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/ . Introduction 

Chemists have begun to use feed-forward neural 
networks (FFNs)1 to solve problems. These networks 
can identify compounds and substructures in spectra; 
they can interpret sequences of proteins and DNA; they 
can predict properties of molecules such as reactivity 

or odor from molecular features; they can deduce the 
composition of chemical mixtures. It is our purpose to 
review the published work concerning the uses of FFNs 
in chemistry and related fields and to infer promising 
techniques and fields of application for this powerful 
new method. 

FFNs have proved most useful in problems requiring 
recognition of patterns or classification of data (e.g., 
"Does this collection of structural features suggest a 
specified type of biological activity?"). They are 
especially appropriate where the relationship between 
input and output is complex and nonlinear, when rapid 
processing of information is required, when only 
approximate solutions are needed, and when large 
quantities of data broadly distributed over a wide range 
of examples are available. FFNs are not "programmed'' 
in the sense used in rule-based systems; instead, they 
are "trained" by a process in which their internal 
structure adjusts empirically to obtain the best corre
spondence between the output of the network and the 
desired result for a given set of input data. In a sense, 
the training data and training procedures for FFNs 
replace the analytical methods and programming used 
in more conventional systems of computer-based anal
ysis. 

The applications of FFNs in chemistry are just 
beginning; their use in other areas of science and 
technology (analysis of sonar returns, voice and sig
nature recognition, optical character recognition, vi
bration analysis, analysis of quality of manufactured 
parts) has advanced farther. Some of their most useful 
properties (for example, their speed in recognizing 
patterns) have hardly been exploited in chemistry. 
Nonetheless, chemistry, especially organic chemistry, 
relies heavily on recognition of patterns in complex, 
nonlinear data, using intellectual processes that are 
often difficult to specify analytically. FFNs have a 
structure that may make them particularly useful in 
this kind of activity. 
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A. Objectives of This Review 

This review has four principal objectives. First, we 
outline the theory behind FFNs. We describe their 
basic structure and method of operation and attempt 
to clear some of the hyperbole associated with them. 
Second, we review the considerable body of work that 
has used FFNs in chemistry. Third, we evaluate the 
methodology currently used to apply FFNs to chemical 
problems. Some of the techniques being used sub
stantially improve on the basic algorithms, while others 
have little sound basis. Fourth, we recommend pro
cedures for the applications of FFNs to new problems. 
By examining the current state of the art, we hope to 
make this method accessible to more chemists. 

B. The General Problem of Prediction 

Many techniques, including FFNs, purport to find 
relationships among data and predict new values. 
These methods fall into two classes: the theoretical, in 
which analytical methods based on a physical model 
are applied to calculate an answer, and the empirical, 
in which internal consistencies in the data determine 
the result.2 Theoretical models are more satisfying 

intellectually, but many problems either have no well-
defined theoretical basis or do not allow practical 
computational solutions based on theory due to their 
complexity. In cases where theoretical methods are 
inadequate, empirical methods can give useful results. 

A variety of ways to approximate empirical relation
ships have found wide application. Each of them has 
characteristic problems that limit its general usefulness. 
For instance, the behavior of a mathematical series 
depends strongly on its basis functions: if the functions 
chosen do not reflect the fundamental behavior of the 
system, the method may approximate the real rela
tionship poorly, especially if only a few terms are 
considered. A corollary concern is the behavior of these 
functions at the extremes: polynomial expansions 
explode, and Fourier expansions oscillate with unmit
igated strength outside the region of the given data. 
Statistical methods usually make simplifying assump
tions about the relationships among data, such as 
independence of the input variables. These assump
tions complicate the handling of nonlinear effects and 
complex interdependencies. The nearest-neighbor 
method,3 a high-dimensional interpolation technique, 
depends on assumptions about the definition of "near" 
(i.e., the relative importance of different features and 
the significance of differences in each particular fea
ture). Furthermore, as a linear method, it does not 
have a graceful way to handle curvature. In contrast 
to methods that approximate continuous functions, 
decision trees provide only classification, rather than 
continuous numerical output.4 Decision trees draw 
sharp divisions. They cannot take into account con
flicting effects unless they are explicitly represented. 

An FFN builds up an approximation by combining 
the effects of several basis functions, usually sigmoids. 
Unlike most mathematical series, a collection of sig
moids reaches an asymptote at the extremes. The FFN 
approximates the function by iterative adjustment of 
the parameters describing the effect of one component 
function on another. The "training process" results in 
discrimination among the different inputs, automat
ically weighting important inputs and their combina
tions. The predecessor of FFNs, the perceptron 
method,5 can only represent linearly separable effects. 
Perceptrons improve on simple statistics by taking 
advantage of correlations between inputs. With an 
internal structure added to the perceptron model, FFNs 
can reflect effects dependent on more than one input. 
One can consider FFNs "universal approximators": an 
FFN can in principle represent any function if it 
contains enough units.6 

C. Background on Connectionism 

FFNs form a subset of connectionist models.7-14 

Researchers invented these models in a presumed 
analogy to the brain, considered as a network of 
fundamental elements (neurons) with many connec
tions. The models reflect the hypothesis that infor
mation in a brain resides in the strengths of connections 
between neurons, not in the internal state of individual 
neurons. Learning occurs through adjustment of the 
strengths of the connections and corresponds to the 
adjustment of the parameters in neural network models. 

The field of "neural networks" has widened to include 
subjects from medical studies of nerve response to 
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abstract mathematical examinations of neural network 
algorithms. The implementations applied in the work 
reviewed here are strictly mathematical models, suitable 
for use as tools for the approximation of functional 
relationships. 

D. Why Use Neural Networks In Chemistry? 

Many problems in chemistry lack adequate analytical 
tools for explanation or prediction. In every area where 
a chemist's intuition surpasses computational tech
niques, the computer method has failed somewhere to 
include or extract as much information as a chemist 
can. In some cases, the difficulty lies in defining and 
quantifying a property (e.g., odor). In other cases, the 
difficulty lies in finding good features or properties to 
provide to the network as input: for example, no simple 
definition or description of molecular shape exists. 
FFNs also appear to surpass statistical methods on 
problems with noisy or erroneous data.15-17 This class 
of problems forms one group of potential applications 
of FFNs. 

FFNs can also prove useful in certain problems that 
existing methods have solved, provided that the network 
solves the problem more rapidly or less expensively 
than conventional methods. Although the process of 
training a network to predict a given property usually 
takes a long time, a trained network makes predictions 
very quickly—in some cases, fast enough to make new 
applications possible. For example, Gezelter and 
Freeman used FFNs to generate NMR pulse shapes 
quickly enough, in principle, to design a new pulse shape 
during an experiment.18 

The power of FFNs has been increased by combining 
them with other methods. One can feed the output of 
the network into a second process, such as a molecular 
mechanics computation in the case of a predictor of 
protein structure.19 Techniques such as principal 
component analysis1520 or information analysis21 can 
provide preprocessed input to the network. FFNs can 
also be used in parallel with other neural networks (or 
other methods) to generate consensus predictions.22"24 

/ / . How Feed-Forward Neural Networks Work 

A. General Description 

A hierarchy of "units" built up into a complex function 
comprise an FFN.25 Each unit generates as output a 
simple function of its inputs, which may include external 
data or the outputs of previous units. Each unit takes 
the output of previous units as input and provides its 
output as input to subsequent units (hence the term 
"feed-forward"). The coefficients that multiply the 
inputs to a unit are called "weights". These coefficients 
adjust to make the network "learn" its training data. 
Although the individual units are simple, the composite 
function can be quite complex. 

The internal architecture of an FFN looks like a 
flowchart (Figure 1). Most FFNs are organized in 
layers: each unit in a layer takes all the units in the 
previous layers as inputs, performs a calculation, and 
provides its output as input to all the units in the next 
layer. This method of connection is not obligatory. 
The units are sequential: each unit can take any or all 

'O-

input 
layer 

hidden 
layer 

output 
layer 

Figure 1. This flowchart represents a fully connected layered 
network with two inputs (1 and 2), two hidden units (3 and 
4), and one output (5). Each unit is connected to each of the 
units in the adjacent layers, as shown by the solid lines. A 
network fully connected without regard for layers would 
include the connections between distant layers (1-5,2-5) and 
within layers (3-4), shown here as dashed lines. Because input 
units do no calculation (they represent input values), a 
connection between input units 1 and 2 would be meaningless. 

previous units as input and provide its output as input 
to any or all subsequent units. 

The units in the first layer represent the external 
inputs to the network and do no calculation. The 
outputs of the units in the last layer are the outputs of 
the network as a whole and represent the "answer". 
Because the units in layers between the input layer 
(first) and the output layer (last) do not correspond to 
external inputs or outputs of the network, they are called 
"hidden units". 

In this paper, we express the architecture of a 
particular layered FFN as a series of numbers separated 
by colons. The notation 80:8:4 represents a fully-
connected layered network with 80 units in the input 
layer, corresponding to 80 external inputs; 8 hidden 
units in a single middle layer; and 4 output units, 
corresponding to four output values of the network. In 
some cases, the input values originated in a matrix; for 
example, a set of inputs corresponding to each natural 
amino acid (20) at each of 4 positions in a polypeptide 
would give rise to a 4 by 20 input matrix, which can also 
be considered an 80-valued vector. For clarity, we give 
the dimensions of the matrix rather than the total in 
our description, e.g., 4-20:8:4 for a network with the 
same architecture as the previous example in which 
the input values come from a 4 by 20 matrix. The FFN 
does not distinguish between matrix input and unre
lated input; the references are for human convenience 
only. 

B. Mathematical Description of Standard 
Network 

The standard mathematical implementation of an 
FFN7 has a hierarchy of identical units. [The following 
description is supplemented by eqs 1-3 (Chart I) and 
Figure 2.] The unit multiplies each input by the weight 
of the connection between itself and the unit providing 
the input. It adds the weighted inputs and a bias term 
together (eq 1). The bias term can be regarded as the 
weight of an input fixed at 1 (eq la).26 The unit applies 
the sigmoid function to the sum of the weighted inputs 
(eq 2). That function can resemble linear, step, or 
exponential functions on different scales and in different 
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Figure 2. The mathematical function of a unit can be 
considered a three-stage process: (1) The unit multiplies each 
input by the weight for that particular connection. The 
weights can be positive or negative in sign. The bias is treated 
as a weight applied to an input of constant 1, as shown in eq 
la. (2) The unit adds the weighted inputs together. (3) The 
unit applies the sigmoid function to the sum with the formula 
in eq 2. 

parts of its domain (Figure 3). Since the component 
units are explicit functions, their composite, the FFN, 
can be written as an explicit function as well (eq 3). 
One can regard the outputs of the hidden units as 
intermediate values in a calculation. Their form makes 
these calculations, and modifications of the network, 
as simple as possible. 

