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/ . Introduction 

Much synthetic heterocyclic organic chemistry in
volves specially designed reagents which are readily 
generated and then used to provide molecules with built-
in functional moieties for further exploitation. Im
portant examples of such reagents are /3-enaminonitriles 
03-aminoalkenonitrile) which have proven to be valuable 
tools in the synthesis of a wide variety of unique 
heterocyclic systems such as pharmaceuticals, fungi
cides, and solvatochromatic dyes. Numerous reports 
in the literature concerning their applications attest to 
their growing importance. Although reviews covering 
the chemistry of enamines,1 heterocyclic enamines,2 and 
heterocyclic /3-enaminonitriles3-6 have appeared, it is 
hoped that this review will remedy the lack of a more 
comprehensive review by providing an up-to-date 
coverage of the recent literature. This review covers 
the literature up to 1992 and considers the properties, 
reactions and applications of open-chain /3-enamino-
nitriles (1-4). 3-Aminocrotononitrile (1,2, R = CH3) 
and diaminomaleonitrile (DAMN) (3) are discussed in 
particular depth due to their frequent appearance in 
the literature as well as their potential biomedical and 
industrial importance. 
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/ / . Molecular Structures and Spectral Properties 

/3-Enaminonitriles exist in two stereoisomers. In 
Z-form (2), the amino and cyano groups are in adjacent 
positions on the double bond. An intramolecular 
hydrogen bond makes the Z-form more stable than the 
E-isomer (1) .7 In the case of /3-aminocrotononitrile (1,2, 
R = CH3), it has been established that isomerization 
in either solution or the solid state can occur.8 A mixture 
of E- and Z-isomers, which are readily distinguishable 
by 1H NMR, is formed. Only the Z-isomer (2) has a 
coupling constant of 0.8 Hz for the CH3. In addition 
the Z-isomer absorbs in UV spectroscopy9 at shorter 
wavelength and usually gives a more intense absorption 
band at (X11111x (MeCN) = 254 nm,« = 11.77 X 104) than 
does the ^-isomer at (Amax (MeCN) = 255 nm, € = 1.54 
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Table 1. 1H NMR Spectra of Enaminonitriles 
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X 104). The position of the photoequilibrium, as 
established by UV absorption data, is at (75 %) Z form 
and (25%) E form.10 Spectroscopic studies of enam
inonitriles also showed that the enamine tautomeric 
structure 5 is preferred over the imino structure 6.7'11-17 

CN 
I 
C— 
Il 
c — 
I 
NH2 

CN 
I 

H C -
I 
C— 
I l 
NH 
6 

Two absorption bands found in the NH-stretching 
region of the IR are compatible with a primary amine 
groups (NH2).16 Furthermore, the lack of two IR 
absorption nitrile stretching bands led to the conclusion 
that enaminonitriles exist solely in form 5 rather than 
in an equilibrium mixture of 5 and 6. 1H NMR appears 
to support this conclusion, since the NH signal appears 
in a position typical for an amino group.8,18,19 

13C NMR has also been used to study the structure 
of enaminonitriles in order to obtain information on 
the transmission of electronic effects of the amino group 
and their influence on the reactivity of the enamino-
nitrile system.20 In cases where a considerable variation 
was observed in the contribution of the amino moiety 
to the chemical shift of the olefinic carbons this was 
attributed principally to a variation in the mesomeric 
contribution to the electron density.21-24 Similarly 1H 
NMR and nuclear Overhauser effects (NOE) studies of 
a series of 3-substituted 3-aminoacrylonitriles show that 
the olefinic proton is more shielded and that the proton-
proton long-range coupling constants J (HC=CH3) and 
J (HC=CNHz) are larger in the Z-isomer (2) than in 
the isomer (1) (Table I).25 

Huckel's LCAO-MO method has been used to study 
the ir-electronic structures of some enaminonitriles.26 

It was shown that conjugation of the electrons with the 
cyano group decreases the 7r-bond orders of the C—NH 

and C=C bonds at the same time as increasing the 
ir-bond orders of the C—CN bonds. The 7r-electron 
distribution and densities of/3-aminocrotononitrile are 
given in structure 7. 

