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/. Introduction 

Electrostatics refers to the interaction of charges and 
charge distributions in the absence of time-dependent 
variations. For instance, polarization of a charge 
distribution by a uniform field is a problem of elec­
trostatics so long as the field is static or not varying in 
time. Electrostatic analysis and electrostatic modeling 
have become major elements in efforts to achieve 
accurate molecular and intermolecular force fields and 
potentials. Their use represents an attempt to invoke 
classical physics over quantum mechanics in order to 
have computationally workable potentials. 

Electrostatic models of interaction are mostly re­
served for nonbonding interactions between molecules 
and for nonbonding intramolecular interactions. In the 
absence of strong chemical bonding forces, separation 
distances tend to be large. Electrostatic interaction is 
likely to dominate in such regions because it often 
persists to longer range than do interactions associated 
with chemical bonding. Thus, it is for such weak 
interactions that we have the best hope of using a 
classical picture as the foundation, or simply an element, 
of a model potential. 

Electrostatics can also be a basis for refining or 
adapting conventional valence force fields. For in­
stance, a four-center torsional potential for the atoms 
ABCD in some molecule may take the form of an 
electrostatic interaction between the AB and CD 
fragments. Or, the force field associated with some 
functional group may be augmented by an electrostatic 
term to reflect small relative effects of a varying partial 
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charge on the group in different environments. Even 
though the parameters may be empirical, these are 
refinements or augmentations that are guided by the 
laws of electrostatics. 

Potentials and force fields that use electrostatics 
through the incorporation of polarization have a qual­
itative difference from those that only involve the 
permanent charge fields. To include polarization is to 
model not only the forces or energetics but also the 
electronic structure. To say a molecule or a molecular 
fragment is polarized by some interaction with a 
neighboring species is to say that the electronic structure 
has changed in a specific, determinable way. That 
implies that information may be obtained about pro­
perties of the interacting species, and an obvious 
example is the dipole moment. However, there are 
many more properties that directly reveal small changes 
in electronic structure, such as NMR chemical shielding, 
polarizabilities and hyperpolarizabilities, magnetic sus­
ceptibilities, vibrational frequencies, and quadrupole 
coupling constants. The effort in my group to exploit 
electrostatics in weak interaction has been motivated 
by the prospect of understanding energetics and 
properties on the same footing. Out of this comes the 
goal of modeling properties along with forces, and 
eventually being able to simulate correlations between 
structures (from force fields) and certain spectroscopic 
parameters (from properties). 

© 1993 American Chemical Society 
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There are several key points to examine in considering 
electrostatic potentials. One is the distinction between 
the interaction of permanent moments and the incor­
poration of polarization. Another is the form of the 
representation of the charge fields of a molecule or 
molecular fragment. And then there is the choice of 
electrical response properties. This is a review of these 
points within the context of computational application. 
We seek to highlight the complexities, problems, and 
best solutions, so far, in using electrostatics for mo­
lecular mechanics force fields and potential surfaces 
and for property determination. There are several 
significant reviews and reports that provide a basis for 
many of the points presented here. Any discussion of 
electrostatic analysis for molecular systems leads back 
to two key papers by Buckingham.1'2 More recent is 
his in-depth presentation focusing on intermolecular 
forces.3 The back-to-back reviews of molecular elec­
trostatic potentials by Williams4 and by Politzer and 
Murray5 are quite relevant and valuable. A short report 
I prepared 3 years ago6 also gives some background 
information. To keep the scope of this review man­
ageable, I have excluded all but passing consideration 
of continuum electrostatic methods. These are ap­
proaches which represent a surrounding medium as a 
continuum rather than a collection of atoms and 
molecules. Continuum methods ignore the discreteness 
of the solvent, as this is often a reasonable approxi­
mation. There are excellent reviews7-10 of the sub­
stantial body of work on developing and using these 
methods. 

/ / . Electrostatic Interactions 

A. General Analysis 
The machinery for electrostatic interaction potentials 

and force fields begins with the classical laws of 
electrostatics and proceeds through various power series 
expansions. Most every necessary expression can be 
derived or deduced from a definition of the electrical 
potential function, V(x,y,z), in the following form. For 
a fixed distribution of JV point charges, q„ in space, 
each at respective position (X1, y-u z{), the interaction 
energy, E, from placing the charge distribution in the 
potential (or turning the potential "on") is 

N 

E = ^q1 V(xi,yi,zl) (1) 
i 

In addition, we need to know that the potential that 
arises from a point charge, q, at position (xo^o.zo) is 

1 ^ " " ( X W ) = 
q - J (2) 

V(x - X0)
2 + (y - y0)

2 + (z ~ Z0)
2 

From eqs 1 and 2, we obtain that the interaction of two 
isolated point charges, q\ and qz, is q^/ru. Other 
important equations of electrostatic analysis are ob­
tained almost as readily. 

Electrical potentials in the vicinity of molecules are 
anything but constant. So, it is reasonable to consider 
the variation in V(x,y,z) in terms of spatial derivatives. 
That is, we may consider V(x,y,z), whatever its form, 
as a power series. For conciseness, we shall replace the 
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position coordinates (x,y,z) by (si,S2,s3), and we shall 
use a "0" to identify a specific choice of these coordi­
nates. 

3 Qy 
V(svs2,s3) = V(s°vs°2,sl) + Y(S1 - s0)—10 + 

7Si dst 

1 3 3 d2y 

1 3 3 3 d3V 

T, E E E <s»" S>SJ ~ »>* ~ s* )7T^" |o+ - (3) 

3! TSi JSi t=i dstdsjdsk 
If the coordinate system origin is chosen as the 
expansion center, then Sj = S0J = Sg = 0. The three 
first derivatives of V are the components of the electric 
field vector at the expansion center (i.e., at "0"). The 
second derivatives are the components of the field 
gradient, and so on. So, if values of the derivatives of 
V to some order n are known, then V can be readily 
evaluated at any point in space using eq 3 truncated to 
order n. It is important to recognize that use of fields, 
field gradients, and so on, in electrostatic analysis 
implies some truncation, and the adequacy of the point 
of truncation is always a concern. 

The development of the standard expressions for the 
multipoles of charge distributions comes about from 
using the power series expansion for V of eq 3 in the 
energy expression of eq 1. For convenience, take the 
expansion center to be the coordinate system origin, 
and designate the derivatives of the potential at the 
origin in the following concise manner: 

v»~-Bj° (4) 

Letting s-n) be the value of s, for the nth charge, the 
interaction energy can be expressed with certain sums 
that are the moments of the charge distribution. The 

E = V(0,0,0) ZQn+ "t V1 f^qns^ + 
n j = l n 

^ j - 1 ;'=1 n 

individual sums over the JV charges, which may be 
restated as spatial integrals for continuous charge 
distributions, are elements of the multipole moments. 
The order of a given moment is the order of the 
dependence on the position coordinates, s. In eq 5, the 
first of these sums is the zeroth moment (net charge), 
the next set of summations over the JV charges corre­
sponds to the first or dipole moment, and the second 
set of sums corresponds to the second moment. 