Chart I 
For a given unit j , a ; is the output, bj is the 
bias, u>ij is the weight connecting it to unit 
i, and Sj is the weighted sum of its inputs. 
This expression does not assume layering: 
every previous unit is considered an input. 
If two units are not connected, the weight 
between them is fixed at zero. 

j'-i 
SJ = hi+E0^J (D 

The bias can also be expressed as an input 
ao = 1 with a weight WQJ = bj. 

J'-I J'-I 
SJ = O0W0, + ^a1W1J = Y,aiw'i (la) 

i=0 

Oj = CT(SJ) = 1/[1 + exp(-S ;)] (2) 

For the network in Figure 1: 

W1. = Wn, = UJ,, = 0 v2b 34 

net output = a5 = o(bb + a3w35 + O4If45) = 
ff[fo5 + ^35 0 ^ 3

 + 0 I ^ + ^ 2 3 ) + 

W45o(b4 + O1UJ14 + O2W24)] (3) 

The process of training a network consists of adjusting 
the weights to minimize disagreement between the 
output of the network and desired values for a set of 
training examples (the "training set") with known 
correct outputs. An error function, usually defined as 
the total squared error (eq 4), quantifies the disagree

ment. The derivative of the error function with respect 
to each weight is determined using the input and output 
values of one example. One advantage of the sigmoid 
function used is that it is straightforward to calculate 
the derivative of the output of a unit with respect to 
the weight of an input (eqs 5-7).7 

E= I2 2_^ (y„- an)
2 Cy is desired value) (4) 

(5) 

outputs 

d a / d x = 0-(X)[I-O-(X)] 

dwi; dw,. ^ o 

d H 

Ij ij 

(6) 

da ; _ da,- dS, do-(SJ) dS, 
dw~ " H ^ H ^ " -^T ^T = 0PM- aJ} ( 7 ) 

",; dSJ < K dSj dWi] 

The adjustment to the weights is often simple 
gradient descent: each weight adjusts by a small amount 
proportional to the derivative of the error function with 
respect to that weight, and in the opposite direction 
(eq 8). 

Aw i} = -e(dE/dwl}) 

The "learning rate" t is usually set by the researcher. 
Because of the complexity of the function described by 
the network, the error function often fluctuates over 
small changes in the weights. As the learning rate gets 
larger, the weights change more quickly, but the danger 
that the weights will overshoot desirable values in
creases. Learning rates vary from problem to problem, 
usually in the range 0.001 to 1. 

The introduction of an averaging term improves on 
strict gradient descent.7 Each new calculated step down 
the gradient (eq 8) includes a fraction of the previous 
step, which itself includes a fraction of the step before, 
and so on (eq 9). 

Awi} (iteration n) = -tidEldw^) + 

nkWij (iteration n - 1) (9) 

The coefficient M of the previous step is referred to as 
the "momentum" because it opposes a change in 
direction between successive steps of minimization, as 
inertia opposes a change in direction of physical motion. 
As the momentum increases, so does the ability of the 
minimization process to deal with fluctuations in the 
gradient of the error due to changing input patterns or 
conflicting examples. The momentum term can also 
carry the weights past a local minimum. The network 
changes the direction more slowly in response to 
significant changes in the gradient of the error. Values 
of the momentum term are usually set at 0.5 to 0.9; 
smaller values have little stabilizing effect, while values 
greater than 1 do not allow the effects of previous steps 
to decay. 

One can organize the training process in one of two 
ways. If one adjusts the weights on the basis of the 
error in each particular example, the process will get 
"stuck" less often at a local minimum where different 
examples cancel out because the direction of the 
adjustment of the weights changes from example to 
example. Alternatively, one can adjust the weights on 
the basis of the error of all the examples. This process 
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assures that the overall error always forms the basis for 
adjustment of the weights. It also stops different 
examples from causing adjustments in opposite direc
tions. That prevention can be an advantage if it reduces 
the amount of wandering, and therefore speeds the 
training of the network; it can be a disadvantage if it 
stalls the training process. As a compromise between 
the two methods, one can adjust the weights each time 
on the basis of some, but not all, of the examples. 

C. Modifications of Calculations 

Often, the network can be trained efficiently by 
beginning with a large learning rate and reducing it 
over the course of training. It can skip around the 
possible combinations of weights and find a region of 
relatively low error before the step sizes become small 
enough to be affected by small fluctuations in the 
gradient. One can decrease the learning rate in a 
predetermined fashion,27 relate the learning rate to the 
change in the error on each step,28 or reduce the learning 
rate if the change in weights overshoots enough to 
increase the overall error.29 Each unit can have a 
different learning rate and momentum.30 

Some researchers have used slight variations on the 
standard back-propagation method. One can eliminate 
the sigmoid function from the output units, and simply 
take the sum St instead (eq 1). The advantage of using 
this method is that the output of the sigmoid function 
is constrained to the range 0 to 1; that restriction does 
not apply to a sum. The disadvantage is that the 
absence of the sigmoid function and its ability to fit 
several different functions removes a degree of adapt
ability from the network, so the network might need 
more hidden units to reach the same accuracy or quality 
of fit. 

One very common variation speeds the learning 
process by applying a trainable coefficient a (the "gain"), 
sometimes expressed as 1/7) to the sum in evaluating 
the sigmoid (eq 1O).31 

(/(Sj) = 
1 + exp(-«S ;) 

H 

i=0 
= a(aSj) = afcdiiaWij)) (10) 

Because this term multiplies the weights, which can 
assume any value without the coefficient anyway, it 
does not change the possible states of the network. It 
does affect the magnitudes of derivatives of the error, 
and thereby the path of the training process.32 

Some researchers adjust a by arbitrary methods 
because they misunderstand its effect. When they do, 
the weights must compensate for the change in a, which 
may slow learning. Other counterproductive modifi
cations of the basic unit include the combination of 
linear terms with sigmoid terms in the same unit and 
the "unsaturated" neuron.33 These formulations reveal 
a failure to understand the flexibility of the sigmoid 
function (Figure 3). 

The error function can represent the researcher's 
definition of optimal fit better than the standard 
function (eq 4) does. One can ignore small errors on 
particular examples when they fall below an acceptable 
amount.34 To prevent outliers from unduly influencing 
training, one can truncate the derivative of the error 
function at a maximum value.34 To emphasize par
ticular examples, one can magnify the errors made in 

-5.0 0.0 5.0 -100.0 0.0 100.0 

1.0' 

0.5' 

0.0' 

(c) "exponential" 

y = extfx) i 

0.75-

0.50' 

0.25' 

-10.0 -5.0 0.0 -1.0 

Figure 3. The sigmoid function (eq 2) can be scaled and 
positioned to resemble other functions over part of its 
domain: (a) in the range -5 to 5, the function has a typical 
sigmoid appearance; (b) over the range -100 to 100, the sigmoid 
resembles a step function; (c) the sigmoid approximates the 
function e* closely up to about -2; (d) The central part of the 
function (-1 to 1) is nearly linear. 

those outputs to cause a correspondingly larger ad
justment. In all of these cases, the researcher tailors 
the error function to reflect the particular goal of the 
application rather than an arbitrary standard practice. 

Another consideration often added to the minimi
zation process is the removal of small effects. To 
decrease the effect of small weights, one can system
atically reduce them34 or periodically reset small weights 
to zero.35 In either case, if they do not matter, they will 
tend to remain close to zero after being reduced. One 
can also remove units: units with small input weights 
(indicating that they extract no information) or small 
output weights (indicating that they are ignored) can 
be eliminated from the network gradually, by weight 
reduction, or suddenly, by removal of their connec
tions.34 These modifications prevent overtraining 
through small quirky adjustments by excess units. They 
also bias the process to produce networks with only big 
effects, making them easier to interpret as "rules". Such 
a result could be good or bad, depending on whether 
such large effects really exist. Like Occam's razor, this 
procedure produces the simplest answer, not necessarily 
the correct one. 

Other methods to train neural networks exist. Three 
other gradient-based methods can be considered close 
relatives of back-propagation. The conjugate gradient 
is common in other work,36 but few chemists have so 
far applied it.37 One also can treat the minimization 
as a problem in differential equations.38-40 The variable 
metric has also provided good results.41-44 Two methods 
do not use the gradient. Genetic algorithms alter 
weights in a population of neural networks by exchange 
and mutation and then screen out poor performers, in 
an analogy to biological evolution.45 In simulated 
annealing, the weights change randomly, with the 
random movements more favored if they do not increase 
error.46 This method can also assist back-propagation: 
by applying random variations when the directional 
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method gets stuck, one can keep the minimization 
process moving until it arrives at a good local solution 
(i.e., one better than any other with similar weights). 

D. Evaluating the FFN 

The process of training a neural network optimizes 
results on training examples. With appropriate values 
for the learning rate and momentum, its performance 
on training examples will continually improve with 
successive training iterations. In contrast, performance 
on new examples tends to reach a maximum, then 
degrade as the network "overtrains" to reach higher 
accuracy on the training examples. Similarly, a network 
with too many hidden units can easily fit the training 
data without forming a good generalization. Since the 
real criterion for the success of the network is its ability 
to predict new examples, that criterion should be used 
to select the architecture and training time of the 
network also. When the number of examples is too 
small to allow reserving a representative test set, one 
can use cross-validation to generate useful estimates of 
predictive ability. 

Cross-validation consists of dividing a set of examples 
into subsets and using each subset in turn as a test set 
for a network trained on the remainder of the examples, 
much like bootstrapping statistics.47 The averaged or 
consensus performance on test sets gauges the quality 
of prediction by the network; the variability of the 
results among the different trials gives an indication of 
the sensitivity of that assessment to the exact compo
sition of the test and training sets. If one uses cross-
validation to choose the architecture and training time 
of the network, the consensus performance may over
state the ability of the network, if the best performance 
in the trial is a statistical fluke. One can reserve a test 
set separate from the cross-validation trial to test 
prediction. Often, however, several architectures and 
training times generate near-optimal results, reducing 
the chance of statistical artifacts. 

