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/. Introduction 

The majority of chemical systems and chemical 
processes can be theoretically described within the 
Born-Oppenheimer (BO) approximation12 which as
sumes that nuclear and electronic motions can be 
separated. With this separation, the states of the 
electrons can be determined from the electronic Schro-
edinger equation, which depends only parametrically 
on the nuclear positions through the potential energy 
operator. As a result the calculations of dynamical 
processes in molecules can be divided into two parts: 
the electronic problem is solved for fixed positions of 
atomic nuclei, and then the nuclear dynamics on a given 
predetermined electronic potential surface or surfaces, 
in the case of near degenerate electronic states, is 
considered. The most important consequence of the 
above approximation is the potential-energy surface 
(PES) concept, which provides a conceptual as well as 
a computational base for molecular physics and chem
istry. Separation of the nuclear and electronic degrees 
of freedom has had significant impact and has greatly 
simplified the theoretical view of the properties of 
molecules. The molecular properties can be rationalized 
by considering the dynamics on a single electronic PES, 
in most cases the PES of the ground state. Phenomena 
and processes such as internal rotational barriers, 
dissociation, molecular dynamics, molecular scattering, 
transitions to other electronic states, and infrared and 
microwave spectroscopy have simple and intuitive 
interpretations based on the PES concept.3 
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Theoretical determination of PES's for ground and 
excited states has been one of the primary objectives 
of quantum chemistry. One of the most remarkable 
developments in this area in the last two decades has 
been the theory of analytical derivatives.4 This theory 
involves calculation of derivatives of the BO potential 
energy with respect to the nuclear coordinates or 
magnitudes of external fields. Besides the use of 
analytical derivatives in characterizing the local cur
vature of PES's, they are required for calculation of 
electronic and magnetic properties (energy derivatives 
with respect to applied external field) as well as in 
calculations of forces and force constants. 

Theoretical justification of the BO approximation is 
not a trivial matter. One should mention here a study 
presented by Wooley6-8 and Wooley and Sutcliffe.6 They 
draw attention to the fact that the BO approximation 
cannot be justified in any simple way in a completely 
nonclassical theory. This is related to the most essential 
philosophical concepts of quantum mechanics. 

An increasing amount of evidence has been accu
mulated indicating that a theoretical description of 
certain chemical and physical phenomena cannot be 
accomplished by assuming separation of the nuclear 
and electronic degrees of freedom. There are several 
cases which are known to violate the BO approximation 
due to a strong correlation of the motions of all particles 
involved in the system. For these kinds of systems the 
BO approximation is usually invalid from the beginning. 
Examples of such types of behavior of particular interest 
to molecular physicist can be found in the following 
systems: (1) excited dipole-bound anionic states of polar 
molecules, (2) single and double Rydberg states, (3) 
muonic molecules, and (4) electron-positronium sys
tems. 

One of the most important problems in modern 
quantum chemistry is to reach "spectroscopic" accuracy 
in quantum mechanical calculations, (i.e., error less than 
1 order of 1 /ithartree). Modern experimental techniques 
such as gas-phase ion-beam spectroscopy reach accuracy 
on the order of 0.001 cm-1.9,10 Such accuracy is rather 
difficult to accomplish in quantum mechanical calcu
lations even for such small one-electron systems as H2+ 

or HD+. To theoretically reproduce the experimental 
results with equal accuracy it is necessary to consider 
corrections beyond the exact solution of the nonrela-
tivistic electronic Schroedinger equation. Naturally, 
the desire to computationally reproduce experimental 
accuracy has generated interest in the nonadiabatic 
approach to molecules. Most work in this area has been 
done for three-particle systems and the majority of the 
relevant theory has been developed for such restricted 
cases. 

The conventional nonadiabatic theoretical approach 
to three-particle systems has been based on the sep-
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aration of the internal and external degrees of freedom, 
i.e., transformation to the center-of-mass (CM) frame. 
This has been achieved by coordinate transformation. 
The choice of the coordinate system is not unique, and 

a number of possibilities have been considered by 
different authors. Some of them will be discussed in 
more detail in the next section (section II). The 
coordinate transformation to the CM frame facilitates 
separation of the Schroedinger equation into a set of 
uncoupled equations, one representing the translational 
motion of the CM, and the other representing the 
internal motion of the system. The next step following 
coordinate transformation consists of variational so
lution of the internal eigenvalue problem with a trial 
function which possesses appropriate rotational prop
erties. "Appropriate" rotational properties include the 
requirement that the variational wave function be an 
eigenfunction of the O2 operator and its Jx component 
for the whole system defined with respect to CM. Some 
attempts have been made to solve the nonadiabatic 
problem for an arbitrary system following the strategy 
outlined above; however, practical realizations have 
been so far restricted to the three body problem. 

A slightly different approach has been taken for 
diatomic molecules. The derivation of the nonadiabatic 
equations for diatomic molecules involves two steps. 
The first step is exactly the same as for the three-particle 
case. The second step is the separation of the rotational 
coordinates. This separation is accomplished by trans
forming from the space-fixed axes to a set of rotating 
molecule-fixed axes. The internal molecular Hamil-
tonian, which results after removal of the translational 
and rotational coordinates, contains a number of cross-
terms, such as mass polarization terms and terms 
coupling different rotation eigenfunctions. The cross-
terms which appear in the internal Hamiltonian couple 
the momenta of the particles which leads to a certain 
type of correlation of their internal motions. These 
terms are also responsible for the fact that the total 
linear momentum and the total angular momentum of 
the molecule remain constant. In practice further 
simplifications are made and some coupling terms are 
neglected in the internal Hamiltonian. 

Taking into account the complications resulting from 
the transformation of the coordinate system as well as 
difficulties to preserve appropriate permutational 
property of the wave function expressed in terms of 
internal coordinates, we have recently been advancing 
an alternate approach where the separation of the CM 
motion was achieved not through transformation of the 
coordinate system, but in an effective way by intro
ducing an additional term into the variational functional 
representing the kinetic energy of the CM motion. Our 
preliminary nonadiabatic calculations on some three-
and four-particle systems have shown that with this 
new method a similar level of accuracy could be reached 
as in the conventional methods based on explicit 
separation of the CM coordinates from the internal 
coordinates. The advantage of this new method is that 
one can easily extend this approach to systems with 
more particles due to the use of the conventional 
Cartesian coordinate system and explicitly correlated 
Gaussian functions in constructing the many-body 
nonadiabatic wave function. Also the required per
mutational symmetry of the wave function can be easily 
achieved in this approach. 

In this review we will discuss the approaches taken 
in the past to theoretically describe nonadiabatic many-
particle systems. In particular we will emphasize the 
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attempts reaching beyond the three-particle case and 
the problems related to the separation of CM. In the 
context of the results achieved by others we will present 
our contributions to the field. 

/ / . Born-Oppenhelmer Approximation and Its 
Validity 

The Born-Oppenheimer (BO) approximation for
mulated in 19271 and a modification, the adiabatic 
approximation formulated in 1954,2 also known as the 
Born-Huang (BH) expansion, constitute two of the 
most fundamental notions in the development of the 
theory of molecular structure and solid-state physics. 
The approximations assume separation of nuclear and 
electronic motions. The BO approximation and adi
abatic approximation have been studied both analyt
ically and numerically. The literature concerning this 
subject is rather extensive, but some relevant review 
articles exist, for example those written by Ballhausen 
and Hansen,11 Koppel, Domcke, and Cederbaum,12 as 
well as Kresin and Lester.13 

Before we proceed to nonadiabatic theory, for clarity 
of the presentation let us first summarize some results 
concerning the BO approximation. This approximation 
can be theoretically derived with the use of perturbation 
theory, where the perturbation is the kinetic energy 
operator for the nuclear motion. It is commonly 
accepted that the BO approximation should be based 
on the fact that the mass of the electron is small in 
comparison to the mass of the nuclei. In the pertur
bation approach to the BO separation of the electronic 
and nuclear motion, the perturbation parameter is 
assumed to be K = (me/M)1/4,1-13,15 where M is the mass 
of largest nuclei. The total Hamiltonian separates as 

fl = S0 + K4TN (2.1) 

The choice of the perturbation parameter is not unique, 
since only the magnitude of K is taken into consideration 
in this expansion rather than its accurate value. This 
parameter can be also taken as the ratio /c = (me/M)1/4, 
where n denotes the reduced mass of the nuclei.36 

A different derivation of the BO separation of 
electronic and nuclear motion was presented by Essen.14 

The main idea of Essen's work was to introduce 
coordinates of collective and individual motions instead 
of nuclear and electronic coordinates. He demonstrated 
that the size of mJM is irrelevant and that the nature 
of the Coulomb interactions between particles involved 
in a system rather than their relative masses is 
responsible for the separation. Practical realization of 
some aspects presented in Essen's paper was proposed 
by Monkhorst16 in conjunction with the coupled-cluster 
method. Monkhorst reexamined the BO approximation 
and the BH expansion with explicit separation of the 
CM, which was omitted in the original paper of Born 
and Oppenheimer. An interesting study of the BO 
approximation for (m/M)1/2 -*• O was carried out by 
Grelland.16 In another recent study, which supports 
the original Essen's idea, Witkowski17 demonstrated 
that a more appropriate separation parameter should 
be the difference in energy levels rather than the mass 
ratio. 

