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1. Introduction 

In this review we consider recent studies of isotope 
effects (IE's) on the physical properties of solutions, 
such as vapor pressure, molar volume, compressibility, 
etc. Such IE's are of interest for two reasons: first, 
because they can sometimes be capitalized to separation 
processes, and samples of separated isotopes may be 
scientifically and commercially valuable and second, 
and more importantly to use, because the sign and 
magnitude of condensed phase isotope effects (CPIE's) 
are closely related to the nature of the intermolecular 
forces in liquids and solutions. Thus, appropriate IE 
data can probe the nature of molecular interaction and 
structure. 

That CPIE's are especially useful probes for inter­
molecular forces results from the choice to describe 
molecules and their interactions in terms of their 
electronic properties (i.e., wave functions). To an 
excellent approximation electronic structures are in­
dependent of the isotopic distribution of nuclear mass 
(Born-Oppenheimer approximation). It follows, for a 
given electronic state, that the function which describes 
the dependence of molecular (or intermolecular) energy 
on nuclear position is isotope independent. That 
function maps a surface in a multidimensional nuclear-
displacement/energy space and is labeled the "potential 
energy surface (PES)". A thorough understanding of 
the PES, most often complicated and difficult to 
achieve, is prerequisite to a proper quantitative de­
scription of the system in modern statistical thermo­
dynamic terms. In contrast to the PES, the total energy 
of the system (which includes both potential and kinetic 
parts) and the associated free energy are isotope 
dependent. That is because the kinetic energy terms 
accounting for motion on the PES are mass dependent. 
Moreover, kinetic energy is related to the structure of 
the molecules of interest, to their masses and mass 
distributions, and to the temperature, in a relatively 
simple way. 

In the following sections we will compare properties 
of separated isotopes, A and A' (the prime denotes 
isotopic substitution and will henceforth refer to the 
lighter molecule), and then discuss IE's on the properties 
of solutions. We will treat solutions of dissimilar 
molecules, comparing A dissolved in B with A' in B, B' 
in A, or B' in A', attempting a common description with 
a minimum set of parameters. Finally, we will turn our 
attention to mixtures of isotopomers, i.e., A in A', B in 
B', etc. In such solutions both solute and solvent, and 
by extension the solution, share identical potential 
energy surfaces. It follows that the theoretical con-
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struction used to rationalize isotope effects can be tested 
in a particularly straightforward way with such solu­
tions. It is for that reason that the bulk of this review 
will focus on theory and experiment for such systems. 

The analysis of isotopomer solutions will demonstrate 
that a proper consideration of the vibrational properties 
of the component molecules is absolutely essential to 
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the understanding of these mixtures. At first glance 
that conclusion is a little surprising, since after all, we 
are dealing with systems which should be among the 
simplest of solutions, i.e., the most nearly ideal. It is 
an important conclusion, however, because many mod­
ern theories of solution ignore the whole problem of 
vibration and vibrational interaction, choosing to model 
solutions in terms of structureless spherical or aspherical 
particles interacting via an appropriate intermolecular 
potential, where quantum mechanical effects are not 
explicitly addressed. Consequently, in the treatment 
of isotopic mixtures these effects are hidden under the 
assignment of choosing different effective potential 
parameters of the mixture constituents and/or in small 
deviations from the well-known Lorentz or Berthelot 
combining rules. Under those circumstances it is 
difficult to avoid ad hoc arguments. In contrast, 
condensed isotope effect theory uses identical PES's to 
describe the properties of both isotopomers. Therefore, 
deviations from ideality emerge directly from the 
quantum differences between components moving on 
the same isotope- and concentration-independent PES. 
From the analysis of the results obtained on mixtures 
of isotopomers emerges a warning: inadequacies in 
treating nearly ideal solutions (by ignoring vibration) 
likely carry over in the treatment of solutions of more 
general interest. Here vibrational effects may also be 
important, just not as obvious. 

1.1. Vapor Pressure Measurements on 
Separated Isotopes 

Any proper thermodynamic description must be 
clearly and unequivocally referenced to a well-under­
stood standard state. The ideal gas reference state, 
with zero intermolecular interaction, is particularly 
appropriate for theoretical considerations. For solu­
tions, however, a condensed phase reference state is 
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Figure 1. (a) Schematic diagram of an experiment designed 
to measure the vapor pressure isotope effect (VPIE) between 
samples of separated isotopomers, A' and A. For example, 
A' might be 100% C6H6 and A100% C6D6. The sample cells, 
A' and A, are thermostated, temperature is read from 
resistance thermometer T, the pressure difference between 
samples, and the absolute pressure of one sample, are 
measured with transducers P and AP. The transducers are 
thermostated at a slightly higher temperature than A' and A 
to prevent condensation, (b) One-plate fractionation exper­
iment (schematic). The experiment is designed to measure 
the concentration ratio of two isotopomers in each of two 
coexisting phases, for example, liquid (x'/x) and gas (y'/y). 
The liquid-vapor separation factor is a = (y'Iy)Kx'Ix). 
Temperature is measured with thermometer T, and liquid 
and vapor samples are removed through capillary sampling 
lines for later mass spectroscopic (or other) analysis. 

normally employed. One can proceed from the ideal 
gas reference state to one or another of several possible 
and more convenient condensed phase references by 
considering free energy changes along the chain: ideal 
gas reference ** real gas ** pure liquid reference *» 
other condensed reference. To do so, begin by focusing 
on a measurement such as the one diagrammed in Figure 
la, where the vapor pressures of separated samples of 
purified isotopomers are compared in a differential 
measurement. The analysis below demonstrates that 
the vapor pressure isotope effect, VPIE = In (F"IP), is 
related to the isotopic difference of Raoult's law 
standard-state free energies referring to the phase 
change.1,z For that reason it offers a convenient starting 
point for thermodynamic analysis. 

Consider a two-component condensed phase in equi­
librium with its vapor. The partial molar free energy 
(chemical potential) of each component in the binary 
mixture, Mi (phase), can be written3'4 
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M1(C) = H1(V) = 

H1
0 +RTInP1 + (B11 + Sy2

2U12)P + .- da) 

M2(C) = M2(V) = 

M2
0 + RT In P2 + (B22 + 2y^12)P + ... (Ib) 

P is the total pressure and P1 the partial pressure, M<° 
is the chemical potential in the ideal gas reference state, 
and yi is the gas phase and x; the condensed-phase mole 
fraction of component i. Generalization to additional 
components is straightforward. In deriving eq 1 the 
virial expansion describing vapor nonideality has been 
written as a pressure series, (PVIRT - I)IP = BI(RT) 
+ CPI(RT) + ...,B is the second and C the third mixture 
virial coefficient. The mixture virial is written as a 
sum over pair interactions, B(mix) = ^1

2B11 + 2yiy2Bn 
+ 3^2B22, and Tf12 is an asymmetry coefficient, i;12 = B12 
- (Ba + B22)/2. Higher order terms in eq 1 may contain 
third, fourth, and higher virial coefficients. 

1.2. The VPIE and Fractionation Factors 
In the liquid the free energy of the pure condensed 

phase at the experimental temperature is often chosen 
as the standard state (Raoult's law reference), except 
if attention is focused on the more dilute component 
at high dilution when the Henry's law (infinite dilution) 
reference is favored. For the Raoult's law reference 

M1(C) = Mi0 (C) + RT In (7,x;) + JjV1(OdP (2) 

Note that 7, = 1 and In (7,) = 0 when x, = 1. Here 7, 
is the activity coefficient, Pj0 the vapor pressure of the 
pure component, P the vapor pressure of the solution, 
and Vi(c) the partial molar volume of component "i" in 
the condensed phase. The Henry's law reference is 
only appropriate for the dilute component, in this limit 
In 7;* = 0 when X1 = 0. 

M1(O - M,-*(C) + RTIn (7,."-X1-) + JJv 1 - (C)( IP (3) 

The activity coefficient in the Raoult's law formalism 
is shown without a superscript, in the Henry case we 
write 7;*. In the Henry case Vf (c) in eq 3 is the partial 
molar volume of the solute at infinite dilution. The 
integrals in eqs 2 and 3 can be neglected except when 
P » P1

0. 
To obtain an expression for the VPIE, equate 

expressions for M;(V) and M.(C), and M>'(V) and M.'(C) as 
given in eqs 1 and 2 and then by substraction find an 
expression for the ith component vapor pressure (i = 
1 or 2) in a two-component solution 

RT \n (P/1P1) = (M1'
0(C) - M/°(V)) - (M;0(O - M1

0(V)) + 

RT]n (x/y/lxrft) + J J y / d P - JJV1-ClP- (B11' + 2 

a-yi')\/)F + (B1,. + 2(1 -yi)\j)P (4) 
For the one-component case, X1 = X1' = 7, = 7;' = 1 and 
riij = 0. From this point forward we will use A to 
represent isotopic differences (light - heavy) and 6 for 
the phase differences (in the present case d = vapor -
condensed). The equation simplifies after neglecting 
differences in some small terms 

In (P1IP) = -5A(n°)IRT + (BP - B'P'yRT (5) 
Introducing the Helmholtz free energy differences, 
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5AA° = 5A/i° + 5A(PV)°, so 

VPIE = In (PVP) = -5AA0IRT-(B'FI RT)(I -
BPIB'F) + (FVIRT)(I -PVIFV) (6) 

Equation 6 is the familiar Bigeleisen equation for the 
VPIE.1 It shows the VPIE to be proportional to the 
isotopic difference of free energy differences on the 
phase change (save for small corrections associated with 
IE's on vapor nonideality and condensed-phase molar 
volume). The result is an important one; it offers us 
an experimental probe capable of measuring subtle free 
energy differences. 

The development above is concerned with measure­
ments on samples of separated isotopes. The primed 
and unprimed species are individually referenced to 
separate Raoult's law standard states. An alternative 
approach is needed to treat distillation and other kinds 
of fractionation experiments. In distillation (Figure 
lb) two phases, each containing both isotopomers, are 
equilibrated across the phase boundary. The fraction­
ation factor, a' = (a)~l is defined 

a! = (y'Iy)I(x'Ix); LVIFF = In a' (7) 

and it is a straightforward matter, using the equations 
above, to obtain in good approximation 

RT In a = -5AA0 + (B- B')P - RT In 7" + 

p°'V°'(FV2
e/P°'V" - AV0IV0') (8) 

LVIFF is the liquid-vapor isotope fractionation factor. 
The higher order molar volume-dependent term in eq 
8 can almost always be neglected; it is often argued 
that in dilute mixtures of isotopomers V2e = AV. Vf 
is the excess partial molar volume of the solute, and 
AVIV is the molar volume isotope effect for the 
separated isotopomers. If in addition the pressure is 
low, and the virial coefficient isotope effect can be 
neglected, a simple result obtains 

RTIn Oi = SAAo-RTlUy" (9) 
The second term on the right is written in terms of 7", 
the activity coefficient at high dilution referenced all 
the way back to the pure liquid. Expressed alterna­
tively, RT In 7" is the free energy of transfer of the 
unprimed isotopomer from its Raoult's law standard 
state to the Henry's law standard state (i.e., now at 
infinite dilution in the primed solvent). We will see 
that this term is often nonzero and cannot be neglected. 

1.3. The Relation to Molecular Structure and 
Vibrational Dynamics 

Molecular considerations are most conveniently in­
troduced to eqs 6-9 by means of the canonical partition 
functions Qc and Qv. Since A° = -kT In Q we have for 
the VPIE following Bigeleisen1'' 

In (FIP) = In (QV'QC/QVQC') + 

[(FV -PV)- (B'F - BP)]IRT (10) 

An analogous equation for In a is readily derived. 
Because partition functions are calculable (in principle) 
from molecular properties using fundamental theory, 
eq 10 and its analogue for In a are important. They 
connect properties which can be measured with high 
experimental precision to basic theoretical ideas. The 
many dimensional canonical partition functions in eq 

10 are complicated and difficult to evaluate. Except 
for unusually simple systems further approximations 
will be required. To simplify the discussion we now 
focus on the VPIE and defer treatment of excess 
chemical potentials in isotopic solutions (i.e., of the In 
7 term in the equations above). 