Some researchers have used empirical rules to select 
architectures and training times. Because these rules 
depend on implicit assumptions about the information 
content of the training data, they do not necessarily 
perform well. Arbitrary criteria for terminating the 
training process include a small overall error, a small 
gradient of the error function, or a set of number of 
iterations. Several rules of thumb for designing the 
architecture of the network exist. Usually, only one 
layer of hidden units is used, although a few people use 
two.48 The network is more efficient if the output units 
share hidden units, as in standard layering, rather than 
maintaining hidden units unconnected to other output 
units.34 One rule sets the number of weights to a small 
multiple of the number of training examples.49-51 Many 
researchers choose a number of hidden units somewhat 
intermediate between the sizes of the input and output 
layers;52,53 most do not discuss or defend their reasons 
for choosing a particular architecture. 

E. Modification of Input Data 

The particular form in which properties are presented 
to the network matters. Units explicitly sum, making 
addition a "natural" function for the network to model. 
If the network needs to multiply two values, then one 

should use the logarithms of those properties as input 
rather than the properties themselves. Adding the 
logarithms represents the multiplication step. Other
wise, the network would require more units to perform 
adequately because it would have to simulate the 
multiplication function as well as the rest of the 
relationship. 

Another practical consideration is the range of the 
input values. In one common technique, normalization, 
each external input has the same range, usually 0 to 1. 
Otherwise, an input that has instances over a wide range 
will have a larger effect than an input distributed over 
a smaller range in the initial stages of training. The 
disproportionate effect distorts the training process, 
even though the network can compensate by reducing 
the weights for an input with a large range. (If some 
inputs are known or assumed to be more important 
than others, such distortion could be desirable.) Be
cause the output of a sigmoid also has the range 0-1, 
one can compare the weights assigned to normalized 
external inputs in the same way as those assigned to 
hidden units, although such interpretation is none
theless difficult. 

Computer-generated data appear precise. Because 
the network has no way to guess a reasonable degree 
of error, it may generate an unnecessarily complicated 
function to achieve high precision (overfitting). Anyone 
who has fitted a polynomial function to a small, noisy 
data set will recognize the problem. One can reduce 
this problem by adding small random values (noise) to 
the input or output values.34 If the inputs or outputs 
represent sequential values, one can shift the alignment 
between the values from the example and the inputs 
of the networks.54 In either case, zero error becomes 
impossible due to the movement of the data points, so 
the effect of the training process diminishes substan
tially after the error falls within the limits of the noise. 
This process also helps prevent local minima from 
impeding the training process because the error function 
changes slightly with every addition of new random 
noise. To achieve a relatively precise fit, one can reduce 
the amount of noise slowly over the course of training 
to allow close fitting after the network has had the 
opportunity to approach a good general fit. 

When input values all represent the same kind of 
property, input values can represent background noise. 
The network can use the "noise" inputs to gauge whether 
the values in the "signal" inputs are significant. The 
network learns that it should disregard values of the 
signal inputs comparable in size to the noise inputs. A 
neural network that identifies peaks in IR spectra used 
this technique to good effect.24 

Although an FFN can theoretically model any func
tion, preprocessing the input in ways known to make 
it more informative reduces the computational load on 
the network.49 Some researchers have provided the 
products of the raw inputs to the network. This 
technique is widely used in statistical analysis to capture 
effects that depend on more than one input. When the 
inputs are binary (0 or 1), multiplication of the inputs 
lends itself to a special interpretation. Because the 
product of binary values is 1 only if the individual values 
are all 1, the product used as input reflects the presence 
of the exact combination of its constituent raw inputs. 
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F. Using FFNs for Classification 

Although in theory an FFN of sufficient size can 
model any relationship to any degree of precision, the 
fact that the network approximates a relationship from 
a limited number of examples with a finite number of 
units makes it more prudent to interpret the output as 
qualitative rather than quantitative. The simplest way 
to make that approach rigorous is to classify each 
example on the basis of the range in which its outputs 
fall, rather than to make use of the numerical value of 
the output itself. 

When the output of the network is a classification, 
one must convert the continuous value of a unit to a 
binary value representing a yes-or-no answer. The 
simplest way rounds off, that is, uses 0.5 as the dividing 
value. One can regard intermediate values of a clas
sifying output as probabilities or confidence levels of 
a "yes".3435 One can also choose the dividing line that 
gives the best results on the training set. The most 
stringent criterion sets separate thresholds close to 0 
and 1 for binary values, with values between the 
thresholds considered "unknown" or "undecided". Al
though this method sacrifices some correct answers, it 
identifies examples for which the network does not 
generate clear results. 

In many problems, the output classification consists 
of several mutually exclusive categories (for example, 
the structural types a-helix, /3-sheet, and random coil 
at a particular position in a protein). The usual way 
to represent this situation is to assign one output unit 
for each possible category. The network "chooses" the 
category corresponding to the output with the highest 
value. Despite its elegance, this method has one 
principal weakness: the competitive nature of this 
paradigm places less common categories at a disad
vantage. 

A network starting from a random set of weights can 
reduce error in predicting a rare category by always 
predicting that the example is not in that category. 
The network can also increase apparent precision by 
improving the prediction of a common class slightly 
rather than improving the prediction of a rare class 
greatly. To compensate for these effects, one can 
present examples from rarer classes more often. One 
method to even out different frequencies is to present 
each class with the same frequency, or to divide the 
error attributable to each example by the proportion 
of its class in the training set. Another method is to 
adjust the ratio of examples from different classes to 
optimize the predictive ability of the network. Alter
natively, one can automatically increase the influence 
of poorly predicted classes, rather than rare classes, in 
the training set.56 For classes with few examples, 
sampling error still causes a problem even if under-
representation no longer does.57 

In these problems, the total squared error does not 
appropriately measure the quality of prediction: it takes 
no account of correct categorization. One can count 
the fraction of examples that the network predicts 
correctly. One researcher used the product of the 
fraction of correct answers for each class.28 These values 
behave badly from a statistical standpoint. A result of 
0 corresponds to generating the wrong answer every 
time, a statistically important result. 

A more statistically robust measure of the quality of 
classification is the correlation coefficient r (eq ll).68 

pn-uo 
r= = (11) 

\/(n + u)(n + o)(p + u)(p + o) 

p = number of correct positive predictions 

n = number of correct negative predictions 

o = number of incorrect positive predictions 

u = number of incorrect negative predictions 

A correlation coefficient of 0 means the results cannot 
be distinguished from chance. A network classifying 
perversely would have a negative correlation. In 
contrast to the other measures, the correlation coef
ficient applies only to two-category divisions. One can 
assess problems with more categories by taking the 
correlation coefficient of particular dividing lines 
individually. For example, for a problem classifying 
a-helix, /3-sheet, and random-coil structures in a protein, 
one would measure the correlation for predicting helix 
vs sheet and coil together, coil vs helix and sheet 
together, and sheet vs helix and coil together. Since 
the qualities of those classifications probably differ, 
the individual correlations provide more information 
than an overall success rate. This criterion can provide 
an error function for the training process called "mutual 
information".59 

/ / / . Applications of Neural Networks In 
Chemistry 

A. Representation of Chemical Information 
A researcher studies physical or abstract objects that 

have particular meanings, relationships, and interpre
tations. From a mathematical point of view, each input 
to and output from a layered FFN is an independent 
and equivalent real number. In some problems, one 
can reduce the information about each example or object 
to a list of numbers in an obvious way. In others, finding 
a good representation may require more effort than 
applying the network. We have organized this review 
into fields that use a common representation of input 
data, since the function of the network may be 
understood differently for the different cases. Each 
subsection begins with a description of the represen
tation used in that field. 

In the first category of applications, interpretation 
of biochemical sequences, the gene or protein contains 
a sequence of discrete elements. Similarly, a spectrum 
is made up of a sequence of intensities, which are real 
numbers rather than individual items. The outputs of 
a sensor array are real values representing similar 
properties, but without any particular order. In each 
of these three cases, the phenomena being studied have 
an obvious numerical representation. That set of data 
may be preprocessed to extract information known to 
be useful, but the basic representation remains the same. 
Various descriptive methods have been applied to 
represent chemical structures as lists of numbers for 
FFNs, since no obvious or clearly superior method 
exists. 
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Figure 4. A 4 by 10 matrix of binary values represents a 
10-base sequence of DNA. Each column represents a position 
in the sequence. Each row represents one of the four bases. 
The input corresponding to the base present at a given position 
is 1; the rest are 0. Overall, the FFN has 40 inputs in this 
example. 

B. Applications in Biological Sequences 
(Sequential Binary Data) 

Biochemists and molecular biologists wish to interpret 
biochemical sequences (proteins and DNA) in order to 
understand their physical properties and their infor
mation content. As automatic sequencing methods 
have improved, the influx of sequence information has 
outpaced its interpretation. Statistical methods have 
been applied with some success to that task.60,61 

Generally, such methods work best when the inputs 
are independent and grow more complex and less 
reliable when they must take effects of interdependence 
into account. Molecular mechanics approaches have 
had some success in predicting the folding (shape) of 
proteins on the basis of their chemical structure.62 This 
computer-intensive method requires a detailed repre
sentation of the molecule and a complex mathematical 
model of its dynamics. A corresponding model for 
analyzing genetic sequences would require a detailed 
representation of the relevant biochemical machinery 
of the cell as well as that of the gene itself. 

To represent a set of discrete elements, such as the 
four bases in DNA or the naturally occurring amino 
acids, one can provide as input a checklist of all possible 
items in the set. Inputs representing combinations of 
items have also been used.35'50 An input corresponding 
to the base present in the example has the value 1; the 
rest have the value 0. This system is called "sparse 
coding" because most of the inputs are 0. For an input 
corresponding to 10 base pairs in DNA, the input would 
consist of a matrix of 10 columns, corresponding to the 
positions, by four rows, corresponding to each of the 
four bases. (See the example in Figure 4.) The input 
values are organized as a matrix for human convenience; 
the network treats each input independently. Because 
the inputs to the network are binary in these appli
cations, any "relative importance" or "property" in
formation resides in the weights. In one simple case, 
a network generated weights during training that 
correlated well with empirically generated properties.63 

Usually, especially with many hidden units, the "prop
erties" or "features" embodied in the weights do not 
correspond exactly to recognizable physical quantities, 
but the information can nonetheless prove useful.64 

/. Protein Structure from Sequence 

A number of researchers have independently applied 
FFNs to the prediction of structure and function of 
proteins (Table I).6566 Most of them used a sparse 

coding scheme to represent a segment of the amino 
acid sequence. 