The simplest way of deriving the BO approximation 
results from the BH expansion, called also the adiabatic 

approximation. In the adiabatic approximation2 the 
total Hamiltonian, 

& = &Q + TN (2.2) 

is separated into the Hamiltonian for the clamped nuclei 
approximation, #o> and the kinetic energy operator for 
the nuclei, TN- The solution for the electronic problem, 

£0lM»;R) = e„(RWrt(r;R) (2.3) 

only parametrically dependent on the nuclear positions, 
is assumed to be known. In the above equation r and 
R denote the sets of the electronic and nuclear 
coordinates respectively. The eigenvalue problem with 
the Hamiltonian of eq 2.2 

(TN + #0)*(r,R) = E¥(r,R) (2.4) 

can be obtained in terms of the following BH expansion 

*(r,R) = £x„(R)\Mr;R) (2.5) 

which leads to the following set of equations 

[TN + e„(R) - E]Xn(R) = £An m X m(R) (2.6) 
m 

The nonadiabatic operator Anm is given by 

inm = -jdr+n[TN,+J (2.7) 

where [TN,\f/m] denotes the commutator. An approx
imation of eq 2.6 can be created by neglecting the 
nonadiabatic operators on the right-hand side. This 
leads to the result 

[TN + €„(R)-E]Xn(R) = O (2.8) 

which constitutes the BO approximation. 
The nonadiabatic coupling operator has the following 

interpretation: the diagonal part represents the cor
rection to the potential energy resulting from the 
coupling between the electronic and nuclear motions 
within the same electronic state, the off-diagonal part 
represents the same effect but occurring with transition 
to different electronic states. It is well known that 
neglecting such terms can be invalid for some cases. 
One of such cases occurs when electronic and vibrational 
levels are close together or cross each other. This may 
lead to behavior known as the Jahn-Teller, Renner, or 
Hertzbeg-Teller effects and is commonly called mul-
tistate vibronic coupling.12 In order to theoretically 
describe a system which exhibits this effect, one usually 
expands the wave function as a product of the electronic 
and nuclear wave functions, and then solves the vibronic 
equation. Usually, only a few electronic states need to 
be taken into consideration in this approach. The above 
short review of the BO and BH approximations clearly 
shows why the BH expansion is the preferred method 
to treat systems with vibronic coupling. The coupling 
matrix elements can be usually easily calculated nu
merically with the use of the procedure developed to 
calculate gradients and Hessian on PES. 

Much more difficult from the theoretical point of 
view are cases when the Born-Oppenheimer approx
imation is invalid from the beginning, i.e., when the 
coupling matrix elements Anm(R) are large for more 
extended ranges of the nuclear separation and large 
number of discrete and continuum electronic states. 
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Such types of behavior can be found, for example, for 
some exotic systems containing mesons or other light 
particles and in certain nonrigid molecules such as Hs+. 
In such cases a BH expansion slowly converges, or even 
diverges. The variational rather than perturbational 
approach is more appropriate for such cases. The 
application of the nonadiabatic variational approach 
leads to a wave function where all particles involved in 
the system are treated equivalently and are delocalized 
in the space. Correlation of the motions of particles is 
most effectively achieved by including explicitly the 
interparticle distances in the variational wave function. 
We devote the remainder of this review to describe the 
approaches taken in this area. 

/ / / . Nonadiabatic Approach to Molecules 

In the next few subsections we would like to briefly 
review the nonadiabatic approaches made for (A) three-
particle systems and (B) diatomic molecules, and in 
the final subsection (C) we emphasize attempts taken 
toward theoretical characterization of systems with 
more than three particles. Before we demonstrate 
appropriate methodology let us discuss steps that need 
to be taken to theoretically describe a system composed 
of number of nuclei and electrons interacting via 
Coulombic forces. A collection of N particles is labeled 
in the laboratory-fixed frame as r; (i = 1,..JV) with 
masses M1 and charges Q1. In a neutral system the sum 
of all charges is equal to zero. In the laboratory-fixed 
frame the total nonrelativistic Hamiltonian has the form 

i N V? N-I N QQ. 

(3.1) 

According to the first principles of quantum mechanics 
there three sets of operations, under which the above 
Hamiltonian remains invariant.88 These operations are 
as follows: 

(a) AU uniform translations, r', = r* + a. 
(b) AU orthogonal transformations, r', = Rr1, R 7 R = 

1, where R is an orthogonal matrix such that det R = 
1 or - 1 . 

(c) AU permutations of identical particles r,- -*• r ;, if 
M1 = Mj, Qi = Qj. 

For a system of N particles it is always possible to 
separate the CM motion. This procedure is called 
setting up a space-fixed coordinate system (or a CM 
coordinate system). For convenience let us consider 
following linear transformation 

(RCM.Pi PN-I)T = U(r1,r2,...,rN)T (3.2) 
where U is N X N transformation matrix, while RCM 
represents vector of the CM motion 

R, 
1 N 

CM = Y,miTi 
m0i=i 

with 

m, 

N 

(3.3) 

(3.4) 
i=i 

The transformation matrix U has the following struc
ture: elements of the first row are Uu = Mi/mo, where 
mo is given by eq 3.4. It is required that internal 

coordinates should be translationally invariant. As a 
consequence 

N 

Y,Uji = 0 0" = 2,3,..JV) (3.5) 
;=i 

for all (N - 1 ) rows. Following arguments presented by 
Sutcliffe,88 coordinates (pi PN-I) are independent if 
the inverse transformation 

\T = TT-I (r^j , . . . !^) - U" (R0MP1^PN-1) (3.6) 

exists. Additionally, on the basis of the structure of 
the last equation one can chose that 

On11 = i a = I,2,...A) (3.7) 

while the inverse requirement on the reminder of U - 1 

implies that 

N 
J](U-1)^ = 0 0' = 2,..JV) (3.8) 
! = 1 

On the basis of the above relations, transformation to 
the new coordinates becomes 

N-I 
H = 

where 

Q1Qj : VR - E M r 1 W + - E E - (3.9) 
o _ K C M L-i 1I ' 1 c)L-iL-i, . . v 

Im0 ipi Ii Tfn(P) 

N 

My = Y,UikUi» M = 1'-'N- X) ( 3 1 0 ) 

with 
*- i 

N-I 

fijW = [ E (E[(U-1);* - (U-1)^*)]172 (3-11) 

and the CM motion can be separated off. The above 
separation of coordinates is quite general. One can 
notice, however, that after separation some additional 
terms are present in the internal Hamiltonian. The 
mathematical forms of the additional terms depend on 
the form of matrix U. It should be mention, that choice 
of the transformation matrix is not unique. In the next 
subsections particular realizations of above method
ology will be discussed. 

A. Three-Particle Systems 

The system of three particles with masses (Mi, M2, 
M3) and the charges (Qi, Q2, Q3) with Coulombic 
interactions between particles is described by the 
following nonrelativistic Hamiltonian: 

P1
2 P2

2 P3
2 Q1Q2 Q1Q3 Q2Q3 

2M1 2M2 2M3 r. 12 '13 '23 

(3.12) 
In the above formula P, denotes the momentum vector 
of the ith particle. To separate internal motion from 
external motion, the following transformations are 
used.19'20-22'25 

RcM = ^-(MiI-I + M2r2 + M3r3) (3.13) 
mQ 

P0 = P 1 - ^ P 2 + ? , m0 = M1 + M2 + M5 (3.14) 
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M2 
P1 = T2-T1 P 1 = P 2 - - P 0 M1 = 

M 3 _ _._L_. 
P2-T3-T1 P 2 - P 3 - - P 0 M 2 - J ^ - + 

M1M2 

M1 +M2 

M1M3 -

M, 

(3.15) 

(3.16) 

which is particular realization of the transformation 
discussed previously. After such transformations the 
Hamiltonian becomes Htot

 = T1CM + Hmt, where 

i c M " 2 m n 
(3.17) 

represents the translational energy of the whole system, 
and 

_ Pi2 P2
2 , P1-P2 QiQ2 QiQ3, Q2Qi 

"«* 2Ml 2 M 2
+ M1

 + IP 1 I + |p2| > 
2«*3 

2 PlI 
(3.18) 

The eigenfunctions of 7CM are the plane waves exp-
(ik-ro) with corresponding eigenvalues of fe0/2mo. 

