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/ . Introduction 

The physical nature of an interface between a crystal 
and its melt are of paramount importance in the study 
of crystal growth near equilibrium and homogeneous 
nucleation. Such an interface lies between two con­
densed phases, which makes direct experimental study 
difficult.1 Quantities of interest are thermodynamic, 
such as the crystal/liquid interfacial free energy ych 
structural, for example the microscopic density profile 
in the interfacial region, and dynamic, such as the 
variation of the molecular self-diffusion constant 
through the interfacial region. 

Laboratory estimates of the surface tension for a 
limited number of systems have been obtained both 
directly2-6 and indirectly.7 However, experimental data 
concerning the microscopic structure and dynamics of 
the interfacial region is lacking. This experimental 
difficulty increases the importance of computer sim­
ulations in the microscopic study of such interfacial 
phenomena. 

In this review, we will survey recent progress in the 
simulation of the interface between a crystal and its 
own melt. We concentrate on studies that have 
appeared since the definitive review of Bonissent.8 To 
date, there have been approximately 20 such simulations 
of a variety of atomic and molecular systems. Relax­
ation of the crystal phase in the vicinity of the boundary 
with the liquid plays a very important role in deter­
mining the structure of interfacial region. Hence, only 
simulations that allow for such relaxation will be 

considered here; that is, we omit discussion of simu­
lations of a fluid up against a structured or structureless 
wall, which may be important in other applications. In 
addition, since our focus is on the properties of an 
equilibrium interface, simulations that are concerned 
entirely with nonequilibrium interfaces will not be 
discussed. 

We begin in section II with a background discussion 
of the various thermodynamic, structural, and dynam­
ical quantities that describe an interface between a 
crystal and its melt. The determination of these 
quantities from a computer simulation of a specific 
interface is described in section III. The results of 
simulations for simple systems, such as hard spheres 
and inverse power and Lennard-Jones potentials, are 
collected in section IV, and for the complex systems 
water and silicon in section V. In section VI, we outline 
the current level of theories of the crystal/liquid 
interface, and summarize the review in section VII. 

/ / . Characterization of the Interface 

A. Thermodynamics 
The formal mathematical framework characterizing 

the thermodynamics of an interface between coexisting 
phases was developed by J. W. Gibbs in the late 19th 
century.9 Central to this formalism is the realization 
that all the excess thermodynamic properties of the 
interfacial region can be assigned arbitrarily to a 
mathematical dividing surface, separating the two 
phases. Thus, all thermodynamic quantities of the two-
phase system may be written as the sum of two bulk 
contributions, calculated as if each bulk phase were 
uniform up to the Gibbs dividing surface, plus an excess 
term due to the presence of the interface. For example, 
for a general multicomponent system consisting of two 
phases, denoted by 1 and 2, in equilibrium separated 
by a flat interface, the extensive thermodynamic 
properties may be written 

E= E1 + E2 + E12 (1) 

V= V1+ V2+ V12 (2) 

S= S^S2+ S12 (3) 

N1 = N[ + N2 + iV12 (4) 

where E, V, S, and N' are the energy, volume, entropy, 
and number of particles of type i, respectively. 

Defining the excess interfacial free energy, y, to be 
the work necessary to form a unit area of interface, the 
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Euler equation for the total energy becomes 

E = TS-Pv+ Y,^ + yA w 
i 

where A is the area of the interface. Since the excess 

interfacial volume is zero by definition, the corre­
sponding Euler equation for the excess interfacial 
quantities is 

e = Tv + ] T M i r + 7 (6) 
i 

wheree, TJ, and P are the excess energy, excess entropy, 
and excess number of type i particles, all measured per 
unit area. Rearranging eq 6 yields 

7 = 6 - TV - Y^n1T
1 (7) 

i 

Defining the excess Helmholtz free energy per unit area 
via / = e - Ti], yields 

T=Z-^M 1 T ' ' (8) 
i 

For a single-component system, Gibbs recognized that 
eq 8 could be simplified by choosing the position of the 
dividing surface such that the excess number of particles 
is zero (r = 0) so that 

T = / O) 
For a multicomponent system, such a simplification is 
not possible in general, due to the differential adsorption 
of the various components at the interface. If one of 
the components can be identified as the "solvent", it is 
convenient to define the Gibbs dividing surface so that 
the excess concentration of this species vanishes. The 
surface excess particle densities of the remaining 
components may be determined from the Gibbs ad­
sorption isotherm (the differential version of eq 7) 

r = (^) (io) 

It should be noted that the excess interfacial free energy 
7 is invariant to the specific location of the Gibbs 
dividing surface; however, the relative magnitudes of 
the energy, entropy and particle adsorption contribu­
tions to 7 will depend greatly on this choice. 

As defined, the interfacial free energy y is the work 
required in forming a unit area of interface. The work 
required to create a unit area of interface by stretching 
is known as the surface tension or surface stress and is, 
in general, a second-rank tensor, 07,. (Often in the 
literature the term surface tension is used as a synonym 
for the interfacial free energy. The terminology used 
here is due to Gibbs.) The difference in these two 
quantities depends on the ability of the bulk phases to 
resist strain. In general, the surface stress is given by10 

C1J = Jd1J + (dy/deij) (11) 

where Sy is the usual Kroneker delta and Hj is the ij 
component of the strain tensor. 

For an interface between two fluid phases (liquid or 
vapor), the second term of eq 11 is zero because, as the 
strain is applied, particles can travel freely back and 
forth between the surface and bulk in such a way that 
the structure of the interface will remain unchanged. 
Thus, the surface free energy and surface stress are 
identical. For an interface with at least one crystal 
side, the approach to strict equilibrium is usually slow. 
The difference between the surface stress and the 
interfacial free energy depends upon the time scale of 
the strain process relative to the time scale of surface 
relaxation r. For a crystal that is perfect except for 
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possible point defects, this relaxation time is infinite.10 

At high temperatures near the melting point, the 
timescale T is reduced greatly due to the presence of 
grain boundaries, which act as particle sources and sinks. 
If the experimental time scale is greater than the 
relaxation time T, the equality of the surface free energy 
and surface stress can be assumed safely.1 In simu­
lations, however, this is not necessarily the case, due to 
the small size of the samples and the short total run 
times. 

Experimentally, there are two basic approaches for 
determination of the crystal/liquid interfacial free 
energy 7ci. The first assumes that classical nucleation 
theory is correct, and hence the free energy barrier to 
nucleation is a function of the surface free energy of 
the flat, infinite interface. Hence, measurements of 
the nucleation rate of supercooled liquids can be 
inverted to yield estimates of 7ci- This has been 
performed for a variety of substances.7 Such methods 
are only as accurate as the theory that is used to perform 
the data inversion. Given the substantial approxima­
tions in even the best nucleation theories,11 they are 
not quantitatively reliable in our opinion. 

The second method is based on the fact that when 
three interfaces meet, the angles of intersection are 
determined by the various surface tensions via a force 
balance relation.1 Such methods are free of the 
ambiguities inherent in the nucleation data inversions. 
For the crystal/liquid interface, Glicksman and Void2 

developed a method to calculate Yd from the angle of 
the cusp formed at the intersection of a low-angle crystal 
grain boundary and the liquid phase. They used this 
method to determine the interfacial free energy of the 
bismuth interfaces and found it is relatively indepen­
dent of interfacial orientation (index). Similar methods 
have been used to study a limited number of other 
systems, including water,3 succinonitrile,4 cadmium,5 

and sodium chloride.6 

B. Structure and Dynamics 

The motion of each molecule in a crystal is restricted 
to a small region around a lattice site, leading to an 
average single-particle density p(r) that is spatially 
periodic and inhomogeneous. (The drastic rearrange­
ments that accompany vacancy diffusion in the crystal 
are an important exception.) However, from general 
symmetry arguments, the partition function of a 
multiparticle system in which the potential energy arises 
from interparticle interactions alone (that is, with a 
Hamiltonian which is invariant to translation and 
rotation of the entire system) must yield a uniform 
single-particle density. This apparent contradiction 
was resolved long ago by Kirkwood and Boggs,12 who 
pointed out that in reality there are always external 
forces on the system (walls, etc.) which fix unambig­
uously the lattice position and orientation. Further­
more, the free energy cost for fixing the lattice position 
and orientation vanishes in the thermodynamic limit. 
In a liquid, on the other hand, p(r) is uniform and 
isotropic, due to the random motions of each particle. 
When these two phases coexist, the structure in the 
neighborhood of the interface will relax to equilibrium. 
In the interfacial region, the single-particle density will 
have a structure intermediate between the two limiting 
bulk phases. Determining the width of this region is 
one of the prime goals of interfacial studies. 

3 . 
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Figure 1. (a) Idealized interfacial density profile and (b) 
idealized interfacial diffusion profile (relative to the bulk 
liquid value A) versus layer number. 

The decay of periodic density oscillations as one 
traverses the flat interface from the bulk crystal to the 
uniform bulk liquid is most easily visualized from plots 
of density profiles. Defining the coordinate perpen­
dicular to the interface to be the z axis the density 
profile p(z) is the average of the single-particle density 
over the directions (x and y) parallel to the surface 

P(Z) = (P(T)) xy (12) 

Figure la is a sketch of a typical density profile. For 
a polyatomic system such as water, where the molecules 
have orientational as well as translational degrees of 
freedom, profiles illustrating the decay of orientational 
order from the crystal to the liquid through the 
interfacial region are also important, since the length 
scale of this decay need not be the same as that for 
translational ordering. For polar systems, orientational 
order may persist for a significant distance into the 
bulk liquid phase long after the density oscillations 
have disappeared, due to the long-ranged nature of 
dipole forces compared to the relatively short-ranged 
interactions that govern packing and translational 
order. 

Experimentally, the structure of interfaces between 
condensed phases are more difficult to study than the 
bulk substances, since traditional radiation probes are 
absorbed or scattered by one or both bulk phases. 
Techniques such as second harmonic generation (SHG) 
and ellipsometry have been useful in the study of some 
fluid/fluid13 or fluid/vapor interfaces u and could, in 
principle, be used to study the crystal/fluid surface, 
but no such experiments have been published to our 
knowledge. 

