Synthesis of Phosphorus-Containing Macrocycles and Cryptands

Anne-Marie Caminade' and Jean Pierre Majoral'

Laboratolre de ChImIe de Coordination du CNRS, 205, Route de Narbonne, 31077 Toulouse Cedex, France

Received November 22, 1993 (Revised Manuscript Received March 5, 1994)

Contents

/. Introduction

Despite the fact that the first phosphorus containing macrocycles $[(PNCl₂)_n, n = 5, 6, 7]$ were prepared in 1897 by Stokes,¹ intensive studies in this field only appeared in the middle of the 1970s, several years after the discovery of the complex-forming properties of crown ethers by Pedersen in 1967.² Experimental difficulties—multistep procedures, low yields, unstability of the final products, etc.—probably explained the reason why such a research field did not earlier evoke more interest.

Indeed, the preparation of such macrocycles was undertaken in order to increase the efficiency of macrocyclic ligands by introducing into the ring tricoordinated phosphorus atoms or phosphoryl and thiophosphoryl groups which possess a high complexforming capacity. Tricoordinated phosphorus-containing macrocycles can easily bind to transition metals while alkali metal ions can be trapped with $P=O$ or P=S groups. Moreover, macrocyclic phosphanes can stabilize transition metals in their lowest valence states.

Unusual catalytic properties were expected from complexes of this type. Thiophosphoryl macrocycles form weaker complexes with alkali and alkali earth metals than their phosphoryl analogues. Some of them are able to transport transition metals $(Fe^{3+}$, Cu^{2+} , Co^{2+} , Ni²⁺) through liquid membranes.³⁻⁷

Since phosphane oxides have been demonstrated to serve as strong hydrogen-bond acceptors, phosphoruscontaining macrocycles can be used for molecular recognition, complexation of ammonium salts, anions, etc. Potential applications in homogeneous catalysis and in phase-transfer catalysis can also be pointed out and will probably be in the future the subject of numerous investigations.

Several reviews containing compilations of synthesis^{3,4} and/or thermodynamic and kinetic data for cationmacrocycle interactions⁵⁻⁷ have been published. Most of them are limited to macrocycles possessing P-O or P-C bonds.

In contrast with these reviews, the aim of the present work is to report the preparation of phosphoruscontaining macrocycles (nine-membered rings at least) whatever the environment around phosphorus (P-C, P-O, P-N, P-S, P-N-N, P-Si, etc. bonds) and whatever the coordination number of phosphorus (tri-, tetra-, or pentacoordination) are. Macrocycles possessing direct intracyclic phosphorus-metal bonds and macrocycles with phosphorus pendent groups are excluded from this compilation as well as phosphates containing macrocycles and species relevant to biochemistry.

Two almost independent ways of synthesis of phosphorus containing macrocycles can be outlined: that involving classical methods of macrocyclic chemistry and that specific to phosphorus chemistry, i.e. taking into account properties of phosphorus species. Template syntheses of P macrocycles are relatively recent but unfortunately a very few methods have yet been devised to remove the metal from the ring. Complexation properties are not considered here. Rather, we would like to focus on the strategy of the construction of phosphorus macrocycles and cryptands. Three main types of reactions are presented (i) cyclocondensations, the most commonly used reactions, (ii) ring opening essentially of five- and six-membered rings and, (iii) template reactions. In addition a few miscellaneous methods are reported. The preparation of cryptands is described in the final section. The listing of macrocycles characterized by X-ray structural studies is given in Table 10.

//. Cyclocondensations

The term cyclocondensation indicates the condensation between two functionalized species leading to a macrocycle. For example a [2 + 2] cycloadduct is **here,** a compound arising from the cyclocondensation of 2 equiv of each partner.

Anne-Marie Caminade is "Chargée de Recherche" at the Centre National de la Recherche Scientifique since 1985 in Dr. J. P. Majoral's group. She was born in Carmaux, France, in 1958. She received her "3ème cycle" doctoral degree in 1984 from the Université Paul Sabatier (Toulouse) with Dr. Max Koenig, on oxidation reactions of unsaturated compounds, and her Doctorat d'Université ("Ph.D.") in 1988 with Dr. J. P. Majoral on the stabilization by complexation of low coordinated phosphorus compounds. She then joined Professor Michael Veith's group in Saarbrücken (Germany), as a postdoctoral fellow of the Alexander von Humboldt Foundation, working on metalla stibanes and -bismuthanes. She is currently working with Dr. Majoral on main group element chemistry, with emphasis on the chemistry of macrocyclic and polymacrocyclic phosphorus species, main group element dendrimers, and hydrazine derivatives. She was awarded a Bronze Medal from the CNRS in 1989.

Jean Pierre Majoral received his Doctorat d'Etat in 1972 from the Universite Paul Sabatier of Toulouse. In 1973, he carried out postdoctoral studies with Professor A. R. Katritzky at the University of East Anglia, England. He became Directeur de Recherche at the Centre National de Ia Recherche Scientifique in 1978 in Toulouse. In 1987 he moved to the Laboratoire de Chimie de Coordination, a CNRS institute, also in Toulouse, where he is currently at the head of a research group. His research interest includes the synthesis and the complexation properties of phosphorus macrocyclic multidentate compounds as well as the preparation and the properties of main group elements containing dendrimers. Emphasis is also made on the studies of interactions between heavier main group elements and group 4 elements (titanium, zirconium, and hafnium) with applications in organic and organometallic chemistry. He has received awards from the French Chemical Society (1990) and from the French Academy of Sciences (1002)

A. Intracyclic C-P-C Linkage

1. Reaction of Dihalogenated Species with Salts

Cyclocondensations involving lithium salts of diphosphines and bis electrophiles with or without phosphino groups, under high dilution conditions, were developed **Scheme 1**

Table 1. Compounds la-p

Table 2. Compounds 2a-h

by Kyba and co-workers from 1977 to 1985, allowing the preparation of a wide variety of triligating 11 membered rings **la-p** and tetraligating 14-membered rings $2a-e^{8-17}$ The use of sulfur or arsenic lithium salts instead of diphosphine salts permits the preparation of similar macrocycles with various donor atoms: sulfur, arsenic, phosphorus, but also oxygen and nitrogen (Scheme 1 and Tables 1 and 2). In some cases all the isomers are separated and fully characterized and their stereochemistries are determined or assigned.^{9-13,15,17}

The synthesis of macrocycle 2h requires considerably more strategy and implies a multistep sequences to obtain the linear ligand 3 which can be treated with lithium diisopropylamide affording 2h (Scheme 2).⁷

The 1,4,10,13-Tetraoxa-7,16-diphosphino-[18]-crown ethers **4a-c** and the l,4,10,13-Tetrathia-7,16-diphos-

Scheme 2

Scheme 4

phino- [18] -crown ether 4d are accessible in a one-step synthesis by reaction of dilithiophosphides with 1,2 bis(2-chloroethoxy)ethane and l,2-bis[(2-chloroethyl) thio]ethane (Scheme 3).¹⁸

Similar reactions have been done by Ciampolini's group19-32 who treat dilithiophosphide with bis(dichloroethyl) ether (or the corresponding thio compound). All five possible diastereoisomers of 7a-d are isolated. The hexadentate phosphorus-nitrogen-containing macrocyclic ligand 7c is obtained by reacting bis(2-dichloroethyl) propylamine with a stoichiometric amount of the bispotassium salt of l,2-bis(phenylphosphino) ethane (Scheme 4).

Such an approach is employed to prepare a class of hard/soft dinucleating phosphine macrocycles 8a-c.^{33,34}

Nucleophilic displacement of halide from phosphine with a glycolate dianion offers the possibility of isolating in good yields (50-60 *%*), a macrocyclic phosphine which was easily oxidized with dilute hydrogen peroxide to the corresponding P -oxide 9b. A surprising phosphorus expulsion reaction takes place when 9b is treated with sodium hexaethylene glycolate leading to a ringcontracted bipyridyl macrocycle (Scheme 5).³⁵

Scheme 5

Scheme 6

Scheme 7

A 15-membered ring 10 is prepared from the sodium salt of ethylenebis[phenyl(o-hydroxyphenyl)phosphine] P.P'-dioxide and bis(2-chloroethyl) ether $(Scheme 6).$ ³⁶

Phosphoryl groups have also been incorporated into the ring systems of macrocyclic polyethers by slowly adding the appropriate ethylene glycol and dibromide $[RP(O)(C_6H_4CH_2Br)_2]$ as a mixture in THF to a stirred refluxing suspension of NaH in THF. Depending on the length of the ethylene glycol derivative, $[1 + 1]$ 11a- $\rm e$ or $[2 + 2]$ 12 cyclocondensation products are isolated (Scheme 7).³⁷

An analogous reaction carried out with the diphenyl ethylene glycol salt $[o-NaOC_6H_4O(CH_2)_2]_2O$ and MeP- $(O)(CH₂Cl)₂$ gives 13.³⁸

The direct addition of dichlorophenylphosphine to tetraethylene glycol bis(2-lithiophenyl) ether leads to

monophospha-crown ethers **14a-c** which are also obtained in the reaction of the disodium salt 15 with ethylene glycol ditosylates (Scheme 8).³⁹

Binaphthyl-base 16- and 18-membered rings **16** have been synthesized from the corresponding 1,1'-binaphthyl precursors and o-phenylenebis(phenylphosphane) $(Scheme 9).40,41$

Reaction of diisopropyl polymethylenediphosphinate with polymethylene dibromide in the presence of sodium bis(2-methoxyethoxy)aluminum hydride under high dilution conditions affords two isomeric macrocyclic bis(phosphine oxides) **17a-c.** Reduction of these oxides with trichlorosilane yields the diphosphines 18a-c with overall configuration retention (Scheme 1O).⁴² The structure of the analogous compound **17d** $(n = m = 4)$ was solved by X-ray diffraction studies.⁴³

Analogous direct cycloaddition of two dioxophosphide dianions with two molecules of the unsaturated dihalide $CICH_2CH = CHCH_2Cl$ produces unsaturated macrocyclic phosphine tetraoxides **19a,b.** Their reduction with molecular hydrogen is highly selective (Scheme **JJ\ 44a,b**

Similarly, the cycloaddition reaction of the same dianions with α,α' -dichloro-o-xylene gives predominantly the $[1 + 1]$ cyclocondensation compounds; $[2 +$ 2] (20) and $[3 + 3]$ cycloadducts are also obtained but in significantly lower yield.⁴⁵

Phosphine oxide dithioether **21** is prepared by allowing the corresponding dithiol to react with 1,4-

Scheme 11

Scheme 12

Scheme 13

Scheme 14

dibromobutane and K_2CO_3 at room temperature; oxidation with H_2O_2 or with m-chloroperbenzoic acid produces **22** (dl) (Scheme 12).⁴⁶

Two other families of macrocyclic phosphine oxide disulfoxides are formed by reacting either the dithio reagent 23 with the appropriate dihalide (formation of compounds **24a-e,** Scheme 13) or the phosphine oxide 25 with the appropriate dithiol (preparation of derivatives **26a-e,** Scheme 14). The final step in the synthesis of each macrocycle is the oxidation of the macrocyclic phosphine oxide dithioester with m-chloroperbenzoic acid.^{47,48} In all cases, this process yields predominantly one stereoisomer of the desired trioxide.

l-Phenyl-l-phospha-4,7-dithiacyclononane (27) is obtained from the corresponding phosphine PhP(CH2- CH_2SH ₂ and dichloroethane,⁴⁹ whereas the reaction

Scheme 17

with di-tert-butyltin dimethoxide yields a mixture of compounds from which the cyclic dimers **28a,b** are isolated (Scheme 15).⁵⁰ When treated with sulfur or selenium, they give rise to the corresponding thioxo or selenoxo derivatives.⁵⁰

Macrocyclic salts 29 and 30 are prepared in high yields from the common intermediate neutral species 31 $(Scheme 16).⁵¹$

Acyloin condensations of phosphine C_6H_5P [(CH₂)_m- $CO₂R$] [($CH₂$)_n $CO₂R$] in the presence of trimethylsilyl chloride give rise to the expected bis(trimethylsiloxy) phosphacycloalkenes 32a-c in poor yields (14-23%) (Scheme 17).⁵²

The 1,3,10-triaza-12-phospha^{[8.3.1.13,12}]tricyclopentadecane 33 is obtained by reacting the tetrakis(hydroxymethyl)phosphonium salt $[P(CH_2OH)_4Cl]$ with aqueous formaldehyde and hexamethylenediamine in basic media.⁵³ Addition of α -quinone leads to the corresponding P^V derivative 34 (Scheme 18).⁵⁴

Macrocycles comprising alternating phosphorus atoms and alkyne units 35 and 36 are elegantly prepared by treatment of tert-butyldiethynylphosphine or 3,6 di-tert-butyl-3,6-diphospha-l,4,7-octatriyne with ethylmagnesium bromide followed by addition of *tert*butyldichlorophosphine (Scheme 19) . 65

Reaction of a 1:4 (molar) mixture of tetrakis[[(phenylsodio)phosphino]methyl]methane (37) and $CS₂$ in **Scheme 18**

THF at 60 °C under argon gives tetrasodium neopentanetetrayltetrakis[phenyl(thiocarbonyl)phosphoranethiolate] (38). This product absorbs molecular nitrogen giving a complex 39. This complex is also formed directly and more rapidly by analogous reaction of 37 with CS_2 under nitrogen (Scheme 20).⁵⁶

2. Phosphonlum Salts

The first macrocycles **40a,b** were prepared by reacting 2,2'-biphenylylenebis(diethylphosphine) with 1,3-dibromopropane⁵⁷ or *o*-xylylene dibromide (Scheme 21).⁵⁸

The synthesis was developed later on by several groups18,8*-⁶⁶ for the formation of macrocycles possessing two or four phosphorus atoms in the ring. Various diphosphines and dihalides are used (Table 3). Indeed, two main processes are employed: reaction of a diphosphine with dihaloalkanes or alkenes^{18,59-61,64} (method A) or linking of a ω, ω' -dihalo alkyl bisphosphonium salt with bisphosphine (method B) (Scheme $22.62-64$ On the basis of the same principle a recurrent method for controlled synthesis of polyheteroatomic tri- or tetracoordinated diphosphorus macrocycles is also described.62,63 This procedure allows the stepwise introduction of different bridges between the phos-

Table 3. Phosphonium Salts 41-43

Scheme 22

Method A

phorus atom through selective phosphonium salts formation and cleavage. Generally use of dilution does not improve the yields.

Table 4. Compounds 44 and 45

 (H,C) _n \sim \sim (CH_2) _m انس**ہ**
بادائ **P ^** $\overleftarrow{\text{CH}_2}_{n}$ **44 Y = O 4 S Y** = **lone pair**

44	m	n	R		z	ref(s)
a b	3 3	3 $\mathbf 2$	\mathbf{P} h Ph	PhP(0)		63 65
c d	3 3	2 3	Ph Ph		PhP(0)	59,65 62
е			Bz		BzP(0)	59
45	m		n	R		ref
a b c	3 3		3 3	Ph Ph Bz	${\tt PhP}$ BzP	63 59 59

Scheme 24

A slightly different methodology, via a bridge protection, leads after alkaline hydrolysis to homologous phosphine tetraoxides 44 and to phosphines 45 after reduction (Scheme 23).⁶⁶

Cyclic phosphonium salts with a benzyl group attached to phosphorus could be cleaved in good yields to the corresponding cyclic phosphines 45 by use of LiAlH4. Other cyclic phosphonium salts⁶¹ can be transformed into the corresponding oxides 44 by hydrolysis in basic medium (Table 4).63>65

A multistep synthesis starting from tribenzylphosphine allows the preparation of tetraoxa diphosphino crown ethers (Scheme 24).¹⁸

The phosphinophosphonium salt $(C_2H_5)_2PP(C_2H_5)_3I$ **was claimed to react with THF to give the macrocyclic dication 4If.⁶⁷**

$$
\operatorname{Et}_2\!\!R\!\!\left\{\!\!\begin{array}{c} (CH_2)_4\!\!\!\!\! \quad\oplus\\ \quad\quad P(Et)_2\!\!\!\!\! \quad\quad P(Et)_2\\ (CH_2)_4\!\!\!\!\! \quad\quad 41f\!\!\!\! \end{array}\right.
$$

B. I ntracyclic N-P-N Linkage

It is claimed that nine-membered rings **46a-l** are obtained by reacting either $p\text{-}\text{MeC}_6\text{H}_4\text{P}(\text{O})(\text{OH})_2{}^{68}$ or various phenoxydichlorophosphines⁶⁹ with bis(2-aminophenyl) disulfide (Scheme 25).