By solving the eigenvalue problem Hintent - ^int^int, 
one can determine the internal states of the 
system. Such classical systems as H-,21>32 electron-
positron system Ps~ (e-e+e-),18'22'24-33 muonic mole-
cules,18'19'28,29'31,32,33 and the H2

+ molecule and its iso-
topes19,21'26 were studied with this approach. The 
internal Hamiltonian represents the total energy of two 
fictitious particles with masses MI and M2 which move 
in the Coulomb potential of a particle with charge Q1 
located at the origin of the coordinate system. The 
cross term PrP2ZM1, which is proportional to V;-V;, 
represents so-called "mass polarization" which results 
from the nonorthogonality of the new coordinates. 
Instead of the nonorthogonal transformation one can 
use an orthogonal one36 which, however, leads to a 
more complicated expression for the interaction part 
of the Hamiltonian. It should be mentioned that the 
choice of the coordinates given by eqs 3.13 and 3.14 is 
not unique. Many different coordinates have been 
proposed to treat the three-particle problem. The most 
popular coordinates used for such calculations have 
been the Jacobi and mass-scaled Jacobi coordinates29-31 

and the hyperspherical coordinates.23 

Following Poshusta's22 nomenclature, each stationary 
state of the total Hamiltonian, Htot. can be labeled by 
n(k,JM,oc), where n counts the energy levels from the 
bottom of the (k,J^M,a) symmetry manifold. The above 
symbols have the following interpretations: transla
tional symmetry preserves conservation of the linear 
momentum which is indicated by k; rotational sym
metry about the CM leads to conservation of the angular 
momentum which is indicated by J and M («/ and M 
represent the fact that the variational wave function is 
an eigenfunction of the square of the angular momen
tum operator and its z component); the last term, a, 
represents the permutational properties of the wave 
function. 

In the variational approach to solving the internal 
eigenvalue problem, the choice of an appropriate trial 
wave function represents a difficult problem. One can 
expect that the most appropriate guess for the internal 

variational wave function should explicitly depend on 
interparticle distances since motions of all particles are 
correlated due to the Coulombic interaction and due to 
the conservation of the total angular momentum. There 
are different varieties of such functions. In the majority 
of three-particle applications the Hylleraas functions 
were used.18'24,27,28,32'33 These functions correctly de
scribe the Coulomb singularities and reproduce the cusp 
behavior of the wave function related to particle 
collisions. Another type of function used in calculations 
has been Gaussian functions22,26-29 which less properly 
reflect the nature of the Coulombic singularities but 
are much easier in computational implementation. The 
choice of the variational functions will be discussed in 
detail in the next section. 

Higher rotational nonadiabatic states can be calcu
lated by using variational wave functions with appro
priate rotational symmetries corresponding to the 
irreducible representation of rotation groups in the 
three-dimension space. (This can be accomplished with 
the use of Wigner rotational matrices.) The rotation 
properties of three-particle nonadiabatic wave functions 
have been recently extensively studied for muonic 
molecules in conjunction with muon-catalyzed fusion.34 

Finally, one should mention that the extremely high 
level of accuracy that has been achieved in the last few 
years in nonadiabatic calculations as well as in exper
imental measurements on three-particle systems has 
already allowed testing of the limits of the Schroedinger 
nonrelativistic quantum mechanics.36'43 

B. Diatomic Molecules 

The nonadiabatic study for diatomic molecules has 
been mostly restricted to the H2 molecule and its 
isotopic counterparts. The nonadiabatic results are well 
documented in articles presented by Kolos and 
Wolniewicz,36 Peak and Hirsfelder,41 Kolos,37 and 
Bishop and Cheng.43 To demonstrate some theoretical 
results let us consider the nonrelativistic Hamiltonian 
for an iV-electron diatomic molecule in a laboratory-
fixed axis 

H, 
tot 

1 1 1 N 

V* v | - -Y V1
2 + V (3.19) 

2Ma 2M6
 6 2& ' 

where a and b represent two nuclei with masses M0 and 
Mb while i labels the electrons. The vector position of 
CM is expressed as follows: 

N 

L 
i=l 

where 

RCM = M-1(Mara + Mfcr6 + £r1 .) 

M = Ma + Mb + N 

(3.20) 

(3.21) 

The separation of the CM motion from the internal 
motion can be accomplished using one of the following 
sets of coordinates: 
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(a) separated-atom coordinates ' 

R T 6 - T 0 (3.22) 

ria = r ; - r a 1 < i < JV0 (3.23) 

r;-6 = r ; - r 6 J V a + l < ; < J V (3.24) 

(b) center-of-mass of nuclei re la t ive coordinates 4 1 ' 3 7 

ri(ab) - r{ - ( M 0 r a + Mbrb)(Ma + MbY
l (3.25) 

(with R C M defined as previously) , a n d 

(c) Geometrical center of nuclei coordinates41,37 

R = rb - r0 (3.26) 

rig = IV-V2(F0+ rb) (3.27) 

The separation of the angular motion of the nuclei 
can be done by transforming from the space-fixed axis 
system (x,y,z) to a set of rotating molecule-fixed axes. 
The transformation is defined by the two Euler 
rotations: (i) 4> about the initial z axis and (ii) 0 about 
the resultant y axis: 

cos 6 cos 4> cos 6 sin </> - cos 8 
R((p,d,0) = - sin 0 cos <j> 0 (3.28) 

sin 6 cos </> sin 6 sin <p cos 6 
T h e coord ina tes R , 0, a n d 4> a re sufficient t o descr ibe 
the motion of the nuclei. Separation of the CM motion 
and the rotation leads to a set of coupled equations. 
The coupling results from the fact that the geometrical 
center of the molecule and the CM for the nuclei do not 
coincide exactly with the center for the rotation. 
Nonadiabatic effects are incorporated by appropriate 
coupling matrix elements. More detail can be found in 
papers cited earlier, i.e., refs 36, 37, and 43 as well as 
refs 10 and 39-42. 

We would like to stress that the above approach 
should only work for systems that do not significantly 
violate the BO approximation and where the rigid rotor 
model remains a reasonably good approximation. 

C. Many-Particle Systems 
This subsection is devoted to nonadiabatic studies 

of polyatomic systems. We would like to distinguish 
two aspects of this problem; the first one is related to 
the development of theory and the second pertains to 
practical realizations. Some general aspects have been 
presented in the first part of this section. One of the 
most constructive nonadiabatic view of molecules and 
critical discussion of the BO approximation has been 
presented by Essen.14 The starting point for his 
consideration was the virial theorem which, following 
Wooley's earlier study,5 plays an essential role in 
understanding the nature of molecular systems. Essen 
demonstrated a quite original view on molecules. This 
view was later extensively analyzed by Monkhorst.15 

Let us use an excerpt from Monkhorst's paper: 
Invoking only the virial theorem for Cou-
lombic forces and treating all particles on 

an equal footing, a molecule according to 
Essen can be viewed as an aggregate of nearly 
neutral subsystems ("atoms") that interact 
weakly ("chemical bonds") in some spatial 
arrangement ("molecular structure"). No 
adiabatic hypothesis is made, and the anal
ysis should hold for all bound states. 

According to Essen's work, the motion of a particle 
in the molecule consists of three independent motions: 
(1) the translational motion of the molecule as a whole, 
(2) the collective motion of the neutral subsystem, and 
(3) the individual, internal motion in each "atom". 
Individual motions of electrons and nuclei are not 
considered. The above classification allowed him to 
express coordinates of any particle in the molecule as 

r, = R + rc
y(i) + r? (3.29) 

where R defines the position of the molecular CM with 
respect to a stationary coordinate system, and y(i) = 
a if particle i belongs to the ath composite subsystem. 
The vector r^ is the CM vector of the subsystem 7 
relative to the molecular CM, while rj is the internal 
position of the particle i relative to CM of the subsystem 
to which it belongs. Essen's work provides an essential 
conceptual study of the BO approximation. 

To demonstrate some practical aspects of Essen's 
theory, discussed also by Monkhorst,15 let us consider 
an iV-particle system. In principle, one can reduce the 
JV-body problem to an (JV - l)-body problem by the 
CM elimination which is easily achieved by coordinate 
transformation as described before. In all approaches 
the transformed include coordinates of the CM vector, 
RCM- The remaining coordinates of the set are internal 
coordinates that can be defined, for example, with 
respect to CM as 

p,. = r ; -R C M (i = 1,2,...,JV) (3.30) 

However, since 

1 N-I 

PN = Ymfo (3-31) 
mNi=i 

the coordinates (pi PJV,RCM) are linearly dependent. 
One can avoid the linear dependence between internal 

coordinates by defining them with respect to any one 
of the JV particles as suggested by Girardeau47 

P1 = T 1 - T N (J = W V - I ) (3.32) 

This is an extension of coordinate transformation used 
for three-particle systems. The set also includes the 
position vector of CM, RCM- There are still other 
coordinate sets that can be used, for example poly-
spherical coordinates.45. 