In dealing with polyatomic molecules it is convenient 
to define an average molecular partition function In 
((Q)) = In QIN. In the vapor this presents no problem; 
it is easy to show InQ = N (In (q/N) + N, so In (QIQ') 
= In (qlq'), q is the microcanonical partition function. 
In the condensed phase caution is in order. Condensed 
phase Q's are sensitive functions of volume, Q = 
Q(T,V,n), and must properly account for the effects of 
intermolecular interaction. In a vapor pressure mea­
surement the isotopomers with partition functions Q 
and Q' are normally compared at identical temperatures, 
T = T, but at different pressures, P^F, and different 
volumes, V ^ V. In a fractionation experiment the 
temperature, pressure, and volume are all common. (In 
the vapor pressure experiment P and F define the VPIE 
and V0 and V" define the molar volume isotope effect 
(MVIE) under orthobaric conditions.) Consider the 
VPIE experiment. If the reduced radial distribution 
functions for the separate phases are identical for the 
two isotopomers (see section 2.5), the Q ratios of eq 10 
can be expressed as the ratio of reduced partition 
functions in the two phases, ((sjs')f), and can also be 
expressed as the ratio of quantum mechanical to 
classical partition functions (s and s' are symmetry 
numbers)1 

[(s/s')f]J=[((Q)l(Q'))qml((Q)l(Q'))d]l (U) 

Thus 

In (FIP) = In (fjfg) + (RT)-1I(FV - PV) -

(B'F-BP)] (12) 

In that case the liquids are said to be in congruent state.5 

Most often it is assumed that this equality is satisfied 
under orthobaric conditions. Under noncongruent 
conditions, for example, when the two isotopomers are 
to be compared at identical partial molar volumes, V 
= V, or some other set of conditions, an additional term 
involving the pressure-volume integral from the con­
gruent (V *) to noncongruent (V) state is required. This 
point has been explored in some detail by Singh and 
Van Hook.5 (Immediately above we pointed out that 
most authors have assumed the separated orthobaric 
liquids to be in congruent state, but this is not self 
evident.) 

In (FIP) = In (fc/fg) + (RT)-1I(FV - PV) -

(B'F - BP)] - (RT)-1J^FdV (13) 

Equation 13 straightforwardly relates vapor pressure 
ratios to the reduced partition function ratio, RPFR = 
fjfg. For most applications B « B', V « V, and / P d V 
= 0 and the equation simplifies: 

In (fc/fg) = [In (FIP)][I + P(B - VIRT] (14) 

Equation 14 has long been used in the analysis of VPIE 
data. The difference between VPIE and LVIFF was 
previously discussed by Bigeleisen and Roth6 in con­
nection with work on the neon isotopes. RPFR is 
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available from theory following a variety of approxi­
mations. One of the most commonly employed was 
suggested in 1963 by Stern, Van Hook, and Wolfsberg 
(SVHW).7 They used a harmonic oscillator, rigid rotor 
model in the vapor phase coupled with a 3n dimensional 
harmonic oscillator cell model in the condensed phase 
obtaining 

u_ 

"S* [(UJ/UJOC expG*,-' - Ui)c/2](1 - exp(-u,')c)/(l - exp(-u,)c TT x 
± A [(ui/ui')gexp(u1.'-u,)g/2](l - exp(-u/)g)/(l - exp(-u;)g 

4 4 u (l-exp(-u') 
\\-[exp((u'-u)/2)] (15) 
-L-Lu' (l-exp(-u) 

In eq 15 u, = hvJkT, with vt the frequency of the ith 
normal mode, and n is the number of atoms in the 
molecule. The 3n - 6 frequencies (3n - 5 for linear 
molecules) describing the internal vibrations of the 
molecules are treated in the harmonic approximation 
in both phases, while the 6(5) external modes (corre­
sponding to zero frequencies in the gas) are assumed 
to change to hindered translations and rotations 
(librations) in the condensed phase and are also handled 
in the harmonic approximation. 

Equation 13-15 offer a formalism which correlates 
thermodynamically measured isotope effects with 
spectroscopic analysis, including (most importantly) 
the frequency shifts which occur on condensation. Thus, 
the calculation of/c//g in the framework of the SVHW 
model requires a set of 3n - 6 gas phase (or 3n - 5 for 
the linear case) and 3ra condensed-phase frequencies 
for each isotopomer. To minimize error one should 
select a best fit set of harmonic force constants (F 
matrix) for each phase. The isotope-independent F 
matrices are used to calculate consistent sets of fre­
quencies for the different isotopomers in the two phases. 
The calculated frequencies are substituted in eq 15, 
and the result is subsequently compared with ther­
modynamic measurements using eq 13 or 14. Detailed 
calculations have been carried out for a large number 
of molecules27-10 and consistency between spectroscop-
ically measured phase frequency shifts and the ther­
modynamic effects demonstrated many times over. The 
agreement between theory and experiment extends to 
rather subtle points, such as the ordering of vapor 
pressures in sets of equivalent isomers (such as cis-, 
trans, and gem-C2H2D2,7,8 or ortho, meta-, and p-
C6H4D2,9 or the equivalent isotopomers of ethane10). 
Jancso and Van Hook11 have pointed out that in 
correlating the spectroscopic frequency shifts which 
occur on phase change (and the force constant changes 
related to them), with IE's, it is first necessary to correct 
empirically observed spectroscopic data for the dielec­
tric contribution. Warner and Wolfsberg12 have dis­
cussed this matter from a theoretical point of view. 

Recapitulating: (1) The isotopic ratio of thermody­
namic activities used to describe phase equilibria (in 
the simplest case, for liquid-vapor equilibria, the VPIE) 
is straightforwardly related to the reduced partition 
function ratio. This basic idea can be extended 
following a set of reasonable approximations to express 
thermodynamic isotope effects in terms of differences 
in the potential energies associated with translation, 

rotation, and vibration in the different phases, together 
with differences in the kinetic energy coupling trans­
lation, rotation, and vibration. (2) Extensive and 
elaborate calculations of the VPIE have been carried 
out on a wide variety of molecules. They quantitatively 
confirm, and in detail, the relations set forth in eqs 
13-15. 

2. Excess Free Energies In Mixtures of 
Isotopomers 

2.1. Introduction 
It is clear that the properties of a mixture of isotopic 

isomers will be only slightly different from the prop­
erties of one or the other separated sample. Thus, it 
is natural to anticipate that some kind of perturbation 
theory may be an appropriate route to their description. 
Perturbation theories can be divided into two major 
different approaches. The first, used by the Bochum 
group,13 is an extension of the well-known WCA (Weeks, 
Chandler, Anderson)14 method to mixtures. In the one-
center Lennard- Jones version the Helmholtz free energy 
is written 

A = A1
0 + 2nNpYixixJS(duM(rij)/drij)gij

0(r)r2dr 
(16) 

where the subscript "att" denotes the attractive part of 
the potential energy and the superscript ° on the radial 
distribution function, gij" (r), and on the Helmholtz free 
energy, Ai0, refers to a slightly perturbed hard-sphere 
model potential which, in turn, can be transformed to 
the effective HS model potential by convenient mod­
ulation of the reference potential energy surface (the 
so-called "blip" condition). Alternatively, following 
Gray and Gubbins15 the potential energy function may 
be divided into anisotropic and isotropic parts. The 
use of a Pade approximant leads to 

A = A°(r) +O2W(I-A3ZA2)] (17) 

which is readily generalized to mixtures. In eq 17 A2 
and A3 are second- and third-order perturbation terms 
which involve complicated averaging over molecular 
orientation. The first-order term, Ai, is null as a 
consequence of the manner chosen to split the potential 
energy function. The higher order terms contain 
contributions due to dipole, quadrupole, octapole 
moments, etc. 

Both the Bochum and Gubbins-Gray approaches 
emphasize anisotropy, in the first case a shape aniso­
tropic, in the second an electrostatic anisotropy, but 
neither can simultaneously take care of both effects. 
Each of these commonly employed mixture perturba­
tion theories is classical, and quantum mechanical 
effects are not explicitly addressed. Thus, for treatment 
of isotope effects, which we recall are purely quantum 
mechanical in origin, they are seriously handicapped. 
In a sense these approaches are equivalent to hiding 
the mixture isotope effects under the assignment of 
different and isotope-dependent potential parameters 
(e and a) and/or small deviations from the Lorentz and 
Berthelot combining rules. For that reason they lead 
to the very real danger of interpreting such parame-
trization in terms of a set of isotope dependent PES's, 
which is logically inconsistent. Therefore, we prefer to 
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employ the usual formalism of IE's, which, as explained 
above, employs the theoretically defensible concept of 
identical PES's independent of mass. In this formalism 
deviations, if any, from ideality in solutions of isoto-
pomers should emerge directly from quantum differ­
ences between the components moving on the same 
isotope and concentration independent PES's. 

2.2. Isotope Effects in Mixtures 
A number of authors (Prigogine,16 Chester,17 Big-

eleisen,18 Jancso and Van Hook,19 Singh and Van 
Hook,5-20 and Rebelo, Calado, and co-workers21,22) have 
considered excess free energy in mixtures of isotopes. 
We begin by expanding the Helmholtz free energy 
around the equilibrium volumes, V° and V°', of the 
separated samples at pressures P and P' 

A(V) = A(V0) + (dA/d V)(V- V0) + 
(l/2)(d2A/dV2)(V- V0)2 + ... (18) 

A'(V') = A'(V0') + (dA'/dV)(V- V0O + 

(l/2)(d2A7dV2)(V- V°')2 + ... (19) 

The contribution to the excess free energy is 

Aex( V) = x'A'(V') + xA(V) - x'A'{V0') - xA(V0) (20) 
The volume of the solution is the sum of the standard 
state and the excess partial molar volumes, but for 
solutions of isotope isomers, excess volumes are small. 
Neglecting terms of that order and higher, and differ­
entiating Aex(V) with respect to concentration, one 
obtains expressions for the excess partial molar free 
energies as a function of volume. Remember ne%( V) = 
AeHV) - x'(dA°T(V)/dx') and n'ex = Aex(V) + x(dA™-
(V)ldx'). For the unprimed isotopomer 

ne\V) = x'2[(V0' - V°)((dA/dV) - (dA'/dV)) + 

(l/2)(V0/ - V°)2((2x' - l)((d2A/dV2) - (d2A'/d V2)) + 
d2A7dV2)] (21) 

The excess chemical potential of the more dilute isomer 
at infinite dilution, written here for the unprimed 
isomer, is 

M ~ ( V 0 T = RT In (7") = (V0 ' - V°)(dA/d V -
dA'/dV) + (1/2)((V0 ' - V°)2(d2A/dV2) (22) 

Here 7" is the activity coefficient associated with the 
free energy of transfer of the "heavy" isotope from its 
neat or pure liquid Raoult's law standard state to infinite 
dilution in the "lighter" isotope as solvent (the Henry's 
law standard state). 

2.3. The Dilute Case 
To this point, the development has been thermody-

namically sound, but difficulties arise as simplifications 
are introduced. Early on both Prigogine16 and Big-
eleisen18 chose to discard the first term on the right-
hand-side of eq 22 because V° « V0 ' and P = -dA/dV 
^F=- -dA'jdV. Also, d2A/dV2 = 1/(/3V) where /3 is the 
isothermal compressibility, -d In V/dP. At that level 
of approximation 

M
M ( v ° T = RTIn y" = (V0'-Vf/(213V) (23) 

Since /3 and V must be positive, the excess free energy 

is always positive according to this analysis (but this 
is not universally observed); nevertheless, good harmony 
between experimental data and theory was obtained 
for mixtures of liquid hydrogen and deuterium.16 A 
complementary approach was taken by Chester17 at 
about the same time. He expanded the excess free 
energy of the isotopomer mixture in a Taylor series in 
powers of relative mass difference assuming the particles 
obey classical Boltzmann statistics. If the particles were 
assumed to follow classical mechanics the mixture would 
always be ideal, while for quantum particles at low 
enough temperature the excess free energy is always 
positive. Thus, the Prigogine and Chester methods lead 
to quite analogous results. 