Near a crystal/liquid interface, the self-diffusion 
constant and other transport properties are altered from 
their bulk liquid values. For example, the self-diffusion 
constant in the bulk crystal is at least 1 (and often, 
several) order of magnitude smaller than the corre­
sponding quantity in the bulk liquid. In the interfacial 
region, the diffusion constant will take on intermediate 
values. The width of this region is an important 
measure of the diffuseness of the interface. Figure lb 
shows an idealized diffusion profile through the inter­
face as a function of the perpendicular distance z. A 
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useful measure of the width of any quantity that varies 
continuously across the interfacial region is the so-called 
10-90 width. For a given interfacial order parameter, 
this quantity is the distance over which the value of the 
parameter changes from 10% to 90% of its bulk solid 
value (relative to that of the bulk liquid) as one traverses 
the interface from liquid to solid. The 10-90 width of 
the diffusion profile shown in Figure lb is about 4.9 
lattice layers. Note that in simulations the self-diffusion 
constants for motion parallel and perpendicular to the 
interface are often measured separately, but do not 
appear to differ significantly from the isotropic value, 
at least in the studies to date. 

The behavior of transport quantities near the inter­
face plays a critical role in the kinetics of crystal growth 
from the melt. Propagation of the interfacial front 
requires both mass and latent heat transport between 
the bulk and surface regions. Despite the importance 
of these dynamical processes, little quantitative infor­
mation is available. This current lack of experimental 
studies increases the usefulness of computer simulation. 

/ / / . Simulation of Interfaces 

A. Simulation Techniques 

Computer simulation techniques have become very 
important tools in the study of condensed-matter 
systems since their development in the 1950s. Such 
simulations can study systems ranging from the very 
simple (hard spheres, Lennard-Jones particles) to the 
complex (proteins and large biomolecules). The total 
number of atoms or molecules studied also varies 
greatly. For the calculation of the bulk properties of 
simple systems, a few hundred particles is usually 
sufficient. Other systems such as interfaces and 
proteins require much larger systems (thousands or 
perhaps tens of thousands of particles15). In the case 
of the crystal/liquid interface, simulations have a 
particularly important role because of the difficulty of 
performing experiments that probe the interface. 

The techniques of computer simulation are divided 
into two major classes: Monte Carlo (MC) methods, 
developed by Metropolis, Rosenbluth, Rosenbluth, and 
Teller,16 and molecular dynamics (MD) methods, pi­
oneered by Alder and Wainwright.17 The Monte Carlo 
technique uses random numbers to generate a set of 
configurations that are distributed according to the 
Boltzmann distribution (thatis,p{Rj« exp[-/S.E({R})]). 
The equilibrium value of any particular property is 
determined by averaging that property over the set of 
configurations. Because such a method uses ensemble 
averages instead of time averages, no direct information 
about transport quantities can be determined. On the 
other hand, a molecular dynamics simulation is the 
study of the time evolution of the dynamical state of 
a collection of interacting particles via numerical 
integration of the classical equations of motion. By 
performing averages over the resulting trajectories, most 
thermodynamic, structural, and dynamical properties 
of the system can be calculated. Because of the 
importance of interfacial diffusion processes to crystal 
growth, all simulations of crystal/liquid interfaces, with 
one exception, have used the molecular dynamics 
technique. Since many excellent references exist in 
the literature on the subject of computer simulations,18 

only those aspects of the subject that are particular to 

simulations of flat interfaces will be discussed here. It 
is assumed that the reader has at least a basic familiarity 
with molecular dynamics. 

B. Construction of an Equilibrium Interface 

The most difficult technical aspect of a crystal/liquid 
interface simulation is the construction of a stable 
equilibrium interface. Of course, the details of this 
process are irrelevant to the equilibrium properties 
discussed below in section IV, but it is an important 
technical point which we include here. The first step 
in this task is the determination of the conditions of 
coexistence, that is, the crystal and liquid densities at 
which the two phases will have the same temperature, 
pressure and chemical potential. The phase diagram 
can be obtained from either separate simulations of 
the bulk crystal and liquid phases,19"25 or by trial and 
error. These quantities must be determined accurately 
because any error will cause the interfacial system to 
be unstable to melting or crystallization during the 
simulation. 

Once the freezing coexistence conditions are known, 
the interface can be built. The most generally appli­
cable way of doing this is to first perform separate 
simulations of the bulk liquid and crystal phases at the 
appropriate coexistence temperature and densities. In 
order that these simulation cells will fit properly when 
placed together to form the interface, the xy cross-
sectional area must be identical for both phases (where 
we define, as above, the z direction to be perpendicular 
to the interface). Due to the difference in density 
between the crystal and liquid phases, the equality of 
the cross-sectional area generally requires the liquid 
simulation cell to be noncubic with the z-axis dimension 
chosen to give the proper liquid density. After separate 
equilibration, the crystal and liquid blocks are placed 
end to end in the z direction to form the initial interface 
configuration. (To increase the size of the simulation, 
multiple copies of the crystal and liquid blocks may be 
used.) Periodic boundary conditions are then applied 
in all three Cartesian directions. 

If the correct equations of motion were turned on at 
this point, the interface would not be stable because 
the liquid has not been equilibrated next to a crystal 
block. This results in high energy interactions at the 
interface, which when propagated melt the entire 
system. In order to create a stable interface, the 
following procedure may be adopted. First, the particles 
formerly in the crystal are held fixed while the particles 
formerly in the liquid are allowed to evolve for a 
sufficient number of simulation steps to reach equi­
librium. In a molecular dynamics simulation the liquid 
temperature must also be rescaled periodically to the 
coexistence temperature. Hence in this step, energy is 
removed from the system to equilibrate the liquid next 
to a crystal with random but fixed displacements from 
the equilibrium lattice sites. Next, the particles for­
merly in the crystal are allowed to move (with their 
original velocities). The full system is then propagated 
until equilibrium is achieved. During the equilibration 
process it is important to monitor the temperature in 
various regions of the simulation cell to ensure that it 
is relatively uniform, that is, there are no hot or cold 
regions that indicate instability of the interface. Note 
that this method creates two independent crystal/liquid 
interfaces in the simulation cell. These can be compared 
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to give a measure of the statistical fluctuations in the 
simulation results. 

Other methods to construct a crystal/liquid interface 
are possible. For example, for systems that are to be 
simulated under triple-point (three-phase) condi­
tions,26,27 a block of crystal can be constructed in a 
simulation box sandwiched in the z direction between 
regions of empty space. By keeping one-half of the 
crystal region fixed and heating the other so that it 
melts, a three-phase system can be constructed. If this 
process is done carefully enough the system should come 
to equilibrium so that the densities of the various phases 
adjust to the proper triple-point values. One advantage 
of this procedure is that the coexistence conditions need 
not be determined beforehand, but are byproducts of 
the calculation. The method is extremely limited, 
however by the fact that the only one point along the 
crystal/liquid phase coexistence line can be studied 
thusly. Also the method is not applicable to purely 
repulsive potentials, such as the inverse power inter­
actions, which have only one fluid phase. 

C. Thermodynamic Averages 

Once an equilibrium interface is constructed, the 
relevant system averages can be calculated. The density 
profile defined above in eq 12 is calculated by dividing 
the system into a number of equally spaced bins along 
the direction perpendicular to the interface (z axis). 
Calculating the average number of particles in each bin 
and dividing by the volume of the bin yields the density 
profile. The width of the bins must be chosen small 
enough that the crystal density peaks can be resolved 
but large enough to give good statistics. 

Calculation of the diffusion constant profile is more 
difficult. Again the system is divided into z-axis bins. 
In general, these bins must be larger than those used 
to calculate the density profile. The variation of the 
diffusion constant is determined by calculating the 
average mean-squared displacement as a function of 
time for the particles assigned to each bin. The diffusion 
constant for a given bin is then calculated from the 
Einstein relation 

([rtt)-r(O)]2) 

using a least squares linear regression to calculate the 
slope of the mean-squared displacement curve. In order 
to guarantee the validity of this "course-graining" 
procedure, care must be taken to ensure that the bin 
spacing is large enough to minimize the effect of 
particles moving outside their assigned bin during the 
course of the mean-squared displacement measurement. 
In some calculations, authors have completely removed 
from the statistical averages the effect of particles which 
cross bin boundaries. The diffusion profile may be 
measured using only the mean-squared displacement 
in the xy plane (in this case the factor 6 in eq 13 is 
replaced by 4). For the limited data available, the 
perpendicular diffusion profile is not significantly 
different than the full isotropic profile.28 Generally 
the interfacial width of the diffusion profile is smaller 
than that of the density profile and is displaced toward 
the "liquid" side of the interface. 

The most difficult interfacial quantity to calculate is 
the interfacial free energy. The surface stress is related 

to the interfacial free energy but not identical to it (see 
eq 11 and accompanying discussion). One method to 
measure the surface stress involves integrating the 
difference in the components of the pressure tensor 
perpendicular and parallel to the interface: 

^=r»dz[p«-|(Pxx+pyy)] a4) 
From simulation data, the integrand in the above 
integral is generally small with large error bars, and 
hence the statistical error in a is usually quite sub­
stantial. 

To date, there is only one method that has been used 
to calculate the interfacial free energy directly. (In­
direct estimates have been attempted by combining 
the excess interfacial potential energy t with an 
approximation of the excess entropy rj,29-30 but with little 
success.) This direct method is due to Broughton and 
Gilmer,31 and uses the concept of "cleaving potentials". 
A cleaving potential is constructed so that as it is applied 
slowly, the system is "cleaved" into two parts along the 
z axis. The separation between the two parts is 
increased until it exceeds the range of interaction of 
the particles. By monitoring the energy during the 
cleaving process, the thermodynamic integration meth­
od can be used to determine the amount of work 
involved. To calculate the interfacial free energy, which 
is the work necessary to form a unit area of interface 
from the bulk systems, four steps are necessary: (1) a 
cleaving potential is used to cleave a bulk crystal sample; 
(2) a similar process is applied to a liquid sample; (3) 
one half of the liquid sample is replaced with the bulk 
crystal (these two phases are still separated by the 
cleaving potential); (4) the cleaving potential is slowly 
removed until the crystal and liquid phases are in 
interfacial equilibrium. The interfacial free energy is 
the sum of the work necessary to perform steps 1-4. 
This procedure is lengthy and complicated, but if done 
carefully can yield good statistics. 

IV. Predicted Quantities for Simple Systems 

A. Hard Spheres 
For the hard sphere system there are no true 

simulations of the crystal/liquid interface. Studies on 
this system are based on extensions of the static model 
approach to the structure of liquids due to Bernal.32 

The applications of such methods to the crystal/liquid 
interface have been described extensively in an earlier 
review,8 and we merely summarize the results here. 