A one-step high-yield synthesis of a macrocyclic ligand containing phosphorus and nitrogen donor atoms 48 is based upon the derivatization of cyclam (47, Scheme 26).⁷⁰

An efficient synthesis of rigidified macrocyclic phosphoramides, the preorganized ligands 49 and 50 incorporating a diaminophosphine group in a polyether macrocycle, is proposed by Dutasta and Simon^{71,72} according to Schemes 27 and 28.

Rigidification of 51 can be accomplished by substitution on the nitrogen atoms to give compound 52 (Scheme 29).⁷³

The use of hexamethylphosphoric triamide instead of $C_6H_5P(NMe_2)_2$ in the reaction with triethylene glycol bis(o-aminophenyl) ether followed by addition of sulfur gives 53 (*cis* and *trans* isomers) based on the P_2N_2 diphosphazane ring (Scheme 3O).⁷⁴ In the course of this reaction the macrocycles **54a,b** and the bismacrocycle **55** are isolated.

The synthesis of a cyclic bis(diaminodiphenylphosphonium salt) namely the 2,2,7,7-tetraphenyldecahydro-l,3,6,8,2,7-tetraazadiphosphecine-2,7-diiumdibromide (56) consists in the successive reactions of chlorodiphenylphosphine with bromine and then with 1,2-ethanediamine (Scheme 31).⁷⁵

Treatment of $RCONHP(O)Cl₂$ with p-phenylenediamine affords the expected $[2 + 2]$ cyclocondensation product **57.⁷⁶**

Cyclization of $(CH_2)_n(CH_2NHMe)_2$ $(n = 4)$ with $(R_2N)_2POEt$ (R = Me, Et) gives 40-63% yield of 1,3,2diazaphosphacycloalkane (58, Scheme 32).⁷⁷

Scheme 25

Scheme 26

a R = Ph; n = 2
b R = Ph; n = 3
c R = NMe₂; n = 2

Scheme 28

Scheme 29

Scheme 30

C. I ntracyclic N-N-P-N-N Linkage

A one-step high yield method of preparing various macrocycles involves the addition of phospho dihydrazides of general formula $RP(Y)[N(CH_3)NH_2]_2$ with dialdehydes (Scheme 33). Macrocycles can be formed from $[1 + 1]$,^{78,79} $[2 + 2]$,^{79–39} $[3 + 3]$,^{79,82,85,89,90} or even $[4 + 4]^{89,90}$ cyclocondensation reactions. The reaction proceeds in very mild conditions (room temperature, stirring for $1-5$ h). No high dilution is required. More than 100 compounds were formed in which phosphorus can be tri-, tetra-, or pentacoordinated. Two to six phosphorus atoms can be included in the macrocyclic chain which can possess up to 20 heteroatoms. Beside N-N-P-N-N linkages, O-P-O, C-P-C, and O-P-N

Table 5. Compounds 59-62

linkages can be introduced in the macrocyclic chain. Mass spectrometry and X-ray structure determinations^{82,89} show that most of these macrocycles arise from $[2 + 2]$ cyclocondensation reactions (Table 5).

Analogous reactions carried out with the tetraphospho dihydrazides 63 and various dialdehydes led only to $[1 + 1]$ cyclocondensations (Scheme 34).^{79,88}

Scheme 34

Another general way of synthesizing macrocycles containing P-N-N linkages consists in the reaction of hydroxyphenyl functionalized phospho dihydrazones with $\hat{RP}(X) \hat{Cl}_2$,^{79,86} $R_2 \text{SiCl}_2$,^{91,92} $\text{Cp}_2 Zr \text{Me}_2$,⁹¹ or Cp_2 - $TiMe₂:⁹¹$ [2 + 2] cycloadducts are exclusively formed (Scheme 35).

Most of the macrocycles 56-62, 64 are stable enough to be submitted to different chemical procedures: modification of the cavity size (Scheme 36), 79,81,85,93 formation of di-86,93 or tetraphosphonium salts (Scheme (36) ,⁸⁴ P=S \rightarrow P=O transformation (Scheme 36),^{85,93} or substitution reactions (Scheme *3D.⁸⁶*

Addition of 2 equiv of aqueous formaldehyde to a di(tetraazaphosphorine) gives rise to the tetracyclic structure 65 (Scheme 38).⁹⁴

Phospho dihydrazides $(C_6H_5O)P(S)$ (NHNH₂)₂ react with dichlorohexamethyltrisiloxane to give mixtures of eight-, nine-, and 10-membered rings 66a-c (Scheme 39).⁹⁵

Scheme 36

Scheme 37

Scheme 38

Scheme 39

PhO-P(S)(NHNHj)2 + ClSiMe2O-SiMe2-OSiMe2Cl

D. I ntracyclic O-P-0 Linkage

1. Reactions Involving Chlorophosphines

Macrocyclic polyethers containing phosphonyl, phosphoryl, thiophosphoryl, iminophosphoryl groups are Table 6. Compounds 67a-q

prepared by treatment of disodium salts of open-chain polyethers with RPCl_2 , $\text{RP}(\text{X})\text{Cl}_2$, $\text{R}_3\text{P}=\text{NP}(\text{O})\text{Cl}_2$ (Table 6, Scheme 40).⁹⁶⁻¹⁰⁶

Phosphorus crown ether 69^{107,108} is similarly obtained from $CH_3P(O)(OCH_2CH_2Cl)_2$.

Analogous reactions are undertaken starting directly from polyethylene glycols or related species which are reacted with di- or trihalogenated phosphorus compounds in the presence of base: derivatives of type 67 and compounds 68a,c are thus prepared (Table 6).¹⁰⁹⁻¹¹⁶ Extension of this method allows the synthesis of macrocycles 70,^{117,118} 71,¹¹⁹ 72,¹²⁰ 73,¹²¹ 74,¹²²⁻¹²⁴ 75,¹²⁵ and 76^{116,126,127} (Chart 1). The reaction of P-functionalized macrocycles 67b and 76 with amines allows the preparation of other macrocyclic species.^{115,127}

The macrobicyclic derivative 77 is formed in 46% yield by cyclizing $o\text{-}NaOC_6H_4O(CH_2CH_2O)_nC_6H_4ONa-o$ $(n = 2, 3)$ with adamantanediphosphonic dichloride.^{116,128}

When *p-tert-butylcalix*[6]arene 78 is treated with cesium fluoride and then with ethyl phosphorodichloridite, an ethyl phosphate substituent is introduced onto the lower rim of the calix[6]arene. The new macrocyclic compound 79 has a single ethyl phosphate spanning two adjacent phenolic oxygens of the calix- [6]arene.¹²⁹ When the same reaction is carried out in the presence of potassium hydride, a stronger base than cesium fluoride, a second ethyl phosphate substituent can be introduced onto the lower rim of the calixarene affording the derivative 80. Treatment of *p-tert*butylcalix[6]arene with $CIP(0)(OEt)_2$ followed by

Chart 1

heating of the resulting isolated product under vacuum at 330 ⁰C yields 81 in 47% yield (Scheme 41).¹³⁰

Pyrolysis of poly(dialkyl phosphate) ester derivatives of calixarene results in multiple bridges. Heating of bis(diethyl phosphate) calixarene 82 at 230 ⁰C under vacuum leads to the formation of pyrophosphate 83 in which two phosphorus atoms are each bridging two proximal phenoxy groups (Scheme 42).¹³⁰

Condensation of PCl_3 with (R,R) -tartaric acid gives rise to the macrocycle 84 possessing two pentacoordinated phosphorus atoms. The triethylammonium salt 86 of the corresponding hydroxyphosphorane 85 is also isolated.131-134 Treatment of the phosphorane 84 with-

Scheme 41

Scheme 43

sulfur or selenium in the presence of triethylamine affords 87 (Scheme 43).^{135,136}

Reactions of dichlorophosphines with dithiols instead of diols are also investigated, leading to a benzodithiaphosphepin and the corresponding dimer 88 (Scheme **44)137,138**

2. Reactions Involving Amlnophosphines

Bicyclic phosphites obtained from the reaction of hexamethylphosphoric triamide with threitol or xylitol Scheme 44

Scheme 45

Scheme 46

undergo fast oligomerization at 60 °C leading to polycyclic phosphoranes 89 and 90 (Scheme 45).¹³⁹

The bisspirophosphorane 91 is formed from $P(NM_{e_2})_3$ and $D-(+)$ -mannitol or $D-(+)$ -glucidol under mild experimental conditions (5 h, 40°C). The same experiment with arabinitol affords 92.¹⁴⁰

When heated with an equimolar amount of 2,2-bis- (p-hydroxyphenyl)propane, the linear bisphosphinite $[C_6H_6(NEt_2)POC_6H_4]_2C(CH_3)_2$ undergoes cyclization with the formation of macrocycle **93** (Scheme 46).¹⁴¹

The triarylenecyclophosphonite 94 is prepared from the diarylenetriphosphinite $[C_6H_6(NEt_2)POC_6H_4C (CH_3)_2C_6H_4O_1{}_2PC_6H_5$ according to the same proce d ure. 141

3. Reactions Involving Sliylated Derivatives

2-Chloro-2-oxo, -2-thio, or -2-imino-4,5-benzo-l,3,2 dioxaphospholane reacts with $\text{Me}_3\text{SiO}(\text{CH}_2\text{CH}_2\text{O})_n\text{SiM}$ e₃

to give the corresponding polyethylene glycol. Intramolecular nucleophilic addition of the Me3Si group to the P-X bond of these polyethylene glycols gives spirophosphoranes 95 with structure and properties of crown ethers (Scheme 47).142,143

On standing at room temperature, a mixture of bis- (silyl ether), mono(silyl ether)-mono(alkyloxytrifluorophosphorane), and bis(alkyloxytrifluorophosphorane) evolves into a new mixture which contains the 16 membered ring 96 (Scheme 48).¹⁴⁴

Condensation of α -ethoxy- ω -ethyloctakis(phenylmethyl)tetrasiloxane $C_2H_5O[Si(C_6H_4CH_3)_2-O]_4C_2H_5$ with methylphosphonic acid MeP(O)(OH)_2 leads to the corresponding macrocycle 97.¹⁴⁶

4. Miscellaneous Methods

A unique macrocyclic structure of tetrameric trimethyltin(IV) diphenylphosphinate $[\text{Me}_3\text{SnO}_2\text{PPh}_2]_4$ 98 containing a 16-membered $Sn_4O_8P_4$ inorganic ring is isolated from the reaction of Me₃SnCl and NH_4O_2 - $PPh₂$. 146

Triphenylphosphine and diisopropyl azodicarboxylate react with propane-l,3-diol, butane-l,3-diol, pentane-l,5-diol, hexane-l,6-diol, heptane-l,7-dioL, octane-1,8-diol, decane-l,10-diol, and dodecane-l,12-diol in tetrahydrofurane at 0° C to give large-ring cyclic dioxytriphenylphosphoranes 99 that appear to be oligomeric (Scheme 49).^{147,148}

Nine-membered rings 100 incorporating sulfur, oxygen, and phosphorus are prepared in accordance with Scheme 50.^{149,150}

Methanolysis of a carboalkoxy enol phosphite leads to a minor product which appears to come from

Scheme 48

Scheme 49

Scheme 50

Scheme 51

Scheme 52

migration of ring oxygen to give the nine-membered ring 101 isolated as a thiophosphate (Scheme 51).¹⁶¹

E. Intracyclic X-P-Y Linkage

l,3-Bis(chlorophenylphosphino)propane is reacted with a stoichiometric amount of triethylene glycol in dry THF in the presence of a base using high dilution conditions to favor the formation of the crown ether type compound 102 which is isolated from the resulting mixture by complexation with $Mo(CO)₄$ (norbornadiene) (Scheme 52).¹⁵²

The benzooxaphosphacycloalkane 103 is prepared by palladium-catalyzed intramolecular cyclization of the $corresponding mon $0(\omega$ -o-bromophenylalkyl) ester$ (Scheme 53).¹⁵³

Reaction of phenylbis(trimethylsilyl)phosphane with trans-l,2-cyclohexanedicarboxylic acid dichloride af-

Scheme 54

Scheme 55

Scheme 56

fords the l,2-diphospha-3,9-cyclodecadiene **104** in 75 *%* yield (Scheme 54).^{154,155}

Addition of dimethyldichlorosilane to the dilithium salt $PhP(Li)(CH₂)₂OLi$ at 0 °C gives exclusively the stable dimer 105.¹⁵⁸

Treatment of 4'-aminoacetophenone hydrochloride with H_3PO_2 is claimed to lead in part to the cyclic phosphonamidate **106** (Scheme 55).¹⁶⁷

A ring expansion to a 10-membered cyclic phosphine imide is observed when the bis(silylamino)phosphine **107** reacts with methyl vinyl ketone.¹⁵⁸ The initial product **108-Z,** with Z configuration, apparently results from nucleophilic attack by phosphorus on the carbonyl carbon, followed by a silyl migration from nitrogen to oxygen. The Z isomer slowly converts to the *E* isomer 108-E. An intramolecular silicon transfer also occurs when the phosphine **107** reacts with cyclohexene oxide. This zinc-catalyzed epoxide ring opening yields the phosphine imide **109** (Scheme 56).¹⁵⁹

The reaction of l,2-bis(bromomethyl)benzene with a N ₋ N' -phosphino-substituted S,S-dimethylsulfodiimide leads to the nine-membered ring salt 1**10** (Scheme 57).¹⁶⁰

Scheme 57

Scheme 58

Scheme 59

Scheme 60

The (E,E) -1,7-dioxa-4,5,10,11-tetraaza-3,4,8,9-tetraphosphadodeca-5,ll-diene **111** is obtained from the reaction of $[(\eta^5$ -C₅Me₅)(CO)₂Fe–P=P–Mes*] with Δ^1 l,2,4-triazoline-3,5-diones in diethyl ether (Scheme 5 8).161-164

The reaction of bis(dithiophosphonic acids) with RCN gives a 1:1 adduct which decomposes to RC(S)- NH2 and cyclic trithiopyrophosphonates **112.** The stability of 1**12** decreases as *n* increases (Scheme 59).¹⁶⁶

Lithium salts of polyfluorinated alcohols treated with $cis-1,3-di-tert-butyl-2,4-dichloro-1,3,2,4-diazadiphos$ phetidine give rise to the corresponding polyfluoro bis- (alkoxy-bridged) diazadiphosphetidine species **113** (Scheme 6O).¹⁶⁶

The bisphosphite 114 reacts exothermically with 2 equiv of phenyl azide to give a mixture consisting of macrocycle **115** and compound **116** (Scheme 61).¹⁶⁷' 168

Extension of the Atherton-Todd reaction to the l-(organooxy)-l-hydridobicyclophosphoranes allows the preparation of the bis(bicyclophosphoranes) **117a,b** bearing a 10-membered ring (Scheme 62).^{169,170}

Such a reaction performed with bis(hydridobicyclophosphoranes) and α, ω -diols affords bicyclophosphoranes containing macrocycles 118a,b and 119 (Scheme 63).¹⁷¹

F. Cyclophosphazenes

1. Cyclopolyphosphazenes

Cyclophosphazenes $(X_2P = N)_n$ ($n \ge 5$) are the oldest type of phosphorus macrocycles reported in the literature. The penta-, hexa-, and heptamers of phosphonitrile dichloride $(Cl_2P\equiv N)$ were isolated and correctly identified by Stokes at the end of the nineteenth century.¹ A huge amount of publications and patents deals with phosphazenes. However, most of this work concerns cyclotri- or cyclotetraphosphazenes $(n = 3, 4)$ and their polymerization, even if some of the earlier reviews in this topic also evoked macrocyclic phosphazenes.172,173 Indeed, chlorocyclotriand -tetraphosphazenes are the main products of the cyclocondensation of ammonium chloride with phosphorus pentachloride. Macrocyclic compounds ($n \geq$ 5) are isolated from the crude mixture by fractional distillation, crystallization, or chromatography up to *n* $= 15^{174,175}$ The earliest syntheses were carried out in

Scheme 65

sealed tubes, heated at 150–200 °C, and in the absence of a solvent. This technique gave rise to serious explosion hazards due to the high pressure of hydrogen chloride within the tubes. Now the reaction is performed in the presence of a solvent, often *sym*tetrachloroethane.¹⁷⁶

Several other methods allow the obtention of oligochlorocyclophosphazenes, for instance the use of ammonium carbamate¹⁷⁷ or $Hg(NH_2)Cl^{178}$ instead of ammonium chloride, a two-step reaction of ammonium chloride with $P(O)Cl₃$ and then with $PCl₅$, 179 and the reaction of hexamethyldisilazane with $[Cl_3P=N=$ PCl_3]⁺Cl⁻ (Scheme 64).¹⁸⁰

The corresponding bromo derivatives 120b $(n \geq 5)$ are obtained in the reaction of phosphorus pentabromide with ammonium bromide¹⁸¹ and separated until $n = 16$.¹⁸² The pentamer is also obtained in low yield in the reaction of sodium azide with phosphorus tribromide (Scheme 65).¹⁸³

An analogous reaction, carried out with trimethylsilyl azide and $\overline{RPI_2}$ allows the preparation of $\overline{[RIP=N]}_n$ derivatives in good yields $(R = Et, n = 22; R = Ph,$ p -ClC₆H₄, $n = 5$).¹⁸⁴

The fluoro derivatives 120c are prepared by fluorination of chloro oligomers 120a with potassium fluorosulfite.186,186 Partial fluorination is observed with a mixture of SbF_3-SbCl_5 .¹⁸⁷ The vibrational data,^{188,189} fragmentation patterns,^{190,191} 36 Cl₁.192 19F,¹⁹³ and ³¹P NMR¹⁹⁴ of several oligophosphazene halides are known, as well as the X-ray structure determinations of the fluoro, 195 chloro, 196,197 and bromo¹⁹⁸ pentamers.