C H 3 1.936 
0 2751 

H 2 N.£2ZZc^ i c ^C^N 
1.878 0.808 1.222 0,859 1.296 

It should also noted that the resonance hybrid 
enamine structure (cf. I, II, III) imparts certain nu-
cleophilic character to some atoms while other atoms 
are electrophile,7 since the Michael addition features 
so prominently. 
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/ / / . Methods of Preparation 
Several methods have been reported for the synthesis 

of /3-enaminonitriles, most of these involve the dimer-
ization of substituted nitriles. 

A. Preparation of /̂ -Enaminonitriles 
The dimerization of acetonitrile using sodium in 

organic solvents is the most common approach for the 
synthesis of 0-aminocrotononitriles.7'27-36 Treatment 
of acetonitrile with sodium gave /3-aminocrotononitrile 
(1,2,R = CH3) in quantitative yield. The reaction is 
processing via a free-radical mechanism (Scheme I).7 
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Scheme 1 
CH3CN + Na* »- NaCN + ' C H 3 
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This is only reported mechanism for such a reaction 
and looks least likely in view of lack of evidence as 
isolation of other products that should be formed in 
such radical reactions. A mechanism including for
mation of carbanion Na+ -CH2CN looks more logical. 
Cross condensation between acetonitrile and aromatic 
nitriles37-39 or higher aliphatic nitriles leads to substitute 
#-enaminonitriles (1,2,R = alkyl or aryl).40 

B. Preparation of Diaminomaleonitrlle 

Diaminomaleonitrile (3) is readily formed in dilute 
aqueous solutions of HCN at room temperature 
(Scheme 2).34,41 The initial step is the dimerization of 
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3 

tonitrile (11) using a base catalyst gives the title 
compound in good yields after only short reaction 
times.46'47 

CCl3CN + XCH2CN 

11 12: X = CN, CO2C2H5, COC6H5 
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D. Preparation of 2-Amlno-1,1,3-Tricyanopropene 

Although the self-condensation of malononitrile can 
produce dimers, trimers, or, in certain cases, polymer48 

the reaction may be controlled to give the dimer as the 
main product. The reaction can be catalyzed by a base, 
acid, or a Lewis acid. The a-methylene group in 
malononitrile is sufficiently acidic to afford a carbanion 
in the presence of a base catalyst; the carbanion can 
then react further to produce the dimer (Scheme 4J.48 
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A Thorpe condensation of two malononitrile molecules 
yields the dimer 4b which exists mainly in the enamine 
form.13-49-53 

HCN to iminoacetonitrile which combines with another 
molecule of HCN to give the aminomalononitrile. The 
latter reacts with another HCN molecule to give the 
isolable product diaminomaleonitrile (DAMN) (3). 
DAMN is the lowest oligomer isolable from an aqueous 
solution of HCN, and its formation can be readily 
assayed by using its characteristic UV absorption band 
(Xm« = 296 nm, ir = 13 50O).34 

The postulated stepwise condensation of hydrogen 
cyanide to form DAMN is supported by the formation 
of the maleonitrile derivatives 10 via the intermediate 
9 (Scheme 3).42 Addition of formaldehyde, acetalde-

Scheme 3 
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R= (CH3J3C-, (CH3J2CH-, CgHn-, C2H5-

hyde, or acetone was reported as accelerating the 
formation of diaminomaleonitrile, although the mech
anism of this process is unclear .^ In addition, halogens 
or Cu2+ ions can catalyze the tetramerization of 
hydrogen cyanide.44'45 

C. Preparation of 3-Amlno-2-Substltuted-
4,4,4-TrlchlorocrotononHriles 

The condensation of active methylenecarbonitriles 
XCH2CN (X = CN, CO2R, COPh) with trichloroace-

IV. Utility In Heterocyclic Synthesis and 
Synthesis of Monocyclic Azlnes 

A. Synthesis of Pyridines 

It has been reported that the dimerization of 0-ami-
nocrotononitrile (1) under various reaction conditions 
produces 2,4-lutidine (19).54-69 Sato59 has reported a 
convenient method for the preparation of 19 by means 
of the polyphosphoric acid (PPA) catalyzed self-
condensation of 1. In contrast, under milder conditions 
1 gave dienaminonitrile 17 (13% yield), in addition to 
the 2,4-lutidine (19). Intramolecular cyclization of the 
dienaminonitrile 17 when heated in PPA or an alkaline 
solution gave its isomer 19 (Scheme 5). 
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The antischistosomal agents pyridylpyridazines 24 
were synthesized via the reaction of /?-aminocrotono-
nitrile (1) with malononitrile (13) to yield the pyridine 
derivative 22. 22 couples easily with suitable aryldia-
zonium salts to form 23 which after a Japp-Klingeman 
reaction yields the desired product 24 (Scheme 6).60 