More recently, Jancso and Van Hook19 have claimed 
that the identification of In 7* with V(AV/ V)2I'(20RT), 
A V/V the molar volume isotope effect, seriously un­
derestimates the contribution of the internal degrees 
of freedom (especially that of the high-frequency 
motions, for example X-H vs X-D stretching motions). 
The reason, basically, is because high frequency modes 
make negligible contribution to /3 but do make an 
important contribution to the free energy and thus to 
free energy isotope effects. These authors, therefore, 
presented an alternative formalism. The basic mixing 
process still follows the original idea of Prigogine and 
collaborators16 and is divided in two steps: (I) expand 
or compress the pure components from their equilib­
rium (standard state) molar volumes to the molar 
volume of the mixture, (II) ideal mixing at constant 
volume. In common with earlier authors,1618 the excess 
Helmholtz free energy associated with (II) is taken as 
zero, so Aex for the mixing process is simply the work 
of compression (dilation) carried out in step I. Thus, 
for transfer to the infinitely dilute solution (compare 
with eq 22) 

M
e x(V°T = RTIn (7°) = ~f£'P(VOdV = 

f^'(dA/dV)TdV (24) 

which for the commonly employed oscillator model can 
be rewritten 

^(V0T = RTIn7* = 

-RTf^'Y,^ln tf/toihtfUi/dWjdV (25) 

where, as always, u, = hcvi/kT. Given detailed know­
ledge of the volume dependence of all 3n vibrational 
frequencies, eq 25 may be straightforwardly evaluated. 
In working out the integrals in eq 25 it is sometimes 
useful to employ the relation (dvld V)d V = (dv/dP)(dP/ 
3V)dV = -(dvldP)(VI$)dV. In favorable cases the 
frequency distributions can be factored into a high-
lying set (generally the internal vibrations) to be treated 
in the zero-point (low-temperature) approximation and 
a group of low frequencies (often the lattice hindered 
translational and librational modes) to be treated in 
the high temperature approximation, then19-21 

RTIn 7" = /?T^(U l /2)(r.) i n t(AV/V) + 
int 

i?T^(u l
2/12)(r,)ex t(AV/V) (26) 

ext 

where I\ is the Gruneisen parameter for the z'th normal 
mode. 
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The use of the Gruneisen parameter is concomitant 
with the assumption of the quasiharmonic approxi­
mation. In this theory, widely employed by solid-state 
scientists, the 3nN condensed-phase vibrations are each 
assumed to remain harmonic about their new mean 
positions as the solid expands. Thus, the individual 
force constants are each assumed to vary proportionally 
with the fractional volume change. The Gruneisen 
coefficients are the proportionality constants, I\ = -d(ln 
vdld In (V)) = -(d In K,/d In V)/2, where KI is the force 
constant corresponding to frequency vi. The approach, 
including its drawbacks, has recently been discussed.21,23 

If preferred, the excess free energy can be rewritten 
in terms of the actual frequency shifts which occur on 
the transfer of the unprimed isotopomer between the 
two standard states 

M"(V°')" = RT\n 7°° = -RT((l/2)2>u,) int + 

(l/24)£(5u,.)2
ext) (27) 

using U1Su,- =» 5(u,)2/2. 

2.4. Mixtures of Isotopomers at Finite 
Concentrations 

Excess free energies of isotopomer solutions in the 
midrange of concentration can be readily calculated 
from the thermodynamic identity 

Gex = xn** + xVx ' = *M6X + (1 - x)ne*' (28) 

employing expressions for fiei and nex' as given in eq 22. 
However, in the spirit of the approximations employed 
above, which neglect terms of order Vex and higher, 
Rebelo et al.21 have shown ̂ 6* « */2(MeT, Mex'« X5V*)" 
so 

G" » xx'VT + *'*VXT = 
x(l - x) V T + (1 - x)x V X T (29) 

In the ordinary case we expect 7" = 7"', i.e., symmetrical 
behavior (around x = x' = 0.5), which means that 
deviations from ideality in mixtures of isotopomers can 
be represented with a one-term expansion of the 
Redlich-Kister type, Gex = xx'(n°x)-. 

The model described above has been successfully 
employed to reconcile experimental data and theoretical 
estimates for isotopomer mixtures of H/D isotopes of 
benzene,5,9,19 water,24 methanes,21,22,25 polystyrene and 
polybutadiene,20 and ammonia.2226 These applications 
are discussed in more detail later in this review. 

2.5. Mixtures of Monatomlc Isotopomers: A 
Comment 

Singh and Van Hook5 (SVH) have argued that ideal 
mixing can only occur under conditions where the 
reduced radial distribution functions, g(r*) and g'ir1*), 
are identical (i.e., under congruent conditions; here, 
the potential is expressed using energy and distance 
parameters, t and a, and e* = kT/e and r* = r/u). If the 
SVH argument is valid, corrections to the procedure 
outlined above become necessary. To develop such 
corrections first consider the application to the mon-
atomic case where the focus is exclusively on the 
intermolecular part of the potential energy (the external 
modes). With the separated isotopomers in the con­
gruent state, plots of g(r*) and g'(r*) will superpose; 

they are identical within the precision of the Born-
Oppenheimer approximation (Figure 2). A compression 
or dilation of one or the other sample along an 
equilibrium path, (i.e., Aw = -/PdV, with the rela­
tionship between P and V defined by the equation of 
state), has the effect of distorting the corresponding 
g(r*) function. This is well established by experiment, 
theory, and model calculation27 (see Figure 2a). In fact, 
both the locations of the maxima for the g(r*) function 
as well as the shape of the function depend sensitively 
on particle density and, hence, on applied pressure. To 
rephrase matters, the condensed-phase structure is 
pressure sensitive, and by implication volume sensitive, 
this is not at all surprising. As SVH point out, a 
consequence is that if one begins with a pair of separated 
isotopomers in congruent state (the separated isoto­
pomers under orthobaric conditions are often assumed 
to be congruent) and compresses one or both to a new 
state, but one which is still congruent with the first, the 
compression (s) cannot be along the normal equilibrium 
path(s). Under congruent compression (or dilation) 
the relative orientation of all molecules in the liquid 
remains unaffected by the compression (dilation) which 
does nothing more than displace g'(r*) to g'(r* + s) (see 
Figure 2b). On the path of most interest to us, the one 
leading to an infinitely dilute solution of one isotopomer 
dissolved in the other, s = (1/3)(AV/V) (vide supra), 
and the infinite dilution activity coefficient becomes 

In (7')° » In (/Jf1Hd In (V2U)/ds) 
(AVI(ZV))(IIm')/(Hm'-Hm) (30) 

In interpreting eq 30 remember the relation between 
g(r), the pair potential function, 4>(r), and the mean 
square potential (Laplacian), (V2U) = 4irn$g(r)(d/dr) 
(r2d(j>ldr)dr. 

Experimentally, for liquid argon In 7°°-36 = -3 X 1O-4 

with a precision of about 25% as deduced from the 
measurements of Bigeleisen and co-workers.28 Calcu­
lations based on eq 30 give -2 X 1O-4. The agreement 
between theory and experiment is more than satisfac­
tory. Calculations along the equilibrium path predict 
positive values for In 7°°>36; that is, they do not even lead 
to the same sign as experiment. The result establishes 
the importance of making a clear distinction between 
the congruent and equilibrium paths. 

2.6. MVIE Considerations: Monatomlc and 
Polyatomic Fluids 

In turning attention to polyatomic molecules it is 
necessary to consider the contributions of both internal 
and external degrees of freedom. In the monatomic 
case the fact that AV/V ^ 0 is purely a consequence 
of isotope effects on overall particle motion (hindered 
translation) in the attractive well defined by the 
intermolecular potential. That same effect exists for 
polyatomic molecules, but superposed is the IE on the 
intrinsic size of the interacting molecules (i.e., one might 
say on the core parameters). This latter effect is 
principally determined by vibrational amplitude effects 
in the intramolecular degrees of freedom.29 Because 
these can be large, the core effect predominates in 
polyatomics and is primary responsible for the observed 
MVIE. Compressions (dilations) for the purpose of 
calculating G" in isotopomer mixtures should still be 
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Figure 2. (a) Reduced radial distribution functions, g(r*), for a Lennard-Jones fluid near its triple point. T* is the reduced 
temperature, p* the reduced particle density, and r* the reduced distance. Both position and shape of g(r*) depend sensitively 
on reduced density and hence pressure: , T* = 0.658, p* = 1.00; —, T* = 0.658, p* = 0.850. From ref 5 (courtesy of American 
Institute of Physics), (b) Reduced radial distribution functions and reduced potential energy function for a Lennard-Jones 
liquid. The dotted upper curve shows g(r*) near the triple point, T* = 0.658, p* = 0.850, while the solid upper curve shows 
that same g(r*) after congruent compression equivalent to a 5% radial displacement. The change is exaggerated in comparison 
with realistic isotope effects. The dot-and-dash lower curve shows the reduced Lennard-Jones potential function describing 
this system. From ref 5 (courtesy of American Institute of Physics). 

carried out congruently, but since the major part of the 
effect is contributed by the internal degrees of freedom 
the distinction is no longer so marked. Even so, SVH 
suggest that the nonequilibrium congruent compression 
will be better approximated using Gruneisen coefficients 
for internal modes taken from solid state rather than 
liquid data. They suggest considerably more entropic 
reorganization is found in liquid than in solid com­
pressions and observed liquid-state values for Ti are 
less likely to approximate congruent conditions. The 
new calculations give mildly improved agreement with 
experiment5 (vide infra). 

2.7. A Cell Calculation for A°x( V) 

In an approach totally independent from the ones 
outlined above, Deiters30 extended van der Waals-type 
equations of state to the treatment of quantum fluids. 
He considered each molecule to be confined to a cell 
with size proportional to the free volume, Vf; thus, Is 

= 8Vf/n. The energy eigenvalues of a particle in a cubic 
box of dimension / are calculated assuming an homo­
geneous background potential and hard sphere colli­
sions with neighbors. The quantum correction is 
applied to a semiempirical equation of state derived by 
him. The extension to mixtures is carried out using eq 
31. 

A = H1A1
+(V7n

+W + Ji2A
+(V1n

+,T) + RT(H1 In X1 + 

n2 In x2) - j^P(V,T,n;a,b,c,m)dV (31) 

The Ai+ denote the molar Helmholtz free energies of 
the pure substances in the perfect gas state at tem­

perature T and very large volume Vm
+. The integrand 

is the equation of state of the mixture, which depends 
on a set of variables (volume, temperature, mole no.) 
and a set of parameters (a, b, c, and m). A one-fluid 
theory is used to determine concentration-dependent 
effective parameters which are thus taken as isotope 
dependent. It is not made clear if this procedure is 
consistent with Born-Oppenheimer considerations. 
Thus, Deiters' method is quite different from the usual 
approach which develops the IE's in terms of the 
contributions of internal vibrations to the excess free 
energy using an isotope-independent PES. 

3. Applications and Experimental Observations 

3.1. Introduction: Mixtures of Light 
Isotopomers, Aqueous Mixtures 

It is only in the past 20 years that serious efforts have 
been made to determine excess properties in mixtures 
of simple isotopomers at temperatures where Boltz-
mann statistics apply. Most earlier measurements were 
reported for isotopic mixtures of very light molecules, 
3He/4He and H2/D2, or for the aqueous system, H2O/ 
HDO/D2O. Even so, the focus in this paper remains on 
non-hydrogen-bonded isotopomers of larger molecules. 
Straightforward application of the ideas developed 
above to hydrogen or helium mixtures is not possible 
because their low masses, and the fact that the very low 
temperatures defining the equilibrium liquids, require 
the use of quantum statistics for proper analysis. For 
that reason we will content ourselves with a brief review 
of the essential features of the experimental observa-
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tions. For mixtures of isotopomers of water the 
complications have a completely different origin. Al­
though a considerable amount of data exists for 
solutions of isotopic waters, the interpretation is 
obscured by the presence of the disproportionation 
equilibrium, H2O + D2O «=± 2 HDO, and other effects 
of hydrogen bonding. Again we will content ourselves 
with only a brief discussion (see immediately below 
and section 3.12). 

Deviation from Raoult's law ideality is considerable 
in H2/D2 and 3He/4He mixtures. Thus, Hoge and 
Arnold31 found an increase of 3 %, as compared with 
the ideal solution, for the vapor pressure of an equimolar 
mixture of H2 + D2; Kerr32 verified an expansion 
(positive excess molar volume) of some tenths of 
cm^mol-1 for the pair T2 + D2; and Sommers et al.33 

reported G" = 3 J-mol-1 for the equimolar mixture 
3He/4He. A negative Vex was found by Simon and 
Bellemans34 for the same system. Knaap et al.3b 

measured Vex for the mixtures H2/D2 and n-H2/p-H2 
and H« for H2/D2, H2/HD, and HD/D2. Bigeleisen18 

has given an analysis of the vapor pressure and molar 
volume data. Measurements in the helium system have 
been reviewed by Oubuter and Yang.36 The first 
comprehensive attempt to interpret excess effects in 
hydrogen and helium isotopomer solutions was made 
by Prigogine et al.16 

Experimental data on excess properties of mixtures 
of water isotopomers have been accumulating for more 
than 50 years. Thus, very early Longsworth37 and 
Swift38 measured the densities of (H2O + D2O) mixtures, 
and Puddington39 and La Mer and Baker40 studied 
vapor pressures and freezing points for the same system. 
A substantial amount of results have since been 
accumulated (see section 3.12). 