There happen to be quite a number of choices of 
conventions for the moments, and for other electrical 
properties. For example, the factors of 1/2 for the 
second moment, 1/3! for the third moment, and so on, 
could be incorporated into the definition of the moment 
elements as in this definition of the *x-element of the 
second moment: 

Mxx=-0t^r=\t^2
n (6) 

Of course, one could just as well define the moment 
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without the factor, and this choice is not uncommon. 
The difference between the conventions shows up in 
the energy expression. By using the definition of eq 6, 
generalized to all moments, the interaction energy, E, 
of eq 5 is simply 

E = V0M0 + VxMx + VyMy + V2M, + 
VxxMxx+VxyMxy + ... (7) 

As Applequist realized and cleverly exploited,11 this 
expression is a dot product of two vectors. The first 
vector is the set of potential derivatives, and the second 
is an ordered list of the elements of all the moments. 
By the terminology of Applequist, these are rank one 
polytensors. The computational niceness of dot product 
expressions makes this convention appealing. 

Another convention choice involves Laplace's con­
dition, which is simply that outside any charge distri­
bution, 

As a result, the mean value of the second moments, M 
= (Mxx + Myy + M2x)IZ, does not affect the interaction 
energy with an external potential. Since M is the trace 
of the second moment tensor, a traceless form of the 
second moment tensor contains all the information 
necessary for electrostatic analysis. Similar relations 
hold for higher moments. These two conventions or 
ways of stating moment element values are distin­
guished by referring to the moments as Cartesian 
moments or traceless moments. For dipoles, there is 
no difference. 

There are also conventions on sign choices. The 
interaction energy of eq 1 could be written as the 
negative of the value given, for instance, and various 
sign differences would follow. While it may be that a 
single convention (signs, factors, etc.) should be en­
forced, the reality is that several choices are in use, 
even by the same investigators, and so, it is best always 
to take note of the context in which property values are 
given. 

B. Interaction of Two Charge Fields 
The interaction of two charge fields, A and B, that 

arise from distributions of point charges is obtained by 
substituting the potential in eq 2 into eq 1: 

NA ^B Q.Q. 

This interaction expression is completely equivalent 
to another expression, one that is in terms of the 
multipole moments of the two charge distributions. This 
requires the generalization of eq 2 to moments beyond 
the zero moment (i.e., beyond the potential due to a 
point charge q). The usual expression for potential 
due to the first (dipole) moment is 

V(x,y,z) = ^Mx + ̂ My + ̂ Mz (10) 
r r T 

where the multipole center is taken to be the coordinate 
system origin. The three factors that multiply the 
moment components in eq 10 may be collected into a 
rank one polytensor, T, along with similar factors for 
all other moments. For each moment element, there 
is a corresponding factor, and so the potential may be 

compactly written11-13 as the dot product of the T 
polytensor and the moment polytensor, M. 

V(x,y,z) = T • M (11) 

T _ / \ x_ 2_ z_ Zx2 - r2 Zxy Zxz Zyx 
" V r V V V r5 ' r 5 ' r5 ' r5 ' 

Zy2 - r2 Zyi Zzx Zzy Zz2 - r2 \ 
r5 ' 5 ' 5 ' 5 ' „5 ' - / (LZ) 

r r r r r ' 
Efficient computational algorithms have been devised 
and implemented14 for finding T-tensor elements for 
multipole expansions of arbitrarily high order. From 
knowing the potential, V, from one moment expansion, 
we may use eq 5 to obtain the interaction energy the 
multipoles of two charge fields. A rearrangement of 
the elements of T into a two-dimensional array, a 
polytensor of rank two designated T(2),11-14 yields a 
concise interaction expression: 

E = M(A)tT(2) M(B) (13) 
This expression is particularly suited to computational 
implementation because it is a row vector times a square 
matrix times a column vector, an operation that is easy 
to program efficiently. Also, the moment expansion 
can be truncated to any order with no special logic. 
However, the evaluation of the elements in T(2) is a 
computational step that may become expensive, par­
ticularly as the point of truncation in the moment 
expansion is increased. The number of elements in 
this matrix with respect to the order of moments 
included, starting from zero order (point charges) is 1, 
16, 169, 1600, 14641, and so on. So, the number of 
operations required for an evaluation of the energy in 
eq 13 is roughly 2 X 91 where L is the highest moment 
order. 

The interaction energy of a system of species with 
permanent charge fields is pairwise additive. That is, 
every A-B pair in a collection of species contributes to 
the interaction energy the amount given by eq 13. So, 
a specific T-tensor is required for each pair: 

E = £ > < A ) t £ T^M^ (14) 
A B>A 

If the species have polarizable charge distributions, the 
energy associated with polarization is not pairwise 
additive. 

The computational implication of the analysis so far 
is that electrostatic interaction between distributions 
of point charges should be inexpensive to carry out in 
relation to evaluation of the T-tensors needed for a 
multipole interaction truncated other than at a very 
low order. Clearly, if the charge distributions are truly 
point charges, there is no reason to consider multipoles. 
At separation distances that are large compared to an 
atom's size, for instance, the interaction between two 
molecular ions is well treated as the interaction of point 
charges; in effect, at large separations, the ions are point 
charges. However, at closer separations, this may prove 
insufficient, and so, the question of computational 
efficiency is strongly linked to the problem of repre­
senting the continuous charge distribution of an atom 
or molecule. 

C. Representations of Permanent Charge Fields 
There are an infinite number of approximate ways 

to represent a molecular charge field (or potential). The 
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-3.0 0.0 3.0 
Figure 1. Equipotential contours of ideal multipoles. The 
innermost contour level that is drawn is the same in each plot 
and corresponds to a unit test charge having an interaction 
energy of 18 000 cm-1. The step from one contour level to the 
next is the same throughout (2000 cm-1 for a unit test charge). 
Contours for higher equipotentials have not been drawn to 
avoid congestion of lines. The multipoles are at the centers 
of these 6-A X 6-A grids and are oriented along the horizontal 
axis of each plot: (a) an ideal dipole of 1.0 au, (b) an ideal 
quadrupole of 1.0 au, and (c) an ideal octopole of 1.0 au. For 
comparison, if the same potential contours were drawn about 
a unit charge or zeroth order multipole, the first (i.e., at 18 000 
cm-1) would be a circle outside the 6-A X 6-A grid. 

differences amount to different truncations in an 
expansion of the potential, V. Perhaps the most 
common is the central multipole expansion. It is 
truncation in the order of included multipoles that 
affects accuracy in this representation. Figure 1 
provides contour plots of electrostatic potentials about 

Dykstra 

several low order, ideal multipoles. Representation of 
a molecular charge field by a central multipole expan­
sion implies a superposition of these ideal multipole 
potentials. An expansion truncated at the third mo­
ment, for instance, can faithfully represent charge fields 
only as complicated as those in Figure 1. 

The alternative to a central multipole expansion is 
a distributed representation, and the simplest form of 
this is a distribution of point charges (zero-order 
multipoles). The accuracy of a point-charge represen­
tation of a molecular charge field depends on the 
number of charges: Many small, closely spaced point 
charges will tend to depict a continuous charge cloud 
more accurately than a few sparse point charges. Point 
charges at atomic centers are attractive from a com­
putational standpoint because then the electrostatic 
forces act directly on the atoms. However, placing point 
charges only at atomic centers is a concise representation 
that cannot be entirely accurate. 