2,4-Bis(sec-alkylamino)pyridines 31 were obtained 
from the reaction of malononitrile (13) with sec-alkyl 
halides 25 under Friedel-Crafts condition. The reaction 
is assumed to proceed via intermediate of enaminoni-
trile 28 (Scheme 7).61 

One example of a large number of /3-enaminonitriles 
of the general formula ArNHC(RO=C(X)CN which 
have been cyclized using ethyl phosphate (PPE), is 33 
which was prepared from 32.62'63 

NH 

c a x E - oa>COiB 
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Et Et 

32 33 

The first reported synthesis of dihydropyridines 40 
involved the condensation of /?-enaminonitrile 34 and 
aromatic aldehydes 3S.64 1,4-Dihydropyridines 40 have 
had widespread use in recent years in medicinal 
chemistry.65-76 The synthesis of 1,4-dihydropyridines 
40 (Table 2) takes place according to (Scheme 8);76'77 

the reaction of aldehydes with /3-enaminonitrile 34 yields 
the benzylidene derivatives 36 which in turn reacts with 
34, in acetic acid, to form the intermediate diamines 
37. The latter was isolated from the reaction of 34 with 
the aldehyde 35 in ethanol at room temperature.78 The 
diamines 37 are readily converted into the 1,4-dihy
dropyridines 40 in acetic acid solution. Evidence for 
Scheme 8 was found by O'Callaghan et al.77,78 who 
isolated the dihydropyridine 39 by trapping the inter
mediate 38 using excess aldehyde 35 in the reaction 
mixture. The effect of the basic reagents in non-
hydroxylic solvents on the Hantzsch-type 1,4-dihydro-
pyridine 40 has been discussed briefly by Tinker.79 

Treatment of the dimedone 41 with aldehydes 42 
and (3-aminocrotononitrile (1) gave 44. The reaction 
was initiated by the condensation of dimedone with 
the aldehyde to give the intermediate 43, followed by 
the addition of 1 and cyclization.80 

CHR 

V N * 0
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[ J + RCHO — - 1 j 

M e - ^ M e 

41 
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O R 

r V v C N 
MeN 

" V ^ M e ' ^ " " N " 'Me 
Me Me 

43 

Me-^ -N 'S 

44 

Nucleophilic attack by 1 at the C-2 of the acyl-
chromones 45 produces the benzopyranopyridines 47. 
The reaction is believed to involve the intermediate 46 
(Scheme 9) .81 In a similar reaction, 1 with the aldehyde 
48 gave good yields of the product 49.82,83 

The reaction of carbethoxymalonaldehyde (52) with 
tosyl chloride followed by treatment with /3-aminocro-
tononitrile (1) produce the biologically and medicinally 
important nicotinic acid derivatives 55. Scheme 10 
shows the mechanism proposed by Torii et al.84-85 The 
first step of which involves the sulfonylation of 52 to 
form the /3-tosyloxyacrylate 53. In the subsequent step, 
the intermediate 53 undergoes a nucleophilic attack by 
the enamine 1 to give the intermediate 54. The latter 
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Me 
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Me 

yield, % mp or bp (mm), 0C formula 
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undergoes base-catalyzed elimination of sulfonic acid 
produces the nicotinic acid derivatives 55 (Scheme 10). 
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Masked 1,3-dialdehydes, such as the iminium salts 
57 or the enaminoacetals 58, are condensed with either 
/3-amino nitriles or the carboxylate 56 to give trisub-
stituted pyridines 60 in 52-95% yield.86-87 

The amino tricarbonitrile 4b behaved as an ami-
noacrylonitrile and reacted with 61 to give (dicyano-
methylene)pyridines 62 in good to excellent yields.88 
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Ultrasonic irradiation of a,/3-unsaturated carbonyl 
compounds 65 with acetonitrile in the presence of 
potassium alkoxide gave nicotinonitriles 68. A possible 
mechanism for this process is shown in Scheme ll.89'90 