The Bernal approach assumes that the structure of 
a liquid can be well described by a dense random packing 
of hard spheres. The construction of random packing 
would then yield a "typical" instantaneous liquid 
configuration. Originally such models were constructed 
using physical objects such as ping-pong balls, but more 
recently computers have been employed to generate 
the static configurations.33 

A corresponding model of a crystal/liquid interface 
has been built by constructing a dense random packing 
of hard spheres in contact with an face-centered-cubic 
(fee) (111) or hexagonal-close-packed (hep) (0001) 
crystal face, both using physical objects34 and by 
computer generation.35 The hard-sphere interfaces so 
formed are narrow and exhibit a substantial density 
deficit at the interface, implying poor wetting of a close-
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packed crystal face by the melt. However, these results 
have been shown to be artifacts of the static nature of 
the model by subsequent computer simulations on soft 
spheres and Lennard-Jones particles. The failure of 
such approaches underscores the important role of 
relaxation of the crystal phase in the formation of the 
equilibrium crystal/liquid interface. 

B. Inverse-Power Potentials 
Systems of particles interacting via pairwise additive, 

purely repulsive inverse-power potentials have played 

4>(r) = *(<x/r)" (15) 

an important role in the study of first-order phase 
transitions both through theory36-37 and simula­
tion.20-2428 Packing considerations, which dominate 
the freezing process in simple systems, are related 
directly to the repulsive part of the potential energy. 
This series of potentials permits wide variation of the 
range of the repulsion—from very short ranged hard 
spheres (n = ») to the extremely long ranged one-
component plasma (OCP) (n = 1). 

An interesting feature of this set of potentials is the 
presence of a crystal/crystal-phase transition at inter­
mediate values of n. For high values (n > 7) the body-
centered-cubic (bcc) crystal is mechanically unstable 
with respect to shear, due to the fact that nearest 
neighbor interactions alone do not stabilize the rela­
tively open bcc structure and the second nearest 
neighbor interactions are too weak for such short ranged 
potentials. Consequently, the only thermodynamically 
stable phase above the freezing density is the face-
centered-cubic (fee) crystal [or perhaps hexagonal-close-
packed (hep)]—a situation typical of materials such as 
argon.38 At the other extreme, very long ranged 
potentials such as the OCP have stable bcc structures 
that are lower in energy at zero temperature than the 
corresponding fee crystals, and hence in equilibrium 
only the bcc phase is observed above the freezing 
transition, although a metastable fee phase is also 
detected in simulations.24 

For intermediate-ranged potentials (3 < n < 7), the 
bcc phase is no longer mechanically unstable, but the 
fee phase is the lower energy structure. This ensures 
that fee is thermodynamically more stable than bcc at 
low temperatures (and high densities). However, the 
bcc phase has a higher entropy than the fee crystal. In 
the language of crystal-state physics, this is due to the 
presence of a large number of low-frequency shear 
modes in the phonon spectrum. (These shear modes 
are the same ones that become unstable for more 
repulsive potentials.) If the entropy difference between 
the two phases is great enough, then as the temperature 
is raised sufficiently above zero, it is possible that the 
free energy of the bcc crystal will become lower than 
the free energy of the (lower energy) fee crystal. If this 
event occurs before the melting point is reached, then 
the bcc phase will be the equilibrium crystal structure 
at freezing, eventually giving way to the fee phase in a 
crystal/crystal transition as the density is increased or 
the temperature is lowered. This feature of the phase 
diagram (liquid-bcc-fcc) is typical for metals such as 
iron and those of the alkali group.38 As an example, the 
calculated pressure-temperature phase diagram of the 
inverse sixth power potential25 is shown in Figure 2. 
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Figure 2. The pressure-temperature phase diagram of the 
inverse sixth power system. The temperature and pressure 
are in units of t/k and e/a3, respectively. The regions of fee 
crystal, bcc crystal, and liquid are labeled. 

Note that stable phase at freezing is bcc, giving way to 
fee at higher pressures and lower temperatures. The 
small extent of the bcc phase is an indication that this 
potential is near the border of bcc mechanical stability. 

The first simulations of an inverse-power interface 
were performed on the fee (100) crystal/liquid interface 
of an inverse twelfth power potential by Cape and 
Woodcock.39-40 The molecular dynamics technique was 
used to simulate a system of 7680 particles. The 
coexistence density and temperature chosen were 
identical (within statistical error) to those calculated 
in earlier studies of the bulk phases.20,22 The geometry 
of the system was such that each crystal plane parallel 
to the interface contained 128 particles. After equil­
ibration, averages were calculated from a run of 900 
time steps of 0.005 V(mo2/t). 

Analysis of the density profile for this system yields 
an interface that is approximately about 6-7 lattice 
spacings wide. Plots of particle trajectories within 
individual layers in the interfacial region are also 
consistent with this value. The fraction of "liquidlike" 
particles in a given interface layer gradually increases 
as the bulk liquid is approached, while the mean square 
displacement of the "crystallike" particles increases. 
In the vicinity of the interface on the crystal side, there 
appears to be a slight expansion of the interlayer spacing 
of about 4 % over the bulk value. The diffusion profile 
is measured from the slope of the layer-averaged mean-
square displacement curves (eq 13) and gives a 10-90 
width of about 5 lattice spacings, thus the interface 
width with respect to transport is smaller than that 
extracted from the structural data. 

Cape and Woodcock also measured the interfacial 
surface stress from the difference between the com­
ponents of the pressure tensor perpendicular and 
parallel to the interface. The calculated value of this 
quantity for the fee (100) inverse twelfth power interface 
is 0.46 ± 0.l(e/O2KkTh)1'6. 

Subsequently Tallon41 investigated the fee (111) 
interface of this same system by MD simulation of a 
system of 6480 particles. These simulations were 
undertaken primarily to study the layer structure of 
the interfacial region, which was found to be about five 
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Figure 3. Definition of the (100), (110), and (111) interfaces 
from the bcc unit cell. The quantity d.x is the distance 
between the • and X crystal planes for each interface. 
(Reprinted from ref 28. Copyright 1989 American Institute 
of Physics.) 

(Ill) lattice layers wide. A Voronoi polygonal analysis 
of the individual layer structures was interpreted to 
show that the structure within a given layer was 
relatively homogeneous, namely that, "crystallike" or 
"liquidlike" domains do not coexist within the same 
layer. 

The interfaces between an inverse-sixth-power crystal 
and its melt were studied by Laird and Haymet. These 
were the first such simulations involving body-centered-
cubic (bcc) crystal faces. The motivation for such a 
study is that bcc is one of the simplest, commonly 
occurring, non-close-packed crystal structures and is a 
natural choice for extending the available simulation 
data beyond the close-packed systems. The sixth power 
was chosen because it is apparently the shortest range 
potential that freezes into a bcc crystal.23,25 

These simulations used the technique of constant 
energy and volume molecular dynamics using the 
velocity-Verlet algorithm of Swope.42 The bcc (100), 
(110), and (111) interfaces were simulated. (For ref­
erence, the details of the interfacial packing and the 
relationship to the bcc unit cell are illustrated for these 
three interfacial directions in Figure 3.) The values of 
the coexistence temperature and densities (kT/e-0.1, 
P9(T

3 = 0.7 and pia3 = 0.687) were chosen so that the 
system lies on the phase-coexistence line as estimated 
by simulation of the bulk properties of inverse-power 
potentials.23 (Subsequent, more accurate simulations 
of inverse sixth power crystal/liquid freezing yielded 
slightly higher coexistence densities, but not different 
enough to affect the interfacial simulation results.25) 

The initial (100), (110), and (100) interfaces were each 
built from five blocks (three crystal and two liquid) of 
686, 700, and 720 particles, respectively, yielding 
simulations of total particle number 3430, 3500, and 

Distance z/a 

Figure 4. The reduced density profile O3P(Z), averaged over 
the perpendicular directions, of the 1/r6 equilibrium melt/ 
bcc (100) crystal face, as a function of distance z/ a. (Reprinted 
from ref 28. Copyright 1989 American Institute of Physics.) 

Distance z/c 

Figure 5. The measured diffusion constant [Ua2Zm)1/2 X 
103] in subregions of the 1/r6 bcc (100) interface. The upper 
dotted line is the equilibrium bulk liquid value. (Reprinted 
from ref 28. Copyright 1989 American Institute of Physics.) 

3600, respectively. Once a stable interface was achieved, 
system averages were collected over 8000, 4000, and 
16000 time steps for the (100), (110), and (111) 
interfaces, respectively. The disparity in the run times 
for the three interfaces is due primarily to the differ­
ences in the in-plane particle density (number of 
particles per unit cross-sectional area). The lower the 
number of particles per unit area in a given plane, the 
more time steps are required to generate acceptable 
statistics. 

The calculated density profile for the (100) face is 
shown in Figure 4. The 10-90 width of the peak heights 
is just over nine lattice planes, which corresponds to 
about 6.4(7 units. A comparison of this density profile 
with that of a previously simulated smaller system43 

with identical interfacial area shows that the two 
interfaces are essentially identical. The calculated (100) 
diffusion profile is shown in Figure 5. An eyeball 
estimate of the 10-90 width of the diffusion profile yields 
about 3.8<r or about five lattice plane spacings. Although 
the limiting bulk liquid diffusion constant values differ 
by about 10%, the values for the interface width are 
almost identical. 
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Figure 6. The reduced density profile O3P(Z), averaged over 
the perpendicular directions, of the 1/r6 equilibrium melt/ 
bcc (110) crystal face, as a function of distance z/a. (Reprinted 
from ref 28. Copyright 1989 American Institute of Physics.) 
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Figure 7. The measured diffusion constant [Ua2Im)1/2 X 
103] in subregions of the 1/r6 bcc (110) interface. The upper 
dotted line is the equilibrium bulk liquid value. (Adapted 
from ref 28. Copyright 1989 American Institute of Physics.) 

The density profile of the (110) interface is shown in 
Figure 6. The peak height 10-90 width for this interface 
is about 9.0a (nine lattice planes), indicating a broader 
interfacial region than in the (100) simulation. The 
(110) diffusion profile is shown in Figure 7. A rough 
estimate of the diffusion 10-90 width yields 3.9<r or 
four bcc (110) lattice planes. This is almost exactly the 
same value as for the (100) interface, which is interesting 
in view of the fact that the density peak 10-90 widths 
for the two interfaces are very different. 

Figure 8 shows the calculated (111) density profile. 
The peak height 10-90 width for the (111) interface is 
about 1.0a (17 lattice planes). An interesting feature 
of the (111) density profile is that the apparent density 
between the lattice planes does not drop to zero. This 
is also the case for the (100) interface, although to a 
much lesser extent. This interplane density is not due 
to the diffusion of particles from one plane into the 
next, but rather reflects correctly the overlap of the z 
axis projections of the closely spaced (111) planes. The 
(111) crystal direction in the bcc crystal is made up of 
triangular lattice planes stacked upon each other, with 
the particles in each plane lying above the triangular 

Distance z/a 
Figure 8. The reduced density profile O3P(Z), averaged over 
the perpendicular directions, of the 1/r6 equilibrium melt/ 
bcc(lll)crystalface,asafunctionofdistancez/a. (Reprinted 
from ref 28. Copyright 1989 American Institute of Physics.) 