What may be regarded as a hybrid of the point charge 
and central multipole representations of a charge field 
is the distribution of low-order multipoles rather than 
point charges. This idea is the basis of a model called 
distributed multipole analysis (DMA)15 that has been 
well used in the study of weakly bound complexes. This 
approach represents the permanent charge field in 
terms of distributed dipoles and quadrupoles, as well 
as point charges. The distribution may be dictated by 
or selected on the basis of a specific analysis of an ab 
initio wave function. Use of a Gaussian basis in the ab 
initio calculation means that there is some order, 
determined by the highest /-functions in the basis, at 
which higher order distributed moments vanish for 
properly chosen sites.15 So, even for small molecules, 
a distributed moment representation appears to be more 
rapidly convergent than a central multipole represen­
tation.1516 A finite, and rather concise, set of distributed 
moments can exactly represent the Gaussian-basis-
calculated permanent charge field of a diatomic, 
whereas a central multipole expansion would not be 
exact until infinite order. In practice, being exact in 
the representation is not necessary, expecially since 
there will be lingering errors in the ab initio calculation 
that yielded the electron density function. So, a smaller 
set of sites, the atomic centers and a site selected along 
each bond, are used in interaction potential applications 
of DMA. 

Convergence advantages of almost any type of 
distributed multipole expansion are apparent if we 
consider the representation by central multipoles of a 
system of two well-separated ideal dipoles. This trivial 
system could have nonvanishing central multipoles to 
all order, whereas the distributed representation con­
sisting of just the two ideal dipoles would be exact. The 
same could be said for separated point charges. In fact, 
the molecular electrostatic potential of only the skeleton 
of atomic nuclei would be concisely represented by 
distributed point charges, but an infinite set of central 
multipoles would be needed. 

High order central moments are mostly determined 
by the nuclear skeleton,17 not by fine details of the 
charge distribution along the bonds. In many ways, it 
is the low-order moments (e.g., dipole and quadrupole) 
that characterize bonding. This means that in small 
molecules (diatomics, triatomics, and tetraatomics), 
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low-order central multipoles can succeed in representing 
the charge field at long range. The higher order 
moments become unimportant simply because of the 
small size of the molecule. 

The important concern for molecular force fields that 
employ electrostatic analysis is not convergence be­
havior at all points in space, but accuracy of the 
representation in the regions of interest. Rather than 
an exact representation, we seek only one that is correct 
in the regions of interest. Probably the separation 
distances where charge field representations need to 
be most accurate are those from just under the 
separations associated with van der Waals radii to about 
twice that distance. The hydrogen fluoride dimer has 
an equilibrium separation distance (mass center to mass 
center) of about 3 A. Accurate representation of the 
electrostatic fields of the two monomers when they are 
separated by 2.7-6.0 A (or 90-200 % of the equilibrium) 
is called for. At closer separations the charge distri­
butions will tend to overlap and make invalid the 
physical justification for classical electrostatic poten­
tials, and at separations beyond this range the inter­
action energy and forces are all weak; accuracy in the 
far-off regions is not important for most force field 
applications. 

Let us examine several representations for a very 
simple molecule, water. Figure 2a gives the electrostatic 
potential, in the plane of the water molecule and in a 
perpendicular plane, on the basis of a large basis set, 
well-correlated ab initio calculation of the electronic 
wave function of water.18 We shall take this as very 
close to a true depiction of water's permanent electrical 
potential. Were we to represent water's charge field 
by a simple dipole, we could do no better than the 
qualitative form of Figure la. However, if we truncate 
the central moment expansion one step further, that is, 
include the second moment, a reasonable representation 
(Figure 2b) results. Again, all we should be concerned 
with is the form of the potential at long range. Close 
in, a classical electrostatic analysis is physically inap­
propriate, and so there is no reason to strive for an 
accurate representation there or within any region of 
significant electron density. 

Figure 2c is a plot of the electrostatic potential of two 
dipoles placed essentially at the midpoints of the O-H 
bonds and chosen to have a magnitude and orientation 
such that their vector sum yields the overall permanent 
dipole of water. This potential is reasonably faithful 
to the potential of Figure 2a, although the nodal line 
in the contours for the perpendicular plane is off. Figure 
2d is a plot of the electrostatic potential of the DMA 
representation of water19 (moments through quadru­
ples/atomic and bond sites), and it is rather similar to 
the contours in Figure 2, parts b and c. As discussed, 
we may expect a central multipole expansion to succeed 
for small molecules such as water, and so the small 
differences between the central multipole representa­
tion (Figure 2b) and the DMA representation (Figure 
2d) are expected. 

There are numerous reported point-charge repre­
sentations of the charge field of water, and contours of 
several of these are given in Figure 2. Figure 2e shows 
the potential for the point charge representation of 
water in the OPLS (optimized potentials for liquid 
simulation) TIP4P model.20-21 Figure 2f is the elec­

trostatic potential of the SPC model,22 and Figure 2g 
is of the MCY potential.23 Relative to Figure 2a, these 
potentials are very good at long range, but they display 
a lumpiness between the hydrogens. In contrast, the 
four-charge ST2 model24 does not show this lumpiness. 
The additional point charge makes it possible to use 
smaller charges, and so the otherwise sharp changes in 
the potential do not develop. Lumpiness is a possibility 
from using few charges to represent a continuous 
distribution, but the important concern, once again, is 
whether or not the undesirable artifact is found in a 
region of interest. 

The noticeable differences in the contours in the plane 
perpendicular to the molecule (Figure 2) are in the 
location of the node line. The three-point charge 
representations and the bond dipole representations 
are the most different from the ab initio picture (Figure 
2a). The central dipole and quadrupole (Figure 2b), 
DMA (Figure 2d), and the four-charge representation 
(Figure 2h) are better. This is true not only in the 
unimportant region close to the oxygen nucleus but 
also further away. 

Water seems representative of small covalent mol­
ecules with one or two non-hydrogen atoms. A low-
order central multipole expansion is reasonable as are 
other representations. This is the guidance for the 
representation of larger molecules; it tells us that we 
may be able to use a single expansion about, or in the 
vicinity of, a non-hydrogen center. A larger molecule 
in which to apply this notion is benzene. We have 
carried out an ab initio calculation to obtain the electron 
density, charge field, and multipole moments of ben­
zene,25 and from those results, we have compared the 
electrostatic potential from the calculated electron 
density with the electrostatic potential of a simple bond 
dipole representation analogous to the water repre­
sentation in Figure 2c. Figure 3 shows the contours of 
the electrostatic potentials, including those of the DMA 
representation.26 A representation we have devised 
(Figure 3b) that consists of six C-H bond dipoles chosen 
to reproduce the molecular quadrupole is effective at 
long range. Interestingly, the six-bond dipole repre­
sentation works as well at slices above the plane of the 
molecule as it does in the plane of the molecule, at least 
for distances beyond the van der Waals radii from the 
atoms. This is seen by comparing Figure 3g (SCF) with 
Figure 3h (bond dipoles) since these give contours 1A 
above the molecular plane. That dipoles in the plane 
should be fairly effective at representing the electro­
static potential in benzene's ir-charge cloud has to do 
with the dominant role of the nuclear framework 
in dictating the electrostatic potential of a molecule. 
Benzene is mostly a flat distribution of charge. Point 
charge representations of benzene's electrostatic field 
in the molecular plane are given in Figure 3, parts d 
and e. Distributed low-order moments, even limited 
to dipoles, are likely to be effective for representing 
molecular electrostatic potentials generally. Their 
advantage over point-charge distributions, if any, will 
be in the relative smoothness of the potentials. 