Scheme 11 
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Ultrasonic irradiation of acetonitrile 63 gives 3-ami-
nocrotononitrile (1) which then undergoes Michael 
addition reaction, via 64, to the unsaturated carbon in 
65 to give the adduct 66. The adduct 66 easily undergoes 
ring closure to give the intermediate 67 which on 
dehydration and dehydrogenation under reaction con
dition gives nicotinonitrile 68.90 

Lithiated /3-substituted /3-amino-acrylonitriles 69 are 
generated, in situ, from the reaction of acetonitrile and 
butyl lithium which then undergoes a 1,4-cycloaddition 
reaction with a-oxo ketene dithioacetals 70 to give 2,6-
substituted 4-(methylthio)-3-cyanopyridines 72 prob
ably via an intermediate 71. 2,6-Substituted 3-cyano-
4-(dialkylamino)pyridines 74 have been similarly 
prepared by the reaction of 2-oxo ketene N,S-acetals 
73 with 69 (Scheme 12).91'92 

A Michael condensation of 0-enaminonitrile I with 
tetracyanoethylene 75 produces 2-amino-3,4,5-tricy-
anopyridines 77 which readily undergo a further 
Michael addition with cinnamonitriles 78 to yield 
substituted quinolines 79 (Scheme 13) .93'94 

Aminopentadienones 82 were obtained from the 
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reaction of /3-aminocrotonates 80 and ethynyl ketones 
81. Cyclization of 82 produces trisubstituted pyridines 
83.95 

H2N 
X 

R1 

80: R1 = CN, COMe, CO2Et; 

R2 = H, Me, Ph.aryl 

CH 

COR3 

81: R3 = Me, aryl 

100 0C :xx N 
83 

The pyridinone derivative 85 was prepared in good 
yields via a Michael addition of /3-aminocrotononitrile 
1 to the more reactive methyl 2-propynolate (84) 
followed by cyclization to give 8S.96 In a similar reaction 
1 with diethyl (ethoxymethylene)malonate (86) gave 
the pyridinone 87.97 On the other hand, treatment of 
1 with (ethoxymethylene)malononitrile (88) afforded 
the nicotinonitrile derivatives 89.98 

Treatment of aroylacetonitriles 90 with morpholine 
or piperidine affords 6-amino-3-cyano-2,4-diaryl-
pyridines (96) in good yield. The reaction of 90 with 
91 gives initially the /3-enaminonitrile 92, which is 
consequently attacked by the nucleophile 93 to yield 
94. The product 94 reacts further with another molecule 
of 91 to give the intermediate 95. Dehydration affords 
the final product, the substituted pyridine 96 (Scheme 
14).99 
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/3-Enaminonitriles 4a (X = CN) react with 97 to yield 
the intermediate adduct 98 that cyclizes to 99. Com
pound 4a (X = CO2C2H5) reacts with 97 to yield a 
mixture of 101 and 103. Compound 100 and 102 are 
assumed to be intermediates for the formation of these 
products (Scheme 15).100 
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Elnagdi et al.101 have reported the synthesis of 105 
via the reaction of 104 with enaminonitriles 4a. 

Ph 
X CN 
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C l 3 C ^ NH2 

4a: X = CN, CO2Et, COPh 

+ V
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NCs 

Me 

r ^ 

104 
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B. Synthesis of Pyrlmldlnes 

Two of the pyrimidines obtainable from diamino-
maleonitrile are found in contemporary biological 
systems. 5-Hydroxyuracil (110) is a minor component 
of yeast RNA.102-103 Orotic acid (111) is a crucial 
intermediate in the biosynthesis of pyrimidine nucle
otides.104 Ferris et al.106-106 have proposed a reaction 
pathway for the synthesis of 5-hydroxyuracil via the 
reaction of diaminofumaronitrile (106) with guanidine 
similar to that for orotic acid (111) (Scheme 16).105'106 
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The base-catalyzed condensation of ethyl 3-amino-
2-cyanoacrylate (112) and thioacetamide (113) yields 
ethyl 4-amino-2-methylpyrimidine-5-carboxylate (114).107 
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E t O 2 C x . CN 
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112 
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B O 2 C X A N 

113 

N Me 

114 

Although the reaction of imino ethers or imidoyl 
chlorides with aminomethylene derivaives is known to 
easily afford 4-aminopyrimidines, it is less widely used. 
2 reacts with ethyl benzimidate 115 to give 4-amino-
6-methyl-2-phenylpyrimidine (116).108 

