Preparation of Scalemic P-Chiral Phosphines and Their Derivatives

K. Michał Pietrusiewicz' and Maria Zabłocka

Center of Molecular and Macromolecular Studies, The Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lódź, Poland

Received February 15, 1994 (Revised Manuscript Received May 23, 1994)

Contents

I.	Introduction	1375
II.	Synthesis of Racemic P-Chiral Phosphines and Their Derivatives	1376
III.	Methods for Preparation of Scalemic P-Chiral Phosphines and Their Derivatives	1377
	A. Resolution of Racemates	1377
	1. Direct Resolutions	1377
	2. Resolution via Covalent Diastereomers	1381
	3. Self-Resolving Systems	1382
	4. Kinetic Resolutions	1388
	B. Stereoselective Synthesis	1389
	1. Via Single Displacement at P	1389
	2. Via Two Consecutive Displacements at P	1393
	3. Via Three Consecutive Displacements at P	1397
	4. Asymmetric Synthesis	1397
	C. Transformations of Resolved P-Chiral Phosphines and Their Derivatives	1399
	1. Modifications of Carbon Substituents	1399
	2. Interconversions Involving the Phosphorus Stereogenic Center	1404
IV.	Concluding Remarks	1408
٧.	Glossary of Abbreviations	1408
VI.	References	1408

I. Introduction

The early expectation that nonsymmetrically substituted phosphorus compounds can be resolved into the two enantiomeric forms was first verified experimentally in 1911 by Meisenheimer and Lichtenstadt,¹ and the work of these authors marks the beginning of history of the optically active organophosphorus compounds possessing a chirality center at phosphorus. The driving force for the synthesis of these compounds evolved over the years from the original intrinsic interest in the preparation of optically active P-chiral systems and in the basic studies of their stereochemistry, to the rapidly growing utility of such compounds in various actively developing fields including among others chemotherapy,^{2,3} pest control,^{4,5} bioorganic chemistry,^{6,7} asymmetric synthesis,⁸ and asymmetric catalysis.⁹⁻¹² Despite the fact that P-chiral organophosphorus compounds could not be found in the natural pool of chirality and that synthesis of such compounds in the enantiomeric forms has continued to pose a considerable challenge,^{13,14} the field has grown enormously in the last three decades and it has come to the point where it is already difficult to review it in a comprehensive way as the whole. In this paper we review the methods which have been developed for the preparation of

K. Michał Pietrusiewicz was born in Poland in 1946. He received his M.Sc. from the Technical University of Łódź in 1969 and Ph.D. from the Center of Molecular and Macromolecular Studies of the Polish Academy of Sciences in Łódź in 1976. In the same year he joined the group of Ernest L. Eliel at the University of North Carolina for a year and a half postdoctoral training, and during 1983–84 he stayed one year with Barry M. Trost at the University of Wisconsin as a Fullbright Fellow. From 1969 to present he has been at the Center of Molecular and Macromolecular Studies of the Polish Academy of Sciences in Łódź where he currently holds the rank of Associate Professor. His research interests embrace organic and organometallic synthesis and stereochemistry with special focus on the C–P organophosphorus systems.

Maria Zabłocka received her M.Sc. degree in chemistry at University of Łódź. Her graduate research was carried out at the Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences in Łódź under the supervision of K. M. Pietrusiewicz. Her thesis dealt with optically active phosphorus compound, and she received the degree of Doctor of Chemistry in 1991. Her research interests are in stereochemistry and chemistry of phosphorus compounds especially in metalloorganic chemistry of these derivatives. She held a postdoctoral fellowship from Centre National de la Recherche Scientifique—France and worked with J. P. Majoral at the Laboratoire de Chimie de Coordination du C.N.R.S.—Toulouse.

scalemic¹⁵ P-chiral phosphines, i.e., compounds in which the central phosphorus atom is connected with three carbons or at least two carbons and one hydrogen atom (e.g., 1) and of those of their higher oxidation level derivatives in which this distinction is held (e.g., 2-5).

By this token, scalemic P-chiral derivatives of phosphorus acids are excluded, except for P-chiral phosphinous acids which are considered here as chalcogenides of secondary phosphines. Phosphines and their derivatives containing both phosphorus and carbon chirality centers are also included in the survey but those which owe their chirality solely to the backbone dissymmetry are excluded. A brief outline of methods of selective C-P bond formation given in section II contains only those of which find most frequent use in synthesis of nonsymmetrically substituted phosphines and their derivatives, and which are potentially general. A comprehensive treatment of procedures for C-P bond making has recently been published.¹⁶

An attempt has been made to cover the literature until September 1993. Previously published reviews and monographs in which various aspects of synthesis and use of scalemic P-chiral phosphines and their derivatives have been discussed are listed as refs 12, 13, 14, and 17-23.

II. Synthesis of Racemic P-Chiral Phosphines and Their Derivatives

Notwithstanding the fact that nonsymmetrically substituted phosphines and their derivatives have been dealt with in laboratory practice well over 100 years²⁴ the early difficulties and labor expense associated with their synthesis have remained to be concerned with until today. In principle, to mount three different carbon substituents on phosphorus one needs to start from simple PX_3 or $O=PX_3$ (X = Cl, Br, OR, etc.) molecules and to carry out selective step by step displacement of the X groups at P. This can in principle be realized directly, but relay methods utilizing the corresponding mixed chloro, ester or/and amide derivatives to secure chemoselective displacements are often found to be more practical. Also, many alkyl and aryl dichlorophosphines have been made readily²⁵ or commercially available and nowadays the synthesis of nonsymmetrical phosphines is usually considered with $RPCl_2$ as the starting point (Scheme 1). For the direct selective displacement of only one Cl atom in RPCl₂ by an R' group to yield nonsymmetrical monochlorophosphine (path a) use of sterically crowded or heavy metal (or both) organometallics is usually required.²⁵⁻²⁷ In favorable cases the desired monochlorophosphines can be cleanly obtained from nonsymmetrical secondary Scheme 1

phosphine oxides²⁸ or thiophosphorochloridates²⁹ provided that those substrates are readily available (eq 1).

$$\begin{array}{c} \bigcap_{R} & PCI_{3} & R \\ R & P-CI & 1. MeOTf \\ R & R' & 2. P(NMe)_{3} & R \\ R & R & CI \end{array}$$
(1)

To overcome the aforementioned limitations methods to usefully differentiate substituents at phosphorus enabling subsequent chemoselective displacements have been developed. Some of the frequently utilized routes are sketched in Scheme 1. Moderately bulky alcohols or thiols (paths b and e),³⁰ secondary amines (path c),³¹ or amino alcohols (path d)^{32,33} can all serve the purpose reasonably well, but the amide routes secure usually the most satisfactory results in terms of selectivity and of facility of purification of intermediates. When nonsymmetrical phosphine oxide is the synthetic target it is usually most convenient to convert dichlorophosphine into a dialkyl (cyclic or acyclic) phosphonite and to use Michaelis-Arbusov reaction for the clean introduction of the second C-P bond and subsequent displacement with an organometallic reagent for the third (eq 2).34 The Michaelis-

Arbusov and Michaelis–Becker processes are also very useful for the formation of the third C–P bond provided that the corresponding precursor, i.e., nonsymmetrical phosphinite or secondary phosphine oxide is relatively readily accessible.¹⁶

A conceptually different synthetic approach to nonsymmetrical phosphines and their derivatives is based on desymmetrization of more readily available symmetrical phosphines. One early developed route^{1,35} in which symmetrical phosphine is first quaternized and then one of the two alike substituents in the resulting phosphonium salt is hydrolytically removed to yield nonsymmetrical phosphine oxide is exemplified in eq 3. In a more recent desymmetrization approach use has been made of the fact that alkali metals are able to reductively cleave P-aryl bonds³⁶⁻⁴⁰ but typically not P-alkyl bonds.⁴¹ Thus, on treatment with alkali metal a symmetrical alkyldiphenylphosphine gives prochiral phosphide anion which after quenching with an alkyl halide or a proton donor yields directly nonsymmetrical tertiary or secondary phosphine (eq 4). Li, Na, K, and Na/K alloy in ethereal solvents or in liquid NH₃ can be used to this effect.⁴² The method is especially well suited for desymmetrization of $1, \omega$ -bis(diphenylphos-

Scalemic P-Chiral Phosphines

phino)alkanes^{43,44} for which double terminal P–Ph bond cleavage occurs very cleanly and can be accelerated by ultrasound irradiation.⁴³ It has been also found practical to desymmetrize triphenylphosphine by stepwise cleavage of two phenyl residues intercepted by methylation to obtain in one-pot methylphenylphosphine (6) in remarkable 77% yield (eq 5).⁴⁵ Importantly, as exemplified by the synthesis of 7 (eq 6),⁴⁶ when different aryl groups are present in triarylphosphine a selective cleavage³⁹ can also be effected and the method for its simplicity will probably gain more practical importance in the future.

III. Methods of Preparation of Scalemic P-Chiral Phosphines and Their Derivatives

A. Resolution of Racemates

1. Direct Resolutions

a. With Resolving Agents. The first known optically active organophosphorus compound, ethylmethylphenylphosphine oxide (8), was obtained by direct resolution of the racemate using (+)-bromocamphorsulfonic acid for the formation of separable diastereomeric salts.¹ Although not without difficulty and in the time span of 15 years the two diastereomeric salts were isolated in the pure forms by fractional crystallization from EtOAc and EtOAc/ether and yielded ultimately both enantiomers of 8 in good optical purity.³⁵ In the same laboratory benzylmethylphenylphosphine oxide (9) was similarly resolved with camphorsulfonic acid as the resolving agent.³⁵ Although historically important and reproducible,47 this resolution method relying on protonation of the weakly basic phosphoryl oxygen has, in fact, never been used to successfully resolve any other simple P-chiral phosphine oxide besides 8 and 9. Recently attempted resolution of phospholene oxide 10 with (-)-dibenzoyltartaric acid (DBTA) was only partially successful and afforded (-)-10 of only ca. 65% ee and in very low yield.⁴⁸ The method can be very useful, however, for aiding some otherwise difficult separations of diastereomeric Pchiral compounds^{49,50} as well as for resolution of the backbone chiral diphosphorus systems such as NORPHOS⁵¹ and BINAP.⁵²

Toda and co-workers⁵³ recently found that 2,2'dihydroxy-1,1'-binaphthyl (binaphthol) is also able to form crystalline complexes with phosphine oxides and they used this observation to fully resolve oxides 8 and 11 with (+)- and (-)-binaphthol. Attempted resolution of other phosphine oxides by this method was however unsuccessful.

The two other known direct resolutions of P-chiral phosphine chalcogenides relied on functions other than P = X. Ostrogovich and Kerek⁵⁴ reported resolution of phospholene oxide 12 through its ammonium salts with (+)-9-bromocamphorsulfonic acid, and Davies and Mann²⁶ resolved sulfide 13 which gave separable salts with (+)- and (-)-1-phenylethylamine. In the latter case, since sulfur in the P s group is too weak a protic base the introduction of an added functionality for the purpose of resolution proved prerequisite. It is probably for this reason why no further examples of direct resolution of phosphine sulfides could be found in the literature.

The first successful resolution of a simple P-chiral phosphonium salt was reported by McEwen and coworkers⁵⁵ in 1959. These authors were able to resolve benzylethylmethylphenylphosphonium iodide (14) using silver hydrogen dibenzoyltartrate (Ag-DBHT) as the resolving agent and this methodology quickly gained more general use and importance. The acyclic phosphonium salts resolved in this way are listed in Chart 1 as 14–24. In fact, the resolution of cyclic phosphonium salts has a somewhat longer history; however, the early resolution of 25⁶⁴ could not be later repeated and, the second resolved phosphonium salt 26,⁶⁵ even though cyclic, was P-chiral. The cyclic phosphonium salts resolved to date include 25–30.^{64–69}

Typically, the resolution of phosphonium salts either cyclic or acyclic was performed by combining the racemate with the silver salt of a chiral acid and recrystallization of the resulting mixture of diastereomeric salts from hydroxylic solvents or acetone. Usually the two enantiomers of the resolving agent had to be employed to obtain both enantiomers of the phosphonium salt although occasionally both diastereomeric salts could be drawn efficiently in the pure form from a single pairing. Enantiomeric silver menthoxyacetates,⁶⁸ silver or potassium hydrogen di-

benzoyltartrates^{55–57,61,63,69,70} and silver camphorsulfonates⁶⁷ were used successfully as the resolving agents. In some instances the corresponding free acids could also be used.^{58,64} In a modified version of this resolution protocol the pairs of diastereomeric phosphonium hydrogen dibenzoyltartrates were obtained from racemic P-chiral ylids by protonation with (-)-DBTA.⁵⁸

The availability of resolved P-chiral phosphonium salts had a great impact on the development of phosphorus stereochemistry as they served as the chiral probes in the studying the steric course of reactions occurring at P and, even more importantly, as the primary source of scalemic phosphines at that time.⁵⁷ Direct resolution as a means to obtain scalemic phosphines emerged as a practical alternative only 10 years after the enantiomeric tertiary phosphines obtained by electroreductive cleavage of the resolved quaternary salts⁵⁷ were proved for the first time to be configurationally stable in the useful range of temperatures. In the meantime, however, in 1967 Wittig et al.⁷¹ partially resolved a triarylphosphine via kinetic resolution (cf. section III.A.4), and in 1968 Chan,⁷² by adapting the method developed by Cope for resolution of strained olefins and sulfoxides,73 succeeded in partially resolving tert-butylmethylphenylphosphine (31) through its diastereomeric platinum(II) complexes with (+)-deoxyephedrine (eq 7). The tert-butylmethylphenylphosphine oxide obtained by in situ oxidation of the liberated phosphine was of ca. 44% ee.

In early 1970s two groups developed general procedures for direct resolution of phosphines via their diastereomeric transition metal complexes. One of those procedures which was developed by Otsuka and co-workers⁷⁴ relies on chiral palladium(II) complexes 32-34 derived from enantiomeric 1-phenylethylamines,

1-naphthylethylamines, and *sec*-butylisonitrile as the resolving agents (only one enantiomer of each complex shown). A general procedure of such resolution utilizing typically only 0.5 equiv of the resolving agent is given in eq 8, and the resolved phosphines 31 and 35–40 are

listed in Chart 2. Although, as it appeared, matching of the suitable complex with the phosphine was frequently required, the method proved efficient and reasonably general and provided direct access to the resolved phosphines of high enantiomeric purity. Typically, the unreacted excess phosphine remaining in solution provided material highly enriched in one enantiomer whereas the other enantiomer was usually recoverable from the precipitated crystalline complex of type 32a. Even though the studied resolutions looked at first glance like the classical examples of kinetic resolutions it was found more probable, however, that they were driven by precipitation of the less soluble of the two diastereomeric complexes equilibrating quickly in solution via ligand exchange rather than by a difference in complexation rates of the two phosphine enantiomers. Interestingly, in one case, i.e., 40, the resolution was effected not in the complexation step

Scalemic P-Chiral Phosphines

Chart 2

but instead during liberation of the phosphine from the metal by treatment with achiral dppe.

