470-471.
- (244) Anderson, H. L.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1989, 1714-1715.
- (245) Anderson, H. L.; Sanders, J. K. M. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1990, 29, 1400–1402; Angew. Chem. 1990, 102, 1478.
- (246) Aoyama, Y.; Asakawa, M.; Matsui, Y.; Ogoshi, H. J. Am. Chem. Soc. 1991, 114, 6233-6240.
- (247) Aoyama, Y.; Asakawa, M.; Yamagishi, A.; Toi, H.; Ogoshi, H. J. Am. Chem. Soc. 1990, 112, 3145-3151
- (248) Aoyama, Y.; Yamagishi, A.; Agasawa, M.; Toi, H.; Ogoshi, H. J. Am. Chem. Soc. 1988, 110, 4076-4077.
- (249) Cole, S. J.; Curthoys, G. C.; Magnusson, E. A. J. Am. Chem. Soc. 1970, 92, 2991-2996.
- (250) Cole, S. J.; Curthoys, G. C.; Magnusson, E. A. J. Am. Chem. Soc. 1971, 93, 2153-2158.
- (251) McLees, B. D.; Caughey, W. S. Biochemistry 1968, 7, 642–652.
   (252) Phillips, J. N. Rev. Pure. Appl. Chem. 1960, 10, 35–60.
   (253) Baker, E. W.; Brookhart, M. S.; Corwin, A. H. J. Am. Chem. Soc.
- 1964, 86, 4587-4590.
- (254) Erdman, J. G.; Ramsey, V. G.; Kalenda, N. W.; Hanson, W. E. J. Am. Chem. Soc. 1956, 78, 5844–5847.
- (255) Hunter, C. A.; Leighton, P.; Sanders, J. K. M. J. Chem. Soc., Perkin Trans. 1 1989, 547-552. (256) Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. J. Am. Chem. Soc.
- 1990, 112, 5773-5780. (257) Falk, J. E. Porphyrins and Metalloporphyrins; Elsevier: New York,
- 1964: Vol. 2
- (258) Anderson, H. L.; Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5780-5789.
- (259) Anderson, H. L.; Hunter, C. A.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1989, 226-227.
- (260) Danks, I. P.; Sutherland, I. O.; Yap, C. H. J. Chem. Soc., Perkin Trans. 1 1990, 421-422.
  (261) Sutherland, I. O. Pure Appl. Chem. 1990, 62, 499-504.
  (262) Benson, D. R.; Valentekovich, R.; Knobler, C. B.; Diederich, F.
- Tetrahedron 1991, 47, 2401-2422.
- (263) Benson, D. R.; Valentekovich, R.; Diederich, F. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1990, 29, 191–193; Angew. Chem. 1990, 102. 213.
- (264) Sljbeema, R. P.; Nolte, R. J. M. J. Org. Chem. 1991, 56, 3122–3124.
   (265) Sljbesma, R. P.; Nolte, R. J. M. J. Am. Chem. Soc. 1991, 113, 6695–
- 3396
- (266) van Doorn, A. R.; Bos, M.; Harkema, S.; van Eerden, J.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 2371-2380.
   (267) van Doorn, A. R.; Schaafstra, R.; Bos, M.; Harkema, S.; van Eerden,
- J.; Verbom, W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 6083-6094.
- (268) Lui, J. Ph.D. Thesis, SUNY Stony Brook, NY, 1990, pp 52-53 (cited: van Doorn, A. R.; Schaafstra, R.; Bos, M.; Harkema, S.; van Eerden, J.; Verbom, W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 6083-6094).
- (269) Takeuchi, K. J.; Busch, D. H. J. Am. Chem. Soc. 1983, 105, 6812-6816.
- (270) Takeuchi, K. J.; Busch, D. H. J. Am. Chem. Soc. 1981, 103, 2421-2422.
- (271) Sakata, K.; Hashimoto, M.; Yoshino, H. Inorg. Chim. Acta 1985, 99, 231–236.
- (272) Sakata, K.; Hayashida, Y.; Hashimoto, M. Synth. React. Inorg. Met.-Org. Chem. 1991, 21, 239-252.
   (273) Sakata, K.; Annoura, T.; Hashimoto, M. Inorg. Chim. Acta 1989,
- 166, 21-25. (274) Poh, B. L.; Koay, L. S. Tetrahedron Lett. 1990, 31, 1911-1914. (275) Poh, B. L.; Lim, C. S.; Koay, L. S. Tetrahedron 1990, 46, 6155-
- 6160.
- (276) Poh, B. L.; Koay, L. S. Abstracts of Papers; The 5th Symposium on Biofunctional Chemistry, Hiroshima, Japan, June 5-6, 1990; pp 97-99.