Distance z/a 
Figure 9. The measured diffusion constant [Uo2Im)1I2 X 
103] in subregions of the 1/r6 bcc (111) interface. The upper 
dotted line is the equilibrium bulk liquid value. (Reprinted 
from ref 28. Copyright 1989 American Institute of Physics.) 

holes of the previous plane in an ABCABC pattern. 
Since the spacing between the planes is quite small 
(about OAIa), the z coordinates of particles in two 
adjacent planes can overlap even though the particles 
remain localized about their respective lattice sites. 

The diffusion profile for the (111) interface is shown 
in Figure 9. A rough estimate of the diffusion 10-90 
width gives about 4.0<r or 10 (111) bcc lattice planes. 
Again it is interesting to note that this is almost exactly 
the same value as for the other two interfaces. It is 
therefore tempting to speculate that the differences in 
the density profiles among these three interfaces are 
due primarily to geometric considerations, which do 
not affect the transport properties. This lack of 
sensitivity of the diffusion width on the orientation of 
the interface has also been seen in the Lennard-Jones 
interfaces (discussed in the next section). 

C. The Lennard-Jones Potential 

Lennard-Jones (LJ) particles44 interact via the spher­
ically symmetric, pairwise-additive potential 
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<t>(r) = 4e[(a/r)lz - (a/rf] (16) 

where e is the depth of the attractive well and a is a 
measure of the particle size. This potential mimics the 
characteristics of the interaction potentials of rare gas 
elements and even more complicated molecules, namely 
an r-6 attraction at large distances and a steep repulsive 
wall at small distances. For the remainder of this 
section, the following reduced units will be used: 
reduced distance r* = r/a, reduced density p* = pa3 and 
reduced temperature T* = kT/e. The phase diagram 
of the Lennard-Jones systems, unlike that for the 
inverse-power potentials, is two-dimensional, that is, 
density and temperature are independent variables. 
This phase diagram has been mapped out by computer 
simulation.19 The crystal form of this material is face 
centered cubic (fee). Some of the simulations listed 
here use a truncated or modified version of the Lennard-
Jones potential. This makes comparison of the various 
simulations difficult since the phase diagrams of these 
altered potentials differ from that of the usual potential, 
especially in the triple point region where most sim­
ulations are performed. 

The earliest attempt at a computer description of a 
Lennard-Jones interface used a static-hard-sphere 
computer-built model to estimate the interfacial free 
energy of a Lennard-Jones crystal/liquid system.35 A 
computer-built model of a fee (111) hard sphere crystal/ 
liquid interface was constructed using the method of 
ZeIl and Mutaftschiev.34 The vibrational properties 
and interfacial free energy were then estimated by 
assuming that the particles interacted via a Lennard-
Jones potential. The structure was not allowed to relax 
from the hard-sphere configuration and exhibited the 
anomalous density deficiency at the interface that is a 
common feature of such static computer-built models. 

The first simulation (as opposed to a model) of a LJ 
crystal/liquid interface was a three-phase study by Ladd 
and Woodcock,26 whose primary purpose was to de­
termine the LJ triple point, but which as a byproduct 
yielded a density profile of the fee (100) interface. A 
molecular dynamics simulation of 1500 particles was 
performed in which the usual periodic boundary 
conditions in the z direction were replaced by static 
lattice on the crystal side and a hard wall bounding the 
vapor. The simulation gave a triple-point temperature 
of T*tp = 0.72 and crystal and liquid coexistence 
densities of 0.986 and 0.80, respectively. The (100) 
density profile is very broad, about 7-8<r (9-10 lattice 
spacings) wide. Unlike the hard sphere models, no 
density deficit was seen at the interface. Since only 
the top several layers are allowed to melt with the rest 
of the bulk crystal being static (effectively zero tem­
perature), the relationship of this interface to a true 
equilibrium interface is difficult to evaluate. However, 
in this simulation the number of nonstatic crystal layers 
is great enough that the effect is probably small. 

In a later paper,45 Ladd and Woodcock expanded the 
analysis of their interface to include thermodynamic 
and transport properties. From a profile plot of the 
two-dimensional (layer) diffusion constant, the width 
of the interfacial region is estimated to be five lattice 
spacings with respect to particle transport, but the 
statistical error in this calculated quantity is rather 
large. The noise in a calculation of the surface stress 
was also too great to yield a reliable result. 

Shortly after the Ladd and Woodcock simulation, 
the (100) fee LJ interface was also simulated by 
Toxvaerd and Praestgaard46 at a slightly higher reduced 
temperature of 1.15. The simulation box consisted of 
1680 total particles with the liquid region sandwiched 
between two crystal slabs. Periodic boundary condi­
tions were used in all three directions, so the crystal 
phase near the interface was allowed to fully relax 
without a zero-temperature boundary condition. The 
width of (100) interfacial region as estimated from the 
density profile was about 7-8 lattice spacings, which 
was slightly narrower than that of the triple-point 
calculation of Ladd and Woodcock. This simulation 
together with the others mentioned earlier in this section 
have been also reviewed earlier.8 

In a rather small (N = 432) simulation, Hiwatari, 
Stoll, and Schneider47 have studied the (100) fee crystal/ 
liquid interface of a truncated Lennard-Jones system. 
Here the LJ potential is set to zero beyond the well 
minimum and shifted by eto yield a purely repulsive 
potential. It should be noted that without an attractive 
well, this potential does not exhibit fluid/vapor coex­
istence and therefore a triple point cannot be defined. 
Molecular dynamics with fully periodic boundary 
conditions was used to simulate the interface with pco3 

= 1.12, pier3 = 0.97. The coexistence temperature was 
found to be kT/e «= 0.20. The analysis of the data 
focused on the layer-averaged potential energy (no 
density profile was calculated). The potential energy 
change through the interface from bulk crystal to bulk 
liquid behavior takes place over a rather narrow 3-4 
lattice, but the large statistical error due to the small 
size limits the usefulness of this result. Also the rather 
crude "trial and error" method used to determine the 
coexistence conditions for the truncated potential leaves 
much doubt as to whether equilibrium was ever properly 
established. 

So far, all simulations concerned the (100) fee 
interface orientation. Since the early hard-sphere-
based static models, by construction, involved close-
packed faces [fee (111) or hep (0001)], a full simulation 
study of these faces would help to evaluate the validity 
of such models. To this end, Bonissent, Gauthier, and 
Finney (BGF)48 used the Monte Carlo method to 
simulate an hep (0001) interface using 860 particles 
using a modified LJ potential 

0 B G P W " €[(<r/r)12-2(ff/r)
6] (17) 

The energy and distance scales were arbitrarily chosen 
to approximate those of argon: e = 1.7 X 10"22 J and 
a = 3.76 A. The simulation temperature corresponded 
to 86 K (kT/e = 0.70) (slightly above the argon melting 
point of 83.8 K) with a crystal density of 2.50 X10"2 A"3 

(pa3 = 1.33). The liquid density was not reported. Since 
the coexistence properties of this modified LJ potential 
are not known and no specific fitting seems to have 
been done, there is no guarantee that crystal/liquid 
equilibrium conditions can be reached with these 
parameters. Periodic boundary conditions were used 
only in the directions perpendicular to the interface. 
On the crystal side, only two of the six total crystal 
layers were allowed to move while the liquid region in 
contact with the crystal was I k wide and terminated 
in a free surface. The static hard-sphere crystal/liquid 
interface model of Mutaftschiev and ZeIl5 was used as 
the initial condition. As in the hard-sphere models, a 
density deficit was observed at the interface. 
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Later, Bushnell-Wye, Finney, and Bonissent49 re­
peated the hep (0001) calculation using the same 
potential, temperature and densities as BGF, but using 
a much larger system (N=4378) with 10 movable crystal 
layers. In this larger calculation, no density deficit was 
seen, leading to the conclusion that it was an artifact 
of the use of a static crystal. Therefore, the static hard-
sphere models and simulations in which only a few 
crystal layers are allowed to move severely underesti­
mate the importance of the relaxation of the crystal 
phase in the formation of the equilibrium interface. It 
is difficult to compare this simulation and that of BFG 
with the other LJ simulations because of the difference 
in potential and the fact that the static crystal makes 
it difficult to assess the interfacial width. 

The fee (100) and (111) LJ interfaces were studied 
in detail by Broughton, Bonissent, and Abraham29,50 

using molecular dynamics to simulate a system of 1764 
atoms under LJ triple-point conditions. The density 
profiles for both faces were quite similar, with the crystal 
density oscillations decaying through the interface over 
a distance of about 6-8 lattice layers. Diffusion constant 
profiles for the two interfaces were calculated from the 
mean-squared xy (parallel to the interface) displace­
ment in a given layer. These transport profiles are 
identical for both interfaces within the statistical noise 
and are about Za in width. This insensitivity of the 
diffusion constant to the interfacial orientation is 
consistent with that seen subsequently by Laird and 
Haymet28 for the various bee interfaces of the inverse 
sixth power potential. An attempt was made to estimate 
the interfacial free energy from the interfacial excess 
potential energy and an estimate of the entropy i\ from 
"free volume" considerations, but the large errors 
inherent in such a calculation made these estimates of 
limited value. 

Landman, Barnett, Cleveland, and Rast51 performed 
a set of molecular dynamics simulations on an fee 
crystal/liquid Lennard-Jones system in which the 
crystal is randomly doped with a 10 % concentration of 
larger LJ impurity particles. The diameter and energy 
well depth ratios were chosen to correspond to an argon 
system with krypton impurities. In all, three interfaces 
were studied: (100), (110), and (111)—using 1500,1505, 
and 1512 particles, respectively. The interfaces were 
created by melting the upper layers of a crystal slab 
and letting the resulting three-phase system come to 
equilibrium. The very lower layers of the slab were 
held static. The equilibrium temperature is claimed 
to be about 5 % less than that expected for a pure argon 
system, although it is not quoted explicitly. Also not 
reported are the equilibrium crystal and liquid densities, 
making comparison with other simulations difficult. 
The quality of the density profiles is significantly poorer 
than that of other simulations reported here (especially 
for the (110) interface), but appear to give widths that 
range from 4-6 argon diameters (3.4 A). The diffusion 
profile widths are about the same for all three interfaces, 
approximately four argon diameters. The system was 
analyzed as if it were a one-component system; no 
uniquely two-component quantities, such as excess 
particle densities, were measured. The reasons for the 
choice of this system are therefore not clear. 