3.2. Mixtures of Rare Gas Isotopes (Ar, Kr) and 
Separation Factors in Mixtures of Ar and Kr 

High-precision fractionation data for monatomic 
fluids is of great interest for the testing of the modern 
theory of condensed-phase isotope effects. The analysis 
can focus exclusively on the intermolecular potential; 
complications from librational or internal vibrational 
degrees of freedom do not exist, and theory can be 
applied in its most rigorous form. For these reasons 
Bigeleisen et al.2S measured fractionation factors for 
(36Ar/40Ar) and (80KrZ84Kr) mixtures using cryodistil-
lation. Liquid and vapor phases in one-stage equilib­
rium with each other were withdrawn through fine steel 
capillaries into a high-precision isotope ratio mass 
spectrometer. The a values thus determined were 
compared with values obtained from VPIE measure­
ments on the separated isotopes, again at high precision. 
The difference between the two measurements yields 
values for In (7')" (see eqs 6 and 9). Singh and Van 
Hook5 employed the argon data in developing the 
correlation between the excess free energies of mixtures 
of isotopomers and congruent compression (dilation), 
vide supra. For krypton, however, In (/c//g) and In a 
are much smaller, and highly enriched samples of the 
separated isotopes were not available. Therefore, it is 
not possible to obtain a precise enough value of ln(Y') "& 
to be useful. The relevant experimental and calculated 
results are compared in Table I. It is important to 
recognize that the observation of a negative sign for In 

Table I. Experimental (Obsd) and Theoretical (Calcd) 
Activity Coefficients for Liquid (56Ar + 40Ar) and Liquid 
(80Kr + 84Kr) and Their Mixtures 

system 
36ArZ40Ar 

80KrZ84Kr 
36ArZ40Ar at 

infinite 
diln in Kr 

80KrZ84Kr at 
infinite 
diln in Ar 

T/K 

84 
100 
117.5 
117.5 
117.5 

117.5 

104In 
(fc/f,) 
obsd 

64" 
43 

(26) 

104 In 104 In 
(a) (7')-

obsd obsd 

616 -3 ± Is-* 
41 -2 ± 1 
25 (-1) 
I C 
29« _4d,e 

Qe +4d,e 

" Reference 28a. b Reference 28b.c Reference 5. d 

28c.e Reference 28d. 

104In 
(V)-
calcd 

-2' 

-4e 

+4« 

Reference 

(Y)" for argon was surprising and is most likely 
theoretically significant. At any level of approximation, 
a compression (dilation) calculated for the equilibrium 
path volume change (one continuously defined in terms 
of the equation of state) necessarily leads to the 
prediction of a positive excess free energy for the 
isotopomer solution. However, the observed effect is 
negative. It is of considerable interest, therefore, that 
integration long the theoretically calculated congruent 
path yields negative excess free energies, in good 
agreement with experiment. On the other hand, SVH 
interject a note of caution when they comment "a truly 
small amount of splash in the fractionation experiment 
would carry 40Ar into the vapor lowering the fraction­
ation factor in the observed direction". In other words, 
the experiments are difficult, the observed effects are 
very small, and independent confirmation from addi­
tional experiments is desired, perhaps by other tech­
niques. A further discussion of possible entrainment 
effects has been given by Popowicz, Lu, and Bigeleisen.25 

The Bigeleisen group28 has also determined Z - v 
isotope fractionation factors for Ar-Kr binary mixtures 
at natural abundance [(36ArZ40Ar + Kr) and (80KrZ84Kr 
+ Ar)]. Some results are shown in the bottom section 
of Table I. The 36ArZ40Ar fractionation factor increases 
linearly from In a = 24.9 X 1O-4 in pure liquid argon to 
29.1 X KHatinfinite dilution in Kr (117.5 K). Similarly, 
the 80KrZ84Kr separation factor at 117.5 K decreases 
from 9.8 X ICH in pure krypton to 6.4 X 1(H at infinite 
dilution in argon. The shifts are the same size, although 
of opposite sign, within the precision of the measure­
ments. The data afford a unique opportunity to further 
test the ideas above concerning excess free energy in 
isotopic mixtures because liquid argon and krypton can 
be treated with high accuracy using modified corre­
sponding states theory. At 117.5 K, the experimental 
temperature, the reduced densities of Ar and Kr differ 
by more than 20%, as do the reduced temperatures. 
Even so, the Ar force constant, ((V2LOAi), at X^1 = 0, 
i.e., at infinite dilution in Kr, is equal to ((V2LOKr). at 
*Kr = 0, and indicates the assumption of additive pair 
potentials is adequate for the treatment of the mean 
force constants of the two components in the mixture. 
A consequence is that «AT falls on dilution with Kr, in 
exact compensation to the rise in a^t which occurs in 
dilution with Ar (see Table I). The transfers (XAT = 1) 
=» (*Ar = 0) and (*Kr = 1) =* (*Kr= 0) a r e n o t congruent, 
nor should they be so approximated, since in each case 
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the reduced density and reduced temperature of the 
host lattice change markedly, in the first case from 
(p*Ar,r*Ar) to (p*K»T*Kr), in the Second from (P+Kn^Kr) 
to (p*Ar, T* ̂ ). Bigeleisen and co-workers28 have ration­
alized these results with theoretical calculations based 
on modified corresponding states theory and demon­
strated quantitative agreement with experiment. 

3.3. Comment on Isotopic Mixtures of 
Polyatomic Molecules 

In the material below we turn our attention to 
mixtures of isotopomers of various polyatomic mole­
cules. In such mixtures it is necessary to carefully 
distinguish the contributions of the external modes (the 
hindered translation or intermolecular and the libra-
tional) from those of the internal (vibrational or 
intramolecular) modes. Very often, in fact usually, 
the intramolecular contribution predominates. This 
is because the number of vibrational degrees of freedom 
(and correspondingly GM(intramolecular)) increases 
roughly in proportion to the number of atoms per 
molecule (more precisely with the number of vibrations 
and their derivatives with respect to V), so the relative 
contribution of external modes decreases with molecular 
complexity and molecular weight. Usually, the actual 
decline is even more marked since Gex scales approx­
imately in proportion to ve{^, where ved is an effective 
intermolecular frequency (lattice mode). In first ap­
proximation (using harmonic oscillator theory) vef? <* 
/ir1, where p. is the oscillator reduced mass, so even the 
absolute (as opposed to the relative) contribution from 
the intermolecular modes becomes less and less sig­
nificant as molecular complexity and/or molecular 
weight increases. Thus, for all but the simplest 
polyatomic molecules our attention will be focused 
mainly on isotope-sensitive intramolecular vibrations. 

3.4. Mixtures of Deuteriomethanes (CH4, CD4, 
CH3D, CH2D2, CHD3) 

Rebelo et al.21 have reported measurements of the 
vapor pressure differences between isotopomer mixtures 
(CH4 + CD4) and CH4 and between pure CD4 and CH4, 
all measured simultaneously (together with the total 
vapor pressure of the parent compound, CH4). The 
authors collected data at 29 temperatures between 97 
and 122 K and for six different compositions: X(CD4) 
= 0.15,0.25,0.375,0.5,0.625, and 0.75. Lopes26extended 
the study to include all possible binary combinations 
among intermediate deuteriomethanes. Earlier studies 
on VPIE or LVIFF studies for isotopic methanes have 
been reported by Grigor and Steele,41 Armstrong, 
Brickwedde and Scott,42a Clusius and co-workers,42b and 
Bigeleisen and co-workers.26,43 A schematic diagram 
of the experimental set-up used in the Lisbon apparatus 
is shown in Figure 3. In these investigations a double 
differential technique enabled accurate and direct 
reading of excess pressures as small as «2 Pa. To 
achieve such precision it is necessary to control tem­
perature to better than the nearest mK and temperature 
differences from one sample to the other to better than 
0.1 mK. For that purpose the samples are placed in a 
well-thermostated large copper block. Pressures are 
measured by quartz spiral and pressure differences by 
differential capacitance manometry. 

1 ^MiXL-CH 4 

1^CH4 

Figure 3. Schematic illustration of the double differential 
technique as used by Rebelo et al.21 to determine excess 
pressures of isotopomer mixtures, the VPIE's of the separated 
isotopomers, and the vapor pressure of the parent compound. 
The three sample cells are contained in a common well 
thermostated copper block. Temperature differences between 
them are less than 0.1 mK. The example shows the config­
uration for measuring CH4/CD4 isotope effects. Pressure 
differences are determined between CH4 and CD4 with the 
right-hand transducer, between CH4 and mixture with the 
left-hand one (these are differential capacitance monometers), 
and the total pressure is measured with the central transducer 
(a quartz spiral monometer). Gas handling lines and other 
necessaries are not diagrammed. 

It is straightforward exercise to obtain excess free 
energies from the observed excess pressures. Two 
typical excess Gibbs free energy-concentration iso­
therms are shown in Figure 4. The curves exhibit very 
small positive deviations from Raoult's law and are 
approximately symmetric. The Gex values are mainly 
a consequence of nonideality in the liquid-phase 
solutions which represents 93 % of the whole effect. 
The balance is contributed from the gas imperfection 
term. Within experimental error, the data for all 
isotopomer pairs show simple curves which are sym­
metry centered at the equimolar composition and can 
be nicely represented with one-term Redlich-Kister 
fits, Gex = xx'ne*™. Results are given in Table II which 
reports Gex at x = x' = 0.5 (i.e., pex'~ = 4Gex(0.5)) and 
excess enthalpies calculated from Gex using the Van't 
Hoff relation. Popowicz, Lu, and Bigeleisen26 compared 
LVIFF and VPIE data for CHD3/CH4 and CD3F/CH3F 
mixtures. For CHD3/CH4 they found T2ItIa calculated 
from LVIFF about 3% larger than that from VPIE 
measurements. That value is much higher than the 
one found in Table II. 

The data in Table II show small but significant 
deviations from simple additivity (e.g., Gex (CH4/CD4) 
= 4-Gex(CH4/CH3D), etc.). This is as expected. Since 
deviations from the law of the geometric mean for the 
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0.8 

Figure 4. Plots of G" obtained from measured excess 
pressures of CH4/CD4 mixturs. The abscissa is the liquid 
phase mole fraction of CD4, xD: • = 100 K; D = 120 K. The 
curves are least-squares fits to a one-term Redlich-Kister 
relation, Gei = XD*HM"'"-

Table II. Excess Gibbs Free Energies and Excess 
Enthalpies for Mixtures of Methane Isotopomer Pairs 
at Equimolar Concentration in the Liquid State. A 
Conservative Estimate of the Experimental Precision 
Yields ±0.02 Jmol"1 and ±0.2 JmOl1 for G" and fl*. 
Respectively. Parenthesized Entries Represent 
Theoretically Calculated Values (Eq 26) Based on 
Vibrational Analysis Using the Method of Bigeleisen et 
al/ 

isotopomer 
pair 

CH4 + CD4 

CH4 + CHD3 
CH4 + CH2D2 

CH4 + CH3D 
CH3D + CD4 
CH2D2 + CD4 

CHD3 + CD4 

G" (100 K)/ 
J-moH 

0.57 (0.58) 
0.32 (0.45) 
0.22 (0.31) 
0.13 (0.16) 
0.40 (0.44) 
0.30 (0.29) 
0.18 (0.14) 

G« (120 K)/ 
J-mol"1 

0.42 (0.32) (0.44)» 
0.23 (0.25) 
0.14 (0.16) 
0.09 (0.08) 
0.29 (0.24) 
0.18 (0.16) 
0.10 (0.08) 

' Reference 43. * Following Deiters.30 

(H") 
(100-120 K)/ 

J-mol"1 

1.3 (1.9) 
0.82 (1.43) 
0.62 (0.95) 
0.36 (0.48) 
0.95 (1.43) 
0.89 (0.95) 
0.53 (0.48) 

vapor pressures (e.g., 4 In (PCH3D) = In (PCD4) + 3 In 
(-PcH4), etc.), although significant, are small, it is not 
surprising that in Table II one finds only small (but 
still significant) deviations from simple relationships 
such as Gex(CH4/CD4) = 4Gex(CH4/CH3D), etc. Big­
eleisen et al.43 have given a thorough treatment of the 
VPIE for the separated isotopes for both the solid and 
liquid phases. Their analysis included elaborate cal­
culations which reconciled the available spectroscopic 
and thermodynamic data and demonstrated hindered 
rotation in both solid and liquid phases, as well as 
significant coupling between internal and external 
degrees of freedom and significant lattice mode an-
harmonicity. 