Complexes 32 and 33 were found by Wild and coworkers^{45,75-78} to be especially well suited for the resolution of bidentate phosphines. Their remarkably efficient resolution of o-phenylenebis(methylphenylphosphine) (41) by the chloro-bridged dimer (R)-32 is detailed in Scheme 2.45 Nearly complete precipitation of a single complex 43 followed by effective two-step decomplexation allowed the isolation of the optically pure (S,S)-41 in 85% overall yield and recovery of the optically pure (R,R)-41 from the mother liquors in even higher 90% overall yield. In one preparative run more than 5 g of each enantiomer was drawn from 11.6 g of the racemate. In the same way related bidentate ligands (R^*, R^*) -44 and (R^*, S^*) -45 were resolved⁷⁵ although in the case of the "meso"-type (R^*, S^*) -45 the complex 33 had to be used. Complex 33 proved also to be highly effective in a similar large-scale resolution of phosphine 46 as well as in resolution of 47⁷⁷ and 48 (Scheme 3).⁷⁸ Interestingly, in the two latter cases the resolved optically pure phosphines were liberated from Pd by treatment with racemic 41. The resolution of thiol phosphine 4878 went through the diastereomeric dipalladium complexes of type 49 in which, after separation, the external Pd was displaced with ethylene diamine and the freed thiolato-S atom was alkylated with benzyl bromide. After subsequent liberation the resulting S-benzyl phosphine was treated with Na/NH₃

Scheme 3

33

to afford optically pure 48 in 80% yield; the remaining 20% being also optically pure ethylmethylphenylphos-

phine (51). Interestingly, the phosphine 48 bearing free thiol group in the β position was found to be photochemically unstable and rearranged on exposure to light into optically pure ethylmethylphenylphosphine sulfide (52) with complete retention of configuration.

It can be concluded that the general utility of palladium complexes 32 and 33 in resolution of P-chiral phosphines is already well established. Structures of several intermediate diastereomerically pure phosphine palladium complexes were confirmed by X-ray measurements which also provided the important configurational assignments. Complexes 32 and 33 were also used with success for resolution of some P-achiral axially dissymmetric phosphines.⁶⁰ The diastereomerism that ensued on interactions of such complexes with scalemic phosphines could also be utilized for determination of the optical purity of the latter.^{78,81}

Another fairly general resolution procedure which relied on separation of diastereomeric metal complexes

derived from (+)-(1R,5R)- π -pinenyl nickel halides 53⁸² and racemic phosphines was developed by the Mühlheim group.⁸³ Several aryldialkyl- and trialkylphosphines were resolved in this way via diastereomeric complexes of type 54⁸⁴ of which one diastereomer could

be usually quite readily obtained by fractional crystallization. Frequently, the phosphines resolved by this procedure were not liberated from the metal since the diastereomerically enriched (or pure) phosphine-modified Ni complexes of type 54 could be utilized directly as components of the chiral catalytic systems for asymmetric oligomerization of olefins.⁸⁵

A similar procedure avoiding liberation of the resolved phosphine was also developed by Yoshikuni and Bailar³⁶ for the preparation of chirally modified cationic bis-(phosphine)rhodium complexes of type [Rh(COD)-(P*)₂]⁺. In this case the preformed racemic complexes were resolved as the corresponding α -bromocamphor- π -sulfonates [Rh(COD)(P*)₂]BCS* by fractional precipitation from ether. Obtained in this way Rh complexes containing completely resolved mono- and bidentate phosphines 55–59 were used, after exchange of bromocamphorsulfonate counterion with Cl-, PF₆⁻, or ClO₄⁻, as chiral catalysts for asymmetric hydrogenation.

Into the same category of resolutions of phosphines by metal complexes which did not end up with liberation of the resolved phosphine fall the resolutions of secondary methylphenylphosphine (6) reported by Wild and co-workers.^{87,88} In these studies platinum and iron cationic complexes of type 60⁸⁷ and 62⁸⁸ were introduced as effective resolving agents in which, interestingly, bis-(phosphine) (S,S)-41 which was obtained earlier via the palladium route served as the chiral auxiliary ligand. The resolution involving the platinum complex is shown in eq $9.^{87}$ In this case the two diastereometric methylphenylphosphine complexes 61 were formed in a 1:3 ratio and the pure major isomer (S,S,S)-61 was obtained as the CH₂Cl₂ solvate by crystallization from CH₂Cl₂-Et₂O.⁸⁸ Its structure and absolute configuration was established by X-ray. In a very similar way the two separable iron complexes were obtained in a 1:1 ratio (eq 10). It is difficult to judge the origin of the selectivity observed in the formation of the studied complexes since the phosphine can undergo racemization under the experimental conditions and the two diastereomeric complexes can interconvert readily under the catalysis of traces of Cl- or adventitious water. As demonstrated in racemic models, complexes 62 could also serve to resolve ethylphenylphosphine and benzylphenylphosphine and are very likely to find wider

use as convenient resolving agents for secondary phosphines.⁸⁸ Also importantly, secondary phosphines in complexes **61** and **63** can be deprotonated and subsequently alkylated with complete retention of configuration at the metal-bound phosphorus.⁸⁸

One unsuccessful attempt of resolution of a singular cyclic phosphine through complexation with chiral nickelocenes is on record.⁸⁹

b. By Chromatography. Since the advent of highperformance chromatographic techniques and development of a range of chiral stationary phases (CSPs) resolution of racemic mixtures by chromatographic methods has become a viable alternative to the existing classical methods of resolutions.⁹⁰ Early analytical studies⁹¹⁻⁹³ on chiral phosphine derivatives focused mainly on phosphine oxides and typically required the presence of π -basic, usually condensed aromatic, substituents in their structures (e.g., 64-71) since interac-

tions based solely on the P=O dipole were considered not efficient enough. These and later also many other structurally diversified diaryl and monoaryl phosphine derivatives have been resolved using various CSPs including poly(trityl methacrylate),⁹¹ Pirkle's CSPs,^{92,94,95} cellulose triacetate,^{96,97} CSPs based on N,N'-(3,5-dinitrobenzoyl)-trans-1,2-diaminocyclohexane (DACH-DNB),⁹⁸ cyclodextrines,⁹³ as well as commercially available chiral columns such as Chiracel, Daicel, Chiralpack, etc. Most recently, a range of vinyl phosphine oxides of diversified functional pattern, either cyclic or acyclic, and of E or Z geometry (e.g., 72–79), have been resolved analytically on DACH-DNB columns.⁹⁸

The number of successful, although not always complete, semipreparative and preparative chromatographic resolutions of P-chiral phosphines and their derivatives is also continuously growing.^{94–98} Structures 80–90 specify the examples available to date. This

collection includes for the first time secondary phosphine oxides⁹⁸ and phosphines,^{95,97} even though the latter had to be isolated ultimately as oxides. It is also worthy of stressing that secondary phosphine oxides give uniformly excellent separations on a DACH-DNB column, which offered in the cited cases 87–90 enantioselectivity factors up to $\alpha = 3.04$. About 30 mg of each enantiomer of 90 of more than 99% ee was obtained by Gasparrini and co-workers⁹⁸ in just two repetitive runs on this column. Further work by this group demonstrated also that simple tertiary and secondary phosphine sulfides (e.g., 52, 91–93), as well as their

selenide and borane counterparts can be resolved on the same DACH-DNB CSP which apparently begins to emerge as the CSP of choice for chromatographic resolutions of phosphine derivatives.

The number and the range of phosphine derivatives resolved to date on chiral columns augur well for the further dynamic development of the method with more preparative separations rapidly becoming available.

2. Resolution via Covalent Diastereomers

In 1961 Campbell and Way⁹⁹ reported the resolution of dibenzophosphole oxide 94 via its diastereomeric amides derived from enantiomeric (+)- and (-)-1phenylethylamines. All the previous attempts by the authors to resolve this oxide by salt formation with the same amines as well as with many other scalemic bases failed.

On the way to enantiomeric 4-oxo-1-phenyl-2-phospholene 1-oxide (95) Bodalski and co-workers¹⁰⁰ resolved its 4-hydroxy precursor 72 through the corresponding diastereomeric esters with (-)- ω -camphanic acid. One of the esters was obtained in pure form by fractional crystallization from benzene-hexane and, after hydrolysis, was subsequently converted into the desired ketophospholene oxide 95 (eq 11). The absolute configuration of the resolved (+)-72 was established by X-ray.

Aside from the above two resolutions of preformed racemic mixtures of functionalized phosphine derivatives, all the resolutions discussed in this section involve a more practical, one-step-saving procedure in which the covalently bound auxiliary was introduced to the phosphine structure simultaneously with the formation of the last of the required C-P bonds. Such a procedure seems to have been employed for the first time in the preparation of the optically active phosphinyl acrylate **96** shown in eq 12.¹⁰¹ Reaction of ethyl

benzylphenylphosphinite with (-)-menthyl 2-chloroacrylate directly provided a 1:1 mixture of P-epimeric menthyl *trans*-2-phosphinylacrylates of which one epimer could be isolated in pure form by a series of crystallization from acetone. Subsequent transesterification afforded (-)-(S)-96 in which phosphorus remained the sole stereogenic center. In a related Arbusov approach (eq 13)^{102,103} butyl phenylvinylphosphinite (97) was allowed to react with (-)-menthyl bromoacetate (99) to afford equimolar mixture of menthyl (phenylvinylphosphinyl)acetates $[(R_PS_P)-98]$. Quite fortuitously, one diastereomer

spontaneously crystallized out from the crude reaction mixture upon its cooling to room temperature. Collected by filtration and recrystallized from benzene diastereomerically pure $(S_{\rm P})$ -98 was then conveniently freed from the carbomenthoxy auxiliary by a one-step decarbalkoxylation yielding enantiomerically pure $(S_{\rm P})$ -74.¹⁰³ The procedure is well suited for the large-scale preparation; from one batch ca. 25 g of $(S_{\rm P})$ -98 and consequently ca. 7 g of $(S_{\rm P})$ -74 can readily be obtained.

In exactly the same way $(S_{\rm P})$ -100 can be isolated in pure form by treatment of the corresponding oily post-Arbusov mixture containing the two P-epimers in equal amounts with chilled pentane or benzene-hexane.¹⁰⁴ Practically pure (S_P) -100 precipitates in the cold and is collected as somewhat oily crystals requiring a single recrystallization from benzene-hexane. Interestingly, albeit in a time span of years, a purified 1:1 mixture of diastereomers 100 constituting thick lucid oil was also found to spontaneously deposit $(S_{\rm P})$ -100 as huge blocks, leaving practically pure $(R_{\rm P})$ -100 as an oil. As exemplified in eq 14, decarbalkoxylation of the separated diastereomers 100 affords the corresponding enantiomers of PAMP oxide 64 directly. A crystalline diastereomer of 100 of the $(R_{\rm P})$ configuration was also obtained by this procedure by using (+)-99 derived from D-menthol as the chiral auxiliary.¹⁰⁴

$$\begin{array}{c} O \\ O \\ O \\ O \\ Ph \end{array} \xrightarrow{(O_2Men)} & \begin{array}{c} 1. & KOH-MeOH \\ \hline 2. & C_6H_4Cl_2, \Delta \end{array} \xrightarrow{(O_2Men)} Me \end{array}$$
(14)
(Sp) - 100 (Sp) - 64

In the analogous preparation of enantiomeric tertbutylmethylphenylphosphine oxides developed by Imamoto and Johnson,¹⁰⁵ a mixture of the corresponding P-epimeric menthyl phosphinylacetates was obtained by the Michaelis-Becker reaction of secondary phosphine oxide 87 with (-)-menthyl chloroacetate (101) (eq 15). After facile separation of $(R_{\rm P})$ -102 and $(S_{\rm P})$ -

102 by fractional crystallization the carbomenthoxy auxiliary was removed in this case by means of hydrolysis of the individual diastereomers with KOH in methanol, followed by thermal decarboxylation of the resulting acids. Both enantiomers of 103 could be obtained readily in gram quantities, and the procedure proved to be general. In the same way the corresponding phosphine boranes 104^{106} as well as a whole series of arylmethylphenylphosphine oxides 105^{105} of high optical purity were obtained from the more easily accessible diastereomer of the corresponding pairs of menthyl phosphinylacetates. The absolute configurations of oxides 105 were not established. A potential mnemonic for assignment of configuration at phosphorus in menthyl phosphinylacetates has been recently discussed.¹⁰⁴

(-)-Menthyl acetate residue appears to also act successfully as the "covalent" resolving unit in quaternary phosphonium salts (eq 16).¹⁰⁷ Both (R_P) -107

and (S_P) -107 were isolated with remarkable ease in diastereomerically pure forms from one batch in gram quantities by crystallization from EtOAc and EtOAc– EtOH. If this facility of separation also recurs in other pairs of P-epimeric menthoxycarbonylmethylphosphonium salts, as it was already the case in the phosphine oxide series,¹⁰²⁻¹⁰⁵ the developed procedure may likely gain practical importance for the oxidative resolution of phosphines due to expected facility of removal of the auxiliary menthyl acetate moiety through the stereochemically well-behaved Wittig reaction. In the cited case both salts gave the corresponding virtually enantiomerically pure enantiomers of 1-phenyl-2-phospholene 1-oxide (10) quantitatively.¹⁰⁷

3. Self-Resolving Systems

Resolutions of phosphorus stereogenic centers in compounds grouped in this section were also realized by means of a covalently bound auxiliary, but they are different from those discussed in the previous section in that the chiral, typically C-chiral, unit introduced to the phosphine structure for the purpose of resolution was this time meant to be retained in the target

Scalemic P-Chiral Phosphines

structure. Compounds resolved in this way remain internally diastereomeric, and as such they are frequently relatively easily assigned their configuration as well as are readily monitored for any changes of their stereochemical integrity at phosphorus. Also, in their P^{III} forms they are useful as chiral ligands which are especially well suited for studies of potential cooperativity between inducing factors related to backboneand phosphorus-based ligand chirality in asymmetric catalysis.

Preparation of phosphines and their derivatives of this kind requires, however, that at least one of their three C-P bonds is formed under the circumstances that the auxiliary C-chiral subunit is already present in the organophosphorus precursor or in the reagent structure. Thus, a distereoselective asymmetric creation of a P-stereogenic center in such syntheses is in principle possible and the occurrence of this phenomenon in several of the preparations discussed below has been observed. Nevertheless, even in those fortunate cases, almost without exception, access to individual diastereomers of the desired C,P-chiral phosphine derivative had to rely ultimately on separation.