By far the most definitive set of interface simulations 
for the Lennard-Jones crystal/liquid system are those 
of Broughton and Gilmer. These studies of the struc­

ture52 and thermodynamics3031 of fee (100), (110), and 
(111) LJ crystal/liquid interfaces were part of an 
extensive six-part series on the bulk and surface 
properties of the LJ system. Like most of the earlier 
simulations, these were done under triple-point con­
ditions. The numbers of particles for the (111), (100), 
and (110) simulations were 1790, 1598, and 1674, 
respectively. The relative amounts of crystal and liquid 
were approximately equal to one another for all studies. 
Analysis of d — 2 diffusion constants, various layer-
dependent trajectory plots, pair-correlation functions, 
nearest neighbor fractions, and angular correlations 
yield a width of about three atomic diameters for all 
three interfaces. The density profiles appear to indicate 
an interface width that is larger than that predicted by 
the transport and local structure properties, a property 
also seen by Laird and Haymet28 in the inverse sixth 
power system. This is interpreted to be due to large 
density oscillations present on the liquid side of the 
interface. Such oscillations can be induced by relatively 
small potential energy variations because of the large 
first peak in the liquid structure factor. 

Broughton and Gilmer also attempt to measure the 
interfacial free energy for the three interfaces. Unlike 
the surface stress, which can be directly calculated from 
the pressure tensor, calculation of the interfacial free 
energy requires a much more complicated thermody­
namic integration. Using a series of cleaving potentials 
(see section III for details), Broughton and Gilmer 
calculate the reversible work necessary to form the 
interface in a four-step process. The first two steps 
involve the cleaving of the bulk crystal and bulk liquids 
into two parts. In the third step, the cleaved crystal 
and liquid are brought together and finally the cleaving 
potentials are slowly reduced until the crystal and liquid 
are in equilibrium contact. Summing the total inte­
grated reversible work for these four steps yields the 
7ci for the interface in question. The calculated 
interfacial free energies were shown to be only weakly 
dependent upon the interfacial orientation. The re­
sulting values are 0.35 ± 0.02, 0.34 ± 0.02 and 0.36 ± 
0.02 in units of e/a2 for the (111), (100), and (110) 
interfaces, respectively. 

To test the effect of system size on interfacial 
simulations, Galejs, Raveche, and Lie53 studied the LJ 
fee (100) and (111) crystal/liquid interface with mo­
lecular dynamics on systems of approximately 35 000 
particles at a reduced temperature of 1.15 and crystal 
and liquid coexistence densities of 1.024 and 0.936, 
respectively. These conditions are nearly identical to 
the earlier LJ fee (100) simulation of Toxvaerd and 
Praestgaard.46 After equilibration the (100) and (111) 
interface systems were run for 12 800 and 13 500 time 
steps, respectively (ht = 0.0046(HKrVe)1/2 or 10 fs when 
parameters corresponding to argon are used). The 
density profiles have widths of about seven lattice 
spacings for both interfaces, which corresponds to 5a 
for (100) and Qa for (111). The (100) density profile 
width calculated here is identical to that for an earlier, 
smaller (N = 1680) simulation46 on this system, indi­
cating that—except for improved statistics—there are 
no appreciable size effects. Individual layer profiles of 
the potential energy are also calculated and give 
interface widths of about Sa for both interfaces. Since 
the potential energy profile is a better indication of the 
local environment than is the density profile, this data 
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supports the observations in earlier simulations that 
the interfacial width is generally independent of in-
terfacial orientation. Analysis of contour plots for 
various lattice order parameters was interpreted to 
indicate that each interfacial layer actually consisted 
of islands of "crystallike" and "liquidlike" particles, 
contradicting the analysis of Tallon.41 

V. Results for More Complex Systems 

A. The Ice/Water Interface 

Water plays a unique role as a solvent, and the 
behavior of water near an interface is important for the 
microscopic study of macromolecules and polyelectro-
lytes,54 leading to a better understanding of interfaces 
between aqueous solutions and biomembranes55 and 
electrodes.56 In a series of simulations, the crystal/ 
melt interface for two different models of water have 
been investigated. First, Karim and Haymet57'58 studied 
the interface using the TIP4P59'60 model water inter­
actions. In order to determine the extent of model 
dependence in the results, Karim, Kay, and Haymet61 

later repeated these calculations using the SPC62 water 
model. These studies represent the first attempts to 
simulate the interface between a molecular fluid and 
its crystal and have special significance because angular 
dependent forces were included in the interfacial 
simulation. 

The structure of ice Ih has been studied intensely by 
experimental methods such as X-ray and neutron 
scattering, as well as NMR and laser spectroscopy.63 

Ice Ih is known to be one of the most thoroughly 
disordered crystalline substances. In addition to the 
prevailing oxygen disorder, the hydrogen atoms are also 
known to be disordered. On the basis of entropy 
arguments, the molecules in ice are known to obey the 
so-called "ice rules". Karim and Haymet chose to study 
an ordered ice Ih structure, since this offers a tractable 
starting point for theoretical investigations. The 
structure of bulk water has also been extensively studied 
by experimental methods.64'65 

Recent experimental studies of the vapor/solution 
interface with aqueous solutions66-68 have been able to 
probe the orientational order of the molecules in the 
interfacial region using second harmonic generation 
(SHG) methods. More recently, SHG optical scattering 
techniques have been used to probe the structure of 
vapor/water interface.14 These methods indicate that 
near the interface, on the liquid side, the water dipole 
is oriented toward the liquid. 

The ice/water interface can also be studied by 
methods applied to the water/vapor interfaces. How­
ever, to date no experiments have been published that 
probe the equilibrium structure of the ice/water in­
terface. Most experiments on the ice/water interface 
have focused on the growing interface,69-72 using light 
scattering or ellipsometry. However, the structure 
revealed by these experiments has been on the scale of 
hundreds of angstroms, and is probably due to the 
concentration gradient of impurities forced in front of 
the growing interface. In addition, it is likely that a 
nonequilibrium interface is much broader than an 
equilibrium one. Experiments with better length 
resolution are needed to probe the structure of the 
equilibrium ice/water interface. 
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Figure 10. The oxygen density profile for the folded TIP4P 
water interface: (a) results obtained from the larger simu­
lation; (b) the results obtained from the previous, smaller 
simulation (ref 58). The layers A through H are demarcated 
by the dashed lines. (Reprinted from ref 58. Copyright 1988 
American Institute of Physics.) 

The original ice/water interface simulations used the 
TIp4p59,6o m o d e l f o r w a t e r T h i s ig a r i g i d ) 4 _ c e n t e r 

model which gives good thermodynamic and structural 
properties for bulk water, over a wide range of tem­
peratures and pressures. In the TIP4P model, there 
are three charges on the water molecule: two of 
magnitude +q located on each of the hydrogen atoms, 
and one of magnitude -Iq on a site M located on the 
HOH bisector but not at the location of the oxygen 
atom. There is also a Lennard-Jones interaction 
between each oxygen site. These Coulomb and Len­
nard-Jones potentials are, respectively, as follows: 

*coui = E £ — (18) 

sites ><; '"y 

~\A' C2I 

where qi and q, refer to charges on different molecules 
and A and C are the Lennard-Jones (LJ) parameters 
for this model. The values of the parameters are 
tabulated in ref 58. In the simulations, the pair 
interactions are switched off smoothly between 8.1 A 
and 8.5 A. At and beyond 8.5 A the potential and force 
are both set to zero. 

The MD simulations were performed in the NVE 
ensemble using the Verlet algorithm with SHAKE73 to 
integrate the equations of motion for each molecule. 
The time step used during equilibration and averaging 
was 6 fs. For the calculations an antif erromagnetic (AF) 
structure of ice Ih was chosen. This structure has a net 
dipole moment of zero. 

The structure and thermodynamics of TIP4P ice are 
not known. For the purpose of this study, an exhaustive 
study of possible TIP4P ice Ih structures was not 
performed. Haymet and Karim were able to obtain ice 
Ih at a reasonable temperature and pressure, which 
was stable on the time scale of 100 ps without structural 
breakdown, and hence a stable ice/water interface under 
physical conditions reasonably close to experiment. The 
TIP4P model can be considered a good starting point 
for the study of the ice/water interface. 
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Figure 11. The diffusion constant (D) across the TIP4P 
water interface: (a) histogram of values in units of 10~5 cm2/s; 
(b) the density profile reproduced from the Figure 10. 
(Reprinted from ref 58. Copyright 1988 American Institute 
of Physics.) 

In order to construct the ice/ water interface, separate, 
equilibrated samples of ice Ih and bulk water were 
obtained. The ice was prepared from a unit cell with 
eight TIP4P water molecules in an antiferromagnetic 
structure. The coordinate axes were chosen such that 
the z axis corresponds to the crystallographic c axis. 
The molecules were oriented with the O-H bonds placed 
symmetrically about the 0 - 0 directions, since the 
H-O-H angle for the TIP4P molecule is not precisely 
the tetrahedral angle. The temperature profile of the 
system was also observed to be uniform. The dimen­
sions of the simulation box were 46.5 X 35.8 X 146.9 A. 
This system was equilibrated for 30 ps and averages 
taken over a further 48 ps. The average density profile 
is shown in Figure 10. Comparison of this density profile 
to that of an earlier smaller simulation67 indicates that 
the density profile is independent of system size. 

The diffusion constant across the interface provides 
a different, but equally valid, measure of the extent to 
which the interfacial structure is crystallike or liquidlike. 
The diffusion constant is calculated from the measured 
average mean square displacement (MSD) as a function 
of time for various layers through the interface. The 
oxygen center is used to label the position of a molecule. 
There are approximately 200 molecules per layer, and 
each molecule is identified with a given layer for 2.4 ps. 
A histogram of the diffusion constant profile is shown 
in Figure 11 together with the value of the diffusion 
constant calculated from a separate simulation on a 
bulk sample of 288 molecules with density 1.02 g/cm3. 
This bulk diffusion constant is somewhat smaller than 
the value in the layers of the liquid farthest from the 
interface, possibly due to the fact that the density of 
the layers in the interface simulation is not fixed 
precisely at 1.02 g/cm3. 