Several groups have predicted secondary structural 
types (a-helix, /3-sheet, or random coil) of segments of 
proteins. Their overall results were similar, but each 
group considered particular issues. The Bohr group 
found that homology between the sequences of training 
and test examples improved the predictive power of 
the network.67 Holley and Karplus examined the effect 
of hidden units and found that two sufficed.55 They 
also discovered that predictions with large output values 
were more likely to be right than those with smaller 
outputs. Qian and Sejnowski found that eliminating 
the layer of hidden units did not degrade performance 
significantly.35 They improved the performance of their 
method somewhat by training a second FFN to predict 
the secondary structure from the outputs of the first 
network for the same sequence. The second network 
eliminated small gaps in contiguous regions of one 
structural type. 

Kneller, Cohen, and Langridge increased the infor
mation provided to the network by computing a 
"hydrophobic moment" (which represents the tendency 
of hydrophobic groups to align in either a sheet or helix 
structure) of the sequence used as input.68 This input 
improved the correlation coefficients of the test set 
slightly. They also separated the proteins into three 
groups: those with structures that were mostly a-helix, 
those mostly /3-sheet, and those of mixed or random-
coil structure. Networks trained and tested on these 
relatively homogeneous groups performed better than 
networks applied to broader sets of proteins, largely by 
ruling out less common structural types. 

McGregor, Flores, and Sternberg used an FFN taking 
sparsely coded amino acids as input to predict the 
category of /3-turn (type I, type II, unspecified, or 
nonturn) of a sequence of four residues.63 It is unclear 
why they did not use a longer sequence to include the 
"context" of the putative turn. Because their data 
originally contained far more nonturns than turns, they 
improved prediction by increasing the ratio of turns to 
nonturns in their training set. In the network without 
hidden units, the weights of the amino acids correlated 
well with the empirical parameters for residue pro
pensities derived by Chou and Fasman.69 

The ability of FFNs to improve on first-order 
statistics in the prediction of protein secondary struc
ture from the local sequence may be limited.70 Kneller, 
Cohen, and Langridge achieved 65 % prediction in their 
work;68 on the same data set, Stolorz, Lapedes, and Xia 
found that one could achieve 61% by combining 
independent probabilities for the amino acids in the 
local sequence (first-order Bayesian statistics), ignoring 
all higher-order effects that would depend on more than 
one residue.59 The method of Viswanadhan, which 
combined FFNs with other algorithms, improved only 
the prediction of the |8-sheet structural type.22 The 
best results come from an FFN used to combine the 
usual FFN method with statistical and reasoning 
methods.23 

The Bohr group extended their method by including 
information about tertiary structure among the outputs 
of the network.19 The outputs consisted of the distances 
between the central residue and each of the 30 residues 
before it, and the propensity of the residue to adopt 
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Table I. Applications of FFNs in Analyzing Proteins from Their Sequences 

Secondary Structure (a-Helix, 0-Sheet, Random Coil) 

input output type" architecture6 %' n rr ref 

sparsely coded amino acid sequence 
sparsely coded amino acid sequence, 

all one secondary structure type 
sparsely coded amino acid sequence 
sparsely coded amino acid sequence 
output of above network 
as above + hydrophobic moments 
as above, on mostly a-helix proteins 
as above, on mostly 0-sheet proteins 
as above, on mixed a-helix//8-sheet 
sparsely coded amino acid sequence 
output of above network 
amino acid sequence 
secondary structure outputs of FFN, 

statistical method, and memory-
based reasoning method 

includes method from ref 27 among 
6 combined methods 

residue a-helix tendencies 

amino acid composition, mw, 
presence of heme 

fraction of secondary structure type 

secondary structure (a/not a) 
secondary structure (a/not a) 

secondary structure (a/not, (8/not) 
secondary structure (a, /3, random) 
secondary structure (a, /3, random) 
secondary structure (a, /5, random) 
secondary structure (a, 0, random) 
secondary structure (a, 0, random) 
secondary structure (a, 0, random) 
secondary structure (a, /S, random) 
secondary structure (a, 0, random) 
secondary structure (a, /S, random) 
secondary structure (a, 8, random) 

B 
B 

B 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

51-20:40:2 
200:1 

17-21:2:2 
13-21:3 
13-3:3 
275:3/13:3 
275:3/13:3 
275:3/13:3 
275:3/13:3 
13-20:3 
13-3:3 
Bayesian statistics 
13-3-3:30:3 

73 
78 

63 
63 
64 
65 
82 
73 
70 
59 
61 
61 
66 

0.38 
0.52 

0.41 
0.35 
0.41 
0.42 
0.65 
0.00 
0.47 
0.36 
0.40 
0.35 
0.47 

0.31 
0.29 
0.31 
0.32 
0.00 
0.51 
0.44 
0.28 
0.27 
0.27 
0.39 

0.41 
0.38 
0.41 
0.43 
0.63 
0.51 
0.48 
0.38 
0.39 
0.36 
0.43 

67 
70 

55 
35 
35 
68 
68 
68 
68 
59 
59 
59 
23 

force constant for helix formation X 17-5:1 

overall fraction of secondary 
structure types 

fraction of other secondary 
structure types 

X 22:8:2 

0.41 0.47 0.41 22 

model results in good e 
secondary and 
tertiary structure 

more accurate than 37 
counting individual 
FFN predictions 
or MLrV 

some useful g 
relationships 

Secondary Structure 03-turns: I, II, nonspecific, nonturns) 

input 

sparsely coded amino acid sequence 
sparsely coded amino acid sequence 

input 

output type architecture % %ik %n %n» 

/3-turn type (I, II, ns, not) C 4-20:8:4 26 69 81 36 
/3-turn type (I, II, ns, not) C 4-20:8:4 29; 56% within 2 residues 

Tertiary Structure 

output type architecture results 

ref 

63 
56 

ref 

sparsely coded amino acid sequence dist. C1* to CO|i+(i_30), secondary B 61-20:300:33 after minimization, result 19 
resembles X-ray structure 

hydrophobicities of amino acids distance matrix X 140:90:140-140 correct tertiary structure 71 
for homologous proteins 

hydrophobicities of amino acids distance matrix X 140:15:140-140 no generalization 72 

Other Properties 

input output type architecture results ref 

sparsely coded amino acid sequence homology to protein family B 

sparsely coded amino acid sequence four subregions of Ig C 

12-20:10:1 better than statistical i 
method PROFILESEARCH 

5-20:8:4 when subregions combined, k 
fp = 7.3%, fn = 1.8% (mice), 
6.2% (humanV 

20-20:3:2:2 improved on statistical I 
methods 

not reported r = 0.14 on test set m 

not reported r = 0.09 on test set m 

sparsely coded amino acid sequence cytosolic peptide or signal sequence C 
(N-terminal) 

properties and secondary structure of water binding B 
amino acids in sequence 

properties and secondary structure of water binding at each atom B 
amino acids in sequence 

<• "B" means the output is converted to a binary classification by using threshold values; " C means the example is classified as the 
category corresponding to the largest output unit; "X" means the output is interpreted as a real number or continuous property.6 The 
architecture of the network is abbreviated as described in the text.c The percentage of test examples correctly predicted. d ra, r$, and 
r, refer to the correlation coefficient of predictions of a-helix, /3-sheet, and random-coil structure, respectively.' Head-Gordon, T.; 
Stillinger, F. H. Biopolymers 1993, 33, 293-303.' MLR = multiple linear regression. * Pancoska, P.; Blazek, M.; Keiderling, T. A. 
Biochemistry 1992,31,10250-10257. h %i, %n, and %M refer to the percentage of correctly classified type I, type II, and nonspecific 
turns, respectively.' Frishman, D.; Argos, P. J. MoI. Biol. 1992, 228, 951-962.' fp = false positive; fn = false negative. * Bengio, Y.; 
Pouliot, Y. Comput. Appl. Biosci. 1990, 6, 319-324. ' Ladunga, I.; Czak6, F.; Csabai, L; Geszti, T. Comput. Appl. Biosci. 1991, 7, 
485-487. "• Wade, R. C; Bohr, H.; Wolynes, P. G. J. Am. Chem. Soc. 1992,114, 8284-8285. 

a-helix, /3-sheet, and random-coil conformations. After 
t ra in ing the network, they used one protein as a test 
example. Although the structure generated (after 
refinement by molecular mechanics calculations) re
sembled that found by X-ray crystallography, the result 
is of uncertain significance because one of the training 

examples was homologous in shape. 
Wilcox, Poliac, and Le ibman attempted to predict 

tertiary structure by generating a complete distance 
matrix as output. In a network trained on homologous 
proteins, the F F N predicted the tertiary structures 
correctly;71 trained on nonhomologous proteins, it 
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Table II. Applications of FFNs to Problems in Predicting the Activity of DNA Sequences* 

input output type architecture results6 ref 
sparsely coded bases and 

combinations 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded bases 
sparsely coded sequences 
sparsely coded sequences 
sparsely coded sequences 
sparsely coded sequences 
dicodon frequency 
dicodon frequency, 

6 reading frames 
codon frequency 
codon frequency, 

6 reading frames 
results of other analyses 

E. coli promoter 

E. coli promoter 
E. coli 17-base-space promoter 
E. coli 16-base-space promoter 
E. coli 17-base-space promoter 
E. coli 18-base-space promoter 
human pre-mRNA splice donor 
human pre-mRNA splice donor 
human intron vs transcribed exon 
human pre-mRNA splice donor 
human pre-mRNA splice acceptor 
human intron vs. transcribed exon 
E. coli intron vs transcribed exon 
human pre-mRNA splice donor 
human pre-mRNA splice acceptor 
human intron vs transcribed exon 
human intron vs transcribed exon 

human intron vs transcribed exon 
human intron vs transcribed exon 

human coding region 

B 81:1 

B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 

B 
B 

44-4:4:1 
58-4:15:1 
various 
various 
various 
? 
19-4:20:2 
301-4:200:1 
21-4:40:1 
51-4:40:1 
O 

9 

•? 