- (277) Menger, F. M.; Takeshita, M.; Chow, J. F. J. Am. Chem. Soc. 1981, 103, 5938-5939.
- (278) Readio, J. D.; Bittman, R. Biochim. Biophys. Acta 1982, 685, 219-224.
- (279) Pedersen, C. J. J. Org. Chem. 1971, 36, 1690-1693.
- (280) Goldberg, I. Acta Crystallogr. 1978, 34B, 3387-3390.
- (281) Bradshaw, J. S.; Chamberlin, D. A.; Harrison, P. E.; Wilson, B. E.; Arena, G.; Dalley, N. K.; Lamb, J. D.; Izatt, R. M. J. Org. Chem. 1985, 50, 3065-3069.
- (282) Wada, F.; Wada, Y.; Kikukawa, K.; Matsuda, T. Bull. Chem. Soc. Jpn. 1981, 54, 458-461.
- (283) Artz, S. P.; Cram, D. J. J. Am. Chem. Soc. 1984, 106, 2160-2171.
- (284) Cram, D. J.; Lein, G. M. J. Am. Chem. Soc. 1985, 107, 3657-3668.
- (285) Murakami, Y. Top. Curr. Chem. 1983, 115, 107-155.
- (286) Odashima, K.; Koga, K. In Cyclophanes; Keehn, P. M., Rosenfeld, S. M., Eds.; Academic Press: New York, 1983; Vol. 2, Chapter 11, pp 629-678.
- (287) Dietrich, B.; Lehn, J. M.; Sauvage, J. P.; Blazant, J. Tetrahedron 1973, 29, 1629-1645.
- (238) Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905-4906.
- (289) Izatt, R. M.; Lamb, J. D.; Hawkins, R. T.; Brown, P. R.; Izatt, S.
- R.; Christensen, J. J. J. Am. Chem. Soc. 1983, 105, 1782-1785. (290) Izatt, S. R.; Hawkine, R. T.; Christensen, J. J.; Izatt, R. M. J. Am. Chem. Soc. 1985, 107, 63-66.
- (291) Gutsche, C. D.; Dhawan, B.; Kwang, H. N.; Muthukrishnan, R. J. Am. Chem. Soc. 1981, 103, 3782-3792.
- (292) Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc., Chem. Commun. 1979, 1005-1007.

- (293) Ninagawa, A.; Matsuda, H. Makromol. Chem. Rapid Commun. 1982, 3, 65-67.
- Arduini, A.; Pochini, A.; Reverberi, S.; Ungaro, R. J. Chem. Soc., Chem. Commun. 1984, 981–982. (294)
- (295) Gabard, J.; Collet, A. J. Chem. Soc., Chem. Commun. 1981, 1137-1139.
- (296) Bryant, J. A.; Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. 1990, 112, 1254-1255. (297) Moran, J. R.; Ericson, J. L.; Dalcanale, E.; Bryant, J. A.; Knobler,
- C. B.; Cram, D. J. J. Am. Chem. Soc. 1911, 113, 5707-5714.
- (298) van Veggel, F. C. J. M.; Reinhoudt, D. N. In Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, H. J., Dürr, H., Eds.; VCH: New York, 1991; pp 83-108.
- (299) Odashima, K.; Itai, A.; Iitaka, Y.; Koga, K. J. Am. Chem. Soc. 1980, 102, 2504-2505.
- (300) Muchova, J.; Holba, V. Z. Chem. 1984, 24, 289-290.
- (301) Muchova, J.; Holba, V. Collect. Czech. Chem. Commun. 1963, 48, 1158-1161.
- (302) Pizer, R. J. Am. Chem. Soc. 1978, 100, 4239-4241.
- (303) Griebel, D.; Ferguson, S. B.; Diederich, F. Unpublished results (cited: Diederich, F. Angew. Chem., Int. Ed. Engl. (Engl. Transl.) 1988, 27, 362-386; Angew. Chem. 1988, 100, 372).
- (304) Bryant, J. A.; Blanda, M. T.; Vincenti, M.; Cram, D. J. J. Chem. Soc., Chem. Commun. 1990, 1403-1405.
- (305) Quan, M. L. C.; Cram, D. J. J. Am. Chem. Soc. 1991, 113, 2754-2755.
- (306) Kiss, T.; Sovago, I.; Gergely, A. Pure Appl. Chem. 1991, 63, 597-638.
- (307) Zhu, C. Y.; Bradshaw, J. S.; Oscarson, J. L.; Izatt, R. M. J. Inclusion Phenom. Mol. Recognit. Chem. 1992, 12, 275-289.