In 1975 Naylor and Walker¹⁰⁸ reported that alkylation of sodium methylphenylphosphide with (+)-1-phenylethyl chloride followed by oxidation of the crude products by H_2O_2 led to the formation of a 63:37 mixture of oxides 108 of which the major 108a could be isolated pure by chromatography on silica gel (eq 17).

Using the same methodology and scalemic neomenthyl and menthyl chlorides Fisher and Mosher¹⁰⁹ synthesized menthyl and neomenthyl phosphines 109, 111 and 113, 115. Of these 109 and 111 were separated via their oxides 110 and 112 from which the individual phosphines were recovered by reduction with phenylsilane which gave 111 with complete and 109 with predominant retention of configuration.

The same four diastereomeric phosphines and their oxides were prepared later on a large scale by Valentine and co-workers.¹¹⁰ These authors succeeded in separation of all the four oxides by crystallization and they demonstrated also that Si_2Cl_6 was the best reagent for stereoselective conversion of these oxides into phosphines. For the preparation of menthylphosphine oxides a new and potentially general route was developed which was based on hydrolytic cleavage of P-prochiral phosphonium cations^{1,35} derived from *either* diphenylneomenthyl- or diphenylmenthylphosphine (Scheme 4).¹¹⁰ By this route diastereomers of novel oxides 119 and 120 and bis(oxide) 121 were also

Scheme 4

prepared, but except for (R_P, S_P) -121, they were not separated. Only little or no selectivity was observed in the studied decompositions of P-prochiral phosphonium salts 117 and 118.

Alkylations of phosphide anions with bifunctional scalemic alkylating agent 122 derived from tartaric acid were studied by Burgess and co-workers¹¹¹ in the course of their work on P-chiral analogs of DIOP. The systems studied are shown in eq 18. No carbon-to-phosphorus

induction was observed in any of the alkylations studied and, by default, the 1:2:1 mixtures of the three diastereomeric bis(phosphines) had to be dealt with in each case. Even though careful crystallization was helpful in aiding isolation of the C_1 isomer of 123, for all the other separations the stereoisomeric mixtures of bis(phosphines) had to be converted into the corresponding mixtures of their molybdenum tetracarbonyl complexes of type 127 which proved eventually separable by flash chromatography. After separation, it was found convenient to liberate the free ligands reductively by treating the individual molybdenum complexes with sodium naphthalenide at -78 °C. Due to overreduction, liberation of bis(phosphine) 125 was only partially successful. Separation of 126 was not reported.

Two other P-chiral analogs of DIOP, i.e., 128 are also on record¹¹² but details of their synthesis are not available. Similarly, use of self-resolving phosphines 129 and 130 was reported by Wilke and co-workers.^{85,113}

An approach which relies on reactions of scalemic phosphides with achiral electrophiles has also found considerable utility in the preparation of self-resolving P-chiral systems. It was first used by King and coworkers¹¹⁴ to obtain diphosphine 131 by reacting

neomenthylphenylphosphine with diphenylvinylphosphine in the presence of potassium tert-butoxide (eq 19). Diphosphine 131 was formed as a 1:1 mixture of

the two diastereomers but subsequent repeated recrystallizations furnished both diastereomers in pure form albeit in low yield. Similarly derived menthyl counterparts of 131 failed to crystallize, and crystalline sulfides 132 (1:1) and triphosphines 133 could not be separated.

In the same way Kinoshita and co-workers¹¹⁵ prepared proline-derived aminophosphines 134 as a 1:1 mixture (eq 20) and resolved them later successfully via

complexes 135 with PdCl₂. Interestingly, recrystallization of the diastereomeric complexes from chloroformethanol gave two different crystal forms, blocks and needles, which were separated by hand picking. Aminophosphines 134 resolved in this way were established their absolute configurations by X-ray of 135, but they were not liberated.

Horner and Simons⁴⁹ described alkylations of scalemic phosphides 136 derived from (S)-1-phenylethylamine by 1,2-dichloroethane (eq 21). The resulting mixtures of stereoisomeric bis(phosphines) 137a were subsequently converted into oxides but their separation was not performed.

Scheme 5

Recently, in a series of papers Nagel and coworkers¹¹⁶⁻¹¹⁹ reported several successful alkylations and arylations of bis(phosphides) derived from tartaric acid based pyrrolidine 3,4-bis(secondary phosphines) of type 138. The developed general synthetic protocol is exemplified in Scheme 5.¹¹⁶ The starting bis(phosphides) were obtained either by deprotonation of the corresponding bis(secondary phosphines) as shown or by phenyl cleavage from the corresponding bis(diphenylphosphinyl)pyrrolidines.¹¹⁷ In the example cited in Scheme 5 potassium metal and o-fluoroanisole were found to constitute the best combination of reagents in terms of both the yield and the selectivity, the concomitant formation of 16% of 140 as the sideproducts notwithstanding. By contrast, a reverse approach involving alkylation of prochiral o-anisylphenyl phosphide with scalemic 3,4-bis(mesyloxy)pyrrolidines gave the desired bis(phosphines) 139 in a statistical 1:1:2 ratio and in only <10% yield. For the purpose of resolution, the isomeric bis(phosphines) 139b,c were converted into their air-stable and colored complexes with PdI₂, 141, which could be subsequently separated readily by chromatography to provide after decomplexation with KCN good yields of the major 139b as well as small amounts of 139c. As it turned out to be a rule, diiodopalladium complexes of C_1 -symmetric bis-(phosphines), e.g., 139c, could be readily separated from those containing C_2 -symmetric bis(phosphines), e.g., 139a or 139b, whereas separations of the latter two appeared not possible. In this situation, in order to get straightforward access to larger quantities of 139c and to 139a the originally formed 9:1 mixture of 139b.c was. before complexation, equilibrated thermally to a 1:1:2 mixture of 139a-c or, respectively, inverted to a 9:1 mixture of 139a,c, by the procedures summarized at the bottom of Scheme 5. By using the same synthetic protocol and the same isomerization and separation techniques three further bis(phosphines) 142-145 were also obtained, each in the three individual forms, and

The selectivity observed in the studied alkylations was found to depend on several factors including N-substituent, electrophile, and metal, but nevertheless, it was usually biased to favor decidedly the formation of either (RRRS)-e or (SRRS)-b isomers. Interestingly, this preference is changed in favor of the formation of (RRRP)-a isomer when the alkylation is performed on the phosphine bound to a metal, as in the cationic palladium complex 146. This alternate approach was used by Nagel and co-workers to synthesize 142 as well as stereoisomeric (cyanoethyl)phosphines 145 (eq 22).¹¹⁹ In the same study 146 was also allowed to react with methyl acrylate and with two epoxides, but the resulting products were not characterized individually.

Mathey and co-workers¹²⁰ recently reported that scalemic primary and secondary phosphines coordinated to tungsten can be reacted with electrophiles in a highly stereoselective manner. As shown in eq 23,

deprotonation and subsequent alkylation of (menthylphosphine)pentacarbonyltungsten 147 with *i*-BuI gives two diastereomeric secondary phosphine complexes 148a and 148b as either 7:3 or 3:7 mixture depending on the reaction temperature. Further alkylation of 148a at -80 °C with MeI or PhCH₂Br proceeded with complete stereospecificity and afforded 149a and 150a, respectively, with retention of configuration (eq 24). However, at room temperature, regardless of which mixture of 148 was used, the benzylation reaction led always to the preferential formation of 150b (80% de) (eq 25). Diastereomerically pure 150b was obtained by crystallization and was oxidatively decomplexed to yield 151 with full retention of configuration. Similarly, 149a gave diastereomerically pure 152a (eq 26).

In the main stream of the above studies¹²⁰ phosphide anion derived from (menthylphosphine)pentacarbon-

yltungsten 147 (or its molybdenum analog) was phosphorylated to give scalemic phospha-Wittig reagent 153 which in turn served to synthesize several novel P-chiral menthylphosphine derivatives. Reaction of 153 with isobutyraldehyde yielded intermediate prochiral phosphaalkene 154 which was subsequently hydrogenated over L_2Rh^+ catalyst to give stereoselectively 148a (eq 27). When L_2 was dppe, the diastereomeric excess of

148a over 148b was >90%, whereas with $L_2 = (-)$ chiraphos only 148a was obtained. When 153 was allowed to react with a series of aryl aldehydes in the presence of excess cyclopentadiene the intermediate phosphaalkenes were trapped *in situ* to afford in each case a single phosphanorbornene derivative 155 (eq 28).

As has been rigorously established, both the hydrogenation and the [2 + 4] cycloadditions with cyclopentadiene took place on the *si* face of the phosphaalkene complexes. By a somewhat modified procedure and starting from the corresponding molybdenum reagent 156, complex 157 was also obtained, again as a single stereoisomer. This complex was unstable and readily lost one CO to give more stable chelate 158 from which, however, the optically pure phosphine 159 could be ultimately liberated in more than 20% overall yield (based on the complexed menthylphosphine) (eq 29).

By reacting phospha-Wittig reagent 153 with enantiomeric styrene oxides the same authors¹²¹ were able to synthesize and fully separate all four stereoisomeric menthylphosphirane complexes 160a,b and 161a,b (Scheme 6). As for the doubly asymmetric processes,

Scheme 6

the reactions turned out to be only moderately stereoselective. Importantly, however, they were completely stereospecific with respect to the carbon configuration as total inversion of configuration at the oxirane carbon was observed. From the analysis of the product composition and stereochemistry it became apparent that the asymmetric induction by the *P*menthyl group had not been effective. Besides clarifying the mechanistic picture of the phosphirane formation,¹²¹ these observations led the authors to expect that the use of enantiomeric styrene oxides as the only chiral auxiliaries would be equally effective in creating asymmetry at P. The two pertinent examples are given in eq 30.

By using the same methodology, phosphirane molybdenum complexes corresponding to 160a,b, 161a,b, and 163a,b (R = t-Bu) were also synthesized with very similar selectivity.¹²² This time however, after separation the complexes were treated with dppe to yield free phosphiranes 164a,b and 165a,b, which were fully characterized and used as ligands for asymmetric catalysis. In the case of P-t-Bu derivatives the liberated phosphiranes were *in situ* transformed into cationic rhodium complexes to be used directly in hydrogenation experiments.

Ring-substituted P-menthylphosphiranes were also synthesized by Richter¹²³ in a straightforward manner involving treatment of dichloromenthylphosphine with magnesium butadiene at lowered temperature (eq 31). The phosphiranes were formed in this case as a mixture of four diastereomers **166a**,**b** and **167a**,**b** with a cis/ trans ratio of 9:1. One of the cis isomers **166** constituted 82% of the whole mixture and the level of asymmetric induction in its formation was estimated to be ca. 82%.

In a similarly straightforward although mechanistically different manner Vilkas and co-workers^{124,125} were able to convert simple achiral dichloromethylphosphine into P-chiral phosphetane oxides 168^{124} and 169^{125} incorporated into a terpenoid framework (eq 32). In spite of the multistep skeleton rearrangements involved, these syntheses provided, in one pot, the diastereomerically pure products in 30% yield.

Reactions of aminochlorophosphines with scalemic aryllithium reagents 170 derived from enantiomeric 1-phenylethylamines were utilized by Horner and Simons⁴⁹ for the synthesis of several C,P-chiral aryldialkyl and alkyldiaryl phosphines 171 (eq 33). All of

these diastereomeric phosphines, as well as 172 obtained in analogous manner, were resolved via their oxides with the aid of tartaric or perchloric acid and were then reduced back to individual P-epimeric phosphines with SiHCl₃. Four triarylphosphines were also prepared in this way but they could not be resolved. Still another internally diastereomeric phosphine of the same type, i.e., $(S_{\rm C},S_{\rm P})$ -173, was resolved by Tsuji and co-workers,⁵⁰ again with the help of (*R*)-tartaric acid. Its absolute configuration was assigned on the basis of X-ray analysis of its Pd(II) complex.¹²⁶

Cycloaddition reactions of an organophosphorus compound to a chiral auxiliary as a means of formation of self-resolving cycloadducts were employed by two groups. Mathey and co-workers⁹⁵ used a [2 + 4]cycloaddition of phosphole 174 to menthyl and bornyl phenylpropiolates to obtain diastereomeric 1-phosphanorbornadienes of type 175 (eq 34). In the menthyl

series the depicted oxidized major product was separated from its minor regioisomer on silica gel and was then resolved by HPLC into two individual P-epimeric oxides which were finally reduced back to phosphines by SiHCl₃-pyridine. The corresponding epimers in the bornyl series were not resolved.

Brandi et al.¹²⁷ studied 1,3-dipolar cycloadditions of chiral nitrones to vinylphosphine oxides, and they were able to demonstrate that these processes can occur in a highly stereoselective manner, especially, in their doubly asymmetric version (cf. section III.C.2.c). However, when scalemic nitrones 176 were allowed to react with racemic vinyl phosphine oxide 74, in both cases one of the cycloadducts was formed in useful predominance i.e., 177 (73% and 95%, respectively) (eq 35),

even though all the eight possible stereoisomeric products could be identified in the reaction mixtures before isolations of 177. Analogous reaction of 176 (R = H) with racemic phospholene oxide 10 gave two products of type 178 (only major shown), which were separated and individually identified to originate from the opposite enantiomers of 10, each thus in 100% stereoselectivity.¹²⁸ In complete accord with this picture, a small amount of unreacted 10 enriched in the slower reacting enantiomer (-)-(R)-10 was also isolated. This particular observation inspired the authors to a more detailed study¹²⁹ on kinetic resolution of (±)-10 by scalemic cyclic nitrones which will be discussed in section III.A.4. In the context of this section it should be recalled, however, that besides effectively resolving phospholene derivatives, those cycloadditions were also highly efficient as the asymmetric transformations affording stereoisomeric scalemic tricyclic P-chiral phosphine derivatives, e.g., 179a and 179b containing six contiguous stereogenic centers of defined absolute stereochemistry in the highly stereoselective manner (cf. eq 46, section III.A.4).¹²⁹ The two stereoisomers 179a and 179b which were typically formed in unequal amounts (in up to 10:1 ratio depending on the bulkiness of R) could be separated with ease by crystallization.

Transformations of carbohydrates which led to selfresolving phosphasugars were described largely by Inokawa and Yamamoto and co-workers.¹³⁰⁻¹⁴⁰ In the key step of their typically employed double Abramovtype route a sugar-bonded phosphinate was selectively reduced by dihydrobis(2-methoxyethoxy)aluminate (SDMA) to a secondary phosphine oxide which was subsequently allowed to undergo intramolecular Abramov reaction with the sugar carbonyl function placing phosphorus in the hemiacetal ring. Two examples are shown in eqs 36¹³⁰ and 37.¹³¹ Although in all such

preparations, mixtures of two to seven stereoisomeric products of type 180 or 181 were usually formed with little selectivity and their separations were tedious and difficult, in many instances the authors were able to isolate individual isomers and to assign their absolute stereochemistry by means of detailed NMR and/or X-ray analysis. Those which were crystalline and were studied by the X-ray diffraction technique have been selected to serve as examples (182–189). In one study¹³⁷ an unusual enantiomerically pure phosphine 190 was isolated as a crystalline side product in 2.7% yield.