One can recognize that the discussed transformations 
are particular cases of eq 3.4. it is rather easy to 
demonstrate that the Hamiltonian expressed in terms 
of the new coordinates is still invariant under trans
lational and orthogonal transformations of those co
ordinates. However, it is not easy to see that permu-
tational invariance is maintained. This is due to the 
fact, that the space-fixed Hamiltonian contains inverse 
effective mass, and the particular form of /y depends 
on the choice of U. It should be mentioned also, that 
the Hamiltonian after transformation has 3(JV- 1) 
space-fixed variables and, due to the nature of irl and 
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the form of /y, it is usually difficult to interpret it in 
simple particle terms. 

Another interesting nonadiabatic approach to mul-
tiparticle systems known as the generator coordinate 
method (GCM) has been proposed by Lathouwers and 
van Leuven.48'49 The main idea of the GCM method is 
replacement of the nucleus coordinates in the BO 
electronic wave function by so called generator coor
dinates. The GCM represents conceptually an impor
tant approach in breaking with the BO approximation, 
unfortunately with little computational realization. 

Finally, let us point out some common features of 
the nonadiabatic theory with the theory of highly 
excited rovibrational states, the theory of floppy 
molecules, the theory of molecular collisions, and the 
dynamics of van der Waals complexes.45 The starting 
point of considerations on such types of systems is the 
nuclear Hamiltonian 

N 

SN=Yt^i+V(rvr2,...,rN) (3.33) 

where the first term, expressed in terms of 3N nuclear 
coordinates, represents the kinetic energy, while the 
second term represents the potential hypersurface. 
Analogous to the nonadiabatic approaches discussed 
before, the separation of the translational degrees of 
freedom is accomplished by a coordinate transforma
tion. The new internal coordinates are translation 
free.48,46 The second step involves transformation from 
the space-fixed coordinates to body-fixed coordinates. 
After such a transformation the internal wave function, 
which is dependent on the 32V - 6 translationally and 
rotationally invariant coordinates, is usually determined 
in a variational calculation. This wave function rep
resents the internal vibrational motion of the molecule. 
The selection of an appropriate coordinate system 
represents one of the most difficult theoretical problems 
in attempts to solve eq 3.24. (The relevant discussion 
on this subject can be found in ref 46.) 

IV. Nonadiabatic Many-Body Wave Function 

In the following section we will discuss an example 
of how, in practice, a nonadiabatic calculation on 
iV-particle system can be accomplished. From the 
general considerations presented in the previous section 
one can expect that the many-body nonadiabatic wave 
function should fulfill the following conditions: (1) AU 
particles involved in the system should be treated 
equivalently. (2) Correlation of the motions of all the 
particles in the system resulting from Coulombic 
interactions as well as from the required conservation 
of the total linear and angular momenta should be 
explicitly incorporated in the wave function. (3) 
Particles can be distinguished only via the permuta-
tional symmetry. (4) The total wave function should 
possess the internal and translational symmetry prop
erties of the system. (5) For fixed positions of nuclei 
the wave functions should become equivalent to what 
one obtains within the Born-Oppenheimer approxi
mation. (6) The wave function should be an eigen-
function of the appropriate total spin and angular 
momentum operators. 

The most general expansion which can facilitate 
fulfillment of the above conditions has the form 

K 

*tot = £cfa,2,...m<.>ll(r1ja,...jN)B%Ml, (4.1) 

where wM and 9 ^ represent the spatial and spin 
components respectively. In the above expansion, we 
schematically indicate that each a>„ should possess 
appropriate permutational properties, which is accom
plished via an appropriate form of the permutation 
operator P(l,2,...,iV). The total wave function should 
be also an eigenfunction of the S2 and S2 spin operators 
which is accomplished by an appropriate form of the 
spin wave function 9 ^ . 

Different functional bases have been proposed for 
nonadiabatic calculations on three-body systems, how
ever extension to many particles has been difficult for 
the following reason: Due to the nature of the Cou
lombic two-body interactions the spatial correlation 
should be included explicitly in the wave function, i.e., 
interparticle distances should be incorporated in the 
basis functions. Unfortunately, for most types of 
explicitly correlated wave functions the resulting many-
electron integrals are usually difficult to evaluate. An 
exception is the basis set of explicitly correlated 
Gaussian geminals which contain products of two 
Gaussian orbitals and a correlation factor of the form 
exp(-/8r?-). These functions were introduced by Boys50 

and Singer.51 The correlation part effectively creates 
a Coulomb hole, i.e., reduces or enhances the amplitude 
of the wave function when two particles approach one 
another. The application of the explicitly correlated 
Gaussian geminals is not as effective as other types of 
correlated functions due to a rather poor representation 
of the cusp. However, such functions form a mathe
matically complete set,52 and all required integrals have 
closed forms as was demonstrated by Lester and 
Krauss.53 During the last three decades explicitly 
correlated Gaussian geminals have been successfully 
applied to different problems as, for example, in the 
calculations of the correlation energy for some closed-
shell atoms and molecules, intermolecular interaction 
potentials, polarizabilities, Compton profiles, and elec
tron-scattering cross sections.54-61 Explicitly correlated 
Gaussian geminals were also applied to minimize the 
second-order energy functional in the perturbation 
calculation of the electronic correlation energy. First, 
Pan and King62 demonstrated that rather short ex
pansions with appropriate minimizations of nonlinear 
parameters lead to very accurate results for atoms. The 
same idea was later extended to molecular systems by 
Adamowicz and Sadlej.63-69 We should also mention a 
series of papers by Monkhorst and co-workers70-74 where 
explicitly correlated Gaussian geminals were used in 
conjunction with the second-order perturbation theory 
and the coupled cluster method. 

In the remainder of this section we would like to 
describe an application of the explicitly correlated 
Gaussian-type functions to nonadiabatic calculations 
on a multiparticle system. The explicitly correlated 
Gaussian functions form a convenient basis set for 
multiparticle nonadiabatic calculations because, due 
to the separability of the squared coordinates, the 
integrals over Gaussian functions are relatively easy to 
evaluate. As a consequence, one can afford to use a 
larger number of these functions in the basis set than 
in cases of explicitly correlated functions of other types. 
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In a nonadiabatic calculation the spatial part of the 
ground state iV-particle wave function (eq 4.1) can be 
expanded in terms of the following explicitly correlated 
Gaussian functions (which will be called Gaussian 
cluster functions): 

N JV 

«„ = «p<-3>?h - RfI2 - E £ > ^ - r /) (4.2) 
i=l T>i 

Each U11 depends on the following parameters: af, 
Rf, and /3f;- (the orbital exponents, the orbital positions, 
and the correlation exponents, respectively). The 
centers need not coincide with the positions of the 
nuclei. After some algebraic manipulations the cor
relation part may be rewritten in the following quadratic 
form: 

JV 
«„ = exp(-£of |r,- - RfI2 - rB"rT) (4.3) 

i= i 

where the vector r is equal to 

r =(rvr2,...,rN) (4.4) 

and the matrix B" is constructed with the use the 
correlation exponents (/3f; = 0) 

B" = (4.5) 

-/3S 

The above form of the Gaussian cluster function is more 
convenient than the form given by eq 4.2 for evaluation 
of the molecular integrals which will be discussed in 
the next subsection. 

The angular dependence of Gaussian functions can 
be achieved explicitly through the use of spherical 
harmonics, or equivalently through the use of integer 
powers of the appropriate Cartesian coordinates. In 
order to generate a Cartesian-Gaussian, an s-type 
cluster is multiplied by an appropriate power of the 
coordinates of the particle positions with respect to the 
orbital centers 

4>^{i;,m;,n;urp}wp},\a;ub;q}) = 

n [(*p - R^(yp - R;X^P - W K <4-6> 
P=I 

where {J£,77i£,n£} will be called the "angular momen
tum" of the Gaussian cluster function (constructed 
similarly as for the orbital Gaussians). 

A. Many-Particle Integrals 

In this section we would like to discuss evaluation of 
many-particle integrals over explicitly correlated Gauss
ian functions which are required for our method of 
nonadiabatic calculations. The simplicity of the ap
propriate algorithms for molecular integrals leading to 
efficient computation implementations represents one 

of the most important elements in the development of 
an effective nonadiabatic methodology. The integral 
procedures are quite general and can be extended to an 
arbitrary number of particles. To avoid unnecessary 
details we will first demonstrate the general strategy 
for calculating integrals with spherical Gaussians. Next 
we will discuss how the procedure can be extended to 
Gaussians with higher angular momenta. The details 
of evaluation of molecular integrals over general 
Gaussian cluster functions can be found in our previous 
papers.75,76 

Let us consider a general matrix element containing 
two Gaussian cluster functions (a)„|0|a)„), where O 
represents a one-body operator 0(i), or a two-body 
operator 0(ij). (Omitted from the present discussion 
is the kinetic energy integral and operators containing 
differentiation which will be described later.) 