The calculational differences of various representa­
tions of charge fields are much more striking than the 
differences in the potentials. For the calculation of an 
interaction energy, representing water with three point 
charges is very efficient. Representing it with two bond 
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dipoles requires more operations, about the same as 
representing it with a central dipole and quadrupole. 
However, it is forces that are required for molecular 
mechanics, and in particular, forces acting on atomic 
centers. Central moment expansions are workable for 
forces if the molecule is rigid, but even then the requisite 
use of orientational coordinates makes the evaluations 
a bit cumbersome. So, there is a dilemma: The most 
efficient representation for calculation, point charges 
at atomic centers, is not the most accurate and reliable. 
For efficient calculation, it must be possible to quickly 
extract Cartesian forces on atomic centers, and this is 
a computational obstacle specific to each type of 
electrical representation. 

D. Polarization 
Polarization is the readjustment of a charge distri­

bution when it experiences a static external electrical 
potential. Instead of the word "polarization," the term 
"induction" is often used for this effect on charge 
distributions. When both terms are used, induction is 
usually reserved for molecular level effects and polar­
ization for macroscopic effects. If working entirely at 
the molecular level, two terms may be unnecessary; the 
one I will use here is "polarization" partly because this 
avoids possible confusion between induction and in­
ductance, a very different quantity. And so, even 
though one may say that "a dipole is induced by an 
external field", we may correctly add, "because the 
charge distribution has been polarized". 

The expressions for polarization energetics come 
about from another power series expansion. If a charge 
distribution experiences a uniform electric field, and if 
the charges are free to adjust in response to the field, 
the energy of interaction for the charge distribution 
experiencing the field can be taken to be some function 
of the field strength. If the charges are not free to adjust, 
this function is linear in the field strength, as should 
be evident from eq 1. Thus, a general analysis of 
polarization is one that allows for the interaction energy 
to be a nonlinear function of the field strength. The 

E = F O T ' F = 0 + 2 F 2 ^ ' F = 0 + 3!F 3^ 'F"° + "• ( 1 5 ) 

= MF + | « F 2 + | j /3F3 + ... (16) 

quantities M, «, and /3, which are the dipole moment, 
the dipole polarizability, and the dipole hyperpolar-
izability, respectively, are simply derivatives of the 
energy with respect to the field strength. (It is a 
common convention choice to write E as the negative 
of the expression given above. That affects the signs 
of any stated property values.) Of course, the field, F 
is properly a vector, F = (dV/dx, dV/dy, dV/dz), and so 
the energy derivatives take the form of tensors, rank 
one tensor for the first derivatives, rank two for the 
second derivatives, and so on. Third derivatives are 
hyperpolarizabilities, but fourth derivatives are termed 
second hyperpolarizabilities. From there on, further 
differentiation means a higher order of hyperpolariz-
ability. 

An external electrical potential may be nonuniform, 
which means that in addition to derivatives with respect 
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Figure 3. Contour plots of the electrostatic potential of benzene in the plane of the molecule and above the plane of the 
molecule.25 The first five plots are in the molecular plane, and the last five are for a parallel plane 1 A above the molecular 
plane. Contours shown represent equipotentials starting outward from 0.002 au (1.0 au test charge) and going inward to higher 
equipotentials in even steps of 0.002 au. The coordinate axes are labeled in atomic units (au). These plots show the in-plane 
potentials (a) from the electron density obtained from an ab initio SCF calculation with a large basis set, (b) an arrangement 
of six dipoles of magnitude 0.89 D aligned along each C-H bond at 0.503 A out from the carbon, (c) the DMA representation 
of Price,26 (d) The OPLS point charge representation,20 and (e) the point-charge representation of Williams.4 Likewise, they 
show the potentials in a plane above the molecule from (/) the SCF calculation, (g) the arrangement of six-bond dipoles, (h) 
DMA, (i) OPLS, and (/) Williams' point-charge representation. 
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to field components, the derivatives with respect to 
field gradient components characterize the electrical 
response of the charge distribution. The derivatives 
with respect to field gradient components (e.g., Vxx) 
carry the label "quadrupole". The first derivatives are 
the elements of the quadrupole moment, and the second 
derivatives are the elements of the quadrupole polar-
izability, and so on. There are also mixed derivatives 
such as the dipole-quadrupole polarizability, which is 
the set of energy second derivatives with respect to 
field components and field gradient components. 

The polarizabilities and hyperpolarizabilities of all 
multipoles and to all orders may be arranged into 
polytensors. AU moments comprise a rank one poly-
tensor, the M tensor of eq 11. AU polarizabilities are 
included in a rank two polarizability, which may be 
designated P(2), and so on for all n-order derivatives in 
nth rank tensors P(n). Particularly for polarization 
energetics, the polytensor organization allows for com­
putation that is virtually transparent to the moment 
order,12-14 and this is an important computational 
feature. The polarization energy of a charge distribu­
tion experiencing an external electrical potential, V, is 
simply 

E = V2VP(2) VT (17) 
This expression applies regardless of the order of 
truncation of the multipole expansion because P(2) may 
include, depending on the truncation, the dipole 
polarizability, the dipole-quadrupole polarizability, the 
quadrupole polarizability, the octopole polarizability, 
etc. (Most often, polarizabilities are reported opposite 
in sign to that implicit in eq 17. With that convention, 
a positive dipole polarizability value would correspond 
to an energy stabilization, E < 0, from application of 
a uniform field.) 

Equation 17 immediately shows an important feature 
of polarization, that it incorporates cooperative or 
nonpairwise additive elements into a potential. In a 
system of three molecules, A, B, and C, the polarization 
energy will be a sum of contributions from each 
molecule. Different external potentials are additive in 
effect, and so the potential at A (neglecting back 
polarization) is the sum of potentials arising from the 
moments of B and of C following eq 11. That is, V in 
eq 17 is a sum of contributions. Since E has a quadratic 
dependence on V, cross-terms appear, and the result 
will be three-body terms, which in this case would be 
moment elements of B multiplying moment elements 
of C multiplying polarizability elements of A. Ne­
glecting mutual effects means that the polarization 
energetics give rise to no higher than three-body terms. 
Hyperpolarization brings in four-body terms, and the 
inclusion of second hyperpolarizabilites implies five-
body terms. 