A single example in which steroid chirality was meant to resolve phosphorus stereogenic center in a butadienyl phosphine oxide 191 has been reported very recently (eq 38).¹⁴¹

In the same study¹⁴¹ and utilizing the same Hecktype chemistry two other self-resolving systems 193 and 194 were also prepared (eq 39). It should be noted, however, that these systems are distinct from all the previous ones discussed in this section in that, in these cases, instead of employing carbon chirality, an existing phosphorus stereogenic center in 192 serves to resolve another. This principle was earlier applied successfully in resolution of symmetrical and nonsymmetrical 1,2bis(phosphinyl)ethanes 195–197¹⁴² and 1,2-bis(phosphinyl)ethenes 199 and 200.¹⁴³ Both these systems were promptly accessible by straightforward thermal additions of racemic secondary phosphine oxides to enantiomerically pure acceptors (-)-74 or (-)-198 (eqs 40 and 41). All of them were separated by chromatography and were assigned their configuration on the basis of comparisons of their NMR and physical data and an X-ray study.¹⁴⁴

4. Kinetic Resolutions

The first kinetic resolution of a phosphine is due to Wittig and co-workers⁷¹ who succeeded in partially resolving *p*-biphenylyl-1-naphthylphenylphosphine (201) by means of its quaternization with half-molar amounts of paraformaldehyde and (+)-camphor-10-sulfonic acid (eq 42). The unreacted half of the phosphine was found

to be enriched in the (-)-enantiomer and the other half, which was recovered from the hydroxymethylphosphonium salt 202 by treatment with Et₃N contained accordingly the (+)-enantiomer in excess. As it has been later revealed,⁷⁴ the optical purity of enantiomeric phosphines 201 resolved in this way was however only modest. When the three components were used in a 1:1:1 ratio, the separation of the resulting diastereomeric phosphonium salts was unsuccessful.

Kinetic resolution of a preformed aminophosphonium salt 24 (eq 43) was developed by Horner and Jordan⁶³ to complement their own classical 1:1 resolution of 24 with potassium hydrogen dibenzoyltartrate, in which they succeeded in isolation of only one, the less soluble, phosphonium hydrogentartrate of the *R* configuration.⁶³ This time the half of the salt containing exchanged counterion (24a) being poorly soluble in hydroxylic

solvents was readily separated and was found to contain the lacking phosphonium cation of the S configuration.

Bestmann and Tömösközi¹⁴⁵ studied the kinetic resolution in "umylidierung" reactions of racemic ylides (e.g., 203) with scalemic acid chlorides and related chiral reagents. An example is given in eq 44. The calculated optical yield in the case shown was 11.5%, and the highest in the study 15.4%. Several variations of this approach were also tested, however, with little if no success, with respect to the resolution of the P-center.

Attempts to kinetically resolve phosphines through their partial oxidation with scalemic peracids or scalemic amine oxides met with very little success.¹⁴⁶ The reverse approach, relying on reduction of racemic phosphine oxides with scalemic reducing agents, led to more promising results. Two groups^{147,148} studied reductions of oxides 9, 204, and 205 by scalemic alanes derived from AlH₃ and (-)-1-phenylethylamine¹⁴⁷ or, LiAlH₄ and (S)-2-(anilinomethyl)pyrrolidine.¹⁴⁸ The

phosphines obtained in this way from oxides 9 and 204 had $6.8\%^{148}$ and $21.5\%^{147}$ ee, respectively. The results for phospholene oxide 205 were obscured as under the reaction conditions it underwent concomitant partial reduction of the double bond leading to the formation of nonseparable mixtures of unsaturated and diaster-eomeric saturated cyclic phosphines. Interestingly, as indicated in eq 45 showing the most successful experi-

ment, as much as 4-fold excess of the hydride was used and the reduction was driven to nearly complete conversion of the phosphine oxide.¹⁴⁷ These conditions

strongly imply that the mechanism of dynamic kinetic resolution was in operation in the studied cases as it is well known that phosphine oxides racemize rapidly in the presence of aluminum hydrides *prior* to reduction.¹⁴⁹

Very recently an efficient kinetic resolution of 1-phenyl-2-phospholene 1-oxide (10) by means of its 1,3-dipolar cycloadditions with chiral scalemic nitrones was developed by Brandi and co-workers.¹²⁹ Crucial to this development were previous observations that 10 is approached by nitrones exclusively in the exo mode and only from the P=O bearing side.^{114,150} The resolution process is exemplified in eq 46. In the

179b

(R) - (-) - 10

179:

experiment shown, involving nitrone 207 possessing sterically demanding alkoxy groups (R = t-Bu), the unreacted (-)-R-10 was isolated in 27% yield (to be compared with 33.3% theoretical yield after virtually complete conversion of the nitrone) and it was determined to be of remarkable 96% enantiomeric purity. The process proved similarly effective in resolution of phospholene sulfide 93 and is likely to become of more general utility. Enantiomerically pure nitrones 207 are readily available from tartaric acid,¹⁵¹ and those possessing bulky OH protecting groups, e.g., R = t-BuPh₂-Si, offer resolutions with stereoselectivity factors $s = k_{\rm R}/k_{\rm S}$ higher than 10.¹²⁹

Finally, enzymatic kinetic resolution of P-chiral phosphine derivatives has also been very recently accomplished. In one preliminary study¹⁵² a short series of simple phosphinylacetates 208 (e.g., R = Me, Et, CH₂Ph, CH=CH₂; eq 47) was successfully resolved via PLE-catalyzed hydrolysis which afforded in the studied cases the unreacted esters 208 and the acids 209 of up to >98% enantiomeric purity.

B. Stereoselective Synthesis

1. Via Single Displacement at P

A search for flexibility and generality greater than just resolving individual racemic mixtures led to the development of synthetic methods potentially permitting preparations of series of scalemic phosphines or their derivatives from one precursor. Such an approach required, however, that a suitable *P-resolved* precursor possessing one or more potential leaving groups would be available and, that it would be possible to create new C-P bonds at its resolved P-center stereoselectively. The pioneering work in this area is due to Nudelman and Cram¹⁵³ and to Mislow and co-workers,^{34,154} who were the first to demonstrate that unsymmetrically substituted menthylphosphinates, RRP(O)OMen, could be separated readily into the diastereomeric forms and subsequently reacted with Grignard reagents to afford scalemic tertiary phosphine oxides with a high degree of stereospecificity. A typical procedure for the preparation of P-chiral menthyl phosphinates is exemplified by Mislow's synthesis of menthyl methylphenylphosphinates (211) shown in eq 48.³⁴ Separation of the

diastereomeric products 211 was effected by fractional crystallization from hexane at 5 °C. A readily crystallized diastereomer $(S_{\rm P})$ -211, could be obtained in excellent yield especially when recycling of mother liquors via racemic 210 is repeatedly performed. Isolation of $(R_{\rm P})$ -211, although possible, proved inefficient. In the same work,³⁴ a further three pairs of diastereomeric menthyl phosphinates were similarly obtained and separated, and together with 211 provided a pool of substrates for the subsequent Grignard syntheses of scalemic phosphine oxides and their configurational intercorrelations. As rigorously established in this work, the substitution reactions of menthyl phosphinates with organometallic reagents occur with inversion of configuration at phosphorus. Preparation of (R)-cyclohexylmethylphenylphosphine oxide (212) shown in eq 49 provides an early example.³⁴ Interestingly, in this synthesis a small amount of nonsymmetrical bis-(phosphinyl)methane 213 (6%) was also isolated. Another important preparation is shown in eq 50.155

Although in general, the reactions of this type had to be carried out with an excess of a Grignard reagent under somewhat stringent conditions and were found to be very sensitive to variations of groups at phosphorus, oxygen, and magnesium, the method became of general use for its flexibility and high level of stereospecificity usually attainable. Many more diastereomeric pairs of menthyl phosphinates, i.e., 216-229, were resolved by the group of Mislow^{34,156,157} and

Horner¹⁵⁸ as well as by others,^{155,159–164} albeit not without difficulties. Frequently only one diastereomer could be obtained in the pure form and several examples of unsuccessful attempts are also on record.^{158,165} Alternative routes to the resolved menthyl phosphinates were thus developed in addition to procedures aimed to provide P-resolved phosphinates possessing simpler, chiral or achiral, alkyl residues in the ester group.^{33,166} The corresponding phosphine boranes 230¹⁰⁶ and 231¹⁰⁶ and phosphinothioates 232¹⁷⁰ and 233¹⁶² were also successfully resolved.

With the exception of phosphinothioates 232 and 233, all the listed phosphinates were subjected to reactions with organometallic reagents which furnished eventually an impressive range of structurally diversified phosphine oxides (and boranes), frequently of high optical purity, and in several cases in both enantiomeric forms. The structures of scalemic phosphine oxides and boranes prepared by this method are specified below (8, 9, 66, 69, 204, 234–237, and 104b, 258–260).

Me /

0 /P /R	8 ³⁴ R = Et 9 ³⁴ R = PhCH ₂ 66 ³⁴ R = p -An 69 ³⁴ R = p -An 204 ³⁴ R = p -Pr 234 ¹⁷¹ R = Alyl 235 ¹⁷² R = n -Bu 236 ³⁴ R = α -NpCH ₂ 237 ³⁴ R = α -NpCH ₂ CH ₂	238 ¹⁷³ R = <i>m</i> -An 239 ³⁴ R ≈ <i>p</i> -PhPh 2401 ⁷⁴ R ≈ <i>p</i> -Tol 2411 ⁷⁴ R ≈ <i>p</i> -Col 242 ¹⁰⁰ R ≈ <i>p</i> - <i>l</i> -BuPh 243 ¹⁶⁵ R ≈ <i>p</i> - <i>l</i> -BuPh 243 ¹⁶⁵ R ≈ <i>p</i> -MeSPh 245 ¹⁶⁵ R ≈ <i>o</i> -MeSPh 245 ¹⁶⁵ R ≈ <i>o</i> -Me-Ph 245 ¹⁶⁵ R ≈ <i>o</i> -Me-Ph
R R	247 ¹⁵⁶ R, R', R' = M 248 ¹⁵⁶ R, R', R' = M 249 ¹⁵⁸ R, R', R' = M 250 ¹⁵⁸ R, R', R' = M 251 ¹⁵⁸ R, R', R' = M 252 ¹⁵⁸ R, R', R' = M 253 ¹⁵⁸ R, R', R' = M 254 ¹⁵⁸ R, R', R' = M 255 ¹⁶⁰ R, R', R' = M 256 ¹⁵⁶ R, R', R' = P 257 ¹⁵⁶ R, R', R' = P	e, n-Pr, Et e, n-Pr, Cy e, n-Pr, ρ-An e, n-Pr, ρ-Me2NPh e, n-Pr, ρ-Me2NPh e, n-Pr, ο-Me2NPh e, n-Pr, ο-Me2NPh e, n-Pr, ο-Me2NPh e, t-BuPh, PhCH2 h, β-Np, ρ-An h, β-Np, ρ-An
Ph P	104b ¹⁷³ R = <i>o</i> -An 258 ¹⁷³ R = <i>o</i> -Me-p 259 ¹⁷³ R = <i>m</i> -An 260 ¹⁷³ R = <i>p</i> -An	An

Many of these products were later reduced to provide the corresponding scalemic phosphines. For example, syntheses of a long series of ortho-substituted aryl phosphine ligands by Horner and co-workers^{158,165} relied on this methodology as did the Monsanto syntheses of CAMP¹⁷⁵ and DIPAMP¹⁵⁵ ligands (cf. eq 50). In the latter syntheses access to larger quantities of the difficulty accessible (vide supra) R_P epimer of 211 prerequisite for the formation of the R, R enantiomer of DIPAMP (required in the Monsanto L-DOPA process) was secured by crystallization of the Mislow diastereomeric mixture of 211 (1:1) from 50% solutions in α - or β -pinene by selective seeding.¹⁷⁵ Alternatively, $(R_{\rm P})$ -220 could be used to obtain intermediate 64 of the desired R configuration in its reaction with Ph-MgBr. It was disclosed¹⁵⁹ that in the preparation of 220 the desired $R_{\rm P}$ diastereomer is formed predominantly (4:1) and could be readily separated from the minor S_P diastereomer (cf. however, ref 158).

As mentioned before, the displacement of OMen group in menthyl phosphinates by Grignard reagents has been very sensitive to structural factors, and judicious matching of starting phosphinates with Grignard reagents has been often prerequisite for the overall success. Several attempts to improve the procedure have been made. It was discovered¹⁵⁶ early that organolithium reagents can be used successfully to effect the desired displacement, and typically, these reagents offer milder conditions and better vields but sometimes at the cost of lower optical purity of the resulting phosphine oxide. Groups different than menthyl in the phosphinate reagents were rarely tested. Some examples will be seen in the following two sections. In one early work¹⁵³ use of cholesterol as the auxiliary proved successful. In turn, Naso and co-workers¹⁷⁶ were able to demonstrate that 1-chlorovinyl group in (R)-198 can also serve as the very effective leaving group for substitutions by aryl and vinyl Grignard reagents (eq 51). The studied displacements were established to provide virtually optically pure phosphine oxides of inverted configuration at phosphorus. The enantiomerically pure starting (R)-198 is readily available from $(S)-74.^{143}$

The well-established utility of resolved menthyl phosphinates in the synthesis of scalemic phosphine oxides and boranes via substitution reactions with organometallic reagents has been recently further expanded due to the work of Imamoto and co-workers.^{177,178} These authors discovered that the ester P-O bond in menthyl phosphinates can also be cleaved in a stereoselective manner reductively. The cleavage can be effected under very mild conditions with typical oneelectron reducing agents such as LiNH₃, sodium or lithium naphthalenide, lithium biphenylide, and lithium 4,4'-di-tert-butylbiphenylide (LDBB). As the authors demonstrated in the phosphine borane series (eq 52),¹⁷⁷ quenching of the reaction mixture with an alkyl halide or methanol provides the corresponding scalemic

tertiary 104b, 263 or secondary 264, 265 phosphine borane, respectively. As shown in eqs 53 and 54^{178}

(Rp) - 211

analogous reactions of menthyl phosphinate $(R_{\rm P})$ -211 and bis(phosphinate) (R_P, R_P) -269 with LDBB and benzyl bromide and methyl iodide gave phosphine oxides 9, 266–268 and bis(phosphine oxide) (R,R)-195, respectively. The corresponding S enantiomers of 9and 195 were also obtained by this route. The cleavage of the OMen group was found to take place with almost complete preservation of stereochemical integrity at phosphorus and consequently resulted in the formation of the displacement products with retention of configuration, in contrast to the Mislow procedure which leads to the displacements products of inverted configurations. Hence, the two procedures are complementary.