Rebelo et al.21 examined three different theoretical 
models when interpreting the experimental results 
reported in Table II. The best description was obtained 
using the statistical theory of condensed phase isotope 
effects, vide supra, where ^"'"(CH4ZCD4) = RT In 7°, 
and is calculated with eq 26. The authors took AV/V 
for CH4/CD4 from experiment4142 and approximated it 
for the lower isotopomers using the law of the geometric 
mean. Consistency between VPIE calculations and the 
present isotope effects in isotopomer mixtures was 
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assured by using the harmonic force field obtained by 
Bigeleisen et al.,43 and they employed an internal 
Gruneisen coefficient to use with the CH stretching 
modes, -[AvIv)I(AVIV) = -3.1 X 10-3, which was 
obtained from the observed frequency shift and volume 
change on fusion. The external hindered translation 
Gruneisen constant was calculated from the thermo­
dynamic identity Tt, = aV/(CvP), where a is the 
coefficient of thermal expansion, and ft is the com­
pressibility. Plausible arguments were used to justify 
setting rrot and r^nd equal to zero.44 The calculated 
results are compared with experiment in Table II. They 
demonstrate good agreement between the statistical 
theory of condensed phase isotope effects, the exper­
imental data, and the spectroscopic literature. 

The statistical theory of isotopomer mixtures clearly 
predicts that Gex = 0 at the molar volume crossover 
point, AV/V = 0 (see eq 26, for example). Kooner and 
Van Hook45 have reviewed molar volume isotope effect 
(MVIE) data. For nonpolar molecules H/D MVIE's 
are universally normal (Vn > Vn) at low temperature, 
but MVIE decreases markedly with temperature and 
generally crosses between T/Tc = 0.8 and 0.9, becoming 
inverse (VD > VH), and large, as the critical point is 
approached. For such liquids, i.e., those nearing the 
high temperature-low density region just below the 
critical temperature, Kooner and Van Hook45 predicted 
negative Gruneisen coefficients in harmony with the 
estimated values of Rebelo et al.21 For the CH4/CD4 
system AV/V = 0 at T/Tc = 0.895, Tcr088 = 170 ± 2 K,41 

while linear extrapolation of Ge%/T vs 1/ T from Table 
II gives Tcross = 171 ± 4 K, in excellent agreement. The 
other two models considered by Rebelo et al.21 gave 
much less satisfactory results. They included a one-
fluid van der Waals theory (VDW-I) developed by 
Leland, Rowlinson, and Sather46 and a WCA-based 
perturbation theory reported by Kohler et al.13 Both 
approaches calculate quantum corrections to the in-
termolecular part of the potential function (the external 
degrees of freedom) and do not explicitly include 
contributions from internal modes. Thus, agreement 
between calculation and experiment for Gex and Hex in 
methane isotopomer mixtures is not good because, for 
methane, internal modes make important contributions 
to the partition function. Nonetheless, these theories 
do have the advantage of allowing an estimate of the 
lattice mode contribution to the excess molar volume 
of isotopomer mixtures. The authors calculated excess 
volumes for the equimolar mixture, VexcH4/CD4 = (15 ± 
2) X 1(H at 100 K and (25 ± 4) X 1(H cm^mol"1 at 120 
K. However, as yet, there are no experiments to test 
this prediction. 

3.5. HCI/DCI Mixtures 

For hydrogen chloride isotopomer solutions two sets 
of independent data are available. Lewis, Staveley, and 
Lobo47 reported the excess Gibbs free energy of an 
approximately equimolar mixture between 195-226 K, 
and Lopes26 presents results for seven different com­
positions at two lower temperatures (Table III). It is 
useful to take this opportunity to re-emphasize the 
extremely small size of the effects we are discussing in 
all of these isotopomer solutions. Thus in the words of 
Lewis, Staveley, and Lobo,47"... the observed values of 
AP at 223 and 200 K both correspond to a value... of 
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Table III. Equimolar Excess Gibbs Free Energies and 
Excess Enthalpies for Liquid (HCl + DCl). The Values 
in Parentheses Represent Theoretical Estimates Using 
Eq 26 

ref T/K GeVJ-moF Ha(T)iJ-moH 
47 195-226 0.25 ± 0.05 
26 170 0.66 ± 0.02 (0.64) 2.1 ± 0.3 (1.3) 
26 200 0.41 ± 0.02 (0.53) 

0.25 J-moH. This is about three orders of magnitude 
less than the Gex values found for liquefied gas mixtures 
of nonisotopic components. Thus for the argon-
krypton system, which by ordinary standards is only 
slightly imperfect, Gex for the equimolar mixture at 115.8 
K is 85 J-mol"1". The work of Lopes26 (Table III) is the 
more extensive. Gex(x) is symmetrical about x = 0.5. 
The molar volume isotope effect has been measured by 
the Staveley group,48 but within experimental error 
0=0.3%) it is impossible to distinguish the results for 
the two isotopomers. Excess free energies calculated 
from eq 26 are in agreement with experiment. The 
observation of a positive azeotrope around T = 223 K 
constitutes one interesting feature of the HC1/DC1 
mixture. At 223.35 K the vapor pressure of HCl is 
identical to that of DCl47-48 (this is an example of a 
vapor pressure crossover, actually quite a common 
effect2). At the crossover temperature a positive 
deviation from Raoult's law will lead to a maximum in 
the pressure-composition diagram, as observed. Vice 
versa, a negative deviation will lead to a minimum in 
the diagram. As far as we know, this is the first "simple" 
isotopic mixture where azeotropic behavior has been 
observed. 

3.6. H2S/D2S Mixtures 

Lopes26 measured excess pressures for five different 
compositions of (H2S + D2S) mixtures at two temper­
atures. Again, the data were symmetrical about x = 
0.5 where Gex = -0.92 ± 0.03 J/mol at 190 K and 
-0.69 ± 0.06 J/mol at 230 K. MVIE data have been 
reported by Staveley et al.49 The Gex curves are 
symmetrical, and the system displays a negative azeo­
trope. The vapor pressure crossover occurs249 at about 
224 K. Notice that Gex is negative even though the 
MVIE is normal (Lopes26 claims the MVIE crossover 
temperature is not at T = 271 K as earlier reported,49 

but is found at 335 ± 10 K). Equation 26 correctly 
predicts the signs of both Gex and He* and indicates Gex 

« 0 at 346 ± 10 K. 

3.7. Solutions of Ammonia Isotopomers 

The Lisbon group has also obtained results for eight 
mixtures of protio and deuterio ammonias.22,26 Due to 
fast chemical exchange, intermediate isotopomers 
(NH2D and NHD2) are produced. For atom fraction 
flu, no = n(D)/(n(D) + n(K)) = 0.5, Gex = -5.9 ± 0.3 
J/mol at 230 K and -5.0 ± 0.2 J/mol at 242 K. AV/V 
is available from the Staveley group,60 and Gruneisen 
coefficients were estimated as described for methane. 
The calculated value (eq 26) is -6.5 J/mol which 
compares favorably with experiment. It is remarkable 
that solutions of ammonia isotopomers show a marked 
negative deviation from ideality. This property is 
shared with other highly complexed liquids (hydrogen 

sulfides and waters) and has been discussed by Dutta-
Choudhury and Van Hook.51 

3.8. Solutions of Protlo-/Deuteriobenzenes and 
Cyclohexanes 

Jakli, Tzias, and Van Hook9 made high-precision 
measurements of VPIE's for the separated liquids CeHe 
and CeDe and CeHi2 and CeDi2 and also determined 
excess pressures for solution pairs CeHeZCeHi2 vs CeD6/ 
C6H12 and CeH6ZCeHi2 vs CeHeZCeD12 and isotopomer 
pairs C6H6ZC6D6 and C6Hi2ZC6Di2. Jancso and Van 
Hook919 and Singh and Van Hook5 contributed to the 
interpretation of these results. Additionally, LaI and 
Swinton52 have reported calorimetric measurements of 
excess enthalpies for the isotopomer mixtures, and 
Dutta-Choudhury, Dessauges, and Van Hook53 mea­
sured excess volumes for the mixtures C6H6ZCeHi2 and 
C6D6ZC6Hi2, for the isotopomer pair C6H6ZC6De, and 
determined the effect of trace water on Ve* for C6H6Z 
C6D6 isotopomer solutions. A sampling of the excess 
free energy results derived from the vapor pressure 
measurements is given in Table IV. 

Section A of Table IV shows that the measurements 
for the parent mixture are in excellent agreement with 
the best previous data.5455 In calculating the IE on the 
excess free energies of the "nonisotopomer" solution 
pairs, C6H6ZC6Hi2 vs C6D6ZC6Hi2 and C6H6ZC6Hi2 vs 
C6H6ZC6Di2, the authors were careful to define APX as 
"that pressure over and above the one to be expected 
where there is no isotope effect on the activity coef­
ficients (7H = TD ^ 1), but where due account is taken 
of the isotope effects on the correction terms due to 
molar volume and gas imperfection." Figure 5a shows 
relative excess pressures, A P V P C 6 H 6 for C6H6ZCeHi2 vs 
C6D6ZC6Hi2 solutions. The effects are small; they vary 
between 1 X 10~3 and 9 X 10~3 units. It is a sampling 
of the excess free energy differences derived from such 
APX data which is used to calculate Gex as found in 
Table IVb. Comparing entries in Table IVa and b, we 
see the isotope effect, AGexZGex = RT (In YH - In yn)/RT 
(In 7H) is about -9 X 10~3 for cyclohexane (protio vs 
deuterio dissolved in benzene, at T = 313 K) and about 
double that for benzene (-2.1 X 10-2 for C6H6 vs C6D6 

dissolved in cyclohexane), both at Xbenzene = 0.5. Figure 
5b shows excess pressures for the isotopomer solutions 
C6H6ZCeHi2ZCeDi2. Here the A P V P values are nearly 
1 order of magnitude smaller than for the mixed 
benzene(hZd)Zcyclohexane(hZd) solutions (Table IVd). 

Jancso and Van Hook9 (JVH) have interpreted the 
data according to the ideas developed in the earlier 
part of this review. Their analysis considers contri­
butions from the internal and external modes and is 
reviewed in Table V. The concentration dependence 
of the excess properties was assumed to be regular, so 
Gex = XHXDM6*'" or Mex,~ = 4Gex

(equimoiar). Using literature 
values for the MVIE of benzene and cyclohexane,2957'58 

taking the Gruneisen parameter for external modes, 
T6St = 1, and the pressure dependence of the CH 
stretching vibrations as 1.5 cm_1/kbar, the entries in 
Table V were calculated using eqs 25 and 26. JVH 
found that almost all Gex is contributed by the internal 
degrees of freedom and obtained satisfactory agreement 
between theory and experiment. Later Singh and Van 
Hook5 improved slightly on the JVH analysis by electing 
to evaluate Gex from the compressive work along a 
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Table IV. Excess Free Energies in Solutions of 
Benzene and Cyclohexane and Their Isotopomers, and 
in Solutions of Benzene and Cyclohexane Isotopomers 

A. Excess Free Energies for C6H6ZC6Hi2 Solutions 
Derived from Vapor Pressure Measurements (J-moH) 

X(C6Hi2) 
TIK 0.15 0.30 0.50 0.70 0.85 ref 

313.15 

343.15 

161.5 
160.4 

141 
136 

257.8 
256.8 

224 
219 

298.1 
297.2 

255 
254 

246.8 
245.6 

209 
210 

149.6 
148.4 

125 
126 

9 
54 

9 
55 

B. Isotope Effects on Excess Free Energies for Benzene/ 
Cyclohexane Solutions, AG" (J-moH)" 

X(C6Hw) 
TIK 

298.15 

313.15 

case 

I 
II 

I 
II 

0.15 

-1.0 
-0.7 

-1.1 
-0.3 

0.30 

-2.1 
-4.2 

-2.2 
-3.4 

0.50 

-2.6 
-7.5 

-2.7 
-6.4 

0.70 

-1.9 
-6.0 

-1.9 
-5.2 

0.85 

-0.8 
-2.6 

-0.8 
-2.2 

rel 

9 
9 

9 
9 

C. Isotope Effects on Excess Enthalpies for Benzene/ 
Cyclohexane Solutions, A/f" (J-mor-1)1' 

X(C8Hi2) 
TIK case 0.15 0.30 0.50 0.70 0.85 ref 

298.15 I 
II 
m 

-9 -23 -32 
-17 ±4 

-24 -11 
9 
9 

56 

D. Isotope Effects on Excess Functions for Equimolar 
C6H6ZC6D6 and C6Hi2ZC6Di2 Isotopomer Solutions 

TIK source 283.15 298.15 323.15 353.15 ref 
Gi(C6H6/ 

C6D6) 
0"(C6Hi2/ 

C6Di2) 
H"(C6H6/ 

C6D6) 
^"(C6Hi2/ 

C6Di2) 

excess p 

excess p 

excess p 
calorimeter 
excessp 
calorimeter 

0.61 

1.18 

0.58 

1.08 

0.54 

0.91 

1.1 ± 0.2 
0.7 ± 0.2 
3.1 ± 0.2 
2.2 ± 0.3 

0.48 

0.71 

9 

9 

9 
52 
9 

52 

o Case I compares C6Hi2ZC6H6 and C6Di2ZC6H6 solutions; case 
II compares C6Hi2ZC6H6 and C6Hi2ZC6D6 solutions. In either 
instance AG" = G"H - G"D. * The entries are derived from the 
vapor pressure measurements above, except for those labeled 
Case III which are calorimetric data from the literature 

congruent path (modeled by the crystal properties) 
instead of the equilibrium one chosen by JVH. A 
marginal improvement was obtained. 