< ̂ (^,^,... ,r^lOd' J)\wp(rvr2 rN)) = 
JV 

Jj ... J e x p ( - £ < | r n - R*|2 - rB*rr) X 0(ij) 

JV 

e x p ( - £ < | Tn - Wn? - TWrT)Ax1 &T2..ATN (4.7) 
n - l 

In general, the above multiparticle integral is a many-
center integral. In the first step, the well-known 
property of the Gaussian orbitals is used to combine 
two Gaussian functions located at two different centers 
to a Gaussian function at a third center 

UV IIP IiV 

where 

( N a"a" \ 

- £ — | R ; - R ; | 2 

Kuv = expl -

The integral {ay|0|a>„> takes the form 

JV 

(4.8) 

(4.9) 

)uv\2 . <ugOk> = K119 Sf ... S 0 exp( -£<1r„ - R-I 
n=l 

rB^r7') dr^r^.dr^ (4.10) 

For simplicity and compactness of the notation we used 
the abbreviation a% = < + an, and B"" = B" + B". Let 
us now rewrite the last integral in a slightly different 
way and explicitly separate the G(ri,r;) function 

(o>jDK) = K„SSOdJ)G(T11Tj) exp(-aH*,-

Rff) exp(-af Ir7- R?f) dr; dr,- (4.11) 

The G(Ti,Tj) function contains all the information about 
the correlation part and is defined as follows: 

G(r,ry) = SS S 
N 

e x p ( - ^ Ir -R1 m2 , 

„=1**1*7 

JV 

rB""rT)TT drA 
t=i"^^; ' 

(4.12) 

It should be pointed out that, if the elements of the 
correlation matrix B"" are equal to zero, the G function 
becomes simply a product of overlap integrals over 
Gaussian orbitals. Evaluation of G(r,-,r,') concludes the 
reduction of the 3N-dimension integration to a 6-di-
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mension integration in the case when 6 is a two-body 
operator. In the case of a one-body operator we 
additionally integrate the G function over the in
coordinate, G(Ti) = JG(Ti3Ij) dr> The function G can 
be evaluated for an arbitrary number of particles. It is 
important to notice that by determining the G function, 
the multiparticle integral is reduced to an integral that 
contains Gaussian geminals instead of the JV-particle 
Gaussian cluster functions. The integration over all 
coordinates except i and j we called "reduction". The 
integrals with Gaussian geminals can be evaluated using 
the Fourier transform technique and the convolution 
theorem as was demonstrated by Lester and Krauss53 

as well as by us for general types of integrals.75 

So far considerations have been restricted to spherical 
Gaussian functions. To calculate nonadiabatic states 
with higher angular momenta the Cartesian-Gaussian 
functions need to be used in the wave function 
expansion. To obtain Gaussian functions correspond
ing to higher angular momenta we applied the procedure 
which is based on the observation that the Cartesian 
factors in the function can be generated by consecutive 
differentiations of the s-type Gaussian function with 
respect to the coordinates of the orbital centers. This 
leads to a direct generalization of the integral algorithms 
derived for the s-type cluster functions to algorithms 
for the Cartesian cluster functions. This involves 
expressing the functions with higher angular momenta 
in terms of raising operators as follows: 

V{Z>f,<},{rp},{R£},{a£},{&y) = 

p-i 
where the raising operator, &fn, is expressed as a series 
of partial derivatives with respect to the coordinates of 
the orbital center 

[n/2] an-2m *!-£<* 
m-0 dR n-2m 

and 

Cl = n\ 

(4.14) 

(4.15) m 2na"-mm\ (n - 2m)! 
This form of the raising operators was used by Schle-
gel77>78 for computation of the second derivatives of the 
two-electron integrals over s and p Cartesian orbital 
Gaussians. If the operator 0 commutes with the 
Gaussian function the integral can be rewritten as 

0„ - * J J - JO* J l drp (4.16) 
P=I 

and according to the previous considerations becomes 

o„ - * J I im^mSS-So^fi drp 
P»I P=I 

(4.17) 
The last expression contains only integrals with the 
spherical functions. 

Using the above scheme we can evaluate the overlap 
integral, the nuclear attraction integral, and the electron 
repulsion integral. The procedure cannot be, however, 
directly applied to the kinetic energy integral. It is 

necessary to first express this integral as a linear 
combination of some overlap integrals and subsequently 
use the raising operator approach. The details and 
practical realization of the above scheme have been 
described in ref 76. 

V. Effective Nonadiabatic Method 

The nonadiabatic wave function expanded in terms 
of Gaussian cluster functions has been used by Poshusta 
and co-workers in nonadiabatic calculations of three 
particle systems.22 The treatment was recently ex
tended to four particles.79 Poshusta's approach has 
been based on the separation of the CM motion from 
the internal motion through transformation to the CM 
coordinate system. In our recent work we have taken 
a different approach which has been based on an 
effective rather than explicit separation of the CM 
motion. To demonstrate the essential points of this 
approach, let us consider an iV-particle system with 
Coulomb interactions. The particle masses and charges 
are (mum2,...,mN) and (Qi,Q2 QN), respectively. Ne
glecting the relativistic effects and in the absence of 
external fields, the system is described by the Hamil-
tonian 

H, tot 

N n? NN Q.Q. 
(5.1) 

;=i 2 m ; j=i j>i \it -1}\ 

where P, and r, are the momentum and positions vectors. 
Let us also consider a general coordinate transforma
tion, 

(ri>r2 TN) ""*• (&CM>PI PN-O (5-2) 
which allows separation of the CM motion from the 
internal motion, i.e., explicitly separate the total 
Hamiltonian into the internal Hamiltonian, Hint, 
and the Hamiltonian for the CM motion, TCM = 

PCM/2™; 

#tot = Hint + 7 C M ( 5 - 3 ) 

Due to this separation, the total wave function can 
always be represented as a product of the internal part 
and the wave function for the CM motion 

1^tOt ^CM^int (5.4) 

Instead of an explicit separation let us now consider 
the following variational functional: 

m"*" ^J^J <5-5) 

where k is an arbitrary constant which scales the positive 
term that represents the kinetic energy of the motion 
of the center of mass. Both operators, i.e., the total 
Hamiltonian, iftot, and the kinetic energy of the CM 
motion, TCM, have simple forms in the Cartesian 
coordinate system. By minimizing the functional 
JWtoM with positive values for k, the kinetic energy 
of the CM motion can be forced to become much smaller 
than the internal energy of the system. In order to 
perform a meaningful nonadiabatic variational calcu
lation the kinetic energy contributions need to be 
reduced and made as insignificant as possible in 
comparison to the internal energy. For larger k values, 
more emphasis in the optimization process is placed on 
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reducing the magnitude of 

<*jrCMl*tqt> 

In our calculations the value for k has been selected 
based on the accuracy we wanted to achieve in deter
mining the internal energy of the system. The approach 
based on minimizing the expectation value of TCM will 
be called method I in our further discussion. 

There is an alternative scheme to nonadiabatic 
calculation which we will call method II. Let us examine 
the case when the k parameter is set to -1 in eq 5.5. The 
functional becomes 

</[*t,t;-i] = 
<* J * * * " ^CMl̂ tot) <*Jff J*tat> 

<*J*tot> <*totl*tot> 
(5.6) 

The full optimization effort can now be directed solely 
to improving the internal energy of the system because 
the functional eq 5.6 now contains only the internal 
Hamiltonian. One can expect that after optimization 
the variational wave function will be a sum of products 
of the integral ground state and wave functions rep
resenting different states of the CM motion: 

* t o t -*intL a^CM (5.7) 

However, since the internal Hamiltonian only acts on 
the internal wave function, the variational functional, 
JT^tOtJ-I]. becomes 

- T C M I S W 

\ <*J*i»t> 
min{ JT^104;-!]} = min 

with according to the variational principle is 

m i n l J l * ^ ; - ! ] } * ^ 

(5.8) 

(5.9) 

Therefore in method II, by minimization of the func
tional eq 5.6, one obtains directly an upper bound to 
the internal energy of the system. In this case the 
kinetic energy of the CM motion is not minimized. 

In the above considerations we demonstrated that 
the internal energy can be separated from the total 
energy of the system without an explicit transformation 
to the CM coordinate system. This is an important 
point since an inappropriate elimination of the CM can 
lead to so-called "spourus" states,44 which in turn lead 
to contradictory results in nonadiabatic calculations. 