To determine if the structure within individual 
interface layers is homogeneous or if patches of localized 
(crystallike) and free (liquidlike) molecules exist in a 
given layer, continually restructuring dynamically with 
the time evolution of the system, the following analysis 
was performed. Dynamical trajectories of molecules 
in the different layers through the interface were 
calculated. At a fixed time (t = 0), each molecule is 
assigned to a layer, depending on its z coordinate. This 
molecule is then identified with that layer for the 
remainder of this trajectory analysis. The molecular 
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Figure 12. Oxygen atom trajectories projected on to the 
TEP4P water interfacial (xy) plane for the layers D, E, and 
F: (a) mean position of oxygen atoms are marked by an "X" 
or an "O" according to the criteria defined in the text; (b) 
actual trajectories of oxygen atoms. (Reprinted from ref 58. 
Copyright 1988 American Institute of Physics.) 

trajectories are then recorded for 6.6 ps, and the 
positions of the oxygen atoms noted every 0.12 ps. From 
these recorded configurations, the mean position of the 
molecules can be calculated. These trajectories are 
plotted in Figure 12b for layers D, E, and F. It is 
immediately apparent that layer D has disorder char­
acteristic of a liquid. Layer E shows some evidence of 
order, while layer F has large regions of order charac­
teristic of the crystal. For easier representation of the 
trajectories, the actual plots have been simplified in 
Figure 12a. Here the mean positions of the oxygen 
atoms are plotted. Those atoms with total displacement 
from the initial position less than 1.58 A and that are 
within a distance 1.1A of an ideal lattice site are denoted 
by an "O". All other molecules are denoted by an "X". 
These plots display the hexagonal ordering in layer F 
characteristic of the ice lattice, and the disorder in layer 
D characteristic of the liquid. 

In addition to the density profile and the diffusion 
constants, the time-averaged one-body orientational 
correlation functions of the water molecules were also 
measured. The polar orientation angle 6 and <p were 
measured for both the dipole direction vector and the 
H-H direction vector, defined in Figure 13, parts a and 
b, respectively. For the dipole unit vector, the quantities 

pD(0) do = (6). de o<e<v (20) 
and 

Pv(<t>) d<t> = ( t ) , d<t> 0<<t><* (21) 

were calculated. 
Thus, the angle 6 is averaged over all 0, and <j> is 

averaged over all 0. For a pure liquid with random 
orientation of the vectors 
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Figure 13. The definition of the angles 6 and 0 (a) for the 
water molecule dipole moment vector and (b) for the 
intramolecular hydrogen-hydrogen vector. The location of 
oxygen and hydrogen atoms are labeled by O and H, 
respectively. The crystallographic c axis is indicated. (Re­
printed from ref 58. Copyright 1988 American Institute of 
Physics.) 

and 

PD(fl) - I sin « 

P^) = t 

(22) 

(23) 

For the H-H direction vector, the definitions for PH(#) 
and PHW are identical to those in eqs 22 and 23 above. 
These orientational correlation functions are plotted 
in Figures 14-17. In order to smooth the noisy data, 
each point is replaced by the average over the five 
neighboring points on each side. Thus each point 
represents an average over 11 degrees. 

For the dipole quantity PD(O), layer F has the twin-
peaked structure characteristic of the crystal. Layer E 
has intermediate structure whose origin is now clear 
from the above description of the trajectories. Layer 
D contains some of the orientational order characteristic 
of the ice lattice. This layer has translational properties 
indistinguishable from that of the bulk liquid but 
includes some orientational structure of the ice lattice. 
Layer C and G are identical to the correlation expected 
from a pure liquid and a pure crystal, respectively. 
Similar analysis applies to the PDW and P H W corre­
lations. However, P H W shows structure extending into 
layer C also. Thus the presence of the crystal influences 
the liquid correlations as far away as layer C. Hence, 
the orientational order induced by the ice crystal 
propagates at least one, and possibly two layers deeper 
into the water than translational order. This could be 
an extremely important effect in electrochemical sys-

Figure 14. The probability correlation PD(S) of the TIP4P 
water dipole angle, defined by eq 20. From top to bottom, 
the curves correspond to layers G, F, E, D, and C. The squares 
are the points given by eq 22. (Reprinted from ref 58. 
Copyright 1988 American Institute of Physics.) 
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Figure 15. The relative probability PD(4>) of the TIP4P water 
dipole angle, defined by eq 21. From top to bottom, the curves 
correspond to layers G, F, E, D, and C. The squares are the 
points defined by eq 23. (Reprinted from ref 58. Copyright 
1988 American Institute of Physics.) 

terns and biological membranes, and will be studied 
further. In all cases symmetry about 6 = ir/2 is observed, 
indicating no symmetry breaking orientations through 
the interface. This is distinct from the case observed 
in simulations on the liquid/vapor interface.74 

In summary, on the length scale investigated here, 
size effects do not play a role in the structure of the 
interface, which is unchanged from the result obtained 
for a smaller system. There are definite regions in the 
simulation box corresponding to bulk liquid, bulk 
crystal and the interface. The interface is found to be 
stable for at least 100 ps and is found to be 10-15 A 
wide. 

In a latter work, Karim, Kay, and Haymet61 repeated 
the ice/water simulations using the simple point-charge 
model of water62 to study possible model dependence 
of the measured interfacial properties. Apart from the 
further decrease in the apparent bulk melting tem­
perature from 240 to 200 K, there is no significant 
difference. This constitutes evidence that the measured 
properties are reasonably independent of the particular 
model of water and plausibly represent the actual 
properties of the real ice/water interface. 
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Figure 16. The relative probability Pn0) of TIP4P water 
H-H angle, defined similar to eq 20. From top to bottom, the 
curves correspond to layers G, F, E, D, and C. The squares 
are the points given by the equation corresponding to eq 22. 
(Reprinted by permission from ref 58. Copyright 1988 
American Institute of Physics.) 
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Figure 17. The relative probability PH(<*>) of the TIP4P water 
H-H angle, defined similar to eq 21. From top to bottom, the 
curves correspond to layers G, F, E, D, and C. The squares 
are the points defined given by the equation corresponding 
to eq 23. (Reprinted from ref 58. Copyright 1988 American 
Institute of Physics.) 

B. The Silicon Interface 

Crystalline silicon, one of the technologically most 
important of materials, is prepared primarily via growth 
from the melt. Therefore, given the close connection 
between such crystal growth and the equilibrium 
interfacial structure and dynamics, the silicon crystal/ 
liquid interface is a prime candidate for study using 
computer simulation. 

Within the bounds of a classical simulation, silicon 
cannot be described by a simple pairwise additive 
interaction potential alone, due to the directional nature 
of its covalent bonding. To describe correctly the 
tendency toward tetrahedral bonding requires speci­
fication of three-body (or higher) contributions to the 
interaction energy. Using properties of crystal and 
liquid silicon in the vicinity of the melting point, 
Stillinger and Weber (SW)75 devised a potential that 
is successful in predicting the bulk liquid and crystal 
properties when simulated. This potential consists of 
a two-body interaction that features a short-ranged 
repulsion and an attractive well: 

<£2(r) = A(Br""4-l)exp[l/(r-a)] r<a 
= 0 r>a (24) 

A three-body term designed to account for the covalent 
bonding was also included 

03(ri,rj,rk) = h(rij,rikfijik) + h(rij,rjkfiijk) + h(rik,rkjfiik]) 

(25) 
where 

hirijAJjik) - X « p [ ^ + ^ ] (cos 6Hk + V3) 
2 

(26) 

and djik is the angle formed by atoms ;', i, and k. With 
distance r expressed in units of 2.0951 A and energy in 
units of 50 kcal/mol, the parameters optimized by SW 
are 

A = 7.049 556 277 

B = 0.602 224 5584 a = 1.8 X = 21.0 

(27) 

7 = 1.20 
(28) 

The Vs in the angular-dependent part of three-body 
potential ensures that the tetrahedral geometry is 
favored. This potential predicts correctly that the 
lowest energy crystal structure is a fee diamond lattice. 

Using the SW potential, Abraham and Broughton27 

simulated the (111) and (100) silicon crystal/melt 
interface under three-phase coexistence (triple-point) 
conditions. Using an estimate of 1760 K for the triple-
point temperature of SW silicon, the two interfaces 
were studied in separate molecular dynamics simula­
tions of approximately 1800 atoms each. Each simu­
lation box contained three phases ordered along the z 
axis: crystal, liquid, and vapor. Periodic boundary 
conditions in all three coordinate directions gives a 
simulation with three different interfaces: crystal/ 
liquid, crystal/vapor, and liquid/vapor. The system was 
equilibrated for 20 000 time steps (St = 3.8 X 10"16 s). 

The shift in the local environment from tetrahedral 
bonding in the crystal to the higher coordination 
numbers present in the liquid is best illustrated by 
individual layer profiles of the three-body energy 
density. For a perfect crystal the contribution of the 
three-body potential vanishes because each silicon atom 
has a tetrahedral environment in the diamond lattice. 
The higher coordination number (about 8) of the atomic 
environment in the liquid phase raises the three-body 
energy considerably, but this effect is compensated by 
a lowering of the two-body energy by bringing more 
atoms into the attractive two-body energy well around 
a given central atom. 

Figure 18 shows the number density profile and three-
body potential energy profile for the (111) and (100) 
silicon interface simulations. The profiles indicate that 
the (111) crystal/liquid interface is relatively sharp 
(about 3 reduced length units or 6 A wide) and that the 
(100) interface is somewhat broader with a width of 
about 8 A. 

Landman et al.76 also used the Stillinger-Weber 
potential to simulate the Silicon (100) and (111) crystal/ 
melt interfaces. The interfaces where created by 
melting the top half of a crystal slab by a local 
temperature increase. Periodic boundary conditions 
were employed only in the x and y directions (parallel 
to the interface). The deepest inner layers of the crystal 
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Figure 18. (a) Equilibrium number density, (b) three-body potential energy density profiles for the (111) interface, (c) equilibrium 
number density, and (d) three-body potential energy density profiles for (100) interface for the triple-point silicon system. 
(Reprinted from ref 27. Copyright 1986 American Institute of Physics.) 

were kept fixed and the z direction length was such 
as to allow a region of vapor (vacuum) beyond the liquid 
phase. For the (100) interface, two system sizes were 
studied: 28 X 36 and 24 layers X144 particles per layer, 
respectively. For the (111) interface a system that is 
20 X 49 was used. Equilibration for about 150 000 time 
steps (about 60 ps) gives a melting temperature of about 
1665 K (the experimental melting temperature is 1683 
K). As seen by Abraham and Broughton, the (111) 
interface is relatively sharp. The (100) interface is 
broader and a side view of the interface showed that 
this interface was made up of alternating (111) and 
(111) facets in a zigzag pattern. Landman et al. also 
see similar faceting in experiments on real silicon 
interfaces performed in situ. The size of the facets in 
the experiments (3 ̂ m) are much larger than those seen 
in the simulations that are only a few angstroms across. 
The size disparity indicates that this is not an equi­
librium phenomenon but a kinetic one; that is, a (111) 
interface melts more slowly than a (100) one. 