It is interesting to compare the calculated and 
observed results in Table V with ones calculated by the 
Prigogine-Bingen-Bellemans16 (PBB) approach. The 
PBB calculation gives nearly the same value as that 
calculated above from the external frequencies alone 
and by itself is obviously inadequate. This is because 
the compressibility is principally determined by the 
overall motions of the molecule in the intermolecular 
potential. The PBB approach accounts only for this 
external contribution; it fails to consider the much more 
important internal frequency contribution. The pre­
vious success of PBB for liquid hydrogen solutions is 
understandable, since, for these molecules, the single 
internal mode makes a relatively small contribution to 
the isotope effect.19 Methane mixtures, treated else­
where in this review, exemplify the intermediate case 
where the contributions of the internal and external 
modes are more nearly comensurate. Extension of the 
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Figure 5. (a) Isotope effects on excess pressures of C6He/ 
C6HI2ZZCSD6ZC6HI2 solutions, 1,2,3, and 4 refer to Xcycioh«xaoe 
- 0.25, 0.50, 0.75, and 0.90, respectively. The points are 
experimental, and the lines are fits to the thermodynamic 
analysis. From ref 9a (courtesy of American Institute of 
Physics), (b) Excess pressures of the equimolar solutions 
C6H6ZC6D6 (lower line) and C6Hi2ZC6Di2, (upper line). The 
points are experimental, and the lines are least-squares fits. 
From ref 9a (courtesy of American Institute of Physics). 

Table V. Calculated and Observed Partial Molar 
Excess Free Energies and Enthalpies of Solutions at 
Infinite Dilution for Solutions of Benzene Isotopomers 
C6BVC6D6 (J-mol1)* 

contribns M"-" **"•" #"•" H"*" 
TIK AV/V to /."•" (calcd) (obsd) (calcd) (obsd) 
298 0.0027 internal 

external 
total 
SVH4 

PBB' 

internal 
external 
total 
PBB 

1.53 
0.21 
1.74 
1.9 
0.33 

2.3 ± 0.2 7.0 4.4 ± 2 

353 0.0021 0.78 
0.12 
0.90 1.9 ± 0.2 
0.14 

" Jakli, Tzias, and Van Hook, ref 9; Jancso and Van Hook, ref 
9. * Singh and Van Hook, ref 5.c Prigogine, Bingen, and Belle-
mans, ref 16. 

analysis to cyclohexane isotopomer solutions is straight­
forward. The cyclohexane/benzene ratio of MVIE's is 
1.2,67'58 the ratio of compressibilities is 1.2, and the ratio 
of the numbers of contributing frequencies is 2. 
Therefore, assuming that the pressure dependences, 
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dv/dP, are about the same, one predicts a ratio of excess 
free energies for isotopomer solutions a little bit less 
than 2. The observed ratio is 1.8 and once again 
demonstrates consistency between theory and exper­
iment. 

Jancso and Van Hook9 also discussed EE's in benzene/ 
cyclohexane mixtures. For CgIVCeHi2 vs CeD6ZCgHi2 
the excess partial molar volume at infinite dilution of 
C6H6UiC6Hi2, V^-(C6H8 in C6Hi2)" is 11.5 times larger 
than the molar volume isotope effect, (V0CC6H6) - V°-
(C6D6)). If the volume dependence of the internal 
frequencies is the same in benzene-cyclohexane solu­
tions as it is in benzene-benzene solutions (and there 
should be no very large differences as there are no 
specific interactions) then the ratio of excess free 
energies should also equal 11.5. The experimental value 
is 12 ± 3. The agreement is not so good for deuteration 
on cyclohexane. 

The Tennessee group has also investigated excess 
volumes for benzene(H/D)/cyclohexane(H/D) and ben-
zene(H/D) isotopomer solutions.53 They report the 
excess volume of equimolar C6D6ZC6Hi2 solutions to be 
1 % more positive than C6H6ZC6Hi2 solutions at 298 K 
and 2% higher at 318 K. The excess volume in 
equimolar C6H6ZC6Hi2 solutions is 0.6538 cm3«moH at 
298 K, slightly higher at 318 K, so V"Z V =* 6.38 X 1(K 
The corresponding value at 298 K for transfer to the 
infinitely dilute solution in C6Hi2 is V^-(C6H6)ZV = 
2.34 x 10~2. This is about 1 order of magnitude larger 
than the MVEE for the separated isotopomers, AVZV 
= 2.7 X 10"3. The equimolar excess volume isotope 
effect, AV" = (V"H - Vh)), is (-7.2 ± 1.3) X 1(H 
cm3«moH. The curve describing the concentration 
dependence of the effect is symmetric and within the 
precision of the measurement can be described by a 
one term Redlich-Kister fit of the form AV" = x(l -
X)AV"-", AV"--29e - (-0.029 ± 0.005) and AV"--3is -
(-0.048 ± 8) cmtaoH. Thus, AV^-(C6H61C6D6)ZV • 
-2.5 X 1(H at 298 K and -4.1 X 1(H at 318 K, about 1 
order of magnitude smaller and opposite in sign to the 
separated isotopomer MVIE and 2 orders of magnitude 
smaller than the limiting partial molar excess volume 
itself. 

The concentration dependence of V" for C6IWC6D6 
isotopomer solutions as shown in Figure 6 is surprisingly 

• complicated. The effects are very small, at most V"Z 
V = -7 X 10-6, about 2 orders of magnitude smaller 
than MVTE for the separated isotopomers. The V" 
concentration curve displays both a maximum and a 
minimum, (the second small maximum sketched in 
Figure 6 near x (C6H6) = 0.05 is an artifact of the fitting 
process and is not statistically significant).53 At nearly 
equimolar concentrations there is reasonable agreement 
for V" from two laboratories.52,53 

The complicated concentration dependence shown 
in Figure 6 was not expected for such simple, and very 
nearly ideal, solutions. In their interpretation the 
authors53 remind us that the MVTE for separated 
isotopomers is well understood in terms of the isotope-
independent PES describing the motions of these 
molecules. The dominant contribution to MVIE is 
made by the CH (CD) stretching vibrations, which are 
described with a set of isotope-independent force 
constants yielding a marked isotope dependence on the 
mean square amplitudes of vibration.29 The external 
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Figure 6. Excess volumes of C6H6ZC6Dg solutions: (-,x,+) 
experimental points; solid curve = least-squares fit; (a) 
contribution of steric effect, random approximation; (b) steric 
effect, quasichemical approximation; (c) contribution of effect 
II, see text; (d) calculated total effect From ref 53 (courtesy 
of American Chemical Society). 

modes only make a small contribution to the partition 
function (and hence to MVEE). The analysis is con­
siderably simplified by the fact that the center of mass 
and the center of interaction for C6H6 and C6D6 coincide. 

For these isotopomer solutions the simple idea that 
any partial molar solute property (at infinite dilution), 
including the partial molar volume, may be defined in 
terms of that property for the host lattice rationalizes 
the most prominent features of the Figure 6. Thus, 
consider the case of an infinitely dilute solution of C6D6 
in C6H6. If the partial molar volume of the guest 
approaches that of the host (C6H6 in this example), 
then the volume of the corresponding solution exceeds 
that of the ideal solution. V^(C6H6 -» 1) is positive. 
Just as clearly at the other extreme, C6H6 at high 
dilution in C6D6, the deviation from ideality must be 
negative. Obviously, solution properties do not change 
discontinuously, so a plot of V" vs concentration must 
show a maximum and a minimum, respectively, before 
joining at some intermediate concentration. More 
quantitatively the authors53 find that this, the steric 
effect, is overestimated in the random phase approx­
imation (curve a, Figure 6), more reasonably estimated 
using the quasichemical approximation (curve b, Figure 
6). Superposed on the steric contribution to V" is a 
secondary effect from the intermolecular part of the 
potential This was estimated two ways, either following 
Hildebrand and Scottf» (^»^(0.5) - -2 X 1(H cm3-moH) 
or, in good agreement, from the compressibility EE 
reported by Matsuo and Van Hook61 ( V^ZXHXD «(V8H 
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- V°D)(1 - KHV°H/KDV°D) = -1 X 10-3 cm3-moF. By 
summing Vex(steric) and Vex,n curve d in Figure 6 was 
obtained in remarkably good agreement with the 
experiment. In a related set of measurements Matsuo 
and Van Hook61 attempted to determine excess com­
pressibilities in C6H6ZC6D6 mixtures but without suc­
cess. Apparently the effects are too small. 

It is clear that the measurements reported in this 
section corroborate the more important assumptions 
made during the development of the theory. That early 
approach expressed excess free energies for isotopomer 
mixtures in terms of the (congruent) compressive work 
across the separated isotopomer MVIE, AV = VH° -

VD° and neglected any contribution from excess volume 
effects. In this section we found AV/ Vex for C6H6/C6D6 
solutions to be on the order of 1(H, which is certainly 
in line with the earlier assumption. We conclude that 
Vex contributions to the excess free energies in isoto­
pomer mixtures are of higher order and can be safely 
neglected. For the now thoroughly studied benzene/ 
cyclohexane solutions, theory and observation are in 
reasonably good agreement. Further improvement can 
be expected as calculated or observed values for 
Gruneisen coefficients characterizing bending and 
skeletal modes become available, but these are expected 
to make markedly smaller contributions to Gex for 
isotopomer solutions than do the stretching modes.44 

3.9. Excess Free Energies and Demixing in H/D 
Polymer/Polymer Isotopomer Solutions 

Over the past 5 years or so, Bates and Wignall62 and 
Bates and Wilthuis,63 and their co-workers have re­
ported observations of phase separation in isotopomer 
mixtures of h/d polymers including polystyrenes, po-
lybutadienes, and polyethylene/polypropylene mix­
tures. Light- or neutron-scattering techniques were 
employed. The isotopomer solutions show phase sep­
aration of the UCST (upper consolute solution tem­
perature) type; see Figure 7. The authors extracted a 
Flory-Huggins interaction parameter from the scat­
tering plots and reexpressed it in terms of the excess 
free energy for the isotopomer mixture. 

For the simplest polymer solutions the free energy of 
mixing can be expressed using a one-term Flory-
Huggins equation of state64 

AGM/ V = RT(^1 In ^1/ V1 + 02 In 02/ V2) + 0 ^ 2 x (32) 

where 

Gex/V= 0!02X (33) 

As the Flory-Huggins interaction parameter, x, in­
creases to its critical limit, x - 2RTC, the solution 
demixes at an upper critical solution temperature, Tc 
(Figure 7a). The 0's in eqs 32 and 33 are volume 
fractions, but for solutions of isotopomers of equal 
polymerization, mole fractions, x\, would serve equally 
well. In actual fact real demixing curves such as the 
ones sketched in Figure 7 cannot be accurately repre­
sented with ideas deduced from mean-field classical 
approaches such as Flory-Huggins theory or other 
analogues to regular solution theory. Modern non-
classical ideas (also known as scaling approaches) 
predict certain logarithmic singularities at the critical 
point which can be described using a set of universal 
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Figure 7. (a) Schematic drawing of the free energy of mixing 
(upper part) at a temperature T < Tc. Points on the 
coexistence (binodal) and spinodal curves are obtained from 
the free energy curve as shown. To examine a phase transition 
one can proceed from the homogeneous region (T > Tc, for 
example) and drop the temperature (or pressure, see below) 
through the metastable region between binodal and spinodal 
and thence into the absolutely unstable region (below the 
spinodal in this diagram), (b) Schematic drawing showing 
various types of temperature/liquid-liquid composition dia­
grams. 
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exponents.65 Thus, for example, the near-critical co­
existence curve is properly expressed 

(*' ') = A(I - TITf + higher order terms = 
• \ 
V\N 

Hi ; 
• If 

/ / • ' 

A r + HOT (34) 

In eq 34, 4>' and 4>", or x' and x", are the concentrations 
of the coexisting phases, Tc the critical temperature, 
and t = (1 - Tl Tc). A is a nonuniversal width parameter, 
and /8 is the universal scaling exponent known theo­
retically and experimentally to be 0.325 ± 0.003. In 
the limit of arbitrary closeness to (T0, 0C or xc), mean-
field (classical) representations lead to an incorrect 
value for /3, /3mean-neid = 1/2. That erroneous value results 
because those theories—including Flory-Huggins 
theory—do not properly treat the long-range concen­
tration fluctuations found near the critical point. It 
follows that blind application of mean-field theory near 
Tc is inappropriate. (Many authors have used the term 
"nonclassical" to describe scaling theories applied to 
solutions at or near critical conditions, i.e., where mean-
field treatments can be misleading. In this context the 
meanings of the terms "classical" and "nonclassical" 
are quite different from those used earlier in the 
development of the theory of isotope effects which have 
to do with the use of classically us quantum mechanically 
calculated partition functions.) At some distance from 
the critical point, however, the system returns to the 
mean-field domain, and it is again useful to employ 
analytic (classical or mean-field) representations of the 
free energy. These considerations are important. Only 
well into the mean-field region is it completely valid to 
use arguments based on the shape of the phase diagram 
in order to arrive at conclusions concerning the tem­
perature, concentration, pressure, and isotope depen­
dence of the free energy. Singh and Van Hook,66 in 
agreement with other workers,67 argue that the non-
classical range extends only to t = 10~3, some argue not 
even that far, but others argue much further. At Tc «= 
300 K, t« 10-3 amounts to (Tc - T) «= 0.3 K, or less. The 
nonclassical theory makes no statement expressing Tc, 
0c xc, etc. in terms of the parameters describing PES, 
but limits itself strictly to expressing relative effects 
using expansions about the origin (TC,0C or Tc,xc), using 
reduced parameters like t = (Tc - T)/T0. In contrast, 
mean-field theories permit the development of specific 
relations which express Tc, xc, etc. in terms of the 
parameters used to describe the free energy function; 
these parameters, in turn, can be related to the ones 
defining the potential energy surface. It is tempting, 
therefore, to assume that since mean-field theories are 
useful over almost the entire phase diagram (except for 
that area quite close to the critical point), judicious 
extrapolation into the region of critical demixing will 
not involve very great error and should prove infor­
mative. It is in this context that we, along with 
numerous others,68 have elected to employ classical 
theory to describe polymer demixing thermodynamics, 
albeit approximately. 