The reductive removal of the OMen group from the resolved menthyl phosphinates as a potential route to scalemic secondary phosphine oxides was already tested in the past;^{163,179} however, those early attempts met with only very little success. The resulted secondary phosphine oxides 88 and 270 (eq 55), albeit optically active, were obtained in very low optical yields due to extensive racemization caused by LiAlH₄ used as the reducing agent.149,160

The synthesis of a secondary phosphine oxide of high optical purity by reductive means was later shown to be possible by Michalski and Skrzypczyński¹⁸¹ who reacted to this effect resolved phosphinothioic acid 271 and phosphinoselenoic acid 272 with Raney nickel (eq

56). The corresponding scalemic secondary phosphine sulfide 92 was also prepared from the same phosphinothioic acid via mixed anhydride 273 (eq 57).¹⁸²

The idea behind many of the above syntheses of scalemic tertiary phosphine oxides was to provide ultimately an access to scalemic tertiary phosphines. Methods for stereoselective reductions of phosphine chalcogenides to phosphines as well as for liberation of phosphines from their borane complexes have accordingly been developed and they will be discussed in section III.C.2. Direct synthesis of scalemic phosphines by displacement procedures similar to those developed for phosphine oxides could have been considered as a viable alternative only after P-resolved esters of trivalent phosphorus acids were proved to be configurationally reasonably stable¹⁸³ and convenient routes to them were provided.¹⁸⁴ Mikołajczyk and co-workers¹⁸⁴ were able to obtain several partially P-resolved alkyl phosphinites and thiophosphinites via an asymmetric route which is typified in eq 58. Albeit not having been

very efficient as an asymmetric (or doubly asymmetric in the case of menthol) process, it provided access to the first simple scalemic phosphinites (e.g., 274-276) which could be used to study stereochemistry of displacement of ester groups in trivalent phosphorus compounds.^{152,185} It was then unequivocally established that substitution of phosphinite ester or thioester group by organolithium reagents occurs with high stereoselectivity and with inversion of configuration at phosphorus. It was also demonstrated that Michaelis-Arbusov reactions of such esters cleanly afford the expected phosphine chalcogenide with retention of configuration at phosphorus. The pertinent syntheses which served in cited work also for chemical correlations are exemplified in eqs 59-62.¹⁸⁸ The same authors later prepared¹⁸⁷ diastereomerically pure menthyl ethylphenylphosphinite (276) by the procedure shown in eq 63 and used it together with $(R_{\rm P})$ -279 (analogously

prepared from the corresponding diastereomerically pure $(S_{\rm P})$ -232)¹⁷⁰ for reactions with organolithium reagents to directly obtain phosphines 51 and 280–283 of very high optical purity (eq 64).¹⁸⁷ In the closely related manner enantiomerically pure (S)-272 afforded methyl *tert*-butylphenylphosphinite (285) of high optical purity, from which in turn, phosphine oxide (R)-103 of ca. 78% ee was obtained by treatment with MeI (eq 65).¹⁸⁸

(R) - 103

Another synthetic procedure leading directly to phosphines of high optical purity was developed by Chodkiewicz and co-workers¹⁸⁹ and it is based on

(+) - (R) - 285

reactions of cinchonine phosphinites 286 with organolithium reagents. The procedure is operationally straightforward and takes advantage of the fact that diastereomeric cinchonine phosphinites 286 formed by condensing chlorophosphines with cinchonine are frequently found highly enriched in one of the diastereomers. Treatment of such diastereomeric mixtures without separation by organolithium reagents leads to scalemic phosphines of up to 80% ee (eq 66). In one

PhRPCI
$$\xrightarrow{\text{cinchonine}}_{R}$$
 Ph \xrightarrow{p}_{OCinch} RLi
286
7 R, R' = Me, aAn
286
7 R, R' = Me, aAn
287 R, R' = Me, aAn
288 R, R' = Me, $a-Np$
16 - 80% ee
290 R, R' = PhCH₂, $a-Tol$
291 R, R' = $a-Np$, $a-Tol$
292 R, R' = $a-Np$, $a-Tol$
292 R, R' = $a-Np$, $a-Tol$
293 R, R' = $a-Np$, $a-Tol$
293 R, R' = $a-Np$, $a-Tol$
294 R, R' = $a-Np$, $a-Tol$
295 R, R' = $a-Np$, $a-Tol$
295 R, R' = $a-Np$, $a-Tol$

case, i.e., 293, the major (R_P) diastereomer was obtained in the pure form by crystallization of its CuCN complex from DMSO-N-methylmorpholine (1:1) and was used to synthesize a series of scalemic phosphines 294 of very high optical purity.¹⁹⁰ These phosphines were conveniently isolated via their easy to handle complexes with CuI 295 (eq 67). The free phosphines can be

liberated from the Cu^{l} complexes by treatment with alkaline cyanide or, alternatively, can be oxidized to the corresponding oxides by H_2O_2 in benzene.

Finally, the single displacement procedure also can be used to transform stereoselectively one resolved phosphine into another. Kyba¹⁷² demonstrated early that displacement of the benzyl group in (+)-9 with t-BuLi and n-BuLi reagents led to phosphines 31 and 283 with clean inversion of configuration (eq 68). Analogous displacements in 296 (eq 69) gave in turn 297 and 31 in comparable amounts and, importantly, again with complete inversion of configuration in both products.¹⁶⁰ This particular observation led the author to conclude that the nucleophilic substitution at P^{III} is a classical S_N2 process not involving any P^V pentacoordinate intermediates.

2. Via Two Consecutive Displacements at P

In an attempt to broaden the scope of their synthetic methodology based on Grignard reactions of P-resolved

menthyl phosphinates Mislow and co-workers¹⁶⁰ developed also a procedure which allows sequential introduction of two carbon substituents on phosphorus. The authors were able to separate partially the diastereomers of menthyl phenylphosphinate (298) and to demonstrate that they can be stereospecifically alkylated with primary and secondary halides with retention of configuration. The resulting scalemic menthyl phosphinates could then be transformed into tertiary phosphine oxides via Grignard displacement as before. The route is exemplified in eq 70. Both

enantiomers of **299** could be obtained from a single H-phosphinate precursor by reverting the order of introduction of the two alkyl substituents.¹⁶⁰ Although stereochemically sound and potentially flexible (recently also Pd catalyzed arylation of menthyl Hphosphinates with either retention and inversion of configuration has also become possible¹⁶⁴) the method has found little use probably because the separation of diastereomerically pure precursors proved difficult, in the early cases. The two recent applications of this method are shown in eqs 71¹⁶¹ and 72.¹⁰⁶ Even though

in the former synthesis the S_P diastereomer of the starting menthyl benzylphosphinate (300) was readily available in high yield and in the pure form, the depicted preparation of (-)-(S)-9 was only partially successful due to considerable racemization in the Grignard substitution step. Also in the related synthesis of boranes 104b, 259, and 260 shown in eq 72 the substitution step was found to be sensitive to the steric bulk of the organometallic reagent. The reaction proceeded with excellent stereoselectivity with metaand para-substituted aryllithium reagents but with the ortho-substituted one the resulted tertiary phosphine oxide 104b was practically racemized.^{106,173}

In many instances however, as demonstrated in the previous section, nucleophilic substitution of an ester

Scheme 7

group in P^{IV} derivatives could be performed with very high stereoselectivity and these observations led to expectations that two sequential substitutions could also provide a means for stereoselective synthesis of scalemic phosphine derivatives. For such an approach resolved P-chiral precursors possessing two leaving groups potentially different in their leaving group ability were prerequisite. In the pioneering study Inch and co-workers¹⁹¹ used resolved P-chiral glucopyranosyl bicyclic phosphonates 302 in which a primary and a secondary hydroxyl group served for the phosphonate formation (Scheme 7). The two diastereomeric P-chiral phosphonates 302a and 302b were readily separated by chromatography and were each individually subjected to two consecutive Grignard reactions which afforded enantiomeric ethylmethylphenylphosphine oxides (8) of high optical purity. Interestingly, it was the primary alcohol residue which was displaced first. Both displacement steps occurred with inversion. Although fully satisfactory in the cited case the developed procedure was found to suffer from similar limitations as seen already for substitutions of menthyl phosphinates, with the overall success depending on the nature of the reagents and the groups attached to P as well as on the carbohydrate stereochemistry. For example, when the two Grignard reagents in the cited synthesis were used in the reversed order the substitution failed in the second step. Also, analogous cis-fused galactopyranosyl phosphonates failed to ring open with Grignard reagents.

In a conceptually related manner Moriyama and Bentrude¹⁹² were able to convert enantiomerically pure thiophosphonates **303** and **304** into phosphine oxides **306** and **9** via their selective displacement reactions with two Grignard reagents in succession (eq 73). The selected substrates were however distinct from the previous ones as well as from all the others discussed in this section in that they did not contain any auxiliary chiral group in their structure besides phosphorus. The resolved thiophosphonates could be readily prepared

by straightforward S-alkylation of enantiomerically pure O-isopropylmethylphosphorothioic acid.¹⁹³ Interestingly, the reaction of phosphorothioate 304 containing chelating ester residue with PhMgBr was found to occur with predominant inversion of configuration at phosphorus. More expectedly, the reaction of S-methyl ester 303 with PhCH₂MgCl yielded the pertinent phosphinate 305 with predominant retention of configuration. In the second displacement steps the expected inversion of configuration at phosphorus took place. Reduction of oxides 306 and 9 with phenylsilane provided scalemic phosphines 307 and 206, respectively, with retention of configuration.

Similar O vs S distinction of the two ester leaving groups at the resolved P-center was utilized by Corey and co-workers¹⁹⁴ in their double displacement route to DIPAMP (215). The developed route commences with a cyclic thiophosphonate 308 available stereospecifically in a potentially general one-flask procedure from camphor derivative 309, via thermodynamically favored *exo*-P-Ph oxathiaphospholidine 310 (eq 74).

As detailed in Scheme 8, treatment of 308 with o-anisyllithium and further reaction with tertbutyldimethylsilyl (TBDMS) triflate provided thiophosphinate 311 with clean retention of configuration at phosphorus. Subsequent reaction of 311 with an excess of methyllithium followed by treatment with BF_{3} -Et₂O and extractive isolation gave crystalline PAMP sulfide (312) of fully inverted configuration at phosphorus. Final conversion of 312 into enantiomerically pure (R,R)-DIPAMP (215) was accomplished by two alternative and equally successful routes involving either direct coupling of sulfide 312 or, coupling of the derived borane (R)-104b. Also, as demonstrated in the synthesis of phosphine borane (S)-104a and diphosphine 314 shown in eq 75,¹⁹⁴ the developed displacement protocol could be applied directly to oxathiaphospholidine 310 with comparably satisfactory stereochemical results. The transformation $310 \rightarrow 104a$

Scheme 8

involved one displacement with retention and one with inversion, analogously to $308 \rightarrow 312$.

(R.R) - DIPAMP

The first sequential double displacement route which led directly to scalemic phosphines was developed by Chodkiewicz¹⁹⁰ and was based on diastereomerically enriched nonsymmetrical alkylarylphosphonites **315** (or their CuSCN complexes) as convenient precursors (eq 76). Such compounds of high diastereomeric purity

CinchOH = cinchonine or cinchonidine

could be obtained in one pot starting from PhPCl₂, cinchonine or cinchonidine, and the corresponding phenol, and were conveniently isolated via their equimolar complexes with cuprous salts, from which they could be recovered by treatment with alkaline cyanide. The two consecutive displacement reactions of **315** by an aryl Grignard reagent and methyllithium went stereospecifically with inversion of configuration at phosphorus and yielded phosphines 7 and 288 of high optical purity. The S_P phosphines were obtained in the cinchonine series, but with cinchonidine the corresponding R_P enantiomers were prepared. An asymmetric variant of direct phosphine synthesis via the double displacement route was developed by Neuffer and Richter.¹⁹⁷ In their approach a P-prochiral dimenthyl phosphonite **316** was allowed to react with alkyllithiums at low temperature and was found to yield P-resolved menthyl alkylphenylphosphinites **317–319** of very high diastereomeric purity (eq 77). Analogous

dibornyl phosphonites were also tested but they gave considerably lower inductions (69% de). For the second displacements phosphinite 317 was selected and was shown to afford scalemic phosphines 36 and 318 of markedly lower optical purity than the starting 317 (eq 78). The observed loss of the optical purity at phos-

phorus during displacement of the menthoxy group in 317 by organolithium reagents was somewhat unexpected as in the closely related systems 276, 279 practically complete stereoselectivity was recorded for such displacements (cf. eq 64).¹⁸⁷ It should be noted however, that the two systems differed somewhat in steric crowding around phosphorus and, importantly, they were also diastereomerically distinct, i.e., they were of the opposite configurations at phosphorus.

A cyclic phosphonite 320 offering different reactivity of its primary and secondary ester residues was utilized by Suga and co-workers¹⁹⁸ in their two-step synthesis of scalemic phosphine oxides. The starting phosphonite 320 was readily obtained from (-)-butane-1,3-diol and was found to constitute practically one diastereomer after distillation (eq 79). In the first step of the synthesis, instead of the previously seen nucleophilic displacements, the Michaelis-Arbusov reaction was employed and resulted in the regio- and stereoselective (retention) cleavage of the primary carbon-oxygen bond. The resulting phosphinates 321 were then reacted with 5 mol excess of Grignard reagents to afford the shown tertiary phosphine oxides of high optical purity (76-100%), albeit in modest yield (10-57%).

In another work from the same laboratory¹⁹⁹ scalemic phosphonites 322 and 323 of C_2 -symmetry were used

as substrates. These substrates were in fact P-achiral but they offered instead a possibility for the creation of the phosphorus stereogenic center via an asymmetric transformation in the first Michaelis-Arbusov step (eq 80). With some electrophiles excellent inductions were

de facto achieved, e.g., 100% with benzyl iodides bearing nitro or cyano group in the para position, but with those which were structurally compatible with the conditions of the subsequent displacement step only modest inductions were accessible. These are reflected in the enantiomeric purities (18–45% ee) of the phosphine oxides 9, 204, and 234 as well as of the corresponding phosphines which were eventually obtained. Interestingly, the same phosphines obtained analogously from bicyclic phosphonite 323 by this procedure were found to be of the opposite configuration and of a much lower optical purity (2.4–12% ee).