The detailed expressions for treating electrical po­
larization do not need to be restated in this review. 
They have been presented elsewhere in several forms 
(see, for example, refs 2-4,12-14, and 27-29), and in 
any case, it is clear that high-order multipole repre­
sentations and high-order hyperpolarization analysis 
will be cumbersome for the purposes of molecular force 
fields. Rather, the extensivetreatmentsof polarization 
provide a benchmark for devising and evaluating 
simpler schemes. There are, however, two complica­
tions that must be considered. The first is that 
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Figure 4. Contours of the relative difference in the electron 
density of water between isolated conditions and perturbation 
by an electric field along the symmetry axis of 0.01 au (5.14 
X107 V/cm). Difference contours are in percent of the density 
of isolated water and are drawn for the plane of the molecule. 

polarization between atoms and molecules is a mutual 
effect. The charge field of molecule A may polarize 
molecule B, but then it is the now polarized charge 
field of B that acts on A. Hence, the analysis of mutual 
charge polarization requires a solution of coupled 
equations. The incorporation of mutual polarization 
implicitly gives N-body elements for the interaction 
potential of an iV-body system. These coupled equa­
tions become nonlinear if hyperpolarization (third 
derivatives of the energy) are included. Again, the 
details are not especially important in the context of 
this review, because the "back" polarization (the 
difference between the permanent charge field of B 
acting on A and the polarized field of B acting on A) 
tends to be small. The sizes of back polar ization effects 
are discussed later. The second complication is that 
inclusion of polarization energetics adds to the com­
putational effort for evaluating forces. This is con­
sidered in the next section. 

An idea of the effect of polarization on molecular 
charge clouds can be obtained from comparing charge 
densities and electrostatic potentials with and without 
an external field. Calculations have been done on the 
water molecule experiencing a uniform external field 
along the symmetry axis of 5.14 X 107 V/cm (0.01 au), 
and results may be compared to those with zero field. 
This choice of a perturbing field is representative of 
the largest size of field that molecules experience from 
the charge fields of polar molecules at van der Waals 
separation distances. The charge densities of perturbed 
and unperturbed water turn out to be so similar that 
contour plots are almost indistinguishable. We have 
not presented them for that reason, but their similarity 
is important in showing that the overall shape and size 
of the molecule are not appreciably altered by the 
external field. 

A plot of the difference in density between perturbed 
and unperturbed water can be presented on a mean­
ingful scale, and on a relative basis, this is given in 
Figure 4. It shows the expected result that density is 
shifted in the direction of the field. Furthermore, the 
greatest relative changes are in the fringe regions of the 
electron density. The polarization response of a small 



2348 Chemical Reviews, 1993, Vol. 93, No. 7 

a 6.o 

-6.0 

b 6.o 

-6.0 
-6.0 

Figure 5. Difference electrostatic equipotential contours for 
the charge distribution of the water molecule as it experiences 
a uniform external electric field of 0.01 au or 5.14 X 107 V/cm 
along the symmetry axis: (a) contours in the plane of the 
molecule and (6) contours in the plane perpendicular to the 
molecular plane. These contours are obtained from the 
electrostatic potential of perturbed water less the electrostatic 
potential of isolated (unperturbed) water (as in Figure 2a). 
The innermost or highest contour is at 1800 cm-' for a test 
charge of 1.0 au, and the step size between contours is 200 
cm-1. 

molecule (one non-hydrogen atom) is mostly a response 
in the regions of space away from the atomic nuclei. 

The electrical potential arising from the charge 
distribution of a molecule changes somewhat as the 
molecule is polarized by an external field. The dif­
ference between the electrical potential about unper­
turbed water and water polarized by a small field along 
the symmetry axis is presented in Figure 5. At van der 
Waals separation distances, the difference in the 
potential is roughly about 10% of the permanent 
electrical potential, or less. An interesting feature of 
the contours in Figure 5 is that the in-plane and out-
of-plane contours are quite similar, but not exactly the 
same. The uniform electric field induces or affects the 
dipole and higher order multipoles. The asymmetry of 
the in-plane and out-of-plane difference contours are 
a manifestation of the molecular structure as well as an 
indication that the field affects higher order multipoles. 

E. Distribution of Polarization Response 

The polarization of a molecule can be characterized 
by the multipole polarizabilities and hyperpolarizabil-

Dykstra 

ities. However, the difficulties of using a central 
multipole expansion for a large molecule apply to the 
polarization as well. The alternative, again, is to 
distribute the polarization response. However, this 
is more complicated than the distribution of permanent 
moments because of mutual polarization. For example, 
one may attempt to represent the polarization response 
of some diatomic AB with a dipole polarizability on A 
and on B. If an external field is applied to the molecule, 
local polarization will occur at both A and B. However, 
the dipole induced at A gives rise to a field that B 
experiences. If the effect of that field is included in 
evaluating the polarization of B, then we are treating 
mutual polarization as if the charge distributions on A 
and B were not connected or not overlapping. 

Classical electrostatics breaks down in describing 
mutual polarization within a molecule because the true 
polarization response follows from the quantum me­
chanically determined response properties of the mol­
ecule. However, if external electrical potentials are very 
weak, then the neglect of mutual polarization (classical 
or quantum mechanical) may be justified. That is, the 
direct polarization interaction energy of eq 7 should be 
the dominant term in a general power series expansion, 
such as eq 14, in the limit of weak external fields. On 
this basis, one may freely distribute polarizabilities 
provided that intramolecular mutual polarization is 
neglected. 

The issue that arises at this point is the choice of the 
distributed properties. One approach is to "match" 
distributed properties with overall molecular response 
properties. For instance, the tensor sum of the dis­
tributed dipole polarizabilities may be fixed to be the 
same as the overall molecular dipole polarizability 
tensor. We have used this procedure to represent 
benzene.25 Another procedure is to directly extract 
them from an ab initio wave function, and Stone has 
devised and implemented such a procedure.30 

/ / . Construction of Electrostatic Potentials and 
Force Fields 

A. Intrinsic Electrical Response Properties 

Developing electrostatic potentials and force fields 
calls for values of electrical response properties. These 
values can be taken to be empirical parameters along 
with other force field parameters, and this is often the 
way atomic point charges are chosen. The role of 
electrostatic analysis in that case is simply to select an 
appropriate functional form for the given interaction 
term. A more rigorous, although not necessarily more 
effective, application of electrostatic analysis involves 
using intrinsic molecular electrical response properties. 
This removes the empiricism, but in exchange it 
demands that values be reliable. 

Electrostatic potentials of small molecules can be well 
represented by a low-order central multipole expansion, 
and the polarization response usually requires only a 
few multipole polarizabilities. These are properties 
which are directly, and rather easily, obtained from ab 
initio electronic structure calculations. Distributed 
moments and polarizabilities can be extracted directly 
from ab initio calculations,15'19,26'30 or they can be chosen 
to match the central moments and polarizabilities. 
Either way, the quality of the ab initio calculation of 
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Table I. Calculated and Experimental Values of 
Electrical Response Properties* 

ab initio calculation 
property SCF correlated 

N2 quadrupole (au) 0.886 (31) 1.085 (31) 
N2 polarizability, 11.512 (33) 11.675 (33) 

a (au) 
N2 second hyperpo- 665 (33) 830 (33) 

larizability, y (au) 
HF dipole (au) -0.767 (31) -0.715 (31) 
HF polarizability, 5.764 (35) 6.428 (35) 

auial (au) 
HF hyperpolarizabil- -8.548 (35) -9.838 (35) 

ity, |8aiial (au) 

experimental 

1.09 (32a) 
11.74 (32b) 

850-865 (32c, 33) 

-0.707 (34) 
6.40 (35, 36) 

° All ab initio calculations used large, multiply polarized basis 
sets. References are in parentheses. 

the properties is central to the question of reliability 
of the electrical representation. 