Chloro and fluoro derivatives are starting reagents for a series of substituted macrocyclic phosphazenes. The mechanism of the nucleophilic substitution of chlorine was suggested to be SN_2 by studying chlorine exchange between radioactive tetraethylammonium chloride and $(PCl_2N)_n$.¹⁹⁹ Reaction of 120a with sodium derivatives of alcohols allows the isolation of the alkoxyphosphazenes 121e-g (Scheme 66).200,201 An interconversion of the phosphazene ring, increasing the proportion of lower homologues, was observed during the reaction of PhONa with a mixture of oligomers 120a.202,203 The X-ray structure determination of the hexadeca- and dodecamethoxy derivatives have been reported.^{204,205}

The amino-substituted cyclophosphazenes 122 are $obtained$ by reaction of amines $^{201,206-208}$ or lithio derivatives²⁰⁹ with chloro- or fluorophosphazenes. The reac-

tion of n-butylamine with a mixture of chlorophosphazenes $(3 \le n \le 7)$ increases the proportion of higher homologues.^{202,203} The X-ray structure determination of 122e when $n = 6$, performed in 1964, is certainly the oldest phosphorus macrocyclic structure ever deter $mined.^{210,211}$ The structure when $n = 8$ is also known.²¹²

The dimethylphosphazene **123e** was first obtained in low yield by reaction of methyllithium with fluorophosphazenes.²¹³⁻²¹⁵ The yield was improved by the use of methylmagnesium bromide instead of methyllithium.216,217 Dimethylphosphazenes form the longest series of cyclic molecules with known structures. Indeed, crystal structure determinations of $(\text{PMe}_2\text{N})_n$ were undertaken for $n = 5,218$ $n = 6,219$ $n = 7,216$ $n = 8,220$ and $n = 9 - 12^{217}$

Partially substituted oligocyclophosphazenes are often obtained by starting from fluoro derivatives **120c.** The formation of C-substituted compounds occurs with (p-fluorophenyl)lithium²²¹ and (lithiomethyl)pyrrole,²²² whereas compounds with $P-N$ bonds are formed with (dimethylamino)trimethylsilane or -stannane²²³ or tris-(trimethylstannyl)amine.²²⁴ Partial reaction of ethaneor benzenethiolate with $N_5P_5Cl_{10}$ has also been reported.²²³

A few reactions concerning the phosphorus-nitrogen bond of organo-substituted phosphazenes are known. For instance, compound 123e forms the monoquaternary salt 124e when heated in methyl iodide, ²¹⁵ whereas neat 121e undergoes a thermal rearrangement when heated at 150 °C under reduced pressure.²²⁶ Several isomers of oxocyclophosphazanes 125e $(n = 5, 6)$ are thus obtained. The first rearrangement phosphazene *-*•* phosphazane in the cyclic series was reported for 120a $(n = 6)$ which reacts with sodium hydroxide to yield the acid 125d (R = H).^{227,228}

2. Reactions Involving Cyclotrl- or Cyclotetraphosphazenes

The reaction of hexachlorocyclotriphosphazene $N_3P_{3^-}$ $Cl₆$ with polyamines, polyoxadiamines, or dithiadiamines gives products whose structures depend drastically on the nature of the polyamine and on the experimental conditions. Spiro **126a-e** and **127a-d,** dispiro **128a-d,** cis 129a-e or trans 130, ansa, dibino **131a–e** and **132a–c**, and tribino **133²⁴⁸** derivatives (Chart 2) were thus prepared.

The reaction of octachlorocyclotetraphosphazatetraene $N_4P_4Cl_8$ with the polyamine $H_2N(CH_2)_3NH$ - $(CH₂)₄NH₂$ gives a polycyclic species 134.²⁴⁹

Several macrocycles were prepared by reacting N_3P_3 - $Cl₆$ or $N₄P₄Cl₈$ with diols, bis(2-hydroxyethyl) ether, or bis(hydroxymethyl)-O-carborane. Ansa 135a²⁵⁰ and $135b$,²⁵¹ diansa 136 ,²⁵⁰ spiroansa 137 ,²⁵² and dibino 138a,^{250,253,254} 138b²⁵² derivatives (Chart 3) were thus isolated. Cyclic triphosphazene with four trifluoroethoxy side groups and two nongeminal chlorine atoms $(1,3)$, $[N_3P_3(OCH_2CF_3)_4Cl_2]$ reacts with a diphenol to give the transannular derivative 135c.²⁵⁵

Under controlled reaction conditions and without using a phase-transfer catalysis the polycondensation of $N_3P_3Cl_6$ and hydroquinone leads to a mixture of oligomers with formula $N_3P_3Cl_5$ -[(p-OC₆H₄O)-(N₃P₃- $Cl₄$)]_n-(p-OC₆H₄O)-N₃P₃Cl₅. The first compound (n = O) in this series could be isolated in a pure state. In addition, very small quantities of a double-bridged species $N_3P_3Cl_4$ -(p-OC $_6H_4O$)₂- $N_3P_3Cl_4$ 138c have been detected.^{256,257}

/// . Ring Opening

A. I ntracyclic C-P-C Linkage

Almost all the macrocycles containing C-P-C linkages and obtained by ring opening are nine-membered rings. They are synthesized by opening of phosphorus fivemembered rings according to three main pathways: thermal cleavage of P-C bonds, addition of unsaturated compounds, or oxidation of $C=C$ bonds.

First attempts consisted of heating neat spirophosphoranes up to their melting point.258-260 This induces the opening of two five-membered rings, followed by the formation of a C-C bond, leading to the tricoordinated phosphorus macrocycles 139a-j (Table 7, Scheme 67). Addition reactions on the lone pair of phosphorus are observed with hydrogen chloride and methyl iodide. The ionic macrocycles 141a,c are also obtained by heating a mixture of methyl iodide and spirophosphoranes, whereas the intermediate 14Of is isolated starting from a dimethylanilino-substituted spirophosphorane. Reaction of the ionic species 140 and 141 with tetraphenylborate leads to the corresponding borate salt of the phosphoniums.²⁵⁸

The tricyclophosphoranes 142a,b obtained by addition of dimethyl acetylenedicarboxylate onto phospholes undergo a ring-chain tautomerism induced by heating.261,262 Only one isomer is obtained for compounds 143a,b as shown by ³¹P and ¹H NMR spectra, i.e., the cis,cis,trans,cis-phosphonin (Scheme 68).

An analogous reaction carried out with 3-butyl-l,2 diphenylphosphindole affords the benzodihydrophosphonine 144 in low yield (10%). This compound presumably arises from hydrolysis of a polycyclic intermediate similar to the ylide 142 (Scheme 69).²⁶³

The phosphorus-germanium bond of germaphospholanes is easily cleaved with α -unsaturated carbonyl derivatives such as cinnamaldehyde and methyl vinyl

Table 7. Compounds 139a-j

Scheme 67

ketone. The nine-membered germaphospha heterocycles 145a-b are thus obtained as a mixture of diastereoisomers (Scheme 7O).²⁶⁴

The phospholane ylide 146 slowly dimerizes with spontaneous ring opening, but the resulting double

Scheme 68 Scheme 72

Scheme 69

Scheme 71

ylides 147 and 148 are not isolated, due to the reversibility of the dimerization (Scheme 71).²⁶⁶

Diketo derivatives 150 are useful functional precursors of the series of phosphorus nine-membered macrocycles 151-164. These precursors 150a-i are obtained in good yields by ring-opening ozonolysis of phospholenes 149a-i followed by reductive work up either by trimethyl phosphite or by a mixture of potassium iodide and acetic acid.266-269 The diketo functionality of compounds 150a-i gives rise to a versatile reactivity (Scheme 72).

Reduction of carbonyl groups of phosphanone dioxides 150a,b,d is achieved with sodium borohydride or by hydrogenation over a Raney nickel catalyst. A mixture of the three possible diastereomeric forms (one *dl* and two *meso)* is obtained for diols 15Ia^,²⁷⁰ whereas a single diol is formed for 151d.²⁷¹ Dehydration of compounds $151a$,d with $POCl₃-pyridine$ supplies different dienes in each case, which are assigned, from ¹H NMR data, the *cis,cis-* or *cis,trans* structure 152a and the *cis,trans* structure 153d, respectively. Deoxygenation of oxide 153d with $HSiCl₃-pyridine$ gives the phosphonine 154d which readily forms the methiodide 155d. Spectral data reveals the *cis,trans* structure in both compounds.²⁷¹

The bis-dithio ketals 156a,b are formed from ethanedithiol and diketo derivatives $150a$, b with $BF₃$ etherate as catalyst. The reductive desulfurization of 156a with Raney nickel affords the phosphonane 157a which is also obtained by hydrogenation with Pd/C of the diene 152a. Reduction of the phosphoryl function with phenylsilane gives the phosphine 158a which is readily quaternized with methyl iodide to 159a.²⁷⁰

Enolic character is noticeable in the phosphane diones 150, as evidenced by the ease of silylation with bis-

(trimethylsilyl)acetamides. Compounds 160a,b,g,ithus obtained are extremely sensitive to moisture.^{270,272} Compound 16Og is interesting as it loses 1 equiv of HBr when reacted with 1 equiv of triethylamine. Two isomers relative to the 1,5 substituents (Br and Ph) are detected on the ³¹P NMR spectrum of the resulting bromophosphonine 161g. Addition of a second equivalent of triethylamine induces a full dehydrohalogenation. The phosphonine oxide 162 is obtained together with a bicyclo derivative.²⁷²

Finally, another type of reaction on the ketone functions concerns the formation of the dihydrazone derivative 163a from 150a and p-toluenesulfonyl hydrazine. In fact, only one example of reaction in which the diketo function is preserved has been described, i.e. the debromination of the dibromophosphane dione 150h with zinc, leading to $164h^{270}$

In connection to the preceding series of compounds $150a-i$, the *trans,cis,cis,cis*-phosphonine oxide $150j$ has been obtained by oxidation of the phosphirane 165 with $H_2O_2^{273}$ or tert-butyl hydrogen peroxide.²⁷⁴ However, compound 15Oj is only observable at low temperature, since it undergoes an intramolecular cycloaddition leading to the dihydrophosphaindole derivative 166 (Scheme 73).^{273,274}

B. Intracyclic N-P-N Linkage

Most of the macrocycles synthesized by ring opening are either issued from cyclophosphazenes or from tetraaminophosphorane derivatives. The oldest reports concern ring opening of halogenocyclophosphazenes. Thus, any $(NPCl₂)_n$ can be converted into a mixture of $(NPCl₂)$ _n derivatives by heat.^{1,202,275,276} This reaction is

Scheme 73

Scheme 74

Scheme 76

also observed with phosphazenes which possess both organic and halogen side groups.²⁷⁷ The reaction is far more difficult with fully substituted cyclotriphosphazenes. However, the ring strain imparted by transannular metallocenyl units to organo-substituted cyclotriphosphazenes induces an easier ring opening and yields cyclic oligomers when heated at 250 °C. In some cases, the presence of a catalytic amount of N_3P_3 -CIe is needed as an initiator of the oligomerization (Scheme 74). The main product of the reaction is often the cyclic hexamer 167 which is generally obtained in low yield, except for $167a$ (33% yield).^{278,279}

Ring strain in the condensed ring structure of nitrilohexaphosphonitrilic chloride 168 induces the cleavage of the central bond when reacted with dimethylamine. Two of the bridgehead chlorine atoms of the twelve-membered ring 169 remain unsubstituted (Scheme 75).^{280,281}

The ring-opening of mixed phosphazenethiazyl rings is easier than for phosphazenes. Thus, the spontaneous conversion of 170 into the dimer 171 has been reported282,283 and confirmed by an X-ray structure determination of 171a (Scheme 76).²⁸²

Scheme 77

Reaction of the related eight-membered ring 172 with bromine or iodine gives the unexpected dicationic species 173 (Scheme 77).²⁸⁴

The second type of macrocycles with N-P-N linkages, synthesized by ring opening, are tetraaminophosphorane derivatives which are obtained as a mixture of P^V-P^{III} tautomers by transamination reactions of tetraaminomacrocycles 174a-c with hexamethylphosphoric triamide.^{285,286} Examination of the effect of ring size on the $P^{III}-P^{V}$ tautomerism shows that compound a gives a mixture in which the "closed" tetracyclic phosphorane tautomer 175 predominates, whereas compound b only gives the isomeric "open" tricyclic P m tautomer 176. Less symmetrical azamacrocycles, for instance, isocyclam "3322", leads to a mixture of P^v and regioisomers of P^{III} (Scheme 78).²⁸⁵

Various attempts have been made to displace the tautomeric equilibrium toward the open tricyclic structure 176, mainly by complexation.²⁸⁷⁻²⁸⁹ Such behavior is also observed in the case of oxidation of phosphorus by molecular sulfur, potassium selenocyanate,²⁹⁰ or trimethylamine oxide²⁹¹ leading to the corresponding sulfide 177a, selenide 178a, and oxide 179a. Compounds 179²⁹² are also obtained by a twostep process. After oxidation of the mixture PIII-PV with CCl_4 , the resulting phosphoniums 180a-c are hydrolyzed with sodium hydroxide to yield the oxides 179a-c. Reaction of electrophiles with the N-H

Scheme 79 Scheme 81

functions of 176a-c gives mono-N-substituted macrocycles 182a-i, which are also obtained by base-induced isomerization of the pentacoordinated alkoxyphosphoranes 181a-i. Removal of the phosphoryl protection by acid hydrolysis of the oxides 182a-i yields mono-N-functionalized tetraazamacrocycles.²⁸⁶ The phosphorane alkoxide 181j, obtained by reaction of cyclamphosphorane with trifluoroacetophenone, is spontaneously converted to its structural isomer 182j.²⁹³

Addition of 1 mol equiv of diborane to the cyclamphosphorane 175a, in equilibrium with the open form 176a, leads to a complex mixture from which the bis- (borane)cyclamphosphorane 183a and the open form 184a are isolated. Compound 183a is also slowly but totally converted to 184a in a few weeks when left in solution.²⁹⁴ An X-ray structure determination of the open phosphane 184a shows that the diastereoisomer formed is $(R, S; S, R)$, the one in which the P-B and N-B bonds are oriented *trans* to each other.²⁹⁶

Reaction of 1-phenylphospholene oxide with excess butyllithium and aromatic nitriles induces a ring opening and gives the diazaphosphacyclononatrienes 185a,b in very low yield $(3-5\%)$ after hydrolysis with aqueous ammonium chloride.²⁹⁶ A monoalkylation on nitrogen is obtained with a mixture of NaH and benzyl bromide, whereas a dialkylation reaction is observed with NaH and methyl iodide (Scheme 79).²⁹⁶

C. I ntracyclic O-P-0 Linkage

In contrast to the reaction of phosphorus triamide with polyaminomacrocycles **174** (see above), the reaction with polyoxy macrocycles 188 does not lead to a PV-PIII equilibrium, but gives a single compound, 189, a hexacoordinate phosphorus inp-ter£-butylcalix[4]arene (Scheme 8O).²⁹⁷

The pentacoordinate analogue of 189 has never been isolated. Indeed, all attempts to remove dimethylamine

by heat or reaction with trifluoroacetic acid only lead to the tricoordinate phosphorus macrocycle 190.²⁹⁷