Although not predicted by the simple theory, im-
miscibility curves can take many shapes. Figure 7 
diagrams systems with UCST's, LCST's (lower critical 
solution temperatures), and both UCST's and LCST's. 
In real solutions it is sometimes possible to shift the 
system from one class to another by a judicious choice 
of conditions (pressure, temperature, molecular weight, 

±-
zs 

O 

<u 

Q . 

CD 

Weight fraction 
Figure 8. Schematic drawing showing the effect of isotope 
substitution, molecular weight, and pressure on phase dia­
grams of type E, Figure 7b. By lowering the pressure from 
dashed through solid to dotted line, raising the molecular 
weight (same order) or increasing the D/H ratio one moves 
in the direction of decreasing the region of miscibility. At 
low enough pressure, high enough molecular weight or D 
concentration, the two regions touch and the system collapses 
into the "hour-glass" configuration at its hypercritical or 
pseudohypercritical point. Actual polymer-polymer and 
polymer-solvent diagrams are often distorted from the 
idealized shapes shown in Figures 7 and 8. 

isotope label, trace impurity, etc.). For example, in the 
acetone-polystyrene system,69 vide infra, by changing 
molecular weight at constant pressure, by changing 
pressure at constant molecular weight, or by changing 
isotopic label either in the solvent or in the polymer, 
one can progressively move the coexistence loci from 
an UCST/LCST solution displaying a wide miscibility 
gap (dashed lines in Figure 8), through diagrams 
showing narrower and narrower miscibility gaps (the 
solid and dotted lines in the figure), to the point where 
the two branches eventually merge at an hypercritical 
point. At this point the diagram separates from an 
UCST/LCST configuration to an hourglass configu­
ration (the left and right outermost lines in the figure). 
This is loose terminology. For systems of more than 
two components thermodynamics instructs us that a 
truly multidimensional hypercritical point is prohibited. 
Nonetheless, some kind of an UCST/LCST — "hour­
glass" transition does exist; the upper and lower 
branches merge, and the shape of that transition is 
reminiscent of a binary hypercritical or bicritical point. 

We now return to the isotopomer demixing data of 
Bates and co-workers.62,63 The thermodynamics of the 
demixing of isotopomer solutions of polymers was 
originally considered by Buckingham and Hentschel,70 

but their theory was developed at the PBB16 level and 
has proved to be inadequate, eventhough they are to 
be credited with the first prediction of demixing in such 
solutions. Following Singh and Van Hook20 the excess 
free energy of the solution of polymer isotopomers 1 
and 2 can be written 

Aes = 0102(Arr,-r,./2)(AV/V)(uH ~ «D> <35) 

Here Af is the number of monomer units per molecule, 
r, the number of H/D substituted bonds per monomer, 
T, the Gruneisen coefficient for the effective frequency 
(as above taken as the CH(CD) stretch), AV/V the 



Isotope Effects in Solution Thermodynamics Chemical Reviews, 1993, Vol. 93, No. 8 2661 

Table VI. Excess Free Energies in Three Protio/Deuterio Polymer Mixtures 

material 

polybutadiene 
polystyrene 
poly(ethylene-propylene) 
a From xKRT) = In (7") = 

T/K 

296 
300 
370 

; 2/JVc. 

103AWV 

4 ± 1 
2 ±0.5 

exptref 

9±2 6 2 

4 ± 2 6 2 

9 ± 2C?)63'0 

104 In T~ 

calcd (SVH)20 calcd (BW)63 

11 ± 4 14 
6 ± 2 10 

calcd (PBB)16 

4 ± 1 

0 HOURS 48 HOURS 

80 HOURS 240 HOUPtS 
Figure 9. Light-scattering patterns photographed at various times following a temperature quench from 75 to 25 0C in an 
isotopomer solution of protio- and deuterio-l,4-polybutadiene. (From ref 63a. Courtesy of F. S. Bates and American Institute 
of Physics.) 

MVIE, and u, = hcvJkT. For polymers the relative 
contribution of external lattice modes is negligible, and 
their effect is not included in eq 35. The conditions for 
phase separation are obtained by differentiating the 
total free energy with respect to concentration and 
setting the second and third derivatives to zero. This 
gives 0i = 02 = 0.5 and 

(NTf1ZZ)(AV/ V)uHd - HH/HD) = 2 (36) 

The nfs are reduced masses for the CH(CD) oscillators. 
The excess free energy per H/D substituted bond is 
small, just as small, for example, as the tiny effects 
discussed in the section on benzene and cyclohexane 
isotopomer solutions above. However, the effects are 
cumulative, and as the total number of substituted 
bonds, Nri, increases, the excess free energy becomes 
large enough to cause phase separation. For poly­
butadiene r,: = 6 and A V/V = 4 X 10"3. Taking T1 = 
0.035 (characteristic of CH stretching modes in solids5), 
and Un = /ic(3000)/feT = 14.4, the critical polymerization 
number Nc is found to be 1.2 X 103 monomer units. An 
improved estimate correcting for nonclassical curvature 
in the vicinity of Tc moves this to 1.6 X 103 units.20 It 
is convenient to compare theory and experiment using 

G^"/RT = In 7". 7" is the activity coefficient per 
monomer unit and for the one-term Flory-Huggins 
model describes the free energy of transfer of a given 
isotopomer from its Raoult reference state to an 
infinitely dilute solution with the other isotopopmer as 
solvent; thus In 7°° = 2/Nc. Numerical comparisons are 
shown in Table VI. The present method gives results 
in good agreement with experiment. As expected from 
the discussion of small molecule systems, the excess 
free energy calculated from the work integral involving 
only the external modes using eq 23, i.e., the PBB 
method,16 is grossly inadequate. In interpreting the 
data in Table VI Bates and Wignall62 chose a method 
somewhat different than the one we have outlined 
above. They related the contribution of internal 
vibrational modes to polarizability isotope effects 
(PIE's) and employed typical values transferred from 
small molecule PIE's. This is a perfectly appropriate 
method; just like MVIE, the PIE is understood in terms 
of an isotope independent potential energy surface 
describing the intramolecular vibrations. The two 
effects share a common origin. 

The observation of demixing in polymer-polymer 
isotopomer solutions comprises a powerful verification 
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TIME AFTER QUENCH HO 3 sec) 
TO 3220K 

Figure 10. Representative one-dimensional light-scattering 
traces for a quench of an isotopomer solution of protio and 
deuterio-1,4-polybutadiene to 322 K. The upturn in intensity 
at low q is caused by stray light. (From ref 63a. Courtesy 
of F. S. Bates and American Institute of Physics.) 

of the general ideas presented in this review. Figure 9 
shows light-scattering patterns gathered by Bates and 
Wilthuis63 for a spinodal quench of a polybutadiene-
(H/D) isotopomer solution and offers incontrovertible 
evidence that a phase transition is occurring. In this 
experiment the system is disturbed from the homo­
geneous miscible region by lowering the temperature 
abruptly through the critical point and into the unstable 
region where spinodal decomposition occurs. (Recall 
that binodal loci, shown as the solid lines in diagrams 
like those in Figure 7a, represent concentrations with 
equal partial molar free energy in the two coexisting 
phases, a and /3 (ma = ̂ , m" = ̂ , etc.). The spinodal 
loci, shown as inner line at the bottom of Figure 7a, 
delineate the boundary between the metastable and 
the absolutely unstable part of the phase diagram. It 
is defined in terms of the points of inflection on the free 
energy-concentration surface.) The rapid quench 
technique allows the kinetics of the phase separation 
process to be studied. This can be seen by examining 
the developing scattering diffraction pattern of Figure 
9 where phase separation is clearly apparent, or in 
alternative representation in Figure 10. A great ad­
vantage of studying the kinetics of phase transitions 
using isotopomer solutions of polymers is that the 
changes develop over comfortably long times as com­
pared to phase separation in mixtures of small mole­
cules. This permitted the authors to make careful, 
detailed, and important tests of the generalized theory 
of nucleation and phase separation.71 

Jancso et al. 

YD 

Figure 11. Critical loci for some [*c(polystyrene) + (1 - xc)((l 
- yD)(CH3)2CO + ^D(CDS)2CO)] solutions at p = 0.5 MPa: 
• = MW polystyrene, 22 000; O = MW polystyrene 13 500; 
* = MW polystyrene 11 600; D = MW polystyrene 7500. See 
ref 69. 

3.10. Demixing in Polymer-Solvent Systems 

Van Hook and co-workers69 have reported extensive 
cloud and spinodal data for the acetone-polystyrene, 
methylcyclopentane-polystyrene and propionitrile-
polystyrene systems. The phase diagrams exhibit both 
upper and lower consolute branches (see E in Figure 
7b). The hypercritical points for acetone-polystyrene 
solutions are at easily accessible pressures and molecular 
weights. The effects of pressure, molecular weight, and 
molecular weight distribution and solvent H/D fraction 
on the phase diagrams were explored. H/D isotope 
effects on the coexistence curves and their pressure 
dependences are both large. For example, the solvent 
isotope effect on the consolute temperature for acetone-
polystyrene solutions is as large as 20 K. An increase 
in pressure, or a change in substitution from D to H on 
the solvent, increases the region of miscibility. Alter­
natively, changing from D to H on the polymer narrows 
the miscibility gap but not to the same extent. Also, 
there are striking isotope effects on the shape of the 
phase diagram, especially in that P-T-MW regime close 
to the hypercritical point. While many of these 
observations are not particularly germane to the point 
of principal interest in this review, the dependence of 
the upper (and lower) critical temperatures on D/H 
ratios in the solvent are pertinent because in certain 
cases they have been demonstrated to be connected 
with nonideality in D/H solvent isotopomer mixture. 

Figure 11 shows isobaric plots of upper and lower 
critical solution temperatures for acetone(D/H)/poly-
styrene mixtures as a function of the deuterium fraction 
in t h e Solvent , yv> = rtacetone-d/faacetone-h + ^acetone-d), for 
four molecular weights of solute polymer. In this 
diagram the volume fraction of solvent (D + H) is 
maintained at the concentration which specifies the 
Critical loci , (^acetone(cr) = ((Vacetone-h+ Vacetone-d)/( ^acetone 
+ Vpoiymer))cr- In the regions inside the envelopes (i.e., 
above the UCS locus, below the LCS locus, and to the 
left of the hypercritical point) the solutions are ho­
mogeneous. To the right of the hypercritical points 
the system has collapsed to the hourglass configuration 
and is in a two-phase heterogeneous region. At the left 
of the figure the two data points near Tc = 350 K (filled 
squares) refer to acetone/polystyrene solutions of MW 
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Figure 12. Effect of isotopic dilution on T0 in methanol/ 
cyclohexane systems. (T0 - TR110^t)ZK is plotted against y. 
Top: [Xo(C6H12) + (1 - X8H(I - yD)CH3OH + yDCH3OD)]. 
Bottom [X0(U -Jy0)C6Hi2+yDc6Di2) + (1 - xc)CH3OH]. (From 
ref 72. Courtesy of American Institute of Physics.) 