VI. Theory of the Crystal/Liquid Interface 

Early theories of crystal/liquid interfaces were based 
on phenomenological models of interface structure that 
were extensions of models perhaps more suited to other 
types of interfaces. At one end are models such as that 
due to Jackson77 that view the interface as being 
relatively sharp with a clear distinction between "liquid" 
and "crystal" particles even at the interface. At the 
other are theories of diffuse structureless interfaces78 

that, while useful for liquid/vapor interfaces, are not 
ideal for the highly structured crystal/liquid case. 

To date, the only microscopic theories that are well 
suited to calculate both the detailed structure and 
thermodynamics of a crystal/liquid interface are those 
based on various forms of density functional (DF) 
theory, which is a procedure for determining the free 
energy associated with a given spatially dependent 

single-particle density, p(r). That is, the free energy is 
determined as a functional of p(r). The equilibrium 
free energy and microscopic density can then be found 
by minimizing this functional over the space of single-
particle densities consistent with the ensemble under 
study. A detailed description of basic classical DF 
theory and its mathematical justifications is presented 
by Evans.79 Note that there is no existing DF theory 
for the diffusion profile. 

Since coexisting crystal and liquid phases have 
different bulk densities in general, a DF theory for the 
crystal/liquid interface is best constructed within a 
grand canonical ensemble framework. According to 
Mermin,80 for a system at fixed temperature, T, chemical 
potential, n, and external single-particle potential, v(r) 
there exists a functional J7[p(r)], independent of v(r) 
and /x, such that the functional 

«[p(r)] = ?[p(r)] + JdT [V(T) - M] (29) 

is a minimum for the correct equilibrium density p(r) 
subject to the external potential. The value of fi at this 
minimum is the value of the grand potential. (For 
systems restricted to constant density, i.e. canonical 
ensemble, one minimizes the functional 7 itself to give 
the equilibrium Helmholtz potential.) 

The functional 7[p] can be written as the sum of an 
ideal part, J?idtp], and an excess part, 7ex[p], due to the 
interparticle interactions: 

? [p] = 7id[p] + ?ex[p] (30) 

The ideal part is known exactly, and for a monatomic 
system is given by 

7id[p] - J d r p(r) [ln[A3p(r)] - 1] (31) 

where A is the thermal wavelength. The excess part is, 
in general, unknown; therefore, the central task of a 
DF theory is to provide a suitable approximation for 
this quantity. 
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Density functional theories begin by defining the 
n-body direct correlation functions, c(n)(ri,..., r„;[p]), 
in terms of the functional derivatives of 7« [p]: 

For arbitrary p(r), the correlation functions, like J7[p] 
itself, are unknown, except in the homogeneous density 
(liquid) limit, where, due to the advances in liquid state 
theory over the past three decades, they can be 
determined for n < 2. Density functional theories 
crystal/liquid phase coexistence exploit this knowledge 
of the liquid correlation functions to try and obtain 
approximations for those in an inhomogeneous phase. 

Before the calculation of the interfacial properties 
can proceed, the density functional theory must be used 
to determine the equilibrium freezing properties of the 
system at the required temperature. The structure and 
thermodynamics of the coexisting liquid and crystal 
phases are needed to determine the boundary conditions 
of the density profiles on either side of the interface. 
The equilibrium freezing calculation may be summa­
rized as follows. First, the periodic single-particle 
density of the crystal is parametrized so that the 
minimization of the free-energy functional can be 
performed. The most general parametrization for a 
given lattice type is the Fourier series 

p(r) = p,[l + v + £M(k)e!'k-r] (33) 
(k) 

where pi is the bulk liquid density, n is the fractional 
density change on freezing, k represents the set of 
reciprocal lattice vectors (RLVs) corresponding to the 
particular lattice type under study, and pifi(k) is the 
Fourier component of the density corresponding to the 
wavevector k. A simpler, but less general, parametri­
zation that is commonly used expresses the density as 
a sum of Gaussian peaks centered at the lattice sites 

p(r) = (a /* ) 3 / 2 £ exp(-a|r - RJ2) (34) 

where the R; are the real space lattice vectors and a 
measures the width of the Gaussian peaks. For fee 
systems, the Gaussian parametrization has been found 
to give almost identical freezing results as the more 
complicated, but more general Fourier expansion.81 

After parametrization of the crystal density, the free 
energy (grand or Helmholtz) is minimized in such a 
way as to ensure the thermodynamic conditions of phase 
coexistence are satisfied, that is, the pressure, tem­
perature, and chemical potential of the crystal phase 
equals that of the liquid phase. The p(r) at the 
minimum is the equilibrium crystal density. (For 
further information about this aspect of the calculation, 
there are several reviews in the literature.82-84) 

Once the equilibrium phases have been determined, 
a parametrization of the interfacial p(r) is constructed 
by allowing the order parameters used in the equilib­
rium calculation to vary with z, the coordinate per­
pendicular to the interface. The shape of these 
z-dependent order parameter profiles, as well as the 
interfacial excess free energy, can then be determined 
from the minimization condition, together with the 
boundary conditions [the order parameters must tend 
toward their crystal (liquid) equilibrium values as z 
goes to +<» (-«>)]. Many authors also assume that the 

Fourier components vary slowly across the interface 
allowing a square-gradient approximation to be used. 

The first attempt to apply the density functional 
formalism to the problem of the crystal/liquid interface 
was the work of Haymet and Oxtoby (HO).85 Their 
approach was based on an earlier theory of freezing 
due to Ramakrishnan and Yussouff86 that HO gener­
alized to a nonlinear theory and reformulated into the 
language of classical density f Junctionals. In this theory, 
the free energy of the inhomogeneous phase (here, the 
crystal) is expanded in a functional Taylor expansion 
about a reference liquid density. This expansion is 
subsequently truncated at second order to yield 

#7ex[p] = #7ex(p) - Cl
(1)(p) JdT1 [P(T1) -pl-

\ffdi, dr2 C1̂ (Ir1 - T2^p)Ip(T1) - p][p(r2) - p] + ... 

(35) 

In the HO formulation, the reference density is chosen 
to be that of the equilibrium liquid. 

The Fourier parametrization, used in the original 
paper by Haymet and Oxtoby,85 is more general than 
the Gaussian, but is more complex. In practical 
calculations, the expansion for p(r) must be truncated 
after the first few Fourier components. Hence, Haymet 
and Oxtoby chose the bcc/melt interface to study 
because, unlike the fee system (which at that time was 
the only crystal/melt system studied by simulation), it 
is possible to find physically reasonable solutions to 
the equilibrium freezing problem for a small number 
of Fourier order parameters. (Unfortunately, subse­
quent calculations have shown that these bcc solutions 
are no longer obtained when a higher level theory with 
more Fourier order parameters is considered.) This 
very simple level of density functional theory predicts 
the 10-90 width of the fractional density change i\ for 
both the bcc (100) and (111) interfaces (the (110) was 
not studied) to be approximately given by 

V9O = SJt-C"^)]1 7 2 (36) 

where c"(k\) is the second derivative of the liquid two-
particle direct correlation function evaluated at the 
magnitude of the nearest neighbor RLV of the crystal. 
For the inverse sixth power potential bulk liquid at 
p* = 0.6833 and T* = 0.1, c"(k\) was measured in a 
simulation of 432 particles to be about -1.17a3. This 
leads to a 10-90 width of about 4. Iff or 6 and 10 lattice 
planes for the (100) and (111) interfaces, respectively. 
Defining MI to be the Fourier component of those nearest 
neighbor reciprocal lattice vectors at a 45° angle to the 
interfacial plane, the splitting of the JJ(Z) and n\(z) 
profiles, as described by Haymet and Oxtoby,85 leads 
to a interfacial peak height that would be slightly 
broader than this n profile, but by only at most a few 
tenths of a. Hence, this theory leads to interface widths 
that are similar to, but slightly smaller than, the widths 
measured in simulations of Laird and Haymet.28 

Recent work on the density functional theory of 
crystal/liquid interfaces has focused on the less complex 
Gaussian parametrization, which in principle provides 
a better representation of the bulk crystal freezing than 
a severely truncated Fourier expansion (but still less 
accurate than a full Fourier expansion). Moore and 
Raveche87 make the ansatz that the single particle 
density of the interfacial system can be written 

file:///ffdi


Figure 19. Theoretical density profile for the (111) hard-
sphere interface as calculated by Oxtoby and McMullen using 
a four-parameter Gaussian density parametrization. (Re­
printed from ref 89. Copyright 1988 Gordon and Breach 
Science Publishers, Inc.) 

p(r) = P1+ f(z) Ep1W-P1] (37) 
where pi is the bulk liquid density, p8(r) is the bulk, 
spatially varying crystal density (given by eq 34), and 
f(z) is a switching function that goes from 0 to 1 as the 
interface is traversed from the bulk liquid to the bulk 
crystal. They then minimize a second-order Helmholtz 
free energy functional (also using a square-gradient 
approximation) using a hyperbolic tangent parame­
trization of f(z) to obtain the interfacial properties. 
Application of their theory to the fee (100) and (111) 
Lennard-Jones interfaces gives results that are very 
sensitive to the input parameters. The resulting range 
of results for a reasonable spread of input values does 
overlap with the simulations on this system, but is rather 
large, making comparison difficult. However, com­
parison of the theoretical results for the interfacial width 
and free energy for the two interfaces studied, (100) 
and (111), for a given realization of the input parameters 
indicates a very strong dependence on the interfacial 
orientation, in direct contradiction to the simulation 
results. 