The last element which we would like to demonstrate 
is that the variational wave function in the form eq 4.2 
can be formally separated into a product of an internal 
wave function and a wave function of the CM motion. 
This is mandatory for any variational nonadiabatic wave 
function in order to provide required separability of 
the internal and external degrees of freedom. To 
demonstrate this let us consider an iV-particle system 
with masses mi,/n2)...,/nAr. An example of a wave 
function for this system which separates to a product 
of the internal and external components is 

JV JV 

* t o t = exPH,RCM)Y,Ck e x p ( - £ 2 > £ 4 > (5-10) 

It can be shown that with the use of the matrices 

M = 

and 

-7w\ 

-Tw 
1(5.11) 

m,w,fj -Tn0ITIt, 

N 

;'-i 

Tn1Tn^ 

m2mN 

m» 

(5.12) 

'1"'JV " ' 2 ' " JV - - • ' " j y 

the total wave function, ^tot» can be represented as 

*tot = £ c * exp(-(rltr2 rN)(M + I\) (r1,r2,...,rN)T) 
k (5.13) 

which has the same form as the function eq 4.2 with 
Rf = O and A*. = 8^, i.e., 
*tot = £ C * exp(-(rlfr2 rN)(A* + B*)(r1,r2,...,rw)T) 

k (5.14) 
The main idea of the above methodology rests in 

treating nonadiabatically the iV-particle problem in the 
Cartesian space without reducing it to an (JV- l)-particle 
problem by explicit separation of the CM motion. One 
can ask what advantage does this approach have in 
comparison to the conventional one? One clear ad
vantage is that we avoid selecting an internal coordinate 
system—a procedure that is not unique and may lead 
to certain ambiguities. The work in the Cartesian space 
makes the physical picture more intuitive and the 
required multiparticle integrals are much easier to 
evaluate. Those two features certainly are not present 
if more complicated coordinate systems such as in 
polyspherical coordinates45 are used. Also, we noted 
earlier that the other factor which should be taken into 
consideration is the proper "ansatz" for the trial 
variational wave function incorporating the required 
permutational symmetry. In our approach the appro
priate permutational symmetry is easy to implement 
through direct exchange of the particles in the orbital 
factors and the correlation components. This task, 
however, can be complicated when one works with a 
transformed coordinate system. The last problem 
which should be taken into consideration relates to the 
rotational properties of the wave function. Definitions 
of the appropriate rotational operators in terms of the 
Cartesian coordinates are straightforward. However, 
in a transformed coordinate system the operators 
representing the rotation of the system about its CM 
can be complicated and may lead to significant diffi
culties in calculating the required matrix elements. 

VI. Numerical Examples 

A. Posltronium and Quadronium Systems 
In this section we would like to discuss numerical 

results for two model systems: positronium, Ps, and 
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Table I. Ground-State Energies Computed with 
Different k Values for the e+er « 

k min{J[*;fe]} E^ T1CM 

Method I 
1 -0.249 947 0 -0.249 969 5 2.252 4 X 1(H 

100 -0.248 962 3 -0.249 602 6 6.403 6 X 1(H 
Method II 

-1 -0.249 996 2 -0.249 996 2 5.013 5 X 1(H 
0 Energies in atomic units.b For method II, E^ = min\J[V,-

I]J. For method I, £tot = min{J[*,0]}. 

quadronium, Ps2. Although, there is certainly not much 
chemical interest in these systems, they constitute ideal 
cases to verify the performance on nonadiabatic meth
odologies. The nonrelativistic quantum mechanics for 
positronium system is exactly the same as for the 
hydrogen atom, except the value of reduced mass. The 
positronium system (e+e-) is strongly nonadiabatic and 
represents an excellent simple test case since its 
nonrelativistic ground-state energy can be determined 
exactly CE88 = -0.25 au). Contrary to the hydrogen atom, 
the Born-Oppenheimer approximations cannot be used. 

In the method we have developed the nonadiabatic 
wave function for the positronium system depends on 
all six cartesian coordinates of the electron and the 
positron as well as on their spin coordinates. For 
numerical calculations the following fourteen-term 
variational wave function was used: 

14 

*tot = E C « exp(-«irf - a\r\ - /3\2r
2
12)Q(e-)Q(e+) (6.1) 

W 
The minimization of the variational functional eq 5.5 
was performed with different values of k. The results 
of the calculations are summarized in Table I. 

Upon examining numerical values it seems that both 
methods I and II provide similar results in close 
agreement with the exact value mainly dependent on 
the length of the expansion of the wave function. 
However, for the same expansion length, Method II 
seems to perform better and converge faster. 

As the second example, let us consider the quadro
nium system composed of two electrons and two 
positrons. The complete nonrelativistic Hamiltonian 
for the Ps2 system reads 

# t o t - . 1 ( V 2 + V 2 + V 2 + V 2 ) + J _ + J__J_ 
r12 rAB rlA ' 'IA 'IB 

— - — (6.2) 
'2A '2B 

where 1 and 2 denote the electrons, and A and B the 
positrons, respectively. Similar to the positronium case 
no approximation can be made with regard to the 
separability of the internal motions of the particles. 
The standard approach to find the nonadiabatic 
solution is based on separation of the center-of-mass 
motion from the internal motion as described in the 
section III.A. Introducing internal coordinates as the 
position vectors of three particles with respect to the 
fourth particle chosen as the reference, the four-particle 
problem can be reduced to the problem of three 
fictitious pseudoparticles. As discussed before, after 
transformation to the new coordinates, the internal 
Hamiltonian contains additional terms known as mass 
polarization terms, which arise due to the nonortho-

gonality of the new coordinates. Using the above 
transformation Kinghorn and Poshusta79 carried out 
nonadiabatic variational calculations with Singer poly-
mass basis set functions. The Singer polymass basis 
set has the following form: 

fk(rvr2,r3) = exp[-(r1,r2,r3)Q*(r1,r2,r3)T] (6.3) 

where matrix Q* contains nonlinear parameters, subject 
of optimization. The total nonadiabatic wave function 
in Kinghorn's and Poshusta's calculations had the 
following form: 

M 

^nonO-i.^.i'a) = ECA[P(l ,2,3)^(r1 , r2 , r3)e(l ,2,3)] 
A=I 

(6.4) 
where P(l,2,3) denotes the permutational operator 
which enforces the antisymmetry of the wave function 
with respect to interchanging of the identical particles 
as well as the charge inversal symmetry between the 
positrons and the electrons. 

Since in our approach no explicit separation of the 
center of mass is required, the quadronium system is 
represented by the wave function which explicitly 
depends on coordinates of all particles: 

M 

^CkiPU&pa&^ir^wBtWA&eat) (6.5) 
with spatial function o/, given as a one-center explicitly 
correlated Gaussian function 

Uk(rvr2>rA>rB> " e x p ( - a ^ - a\r\ - a\r\ - ak
Br\ -

ok Jl ok Jl ok Jl ok Jl A .2 s* „2 , = 
^12 rl2 PlArlA &lBrlB 02Ar2A ^2Br2B ^ABrAB^ ~ 

exp[-(r1,r2,rA,rB)(Afe + B*)(r1,r2,rA,rB)T] (6.6) 

where A* and B* are defined as follows: 
k 0 0 

„ , o 4 o o 
A " ' 0 0 a\ 0 

0 0 0 

(6.7) 

B* = 

-0*, #2+/4+/4 
- # 2 - & 

" & -/4 

sin 
< IA 

-/4 
(6.8) 

The spin functions representing the electrno and 
positron singlets are given as 

0(A,S)e(l,2) = ^ [ a ( l ) / 3 ( 2 ) -

0(l)a(2)]^[a(A)/3(B) - 0(A)a(B)] (6.9) 

It is assumed that there is no spin coupling between 
the electrons and positrons. The spatial part of the 
wave function is symmetric with respect to exchanging 
electrons as well as positrons, which is achieved by the 
permutational operators P(l,2) = (1,2) + (2;1) and 
P(AJi) = (A,B) + (B.A). In the nonadiabatic wave 
function, motions of all particles are correlated through 
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Table II. Total and Binding Energies Calculated for 
the Quadronium System with a Different Number of 
Basis Functions Used in the Expansion of the Wave 
Function* 

no. of functions total energy binding energy* 

16 -0.510 762 0.293 
32 -0.515 385 0.419 
64 -0.515 852 0.431 

128 -0.515 949 0.434 
210 -0.515 974 0.435 
300 -0.515 980 0.435 

0 The total energy is expressed in atomic units and binding 
energy in eV. (1 au = 27.211 396 1 eV.) ° Exact energy of the 
e+e- system is equal to -0.25 au. 

the squares of the interparticular distances present in 
the exponent. The center-of-mass motion is removed 
from the total Hamiltonian but not from the wave 
function. This leads to the following form of the 
variational functional: 

_ <*J f f to t - rcMl*tot> _ < * J f f J t t ^ ) 

<*totl*tot> <*totl*tot> 

(6.10) 
where 

T1CM = "(Pi + P2 + PA + PB)2 = " E E V 'V ; 
O o ;=i,2,A,B ;'=1,2^13 

(6.11) 
Optimization of the functional has been performed 

with the variational wave function expanded in terms 
of 16, 32, 64, 128, 210, and 300 explicitly correlated 
Gaussian functions. The numerical conjugate gradient 
optimization technique was employed. To indicate the 
extent of the optimization effort involved, it suffices to 
say that, for example, for the wave function expanded 
into a series of 300 Gaussian functions one needs to 
optimize as many as 3000 exponential parameters. The 
results of the calculations are presented in Table II. 