= 22 000, and the hypercritical point for this system at 
P = 0.5 MPa is found at yD = 0.05. An increase in 
pressure shifts all the curves to enhanced solubility. 
Thus, the hypercritical molecular weight for polysty­
rene-^ at ̂ D = 0.05 is 22 000, but at a higher pressure 
than shown in Figure 11, is greater than 22 000. 
Alternatively, at a lower pressure than that of Figure 
11, but at the same polymer molecular weight, VD for 
the hypercritical point will be shifted to the left. Finally, 
as we show in the diagram, at the same pressure, but 
at a decreased molecular weight the hypercritical point 
is shifted to higher ^D- The data show an extremely 
large IE on the hypercritical molecular weight. At pure 
acetone-d, ^D = 1, the hypercritical MW is 13 500, and 
at yD = 0, MWhyp = 22 000. The IE amounts to a shift 
of 8500 molecular weight units (out of only 22 000). As 
Thep is approached, the curvature in T0 - D/H plots 
increases dramatically and becomes unbounded at Thep-
Should molecular weight be decreased (see the lower­
most curve), the hypercritical point is displaced to the 
right, but in this case will hypothetically fall off the 
diagram to the right-hand side. Thep is inaccessible for 
this particular molecular weight. For the case shown, 
MW = 7500 Da, and the Tc - D/H plot is linear within 
experimental precision. 

Singh and Van Hook72 have given a mean-field 
analysis of the H/D dependence of Tc in binary mixtures 
with fractional deuteration. In that approximation they 
showed that the IE on T0 should vary smoothly with 
fractional deuteration and pointed out that isotope-
dependent Tc'a do not by themselves imply nonideality 
in isotopic mixtures. Their analysis of the nonlinear 
contribution to demixing data72 in [Xc(C6Hi2) + (1 -
*c)((l -yD)CH3OH +yDCH3OD)] and [xc((l -yD)C6Hi2 
+ yDC6Di2) + (1 - Xc)CH3OH] solutions used symmet­
rical mixture theory. The data are shown in Figure 12. 
The "S" shape observed for deuteration at the hydroxyl 
group of methanol is interesting. The excess temper­
ature found on cyclohexane deuteration is much smaller 

and indicates that whereas CH3OH/CH3OD mixtures 
show significant nonideality, the CeHi2/ C6Di2 mixtures 
are ideal within the experimental error of these mea­
surements. The results were found to be consistent 
with Raman difference spectroscopic measurements 
(vide infra). Turning attention back to the H/D 
dependence of phase separation in acetone/polystyrene 
solutions near the hypercritical limit (Figure 11), we 
note the deviations are several orders of magnitude 
larger than in methanol/cyclohexane. These IE's have 
not yet been quantitatively interpreted, but for such 
large effects it is difficult to accept the SVH claim that 
nonlinearities in TJy plots are a direct measure of excess 
free energy in the solvent isotopomer solution. Rather, 
we suspect the observed hypercritical enhancements 
are an indication of nonclassical behavior, i.e., of a 
departure from mean field theory. The approach to 
the hypercritical point follows the nonclassical pre­
diction and displays a scaling exponent, /8 » 1/3.69 In 
this regard it is interesting that little or no curvature 
is observed for polymer solutions well removed from 
the hypercritical region (line C, Figure 11), which, 
possibly, can be interpreted using the mean field 
analysis.72 

3.11. Isotopomer Mixtures of Methanols, CH3OH 
and CH3OD 

Measurements of the molar volumes of CH3OH, CH3-
OD, and CD3OD, and apparent molar volumes for (CH3-
OH + H2O) and (CH3OD + D2O) solutions, were made 
by Bender and Van Hook.73 They also measured VeT 

in isotopomer mixtures (CH3OH + CH3OD) which was 
found to be zero within the experimental uncertainty. 
The solutions exhibit a small but non-zero excess molar 
Gibbs free energy72 as discussed immediately above. 
The experimental observation of an S-shaped behavior 
for these Tc curves, and the intimation that it is a 
consequence of a similar S-shaped dependence of excess 
free energies for the methanol mixtures, suggests the 
need for independent measurements of the excess free 
energy (presumably by high precision measurements 
of the vapor pressure of CH3OH/CH3OD mixtures). 

3.12. Mixtures of Water Isotopopmers 

Although a voluminous literature exists describing 
and interpreting the effect of isotopic substitution on 
the properties of water and mixtures of isotopic waters, 
space does not permit us to review this topic in any 
great detail. However, we will describe a few studies 
on the excess thermodynamic properties of aqueous 
mixtures since they illustrate some of the concepts 
developed in this review in a particularly clear fashion. 
Jakli and Van Hook24 presented a thermodynamic 
analysis of D/H and 180/160 fractionation factors in 
water mixtures, comparing the data with VPIE mea­
surements on the separated isotopomers.74 Sufficient 
information on molar volume5375 and virial coefficient76 

isotope effects is available to accurately convert ob­
served (In a - In (P*/P)) values to the theoretically more 
useful (In a - In (fjfg)). Comparisons are given in Table 
VII which demonstrates agreement between theory and 
experiment within experimental error, ±0.0002 unit, 
for H/D and 180/160 substitution. In the analysis of 
aqueous H/D mixtures it is necessary to take account 
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Table VII. Contributions to Excess Free Energy in 
Mixtures of Isotopic Waters at High Dilution (305 K). 
All Entries in the Table Have Been Multiplied by 1 x 
10-1 

In (a) - In (a) - In (a) -
B 'P(1- -[P1VIRT) In(JJf1) In(PVP) In (P/P) 
BP/B'F) (1 -Pi'P) (calcd) (calcd) (exptl) 

D/H -1 <0.1 -7 ±2 -8 ±2 -8 ±2 
I80/180 <0.1 <0.1 6±2 6 ± 2 4 ± 1 

of the (H2O + D2O ^ 2 HOD) d i spropor t iona te 
reaction.77 In agreement with the conclusions of Jakli 
and Jancso,78 Van Hook,79 and Phutela and Fenby,80 

the present data can be interpreted as an ideal three-
component mixture where the limiting HOD/DOD 
isotope effects show significant deviation from the low 
of the geometric mean. One finds (In (PHOH/-PDOD)/ln 
CPHOH/PHOD) = 1-92 ± 0.02 instead of 2. The analogous 
values for partial molar enthalpies and partial molar 
volumes are in the range 1.90-1.95. It is particularly 
interesting that the excess free energies calculated from 
Table VII are of opposite sign for isotopic substitution 
at hydrogen and oxygen. This straightforward pre­
diction results from the fact that AW V is of opposite 
sign for H/D (AV/V = -1.7 X 10"3) and 1 80/1 60 
substitution (AV/V = 1.5 X 10~3).24 The magnitude of 
these effects, and their opposite signs, have been 
rationalized by Dutta-Choudhury and Van Hook51 in 
terms of the vibrational dynamics of the condensed 
phase. Spectroscopic data required for the calculations 
in Table VII were available from Walrafen and Abebe.81 

Notice that if the excess free energies were calculable 
from the PBB approach, or one of its modifications, 
i.e., from the contribution of the external degrees of 
freedom alone, Gex = -(V- Y)1IlQ1VRT, it would be 
impossible to rationalize the opposite signs experi­
mentally observed for the quantity [In a - In (P*/P)]. 

In related work Fenby and co-workers,82 Duer and 
Bertrand,83 Koga,84 and most recently Simonson85 have 
made careful measurements of enthalpies of mixing for 
protio/deuterio water systems. Fenby and Bertrand86 

have developed a systematic thermodynamics for 
interpretation of this and other deuterium-exchange 
reactions. Bottomley and Scott87 and Dutta-Choudhury 
and Van Hook51 have determined excess volumes in in 
H2O/HOD/D2O mixtures and given an interpretation 
of the results, and Kiyohara, Halpin, and Benson88 have 
measured excess ultrasonic velocities (and hence excess 
isentropic compressibilities) in such mixtures. 

3.13. Correlations with Spectroscopic 
Observations 

The development emphasized in this review inter­
prets the thermodynamic properties of transfer of an 
isotopomer between its Raoult and Henry standard 
states in terms of the volume dependence (and hence 
the MVIE) of the related partition function. The MVIE 
is well understood in terms of an isotope-independent 
potential energy surface describing both inter- and 
intramolecular degrees of freedom. The partition 
function may be straightforwardly expressed using a 
set of 3n harmonic or anharmonic oscillators, again using 
isotope-independent force constants. In the interpre­
tation used throughout the present paper the problem 
is reduced to calculating, or estimating, the frequency 

shift corresponding to the transfer. A more direct and 
therefore more appealing route would be to directly 
determine the relevant frequency shifts which occur 
on the transfer between solvent states, thus removing 
our assumption that the transfer is equivalent to the 
congruent compression (or dilation). This is ordinarily 
not possible because liquid state spectral broadening 
is much larger than the relevant frequency shifts. 
Frequency shifts for transfer between isotopomer 
solvents amount to a few hundreths cm1 , at most about 
0.1 cm 1 . Liquid-state broadening, on the other hand, 
normally 2-10 or more cnr1 for nonassociated liquids, 
can increase to as many as several hundred cm 4 for 
hydrogen-bonded and other associated liquids. For that 
reason ordinary IR and Raman spectroscopic techniques 
will not suffice to yield the desired information; the 
required frequency shifts are too easily lost in con­
densed-phase broadening. Even so, Laane and co­
workers89 have reported a Raman difference technique 
which enables very small shifts in Raman bands to be 
detected with useful precision. They have used this 
technique to study solutions relevant to our interests. 
The results are reviewed in the following paragraph. 

Meinander, Strube, Johnson, and Laane89 interpreted 
difference Raman shifts in vibrational bands for isotopic 
dilution in liquid benzene(H/D) and pyridine(H/D) 
solutions in terms of additive resonant intermolecular 
coupling and volume effects. The former gives rise to 
a linear dependence of the frequency shift on mole 
fraction of the active species. The latter takes into 
account the change in molar volume upon solution which 
may increase (e.g., CeH6 as solute in C6D6) or decrease 
(e.g C6De in C6H6) the repulsive branch of the inter­
molecular potential, and thence increase or decrease 
the vibrational frequency. The magnitude of the 
volume effect was found to be «0.15 cm 4 , about three 
to four times larger than the value deduced by Jancso 
and Van Hook19 for benzene mixtures, but of the same 
sign. However, if one considers the more recent 
observations of Kamogawa and Kitagawa,90 who ob­
served a sudden increase in the C-D frequency shift of 
C6D6 solutes in C6H6 at mole fractions less than 0.1, 
followed by a leveling off, better agreement is found 
between the spectroscopically observed frequency shift 
and the shift calculated from the MVIE and employed 
earlier in the excess free energy calculation of C6H6/ 
C6D6 mixtures.19 Kamagawa and Kitagawa90 also 
investigated Raman difference spectroscopy of CH3-
CN/CD3CN mixtures. While they found, in agreement 
with Laane et al.,89 that resonance coupling accounts 
for most of the frequency shift on isotopic dilution, 
they suggested the additional term originates from an 
IE on polarizability, not molar volume. The explanation 
is acceptable and certainly plausible. We have already 
commented, in accord with Singh and Van Hook20 and 
Bates and Wignall,62 that the two effects share a 
common origin. The theory of dipolar resonant transfer 
in binary mixtures of isotopomers was originally de­
veloped by Logan.91 The results of the Raman differ­
ence measurements afford strong confirmation of the 
present interpretation of excess isotope effects in 
isotopomer mixtures. 
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4. Conclusions 
High-precision measurements of excess thermody­

namic properties of isotopomer solutions for systems 
ranging from rare gases to polymers have been discussed 
in the context of the theory of isotope effects in 
condensed phases. Values for the excess Gibbs free 
energy are 2-3 orders of magnitude smaller than those 
typically found in binary mixtures of simple ordinary 
(i.e., nonisotopic) molecules. Although small, the effects 
are additive, and for long-chain H/D-substituted poly­
mers the excess free energies are large enough to cause 
demixing. Theoretical analysis clearly demonstrates 
the excess thermodynamic properties due to isotopomer 
mixing are vibrational in origin. Proper consideration 
of the volume dependence of vibrational properties of 
the component molecules is essential to the under­
standing of the mixtures. At first glance that conclusion 
is a little surprising, since these solutions should be 
among the simplest of solutions, i.e., the most nearly 
ideal. It is an important conclusion, however, because 
many widely used theories of solution ignore vibration 
and vibrational interaction. The isotopomer results 
demonstrate this approach to be inadequate. 
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