However, this type of macrocycle is not representative of most phosphorus macrocycles with O-P-0 linkage obtained by ring opening. Indeed, the principal method of synthesis concerns the ring-opening polymerization of cyclic phosphonites. First reports did not elucidate the structure of the polymers, long chains, or macrocycles (see for instance298-300), but detailed investigations revealed the formation of dimeric and trimeric molecules along with higher polymeric species.³⁰¹ Oligomers are sometimes observed during the synthesis of monomers 192 from diols 191 and dichloro- or diaminophosphines. However, ³¹P NMR studies of crude dioxaphosphepanes 192n reveal that dimers and oligomers come from this monomer rather than from an initial [2 + 2] or [1 +1] cyclocondensation reaction (Scheme 81, Table 8).³⁰²

Several factors influence the oligomerization. First of all, high-grade purity monomers dimerize very slowly,³⁰¹ while impurities, particularly traces of water seem to be a determinant factor of oligomerization.³⁰³ The rate of reaction also depends on the type of phosphonite. An extra cyclic P-C bond is needed to observe a ring opening.³⁰⁴ The oligomerization is accelerated according to the following series of R substituents Ph \ll Me \lt Et \lt iPr \lt tBu.^{302,305} Phosphonites with $R = F$, Cl, OMe, OPh, or NMe₂ are stable and do not show any tendency to oligomerization.³⁰⁵ The last criterion which influences the oligomerization is the size of the ring. Five-membered rings (phospholanes 192a-e) oligomerize faster than sixmembered rings (phosphorinanes 192f-m) and much more faster than seven-membered rings (phosphepanes 192n).³⁰² Furthermore, the yield of dimers is very low (1%) starting from phosphocanes 1920-t (eightmembered rings).306,307

In one case, a measure of the mean degree of oligomerization gives a value around 8,³⁰² but only the

Table 8. Compounds 192-198

301,305,309						
$n = 2$						

dimers have been characterized, although not fully isolated. In almost all cases two diastereoisomers *(cis* and *trans)* are observed. The only exception comes from macrocycle 194s in which two additional phosphorus atoms give rise to the expected five diastereoisomers.³⁰⁸ The tricoordinated phosphorus macrocycles 194 are in equilibrium with oligomers and monomers. Heat or dilution allows the recovery of the starting monomers 192.³⁰¹ - 305 Furthermore, the oxidizability of these compounds prevents the isolation of P^{III} forms. On the other hand, reaction of a mixture of monomers, dimers, and oligomers with elemental sulfur gives rise to stable compounds. Among them, monomers 193 and dimers 195 are isolated.³⁰¹⁻³⁰⁷ Contrary to the P¹¹¹ forms, no equilibrium is observed between neither monomers P™ and dimers P™, nor between the two diastereoisomeric P™ dimers, *cis* 194' and *trans* 194", which differ by the relative orientation of the R groups with respect to the mean plane of the molecule. The relative amount of the diastereoisomers is generally different from the statistical 1/1 ratio and depends on the size of the R substituent. For instance, only one isomer is isolated for compound 195 c (R = tBu), the *trans* isomer 195"C.³⁰⁴ In most cases, characterization of *cis* and *trans* isomers is achieved by ³¹P and ¹H NMR, and these assignments have been confirmed by X-ray structure determinations for the *trans* ten-membered structure determinations for the *trans* ten-membered
ring 195''d³⁰⁴ and the cis twelve-membered ring 195'k.³⁰⁹

The spontaneous ring-opening process of phosphonites is often very slow, and the yield of isolated macrocycles is very low, so the method needs to be improved. This has been achieved by developing a stepwise controlled synthesis, starting from the ringopening reaction of phosphonites 192 by glycol (Scheme g2) 305,306

Phosphadiols 196 are in equilibrium with the starting products and a mixture of oligomeric species. Addition of sulfur allows to isolate the P™ derivatives of the monomer 193, the diol 197, and a small amount of 199. Treatment of phosphadiols 197 and 199 with methyldichlorophosphine induces a ring closure and yields 16- and 24-membered rings, compounds 198 and 200, respectively. Both compounds exist in two diastere-

Scheme 83

oisomeric forms *cis* and *trans* for 198, *cis,cis* and *cis,trans* for the trimer 200, which is obtained only when $R = Me^{307}$

In contrast to dioxaphospholanes, diazaphospholanes do not oligomerize spontaneously on standing in solution.⁸⁰⁵ However, the β -chloroethoxy substituent on phosphorus in compound 201 induces a quantitative and spontaneous ring-opening reaction leading to the ammonium salt 202. Then, 11-membered macrocycles 203 and 204 are obtained by reaction with alcohols 310,311 or amines,³¹² respectively (Scheme 83).

Compound 205 prepared from the reaction of phenyldichlorophosphine on 5 -bromo- N -(carboxymethyl)anthranilic acid, in the presence of triethylamine, exhibits an equilibrium connecting a bicyclophosphorane and its isomers.³¹³

D. Intracyclic S-P-S or P-P-P Linkage

The chemical behavior of dithiaphosphonites is rather different from that of dioxaphosphonites. For instance, dithia five-membered rings do not show any tendency

to oligomerize, whereas the corresponding dioxa compounds are difficult to isolate as monomers.³¹⁴ However, dimers 208a-d and oligomers are formed in the synthesis of thia six- and eight-membered rings, the dithiaphosphorinanes 207a,c³¹⁴ and trithiaphosphocanes 207b,d³¹⁵ respectively (Scheme 84).

The thia P^{III} derivatives are much more stable than the corresponding oxo P^{III} derivatives. Indeed, compounds 207 and the *cis* and *trans* isomers of compounds 208 are isolated by column chromatography.^{305,314,315} However, an equilibrium exists between monomers, dimers, and oligomers. For instance, a solution of pure *trans-20Sc* dimer heated at 80 ⁰C gives a mixture of *cis-* and *trans-20Sc.* If this mixture is heated at 160 ⁰C, the monomeric species 207c appears.³¹⁴ A similar behavior is observed for 208b upon heating or diluting; the equilibrium is displaced toward the monomer 207b.³¹⁶ This may explain the formation of a certain amount of monomer in the course of the synthesis of the dimer, even when the diphosphorus derivative 206 is the only compound detected by ³¹P NMR after the first step of the reaction.³¹⁵

P^{IV} derivatives are obtained by reaction with sulfur $(210$ and $212)$ or hydrogen peroxide $(209$ and $211).^{315}$ The dependence of NMR parameters on ring size of these compounds has been studied, 316 and the structure of macrocycle cis-212d has been determined by X-ray diffraction.³¹⁷

Only one example of macrocycle containing a P-P-P linkage is known. Thus, heating pentamethylcyclopentaphosphine (PMe)s with chromium, molybdenum, or tungsten hexacarbonyls for long reaction times (16- 30 h) results in the formation of the nine-membered ring complex $(PMe)_{9}M_{2}(CO)_{6}.$ ³¹⁸

E. Intracyclic X-P-Y Linkage

In contrast to macrocycles containing symmetric C-P-C, N-P-N, O-P-O, or S-P-S linkages which constitute an abundant series of compounds, few macrocycles containing unsymmetrical phosphorus units are obtained by ring-opening reactions. Most of them arises from the cleavage of a P-O bond. For instance, oxazaphospholidines 213, obtained by reaction of 2-(methylamino)ethanol with dichloro- or bis(dimethylamino)phosphines, slowly polymerize at room

Scheme 85

Scheme 86

Scheme 87

temperature.³¹⁹ The reaction is reversible since the monomer is regenerated by the action of heat. The first step of the oligomerization is the formation of dimers $214^{305,320}$ which exist in two diastereoisomeric forms.³²⁰ Reaction with sulfur allows to isolate diastereoisomers 215' and 215" (Scheme 85).

The bicyclic derivative 216 also undergoes a dimerization at room temperature.³²¹ However, in contrast to the above reports, only one isomer is obtained. A crystal structure of compound 217 establishes that this compound is formed by rupture and reformation of two P-O bonds.³²² The orientation of the phosphorus lone pairs is *trans* relative to the mean plane of the 10-membered ring. The same orientation is also observed in the P^{IV} derivative 218³²³ (Scheme 86).

Ring opening does not always occur by spontaneous reaction but may also be induced by addition of an external reagent. Cyclic phosphonites 219 add at the exocyclic carbon center of the O -quinordal form of benzothiete, leading to the zwitterionic intermediates 220a-e.^{324,325} The type of rearrangement of these intermediates depends on the phosphonite used. The o-xylylene derivative 219e induces an intramolecular rearrangement of 220e leading to 221e, whereas the rearrangement of intermediates 220a-d requires a second molecule of benzothiete, leading to the macrocycles 222a-d (Scheme 87).^{324,325}

Scheme 89

Scheme 90

A similar mechanism is proposed to explain the formation of the nine-membered ring phosphonate 223 obtained in better than 50% yield in the reaction of phenyl neopentane-diyl phosphite with acrylic acid (Scheme 88) . 326

Ring opening of l,2-diphenyl-l,2-diphospholane with methyl lithium and subsequent reaction with bromobenzene surprisingly affords the 10-membered heterocycle 224 in 76% yield (Scheme 89).³²⁷

IV. Template Reactions

A. Cyclizatlon at a Substltuent of Phosphorus

The multistep synthetic routes used for the synthesis of macrocycles incorporating a C-P-C linkage are often successfully replaced by template syntheses. The cyclization may occur either at phosphorus or at a substituent of phosphorus. This is the case for the first phosphorus macrocyclic complex synthesized by exploiting the template effect, 227, which was prepared by alkylation of the nickel complex of the tetradentate mercaptophosphine 225 with dibromoxylene 226 (Scheme 90).³²⁸

An analogous reaction carried out with the nickel or palladium complex 228 and 226 results in the formation of a free eight-membered cyclic phosphonium, whereas the dibromo derivatives 229 leads to the 10- and 11 membered macrocyclic salts 230a-c in good yield (54- 78%) (Scheme 91).³²⁸

Treatment of an equimolar mixture of the (R,R) and *(R,S)* diastereoisomers of 231 with boron tribromide induces an intramolecular cyclization at sulfur. Decomplexation of the resulting macrocyclic complex 232 is achieved with sodium hydroxide and potassium cyanide. The racemic *(RJl)* diastereoisomers 233' and the meso (R, S) diastereoisomer 233" of the resulting free diphosphorus macrocycle are obtained in very low yield, 1 % and 0.5 % respectively. Heating a pure sample of 233' results in the formation of a mixture of 233' and

Scheme 92

Scheme 93

233", as a consequence of the epimerization at phosphorus (Scheme 92).³²⁹

Another example of cyclization at sulfur is observed for the hexadentate macrocyclic complex 236. This complex is formed by the oxidative coupling of S-H group via disulfide bonds obtained by reaction of tris- (mercapto phenyl)phosphine (234) with the osmium complex 235. An X-ray structure determination of 236 confirms the formation of a 14-membered macrocycle with thiolate arms (Scheme 93).³³⁰

Cyclizations at nitrogen using template reactions are rarely used for the synthesis of phosphorus macrocycles. However, this method has been applied in the reaction of the neutral amidonickel complex 236 with propane-1,3-diyl ditoluene-p-sulfonate. This *meso* complex undergoes a facile cyclization reaction. The retention of the *meso* configuration in the complex 237 and in the free macrocycle 238, obtained with aqueous potassium cyanide, is confirmed by X-ray structure determinations of both compounds (Scheme 94).³³¹

In situ cyclocondensations of diamines with dialdehydes or diketones in the presence of metal ions is an important way of synthesizing of macrocycles, which has been applied to phosphorus macrocycles. For

Scheme 94

Scheme 95

instance, heating the diaminophosphine **239,** diacetyl pyridine, and NiXY and then adding NH_4PF_6 generally produces the pentacoordinate nickel complexes **240,** whereas reaction with $NiCl₂$ results in the formation of the tetracoordinate macrocyclic complex **241.** Reduction of 241 is accomplished with both NaBH₄ and PtO-H2. The free reduced ligand **243a** is prepared after displacement from the coordination sphere of nickel in **242** by cyanide ions in water. The generation of the free ligand is confirmed by the formation of the phosphine sulfide **243b** after reaction with sulfur (Scheme 95).³³²

The synthesis of a macrocyclic complex strongly depends on the length of the phosphinodiamine and the metal used. Reactions of diphosphinodiamines of type 244 ($n = 1, 2; m = 1, 2$) with diacetylpyridine were carried out with perchlorates of Mn^{2+} , Fe^{2+} , Zn^{2+} , Cd^{2+} , Hg2+ , and Ag⁺ . However, macrocyclic complexes **245** have been formed and isolated only in the presence of $Ag⁺$ or $Cd²⁺$ and for the two longest chain diphosphinodiamines (Scheme 96). The corresponding tetraphenylborate derivatives of complexes **245** are obtained by metathesis.³³³

The type of diketone used also influences the *in situ* condensation reaction. Attempted syntheses of macrocyclic complexes by reaction of the diphosphinodiamines **244** with acetylacetone and nickel acetate proved unsuccessful. However, complexes **248** and **249** are obtained by a two-step process, which requires first the synthesis of the Schiff base ligand **246.** Addition of nickel acetate presumably leads to the hexacoordinate

Scheme 97

Schiff base Ni complex **247,** although this species has never been isolated. Acetic acid and $NaPF₆$ induce an intramolecular rearrangement of **247** and yield two different complexes, **248** and **249,** depending on the chain length. The 14-membered macrocyclic complex is isolated in the dienato form **248,** while the 16 membered ring is obtained in the diene form **249.** X-ray structure analysis of **249** shows the formation of the *meso* isomer (Scheme 97).334,335

B. Cyclization at Phosphorus

Carbonyl compounds may undergo the addition of secondary phosphine complexes to yield compounds which contain OH groups in the α position relative to phosphorus. Thus, the 2-fold-substituted nickel or palladium complexes of disecondary phosphines **250** are converted into the macrocyclic complexes **251** by reaction with α - or β -dicarbonyl derivatives (Scheme **g g) 336,337**

The conversion $250 +$ diketone \rightarrow 251 only operates when a 14-membered ring is produced. When $m = 1$, the reaction of complex 250 with biacetyl $(n = 0)$ only gives ill-defined products, and no reaction occurs between complex 250 $(m = 2)$ and acetylacetone $(n = 1)$ 1). However, macrocyclic complexes **251b-e** are isolated by reaction of complexes **250** with diketones. In all cases, **251** is formed principally as a mixture of only two isomers although eight chiral centers, four C and four P, exist in these molecules. Both isomers are isolated in pure form for compound **251c** and characterized by X-ray diffraction. In both isomers, the OH groups occupy the axial position, and for one isomer, all the methyl groups on phosphorus are in the *cis*

position, in contrast to the situation for the other $\overline{\bf i}$ somer. 336,337

Compounds 25 lb,c may also be prepared by reaction of palladium or nickel acetylacetonate with a disecondary phosphine and HCl. In this reaction, only one isomer is obtained for 25 Ic, but two isomers are obtained for 251b. A related macrocyclic complex251a is formed in the reaction of 250 with malonaldehyde tetramethyl acetal and traces of HCl to convert the acetal used into aldehyde accessible for the addition of the P-H bonds. Several configurational isomers of complex 251a are formed in this reaction.³³⁷

An analogous reaction is observed in the stepwise ring closure of the intermediate acetal or ketal complexes 253, obtained by replacement of the halogens X of complexes 252 by bis(secondary phosphines).³³⁸ The influence of metal ions in ring closure reactions is again exemplified in this reaction. Indeed, zinc complexes react very slowly and lead to ill-defined compounds, whereas nickel, palladium, and platinum complexes give macrocyclic complexes 254a-k, obtained in good yields as a mixture of diastereoisomers. A total of 20 diastereoisomers may result from the six centers of chirality; however, in most cases, the number of diastereoisomers obtained, deduced from ³¹P NMR spectra, is lower. The best result, observed with the palladium complex 254f (3 diastereoisomers) may be due to the close fit of the 14-membered ring to Pd(II) (Scheme 99, Table 9): Complexes 254a-k are extraordinarily stable. They are not replaced by cyanide ions, even on heating in concentrated solutions of aqueous KCN.³³⁸

The 2-fold-substituted palladium complex of disecondary phosphine 250 may also serves as precursor in cyclocondensation reactions with dichlorides in the presence of K_2CO_3 . A mixture of three diastereoisomers

Scheme 98 Table 9. Compounds 254a-k

254	$(O-R_2-O)$	R′	м	X			m n no. of isomers obtained
a	(E _t O) ₂	н	Ni	Cl	2	2	undefined
b	(EtO)2	H	Ni	Cl	2	3	undefined
c	(EtO) ₂	н	Pd	Cl	2	2	undefined
d	(EtO) ₂	H	Pd	Cl	2	3	6
е	$O(CH_2)_2O$	Me	Ni	Br	2	3	4
f	O(CH ₂) ₂ O	Me	Pd	Cl	2	2	3
g	$O(CH_2)_2O$	Me	Pd	Cl	2	3	6
h	O(CH ₂) ₂ O	Me	Pt	Cl	2	2	4
	O(CH ₂) ₂ O	Me	Pt	Cl	2	3	6
	$O(CH_2)_2O$	Me	Pd	Сl	3	2	5
	$O(CH_2)_2O$	Me	Pd	Cl	3	3	undefined

Scheme 100

is obtained for 255a, among which the pure *syn* (R, S, R, S) is isolated and characterized by X-ray diffraction. Treatment of 255a with KCN induces the release of the free macrocyclic ligand 256a which may be transferred to another metal or sulfurized (Scheme 10O).³³⁹

An exchange reaction of anions in complex 255a proceeds with HCl or NH_4PF_6 , and the metallic center may be oxidized to $Pd(IV)$ with H_2O_2 and then reduced again to Pd(II) with KCN.³³⁹ Compounds 255 are obtained in good yields (up to 99%) when the Z group is an unsaturated chain, but no reaction is observed with saturated links such as $Cl(CH_2)_nCl$ ($n = 3, 4$).³⁴⁰ However, a saturated complex 258b may be synthesized, but not isolated, by reaction of complex 255b with Raney nickel.³⁴⁰

Dibromides such as 226 also undergo cyclocondensation reactions with disecondary phosphine complexes. In fact, complex 259 represented the first example of a template reaction involving a phosphine ligand at the reaction center.³⁴¹ The chlorine anions may be exchanged with BF₄⁻ or SCN⁻ by metathetical reactions, and the uncomplexed macrocycle 260 is obtained by reaction with aqueous NaCN (Scheme 101).341,342

Methyllithium may be used as a base instead of potassium carbonate. Thus, the macrocyclic complex 263 is presumably obtained by reaction of complex 261 first with methyl lithium and then with the phosphorus dibromo derivative 262. However, complex 263 is not fully characterized and might be a polymer (Scheme 102).³⁴³

Elimination of lithium halide also occurs in the reaction of complex 264 (X = Li) with chlorophosphines.