? 
4096:1 
6-4096:1 

64:1 
6-64:1 

>simple statistical method 

98.4% right vs 77% rule-based system 
20% fn, 0.1% fp; 30% fp for rule-based 

3% fn,0.2% fp 
21% fn,0.15% fp 
some errors mistakes in database 
errors often mistakes in database 
r = 0.73 
r = 0.50, 0.71 with intron info 
r = 0.36, 0.70 with intron info 
98.4% vs 90% Bayesian statistics (ref 49) 
99.5% 
94.5%, 99% with intron info 
91.2%, 96% with intron info 
>99% from 60 base segment 
99.4% from 60 base segment 

>99% from 90 base segment 
>99% from 90 base segment 

7:14:5:1 r = 0.68; 10% fp, < 10% fn 

28 
73 
74 
74 
74 
82 
81 
75 
75 
75 
50 
50 
50 
50 
76 
76 

76 
76 

21 

" Explanations for the headings are given in the footnotes to Table I. 
Kanehisa, M. Nucleic Acids Res. 1992, 20, 4331-4338. 

1 fp = false positives; fn = false negatives. c Horton, P. B.; 

failed.72 Because the hidden units outnumbered the 
training examples, the network could have easily 
memorized the training set. They used the hydropho-
bicity of each amino acid in the sequence as input, 
probably insufficient to allow prediction even under 
ideal circumstances; a network with sparsely coded 
input can generate the relevant properties by infer
ence.35 

2. DNA Signals from Sequence 

The human genome initiative and other complete-
sequencing projects are generating vast amounts of 
DNA sequence information. As a result, learning to 
interpret the genetic function of these sequences has 
become a critical issue. Researchers have applied FFNs 
to separating coding and noncoding regions, identifying 
splice sites, and locating promoters (Table II). A 
sparsely coded matrix represented the sequence of 
nucleotides. Demeler and Zhou tried a denser coding 
scheme with combinations of two inputs (0,0 = A; 0,1 
= T; 1,0 = G; 1,1 = C) representing bases, rather than 
one input for each base, but found that the sparse coding 
scheme gave better results.28 

In training networks to recognize splice sites or 
promoters, most researchers compensated for the 
preponderance of negative examples by presenting 
positive examples more frequently than negative 
ones.28-50'73'74 Brunak, Engelbrecht, and Knudsen found 
that the strength of splicing signals and the sharpness 
of the division between introns and exons were 
complementary: weakly predicted splicing signals 
tended to occur on a sharp boundary between bases 
predicted to be coding and bases predicted to be 
noncoding, and vice versa.75 

One group attempted to capture higher-order rela
tionships explicitly.50 The network took products of 
the values in the sparsely coded input matrix as input, 
rather than the raw values. Third-order products from 
adjacent positions correspond to sparsely coded codons 
rather than bases. Subsequent work using the fre

quencies of dicodons (sixth-order) in all six possible 
reading frames as input achieved even better results.76 

Some resea rche r s p reprocessed the sequence 
completely: the network took as input not sparsely 
coded bases but the output of algorithms designed to 
find coding regions. The FFN integrated the results of 
the other analyses to provide an improved composite 
prediction.21'77-79 

FFNs have been applied to real-world problems in 
identifying genetic signal sequences. Rowley and Wolf 
used the promoter-recognition network of O'Neill to 
find a promoter in a gene from Escherichia coli.80 

Brunak, Engelbrecht, and Knudsen were training a 19-4: 
20:2 network on pre-mRNA splicing sites in human 
genes from the database at EMBL, Heidelberg, and 
GenBank. They found that several sequences were 
consistently misclassified by the network even during 
training. In most cases, the library data had been 
transcribed erroneously or appeared to have been the 
result of misinterpretation.8182 The authors proposed 
that FFNs be used to screen for such errors in the future. 

C. Applications in the Interpretation of Spectra 
(Sequential Continuous-Value Data) 

To a computer, a spectrum is a sequential array of 
continuous-value data that approximates a function. 
One typically recognizes as "features" in a spectrum 
particular shapes or simpler functions, often as simple 
as a sharp peak at a given position. These recognized 
patterns can have absolute positions (for example, an 
IR absorbance at 2225 cm 4 , indicating a nitrile) or 
relative positions (for example, a peak in a mass 
spectrogram 28 amu lower than another, possibly 
indicating a loss of CO or ethylene). The features that 
characterize a particular molecule or substructure of 
interest often spread across the entire spectrum. The 
problem of interpreting spectra lends itself to FFN 
methodology because of common nonlinear effects: 
some regions distinguish compounds more effectively 
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Figure 5. (a) A plot of the weights connecting the sequential 
inputs of a 1H NMR spectrum to a hidden unit (ref 84) can 
be regarded as the spectrum of the feature to which the unit 
responds. Peaks above the lines correspond to regions where 
peaks in the input increase similarity; peaks below the line, 
to regions where peaks in the input decrease similarity, (b) 
A similar "feature spectrum" from ref 85 shows the weights 
connecting input from an ER spectrum to an output repre
senting a nitrile group. This feature corresponds exactly to 
the peak a chemist would look for: the C=N stretch. (Part 
A: Reprinted from ref 84. Copyright 1991 AAAS. Part B: 
Reprinted from ref 85. Copyright 1990 Springer-Verlag 
Wien.) 

than others, and the significance of a feature may 
depend on the context. 

The sequential nature of the input data allows an 
interesting interpretation of the patterns of weights. 
The ordered input values a; approximate a function 
a(x) of the variable used to order the data.83 For 
example, in an IR spectrum, the wave number of each 
data point would determine its position in the sequence 
of inputs, and the absorbance would determine the 
magnitude of the corresponding input. Because the 
weights connecting those inputs to a unit in the next 
layer have the same sequence as the inputs, the weights 
approximate a function along the same axis (e.g., wave 
number). This interpretation transforms the sum in 
eq la to an integral that quantifies the overlap of the 
two functions (eq 12). In other words, the function Wj 

Sj = ,£aiwij^J0
na(x)wj(x) (12) 

i=0 

corresponds to the spectrum of the "feature" embodied 
in unit j , and the output of the unit is a measure of the 
similarity of the two spectra. Such "feature spectra" 
from a trained network have appeared in the literature 
(Figure 5J.64-84-*7 

Networks have been applied to spectra in four 
different ways: to recognize them, to quantify with 
them, to classify them, and to transform them into a 
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related function. In the first case, the output of the 
network typically represents the presence of a known 
substance. In the second, the output measures con
centration. In the third, more refined approach, the 
network recognizes patterns associated with particular 
substructures or molecular features and identifies these 
structures or features as output. In the last method, 
the network generates a function dependent on the 
entire spectrum. Researchers have applied FFNs to a 
variety of such problems (Table III). 

1. Recognition and Quantitation 

A spectrum of a mixture roughly consists of the 
summed spectra of the pure compounds with super
imposed noise. In this approximation, one measures 
the degree to which the spectrum of each component 
contributes to the spectrum of the unknown sample. 
An FFN has an advantage when others methods handle 
noise poorly, or when interactions between the com
ponents cause deviations from linear summation. 

Some published work used FFNs to identify the 1H 
NMR spectra54,84 or MS88 of complex pure compounds. 
The networks recognized new spectra and spectra to 
which some noise had been added, but the authors did 
not show superiority of the FFN method over other 
methods for identifying spectra. Even in the most 
difficult application (distinguishing oligosaccharides 
with the hump region of the 1H NMR spectrum84), the 
most similar examples in the training set differ no
ticeably, suggesting that any numerical method should 
distinguish between them. 

Quantitation of mixtures by FFNs based on IR, UV, 
and X-ray fluorescence spectra has outperformed other 
methods in published comparisons. Two groups im
proved the performance of their method by combining 
it with principal component analysis (PCA), a method 
in which the linear combinations of inputs having the 
greatest variance are extracted.15-20 They calculated 
the principal components of their data set and then 
used the principal components as inputs instead of the 
raw spectrum. Two groups found that on artificially 
generated data sets, even with added noise, the network 
performed about as well as other methods; only on real 
data did it surpass them, suggesting that the network 
can take into account deviations from ideal behavior 
better than other methods.1517 

2. Transformation 

An FFN can perform transformations on spectra to 
provide related functions, rather than single values, as 
output. Simple applications in this area include 
analyzing peaks24,89 and extrapolating the heat capacity 
of polymers.90 Sumpter has also applied FFNs to 
molecular dynamics.91-93 Another potentially useful 
application is the design of pulse shapes for NMR 
experiments.18 The Bloch equations calculate the 
frequency-domain excitation pattern of a nucleus from 
the pulse shape. No analytical method exists for the 
reverse calculation of pulse shape from excitation 
patterns. Instead, one can adjust a likely pulse shape 
semirandomly ("simulated annealing") in an attempt 
to find a pulse shape that gives a satisfactory excitation 
pattern.9496 An FFN trained to calculate the pulse 
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Table III. Applications of FFNs to Problems in Interpreting Spectra* 

input output type architecture results ref 

1H NMR spectrum 

1H NMR spectrum 
(structural region only) 
(hump region only) 

mass spectrum 

IR or UV spectrum 

IR or UV spectrum 

principal components of IR 

principal components of IR 
principal components of IR 
UV circular dichroism spectrum 

X-ray fluorescence lines 

ICP atomic emission spectrum 

IR spectrum 
IR spectrum 
IR spectrum 

IR spectrum 

IR spectrum 

IR spectrum 

IR, 13C NMR, molecular formula 

MS peak intensities 
features of MS 

Recognition of Known Spectra 
alditol identities C 400:6:6 

oligosaccharice identities 
oligosaccharide identities 
oligosaccharide identities 
identities of sugar derivatives 