We have reviewed the ab initio calculation of mo­
lecular electrical properties,31 and there are several ideas 
that have emerged to guide the choice of a calculational 
level. There are, of course, two factors that affect the 
quality of an ab initio calculation, electron correlation 
and basis set completeness. The effects of electron 
correlation on electrical properties seem rather well 
understood. Typically, correlation effects have an 
importance on polarizabilities and hyperpolarizabilities 
that increases with the order of differentiation asso­
ciated with the property. Thus, the correlation effect 
on polarizabilities of small, covalent molecules is usually 
up to 10%, whereas a typical correlation effect on 
hyperpolarizabilities (third derivatives) may be up to 
25%. These trends are illustrated by the examples in 
Table I. The relative correlation effect on permanent 
moments of small molecules can be small or large 
depending on whether the value of the moment is large 
or near zero. Typically, the correlation effect on a dipole 
moment is up to about 0.2 D (0.1 au), and the effect of 
the quadrupole moment is up to about 0.3 au. It should 
also be pointed out that basis set deficiencies can 
amplify the correlation effect; that is, the correlation 
effect may be overvalued with a poor basis. 

Basis set quality is very important in electrical 
property calculations. Permanent moment evaluations 
may be suspect if the basis lacked at least one set of 
polarization functions. Polarizabilities require a second 
set of polarization functions more diffuse than the first, 
and hyperpolarizability requirements follow the same 
direction. The reason for this is that the regions of 
electron density that show the greatest relative effect 
upon polarization are the extreme or fringe regions; 
with conventional Gaussian bases, diffuse functions are 
needed to describe that response. Particularly poor 
values of hyperpolarizabilities can result from the use 
of minimal or even double- f valence sets for small 
molecules. 

As molecule size increases, basis set requirements 
change, and in one sense that change is toward less 
stringent requirements. As has already been men­
tioned, permanent multipoles, especially higher order 
multipoles, of extended molecules are largely deter­
mined by the nuclear skeleton. A valence basis that is 
capable of roughly describing the electronic structure 
at each atom in a molecule will be suited to obtaining 
the dominant part of the contributions to the multipoles. 
Calculations of polarizabilities also tend to have less 

stringent basis set requirements as molecule size 
increases because the polarization response increasingly 
becomes a shift of charge along the molecular skeleton. 
Again, valence bases may be sufficient, or at least better 
than in a small molecules (no more than one non-
hydrogen center). 

B. Intermolecular Electrical Potentials 

Perhaps the most valuable use of electrostatics, or at 
least the most suited application, is in weak intermo­
lecular interaction. This is a long-range interaction, 
and so one charge cloud is weakly perturbed by another 
usually without strong overlap. A number of electro­
static models have been devised specifically for the 
treatment of weak intermolecular interaction in small 
molecule clusters. Even though these tend to invoke 
electrostatics rigorously, there is an element of modeling 
and empiricism because at some point, electrostatics is 
incomplete. Electrostatic potentials follow the laws of 
classical interaction, and at some point of approach, 
quantum mechanical effects are not ignorable. In 
particular, ideal multipoles will tend to coalesce, and 
so at the very least, some type of wall potential must 
be included with the electrostatic potentials to provide 
a realistic description over the intermolecular degrees 
of freedom. 

The model of Buckingham-Fowler (BF)37'38 assigns 
ideal permanent multipoles (zero, first, and second) to 
atoms according to a DMA analysis. These are em­
bedded in perfectly (infinitely) hard spheres whose radii 
are atomic van der Waals radii. The hard spheres 
preclude approach at any distance less than a van der 
Waals radii contact distance, and so, they serve to 
represent the nonelectrical parts of the interaction 
energy that would prevent the coalescence of ideal 
multipoles. Shapes, or relative monomer orientation 
information, for small molecule dimers seem well 
predicted with this model.37-40 

A more complete treatment of the nonelectrical part 
of weak intermolecular interaction is a key element of 
a model developed by Spackman.41,42 This model 
exploits the DMA representations to obtain permanent 
charge field interaction energies. It also incorporates 
charge penetration effects. The other effects, such as 
the repulsive wall, are incorporated into atom-atom 
"exp-6" terms (i.e., for atoms separated by a distance 
r, "exp-6" are potential energy terms of the form exp 
(-cr) and r-6). This yields a smooth, continuous potential 
over intermolecular coordinates. Whereas a "billiard 
ball" (infinitely hard) potential can be predictive of 
nothing more than the well depth and orientation, 
Spackman's model can be used to obtain the minimum-
energy separation distance and other features of the 
full potential surface. 

The molecular mechanics for clusters (MMC) mod-
e16,u,43,44 u s e s empirical atom-atom "6-12" potentials 
(i.e., r-6 and r-12) for the nonelectrical part of the 
potential, and so, as in Spackman's model, MMC has 
been designed to model the full intermolecular potential 
surface. So, both Spackman's model and MMC can be 
used to calculate intermolecular (weak mode) vibra­
tional frequencies.44'45 The permanent charge fields 
used in MMC are represented by central multipoles for 
small molecules and distributed multipoles in the 
limited cases where larger molecules have been treated. 
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Table II. Model Predictions' for Small Cluster 
Structures 

cluster 

(HCl)2 

(HCCH)3 

HCCH-HF 

H2CO-HF 

N2-HF 
H4C2-HCN 

model 

MMC 

MMC 

MMC 

BF 

BF 
BF 

calculated/experimental values6 

Room (A): 3.832 (79)/3.81 (80) 
B1: 22 (79)/0-10 (80) 
S2: 89 (79)/70-80 (80) 
stability (cm-1): 667 (79)/817 (81) 
electrical share of stability: 567 
flcom (A): 4.328 (82)/4.354 (83) 
orientation: cyclic (82)/cyclic (83) 
stability (cm-1): 1898 (82) 
electrical share of stability: 1772 
ficom (A): 3.007 (82)/3.075 (84) 
orientation: T-shape (82)/ 

T-shape (84) 
stability (cm-1): 2000(82) 
electrical share of stability: 3135 
B1: 113 (38)/ll5 (85) 
02(COF): 110 (38V109.5 (85) 
orientation: linear (38)/linear (86) 
orientation: HCN perpendicular to 

plane (38)/same (87) 
0 BF = Buckingham-Fowler (refs 37 and 38); MMC = molecular 

mechanics for clusters (refs 43 and 44).b References are in 
parentheses. 

The multipoles are obtained from high-level ab initio 
calculations. The MMC model was the first to incor­
porate comprehensive treatment of electrical polar­
ization. The computational techniques developed for 
MMC14 provide for open-ended treatment to all orders 
of hyperpolarization and all orders of multipole; how­
ever, in practice low-order multipoles and hyperpo-
larizabilities only through the dipole hyperpolarizability 
are included. In MMC, the complete mutual polar­
ization equations are solved for any number of inter­
acting species, and so the cooperative elements of 
electrical interaction are not ignored. 