A synthesis of phosphine oxides of high enantiomeric purity via Michaelis-Arbusov-Grignard reaction sequence was also developed by Jugé and Genet²⁰⁰ (eq 81). In their study diastereomerically pure 1-

phenyloxaazaphospholidine 325²⁰¹ available directly from PhP(NEt₂)₂ and (-)-ephedrine was used as the P-resolved substrate. Reactions of 325²⁰¹ with alkyl halides gave the expected phosphinamides 326 with retention of configuration but also with some loss of configurational homogeneity at the phosphorus center.²⁰² After having had their diastereomeric purity corrected by recrystallization these phosphinamides were further subjected to acid-catalyzed methanolysis to provide methyl alkylphenylphosphinates, 327, of more than 96% ee. Reaction of phosphinate 327 (R =Me) with Grignard reagents afforded the desired phosphine oxides 9 and 64 of 95 and 92% ee, respectively. When PhCH₂Cl was employed in the first step and MeMgBr in the second, the enantiomer of 9 of 77% ee was obtained from the same oxazaphospholidine 325. By utilizing known routes the authors also converted 64 into the corresponding phosphine 7 (PAMP) and diphosphine 215 (DIPAMP) as well as similarly prepared their enantiomers starting from the

corresponding (-)-oxazaphospholidine derived from (+)-ephedrine.

Further work from the same laboratory²⁰³ demonstrated that the corresponding oxazaphospholidine borane complex 328 could be conveniently obtained as a diastereomerically pure crystalline product in one step in up to 80% yield. This structural modification enabled the authors to replace the Michaelis-Arbusov step of the previous synthesis with a nucleophilic displacement by RLi. As shown in eq 82 low-temperature reactions of alkyl and aryllithium reagents with 328 yielded cleanly the corresponding phosphinamide boranes 329 by selective P-O bond cleavage occurring with predominant (>92%) retention of configuration at phosphorus.²⁰⁴ Quantitative metha-

nolysis of these intermediates followed by reactions of the resulting phosphinite boranes with different organolithium reagents (both steps occurring with inversion of configuration) afforded scalemic phosphine boranes 104b, 330, and 331 of 85-100% ee. When required, these products could be further purified to virtually enantiomeric purity by recrystallization from hexane. Liberation of the corresponding enantiomerically pure phosphines from these borane complexes by treatment with excess of Et₂NH, as well as coupling reactions to the corresponding bis(phosphine boranes) 332 and 333, and their subsequent decomplexation to bis(phosphines) 215 and 334, were also reported. It should be noted that this route (cf. also the procedure of Scheme 8) provides probably the best source of the renowned PAMP and DIPAMP ligands¹¹ available to date. By this route the two ligands were prepared on a 0.4 mol scale in 70% and 40% overall yield, respectively, calculated on ephedrine. It has also been demonstrated that good overall yields of PAMP borane 104b could be obtained even when the two intermediates and the corresponding phosphinite boranes are used in their crude forms. As in the previous case, the antipodal phosphines could be also prepared from the same phosphine borane 328 by changing the order of replacements by the two organolithium reagents or, alternatively, by starting from (-)-328 prepared from the commercially available (+)-ephedrine.

Interestingly, Brown and co-workers²⁰⁵ have independently developed the oxide version of this route (eq 83). The starting oxazaphospholidine **335** oxide was conveniently obtained by a t-BuOOH oxidation of crude Scalemic P-Chiral Phosphines

oxaazaphospholidine 325 derived in this work directly from commercially available PhPCl₂ and (-)-ephedrine, despite the caveat published earlier by Richter.²⁰¹ The required high diastereomeric purity of crude oxazaphospholidine 325 was secured in this case by efficient thermal equilibration of the two P-epimers prior to oxidation.²⁰⁵ Interestingly, these authors also noted that crude 325 could be converted readily into a stable crystalline borane. For the conversion of oxazaphospholidine oxide 335 into the desired tertiary phosphine oxides use of Grignard reagents for the two displacements proved advantageous. As rigorously established on the basis of the X-ray data for 335 and 336, the ring P-O bond cleavage in 335 by a Grignard reagent occurred again with clean retention of configuration at phosphorus. Acid-catalyzed methanolysis of 336 and the second C-P bond formation went both with inversion providing phosphine oxides 64, 65, and 337 of high enantiomeric purity and of the configuration shown. In this study the S enantiomer of 64 was obtained by reduction of (R)-64 with HSiCl₃/Et₃N (inversion) followed by oxidation of the resulting phosphine by t-BuOOH (retention). Attempts to synthesize a valuable scalemic o-anisylphenylvinylphosphine oxide by this route by using vinylmagnesium bromide in the second displacement step were unsuccessful.

3. Via Three Consecutive Displacements at P

In the extension of their study on the use of ephedrine as the chiral auxiliary for synthesis of scalemic P-chiral phosphine oxides Brown and co-workers²⁰⁶ also developed a procedure in which three sequential displacements at phosphorus were performed to provide the three C-P bonds. The required scalemic precursor of high diastereomeric purity possessing three distinct leaving groups at the resolved P-center was obtained again directly by simply reacting PCl₃ with (-)ephedrine and allowing for thermal equilibration of the two P-epimers 338 formed originally in a 1:1 ratio. Use of P-chlorooxaazaphospholidine 338 thus obtained for the synthesis of triarylphosphine oxides is summarized in eq 84. Even though the stereoselectivity of chloride displacement in 338 by o-anisylmagnesium bromide was found to be only modest, the diastereomerically pure oxide 339 could be obtained in good 61% isolated yield by judicious combinations of equilibration and flash chromatography techniques. At this point the syntheses merged the route discussed above and were demonstrated to provide an efficient means of preparation of nearly enantiomerically pure triarylphosphine oxides 256, 337, and 340 of the shown configuration. It was confirmed once more than the stereospecific ring opening of oxaazaphospholidine oxides by Grignard reagents proceeds with retention of configuration at

phosphorus. Again, it did not appear possible to prepare scalemic diarylvinylphosphine oxides by this route, irrespective of the stage of the introduction of the vinyl group.

4. Asymmetric Synthesis

In the preparations of phosphines and their derivatives discussed in the previous sections of this chapter several processes were utilized which could in principle lead to an asymmetric creation of a phosphorus stereogenic center during the formation of the *last* of the required three C-P bonds. Typically, these have been briefly commented upon already during the presentation of the pertinent synthetic routes and will be only summarized here. Except for dichlorophosphines and P-prochiral phosphonium salts which are not listed, all the other P-prochiral substrates tested in asymmetric transformations are visualized below in general structures **341-348**.

Two asymmetric reactions of dichlorophosphines which led *directly* to the P-resolved phosphine oxides or phosphines are on record. One of them is the onepot conversion of methyldichlorophosphine into completely P-resolved polycyclic phosphine oxides via its electrophilic reactions with scalemic terpenoid olefins developed by Vilkas and co-workers^{124,125} (cf. eq 32), and the other, the reaction of scalemic menthyldichlorophosphine with achiral butadienylmagnesium, which was shown by Neuffer and Richter¹²³ to lead predominantly to one of the *cis*-2-vinylphosphiranes with ca. 82% induction (cf. eq 31). In the study involving alkaline cleavage of scalemic P-prochiral phosphonium salts (cf. Scheme 4) Valentine and co-workers¹¹⁰ observed that neomenthyldiphenylethylphosphonium iodide yielded two diastereomeric menthylethylphenylphosphine oxides in a 7:5 ratio and that in decomposition of analogous 1,4-bis(phosphonium)butane there was ca. 2:1 preference for formation of one epimeric phosphorus configuration as compared to the other.

Alkylations of P-prochiral phosphides were utilized by several groups but in all the cases, except for the 26% induction achieved early by Naylor and Walker¹⁰⁸ (cf. eq 17), no asymmetry was induced despite the fact that many of such reactions involving either phosphides of type 341 and scalemic electrophiles¹⁰⁹⁻¹¹¹ or, reversely, scalemic phosphides of type 342 and achiral electrophiles^{49,114,115} were carried out. Notable exceptions to this rule are the reactions of scalemic C₂-symmetric bis(phosphides) 343 with various electrophiles found by Nagel and co-workers¹¹⁶⁻¹¹⁹ to yield frequently one (usually S, R, R, S) of the three possible products in high predominance, i.e., up to 90% of the total isomeric mix (cf. Scheme 5). It appears that in such reactions involving pyrrolidines of the shown R,R configuration, creation of the S_P center in the first of the two consecutive asymmetric processes is strongly favored.

Phosphenes are P-prochiral and in the form of their tungsten and molybdenum complexes of type 344 and 345 were found by Mathey and co-workers¹²⁰ amenable to asymmetric transformations. First attempted enantiodifferentiating asymmetric hydrogenations of 344 (R = Cy, Ph) over chiral catalysts led only to racemic secondary phosphine complexes. However, later judicious placement of a menthyl auxiliary on phosphorus as in 154 [344 (R = Men)] promoted a highly diastereoselective (9:1) hydrogenation reaction over achiral catalysts and, ultimately, a completely diastereoselective process under the influence of chiral catalysts (cf. eq 27).

Asymmetric Diels–Alder cycloadditions of complexed scalemic phosphenes of type 154 and 345 (R = Men) with cyclopentadiene were found to be also 100%diastereoselective and afforded exclusively 2-phosphanorbornenes possessing endo menthyl group (cf. eq 28). A free phosphene, e.g., 346, generated *in situ* at elevated temperature for its Diels–Alder reactions with scalemic propiolates gave the expected 1-phosphanorbornadienes but apparently with no induction (cf. eq 34).⁹⁵

Asymmetric monoalkylation of primary phosphines in their complexes with metals have been realized. Mathey and co-workers¹²⁰ were able to demonstrate that reaction of isobutyl iodide with menthylphosphine complexed to tungsten (147) and to molybdenum (347) is a distereoselective process (40% de) as are analogous acylations by phosphorochloridates (ca. 50% de for 147, and ca. 60% de for 347) (cf. eq 27). Similar alkylations of phenylphosphine in cationic iron complexes of type 348, studied by Wild and co-workers,^{88,207} were also found to be diastereoselective to the extent of ca. 60% de. These latter alkylations were performed on racemic 348 but the enantiomerically pure complex prerequisite for the asymmetric synthesis is also available.⁸⁸

Very recently asymmetric syntheses of scalemic P-chiral phosphine derivatives which could be performed without C-P bond making or breaking have also emerged as a viable possibility. Brandi and coworkers²⁰⁸ were able to demonstrate that 1,3-dipolar cycloadditions of prochiral divinylphosphine derivatives **349** to a model five-membered ring nitrone lead to highly diastereomerically enriched monoadducts of type **350** of up to 92% de (e.g., **350**, R = t-Bu, X = S) and of predictable stereochemistry at phosphorus.^{208,209} Although the nitrone used in this study was achiral, enantiomerically pure five-membered ring nitrones derived from tartaric acid have been made in the meantime readily accessible.¹⁵¹

A procedure for asymmetric creation of phosphorus stereogenic center in a cyclic phosphine oxide 351 by enantioselective desymmetrization catalyzed by chiral base has been developed (eq 85).²¹⁰ Inductions achieved are as yet moderate, but the developed procedure affords hydroxy phospholene 72 enriched in the enantiomer opposite to that available previously by resolution.¹⁰⁰

Finally, an example of preparation of scalemic pentaarylphosphorane can be cited here thanks to the work of Hellwinkel²¹¹ who succeeded in synthesizing enantiomeric 353 according to eq 86. Treatment of

resolved propeller-shaped anion 352 with acid resulted in the formation of three chiral spirophosphoranes of which only 353 was found to be optically active, even though it itself constituted a mixture of two rapidly equilibrating pseudorotational isomers (only one shown). It remains an open, although rhetorical, question whether optical activity of 353 should be associated with chirality of its phosphorus stereogenic center or, rather with the overall propeller shape of the molecule, as in 352. In fact, the observed dramatic drop of the rotatory power on going from 352 to 353 might be judged in favor of the former possibility. Alternatively, however, slightly unequal contribution of the two possible pseudorotamers having opposite sense of propeller chirality, and/or their not necessarily exactly equal rotatory strength, could also be considered likely to lead to the observed differences in the two $[\alpha]_{578}$ magnitudes. All in all, 353 is P-chiral and, therefore, its synthesis from P-achiral precursor 352 is, by principle, asymmetric.

C. Transformations of Resolved P-Chiral Phosphines and Their Derivatives

1. Modifications of Carbon Substituents

a. Via α -Carbanions. Certainly of prime importance to the development of methodologies discussed in this section should be considered the observation published in 1968 by Mislow and co-workers³⁴ that deprotonation of a P-Me group in phosphine oxides occurs with preservation of configurational integrity of the neighboring phosphorus stereogenic center (eq 87). Analo-

$$\begin{array}{c} O \\ Cy \\ P_h \\ P_h \\ Me \\ 2. CO_2 \\ P_h \\ Me \\ 2. CO_2 \\ Cy \\ P_h \\ P_h \\ P_h \\ CO_2 H \\ Me \\ Cy \\ P_h \\ Cy \\ P_h \\ Cy \\ P_h \\ Me \\ (87) \\ Me \\ (87) \\ P_h \\ Me \\ (87) \\ Me \\ (87) \\ Me \\ (87) \\ Me \\ (87) \\ ($$

gous behavior of P-chiral methyl phosphines had been recorded even earlier by Horner et al.²¹² but that has not found preparative application as yet. In fact, also in the case of P-chiral phosphine oxides a more common synthetic use of their α -carbanions had to await the 1980s except, for one important application. In 1973 Mislow and co-workers²¹³ discovered that simple scalemic P-Me phosphine oxides 8 and 240 can be oxidatively coupled via their α -anions to yield directly the corresponding resolved symmetrical P-chiral 1,2-bis-(phosphinyl)ethanes 354 and 58 (eq 88). This coupling

procedure was soon successfully utilized by Monsanto group^{155,214} in their preparation of industrially important bis(phosphines) **355** (DICAMP)²¹⁴ and **215** (DIPAMP)¹⁵⁵ (cf. eq 50), and it was also later adapted by other groups to synthesize several scalemic symmetrical bis(phosphine chalcogenides)^{178,194,200,215} as well as bis(phosphine boranes),^{106,194,203,216} frequently in both enantiomeric forms. A synthesis of two bis(phosphines) via bis-(phosphine boranes) developed by Imamoto and coworkers¹⁰⁶ is shown in eq 89. In one case a mixed coupling of (S)-64 with methylsulfoximine **357** was realized²¹⁵ in order to introduce α -unsaturation into the phosphine oxide structure (eq 90).