C 2113:10:13 
C 1003:5:5 
C 981:5:5 
C 400:25:22 

Quantitation of Known Compounds from Spectra 
concentration of one compound X various 

in mixture 
concentration of one compound X various 

in mixture 
concentration of one compound X 

in mixture 
ethanol in latex suspension X 
fat content of meat X 
proportions of secondary X 

structural types in protein 

various 

6:3:ld 

6:6:ld 

83:45:5 

Cr, Fe, Ni content 

As, Cd concentrations 

X 

X 

3:3:3:3 

42:2 

recognized slightly 54 
altered spectra 

recognized new spectra 84 
recognized new spectra 84 
recognized new spectra 84 
claim prediction, no 88 

published results 

usually beat PCA' r 

usually beat PCA 15 

usually beat FFN with 15 
raw inputs 

beat PCA, least squares 20 
beat PCA, least squares 20 
surpassed previous methods e 

on 3 classes, similar on 
other 2 

beat singular value f 
decomposition 

slightly worse than 87 
linear regression 

>human experts 86 
good categorization g 
86.9% right, 6.2% wrong, 96 

6.9% uncertain 
90.3% right, 3.0% wrong, 96 

6.7% uncertain 
identified 53.3% with 85 

91.5% accuracy 
9 groups > 90% right, 97 

11 > 75% 
average A5C1 82 %, better 53 

than STIRS 
100% correct on new samples i 
similar to discriminant ; 

analysis 
beats STIRS, worse than 34 

DENDRAL* 

error averages 1-12% 91 

error <3.9 % extrapolating, 92 
<1% interpolating 

test error 2.3% 93 
rms error 0.12 24 
gives right answer on 89 

real data 
experiment using 18 

FFN-generated pulse 
shape works correctly 

results well within usual 90 
experimental error 

0 Explanations for the headings are given in the footnotes to Table I. b PCA = principal components analysis (explained in text). 
c Long, J. R.; Gregoriou, V. G.; Gemperline, P. J. Anal. Chem. 1990, 62, 1791-1797. d This FFN includes direct connections between 
input units and output units. ' Bohm, G.; Muhr, R.; Jaenicke, R. Protein Eng. 1992, 5, 191-195. f Bos, M.; Weber, H. T. Anal. Chim. 
Acta 1991, 247, 97-105. « Ricard, D.; Cachet, C; Cabrol-Bass, D.; Forrest, T. P. J. Chem. Inf. Comput. Sci. 1993, 33, 202-210. h A50 
is the percentage of correct positive classifications when the threshold is set to the median network output of the true positive examples. 
' Goodacre, R.; KeIl, D. B.; Bianchi, G. Nature 1992, 359, 594.' Lohninger, H.; Stand, F. Fresenius J. Anal. Chem. 1992, 344,186-189. 
* STIRS searches for similar examples in an MS database (ref 82); DENDRAL applies rules developed by a human expert (ref 83). 

Classification of Spectra of Unknown Compounds 
aromatic substitution pattern C 93:31:15:10 
functional groups, substructures 
C-O functional groups 

above, C-O bond order(s) 

functional groups, substructures 

functional groups, substructures 

functional groups, substructures 

adulteration of olive oil 
presence of steroid structure 

MS: cations, neutral losses, etc. functional groups, substructures 

B 
B 

B 

B 

B 

B 

B 
B 

B 

284:33:1 
250:18:6 

250:18:9 

256:128 

256:34:36 

512:48:86 

150:8:1 
8:100:1 

various 

masses, positions, and momenta of 
atoms in tetraatomic molecule 

IR spectrum of polyethylene 

time, excitation, temperature 
small part of spectrum, noise data 
small part of 2D NMR spectrum 

excitation pattern Fourier 
coefficients 

Transformation of Spectra into Related Functions 
internal mode energies X 28:38:12:6 

potential energy function X 426:7:18 

CH mode energy in polyethylene X 3:21:3:1 
probability of peak X 14:2:1 
shape of cross peak X 1646:16:1 

coefficients of pulse shape 

polymer heat capacity 110-350 K heat capacity 10-100 K X 

100:200:15 

25:15:10 

shape from desired excitation patterns reproduced 
results found by simulated annealing. One new pulse 
shape produced the desired NMR spectrum when used 
in an actual experiment. Although the training time 
was long, the network predicted new examples much 
faster than simulated annealing—enough to make it 
feasible to use this technique to design pulse shapes 
during an analysis. 

3. Classification 

The interpretation of IR spectra is a natural appli
cation of FFNs: functional groups in a molecule absorb 
with varying wavelengths and strengths depending on 
complex interactions with other parts of the molecule. 
Several groups have developed networks that identify 
functional groups present in a compound from its IR 
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spectrum.85-86,96"98 The ability of an FFN to recognize 
a group depended on both its distinctiveness in the IR 
spectrum and the frequency with which it occurred in 
the training set: a network recognized carbon-halogen 
bonds well (even though the IR band of this group varies 
in intensity and position) unless the proportion of such 
compounds in the training set decreased below one-
fifth.97 Munk, Madison, and Robb extended their 
method by including not only IR data but 13C NMR 
peaks (separated by multiplicity) and the molecular 
formula.53 The combined-input network outperformed 
STIRS, a "nearest-neighbor" program that classifies 
spectra by their similarity to examples in a library.99 

Curry and Rumelhart developed a neural network 
that classified compounds by substructure from their 
mass spectra.34 As a generator of structures from 
spectra, this network paralleled STIRS and DEN-
DRAL, an expert system that classifies compounds from 
mass spectra by applying rules provided to it by a human 
expert.100 The accuracy of these networks roughly 
equaled that of the STIRS program, but the network 
operated 100 times faster in analyzing new spectra (after 
being trained). The results did not measure up to those 
of the DENDRAL program, but that program covered 
only a smaller set of compounds for which chemists 
could explicitly encode fragmentation pathways. The 
authors have given careful thought to every stage of 
the process; we cite their work as one model for future 
applications of FFN methodology. 

The connectionist approach has been applied to the 
interpretation of mass spectra since the invention of 
the perceptron,101 but this application still presents 
special problems to the FFN method. For example, 
features representing characteristic losses depend on 
the distance between a pair of peaks, rather than the 
absolute position of the pair. Curry and Rumelhart 
used five different types of input to capture features 
dependent on relative positions of peaks as well as those 
with absolute positions. Peak heights of ion masses 
from 40 to 219 identified ionic fragments with a 
recognizable mass. Peak heights corresponding to 
neutral losses of mass 0-179 from M+ represented 
neutral fragments of characteristic mass. Autocorre
lation sums, series sums, and constant sums reflected 
regular patterns in the peaks independently of their 
position relative to the origin or M+. The authors could 
do such detailed analysis in part because they had 
enough training examples (over 30 000) to allow gen
eralization with many inputs. 

The outputs of the network corresponded to the 
presence of specific substructures. The authors found 
that, under some training regimes, intermediate values 
of the output corresponded to actual conditional 
probabilities. For major substructures, they trained a 
separate network to identify substructures only on the 
basis of examples in that particular class in order to 
help the network improve the quality of prediction on 
more difficult substructures. 

The authors modified the error function in three ways. 
The network ignored errors smaller than a lower 
threshold value during training to avoid overfitting. 
Because of the danger that an example might be a 
mistake in the database or otherwise misleading, the 
authors also placed a ceiling on derivatives of the error 
function so that outliers (examples with large errors) 

would not affect the training process too much. In some 
experiments, the error function was divided by the 
frequency of the class of the example to allow all classes, 
however rare, to affect training equally. (Despite such 
compensation, the difficulty of abstracting from only 
a few examples generally makes recognizing rare classes 
more difficult.57) 

Besides the changes in the error function, the authors 
made three other modifications to the training method. 
First, they added Gaussian noise to the training inputs 
to prevent overfitting. Second, training of the network 
stopped when the error on a cross-validation test set 
reached a minimum. Third, by a process the authors 
call "automatic weight elimination", small weights 
shrank when the error fell below a given threshold until 
the error rose back to the threshold. This process 
gradually reduced small weights with insignificant 
effects to zero. 

Cross-validation procedures assessed the architecture 
of the network. The authors found that the network 
learned most efficiently when the output units shared 
the hidden units instead of dividing them: a fully-
connected layered network required fewer hidden units 
to reach the same accuracy as a network in which each 
hidden unit was connected to only one output. They 
also found that the accuracy of the network increased 
with the number of hidden units as long as error on a 
test set was used to end training. As the number of 
hidden units increased, the minimum error on the test 
set decreased, the number of training cycles necessary 
to train the network decreased, and the quickness of 
the network to overfit (i.e., to increase error on the test 
set after reaching a minimum) increased. Without that 
evidence, it would seem equally plausible to assume 
that a large network could fit a given set of training 
data in more ways, reducing the likelihood that a trained 
network would predict well. Automatic weight elim
ination may have contributed to the predictivity of their 
larger networks. 

D. Applications In Sensor Arrays (Unordered 
Homogeneous Data) 

Three factors limit the utility of chemical sensors to 
characterize samples: sensors are not perfectly selective; 
a sensor may respond in a nonlinear manner to a 
complex mixture; existing analytical techniques may 
not extract all the information in the data. The data 
consist of the outputs of different sensors. An FFN 
transforms the responses from these sensors—a position 
in "selectivity space"—into the recognizable output of 
identity or concentration of the sample. One can 
consider this interpretation of data from sensor arrays 
as a kind of spectroscopy. FFNs have recognized 
samples and quantified them on the basis of the data 
from sensors (Table IV). 

The sense of smell recognizes molecules in the gas 
phase. Sensor technology has mimicked that sense in 
the analysis of fragrances.102103 Quartz resonators 
attached to selectively adsorbent membranes sense an 
amount of material adsorbed as a change in frequency. 
A Japanese group trained networks to distinguish 
between similar whiskies, between alcoholic food prod
ucts, between perfumes, and between fruit flavors and 
claimed that they outperformed both linear discrim-



2596 Chemical Reviews, 1993, Vol. 93, No. 8 Burns and Whlteskjes 

Table IV. Applications of FFNs to Problems in Interpreting the Output of Sensor Arrays" 
input 

Sn02 gas sensors, temperature gradient 
difference between adjacent sensors 
all above inputs 
lipids on quartz resonator sensors 
tin oxide sensors 
tin oxide sensors 

tin oxide sensors 
tin oxide sensors, fractional 

conductance change 
tin oxide sensors, fractional 

conductance change 
membrane/quartz resonator sensors 

same sensors, EtOH subtracted 

membrane/quartz resonator sensors 

lipid bilayers on quartz resonators 
lipid bilayers on quartz resonators 
lipid bilayers on quartz resonators 
lipid bilayers on quartz resonators 

metal oxide sensors (MOSFET) 

metal oxide sensors (MOSFET) 

ion-selective electrodes 
ion-selective electrodes 

output 

Gases 
3 compounds, binary mixtures 
3 compounds, binary mixtures 
3 compounds, binary mixtures 
3 odorants, 4 alcohols 
hexane, acetone, aqueous NH3 
2-methyl-l-butene, 

benzene, gasoline 
3 beers 
3 beers 

5 alcohols 

liquors 

liquors 

whiskies 

whiskies 
perfumes 
fruit flavors 
adulterated orange flavors 

H2, NH3, C2H4, EtOH concentrations 

H2, acetone concentrations 

Ions 
Ca, Cu ion concentrations 
K, Ca, NO3, Cl ion concentrations 

type 

C 
C 
C 
C 
C 
C 

C 
C 

C 

C 

C 

C 

C 
C 
C 
C 

X 

X 

X 
X 

" Explanations for the headings are given in the footnotes to Table I. b Nakamoto, T. 
Actuators B 1992, S, 181-186. 