The BF model, Spackman's model, and MMC have 
had generally good success in predicting structural 
features and a well depths of small complexes. A few 
examples of MMC and BF results are given in Table 
II. This success, in spite of the differences between the 
models, underscores the suitability of the electrostatic 
foundation for the models. Also revealed in Table II 
is the fact that electrostatic contributions to the total 
energy, at least within the MMC model, do not 
consistently overwhelm the other terms. Nor is the 
electrical share consistently less or consistently more 
than the total energy at equilibrium. Simply, it is not 
necessary that the electrical energy be a bound or even 
that it be dominant to use electrostatics as a primary 
model element. 

The MMC model can be viewed as overlaying a 
traditional Lennard-Jones (6-12) potential with inter-
molecular electrostatics. The 6-12 potentials are, for 
problems of weak intermolecular interaction, the ele­
ments that represent all the core/valence interactions 
that arise quantum mechanically. Were the model not 
designed for rigid molecules, a more complicated form 
for this element would be needed, but that could easily 
be extracted from conventional molecular mechanics 
force fields. Going the other way, the potentials and 
force fields that develop from intermolecular electro­
static models may, with some reworking, overlay valence 
force fields in conventional MM programs. 

C. Electrical Elements of Full Molecular Force 
Fields 

Electrostatic elements are part of most all conven­
tional molecular force fields,46 and most often these 
elements take the form of atomic point charges. 
Incorporation of electrostatic elements offers a way of 
extending valence force fields to include intermolecular 
forces. Also, electrostatics terms may be the exclusive 
element for intramolecular interactions that are anal­
ogous to weak, intermolecular interaction. The relative 
orientations of two functional groups attached to 
adjacent carbon atoms might be properly represented 
by the interaction of local dipoles on the functional 
groups (or corresponding point-charge distributions). 
In intramolecular interactions, however, there may be 
both through-space interactions and valence interac­
tions through the molecular framework. Empirical 
selection of force field parameters will not separate 
these, whereas realistic modeling of the electrostatic 
interaction may account for the through-space element. 

A number of molecular mechanics force fields have 
gone beyond atomic point charges, and we shall consider 
several of these. For instance, Allinger has used both 
bonds dipoles and point charges for molecules with net 
charges in MM3,47-49 and this has yielded good success 
for the structures of organic crystals.49 The electrostatic 
representation of MM3 also includes atomic point 
charges for ionic species, and dipoles on atomic centers 
for certain lone pair structures. The logical choice of 
the orientation of the bond dipoles is along the bonds, 
and this seems to be the most practical choice as well.50 

Atomic dipoles (plus monopoles) could be used, but 
transferability may not be as good.4,50 

Polarization energetics have been introduced in 
molecular mechanics force fields by several groups. 
Warshel and co-workers have demonstrated useful 
improvements upon including polarization.9'61-63 In 
application to water, the polarization response in their 
approach is characterized by an isotropic dipole po-
larizability at the oxygen center.52 A distance-depen­
dent shielding factor is introduced to screen the 
polarizable centers from the full permanent moment 
charge field. An important aim is to achieve a repre­
sentation that is transferable from small gas-phase 
clusters to the condensed phase. 

Kollman and co-workers have also used atomic dipole 
polarizabilities to incorporate three-body effects.64-56 

In their approach, the atoms are perturbed by the 
atomic charges that constitute the permanent charge 
field representation. The coupled polarization equa­
tions are solved to yield the polarization energy and 
the dipoles induced at each atomic site. The analytical 
evaluation of forces due to polarization follows a 
procedure of Ahlstrom et al.57 Kollman's results 
highlight the importance of nonadditivity, which arises 
with polarization energetics and with three-body re­
pulsions, in the condensed phase or in extended 
aggregations. 

There have been a number of models developed 
specifically for water and including polarization.67-65 

These are intended for liquid simulation. An approach 
used originally for water, but extended to other mol­
ecules, is the polarization model of Stillinger and 
David.66 The permanent charge field representation is 
through point charges, and augmenting that are dipole 
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polarizabilities that provide for charge readjustment 
upon interaction with neighbor species. It models the 
changing response of molecules to stretching and 
distortion through dissociation. It was used first for 
water simulations, but the characterization or parameter 
determination has been carried out for a good number 
of other molecules.67 

The conclusion that seems to hold from water 
simulations is that polarization effects are important 
for constructing potentials that are suited both to 
isolated small clusters and to the condensed phase. 
Although nonpolarization effective potentials can be 
designed for liquid and solid simulations (e.g., OPL-
S20,21), these do not tend to give correct dimer infor­
mation. The cooperative, or nonpairwise additive, 
feature of polarization means that it can play a crucial 
role in reducing molecule separations with increasing 
aggregation, exactly what is needed to go from a dimer 
to the condensed phase. So, polarization very much 
seems to be the essential element to achieve generally 
applicable potentials. 

D. Forces from Electrostatic Potentials 

There are a number of complications in the calcu­
lation of forces from potentials based on electrostatics. 
Most of these complications are associated with the 
representation that is employed. Atom-centered point 
charges and no incorporation of polarization are clearly 
the easiest. Multipoles beyond zero order on atoms 
add a directional dependence, and multipoles offset 
from atoms require analysis of torques. Direct polar­
ization requires higher level electrostatic analysis to 
obtain forces, and mutual polarization requires solution 
of derivatives of the coupled polarization equations. 

Forces are the derivatives of the potential energy with 
respect to the chosen set of geometrical parameters. 
For most uses of conventional molecular mechanics 
force fields, the chosen geometrical parameters are 
Cartesian displacement coordinates of the atoms. 
Electrostatic potentials involving only point charges 
on atoms yield forces directly. For example, a charge 
q at the point (0,0,0) will experience a force along the 
x axis from a charge q at the point (x',0,0), as is obtained 
from the derivative of the potential energy from eqs 1 
and 2: 

§K\ -±(-SL)\ =-1. an 

For higher permanent multipole interactions, forces 
may be obtained by differentiation of the energy in eq 
14 with respect to the chosen internal coordinates. For 
those coordinates that are the same as the position 
coordinates of the multipole center (i.e., for the trans-
lational forces acting on the multipole), the differen­
tiation implicitly calls for the next higher order T tensor, 
T(3), since the order represents the differentiation with 
respect to the position coordinates.13 Computational 
procedures have been devised and implemented to 
generate T-tensors to arbitrarily high order;14 however, 
even with the most efficient algorithm, the computa­
tional cost is considerably greater to obtain T(3) than 
T(2) if there are moments beyond the dipole. 

The directionality of first and higher order moments 
means that electrical interaction can give rise to torques 

as well as translation forces. One can insert a suitable 
direction cosine matrix into eq 14, and torques can be 
obtained by differentiation with respect to the angles. 
This is particularly useful for rigid intermolecular 
potentials with molecule-centered moment expansions. 
The calculated torques are the forces acting to twist 
the molecules. In the MMC model,43 Euler angles have 
become the preferred choice of orientational coordi­
nates; however, a coordinate transformation is then 
required so as to obtain torques about three orthogonal 
axes. 

Multipoles not placed on atomic mass centers give 
rise to torques which then yield forces at the atomic 
centers. Explicit formulae have been presented by Price 
et al.68 However, force evaluation for general multipolar 
distributions does not appear to be in use. 