Scheme 102

Scheme 103

Scheme 104

The resulting macrocyclic complexes 265a-c are also obtained in better yield starting from the silyl derivative 264 ($X =$ SiMe₃) (Scheme 103).³⁴⁴

The last type of synthesis taking advantage of template effect concerns the P-H bond addition across carbon-carbon double bonds. This reaction may be promoted under photolytic conditions but it is best induced by azobis(isobutyronitrile) (AIBN) as free radical initiator. The triphosphino macrocyclic complexes 267a,b are thus obtained in good yield. An X-ray structure determination of 267a shows that the formation of this complex involves anti-Markovnikov P-H bond addition across $C=C$ bonds of allyl groups (Scheme 104). 345, 346

If the reaction is carried out with the disecondary phosphine complex 268 and a divinylphosphine, the first step is the coordination of the later compound to nickel, followed by a rapid addition of the P-H moieties to the vinyl group.³⁴⁷ No activation is needed in this case to obtain 14-membered macrocyclic complexes 269a-f, generally as a mixture of four diastereoisomers.³⁴⁸ A metathetical reaction with KCN and NH₄-PF₆ affords four isomers from which one is isolated and characterized by X-ray crystallography.³⁴⁸

The presence of functional groups such as NEt_2 or H on phosphorus allows a variety of modifications. Scheme 105

Thus, complex 269a reacts with water and HBr to yield complex 271 which is the starting reagent for the synthesis of other functional complexes 272g-i. These complexes are obtained by two methods, either deprotonation of the P-OH function followed by addition of allyl bromide, or transformation of the P-OH function into P-Cl followed by reaction with alcohols. Macrocyclic diesters 273d,f are formed by addition of the P-H functions of complexes 269d, f to the double bond of methyl acrylate (Scheme 105).³⁴⁸

275

M = **Fe, Co,** Ni, **Zn**

274

V. Cryptands and Polymacrocyclic Compounds

In contrast to carbon and nitrogen cryptands and macrobicycles which constitute the now well-known classes of compounds (see for instance ref 7), phosphorus cryptands are still rare, despite the fact that the first one was obtained in 1970.³⁴⁹

Indeed, the template reaction of the tris(pyridyl) phosphine 274, first with $M(BF_4)_2$ and then with boron trifluoride, led to a series of monophosphorus cryptates 275 of iron, cobalt, nickel, and zinc whose magnetic properties were described (Scheme 106).³⁴⁹ The structure of the nickel complex has been confirmed by X-ray diffraction.³⁵⁰

After this pioneering work, only about 10 publications have appeared, almost all of them being published over

Scheme 107

the last five years. Several patents also report the preparation of phosphorus cryptands. Nevertheless, reading them carefully, it appears difficult to know exactly the type of compound really obtained, so they will not be mentioned here.

An encapsulation process was used to synthesize the cage complexes 277a,b starting from the cobalt complex 276, paraformaldehyde, phosphine, and triethylamine.³⁶¹ The phosphine oxide derivative 277b, whose structure was established by X-ray studies, arises from the oxidation of 277a during work up (Scheme 107).³⁵¹

High dilution coupling of the trismercapto sodium salt 278 and the phosphine oxide 279 affords the cyclophane 280 in 17% yield after purification.³⁵² Desulfurization then reduction of the phosphine oxide 281a gave the phosphacyclophane 281b which underwent a fast enantiomerization, as shown by the sharp singlet for the methylene protons in $\rm ^1H$ NMR spectrum (Scheme 108).³⁶²

The easy reaction of the phosphacyclophane 281b with methyl iodine, giving 281c, and the complexation with $PdCl₂(PhCN)₂$ indicate that the phosphorus lone pair is readily available, presumably due to an *out* geometry of the cyclophane (pyramidalization of the phosphine out from the cyclophane).³⁵²

In contrast, the phosphacyclophanes 283a-d have *in* geometries proved by X-ray crystallographic analysis for compounds 283a,^{353,354} the dinitro derivative 283d, and the amino-substituted cryptand 284.³⁶⁶ Phosphacyclophanes 283a-d are prepared in low yield by addition of KOH to a refluxing solution of the trismercapto phosphine 282 and $\alpha, \alpha', \alpha''$ -tribromomesitylene derivatives under conditions of high dilution. Treatment of 283b with TiCl₃ allows the reduction of the nitro group and gives the aminophosphacyclophane 284 (Scheme 109).³⁶⁵

Scheme 109

Scheme 110

Scheme 111

Scheme 112

The phosphorus of 283a is remarkably unreactive, presumably due to steric encumbrance induced by the *in* geometry. Heating compound 283a in refluxing acetic acid and hydrogen peroxide yields only the corresponding trisulfone 285a. Moreover, the phos-

Scheme 114

Scheme 115

Scheme 116

EtQ $Z = (CH₂)₂$ $Cl₂POEt$ or $(Et_2N)_2$ POEt N $X =$ lone pair, S C_{Det} 300 ; A

phine remains essentially unprotonated after bubbling HBr into a solution of 283a.³⁵⁴

Phosphine oxide bifunctional cryptands have been obtained by dimeric coupling of the tris propargylphosphine oxide 286 induced by copper(II) acetate. exo,exo-287' and exo,endo-287" cryptands are isolated in 14 and 7%, respectively.356,367 Hydrogenation of cryptands 287' and 287" specifically provides the reduced cryptands 288' and 288" (Scheme 110).

Surprisingly, studies of the complexation properties of these diphosphine oxide cryptands toward various neutral organic guests show that initial *exo* complexation of the phosphoryl group is the preferred mechanism for 288" while initial *endo* complexation is preferred for 287". This different behavior may be due

Scheme 117

Table 10. Macrocycles Characterized by X-ray Structural Studies

to changes in the host cavity, but is not directly related to the phosphorus-phosphorus distance which is similar in both compounds: 5.68 and 6.15 A for 287" and 288", respectively.³⁵⁷

These values preclude any phosphorus-phosphorus interaction in 287" and 288" in contrast to compound 290 which has some $P^{\dots}P$ bonding, according to ${}^{31}P$ NMR (Scheme 111).³⁶⁸

Another type of diphosphorus cryptand, 292, is prepared in 68-73% yield by reaction of the trichloro derivative 291 with various diamines (Scheme 112).⁷⁶

The cryptand 293 is obtained in 31 *%* yield, together with the macrobicyclic derivative 77, in the reaction of a diphenoxy sodium salt with adamantanediphosphonic dichloride (Scheme 113).^{116,128}

Finally, two special types of phosphorus cryptands are to be noticed. The first one is the tetrahedral cage 295 which is isolated in 50% yield after alkylation of the complex **294** with 1,3-dibromo propane (Scheme 114).³⁸⁹

The last type of cryptand to be mentioned are compounds in which the phosphorus atom is not the "node" of the cryptand. Reaction of the L,D macrocycle **296** with the phosphorodichloridite **297** gives the L,D cryptand **298** in 31% yield, whereas the L,L cryptand is impossible to obtain by the same way starting from the L.L macrocyclic precursor (Scheme 115).³⁶⁰ Hydrogenolysis of the chlorobenzyl group affords the sodium salt **299.**

Reaction of benzodiazacycloheptene with Cl_2POEt or (Et2N>2POEt gives the dimer **300** which is treated with sulfur to give the corresponding disulfide (Scheme 116). Similar reactions are also carried out with 1,4 diazacycloheptane.³⁶¹

Both "crisscross" and "normal" intramolecular addition reactions, induced by catalytic amounts of NaH, are observed with the bis(hydroxymethyl) derivative 301, resulting in the formation of the polycyclic compound **302** in 55% yield (Scheme 117).³⁶²

VI. References

- (1) Stokes, H. N. *Am. Chem. J.* **1897,***19,* 782.
-
- (2) Pedersen, C. J. *J. Am. Chem. Soc.* **1967,***89,* 7017. (3) Markovskii, L. N.; Kal'chenko, V. I. *Zh. Vses. Khim. O-va. im. D.I. Mendeleeva* **1985,** *30,* 528.
- (4) Tsvetkov, E. N.; Bovin, A. N.; Syundyukova, V. K. *Usp. Khim.* **1988,***57,* 1353; *Russ. Chem. Rev.* **1988,** 776.
- (5) Sinyavskaya, E. I. *Koord. Khim.* **1986,***12,* 1155.
- (6) Kabachnik, M. I.; Polikarpov, Y. M. *Zh. Obsch. Khim.* **1988,** 58, 1937; *J. Gen. Chem. SSSR* **1988,** 58,1729.
- (7) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. *Chem. Rev.* **1991,** *91,* 1721.
- (8) Kyba, E. P.; Hudson, C. W.; McPhaul, M. J.; John, A. M. *J. Am. Chem. Soc.* **1977,** *99,* 8053.
- (9) Davis, R. E.; Hudson, C. W.; Kyba, E. P. *J. Am. Chem. Soc.* **1978,** *100,* 3642.
- (10) Kyba, E. P.; Chou, S. S. P. *J. Chem. Soc, Chem. Commun.* **1980,** 449.
- (11) Kyba, E. P.; John, A. M.; Brown, B.; Hudson, C. W.; McPhaul, M. ; Harding, A.; Larsen, K.; Niedzwiecki, S.; Davis, R. E. J. Am. *Chem. Soc.* **1980,***102,*139.
- (12) Kyba, E. P.; Chou, S. S. P. *J. Am. Chem. Soc.* **1980,***102,* 7012.
- (13) Kyba, E. P.; Davis, R. E.; Hudson, C. W.; John, A. M.; Brown, S. B.; McPhaul, M. J.; Liu, S. T.; Glover, A. C. *J. Am. Chem. Soc.* **1981** *103* 3868.
- (14) Fox,M. A.; Campbell, K. A.; Kyba, E. P. *Inorg. Chem.* **1981,** *20,* 4163.
- (15) Kyba, E. P.; Chou, S. S. P. *J. Org. Chem.* **1981,** *46,* 860.
- (16) Kyba, E. P.; Liu, S. T. *Inorg. Chem.* **1985,** *24,* 1613.
- (17) Kyba, E. P.; Clubb, C. N.; Larson, S. B.; Schueler, V. J.; Davis, R. E. *J. Am. Chem. Soc.* **1985,***107,* 2141.
- (18) Markl, G.; Hoferer, M. *Tetrahedron Lett.* **1992,** *33,* 3621.
- (19) Ciampolini, M.; Dapporto, P.; Nardi, N.; Zanobini, F. *J. Chem. Soc, Chem. Commun.* **1980,**177.
- (20) Ciampolini, M.; Dapporto, P.; Nardi, N.; Zanobini, F. *Inorg. Chim. Acta* **1980,** *45,* L239.
- (21) Ciampolini, M.; Dapporto,P.; Dei, A.; Nardi, N.; Zanobini, F. *Inorg. Chem.* **1982,** *21,* 489.
- (22) Dapporto, P.; Ciampolini, M.; Nardi, N.; Zanobini, F. *Inorg. Chim. Acta* **1983,** *76,* L153.
- (23) Ciampolini, M.; Dapporto, P.; Nardi, N.; Zanobini, F. *Inorg. Chem.* **1983,***22,*13. (24) Ciampolini, M.; Nardi, N.; Zanobini, F.; Cini, R.; Orioli, P. L. *Inorg.*
- *Chim. Acta* **1983,** *76,* L17.
- (25) Mangani, S.; Orioli, P. L.; Ciampolini, M.; Nardi, N.; Zanobini, F. *Inorg. Chim. Acta* **1984,**85, 65. (26) Ciampolini, M.; Nardi, N.; Dapporto, P.; Zanobini, F. *J. Chem.*
- *Soc, Dalton Trans.* **1984,** 995.
- (27) Ciampolini, M.; Nardi, N.; Dapporto, P.; Innocenti, P.; Zanobini, F. *J. Chem. Soc Dalton Trans.* **1984,** 575. (28) Ciampolini, M.; Nardi, N.; Orioli, P. L.; Mangani, S.; Zanobini, F.
- *J. Chem. Soc, Dalton Trans.* **1984,** 2265. (29) Mealli, C; Sabat, M.; Zanobini, F.; Ciampolini, M.; Nardi, N. *J.*
- *Chem. Soc, Dalton Trans.* 1985, 479.
- (30; Ciampolini, M.; Nardi, N.; Orioli, P. L.; Mangani, S.; Zanobini, F.
- (31) *J. Chem. Soc, Dalton Trans.* **1985,**1179. Ciampolini, M.; Nardi, N.; Orioli, P. L.; Mangani, S.; Zanobini, F. *J. Chem. Soc, Dalton Trans.* **1985,**1425.
- **(32** Ciampolini, M. *Pure Appl. Chem.* **1986,** 58,1429.
- **(33:** Wei, L.; Bell, A.; Warner, S.; Williams, I. D.; Lippard, S. J. *J. Am. Chem. Soc.* **1986,***108,* 8302.
- **(34:** Wei, L.; Bell, A.; Ann, K. H.; HoIl, M. M.; Warner, S.; Williams, I. D.; Lippard, S. J. *Inorg. Chem.* **1990,***29,* 825.
- (35; Newkome, G. R.; Hager, D. C. *J. Am. Chem. Soc.* **1978,***100,*5567. (36; Bodrin, G. V.; Polikarpov, Y. M.; Medved, T. Y.; Kabachnik, M. I. *Izv. Akad. Nauk. SSSR, Ser. Khim.* **1978,**1930; *Bull. Acad. Sci. SSSR* **1979,**1700.
- **(37** Kaplan, L. J.; Weisman, G. R.; Cram, D. J. *J. Org. Chem.* **1979,***44,* 2226.
- **(38:** Tsvetkov, E. N.; Kron, T. E.; Sinyavskaya, E. I. *Izv. Akad. Nauk. SSSR, Ser. Khim.* **1986,** 2456.
- **(39:** Van Zon, A.; Torny, G. J.; Frijns, J. H. G. *Reel. Trav. Chim. Pays-Bos* **1983,***102,* 326.
- **(4o:**
- $\frac{(41)}{12}$ Widhalm, M. *Monatsch. Chem.* **1990,***121,* 1053. Widhalm, M.; Kratky, C. *Chem. Ber.* **1992,***125,* 679. Chan, T. H.; Ong, B. S. *J. Org. Chem.* **1974,** *39,* 1748.
- **(42;**
- **(43:** Drager, M. *Chem. Ber.* **1974,***107,* 3246.
- **(44:** (a) Vincens, M.; Gong-Cheng, F.; Grimaldo-Moron, J. T.; Vidal, M. *Tetrahedron Lett.* **1988,***29,* 6247. (b) Toulhoat, C; Vincens, M.; Vidal, **M.** *Bull. Soc. Chim. Fr.* **1993,***130,* 647.
- (45: Toulhoat, C; Vidal, M.; Vincens, M. *Phosphorus, Sulfur Silicon* **1993,** 78,119.
- (46) Savage, P. B.; Desper, J. M.; Gellman, S. H. *Tetrahedron Lett.* **1992,** *33,* 2107.
- (47) Savage, P. B.; Holmgren, S. K.; Gellman, S. H. *J. Am. Chem. Soc.* **1993,***115,* 7900.
- (48: Savage, P. B.; Holmgren, S. K.; Desper, J. M.; Gellman, S. H. *Pure Appl. Chem.* **1993,** 65, 461.
- (49: Smith, R. J.; Powell, A. K.; Barnard, N.; Dilworth, J. R.; Blower, P. J. *J. Chem. Soc, Chem. Commun.* **1993,** 54.
- **(so:** Jurkschat, K.; Uhlig, W.; Mugge, C; Tzschach, A.; Schmidt, B.; Drager, M. *Z. Anorg. AlIg. Chem.* **1988,** *556,*161.
- (5i: Schwabacher, A. W.; Zhang, S.; Davy, W. *J. Am. Chem. Soc.* **1993,** *115,* 6995.
- (52) (53) Van Reijendam, J. W.; Baardam, F. *Tetrahedron Lett.* **1972,**5181. Benhamou, M.; Kraemer, R.; Germa, H.; Majoral, J. P.; Navech, J. *Phosphorus Sulfur* **1982,***14,*105.
- (54: Navech, J.; Kraemer, R.; Majoral, J. P. *Tetrahedron Lett.* 1980,*21,* 1449.
- Scott, L. T.; Unno, M. *J. Am. Chem. Soc.* **1990,***112,* 7823.
- (55: (56: Ellermann, J.; Poersch, F.; Kunstmann, R.; Kramolowsky, R. *Angew. Chem., Int. Ed. Engl.* **1969,** 8, 203.
- (57: Allen, D. W.; Mann, F. G.; Millar, I. T. *Chem. Ind.* **1966,**196.
- (58) Allen, D. W.; Millar, I. T.; Mann, F. G. *J. Chem. Soc. C***1967,**1869. Horner, L.; Kunz, H.; Walach, P. *Phosphorus* **1975,** 6, 63.
- (59)
- (6o: Venkataramu, S. D.; El-Deek, M.; Berlin, K. D. *Tetrahedron Lett.* **1976,** 3365.
- (61 Horner, L.; Walach, P.; Kunz, H. *Phosphorus Sulfur* 1978,5,171. Christol, H.; Cristau, H. J.; Fallouh, F.; Hullot, P. *Tetrahedron*
- *Lett.* **1979,** 2591.
- (63: Cristau, H. J.; Chiche, L.; Fallouh, F.; Hullot, P.; Renard, G.; Christol, H. *Nouv. J. Chim.* **1984,** 8, 191.
- (64) Vincens, M.; Grimaldo-Moron, J. T.; Pasqualini, R.; Vidal, M. *Tetrahedron Lett.* **1987,** *28,*1259.
- Vincens, M.; Grimaldo-Moron, J. T.; Vidal, M. *Tetrahedron* **1991,** (65) *47,* 403.
- Toulhoat, C; Vincens, M.; Vidal, M. C. *R. Acad. Sci. Paris, Ser.* (66) *2* **1991,** *313,*1399.
- (67) Gomelya, N. D.; Feshchenko, N. G. *Zh. Obshch. Khim.* **1988,**58, 2652.
- Pilgram, K.; Korte, F. *Tetrahedron* 1963,*19,* 137. /ደዪነ
- (68 Naidu, M. S. R.; Bull, E. O. J.; Prasad, M. V. S. R. *J. Indian Chem. Soc.* **1992,** *69,* 409.
- (70) Hope, H.; Viggiano, M.; Moezzi, B.; Power, P. P. *Inorg. Chem.* **1984,***23,* 2550.
- (71)
-
- (72)
(73) **(73:** Dutasta, J. P.; Simon, P. *Tetrahedron Lett.* 1987, 3577.
Dutasta, J. P.; Simon, P*. Phosphorus, Sulfur Silicon* 1990, 51, 363.
Dutasta, J. P.; Van Oostenrick, L.; Tinant, B.; Declercq, J. P.
Phosphorus, Sulfur Silicon 1
- **(74;**
- **(75;** Cristau, H. J.; Garcia, C. *Synthesis* **1990,** 315.
- **(76:** Rudavskii, V. P.; Zagnibeda, D. M.; Kucherova, M. N. Form. *Zh. (Kiev)* **1975,** *30,* 47. Nifant'ev, E. E.; Zavalishina, A. I.; Smirnova, E. I.; Kofanova, N.
- **(77:** V. *Zh. Obshch. Khim.* **1984,***54,* 1207.
- **(78:** Gonce, F.; Caminade, A. M.; Jaud, J.; Vignaux, P.; Majoral, J. P. *Bull. Soc. Chim. Fr.* **1992,***129,* 237.
- **(79;** Majoral, J. P.; Caminade, A. M. The chemistry of inorganic ring systems. *Studies in Inorganic Chemistry;* Steudel, R., Ed.; Elsevier Science Publ. B.V.: Amsterdam, 1992; Vol. 4, Chapter 12, p 209.
- **(so:** Majoral, J. P.; Badri, M.; Caminade, A. M.; Delmas, M.; Gaset, A. *Inorg. Chem.* **1988,** 27, 3873.