NH2 

H x ^ C N NH 
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115 
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Pyrimidines, such as 119, are formed by the reaction 
of diaminomaleonitrile (3) and cyanoformimidates 
117.109 

An important herbicide intermediate was obtained 
by treating 2 with methanol at room temperature to 
give the imino ether 120. The latter was treated with 
cyanamide at 40 0C to give 2-amino-4-methoxy-6-
methylpyrimidine (121).u0 

NC_.CN
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The reaction of enaminonitriles 122 with triethyl 
orthoformate (123) yields the corresponding ethoxy-
alkylidene derivative 124. Subsequent reaction with 
methylamine leads to spontaneous cyclization, which 
gives the imine 125. 125 undergoes a Dimroth rear
rangement on treatment with base to yield (methyl-
amino)pyrimidines 127 probably through an interme
diate of type 126 (Scheme 17).1U 
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Malononitrile reacts with phenyl cyanate to give the 
intermediate 130, which in turn reacts with aryl cyanate 
131 to yield 4-aminopyrimidine 132.112 
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A general method for the synthesis of a wide variety 
of 2-substituted 4-amino-6-methylpyrimidines 134 from 
nitriles 133 by using tetramethylammonium hydroxide 
as a catalyst was reported by Smithwick et al.113 The 
reaction involves addition of enamino amino function 
to cyano group in the nitrile 133 and subsequent 
cyclization. 
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134 

Elnagdi et al.114 reported the preparation of pyrim-
idines 135 by condensing trichloroacetonitrile with 

Ph 
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enaminonitrile 4a. Either the hydrazine derivatives 
136 or pyrazolopyrimidine 137 was produced depending 
on the reaction conditions (Scheme 18). 

Enaminonitriles such as 138a-c yield 2-bromopyri-
midine 141 when treated with cyanogen bromide. 
Compound 141 is assumed to be formed via the addition 
of the amino function in 138 to the cyano group in BrCN 
to yield an adduct 139 which would readily cyclize into 
140; the latter then undergoes nucleophilic displacement 
of the trichloromethyl moiety by the CN group to give 
141. Compound 138d reacted with BrCN, under the 
same reaction conditions, to give pyrimidine derivatives 
such as 144 (Scheme 19).115 

Isothiocyanates 146 react with 3-aminocrotonates 145 
in acetonitrile with the formation of 1:1 cycloconden-
sation products 148 via addition intermediates such as 
147. In the case of ethoxycarbonyl isothiocyanate only 
the addition product 149 was isolated.116"118 

A general synthetic route for pyrimidine thiones such 
as 153 starting from thiazine-2,6-dithiones 150 is 
reported by Muraoka et al.119120 It is assumed that, in 
presence of base 150 affords the isothiocyanates 151 
that on reaction with enaminonitrile 1 gives 152. The 
latter cyclizes into 153 (Scheme 20). 
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1,2,4-Dithiazolium salts 154 were effectively con
verted to pyrimidines 156 when treated with 1 via the 
intermediate 155.121,122 Benzopyranopyrimidinone 157 
was prepared by using dithiazolinylidenebis(cyclo-
hexadienone) as the starting material.123 

The pyrimidones 170 are prepared in one step by the 
cyclocondensation of cyclohexanone with 167.126 The 
analogous pyrimidinones 171 were obtained by treating 
0-enaminonitriles with salicylaldehydes.127,128 
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The reaction of/3-enaminonitriles 158 with phosgene 
in ethyl acetate under reflux gave the corresponding 
/3-cyano-a,/3-unsaturated isocyanates 159. The latter 
reacted with dry hydrogen chloride in dioxane to give 
the intermediate 161 which led to the final product 
5,6-disubstituted uracil 162, at 60 0C 161 was stable 
enough to be isolated, whereas at 100 0C only 162 was 
isolable (Scheme 21).124 

The reaction of phenylacetonitrile with formamide 
in the presence of ammonia at 180 0C gives 5-phen-
ylpyrimidine-4-amine (166) via the intermediate 165.125 
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V. Synthesis of Flve-Membered Rings with One 
Heteroatom 