Forces that arise from polarization are computation­
ally difficult because they include at least up to three-
body effects and because they are at least quadratic in 
the electrostatic potential at any point. One may limit 
the force evaluation to direct polarization and exclude 
back-polarization effects in order to simplify the 
problem. The mutual polarization effects beyond direct 
polarization may offer small improvement in forces; 
however, the coupled equations that must be solved to 
find the polarization energy means there will be a further 
set of equations for each force. Such a treatment may 
be of interest for benchmarking purposes, but practical 
use in molecular mechanics seems unlikely now. 

An ideal dipole polarizability placed along a bond 
but not on an atom will give rise to torques on the atoms. 
Analysis of these contributions follows the treatment 
of multipoles, except that there is a quadratic depen­
dence on the T-tensor via the quadratic dependence on 
the potential (eq 17). From a computational standpoint, 
explicit treatment limited to the dipole polarizability 
should be much less costly than including second 
moment polarizabilities because of the quadratic de­
pendence on the T-tensor for translational forces, and 
a quadratic dependence on direction cosines for torques. 
Explicit, analytical treatment of forces from dipole 
polarizable atomic centers has been reported by Ku-
wajima and Warshel52 and by Ahlstrom et al.57 

IV. The Intimate Connection between 
Electrostatic Force Fields and Properties 

A strong motivation for invoking electrostatic analysis 
in force field construction is that it may help reveal or 
deduce property information. While it is true that 
properties could be analyzed apart from the energies 
and forces, simultaneous success on both fronts of attack 
is surely a good indication of a physically sound model 
or approach. The centermost issue is whether the model 
accounts for the electronic structure of the species, or 
at least the changes in electronic structure. In an 
electrostatic picture, this means going beyond perma­
nent charge fields (no electronic structure change) and 
including polarization effects; polarization is a change 
in electronic structure. Wherever property changes are 
well predicted by electrical polarization effects, it is 
likely that polarization constitutes the primary elec­
tronic structure change. 

A standard property example is the dipole moment, 
and Table III gives electrostatic results for two small-
molecule clusters, the water dimer and a linear HCN 
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Table III. Polarization Contributions to Dipole 
Moments (D) of Small-Molecule Clusters 

(H2O)2 HCN-HCN-HCN-HCN 
permanent dipoles 2.003 12.153 
mutual polarization0 

with a 2.404 14.395 
with a, A, C 2.473 14.361 
with o, A, C, 0 2.471 14.357 

" Dipole moments were obtained from MMC calculations at 
the equilibrium structure of the cluster calculated with MMC. 
Solution of the mutual polarization equations was performed 
with the inclusion of the listed properties: a = dipole polariz-
ability, A = dipole-quadrupole polarizability, C = quadrupole 
polarizability, and /3 = dipole hyperpolarizability. 

tetramer. The series of calculations shows the per­
manent moment values, the values from including the 
dipole polarizability, and from including other polar-
izabilities and hyperpolarizability. For both clusters, 
the polarization effects beyond those associated with 
the dipole polarizability are small. The dipole hyper­
polarizability also has a small effect. The question of 
whether the electrostatic analysis that yielded the values 
in Table III is correct, or nearly correct, may be answered 
by high-level ab initio calculations. The electrostatic 
analysis is incomplete because it neglects intermolecular 
quantum features, and so, the obvious comparison is 
with a calculation that incorporates quantum effects. 
We have studied properties both ways in a number of 
small complexes, and we consistently find good cor­
respondence. The first study was of (HF)2, and in the 
course of that work,69 we calculated the dipole moment, 
dipole polarizability, and hyperpolarizability as a 
function of separation distance. Electrical analysis 
accounted for all the properties nicely. 

Electrostatic analysis should yield simultaneous 
success in property evaluation and in force field 
determination in those cases where the relative effect 
on electronic structure is polarization, but only if 
polarization is the primary change. We have argued6,59,70 

that this is the situation for weak interaction between 
closed shell atoms and molecules, where by our exper­
ience, we take weak to be anything from 0 to ±10 kcal 
or so. It is important to indicate that within an 
electrostatic view, there is no distinction between 
hydrogen bonding and other weak interaction. The 
basis for, and analysis of, the interaction between water 
and benzene, between acetylene and nitrogen, and 
between nitrogen and carbon monoxide are the same. 
The presence of hydrogen atoms to make hydrogen 
bonds is only a modification of the electrical response 
properties, not the basic nature of intermolecular 
interaction. Furthermore, certain long-range intramo­
lecular interactions likely fit the same form, although 
we do not yet have full knowledge of which these are. 

The notion that there are situations where the 
electronic structures of several interacting species are 
changed by the interaction in a way that corresponds 
to simple electrical polarization is a powerful notion, 
when it holds. And that is when forces and energies 
can be predicted along with properties through one 
analysis, polarization electrostatics. From a number 
of studies, we believe this notion does hold for weak 
interaction, and therein is the intimate connection 
between electrostatic force fields and properties. The 
MMC model43,44 that has been discussed earlier solves 

the mutual polarization/hyperpolarization equations 
for an assembly of species and in so doing it obtains the 
classical electrostatic prediction of the change in 
electronic structure. For instance, we find the induced 
moments to any order desired and the total external 
field and field gradient at each species. From this 
analysis, we may obtain changes in properties provided 
we know the values that characterize the response of 
the properties to external fields, field gradients, and so 
on. We have used the electrostatic machinery of MMC 
or its precursors to calculate changes in electrical 
moments,69 in vibrational frequencies,71-73 in vibrational 
transition probabilities,74,76 in chemical shielding,76,77 

and in nuclear quadrupole coupling.78 

V. Outlook 
Molecules are distributions of charge. A question to 

be answered in order to construct force fields and 
interaction potentials is whether molecular charge 
distributions interact quantum mechanically or clas­
sically, that is, whether quantum mechanical analysis 
must always be invoked. In the limit of large separa­
tions, classical electrostatics can yield a nearly correct 
picture, whereas at bonding distances, classical analysis 
has no place. Between these limiting situations, it seems 
appropriate to use electrostatics supplemented with 
terms that correspond to nonelectrical interaction. 
Indeed, invoking electrostatics is commonplace. 

The certain problem that is faced in constructing 
force fields incorporating electrostatic terms is the 
choice of representation. Coupled with this is the fact 
that except at very long range, electrical interaction is 
not entirely separable from other elements. Thus, 
accuracy in the electrical representation alone rarely 
seems productive. As well, errors in one part of a force 
field or potential may be off set in the other parts. 
However, the growing realization that certain properties 
may be calculable from electrostatic analysis implies a 
greater emphasis on completeness in the electrical 
representations. 

Atomic point charges are the simplest type of 
electrostatic force field, from the standpoints of both 
implementation and computation. But enhancing these 
simple representations through distribution of higher 
order multipoles (dipoles, or dipoles and quadrupoles) 
and through incorporation of polarization energetics 
seems essential for reliable treatment of weak intra-
and intermolecular interaction. What we may expect 
to emerge are general models that are applicable in the 
condensed phase and for small gas-phase species as 
well. The results that have been achieved so far make 
this appear likely. 
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