Phosphorus-Containing Macrocycles and Cryptands Chemical Reviews, 1994, Vol. 94, No. 5 1211

- **(81** Majorat, J. P.; Badri, M.; Caminade, A. M.; Gorgues, A.; Delmas, **M.;** Gaset, **A.** *Phosphorus, Sulfur Silicon* **1990,** *49,* 413.
- **(82:** Badri, M.; Majoral, J. P.; Caminade, A. M.; Delmas, M.; Gaset, A.; Gorgues, A.; Jaud, J. *J. Am. Chem. Soc.* **1990,***112,* 5618.
- **(83;** Badri, M.; Majoral, J. P.; Gonce, F.; Caminade, A. M.; Salle, M.; Gorgues, A. *Tetrahedron Lett.* **1990,** *31,* 6343.
- **(84:** Gonce, F.; Caminade, A. M.; Majoral, J. P. *Tetrahedron Lett.* **1991,** *32,* 203.
- **(85:** Majoral, J. P.; Badri, M.; Caminade, A. M. *Heteroatom Chem.* **1991,** 2, 45.
- **(86:** Colombo, D.; Caminade, A. M.; Majoral, J. P. *Inorg. Chem.* **1991,** *30,* 3365.
- **(87:** Oussaid, B.; Garrigues, B.; Caminade, A. M.; Majoral, J. P. *Phosphorus, Sulfur Silicon* **1992,** *73,* 41.
- **(88:** Gonce, F.; Caminade, A. M.; Boutonnet, F.; Majoral, J. P. *J. Org. Chem.* 1992, 57, 970.
- **(89:** Oussaid, B.; Garrigues, B.; Jaud, J.; Caminade, A. M.; Majoral, J. P. *J. Org. Chem.* **1993,** *58,* 4500.
- **oo:** Oussaid, B.; Garrigues, B.; Caminade, A. M. *Phosphorus, Sulfur Silicon* **1993,** *77,* 322.
- (91 Colombo-Khater, D.; Caminade, A. M.; Delavaux-Nicot, B.; Majoral, J. **P.** *Organometallics* **1993,***12,* 2861.
- (92 Caminade, A. M.; Colombo-Khater, D.; Mitjaville, J.; Galliot, C; Mas, P.; Majoral, J. P. Phosphorus, *Sulfur Silicon* **1993,** 75, 67.
- **03:** Majoral, J. P.; Badri, M.; Caminade, A. M.; Delmas, M.; Gaset, A. *Inorg. Chem.* **1991,** *30,* 344.
- **(94:** Benhamou, M.; Majoral, J. P.; Navech, J. *Phosphorus Sulfur* 1981, 72, **211.**
- 05: Engelhardt, U.; Bunger, T. *Z. Anorg. AlIg. Chem.* **1984,***517,*177. 06: Kudrya, T. N.; Shtepanek, A. S.; Kirsanov, A. V. *Zh. Obshch. Khim.*
- (97) **1978,** 48, 927; *J. Gen. Chem. SSSR* **1978,** 844. Kirsanov, A. V.; Zasorina, V. A.; Shtepanek, A. S.; Pinchuk, A. M.
- (98: Zasorina, V. A.; Shtepanek, A. S.; Pinchuk, A. M. *Zh. Obshch. Khim. Dokl. Akad. Nauk SSSR* **1981,***259,*1112; *DoM. Chem.* **1982,** 373.
- 09: Kudrya, T. N.; Chaikovskaya, A. A.; Rozhkova, Z. Z.; Pinchuk, A. **1982,** *52,* 1081.
- M. *Zh. Obshch. Khim.* **1982,** *52,* 1092.
- **(ioo:** Pinchuk, A. M.; Zasorina, V. A.; Shtepanek, A. S.; Rozhkova, Z. Z.; Solotonov, A. F.; Raevskii, O. A. *Zh. Obshch. Khim.* **1983,***53,*2012. (101 Chaikovskaya, A. A.; Kudrya, T. N.; Pinchuk, A. M. *Zh. Obshch.*
- \mathcal{L}^{max} *Khim.* 1987, 57, 671. (102) Kudrya, T. N.; Tkachev, V. V.; Atovmyan, L. O.; Gubnitskaya, E. S.; Chaikovskaya, A. A.; Pinchuk, A. M. *Zh. Strukt. Khim.* **1991,** *32,* 175.
- **(io3:** Tkachev, V. V.; Chaikovskaya, A. A.; Atovmyan, L. O.; Sazonova, G. V.; Kudrya, T. N. *Izv. Akad. Nauk. SSSR, Ser. Khim.* 1987, 2745.
- **(104** Raevskii, O. A.; Tkachev, V. V.; Atovmyan, L. O.; Umarova, I. O.; Solotnov, A. F.; Kudrya, T. N.; Chaikovskaya, A. A. *Izv. Akad. Nauk. SSSR, Ser. Khim.* **1984,** 2028.
- **(io5:** Malinovskii, S. T.; Kudrya, T. N.; Chaikovskaya, A. A.; Pinchuk, A. M.; Malinovskii, T. I. *Zh. Strukt. Khim.* **1986,** *27,* 163.
- **(106:** Malinovskii, S. T.; Simonov, Y. A.; Kudrya, T. N.; Chaikovskaya, A. A.; Malinovskii, T. I. *Zh. Strukt. Khim.* **1984,** *25,* 130.
- **d07: (io8: 1980,** 50, 2452; *J. Gen. Chem. SSSR* **1981,**1980. Kirsanov, A. V.; Kudrya, T. N.; Shtepanek, A. S. *Zh. Obshch. Khim.*
- Tkachev, V. V.; Atovmyan, L. O.; Umarova, I. O.; Raevskii, O. A.; Kudrya, T. N.; Pinchuk, A. M. *Izv. Akad. Nauk. SSSR, Ser. Khim.* 1985, 1775.
- **(io9:** Kirsanov, A. V.; Kudrya, T. N.; Balina, L. V.; Shtepanek, A. S. *Dokl. Akad. Nauk SSSR* **1979,** *247,* 613; *Dokl. Chem.* **1980,** 358.
- **(no:** Yatsimirskii, K. B.; Budarin, L. I.; Shtepanek, A. S.; Telyatnik, A.
I.; Smirnov, V. A. *Teor. Eksp. Khim.* 1976*, 12*, 421.
Yatsimirskii, K. B.; Bidzilya, V. A.; Golovkova, L. P.; Shtepanek,
- (111) A. S. *Dokl. Akad. Nauk SSSR* **1979,***244,*1142; *Dokl. Chem.* **1979,** 78.
- **(112:** Yatsimirskii, K. B.; Korol, E. N.; Golovatyi, V. G.; Kudria, T. N.; Talanova, G. G. *Dokl. Akad. Nauk SSSR* **1979,** *244,* 1359; *Dokl. Chem.* 1979, 89.
- **(113** Raevskii, O. A.; Umarova, I. O.; Tkachev, V. V.; Atovmyan, L. O.; Shtepanek, A. S.; Kudrya, T. N. *Izv. Akad. Nauk. SSSR, Ser. Khim.* 1986, 2003.
- **(114** Yurchenko, R. I.; Klepa, T. I.; Pinchuk, A. M. *Zh. Obshch. Khim.* **1990,** *60,* 2226.
- **(115** Yurchenko, R. I.; Yurchenko, V. G.; Klepa, T. I.; Pinchuk, A. M. *Zh. Obshch. Khim.* **1991,** *61,* 380.
- **di6:** Koodrja, T. N.; Stepanek, A. S.; Yurchenko, R. I.; Tchaikovskaja,
- (ii7: A. A.; Lavrova, S. E. *Phosphorus, Sulfur Silicon* **1990,** *51,* 384. Podgomyi, A. V.; Tolmachev, A. A.; Shtepanek, A. S.; Kudryavtsev,
- A. A.; Pinchuk, A. M. *Zh. Obshch. Khim.* 1990, 60, 2440.
(118) Tolmachev, A. A.; Podgornyi, A. V.; Kostyuk, A. N.; Tsymbal, I.
F.; Kozlov, E. S.; Pinchuk, A. M. *Zh. Obshch. Khim.* 1992, 62, 1422.
- (ii9: Bradshaw, J. S.; Huszthy, P.; Izatt, R. M. *J. Heterocycl. Chem.* **1986,** *23,* 1673.
- (i2o: Talanova, G. G.; Podgomyi, A. V.; Zasorina, V. A.; Yatsimirskii, K. B. *Dokl. Akad. Nauk SSSR***1991,***318,*347; *Dokl. Chem.* **1991,**125.
- (121 Razumova, N. A.; Evtikhov, Z. H.; Petrov, A. A. *Zh. Obshch. Khim.* **1968,** *38,*1117; *J. Gen. Chem. SSSR* **1968,**1072.
- **(122:** Penney, C. L.; Belleau, B. *Can. J. Chem.* **1978,** *56,* 2396.
- 123: Bhatia, M. S.; Kaur, B.; Devi, S.; Xavierkutty, M. C. *Indian J.* 124 Bhatia, M. S.; Devi, S.; Jindal, R.; Kaur, B. *J. Indian Chem. Soc. Chem.* **1984,** *23B,* 776.
- 125: Sikder, N.; Vaidyanathaswamy, R. *Indian J. Chem.* **1992,** *31B,* **1988,** 65, 275. 513.
- 126: Pinchuk, A. M.; Podgomyi, A. V.; Zasorina, V. A.; Talnova, G. G.; Shtepanek, A. S. *Dokl. Akad. Nauk Ukr. SSR, Ser. B: Geol. Khim. Biol. Nauki* **1987,** 53.
- 127: Yurchenko, R. I.; Yurchenko, V. G.; Podgomyi, A. V. *Zh. Obshch. Khim.* **1991,** *61,* 772.
- 128: Chaikovskaya, A. A.; Kudrya, T. N.; Yurchenko, R. I.; Voitsekhovskaya, O. M.; Pinchuk, A. M. *Zh. Obshch. Khim.* **1988,**58, 1925.
- 129: Moran, J. K.; Roundhill, D. M. *Phosphorus, Sulfur Silicon* **1992,** 71,7.
- **i3o:** Grynszpan, F.; Aleksiuk, O.; Biali, S. E. *J. Chem. Soc, Chem. Commun.* **1993,** 13.
- 131 Munoz, A.; Lamand£, L.; Koenig, M.; Wolf, R.; Brossas, J. *Phosphorus Sulfur* **1981,***11,* 71.
- 132 Dubourg, A.; Roques, R.; Declercq, J. P.; Boyer, D.; Lamande, L.; Munoz, A.; Wolf, R. *Phosphorus Sulfur* **1983,***17,* 97.
- 133: Dubourg, A.; Roques, R.; Garrigues, B.; Boyer, D.; Munoz, A.; Kla6be, A. C. *R. Acad. Sci. Paris, Ser. 2* **1981,** *293,* 757.
- 134) Lamandé, L.; Munoz, A.; Boyer, D.; Garrigues, B.; Wolf, R. *Phosphorus Sulfur* **1983,***18,* 85.
- 135: Lamande, L.; Munoz, A.; Garrigues, B. *Phosphorus Sulfur* **1987,** *30,*181.
- 136: Lamande, L.; Munoz, A. *Phosphorus Sulfur* **1987,** *32,* 1.
- 137: Arbuzov, B. A.; Kadyrov, R. A.; Gnevashev, S. G.; Arshinova, R. P. *Dokl. Akad. Nauk SSSR* **1987,***295,*867; *Dokl. Chem.* **1988,**329.
- (138) Arshinova, R. P.; Gnevashev, S. G.; Kadyrov, R. A.; Klochkov, V. V.; Arbuzov, B. A. *Zh. Obshch. Khim.* **1988,** *58,* 2417.
- 139: Munoz, A.; Lamande, L. *Phosphorus, Sulfur Silicon* **1990,***51,*380.
- 140: Lamande, L.; Munoz, A. *Phosphorus Sulfur* **1987,** *30,* 459. Nifant'ev, E. E.; Blokhin, Y. L; Ergashev, M. Y. *Dokl. Akad. Nauk*
- 141
- 142) 143 *SSR, Ser. B: Geol. Khim. Biol. Nauki* **1981,** 56. **1992,** 325, 73; *Dokl. Chem.* **1992,** 133. Markovskii, L. N.; Kal'chenko, V. I.; Sinitsa, A. D.; Serguchev, Y. A.; Negrebetskii, V. V.; Bogel'fer, L. Y. *Dopov. Akad. Nauk Ukr.*
- Kal'chenko, V. I.; Atamas, L. I.; Serguchev, Y. A.; Markovskii, L. N. *Zh. Obshch. Khim.* **1984,** *54,* 1754.
- 144: Robert, D.; Gawad, H. A.; Riess, J. G. *Bull. Soc. Chim. Fr.* **1987,** 511.
- 145) Andrianov, K. A.; Vasil'eva, T. V.; Kozlova, L. V. *Izv. Akad. Nauk*
*SSSR 1*965, 381; *Bull. Acad. Sci. SSSR 1*965, 366.
Newton, M. G.; Haiduc, I.; King, R. B.; Silvestru, C. J. *Chem. Soc.*,
- 146) *Chem. Commun.* **1993,**1229.
- 147: Von Itzstein, M.; Jenkins, I. D. *J. Chem. Soc. Perkin Trans. 1***1986,** 437.
- 148: Von Itzstein, M.; Jenkins, I. D. *J. Chem. Soc. Perkin Trans. 1***1987,** 2057.
- 149: Imaev, M. G.; Sokolova, S. V.; Felkyaeva, S. D. *Zh. Obshch. Khim.* i5o: **1965,** *35,* 742; *J. Gen. Chem. SSSR* 1965, 741. **Imaev, M.** G. *Zh. Obshch. Khim.* **1965,** *35,* 1864; *J. Gen. Chem.*
- 151: *SSSR* **1965,** 1857.
- Bentrude, W. G.; Johnson, W. D.; Khan, W. A.; Witt, E. R. *J. Org. Chem.* 1972, *37,* 631.
-
- Xu, Y.; Zhang, J. *Tetrahedron Lett.* **1985,** 26, 4771.
- 152)
153)
154) Appel, R.; Hflnerbein, J.; Knoch, F. *Angew. Chem., Int. Ed. Engl.*
- 155: **1983,** *22,* 61. Appel, R.; Hunerbein, J.; Knoch, F.; Korte, S.; Kundgen, U.; Paulen, W.; Zimmermann, R. *Phosphorus Sulfur* **1983,***18,* 19.
- 156) 157 *Sulfur* **1982,***12,* 279. Yudelevich, V. I.; Fetter, A. P.; Sokolov, L. B.; Ionin, B. I.; Lifshits, Andriamizaka, J. D.; Escudie, J.; Couret, C; Satge, J. *Phosphorus*
- **M. I.** *Zh. Obshch. Khim.* **1980,***50,*2650; *J. Gen. Chem. USSR* **1980,** 2137.
- 158; Morton, D. W.; Neilson, R. H. *Organometallics* **1982,***1,* 289.
- 159 Buynak, J. D.; McKenzie Graff, N.; Jadhav, K. P. *J. Org. Chem.* **1984,** *49,* 1828.
- 160; Appel, R.; Eichenhofer, K. W. *Chem. Ber.* **1971,***104,* 3859.
- 161 Weber, L.; Bastian, H.; Boese, R.; Stammler, H. G. *J. Chem. Soc, Chem. Commun.* **1991,** 1778.
- (162) Weber, L.; Bastian, H.; Boese, R.; Stammler, H. G.; Neumann, B. *Chem. Ber.* **1992,** 725, 1821.
- (163) Weber, L.; Lücke, E.; Frebel, M.; Bastian, H. Phosphorus, Sulfur *Silicon* **1992,** *64,* 71.
- 164 Weber, L. *Phosphorus, Sulfur Silicon* **1993,** *77,* 21.
- Kutyrev, G. A.; Korolev, O. S.; Yarkova, E. G.; Cherkasov, R. A.;
Pudovik, A. N. Zh. Obshch. Khim. 1986, 56, 1233.
Kamil, W. A.; Bond, M. R.; Willett, R. D.; Shreeve, J. M. Inorg.
Chem. 1987, 26, 2829.
-
- 167: Osman, F. H.; El-Hamouly, W. S.; Abdel-Gawad, M. M.; Abassi, M. M. *Phosphorus Sulfur* **1982,** *14,* 1. Osman, F. H.; Kamel, M. M.; El-Khateb, A. A.; Shabana, R. *Chem.*
- 168; *Ind. (London)* **1984,** 302. (169)
- 169: Houalla, D.; Bounja, Z.; Skouta, S.; Riesel, L.; Lindemann, D. *Tetrahedron Lett.* **1992,** *33,* 2817.