architecture 

17:8:6 
16:8:6 
33:8:6 
6:7:7 
9 

9 

12:4:3 
12:7:3 

12:7:5 

6:8:11 

6:8:11 

3:3:5 

8:7:5 
8:7:5 
8:7:5 
8:7:5 

6:4:4 

6:4:2 

4:5:2 
5:7:4 

.; Takagi, H.; 

results 

85% correct 
96% correct 
92% correct 
imperfect recognition 
correct recognition 
correct recognition 

correct recognition 
correct recognition 

correct recognition 

73% correct vs 64% 
linear discrimination 

88% correct vs 83% 
linear discrimination 

88% correct vs 83% 
linear discrimination 

94% correct 
100% correct 
100% correct 
threshold for detection 

of adulterant same 
as that of human nose 

FFN better than partial 
least squares 

FFN better than partial 
least squares 

reasonable predictions 
reasonable predictions 

Utsumi, S.; Moriizumi, T. 

ref 

111 
111 
111 
108 
b 
b 

110 
109 

109 

107 

107 

106 

105 
104 
104 
104 

112 

112 

32 
32 

Sens. 

ination and human noses.104-107 Similar work by Chang 
et al. had less success.108 A group at Warwick University 
has worked on a method to discriminate between 
beers109 and to monitor the odor of ale in brewing with 
tin oxide sensors.110 

Tin oxide sensors on a temperature gradient have 
been used to recognize simple organic molecules and 
their binary mixtures. The best recognition resulted 
from presenting the derivative of sensor response with 
respect to temperature as input to the network.111 Too 
much information, as well as too little, can impede the 
ability of a network to learn: prediction suffered when 
both raw inputs and derivatives were given to a network. 
Ion-selective electrodes32 and gas sensors112 have also 
formed the basis for accurate quantitation. 

E. Applications in QSAR (Various Data) 

Quantitative structure-activity relationships pose a 
special problem for FFNs. Unlike the subjects of other 
applications of FFNs in chemistry, molecules lack an 
obvious numerical model. Ignorance of the physical 
basis of the phenomenon with which molecular prop
erties are being correlated exacerbates the problem of 
representation. In many cases, researchers have re
stricted their set of examples to one parent compound 
and its substituted analogues, allowing them to limit 
the description of the molecule to simple physical 
properties of the substituents. For a general repre
sentation, molecular graphs, the familiar line drawings 
used in organic chemistry, can be translated into a list 
of numbers. In practice, that translation usually 
includes simple chemical information. The complexity 

of this field makes QSAR an ideal proving ground for 
FFNs (Table V), the most flexible generalizing method 
available. 

/. QSAR through Representations of Connectivity 

Representing a set of connections between atoms as 
inputs to an FFN can be accomplished in one of three 
ways. First, one can use input values to represent both 
the atoms of the molecule and the bonds between them, 
as a connection table or as a matrix of the bond orders 
between every pair of atoms.113 In such methods, the 
assignments of particular atoms to particular inputs 
does not matter, at least in theory. Second, one can 
assume a given set of connections between the atoms, 
forming a template. Each input unit corresponds to an 
atom in a particular position in the molecular template. 
If some bonds in the molecule under consideration are 
absent in the template, the inputs cannot represent 
the molecule properly. Third, one can use inputs that 
represent the presence or number of particular sub
structures in the molecule. These three methods may 
apply either to the entire molecule or only to a particular 
substituent. 

Elrod, Maggiora, and Trenary used simplified con
nectivity matrices to predict the products of addition 
reactions.1 u In this representation, the input consisted 
of an n-n matrix, where n is the number of atoms in the 
core reactive group and its immediately adjoining atoms. 
Each row and column corresponded to one atom; each 
entry corresponded to the bond order between the atom 
of the row and the atom of the column. Atomic numbers 
of the atoms filled the diagonal entries. In earlier works, 
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Table V. Applications of FFNs to Problems in Quantitative Structure-Activity Relationships* 

input output type N* architecture results ref 

atomic numbers, connections 

simplified Dugundji-Ugi matrix 

simplified Dugundji-Ugi matrix 

simplified Dugundji-Ugi matrix 

arbitrary coding for carbons 

presence of carbon at position 

atomic properties for a, /3 atoms 

10/13, same as chemists, 
better than CAMEO 

high but suspect prediction 

Connectivity Tables 
meta yield in aromatic X 32 5-5:5:2 

substitution 
matrix after Markovnikov X 18 36:8:8:28 

addition 
matrix after Saytzeff X 72 66:24:24:55 high but suspect prediction 

elimination 
matrix after Diels-Alder X 30 120:36:36:105 high but suspect prediction 

reaction 

Molecular Template 
retrosynthetic reactions C 32 8:4:4 

13C NMR peak for 
secondary carbon 

aromatic substitution, 
meta yield 

X 40 Figure 6 

X 21 Figure 6 

sums of atomic properties 
for a, /? atoms 

sums of atomic properties 
for a, /3 atoms 

sums of atomic properties 
for a, f) atoms 

sums of atomic properties 
for a, 0 atoms 

various ketosteroid atom descriptors 
various ketosteroid atom descriptors 
various ketosteroid atom descriptors 

(atoms far from C=O) 
various cyclic ketone descriptors 
various cyclic ketone descriptors 

various 
various 

various for a, /3 atoms of aromatic 
substituents 

13C NMR shifts in norbornanes 

mitomycin descriptors 
arylacryloylpiperazine descriptors 
carboquinone descriptors 

benzodiazepine descriptors 
mitomycin descriptors 
arylacryloylpiperazine descriptors 
molecular descriptors 
molecular descriptors 
substituent descriptors, concentration 
molecular descriptors 
substituent, molecular descriptors 
identities of cation and anion 
various 
identities of dihydropyridine 

substituents 
molecular electrostatic potentials 
atomic properties 
functional group types 
atom types 
functional group types 

Descriptors from Molecular Graph 
aromatic substitution, X 21 9:4:4:1 

meta yield 
13C NMR peaks in mono- X 44 11:6:4; 

substituted benzene feedback 
13C NMR peaks in mono- X 44 11:6:4; 

substituted benzene recursion 
inductive and resonance X 33 14:8:2 

substituent effects 
13C NMR spectrum X 391 13:40:116 
13C NMR peak X 391 13:40:1 
13C NMR spectrum X 190 9:41:116 

13C NMR spectrum X 850 11:55:116 
13C NMR predictive model C 3348 40:20:75 

Substituent Descriptors 
taste (sweet, bitter, none) C 97 7:6:3:3 
musk odor X,B 130 24:5:1, 

24:7:3:1 
musk odor B 70 5-6:6:3:1 

80% "reasonable"; only 
3 examples shown 

incremental method 
better 

22.1% rms error 

11.5% rms error 

good prediction for ipso, poor 
prediction for other atoms 

good prediction 

n = 0.077, T-R = 0.108 

rms error 1.0 ppm, MLR 1.8d 

rms error 1.1 ppm 
rms error 0.36 ppm 

rms error 2.9 ppm 
similar to nearest-neighbor 

endo vs exo substitution 

anticarcinogenic activity 
antihypertensive activity 
anticarcinogenic activity 

tranquilizer activity 
anticarcinogenic activity 
antihypertensive activity 
DHFR inhibitory activity 
DHFR inhibitory activity 
hypotensive activity 
mutagenicity 
carcinogenicity 
solubility 
logarithm of solubility 
AH of oxidation 

pKa of imidazole 
acidity of mixed oxides'" 
biodegradability 
biodegradability 
biodegradability 

B 

C 
C 
X 

X 
C 
C 
X 
X 
X 
X 
B 
C 
X 
X 

X 
B 
X 
C 
C 

25 7:14:4 

11 6:12:5 
22 7:14:4 
36 7:12:1 

56 13:26:1 
15 5:10:3 
28 6:10:4 

100 5:3:1 
34 4:6:1 
24 6:3:1 

147 4:4:1 
46 5-11:7:2 

538 55:2:3 
331 17:18:1 
71 22:4:1 

29 144:9:1 
38 12:10:10:8 
18 8:8:1 
79 ? 
51 ? 

g 
g 
i 

i 
J 
J 

51 
k 
I 
m 
n 
29 

o 
P 

Q 
s 
t 
U 

U 

" Explanations for the headings are given in the footnotes to Table I. 6 Number of training examples. c CAMEO is an expert system 
that applies rules on the basis of chemical mechanisms (Gushurst, A. J.; Jorgensen, W. L. J. Org. Chem. 1988,53,3397-3408). d MLR 
= multiple linear regression.e rs, i%, and r„ are the correlation coefficients for the categories sweet, bitter, and tasteless, respectively. 
f Aoyama, T.; Suzuki, Y.; Ichikawa, H. Chem. Pharm. Bull. 1989,37, 2558-2560. * Aoyama, T.; Suzuki, Y.; Ichikawa, H. J. Med. Chem. 
1990,33, 905-908. h ALS = adaptive least squares (Moriguchi, L; Komatsu, K.; Matsushita, Y. J. Med. Chem. 1973,23, 20). * Aoyama, 
T.; Suzuki, Y.; Ichikawa, H. J. Med. Chem. 1990, 33, 2583-2590.' Liu, Q.; Hirono, S.; Moriguchi, I. Quant. Struct.-Act. Relat. 1992, 
11,318-324. * So, S.-S.; Richards, W. G. J. Med. Chem. 1992,35, 3201-3207. ' Wiese, M. Quant. Struct.-Act. Relat. 1991,10,369-371. 
m Ghoshal, N.; Mukhopadhyay, S. N.; Ghoshal, T. K.; Achari, B. Bioorg. Med. Chem. Lett. 1993, 3, 329-332. " Adler, B.; Ammon, K.; 
Dobers, S.; Winterstein, M.; Ziesmer, H. Chem. Tech. 1992, 44 (11-12), 363-367. ° Bodor, N.; Harget, A.; Huang, M.-J. J. Am. Chem. 
Soc. 1991,113, 9480-9483. * Brewster, M. E.; Huang, M.-J.; Harget, A.; Bodor, N. Tetrahedron 1992, 48, 3463-3472. « Broughton, H. 
B.; Green, S. M.; Rzepa, H. S. J. Chem. Soc, Chem. Commun. 1992,1178-1180.' The acidity is represented as a sequence of binary 
variables representing particular pH values.» Kito, S.; Hattori, T.; Murakami, Y. Ind. Eng. Chem. Res. 1992, 31, 979-981. ' Tabak, 
H. H.; Govind, R. Environ. Toxicol. Chem. 1993, 12, 251-260. u Zitko, V. Chemosphere 1991, 23, 305-312. 