For all the expansion lengths considered, the opti
mizations were quite well converged, although with a 
large number of nonlinear parameters, one can almost 
never be sure whether a local or global minimum was 
reached or whether some more optimization would lead 
to further improvement of the results. Upon examining 
the convergence of the results with elongation of the 
expansion, one sees that the values of the bonding 
energy are quite well converged. Our best result for 
the total energy (-0.515 980 au)87 is very close to the 
best result of Kinghorn and Poshusta (-0.515 977 au). 
It should be mentioned that both results are rigorously 
variational. Both energies lead to virtually identical 
bonding energies of the quadronium system with respect 
to the dissociation into two isolated Ps systems of 0.435 
eV. Variational calculations for positronium molecule 
were also carried out by Ho.89 This author used 
Hyleraas-type variational wave functions somewhat 
simplified to reduce some computational difficulties. 
His best variational energy of 0.411 eV is slightly higher 
then both Kinghorn and Poshusta's result and our 
result. 

One important piece of information one can obtain 
from the nonadiabatic wave function pertains to the 
structure of the quadronium system. The answer 
requires calculation of averaged interparticular dis
tances. For the wave function expressed in terms of 

Table III. Averaged Squares of the Interparticular 
Distances for the Quadronium System Calculated for 
Different Expansion Lengths of the Wave Function* 

no. of functions 

34 
64 
128 
210 
300 

e+e+ 

44.139 
45.311 
45.681 
45.881 
45.911 

e+e- <r?> 

27.932 
28.565 
28.762 
28.863 
28.878 

e~e~ 

44.134 
45.312 
45.679 
45.879 
45.911 

0 Results in atomic units. 

Table IV. Nonadiabatic Calculations on H, Hi+, and H2 
Accomplished with Method II 

no. of Gaussian total exact or best 
cluster functions internal energy literature value 

H 
14 -0.499 724 

-0.499 729 

H 2
+ 

14 -0.589 387 
16 -0.590105 
20 -0.591690 
32 -0.594 571 
64 -0.596 257 
104 -0.596 650 
205 -0.596 901 

-0.597 139° 

H 2 

16 -1.142 988 
28 -1.148156 
56 -1.155 322 

105 -1.160 202 
210 -1.162 369 

-1.164 024° 

" Reference 43. 

explicitly correlated Gaussian functions the easiest to 
calculate are the averages of the squares of the distances. 
The results of such calculations for the P$2 molecule 
are presented in Table III. 

Upon examining the results one notics that the er -
e~ distance is virtually the same as the e+ - e+ distance. 
This is a reflection of the charge reversal symmetry. 
The second observation is that the e+ - er distance is 
significantly shorter than the e+ - e+ and er - er dis
tances. This suggests that the Ps% molecule is a complex 
of two Ps systems. 

B. H, H2
+ , and H2 Systems 

The other important question one may ask is how 
many Gaussian cluster functions are necessary to obtain 
satisfactory results for a few particle systems? To 
demonstrate this we performed a series of calculations 
for a sequence of simple systems, H, H2+ and H2. The 
results are in Table IV. 

Notice that with a short expansion we almost 
reproduced the exact nonrelativistic energy for the 
hydrogen atom. It takes only about 16 Gaussian cluster 
functions to lower the energy below -0.59 au for the 
H2+ molecule, and with 205 functions one gets already 
within 0.00024 au to the best nonrelativistic result of 
-0.597 139.43 For H2, which consists of four particles, 
we did calculations with 16, 28, 56, and 105 cluster 
functions. The results indicate that one should use at 
least 300 or more to obtain a result of comparable 
accuracy as the one achieved for H2

+. The nonadiabatic 
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wave function representing the ground-state energy of 
the H2 molecule had the following form: 

M 

VcJkP(A3)P(l,2)K(rA,rBtr1,r2)]e(A3)e(l,2) 

(6.12) 

where AJi are protons and 1,2 are electrons. Again we 
assumed that the coupling between nuclear and electron 
spins was negligible and, therefore, the spin function 
of the system is a product of the spin functions for the 
nuclei and the electrons. For the ground state, both 
spin functions Q(AJS) and 0(1,2) represent singlet 
states. The spatial basis functions are 

uk = exp[-(rA,rB,r1,r2)(A* + B*)(rA,rB,r1,r2)
T] (6.13) 

where the matrix (A* + B*) contains four orbital 
exponents in the diagonal positions and six correlation 
exponents. In such expansions all parameters, (i.e., 
orbital and correlation exponents), are subject to 
optimization. This creates a problem one often en
counters in variational nonadiabatic calculations for 
more extended systems with a larger number of basis 
functions: the necessity to optimize many nonlinear 
parameters. The next section deals with the approach 
we have taken in this area. 

C. HD+ Molecular Ion 
The hydrogen molecular ion HD+ has played an 

important role in development of molecular quantum 
mechanics. Many different methods have been tested 
on HD+. Since the interelectronic interaction is not 
present, very accurate numerical results could be 
obtained. One of the most accurate nonadiabatic 
calculations was performed by Bishop and co-workers.43 

Bishop in his calculations used the following basis 
functions expressed in terms of elliptical coordinates 
with R being the nuclear separation: 

<t>ijk($,r,Jt) = 
exp(-aecoshO?77)£Vfl"3/2 exp[V2(-x2)]^(x) (6.14) 

where x = y(R - 5); Hk(x) are Hermite polynomials; a, 
/?, 7, and 5 are adjustable parameters chosen to minimize 
the lowest energy level; and i,j, and k are integers. The 
energy obtained using this expansion was-0.597 897 967 
au.) 

In effective approach, without explicit separation od 
the center-of-mass motion, the nonadiabatic wave 
function for the HD+ ion is expressed in terms of 
explicitly correlated Gaussian functions: 

M 

*tot" £c^fe(rD,rH,re)0(D)0(H)0(e) (6.15) 
k=i 

where 0 (D), 0 (H), and 0 (e) represent the spin functions 
for deuteron, proton, and electron respectively, and the 
spatial basis functions are defined as 

Wk = SXpl-obi ~ "H'H " <&. ~ ̂ H D - 0H. - 0D^£.] 
(6.16) 

where ro, TH, and re are the position vectors of the 
deuteron, the proton, and the electron, respectively, 
and THD, 1"He- i*De denote the respective interparticular 
distances. 

Table V. Ground-State Internal Energies (in au) 
Computed with Basis Set of M Functions for the HD+ 

Molecule 

M Erf£ 

10 -0.562 111 
18 -0.586 854 
36 -0.593 885 
50 -0.595 369 
60 -0.595 665 

100 -0.596 435 
200 -0.596 806 

" The best literature value = -0.597 897 967. 

Table VI. Expectation Values of the Square of the 
Interparticle Separations (in au) Computed with Basis 
Sets of Different Lengths (M) for the HD+ Molecule 

M 

60 
100 
200 

</-2HD) 

4.479 4 
4.411 9 
4.314 5 

C2H.) 

3.631 2 
3.598 2 
3.554 9 

(rhx) 

3.631 8 
3.590 6 
3.551 7 

The values of the total ground-state energy of HD+ 

calculated with Gaussian basis set of different lengths 
are presented in Table V. 

One can see a consistent convergence trend with the 
increasing number of functions. Comparing our best 
result obtained with 200 Gaussian functions of 
-0.596 806 au with the result of Bishop and Cheung, 
-0.597 898 au, indicates that more Gaussian functions 
will be needed to reach this result with our method. 

Following evaluation of the HD+ ground-state wave 
function we calculated the expectation values of the 
squares of interparticular distances. The HD+ system 
should possess slight asymmetry in the values for 
(rHe) and (rj^) leading to a permanent dipole moment. 
There is a simple reason for the asymmetry of the 
electronic distribution in HD+. For deuterium, the 
reduced mass and binding energy are slightly larger, 
and the corresponding wave function smaller, than for 
hydrogen. This leads to the contribution of the ionic 
structure H+D- being slightly larger than that of H-D+, 
and in affect to a net moment H+5D-5. The values of 
<rHD), <rHe), and (r^) for the wave functions of 
different lengths are presented in Table VI and indicate 
that the electron shift toward the deuterium nucleus 
is correctly predicted in this approach. 