A. Pyrroles and Their Benzo Derivatives 

The pyrrolinones 174 were prepared from the reaction 
of maleic anhydride 172 and enamines 1 according to 
procedures described by Hantzsch and Feist.129,130 
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The reaction of the glyoxal derivatives 175 with 1 
afforded the corresponding hydroxypyrroles 176 and 
178, depending on the molar ratio between the enamine 
and the keto aldehyde.131,132 

The indenopyrrole system 180 can be prepared by 
the cycloaddition of 1 to ninhydrin (179).133 
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The condensation of 1 with active methylene com
pounds 181 in basic medium affords the reactive 
intermediate 182 which readily reacts with elemental 
sulfur to give the thiophenes 184 via 183.134 
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VI. Synthesis of Flve-Membered Rings with Two 
or More Heteroatoms 

A. Pyrazoles and Their Fused Six- or 
Flve-Membered Heterocyclic Rings 

The synthesis of aminopyrazoles is generally achieved 
using classical methods. The most important method 
is the reaction between hydrazines and the /J-enamino-
nitriles.135-138 Reaction of 1 with hydrazine hydrate 
gives a mixture of 185,186, and 187. Both 185 and 186 
cyclize to pyrazolopyrimidine 187 when treated with 
hydrogen chloride.139-141 Similarly, 190 is obtained from 
the reaction of /?-cyanoethylhydrazine 188 and 1 fol
lowed by treatment of the resulting 189 with acetic acid 
(Scheme 22).142-143 

The azapentalene 193 can be prepared by the 
cycloaddition of hydrazinoacetaldehyde diethyl acetal 
(191) with 1 to give the pyrazole derivative 192 which 
gives 193 in H2S04/EtOH.144 

Reaction of 1 with phenylhydrazine or 1-adamant-
ylhydrazine gives 5-aminopyrazoles 194 as the main 
product.146'146 The formation of 195,196, and 197 from 
the condensation of hydrazines with 1 has been 
reported.147"149 1,4-Bis (5-amino-1 -pyrazino) phthala-
zines (198), which are useful compounds of azo dye 
intermediates, have been prepared by Bloch et al.150 
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201 is obtained by treating 1 with triazines 199 via 
pyrazole derivatives 200161152 (Scheme 23). 
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The important antibacterial pyrazolecarboxylic acid 
derivatives 204 were prepared by the cyclization of 202 
with the enaminonitrile 4a to give 203. This was 
hydrolyzed by aqueous sodium hydroxide at room 
temperature to give 204.153 

j f + RNHNH2 — • 
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Depending on the reaction medium, 205 reacts with 
malononitrile dimer to yield pyrazole 206, which cyclizes 
into either of the tetrahydropyrazolot 1,5-a] pyrimidines 
207 and 208 (Scheme 24).154 
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Condensation of 0-enaminonitriles with 3(5)-ami-
nopyrazoles 209 have been used extensively to syn
thesize pyrazolo[l,5-a]pyrimidines 210.155-161 
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. - ^ . ,NH 
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Elnagdi et al.162 assumed that an equilibrium between 
211 and diazobetaine 212 exists and the addition of the 
betaine to 3-aminocrotononitrile 1 was reported to yield 
213.163,164 
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The enaminonitriles 4a and 4c reacted with 3-ami-
nopyrazole 214 in pyridine under reflux to give 217a 
and 217b. In contrast, 214 and 4b reacted in acetic 
acid to give the oxazino[4,5:5,6]pyrazolo[l,5-a]pyrim-
idines 219. It was assumed that the amino group in 214 
added to the activated double bond in 4 to yield the 

Scheme 25 
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intermediate adduct 215, which loses chloroform to give 
216 which in turn cyclizes under conditions to yield 
217a and 217b. In acetic acid 218b is converted to the 
oxazino[4,5:5,6]pyrazolo [ 1,5-a] pyrimidine derivative 
219 (Scheme 25).165 

B. Imidazoles and Their Fused Slx-Membered 
Heterocyclic Rings 

An early synthesis of adenine (221) from ammonium 
cyanide and concentrated hydrochloric acid was re
ported by Oro and Lowe et al.166-169 who were pioneers 
in synthesizing imidazoles and purines. These results 
were confirmed by Ferris et al.105 who observed the 
formation of adenine after the hydrolysis of HCN 
oligomers under mild alkaline conditions (Scheme 26). 
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There are two ways that imidazoles can form when 
diaminomaleonitrile reacts with formamidine to give 
the initial formed product 223. Direct loss of ammonia 
gives 4,5-dicyanoimidazole 224, or isomerization fol
lowed by cyclization in which HCN is eliminated gives 
4-amino-5-cyanoimidazole (220). In the presence of 
excess formamidine the latter product is converted into 
adenine 221. Compound 220 is a useful precursor in 
the chemical synthesis of a variety of purines. Sanchez 
et al.170 have shown that 220 reacts with HCN to give 
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adenine (225) and hypoxanthine (226). Guanine (227) 
and 228 are obtained from 220 and urea (Scheme 
27).171,172 