Powell, J.; Lough, A.; Wang, F. *Organometallics* **1992,** *11,* 2289.

1212 Chemical Reviews, 1994, Vol. 94, No. S Caminade and Majoral

- Houalla, D.; Bounja, Z.; Skouta, S.; Riesel, L.; Lindemann, D. *Phosphorus, Sulfur Silicon* **1993,** 77, 216.
- Houalla, D.; Bounja, Z.; Skouta, S.; Sanchez, M.; Wolf, R. *Phosphorus, Sulfur Silicon* **1993,** 75, 71.
- Shaw, R. A.; Fitzsimmons, B. W.; Smith, B. C. *Chem. Rev.* **1962,** (172) *62,* 247.
-
- Paddock, N. L. *Quart. Rev.* **1964,***18,*168. Novobilsky, V.; Kolsky, V.; Wanek, W. *Z. Anorg. AlIg. Chem.* **1975,** *416,*187.
- Novobilsky, V.; Kolsky, V.; Wanek, W. *Z. Anorg. AlIg. Chem.* 1976, *423* 273.
- Lund, L. G.; Paddock, N. L.; Proctor, J. E.; Searle, H. T. *J. Chem. Soc.* 1960, 2542.
- Retuert, J.; Martinez, F. *Chem. Ind. (London)* 1985, 597. Horn, H. G.; Becke-Goehring, M. *Naturwissenschaften* **1969,***56,*
- 137.
- Abouchaccra, T.; Helioui, M.; Puskaric, E.; De Jaeger, R.; Heubel,
- J. *J. Chem. Res. (S)* **1981,** 230. Hammoutou, Y.; Heubel, J.; De Jaeger, R. *Phosphorus, Sulfur Silicon* **1993,** *79,* 97.
- Coxon, G. E.; Sowerby, D. B.; Tranter, G. C. *J. Chem. Soc.* **1965,** 5697.
- Novobilsky, V. *Z. Anorg. AlIg. Chem.* 1976, *427,*189.
- Seger, J.; Kouril, M.; Alberti, M.; Pronayova, N. *Z. Chem.* **1990,***30,* 215.
- Kovaleva, T. V.; Mel'nichuk, E. A.; Feshchenko, N. G. *Zh. Obshch. Khim.* 1984, *54,* 223.
- Chapman, A. C; Paddock, N. L.; Paine, D. H.; Searle, H. T.; Smith, D. R. *J. Chem. Soc.* **1960,** 3608.
- Paddock, N. L.; Serreqi, J. *Can. J. Chem.* **1974,** *52,* 2546.
- Paddock, N. L.; Patmore, D. J. *J. Chem. Soc, Dalton Trans.* 1976, 1029.
- Steger, E.; Mildner, G. *Z. Naturforsch.* **1961,***16b,* 836.
- Chapman, A. C; Paddock, N. L. *J. Chem. Soc.* 1962, 635.
-
-
- Brion, C. E.; Paddock, N. L. J. Chem. Soc. (A) 1968, 388.
Brion, C. E.; Paddock, N. L. J. Chem. Soc. (A) 1968, 392.
Keat, R.; Porte, A. L.; Tong, D. A.; Shaw, R. A. J. Chem. Soc.,
Dalton Trans. 1972, 1648.
- Chivers, T.; Paddock, N. L. *J. Chem. Soc, Chem. Commun.* 1968, 704.
- Thomas, B.; Grossmann, G. *Z. Chem.* 1983, *23,* 27.
- Hartsuiker, J. G.; Wagner, A. J. *J. Chem. Soc, Dalton Trans.* 1978, 1425.
- Schlueter, A. W.; Jacobson, R. A. *J. Am. Chem. Soc.* 1966,*88,*2051.
- Schlueter, A. W.; Jacobson, R. A. *J. Chem. Soc. A* 1968, 2317. Hartsuiker, J. G.; Wagner, A. J. *J. Chem. Soc, Dalton Trans.* 1972,
- 1069.
- Sowerby, D. B. *J. Chem. Soc.* **1965,** 1396.
-
- Rallo, F. *Rk. Sci., Rend. Sez. A* **1965,**8,1134. Allen, G.; Oldfield, D. J.; Paddock, N. L.; Rallo, F.; Serregi, J.; Todd, S. M. *Chem. Ind.* **1965,** 1032.
- Kireev, V. V.; Korshak, V. V.; Sulkowski, W.; Mulyashova, I. P.; Zhuravleva, I. I.; Sadkova, T. P.; Maiorova, G. M. *Dokl. Akad. Nauk SSSR* **1978,** *239,* 853; *Dokl. Chem.* **1978,**137.
- Mitropol'skaya, G. I.; Kireev, V. V.; Korshak, V. V.; Goryaev, A. A. *Zh. Obshch. Khim.* **1982,** *52,* 2486.
- Paddock, N. L.; Trotter, J.; Whitlow, S. H. *J. Chem. Soc. (A)* 1968, 2227.
- Dougill, M. W.; Paddock, N. L. *J. Chem. Soc, Dalton Trans.* **1974,** 1022.
- Nabi, S. N.; Shaw, R. A. *J. Chem. Soc, Dalton Trans.* **1974,**1618.
- Gallicano, K. D.; Paddock, N. L.; Rettig, S. J.; Trotter, J. *Inorg. Nucl. Chem. Lett.* **1979,***15,* 417.
- Gallicano, K. D.j Paddock, N. L. *Can. J. Chem.* 1982, *60,* 521.
- Calhoun, H. P.; Paddock, N. L.; Wingfield, J. N. *Can. J. Chem.* **1975,** 53, 1765.
- Wagner, A. J.; Vos, A. *Rec. Trav. Chim. Pays-Bas* 1**964**, 84, 603.
Wagner, A. J.; Vos, A. *Acta Crystallogr.* 1**96**8, *B24*, 1423.
Calhoun, H. P.; Paddock, N. L.; Trotter, J. J. C*hem. Soc., Dalton*
-
- *Trans.* 1976, 38.
- Paddock, N. L.; Ranganathan, T. N.; Todd, S. M. *Can. J. Chem.* 1971, *49,* 164.
- Paddock, N. L.; Ranganathan, T. N.; Wingfield, J. N. *J. Chem. Soc, Dalton Trans.* **1972,**1578.
- (215) Searle, H. T.; Dyson, J.; Ranganathan, T. N.; Paddock, N. L. J. *Chem. Soc, Dalton Trans.* **1975,** 203. Gallicano, K. D.; Oakley, R. T.; Paddock, N. L.; Rettig, S. J.; Trotter,
-
- J. Can. J. Chem. 1977, 55, 304.
Oakley, R. T.; Rettig, S. J.; Paddock, N. L.; Trotter, J. *J. Am.
Chem. Soc.* 1985, *107*, 6923.
Dougill, M. W.; Sheldrick, B. *Acta Crystallogr.* 1977, *B33,* 295.
- (219) Oakley, R. T.; Paddock, N. L.; Rettig, S. J.; Trotter, J. Can. J.
- *Chem.* 1977, 55, 3118. Oakley, R. T.; Paddock, N. L.; Rettig, S. J.; Trotter, J. *Can. J.*
- *Chem.* 1977, 55, 2530.
- Chivers, T.; Paddock, N. L. *Inorg. Chem.* 1972, *U,* 848.
- Sharma, R. D.; Rettig, S. J.; Paddock, N. L.; Trotter, J. *Can. J. Chem.* 1982, *60,* 535.
- (223) Chivers, T.; Oakley, R. T.; Paddock, N. L. *J. Chem. Soc (A)* 1970, 2324.
- (224) Roesky, H. W.; Janssen, E. *Chem. Ber.* **1975,** 208, 2531.
- (225) Thomas, B.; Grossmann, G. *Z. Anorg. AlIg. Chem.* **1985,***523,*112. (226) Dhathathreyan, K. S.; Krishnamurthy, S. S.; Vasudeva Murthy, A.
- R.; Shaw, R. A.; Woods, M. *J. Chem. Soc, Dalton Trans.* **1981,** 1928.
- (227) Stokes, H. N. *Ber. Dtsch. Chem. Ges.* **1895,***28,* 437.
-
- (228) Stokes, H. N. *Am. Chem. J.* **1898,** *20,* 740. (229) Labarre, J. F.; Soumies, F. *Advances in Supramolecular Chemistry;* Gokel, G. W., Ed.; JAI Press: Greenwich, 1993; Vol. 4.
- (230) El Bakili, A.; Castera, P.; Faucher, J. P.; Soumies, F.; Labarre, J. F. *J. MoI. Struct.* **1989,**195, 21.
- (231) Enjalbert, R.; GaIy, J.; El Bakili, A.; Castera, P.; Faucher, J. P.;
- Soumies, F.; Labarre, J. F. *J. MoI. Struct.* **1989,***196,* 207. (232) Scheidecker, S.; Semenzin, D.; Etemad-Moghadam, G.; Soumies, F.; Koenig, M.; Labarre, J. F. *Phosphorus, Sulfur Silicon* 1993,*80,* 85.
- (233) Cameron, T. S.; Linden, A.; El Bakili, A.; Castera, P.; Faucher, J. P.; Graffeuil, M.; Soumies, F.; Labarre, J. F. *J. MoI. Struct.* **1989,** *212,* 281.
- (234) Soumies, F.; El Bakili, A.; Zanin, B.; Labarre, J. F.; Jaud, J. *J. MoI. Struct.* **1990,** *220,* 43.
- (235) Cameron, T. S.; Linden, A.; Soumies, F.; El Bakili, A.; Labarre, J. F. *J. MoI. Struct.* **1989,***197,* 41.
- (236) Jaud, J.; Soumies, F.; Labarre, J. F. *J. MoI. Struct.* **1989,***212,*305.
- (237) Soumies, F.; El Bakili, A.; Labarre, J. F.; Perly, B. *J. MoI. Struct.* **1989,***196,* 201.
- (238) Enjalbert, R.; GaIy, J.; Galliot, C; Scheidecker, S.; Bonnet, J. P.; Labarre, J. F. *J. MoI. Struct.* **1992,** *271,* 95.
- (239) Scheidecker, S. Ph-D. Thesis, no. 1507, P. Sabatier University, Toulouse, July 2,1993.
- (240) Jaud, J.; Raynaud, B.; Scheidecker, S.; Labarre, J. F. *J. MoI. Struct.* **1992,***271,* 289.
- (241) Zanin, B.; Faucher, J. P.; Labarre, J. F. *Inorg. Chim. Acta* **1990,** *172,*147.
- (242) Enjalbert, R.; GaIy, J.; Castera, P.; Labarre, J. F. *Acta Crystallogr.* **1988,** *CU,* 1813.
- (243) Zanin, B.; Soumies, F.; Labarre, J. F.; Enjalbert, R.; GaIy,J. *J. MoI. Struct.* **1990,** *240,* 77.
- (244) Zanin,B.;Scheidecker,S.;Soumies,F.;Labarre,J.F.J.*MoI.Struct.* **1991,***246,*133.
- (245) Soumies, F.; Castera, P.; El Bakili, A.; Faucher, J. P.; Graffeuil, M.; Labarre, J. F. *J. MoI. Struct.* **1990,** *221,* 245.
- (246) Enjalbert, R.; GaIy, J.; Soumies, F.; Labarre, J. F. *J. MoI. Struct.* **1990,** *221,* 253.
- (247) Kuznetsova, S. S.; Smirnov, R. P. *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.* **1978,** *21,* **346.**
- (248) Castera, P.; Faucher, J. P.; Granier, M.; Labarre, J. F. *Phosphorus Sulfur* **1987,** *32,* 37.
- (249) KiIi?, A.; Kilic, Z.; Shaw, R. *Phosphorus, Sulfur Silicon* **1991,**57, 111.
- (250) Shaw, R. A. *Phosphorus, Sulfur Silicon* **1989,** *45,*103.
- (251) Prigozhina, M. P.; Petrovskii, P. V.; Komarova, L. G.; Rusanov, A. L. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1992,**177.
- (252) Shaw, R. A.; Ture, S. *Phosphorus, Sulfur Silicon* 1991, 57, 103.
- (253) Al-Madfa, H. A.; Shaw, R.; Ture, S. *Phosphorus, Sulfur Silicon* **1990,***53,* 333.
- (254) Alkubaisi, A. H.; Shaw, R. A. *Phosphorus, Sulfur Silicon* **1991,**55,
- 49. (255) Allcock, H. R.; Turner, M. L.; Visscher, K. B. *Inorg. Chem.* **1992,** *31,* 4354.
- (256) Meetsma, A.; van de Grampel, J. C; Brandt, K.; Jedlinski, Z. Acta *Crystallogr.* **1988,** *CU,* 1122.
- (257) Brandt, K.; Jekel, A. P.; Meetsma, A.; van de Grampel, J. C. *Inorg. Chim. Acta* **1989,***157,* 251.
- (258) Wittig, G.; Maercker, A. *Chem. Ber.* **1964,** *97,* 747.
-
- (259) Hellwinkel, D. *Chem. Ber.* 1965, 98, 576. (260) Hellwinkel, D.; Lindner, W. *Chem. Ber.* **1976,***109,*1497.
-
- (261) Waite, N. E.; Tebby, J. C. *J. Chem. Soc. C* **1970,** 386. (262) Holah, D. G.; Hughes, A. N.; Kleemola, D. *J. Heterocycl. Chem.* 1978, 25,1319.
- (263) Hughes, A. N.; Amoraraksa, K.; Phisithkul, S.; Reutrakul, V. *J. Heterocycl. Chem.* **1976,***13,* 65.
- (264) Couret, C; Escudie, J.; Satge, J.; Redoules, G. *Rec Trav. Chim. Pays-Bas* **1976,** 95, 240.
- (265) Schmidbaur,H.;Scherm,H.P.;Schubert,U. *Chem.Ber.* **1978,***111,* 764.
- (266) Quin, L. D. *Phosphorus Sulfur* 1986, *27,*109.