78%, rB = 0.68, rb = 0.49, r„ = 0.47e 

slightly worse than 
linear discrimination 

77%, discriminant 
analysis 81 % 

12/13 vs 11/13 cluster 
or linear learning 

3/5 predicted 
6/8 predicted; ALS 62-76%* 
predictions as good as 

training results 
prediction worse than MLR 
worse than other methods 
worse than other methods 
better than MLR with indicators 
better than regression analysis 
one outlier, like ALS 
similar to linear regression 
adequate training results 
reasonably good prediction 
rms error 0.43 vs 0.36 for MLR 
rms error 1.8 kcal/mol 

rms error 0.8 
better than previous correlation 
better than linear model 
no prediction, poor training 
no prediction, good training 

115 

114 

114 

114 

117 

44 

43 

43 

39 

40 

118 

16 
16 
16 

16 
119 

123 
121 

120 
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they used connection tables with serial numbers to 
predict the degree of meta direction in electrophilic 
aromatic substitution.115 Each atom had inputs cor
responding to its atomic number and the serial numbers 
of the atoms to which it was connected. In both 
methods, they also used the template model: the 
authors aligned the molecules so that corresponding 
atoms in different examples were assigned to the same 
input, ensuring that the arrangement of chemical bonds 
would remain somewhat consistent.116 

We believe that successful prediction in their work 
arose from the use of a molecular template, not through 
connectivity. In a connection table, some entries for a 
particular atom refer to other atoms in the table. Such 
a representation comes naturally to digital computers, 
in which many variables indicate the locations of other 
variables. In contrast, the units of an FFN add input 
variables together (eq 1). Although a network can make 
one input point to another (that is, an input indicating 
a bond to particular atom enhances the effects of the 
inputs corresponding to that other atom), such an 
implementation requires one hidden unit for each 
property for each connection of interest. The large 
number of hidden units resulting from such a repre
sentation would require many more training examples 
than the number provided in their work. 

Luce and Govind used a template for atoms from e 
to /3' in a molecule containing a C=O or C=NR group.117 

They represented each atom by a number assigned to 
a particular substructure. Their assignment of numbers 
to moieties has no clear meaning: benzyl and nitrile 
groups have very similar numbers despite the difference 
in their properties. Because the authors reduced the 
molecules to a list of moieties, they could have used a 
sparsely-coded matrix as input. Such a representation 
would have rendered their arbitrary encoding unnec
essary. 

Kvasnicka used templates for alkanes44 and substit-
uents on aromatic rings43 in FFNs for predicting the 
positions of 13C NMR peaks and yield of meta products 
in electrophilic aromatic substitution, respectively. 
These networks had connection patterns that paralleled 
the bonds in the templates rather than fully connected 
layers (Figure 6). As intriguing as this method is, 
predictions using it did not perform as well as an 
incremental method (in 13C NMR) and a simpler layered 
FNN (in yields of substitution products). In later work, 
the inputs from the template were combined into counts 
of particular substructures. Kvasnicka and coworkers 
used standard FFNs to predict aromatic substituent 
effects118 and FFNs with extra recursive connections to 
predict 13C NMR peaks in monosubstituted ben
zenes.39-40 

Anker and Jurs applied FFNs to the prediction of 
the position of 13C NMR peaks of ketosteroids from 
various descriptors derived from the molecular graph 
and physical properties of the molecule.16 As output, 
they used a series of units representing the possible 
presence of the peak at 116 points in the spectrum 
spaced 0.5 ppm apart, rather than a single value for the 
chemical shift. This scheme provided not only more 
accurate results than a network predicting the chemical 
shift directly, but also a confidence value, generated 
from relative magnitudes of the outputs. Their method 
achieved greater accuracy on a subset of atoms far from 

inputs 

Figure 6. The architecture of the neural network designed 
by Kvasnicka (ref 44) reproduces part of the possible skeleton 
of an alkane. The values of the external units correspond to 
the presence or absence of a carbon at that position. The 
units representing carbon atoms are shaded. The pattern 
shown corresponds to 2,2,5-trimethylheptane; the output 
represents the 13C chemical shift of the circled carbon atom. 

the carbonyl group in the steroids than on the complete 
set. It also predicted spectra for other cyclic ketones 
when trained on a general set of them, with somewhat 
less accuracy than the network achieved on ketosteroids 
alone. Ball and Jurs trained a network from similar 
inputs to select the best model to use to predict 13C 
NMR peaks.119 

2. QSAR from Substituent Properties 

A variety of properties have been used to describe 
substituents or characteristics of a molecule. Binary 
values indicate the presence of groups or conditions. 
Topological indices and descriptors express molecular 
connectivity. Geometrical properties encompass dis
tances, angles, and similar values. More physical 
properties include charge, electronegativity, and sub
stituent constants; hydrophobicity terms; and van der 
Waals repulsions or molar volumes. 

Because no good physical models for smell and taste 
exist, one might imagine that FFNs would surpass rival 
methods in predicting them from structure. So far, 
they have not, although few examples exist. Autocor
relation and linear discriminants have proved more 
effective than FFNs in predicting musk odor.120121 FFNs 
predicted sweetness in L-aspartyl dipeptides from 
molecular descriptors better than SIMCA, a form of 
principal component analysis used for classification,122 

but bitterness worse.123 FFNs have had relative success 
in the prediction of drug activity and simple chemical 
properties, although some applications did not yield 
results as good as the best existing methods do (see 
Table V). 

3. Summary 

An FFN can often, but not always, improve on existing 
methods of making predictions from a given data set 
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if the size of the data set permits generalization. 
Unfortunately, the number of examples available for 
typical problems in QSAR is small: only four of the 
applications included more than 200 examples in the 
training set. In virtually every case, the number of 
weights exceeded the number of training examples. 
Smaller networks might have sufficed, but few re
searchers based their selection of architecture on 
performance. Many of these results might improve with 
the application of current best practice, especially cross-
validation and selection of architecture based on 
predictive ability. Even with these problems, FFNs 
generally compare favorably with existing methods. 

IV. Discussion 

A. Review of Applications 

What is the state of the art of applications of FFN 
technology to problems in chemistry? The level of 
accomplishment depends on finding a,good numerical 
representation for the problem under study. 

The idea of sparse coding of substituents occurred 
naturally in considering biological macromolecules, for 
which substituents are few and well-defined. The 
networks succeeded in deriving the effects of particular 
residues, even though no data explicitly describing 
properties had been provided to them. Researchers 
have begun to use FFNs as tools rather than as objects 
of study. The same method should work for substit
uents on other molecules, although the network needs 
many examples of combinations of substituents to learn 
the effects of each one. When only data describing 
properties are provided to the network, it is easily 
possible to omit important properties, or to define them 
in perverse ways. 

In both spectroscopy and analysis of genes, research
ers have improved results by preprocessing the obvious 
representation. In part, these techniques draw on the 
knowledge that higher-order features, such as codons 
in DNA or fragmentation patterns in MS, play a role 
in the underlying chemistry or biochemistry of the 
phenomenon being studied. Proton NMR spectra 
contain much information, but FFNs have so far 
extracted relatively little of it because so much of it 
depends on higher-order features caused by coupling. 

The application of FFNs to QSAR has not yet reached 
maturity. Almost all the work done so far involves 
limited problems with few training examples and ad 
hoc construction of input sets. The work on predicting 
molecular properties from substituent data is adequate 
and informative, but in most cases, not a great im
provement over existing methods. The scarcity of 
training examples and the absence of efficient methods 
of representing important characteristics such as mo
lecular shape hinder these applications more than any 
other factors. 

The best method of representing molecular structures 
for FFNs is not yet clear. Although the results have 
not surpassed other methods, describing a molecule in 
terms of its connections holds promise as a way to 
represent molecules in a completely general way. The 
bond-graph architecture of Kvasnicka's network4344 is 
an imaginative approach to providing implicit connec
tivity information to a network: by cutting connections 
between portions of the network corresponding to 

distant atoms, one can reduce the size of the net and 
emphasize important relationships. 

Elrod, Maggiora, and Trenary attempted to use 
connection tables to represent connections explicit
ly _ii4,ii5 TJ16 congigtent numbering of the atoms and 
the scarcity of training examples undermined their 
application, but the principle remains sound. Because 
modeling the "switching'' or "pointing'' behavior of the 
units requires many hidden units, an application of 
this method will need a much larger training set than 
those used so far. Providing multiple representations 
of the same molecule (in the case of a Dugundji-Ugi 
matrix, switching the order of the rows and columns) 
can help. 

B. Review of Methodology 

Many of the earlier papers cited in this review have 
not used the best available methods, but the sophis
tication of applications of FFNs has increased rapidly 
with time. The simple, general FFN suffices for most 
purposes. To prevent overtraining and to choose an 
architecture, many researchers have used simple rules 
of thumb. We do not recommend using those rules. 
Although trimming of unnecessary weights and units 
can reduce overfitting in overtrained or excessively large 
networks, we believe that only performance on test data 
(often reserved by cross-validation) can define the 
quality of a trained network. Using performance as 
the criterion for training, one can optimize the pre-
dictivity of a network, rather than its fit to training 
data. Any feature of the network can be optimized by 
this method: architecture, training time, or training 
parameters. One can even assess the reproducibility 
of the results by taking several different divisions 
between training and cross-validation test data, as one 
does in bootstrapping statistics.20'47 

C. Conclusion 

Enough impressive results have been obtained with 
FFNs to suggest that they should be a useful technique 
in chemistry, particularly when complex, poorly un
derstood, but well-defined data (such as spectra, sensor 
readings, or biological sequences) are involved. Despite 
the hypothetical advantages of FFNs for problems 
involving hard-to-define properties, few of the existing 
applications have made full use of them, or surpassed 
the accuracy of other methods. Combining the best 
examples of thoughtful, tested uses for this technique 
can improve the overall effectiveness of FFNs in all 
fields of chemistry that need computational tools. 
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