VII. Newion-Raphson Optimization of 
Many-Body Wave Function 

The recent remarkable progress in theoretical eval
uation of structures and properties of molecular systems 
has been mainly due to the development of analytical 
derivative techniques. These techniques allow not only 
for very fast and effective determination of equilibrium 
geometries, but also allow optimizations of the nonlinear 
parameters involved in the basis functions. This 
represents the next important element in the devel
opment of our nonadiabatic methodology. The problem 
which arises in minimization of the variational func
tional, as indicated the last section summary, is the 
number of nonlinear parameters in the wave function 
which should be optimized. This number increases very 
rapidly with the length of the expansion and the 
optimization procedure becomes very expensive. 
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In our initial calculations we used a two-step opti
mization procedure. For a given basis set defined by 
the set of nonlinear parameters we solved the standard 
secular equation, H104C - SCE, (H^tC = SCE, in the 
case of method II) to determine the optimal linear 
coefficients. Then we used the numerical conjugate 
gradient method to find the optimal set of nonlinear 
parameters. In this section we will show how the 
analytically determined first and second derivatives of 
the variational functional with respect to the orbital 
and correlation exponents have been incorporated into 
our procedure. 

Let X(Xi, X2 xn) be the n-dimensional vector of 
nonlinear parameters, i.e., both orbital and correlation 
exponents. The Taylor expansion of the variational 
functional about point X* can be obtained as follows: 

n dJ[X;k] 
J[X;k] = J[X*;k] + ̂  ^ Ux1 - xT) + 

i = i Bx1 

I n n d2J[X;k] 

2WT=I
 dxidxj 

or, in the matrix form (the expansion is truncated after 
the quadratic term) 

J[X;k] = J[X*;k] + VJTX;fe]fx.(X - X*) + 

|(X-X*)TH|X .(X-X*) (7.2) 

where H|x« denotes the Hessian evaluated at the X* 
point. At a stationary point the gradient becomes equal 
to zero, V«7[X;fe]|̂ » = 0. If the expansion (eq 2.11) is 
dominated by the linear and quadratic terms and the 
Hessian matrix is positive defined, then one can use 
the approximate quadratic expression to find the 
minimum of the functional (Newton-Raphson method): 

Xmin = -(H(X)|x.)-
1(VJ[X;fe]|x.) (7.3) 

Let us consider the first and second derivatives of the 
functional J[{ap},{^Pg};k] with respect to an arbitrary 
parameter £. The first derivative is formulated as 

±J[{aBWBg};k] = 

1 d 
<*|*> (7.4) P?"'"J<*|*><^ 

The second derivative of where £ can be al
p or 0' 

energy with respect to f and f can be obtained in a 
similar way 

^ W J « = 

^\w^W)+khmT^ i*>] 

<^F>(fr<*'*>)(^^;*1)-

<^>(ff<*l*>)(^p»'^*1)-
J[{a%%m- :<¥|¥> (7.5) 

As was mentioned above, the set of linear coefficients 

is obtained by solving the secular equation. In the case 
of the method I, this set is not optimal with respect to 
the variational functional J, because J contains an 
additional term k{^f\Tct^) which is not present in 
the secular equation. However, the set becomes optimal 
if k is equal to zero, or when the kinetic energy of the 
center of mass motion vanishes. Therefore, the smaller 
the (^ITCMI^) term is, the more fulfilled the condition 

^JlWpWpqy,k] = o (7.6) 

should become. 
In method II the solution of the secular equation 

implies that the above equation (eq 7.6) is exactly 
satisfied at each step of the minimization process. To 
make the above equations more explicit let us consider 
matrix elements with the function given previously 

M M 

<*|0|*> = ̂ ScA<Pto)(e^]|DKe^> (7-7) 

where 0 - if tot. TQM, or 1. The derivative with respect 
to |fc is 

—<*|0|*> = 

g d + S111)C1CJ P[^M] O — o ^ J (7.8) 

where we assumed that the linear coefficients are fixed 
and their derivatives with respect to Gaussian exponents 
are zero (this is exactly satisfied in method II). The 
second derivative of <\If|0|>Iir) with respect to f when l 
^ k is 

(i + S11)CA(P[^"'6"."]0H*"'6") (79a> 

and when I = k, 

:<*|0|*> = 
dfdg 

(1 + fi^CA^^ld^o^ 

2C^p[^le
N

sM^ke
N

sJj (7.9b) 

For the first derivative one needs to consider two 
cases: the first derivative with respect to an orbital 
exponent and with respect to a correlation exponent. 
For the second derivative one needs to consider three 
cases. The first one corresponds to the second deriv
ative with respect to two orbital exponents. The second 
is the case of a mixed derivative with respect to orbital 
and correlation exponents. The third is the derivative 
with respect to two correlation exponents. For some 
integrals these three categories do not exhaust all the 
possibilities and some more specific cases need to be 
considered. Details of the evaluation of those special 
cases can be found in our previous study.86,86 
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As an example let us consider the overlap integral 

(Wj(Ir1, r2,..., rN)\wk(rv T2 r^)) = 

7r3iV/2[det (A'* + B'*)]"3'2 (7.10) 

The first derivative with respect to £ representing an 
orbital or correlation exponent is 

^ < « K > = " f * _ i % K > 5 / 3 ! det (A'* + B'*) (7.11) 

The second derivative with respect to f and | can be 
calculated in a similar way as the first derivatives. 

Ij^K) = T^^K^'Ufdet (A"+ B'*>] 
[J1 det (A'* + B'*)]-

| x ^ < t t K > 8 / 8 a | | ^ t (A'* + B'*) (7.12) 

Since 

(^<«K>)(J|<«K>) = 
|,r-2W(WjK)-10/3[|:det(A'* + B'*)]x 

[jz det (A'* + B'*)] (7.13) 

the derivative can be simplified as 

^l<«J*> = |<«K>"l(^<«K>)(^<«K>) -

| r - " ( a , K > 5 ^ det (A'* + B'*) (7.14) 

The above formula has an interesting feature. Notice 
that the second derivative is expressed in terms of the 
overlap integral, its first derivatives, and the second 
derivative of the determinant det (A'* + B'*) which 
contains orbital and correlation exponents. The second 
derivatives of other integrals have a similar structure. 
This facilitates an efficient and transparent computer 
implementation of the derivative algorithms that has 
been accomplished recently.86 

To illustrate the performance of the optimization 
method on the first and second analytical derivatives, 
we performed variational nonadiabatic calculations on 
the HD+ molecule. For this system we used the 
following variational wave function: 

M 

*tot = £ W D . J-H. re)e(D)0(H)e(e) (7.15) 

with the spatial part 

uk = exp[-(rD, rH, re)(A* + B*)(rD, rH, re)
T] (7.16) 

In eq 7.14, 0(D), 9(H), and 0(e) are spin functions for 
the deuteron, proton, and electron respectively. We 
assumed that spin coupling between particles is neg
ligible. The HD+ wave function does not possess any 
permutational symmetry with respect to exchange of 
particles. In our study we performed calculations with 
different number of Gaussian basis functions. The 
values of internal energies obtained using Newton-
Raphson optimization technique are the same as the 
ones from numerical optimization, however they are 
obtained much faster. 
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Upon examining the data one can see good conver
gence of the results to the best literature value of 
-0.597 897 967 au.43 The calculations on HD+ have 
shown that the Newton-Raphson procedure is signif
icantly faster and more efficient than the numerical 
optimization. 

The above presented theory of first and second 
analytical derivative represents an important devel
opment in practical implementation of our nonadiabatic 
methodology. The optimization procedure based on 
analytical derivatives facilitates relatively fast calcu
lations with long basis function expansions. 

VIII. Future Directions 
The presented review of nonadiabatic approaches for 

molecules shows that the level of complexity in cal
culations grows dramatically when the number of 
particles increases. In our nonadiabatic approach we 
accomplished some simplification of the many-body 
nonadiabatic problem by retaining the Cartesian co
ordinate frame rather than transformation of the 
problem to the CM coordinate frame. In this approach 
we gain a unique insight into the quantum state of the 
molecule without making any approximations with 
regard to the separability of the nuclear and electronic 
motions. 

The nonadiabatic corrections are usually very small 
for molecular systems and exceptions are rare. A 
meaningful nonadiabatic calculation should be very 
accurate. By undertaking the effort of developing the 
"technology" of Gaussian cluster functions for non
adiabatic calculations, we believe that we can accom
plish the required level of accuracy and successfully 
extend the nonadiabatic treatment beyond three-
particle systems. One of the most important directions 
seems to be derivation and implementation of the first-
and second-order derivatives of Gaussian cluster func
tions with respect to exponential parameters. The 
preliminary results are encouraging. The algorithm of 
the method based on the Newton-Raphson optimiza
tion scheme and analytical derivatives is very well suited 
for a parallel computer system and such an implemen
tation will be pursued. 

Several "even tempering" procedures exist for gen
erating Gaussian orbital exponents and there are a few 
for generating Gaussian correlation exponents for 
correlated electronic wave functions. An even-tem
pered procedure is also possible in our approach; 
however, the situation here is significantly more com
plicated due to the fact that the particles presented by 
the correlated wave function can have different masses 
and charges. The development of an even-tempered 
procedure will allow us to greatly reduce the expense 
of the parameter optimization effort and, in conse
quence, will allow treatment of larger systems. 
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