McMullen and Oxtoby88,89 have taken a significant 
additional step by allowing the Gaussian width pa­
rameter a to vary with z. The form of this variation 
is determined by making the ansatz that the zero 
magnitude (bulk density) and first non-zero magnitude 
RLV Fourier components of p(r) have shifted hyper­
bolic tangent profiles. This gives a four-parameter form 
(representing the widths and centers of the two profiles) 
for the single-particle density. Minimizing the same 
grand potential functional used by Haymet and Oxtoby, 
without invoking the square-gradient approximation, 
McMullen and Oxtoby examine the hard-sphere in­
terfaces. The predicted interfacial free energies for the 
(100), (110), and (111) interfaces are nearly identical 
with an upper bound of 1.IkTIa2. Using a slightly 
different ansatz in which relaxation of the spheres away 
from the bulk crystal lattice sites is allowed only in the 
direction perpendicular to the interface (z direction), 
Oxtoby and McMullen89 obtained an upper bound on 
7ci of 4.OkT/a2, showing a sensitivity of the results on 
the specific parametrization used. Figure 19 shows the 
results using the second ansatz for the density profile 
of the (111) interface. Although no hard-sphere crystal/ 
melt interface simulations have been performed to make 
a direct comparison possible, the interfacial structure 
they obtain does compare very favorably with existing 
simulations of the Lennard-Jones interface. 
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Using a similar second-order functional, Mikheev and 
Trayanov90 studied the fee (111) crystal/liquid interface 
of a hard-sphere system using a Gaussian density 
parametrization for the crystal phase. The decay of 
the crystal peaks across the interface into the liquid 
phase is described by two order parameters governing 
the decay of the Fourier components of the Gaussians 
perpendicular and parallel to the interface, respectively. 
Minimizing the free energy yields the result that the 
ordering perpendicular to the interface decays at a 
slower rate than that for the density oscillations parallel 
to the interface, which have a relatively sharp density 
profile. Again, the results cannot be directly compared 
to simulation, but they are consistent with the existing 
Lennard-Jones calculations. 

The hard-sphere crystal/liquid interface has also been 
studied by Curtin,91,92 who minimized a grand potential 
functional derived using a weighted density functional 
formalism.93 Initiated by Tarazona,94 this weighted 
density functional method is a modification of the usual 
Local Density Approximation (LDA) for inhomoge-
neous systems. In the LDA, the free energy density at 
a point r in a system with inhomogeneous single-particle 
density p(r) is given by the free energy of a homogeneous 
system, evaluated at the value of the single-particle 
density at point r. However, for very strongly inho­
mogeneous systems such as a crystal, the LDA breaks 
down. To remedy this, the local density is averaged 
over a small region using a weighting function w(\ri -
r2|;p) to create a coarse-grained or "weighted" density 
P(r): 

P(T1) = / d r 2 P(T2)W[Ir1 - T2HP(T1)] (38) 

The local density approximation is then applied to this 
weighted density; that is, the free energy functional is 
given by 

/W[p]» Jdrj8/0[p(r)]p(r) (39) 

where /o(p) is the excess Helmholtz free energy per 
particle of a homogeneous system of density p. The 
task of a successful weighted density functional theory 
is to choose a weighting function that leads to a good 
description of the structure and thermodynamics of 
the inhomogeneous phase. 

In the weighted density approximation (WDA) of 
Curtin and Ashcroft,93 the weighting function w(|ri -
r2|;p) is chosen such that both the free energy and the 
two-particle direct correlation function c(2) (as defined 
in eq 36) are exactly reproduced in the limit of a 
homogeneous density. This requirement leads to a 
differential equation for the weighting function. The 
resulting functional gives very good results when applied 
to the problem of hard-sphere freezing. Using the WDA 
and a Gaussian two-parameter fit for the single-particle 
density through the interface similar to that of Mc­
Mullen and Oxtoby,88 Curtin9192 examined the fee (100) 
and (111) hard-sphere crystal/liquid interfaces. The 
theory predicted both interfaces to be about four lattice 
planes in width with 7(ni) = 0.6ZkTIa2 and YUOO) = 
0.66k Tl a2. These values are more than a factor of 2 
smaller than those predicted by McMullen and Oxto­
by.88-89 Since the calculations differ in both the 
functional and the density parametrization used and 
no simulations exist for this system, it is difficult to 
comment on this discrepancy. 
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Table I. Summary of Crystal/Liquid Interface Simulations' 

system 

(r/<r)"12 

(r/a)"6 

LJ 

water (TIP4P) 
water (SPC) 
silicon 

ref(s) 

39,40 
41 
25,43 
25 
25 
25 
26,45 
46 
47c 

48"/ 
49"^ 
29,50 
29,50 
30,31,52 
30,31,52 
30,31,52 
53 
53 
57,58 
61 
27 
27 
75d 

75rf 

(hkl) 

fee (100) 
fee (111) 
bee(100) 
bee (100) 
bee (110) 
bee (111) 
fee (100) 
fee (100) 
fee (100) 
hep (0001) 
hep (0001) 
fee (100) 
fee (111) 
fee (100) 
fee (110) 
fee (111) 
fee (100) 
fee (111) 
ice Ih basal 
ice Ih basal 
dia. (100) 
dia. ( I l l ) 
dia. (100) 
dia. ( I l l ) 

T* 

2.0 
-
0.10 
0.10 
0.10 
0.10 
0.72 
1.15 
1.20 
0.70 
0.70 
0.67 
0.67 
0.617 
0.617 
0.617 
1.14 
1.15 
240K 
200K 
1760K 
1760K 
1665 K 
1665 K 

Pc 
1.427 
-
0.70 
0.70 
0.70 
0.70 
0.986 
1.024 
1.12 
1.33 
1.33 
0.963 
0.963 
0.946 
0.945 
0.944 
1.024 
1.024 
0.0311 A"3 

0.0311 A"3 

0.0489 A"3 

0.0489 A"3 

-
-

Px 
1.374 
-
0.687 
0.687 
0.687 
0.687 
0.80 
0.941 
0.97 
-
-
0.818 
0.818 
0.828 
0.830 
0.823 
0.936 
0.936 
0.0341 A"3 

0.0341 A'3 

0.0533 A"3 

0.0533 A"3 

-
-

N 

7680 
6480 
2160 
3430 
3500 
3600 
1500 
1680 
432 
860 

4378 
1764 
1764 
1790 
1598 
1674 

35253 
32353 
8640 
1440 

«1800 
«1800 

3456 
980 

Wf 

4-5<r 
-
5.7* 
6.4<7 
9.0(T 
7.0(T 
7-8(T 
5<r 
3(T 
-
-
5-6(T 
6-8(T 
5(T 
5(T 
6(T 
5(T 
6(T 
10-15 A 
10-15 A 
8A 
6A 
g 

W/m 
layers 

6-7 
5 
8 
9 
9 
17 
9-10 
6 
4" 
-
-
6-8 
(6-8) 
7 
9 
7 
7 
7 
5-8 
5-8 
6 
4 
-
-

WD 

3.5(T 
-
3.9(T 
3.8(T 
3.9a 
4.0(T 
«4<r 
-
-
-
-
3(T 
3(T 
3(T 
3(T 
3(T 
-
-
«10 A 
-
-
-
-
-

Laird and Haymet 

WD in 
layers 

5 
-
5.5 
5.4 
3.8 
9.8 
5 
-
-
-
-
4 
3 
4 
5 
3 
-
-
5 
-
-
-
-
-

Td 
0.46(4/(T2)' 
-
-
-
-
-
-
-
-
-
-
-
-
0.34(e/o*) 
0.36((/(T2) 
0.35((/(T2) 
-
-
-
-
-
-
-
-

0 For the width parameters, the numbers in parentheses represent the width in units of the lattice spacing. A dash indicates that 
the quantity was not calculated. Unless otherwise indicated, temperatures, and densities are given in the appropriate reduced units 
using parameters given in the text.b Surface stress was calculated.c Truncated LJ potential. d Potential energy profile width.' At least 
one static solid layer.f Modified LJ potential. g Interface faceted. 

On the basis of the hard-sphere result, Curtin92 also 
used perturbation theory to calculate the interfacial 
free energy for the LJ fee (111) interface under near 
triple point conditions, yielding a value of 0.43«/ a. This 
estimate is not too different than the Broughton and 
Gilmer31 simulation value of 0.35e/<r. 

McMullen and Oxtoby95 have also extended their 
formalism to include molecular systems. The approach 
is based on a spherical harmonic description of the 
orientational degrees of freedom of the molecules. The 
theory is relatively complex and was not applied to any 
specific system, but in principle could be applied to 
such systems as the ice/water interface and other liquid/ 
crystal interfaces. 

It should be noted that, with regard to density profiles, 
direct comparison of simulation and theory is, at 
present, hindered by the fact that the systems studied 
by each method form nonoverlapping sets. It would 
certainly be more useful to the progress of the field if 
future investigations were more closely coordinated. 

Although the more recent density functional interface 
theories mentioned here give reasonable results for 
systems with short-ranged potentials such as the hard 
sphere and Lennard-Jones interactions, they cannot 
be applied to longer ranged systems whose equilibrium 
crystal structure at freezing is bcc. The reason for this 
is due not to flaws in the interface theories themselves, 
but rather to the difficulties in the application to a bcc 
system of the underlying freezing theories on which 
the interface theories are based.36,37 Hence, consistent 
boundary conditions for the interface calculation cannot 
be obtained, and direct comparison with the present 
simulations is not yet possible. The original DF 
calculations, which used just several Fourier compo­
nents for simplicity, certainly need to be extended. It 
is hoped that the simulations reviewed here will provide 
both an incentive to explore further these theoretical 

issues, and "experimental" data with which to test 
candidate theories. 

VII. Summary 

In sections IV and V above, we survey over 20 
computer simulations of the equilibrium crystal/liquid 
interface. These simulations cover a variety of systems. 
To facilitate comparison, we summarize the principal 
results of these simulations in Table I. 

A principal result of the simulations on simple systems 
is that the width and excess free energy of the interfacial 
region (measured from the diffusion and potential 
energy profiles) are relatively independent of the 
interfacial orientation. The apparent differences in the 
density profile widths among the various crystal faces 
are due primarily to differences in packing geometry 
and not to actual differences in the interfacial envi­
ronment. For systems with directionally dependent 
interactions, such as water and silicon, the question of 
the degree of orientational dependence of the interfacial 
quantities remains open, due to the small number of 
simulations to date. 

There are some outstanding unresolved issues. A 
general method for predicting the crystal/liquid surface 
free energy is lacking, despite the elegant method of 
"cleaving potentials" developed by Broughton and 
Gilmer.31 It is fair to say that a similar lack of technique 
exists for real experiments on crystal/liquid interfaces. 
At a lower level of importance, there are unresolved 
discrepancies concerning the existence or otherwise of 
islands of crystallike and liquidlike particles in snap­
shots of crystal/liquid interfaces. There is also a 
question of time scale for interchange between liquidlike 
and crystallike behavior (if it exists). This issue needs 
to be resolved in order to establish whether the 
properties of the system in the interface, which are 
unambiguously intermediate between crystal and liq-
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uid, result from a time-average of crystal and liquid 
properties or (as we believe) from a uniform, time-
independent region of the system that simply possesses 
intermediate properties. Finally, more detailed sim­
ulations of particle diffusion toward and away from the 
interface are clearly needed. With this foundation, 
rapid process in molecular level simulations of non-
equilibrium interfaces seems probable. An immediate 
goal will be the heat flux profile for the moving interface 
near equilibrium. 
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