Reactions of α -carbanions derived from scalemic P-chiral phosphine derivatives with electrophiles were utilized by several groups to mount an added α -functionality or to simply construct a new alkyl group. Mathey and Mercier²¹⁷ synthesized scalemic functionalized phosphine **359** via acylation of (-)-phosphine sulfide **360** carbanion with diethyl carbonate as shown in eq 91. Johnson and Imamoto²¹⁵ used similar acylation of oxide **64** to introduce an α -carbalkoxy group required

as a temporary activator for further synthetic transformations (eq 92). Analogous reactions of methyl

phosphine borane carbanions 362 with methoxyphosphine borane 363 and with dichlorosilanes 364 were reported by Jugé and co-workers²¹⁶ to yield cleanly the corresponding 1,1- and 1,3-bis(phosphine) systems 365 and 366, respectively, in addition to the known coupling to 367 (Scheme 9). Finally, an intramolecular acylation

Scheme 9

of an α -carbanion which provided a means for the fused phospholane ring closure in a recent synthesis of enantiomeric 17-phosphasteroids is also on record (vide infra, Scheme 13).

Haynes et al.²¹⁸ demonstrated that reactions of α -carbanions of enantiomeric *tert*-butylmethylphenylphosphine oxides (103) with propylene oxide followed by dehydration gave access to useful 2-butenyl derivatives 368 (eq 93, only S enantiomer shown). Further deprotonation of enantiomeric 368 gave in turn delocalized carbanions which were shown to react with 2-methylcyclopentenone with complete regio- and stereoselectivity to give 370 and to afford ultimately enantiomeric hydrindenones of type 371 or 372 related to vitamin D (eq 94, only S series shown).

Two procedures have also been developed to enable direct regioselective α -alkylation of phosphine oxides at the methylene site instead of at the methyl present in the same molecule. Pietrusiewicz and Zabłocka²¹⁹ demonstrated that 2-dimethylamino substituent in simple alkylmethylphosphine oxides can be employed to direct a base toward regioselective deprotonation of the neighboring methylene instead of the otherwise kinetically more preferred methyl and used this observation to convert (-)-(S)-373a into a series of virtually optically pure 1-substituted vinylphosphine oxides 374 according to eq 95. Small amounts of products 374a resulting from a double α, α' alkylation were also isolated in these syntheses. Apparently the amine director effectively controls only the first site of the alkylation.

Another possibility to control the site of metalation is to generate an α -metalated species through the addition of lithium diorganocuprate across a conjugated vinyl group present in phosphine oxide structure.^{103,220} Equation 96 provides an example, in which *in situ* quenching of α -carbanion derived in such a way from (S)-74 is shown to lead directly to α -branched phosphine oxide **375**.¹⁰³

As shown in eqs 97^{103} and 98,²¹⁹ when an additional activating group is present in the resolved phosphine oxide structure, as in phosphinylacetates 376^{103} and 377,²¹⁹ the α -deprotonation-alkylation procedure becomes even more facile and, when combined with subsequent decarbalkoxylative workup of the alkylated products, can serve to conveniently synthesize various structurally modified phosphine oxides (e.g., 378-383) from single diastereomeric precursors.

Using Michael-type chemistry Johnson and Imamoto²¹⁵ carried out single and double alkylation of enantiomerically pure phosphinylacetate **361** by (-)-(S)-o-anisylphenylvinylphosphine oxide (**358**) to obtain bis- and tris(phosphine oxides) **384** and **385**, respectively (Scheme 10). The oxides were subsequently decar-

boxalkylated and deoxygenated by routine procedures to give novel P-chiral bi- and tridentate ligands 386 and 387, respectively, of known absolute configurations.

In one case not involving α -carbanion, reduction of acetate group in phosphinoacetate borane 388 opened access to 2-iodo phosphine borane 389 which could be coupled to bis(phosphine borane) 390 and yield ultimately P-chiral 1,4-bis(phosphinyl)ethane 391 (eq 99).¹⁰⁶

b. Via Backbone Unsaturation. Backbone unsaturation was shown to be very useful as a handle for structural modifications of the resolved phosphine derivatives, especially in cases when introduction of the unsaturated substituent and/or resolution of the unsaturated derivative was more facile then that of its saturated counterpart.

Hydrogenations of resolved allyl-⁶⁰ and cyclohexen-3-ylphosphonium^{60,221} salts as well as phenyl-,¹⁷⁵ vinyl-,¹⁰³ and cyclohexen-4-ylphosphine oxides¹⁰³ were used occasionally as a means to obtain the corresponding alkyl or cyclohexyl substituted P-chiral derivatives. Two examples of such straightforward transformations which were utilized in the course of configurational correlation of the early resolved phosphine **201** and in the synthesis of CAMP ligand are shown in eqs 100⁶⁰ and 101,¹⁷⁵ respectively.

The above-mentioned hydrogenations of isolated double bonds lacked in principle generality and, in fact, the major development in the discussed area of synthetic efforts has been achieved mainly through the use of resolved α,β -unsaturated phosphine oxides 74,¹⁰³ 98,^{102,103} and 358,²¹⁵ which offered a large variety of possibilities Scheme 11

for their structural modifications on the basis of the versatile chemistry of their activated vinyl groups.

Michael-type additions of simple carbon nucleophiles to (-)-74 were used to obtain a series of enantiomerically pure alkylmethylphenylphosphine oxides 204 and 394– 399 with elongated or branched alkyl residues.^{103,222} This could be effected either by mediacy of lithium diorganocuprates¹⁰³ or, alternatively, alkyl halides, zinc-copper couple and sonication²²² (Scheme 11). The two procedures are complementary; the former serves better in the additions of primary alkyl groups, whereas the latter gives better yields with secondary and tertiary ones.

In analogous fashion noncatalyzed additions of secondary and primary amines to 74 afforded a series of P-chiral (2-aminoethyl)phosphine oxides 373a-j(eq 102).²²³ In one case the resulting amino phosphine oxide (373a) was converted into the corresponding sulfide by stereoretentive reduction and sulfuration.

Base-catalyzed additions of thiols and alcohols to 74 gave a series of virtually enantiomerically pure [2-(alkylthio)ethyl]- and (2-alkoxyethyl)phosphine oxides 400 which could also be reduced to the corresponding phosphines by PhSiH₃ with retention of configuration (eq 103).²²⁴

RXH = EtSH, n-BuSH, MeO2CCH2SH, PhSH, o-HO2C-PhSH, MeOH, MeOCH2CH2OH, L-menthol

In a study by Johnson and Imamoto²¹⁵ addition of (-)-menthol to **358** was used to prepare (2-menthoxyethyl)phosphine oxide **401** which was subsequently reduced with inversion of configuration to a useful C,Pchiral phosphine ligand **402** (eq 104). In the same study phenylphosphine was successfully reacted with 2 equiv of (S)-**358** to obtain bisadduct **403** which by treatment with SiHCl₃-CyNEt₂ was further transformed into unique tripodal ligand 404 possessing two resolved phosphorus stereogenic centers (eq 105).

For the Michael-type additions of phosphoruscentered nucleophiles to (S)-74 secondary phosphine oxides 405 were found to be the reagents of choice.¹⁴² With these nucleophiles use of thermal conditions and nonpolar solvents proved advantageous as after heating of equimolar mixtures of 74 and 405 in boiling toluene for ca. 4 h poorly soluble adducts 406 typically crystallized out from the reaction mixture upon cooling and could be isolated pure by filtration (eq 106). Analogous

additions of nonsymmetrical secondary phosphine oxides to 74 leading to self-resolving 1,2-bis(phosphinyl)ethanes have already been discussed in section III.A.3 (cf. eq 40).

Many of the aforementioned additions of carbon- and heteroatom-centered nucleophiles to (S)-74 were frequently paralleled by analogous model additions to (S_P) -

Scheme 12

98 which served primarily as a diastereomeric check to establish whether the starting configurational homogeneity of the P-center in the vinyl phosphine oxide is fully retained under the studied conditions (eq 107).²²²⁻²²⁵ Nevertheless, a series of resolved dia-

stereomerically pure phosphine oxides 377 and 407– 410 was made available in this way; in the case of 409 the two P-epimers were separated by preparative TLC.

Utility of (S)-74 as a dienophile for [2 + 4] cycloadditions was briefly studied^{103,226} and provided a means for conversion of its vinyl group into the carbocyclic substituents (Scheme 12). No phosphorus-to-carbon induction was observed in the formation of 411.¹⁰³ For the reaction of 74 with cyclopentadiene 22% induction level in the endo approach and nearly zero in the slightly preferred exo approach were assessed.²²⁶ Higher inductions in cycloadditions to cyclopentadiene were shown accessible with oxide 358 under Lewis acid catalysis conditions, but 358 used in these studies was racemic.²²⁷ Interestingly, as revealed in the X-ray study of the major endo product (S_{C_2}) -412a²²⁶ the preferred reactive conformation of 74 in the endo approach was s-trans. This is in sharp contrast with the observations that in 1,3-dipolar cycloadditions^{208,209} (vide infra) and in its ground state²²⁸ 74 as well as many other vinylphosphine chalcogenides^{229,230} favored uniformly the s-cis conformation.

In one case (Scheme 13),²³¹ for the purpose of synthesizing enantiomeric P-chiral phosphasteroids doubly activated vinylphosphine oxide (S)-96 was reacted with 1-vinylnaphthalene and was found to give a 65:35 mixture of only two diastereomeric cycloadducts 413. The regioselectivity in this cycloaddition appeared to have been fully controlled by the ester group. The two cycloadducts were separated by fractional crystallization and were individually converted into the resolved desired P-chiral 17-phosphasteroids 414a and 414b by intramolecular acylation.

The aforementioned 1,3-dipolar cycloadditions of 74 were studied by Brandi et al.^{127,208,232,233} Reaction of (S)-74 with a five-membered ring nitrone 415 afforded

Scheme 13

two isoxazolidinyl phosphine oxides 416a,b in a 71:29 ratio (eq 108).^{209,232} Even though the authors were able

to separate this mixture into the two individual C-epimers they sought a more stereoselective process in which chirality transfer from phosphorus to carbon could be more effective. As demonstrated in the same study utilizing the same 415 as the model nitrone, the level of phosphorus-to-carbon induction in such cycloadditions could be raised considerably higher (up to 92% de) by proper adjustment of the size of the substituents and the chalcogen atom at phosphorus.²⁰⁸ In those favorable cases however, the employed vinylphosphine derivatives were either not available in a scalemic form or were achiral. The desired highly diastereoselective production of scalemic isoxazolidine phosphine oxides from (S)-74 was finally achieved through a doubly asymmetric process.¹²⁷ (S)-74 was found to constitute matched pairs of reactants with chiral nitrones 176 of the S configuration which cooperated effectively in favor of the formation of the erythro, endo products 177 of the S_{C_3} , R_{C_5} configuration (eq 109).127

Very recently use of (S)-74 for structural transformations in which its double bond could be preserved was reported.¹⁴¹ Palladium-catalyzed Heck coupling reactions of (S)-74 with various aryl and vinyl halides were demonstrated to lead expeditiously to the expected

styryl- (75, 76, 192, 418, 419) and butadienyl- (420) phosphine oxides with complete preservation of configurational integrity at the phosphorus center (eq 110).

The process is of wide scope and several unprotected organic functions can be introduced into the vinylphosphine oxide structure in this way. The reaction also served well in the synthesis of scalemic diphosphorus systems 421 and 422 in which the two configurationally homogeneous phosphinyl residues occupied either proximal or distal positions, respectively.

In another study,¹⁴³ halogenation and dehydrohalogenation of (S)-74 was shown to provide α -halovinyl oxides (S)-198 and (R)-423, valuable precursors to other phosphine oxides *per se* (eq 111). Use of (R)-198 for

$$(-) - (S) - 74$$

$$(111)$$

$$(-) - (S) - 74$$

$$(-) - (S) - 74$$

$$(-) - (R) - 198 \times = CI$$

$$(-) - (R) - 198 \times = CI$$

$$(-) - (R) - 198 \times = Br$$

preparation of other vinyl and aryl phosphine oxides have already been discussed in sections III.A.3 and III.B.1 (cf. eqs 41 and 51). In turn the utility of (R)-423 in some addition-elimination reactions is exemplified in Scheme 14.²³⁴

Scheme 14

Finally, synthesis of a series of CAMP analogs 428– 430 by alkylation procedure shown in eq 112¹⁷⁵ exemplifies transformations not involving unsaturation.

c. Asymmetric Transformations. Modifications of carbon substituents in resolved P-chiral phosphine derivatives can in principle lead to inductions originating from $P \rightarrow C$ chirality transfer. As could be judged already from several of the transformations discussed above an efficient process for such a chirality transfer has not been yet developed. From the point of view of preparation of fully resolved C,P-chiral phosphine derivatives this deficiency translates into a necessity of separating mixtures of diastereomeric products in all the pertinent cases.

As seen above, alkylations of acyclic α -carbanions were merely selective and offered only 2:1 diastereomeric ratio in the best case, i.e., in the alkylation of $(R_{\rm P})$ -376 with benzyl bromide (cf eqs 96 and 97).¹⁰³ Somewhat more promising appear to be related radical processes (eq 113), but these were studied only on

racemic models.²³⁵ Diels–Alder cycloadditions of (S)-74 and (S)-98 similarly were slightly effective in terms of asymmetric induction,^{103,226} although again studies with model racemic 358 gave somewhat more promising results.²²⁷

1,3-Dipolar cycloaddition of (S)-74 to a cyclic nitrone 415 (cf. eq 108) with its 71:29 product ratio²³² gave a much better starting point for further developments, and in fact, the pertinent model studies on acyclic organophosphorus dipolarophiles have already been advanced.²⁰⁸ It appears however, that the ultimate dipolarophile for efficient $P \rightarrow C$ chirality transfer in 1,3-dipolar cycloadditions is phospholene oxide 10. As shown in eq 114, 10 gives, with cyclic as well as acyclic nitrones 433, a single product 434 of well-defined and predictable stereochemistry.^{128,150} Although the cited reactions were made only with racemic 10, the process is of immediate utility for production of optically pure cycloadducts of type 434 as the optically pure 10 is now readily available in both enantiomeric forms from the corresponding cyclic phosphonium salts 107 (cf. eq 16). On the same basis, a very recently developed completely stereoselective reaction of 435 shown in eq 115 secures prompt access to enantiomeric diphosphines of type 436.²³⁶

2. Interconversions Involving the Phosphorus Stereogenic Center

Once synthesized or resolved P-chiral phosphines can themselves serve as a convenient source of almost any of their higher oxidized derivatives, e.g., phosphine chalcogenides, phosphine imines, phosphonium salts, vlides, etc., and vice versa. Such transformations of scalemic phosphines and of their derivatives have been in fact exploited almost to their full potential in numerous synthetic and mechanistic studies, chemical correlations as well as in applications of scalemic P-chiral compounds in other areas. These in turn resulted in the preparation of a multitude of scalemic phosphines and their derivatives, typically in small amounts and of variable optical purities, and those will not be reviewed here. Instead, a brief survey of methods and stereochemistries available for such transformations is given.

a. Oxidations of Phosphines (Eq 116, Path a)