689.

(270) Quin, L. D.; Middlemas, E. D.; Rao, N. S. *J. Org. Chem.* 1982,*47,* 905. (271) Middlemas, E. D.; Quin, L. D. *J. Am. Chem. Soc.* **1980,***102,*4839. (272) Rao, N. S.; Quin, L. D. *J. Org. Chem.* **1984,** *49,* 3157. (273) Rao, N. S.; Quin, L. D. *J. Am. Chem. Soc.* **1983,** 105, 5960. (274) Quin, L. D.; Rao, N. S.; Topping, R. J.; McPhail, A. T. *J. Am. Chem. Soc* **1986,** *108,* 4519. **(275)** De Ficquelmont, A. M. C. *R. Hebd. Seances Acad. Sci.* 1937,*204,*

(267) Quin, L. D.; Middlemas, E. D. J. Am. Chem. Soc. 1977, 99, 8370.
(268) Quin, L. D.; Middlemas, E. D. Pure Appl. Chem. 1980, 52, 1013.
(269) Quin, L. D.; Middlemas, E. D.; Rao, N. S.; Miller, R. W.; McPhail.
(269) Quin

Phosphorus-Containing Macrocycles and Cryptands Chemical Reviews, 1994, Vol. 94, No. 5 **1213**

- (276: De Ficquelmont, A. M. *C. R. Hebd. Seances Acad. Sci.* **1937,***204,* (321 867.
- (277: Allcock, H. R.; McDonnell, G. S.; Desorcie, J. L. *Inorg. Chem.* **1990,** (322' *29,* 3839.
- (278) Manners, I.; Riding, G. H.; Dodge, J. A.; Allcock, H. R. J. Am. *Chem. Soc.* 1989, *111,* 3067.
- (279) Allcock, H. R.; Dodge, J. A.; Manners, I.; Riding, G. H. *J. Am.* (324 *Chem. Soc.* **1991,***113,* 9596.
- (280: Harrison, W.; Oakley, R. T.; Paddock, N. L.; Trotter, J. J. Chem. Soc, *Chem. Commun.* **1971,** 357.
- (281
- (282) (283) Oakley, R. T.; Paddock, N. L. *Can. J. Chem.* 1973, 51, 520. (326)
Chivers, T.; Rao, M. N. S.; Richardson, J. F. *J. Chem. Soc., Chem. (*327)
Commun. 1983, 702. (328) Chivers, T.; Rao, M. N. S.; Richardson, J. F. *Inorg. Chem.* **1985,** (329:
- (284: *24,*2237. (330: Burford, N.; Chivers, T.; Rao, M. N. S.; Richardson, J. F. *Inorg.*
- (285) *Chem.* **1984,** *23,* 1946. (331 Atkins, T. J.; Richman, J. E. *Tetrahedron Lett.* **1978,** 5149.
- (286: Filali, A.; Yaouanc, J. J.; Handel, H. *Angew. Chem., Int. Ed. Engl.*
- (287 **1991,** *30,* 560. (332: Dupart, J. M.; Grand, A.; Pace, S.; Riess, J. G. *J. Am. Chem. Soc.* 1982, 104, 2316.
- (288: Dupart, J. M.; Grand, A.; Riess, J. G. *J. Am. Chem. Soc.* **1986,***108,*
- (289: 1167. (334: Lattman, M.; Chopra, S. K.; Cowley, A. H.; Arif, A. M. *Organometallics* **1986,** 5, 677. (335:
- (290: Bouvier, F.; Dupart, J. M. *Synth. React. Inorg. Met.-Org. Chem.* 1987, 17, 301.
- (291 Bouvier, F.; Dupart, J. M.; Grand, A.; Riess, J. G. *Inorg. Chem.* 1987, 26, 2090.
- (292: Richman, J. E.; Flay, R. B.; Gupta, O. D. *ACS Symp. Ser.* **1981,** *171,*271. (338;
- (293: Bouvier, F.; Vierlig, P.; Dupart, J. M. *Inorg. Chem.* **1988,***27,*1099. (294: Dupart, J. M.; Pace, S.; Riess, J. G. *J. Am. Chem. Soc.* **1983,***105,* (339
- (295: Dupart, J. M.; Grand, A.; Pace, S.; Riess, J. G. *Inorg. Chem.* **1984,** (340 1051.
- (296) Lampin, J. P.; Laurent, H.; Mathey, F. *Compt. Rend. Acad. Sci.* (341) *23,* 3776.
- (297) *Paris Ser. C* 1975, *280,*1153. (342: Khasnis, D. V.; Burton, J. M.; Lattman, M.; Zhang, H. *J. Chem.* (343:
- Soc, *Chem. Commun.* **1991,** 562.
- (298; Mukaiyama, T.; Fujisawa, T.; Tamura, Y.; Yokota, Y. *J. Org. Chem.* (344 **1964,** *29,* 2572.
- (299: Nifant'ev, E. E.; Nasonovskii, I. S.; Miklashevskii, A. V.; Zavalishina, (345 A. I.; Smirnova, E. I. *Zh. Org. Khim.* **1975,***11,* 2206.
- (3oo: White, D. W. Phosphorus 1971, 1, 33.
- Albrand, J. P.; Dutasta, J. P.; Robert, J. B. *J. Am. Chem. Soc.* **1974,** 96, 4584.
- (302: 1977,801. (348: Dutasta, J. P.; Guimaraes, A. C; Martin, J.; Robert, J. B. Dutasta, J. P.; Guimaraes, A. Cj Robert, J. B. *Tetrahedron Lett.*
- *Tetrahedron Lett.* 1975, 1519. (349:
- Dutasta, J. P.; Grand, A.; Guimaraes, A. C; Robert, J. B. *Tetrahedron* 1979, 35, 197.
- (305 Dutasta, J. P.; Martin, J.; Robert, J. B. *Heterocycles* **1980,***14,*1631.
- (306)
(307) Dutasta, J. P.; Robert, J. B. *J. Am. Chem. Soc.* **1978,***100,* 1925. (351 Dutasta, J. P. *J. Chem. Res. (S)* **1986,** 22.
- (308: Dutasta, J. P.; Jurkschat, K.; Robert, J. B. *Tetrahedron Lett.* **1981,** (352:
- (309: 2549. (353: Dutasta, J. P.; Grand, A.; Robert, J. B. *Acta Crystallogr.* **1978,** *B34,*
- (310 3820. (354: Sliwa, H.; Picavet, J. P. *Tetrahedron Lett.* **1977,** 1583.
- (311 Vaccher, Cj Mortreux, A.; Petit, F.; Picavet, J. P.; Sliwa, H.; Murrall, (355' N. W.; Welch, A. J. *Inorg. Chem.* **1984,** *23,* 3613. Powell, J.; Ng, K. S.; Ng, W. W.; Nyburg, S. C *J. Organomet.* (356:
- (312)
- (313 (314) *Chem.* 1983, 243, C1.
Lamandé, L.; Munoz, A*. Phosphorus, Sulfur Silicon* 1993, 75, 241. (357)
Dutasta, J. P.; Martin, J.; Robert, J. B*. J. Org. Chem.* 1977, *42,*
- (315 1662. (358: Martin, J.; Robert, J. B. *Nouv. J. Chim.* **1980,** *4,* 515.
-
- (316)
(317)
(318)
- Martin, J.; Robert, J. B. *Org. Magn. Reson.* 1981, *15, 87.* (359)
Grand, A.; Martin, J. *Acta Crystallogr.* 1982, *B38, 3052.* (360)
Elmes, P. S.; Gatehouse, B. M.; West, B.
-
- (319) 1974, *82,* 235. (361 Greenhalgh, R.; Newbery, J. E.; Woodcock, R.; Hudson, R. F. *J. Chem. Soc, Chem. Commun.* 1969, 22. (362:
- (320: Robert, J. B.; Weichmann, H. *J. Org. Chem.* **1978,** *43,* 3031.
- Bonningue, C; Houalla, D.; Sanchez, M.; Wolf, R.; Osman, F. H. *J. Chem. Soc, Perkin Trans. 2* **1981,19.**
- Bonningue, C; Houalla, D.; Wolf, R.; Jaud, J. *J. Chem. Soc, Perkin Trans. 2* **1983,** 773.
- Duthu, B.; El Abed, K.; Houalla, D.; Wolf, R.; Jaud, J. *Can. J. Chem.* **1992,** *70,* 809.
- Niedermann, H. P.; Eckes, H. L.; Meier, H. *Tetrahedron Lett.* **1989,** *30,* 155.
- Eckes, H. L.; Niedermann, H. P.; Meier, H. *Chem. Ber.* **1991,***124,* 377. Clovis, J. S.; Sullivan, F. R. *Tetrahedron Lett.* **1971,** 2263. Kauffmann, T.; Antfang, E.; Olbrich, J. *Chem. Ber.* **1985,***118,*1022.
-
-
-
- Marty, W.; Schwarzenbach, G. *Chimia* **1970,** *24,* 431. Jones, T. L.; Willis, A. C; Wild, S. B. *Inorg. Chem.* **1992,***31,*1411. Dilworth, J. R.; Zheng, Y.; Miller, J. R. J. Chem. Soc., Dalton Trans. **1992,**1757.
- Ansell, C. W. G.; Cooper, M. K.; Dancey, K. P.; Duckworth, P. A.;
Henrick, K.; McPartlin, M.; Tasker, P. A. *J. Chem. S*oc., *Chem. Commun.* **1985,** 439.
- Riker-Nappier, J.; Meek, D. W. *J. Chem. Soc, Chem. Commun.* **1974** 442.
- (333) Cabral, J. de O.; Cabral, M. F.; Drew, M. G. B.; Nelson, S. M.; Rodgers, A. *Inorg. Chim. Acta* **1977,** *25,* L77.
- Scanlon, L. G.; Tsao, Y. Y.; Cummings, S. C; Toman, K.; Meek, D. W. *J. Am. Chem. Soc.* **1980,***102,* 6849. Scanlon, L. G.; Tsao, Y. Y.; Toman, K.; Cummings, S. C; Meek,
-
- D. W. *Inorg. Chem.* **1982,** *21,* 1215. Bartsch, R.; Hietkamp, S.; Morton, S.; Stelzer, O. *Angew. Chem., Int. Ed. Engl.* 1982, *21,* 375.
- Bartsch, R.; Hietkamp, S.; Morton, S.; Peters, H.; Stelzer, O. *Inorg. Chem.* **1983,** *22,* 3624.
- Bartsch, R.; Hietkamp, S.; Peters, H.; Stelzer, O. *Inorg. Chem.* **1984,** *23,* 3304.
- Brauer, D. J.; GoI, F.; Hietkamp, S.; Peters, H.; Sommer, H.; Stelzer, O.j Sheldrick, W. S. *Chem. Ber.* **1986,***119,* 349.
- Toulhoat, C; Vidal, M.; Vincens, M. *Phosphorus, Sulfur Silicon* **1992,** *71,* 127.
- DelDonno, T. A.; Rosen, W. *J. Am. Chem. Soc.* **1977,** *99,* 8051.
- DelDonno, T. A.; Rosen, W. *Inorg. Chem.* **1978,***17,* 3714. Baacke, M.; Morton, S.; Stelzer, O.j Sheldrick, W. S. *Chem. Ber.*
- **1980,***113,* 1343.
- Dey, K.; Biswas, A. K.; Sinha Roy, A. K. *Ind. J. Chem.* **1981,***20A,* 848.
- Diel, B. N.; Haltiwanger, R. C; Norman, A. D. *J. Am. Chem. Soc* **1982,***104,* 4700. Diel, B. N.; Brandt, P. F.; Haltiwanger, R. C; Hackney, M. L. J.;
- Norman, A. D. *Inorg. Chem.* **1989,** *28,* 2811.
- Brauer, D. J.; Lebbe, T.; Stelzer, O. *Angew. Chem., Int. Ed. Engl.* 1988, *27,* 438.
- Brauer, D. J.; Dorrenbach, F.; Lebbe, T.; Stelzer, O. *Chem. Ber.* **1992,** 225, 1785.
- Parks, J. E.; Wagner, B. E.; Holm, R. H. *J. Am. Chem. Soc.* **1970,** *92,* 3500.
- Churchill, M. R.; Reis, A. H. *J. Chem. Soc, Chem. Commun.* **1970,** 879.
- H5hn, A.; Geue, R. J.; Sargeson, A. M.; Willis, A. C *J. Chem. Soc, Chem. Commun.* 1989, 1644.
- BoIm, C; Sharpless, K. B. *Tetrahedron Lett.* **1988,***29,* 5101. Pascal, R. A., Jr.; West, A. P., Jr.; Van Engen, *D.J.Am. Chem. Soc* **1990,***112,* 6406.
- L'Esperance, R. P.; West, A. P., Jr.; Van Engen, D.; Pascal, R. A., Jr. *J. Am. Chem. Soc.* **1991,***113,* 2672. West, A. P.; Smyth, N.; Kraml, C M.; Ho, D. M.; Pascal, R. A. *J.*
-
- *Org. Chem.* 1993, *58,* 3502. Friedrichsen, B. P.; Powell, D. R.; Whitlock, H. W. *J. Am. Chem. Soc.* **1990,***112,* 8931.
- Friedrichsen, B. P.; Whitlock, H. W. *J. Am. Chem. Soc* **1989,** *Ul,* 9132.
- Alder, R. W.; Ganter, C.; Harris, C. J.; Orpen, A. G. *Phosphorus,
Sulfur Silicon* 1**993**, 77, 234.
Wild, S. B. *Pure Appl. Chem.* 1990, 62, 1139.
Van Oijen, A. H.; De Bont, H. B. A.; Van Boom, J. H.; Liskamp,
R. M. J. *Te*
-
-
- Nifant'ev, E. E.; Zavalishina, A. I.; Smimova, E. I.; Filimonov, V. F. *Zh. Obshch. Khim.* **1985,** 55, 2806.
- Pietrusiewicz, K. M.; Kuznikowski, M. *Phosphorus, Sulfur Silicon* **1993,** *77,* 57.