In addition to the diaminomaleonitrile reactions 
shown in Scheme 27, there are also some examples of 
photochemical transformations which lead to imidazole 
products presented in Scheme 28.10'105'173-174 The first 
reaction involves the isomerization of cis- and trans-
dinitrile which then forms a 5-aminoimidazole-4-
carbonitrile 220 via the iminoazetine 229. 

Booth et al.175'176 have also observed that diamino
maleonitrile (3) reacts with triethyl orthoformate (235) 
in dry dioxane under reflux to give the imidate 236. 
The latter reacts with ammonia gas to form the 
imidazole 238, which reacts with ketones at room 
temperature to give 6-carbamoyl-l,2-dihydropurines 
(239). It has been reported that 4,5-dicyano-l-eth-
ylimidazole (241) is formed as the main product from 
the reaction of 3 with ethyl orthoformate followed by 
vacuum distillation (Scheme 29).177 

Diaminomaleonitrile has been used in the synthesis 
of several nucleosides.178,179 The outline in Scheme 30 
illustrates an efficient route to C-nucleosides 250; the 
corresponding arabinofuranosyl imidazoles can be 
obtained by starting with D-glucose or D-mannose in 
place of D-ribose (242). 
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(1) KOH 

(2) (Me)3SiI 

249 

VIL Miscellaneous 

4-Cyanoisothiazoles 251 and 252 have been prepared 
directly from the reaction of 2 with thionyl chloride or 
sulfur monochloride.180 

M e . , C N 

T 
PT* NH2 

2 

SOCI2 ^ «7 
251 

.CN R. 

+ ^ l 
N. ZX S 

252 

CN 

Cl 

R = Ph, 2,6-di-CIPh 

The isothiazole 254 is formed by the treatment of 2 
with H2S in the presence of KOH via the intermediate 
253.181,182 

The cycloaddition of 2 and arylonitrile oxides 255 
gives the cycloadduct 256.23,183 

The reaction of 3 with sulfur dichloride gives 3,4-
dicyano-l,2,5-thiadiazole 259 in 93% yield.184 
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XN 
S H2S 
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P h ^ N H 2

 K 0 H P h ^ N H 2 

2 253 

Jf + Ar'CNO —• 
A r ^ N H 2 255 

2 

Il H r ^ " • • ' 

256 

VK2CO3 
Ph 

S ' NH2 
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- £ • ^ — # o 
H*° N*cAcH2CAr 

257 

H2N ^ X N 

j f + SCI2 

H2N CN 
3 

258 

NC. X N 
— Ii f 

259 

3-Amino-4-trichloro-2-cyanocrotonitrile (4a) reacts 
with hydroxylamine to yield the isoxazole derivative 
261. This compound is formed by the addition of the 
hydroxylamine to the a,0-unsaturated linkage followed 
by cyclization.185'186 

N C N ^ C N NH2OH-HCl 

C I 3 C^NH 2
 E , 0 H ' M e C ° ^ 

4a 

N C N X = N 

T 
C l 3 C ^ NHOH 

260 

NCV 

C I 3 C ^ N ' 

261 

NH2 

VIII. Conclusion and Outlook 

The aim of this review has been to demonstrate the 
wide synthetic and preparative applications of a par
ticularly versatile class of compounds i.e. the /3-enam-
inonitriles. It is hoped that a greater understanding of 
their potential in the synthesis of novel heterocycles, 
natural products, and biologically active compounds 
and drugs will result. The importance of purine 
nucleosides, nucleotides, and pyrazolopyrimidines has 
been obvious for more than a decade.76'187-192 Recently 
the flood of papers and patents concerning the bio
logically active compound dihydropyridine 262 testifies 
to its terrific potential. Finally, it is hoped that this 
review will fill what was an obvious gap by providing 
an overview of the subject. 
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