F

$$R_1 \xrightarrow{P}_{R_2} R_3 \xrightarrow{a}_{b} R_1 \xrightarrow{P}_{R_2} R_3$$
 (116)

Stereochemical course of oxidation of phosphines depends to a large extent on the choice of oxidizing agents and reaction conditions. Oxidation processes in which configuration at phosphorus is either fully retained or fully inverted have been developed. Oxidation of phosphines with clean retention of configuration is best achieved with peroxy compounds such as $H_2O_{2,5}^{57,70}$ t-BuOOH,²³⁷ Me₃SiOOSiMe₃,^{238,239} and m-CPBA.^{240,241} O₂⁷⁰ and O₃²⁴⁰ give similar results but aerial oxidations usually lead to impure products. Oxidation of phosphines with a very high degree of inversion can be accomplished with $I_2-H_2O^{242}$ (or, in general, halogen or pseudohalogen-water systems),²⁴² HNO₃,²⁴⁸ and Me₂-SeO.²⁴¹ Oxidations with other reagents leading to phosphine oxides with retention, e.g., t-BuOOAc,²³⁷ N_2O_4 ,²⁴³ amine oxides,²⁴⁴ or with inversion, e.g., hydroxylamines,²⁴⁵ EtOOEt,²⁴⁶ positive halogen compounds,²⁴⁷ t-BuOCl,²³⁷ or BrCH(CO₂Et)₂,²⁴⁶ are usually

Table 1. Stereospecific Oxidation of Methylphenyl-n-propylphosphine

reagent	conditions	stereochemical result	ref
H ₂ O ₂	H ₂ O, rt	retention (100%)	70
EtOOEt	$THF-H_2O(4:1)$, rt	inversion (81%)	246
EtOOEt	EtOH, rt	racemization	246
Me ₃ SiOOSiMe ₃	benzene, rt	retention (95%)	238
PhC(O)OOC(O)Ph	benzene, rt	racemization (77%)	249
t-BuOOH	pentane, 0 °C	retention (100%)	237
t-BuOOAc	benzene, 80 °C	retention (94%)	237
t-BuOCl	CH ₂ Cl ₂ –MeOH, –78 °C	inversion (84%)	237
O ₃	CH_2Cl_2 , -60 °C	retention (100%)	240
<i>m</i> -CPBA	CH_2Cl_2 , -5 to 0 °C	retention (100%)	240
PhSO ₂ H	different solvents, rt	racemization (49-94%)	249
Me ₂ SeO	CHCl ₃ , rt, 15 min	inversion (98%)	241
HNO_3 conc	H ₂ O, rt, 30 min	inversion (100%)	243
N_2O_4	CH_2Cl_2 , rt, 30 min	retention (predominant)	243
NH₂OH	$EtOH-H_2O$ (10:1), 2 h	inversion (82%)	245
Me ₃ NO	toluene, 110 °C, 3 h	retention (93.5%)	244
Me ₂ PhNO	MeOH, 60 °C, 30 min	retention (94%)	244
Cl ₃ ČCHO	THF-H ₂ O, 0 °C	racemization (>95%)	248
I_2 (or Br_2 , $BrCN$)	$MeCN-H_2O$ (10:1) 0 to 5 °C	inversion (100%)	242
BrCH(CO ₂ Et) ₂	$THF-H_2O$ (5:1), rt	inversion (83%)	246

less stereospecific and are frequently greatly affected by the choice of the oxidation conditions.^{61,237,242,246} Reagents like chloral,²⁴⁸ dibenzoyl peroxide,²⁴⁹ or phenylsulfinic acid²⁴⁹ cause racemization. Representative oxidation procedures utilizing scalemic methylphenyl-*n*-propylphosphine as a model are listed in Table 1.

Oxidation of phosphines by elemental sulfur or selenium as well as by other sulfurizing agents affords the corresponding phosphine chalcogenides with full preservation of stereochemical integrity at phosphorus.^{61,250} Similarly, transformation of phosphines into phosphine imines by treatment with RN_3 is also completely stereospecific and gives products with retention of configuration.²⁵⁰

b. Reductions of Phosphine Chalcogenides (Eq 116, Path b)

Reliable methods have also been developed to stereospecifically convert phosphine oxides into phosphines with either retention or inversion of configuration at phosphorus. Interestingly, in either case silane-reducing agents are the reagents of choice. Thus, HSiCl₃,²⁵¹ HSiCl₃-pyridine,^{251,252} and PhSiH₃²⁵³ give phosphines with retention of configuration, whereas combination of HSiCl₃ with more basic amines, e.g., HSiCl₃-Et₃N,^{251,252} or use of Si₂Cl₆^{252,254} affords reduction products with 100% inversion. Four-memberedring phosphine oxides constitute an exception and undergo reductions with the latter two reagents with clean retention of configuration.^{255,256} It should be kept in mind, however, that with these reductants some losses of stereochemical integrity at phosphorus have also been observed on few occasions,^{23,110} and that a general principle for securing maximum selectivity appears to be the use of low reaction temperatures and the shortest possible reaction times (preferably only minutes in case of Si_2Cl_6) to minimize exposure of the resulting phosphine to the reducing agents and their oxidation products.²⁵⁷

Reductions of phosphine oxides with $LiAlH_4^{149}$ and $LiAlH_4$ -CeCl₃¹⁰⁶ give totally racemized products with the exception of *t*-Bu-substituted phosphine oxides which are reduced with $LiAlH_4$ with predominant retention.²⁵⁸ By contrast, phosphine sulfides and phosphine selenides are reduced to phosphines by

 $LiAlH_4^{259,260}$ as well as by $Si_2Cl_6^{261}$ with complete retention of configuration.

Representative examples of stereospecific reductions of phosphine chalcogenides are collected in Table 2.

c. Interconversions of Phosphine Chalcogenides (Eq 117)

$$\begin{array}{c} X \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{$$

Direct conversion of phosphine sulfides and phosphine selenides into phosphine oxides with retention of configuration at phosphorus can be accomplished with $KMnO_4$,^{70,250,260} whereas use of Me_2SO-H^+ ,^{262,263} Me_2SO-I_2 ,²⁶⁴ or $Me_3SiOOSiMe_3^{239}$ leads to products with 100% inversion. Other reagents such as H_2O_2 ,²⁶⁵ Me_2SeO ,²⁴¹ Ph₂SeO,²⁶⁶ (EtO)₂SeO,²⁶⁷ N₂O₄,²⁴³ HNO₃,²⁶⁰ O₃,²⁶⁸ and cyclohexene oxide–CF₃CO₂H,²⁶⁹ give variable results with predominant inversion being more often the case.

Stereospecific reverse transformation of phosphine oxides into phosphine sulfides can be accomplished with B_2S_3 which affords products of retained configuration.²⁷⁰ More commonly used P_2S_5 was found to cause racemization.²⁴⁷

Mutual conversions of phosphine sulfides and phosphine selenides can be accomplished by sequential treatment of these chalcogenides with CF_3CO_2Me and, correspondingly, with NaSH or NaSeH, which leads to transformed products with predominant retention of configurations (83–84% ee).²⁷¹

Typical procedures for stereospecific interconversions among phosphine chalcogenides in the model methylphenyl(n-propyl)phosphine system are gathered in Table 3.

Phosphine imines can be transformed into phosphine oxides either via aza-Wittig process which gives products with clean retention of configuration, or hydrolytically, by treatment with MeI-H₂O, to obtain products of inverted configuration.²⁵⁰ Direct reverse conversion is also possible and can be effected by treatment of phosphine oxides with tosyl isocyanate. As applied to scalemic systems the process can be considered useful only for small ring phosphine oxides which give the

Table 2. Stereospecific Reduction of Scalemic Phosphine Chalcogenides

1 11 1 11		14.4	stereochemical	A 4 \
phosphine chalcogenide	reagent	conditions	result	ref(s)
<i>n</i> -Pr(Ph)P(O)Me (204)	$PhSiH_3$	neat, $rt \rightarrow 80-100 \text{ °C}$, 1 h	retention (100%)	253
	Si_2Cl_6	benzene, 80 °C, 5 min	inversion (100%)	252
	LiAlH ₄	THF, rt, >6 h	racemization	149
$PhCH_2(Ph)P(O)Me(9)$	PhSiH ₃	benzene, 80 °C, 15 h	retention (100%)	192
	Si_2Cl_6	benzene, 70 °C, 10 min	inversion (98%)	252
	HSiCl ₃	benzene, 80 °C	retention (100%)	251, 252
	HSiCl ₃ -pyridine	benzene, 80 °C, 1–2 h	retention (50%)	251, 252
	HSiCl ₃ –NEt ₃	benzene, 80 °C, 1–2 h	inversion (100%)	251, 252
o-An(Ph)P(O)Me (64)	HSiCl ₃ –NEt ₃	benzene, rt, 18 h	inversion (97%)	205
t-Bu(Ph)P(O)Me (103)	LiAlH₄	THF, 66 °C, 4 d	retention (87%)	258
1-phenyl-2,2,3,4,4-pentamethylphosphetane oxide	HSiCl ₃ -NEt ₃	benzene, 80 °C, 3–15 h	retention (100%)	255
	Si_2Cl_6	benzene, rt, 5 min	retention (100%)	256
1-phenyl-3-methylphospholane oxide	PhSiH ₃	neat, rt → 80–100 °C, 1 h	retention (100%)	253
Men(Ph)P(O)Me (112)	PhSiH ₃	neat, 95 °C, 4 h	retention (90%)	110
	Si_2Cl_6	benzene, 80 °C, 10 min	inversion (100%)	110
	HSiCl ₃ -NEt ₃	neat, 75 °C, 90 min	inversion (80%)	110
$o-An(Ph)P(O)CH_2CH_2OMen$ (401)	$HSiCl_3-NCyEt_2$	MeCN, rt, 1 h	inversion (100%)	215
$o-An(Ph)P(O)CH_2CO_2Men$ (100)	PhSiH ₃	benzene, 80–100 °C, 4 d	racemization	104
$Me(Ph)P(O)CH_2CH_2P(O)(Ph)Me (195)$	PhSiH ₃	benzene, 80 °C, 4 d	retention (100%)	225
$o-An(Ph)P(O)CH_2CH_2P(O)(Ph)o-An$ (214)	$HSiCl_3-N(n-Bu)_3$	MeCN, 70 °C, 3 h	inversion (100%)	155
$o-An(Ph)P(S)CH_2CH_2P(S)(Ph)o-An$ (313)	Si_2Cl_6	benzene, 80 °C, 30 min	retention (100%)	194
$Cy(Ph)P(S)CH_2CO_2Et$	$NiCp_2-C_3H_6I/P(OMe)_3$	rt, 10 min	retention	217,302
o-An(Ph)P(S)Me (312)	Si ₂ Cl ₆	benzene, 80 °C, 30 min	retention (100%)	194
n-Pr(Ph)P(S)Me (438)	LiAlH ₄	THF, 66 °C, minutes	retention (100%)	259
n-Pr(Ph)P(Se)Me (439)	LiAlH ₄	THF, 66 °C, minutes	retention (100%)	260

	lphosphine System
--	-------------------

conversion	reagent	conditions	stereochemical result	ref
$P=0 \rightarrow P=S$	B_2S_3	benzene, 80 °C, 20–30 h	retention (86%)	270
	P_2S_5	benzene, 80 °C, 2.5 h	racemization	247
$P = S \rightarrow P = O$	KMnO4	H ₂ O–pyridine, rt	retention	250
	H_2O_2	EtOH, reflux, 20 min	inversion (16%)	265
	H_2O_2	dioxane–CF ₃ COOH, 50 °C	inversion (64%)	265
	HNO ₃	H ₂ O, rt	retention	243
	N_2O_4	CH_2Cl_2 , rt	retention	243
	Me ₃ SiOOSiMe ₃	benzene, rt	inversion (16%)	239
	DMSO	DMSOH+, rt, 7 d	inversion (100%)	263
	DMSO	$DMSO-I_2$ cat., rt	inversion (100%)	264
	Me ₂ SeO	CHCl ₃ , rt	inversion (72%)	241
$P = S \rightarrow P = Se$	CF3SO3Me-NaSeH	CH2Cl2, rt, -60 °C	retention (92%)	271
$P = Se \rightarrow P = O$	KMnO ₄	H ₂ O–pyridine, rt	retention	260
	H_2O_2	EtOH, reflux, 5 min	retention (65%)	265
	H_2O_2	H ₂ O, rt	inversion (83%)	265
	HNO3	H_2O, rt	inversion	260
	N_2O_4	CH_2Cl_2, rt	inversion	260
	DMSO	DMSO–I ₂ cat., rt	inversion (83%)	264
	Me ₂ SeO	benzene, rt	inversion (100%)	241
	Ph_2SeO	CHCl ₃ , rt	inversion (82%)	266
$P = Se \rightarrow P = S$	CF ₃ SO ₃ Me-NaSeH	CH ₂ Cl ₂ , rt, -60 °C	retention (91%)	271

corresponding N-tosylphosphine imines stereospecifically with complete retention of configuration.²⁷² Acyclic systems are racemized.²⁷³

d. Phosphonium Salt Formation and Cleavage (Eqs 118 and 119)

$$R_{1} \xrightarrow{p}_{R_{2}} R_{3} \xrightarrow{a}_{b} \xrightarrow{R_{1}} R_{1} \xrightarrow{p}_{R_{3}} \xrightarrow{c}_{d} \xrightarrow{Q}_{R_{3}} (118)$$

Quaternization of scalemic phosphines by alkyl halides proceeds cleanly with retention of configuration.^{57,250,274} Somewhat surprisingly, a high degree of retention can also be attained in analogous metalcatalyzed arylation reactions,²⁷⁵ in spite of the highly elevated temperatures and prolonged reaction times required.²⁷⁶ By quaternization of the phosphorus center in scalemic aminophosphines the corresponding aminophosphonium salts are analogously obtained with complete retention of configuration.^{277,278}

Transformations of quaternary phosphonium salts into phosphines can be accomplished in a variety of ways depending largely on the salt structure and is typically facile and highly stereospecific when groups like PhCH₂, CH₂—CHCH₂, HOCH₂, HOCH₂CH₂, NCCH₂CH₂, MeS, MeSe, *t*-Bu, or at least Ar, are present in the cation. Nucleophiles or bases such as CN⁻,²⁷⁹ EtS⁻,¹⁸⁶ (Me₂N)₃P,²⁸⁰ and Et₃N,⁷¹ are useful for the cleavage when attack on the substituent and not the phosphorus atom is desired. Alternatively, electrochemical reductions^{57,70,281} or reductions with LiAlH₄ can be applied^{258,277} although the successful use of the

Table 4. Stereochemistry of Alkali Hydroxide Cleavage of Phosphonium Salts to Phosphine Oxides

phosphonium salt	leaving group	reaction medium	stereochemical result	ref(s)
Ac	velie			
Me(Ph)(PhCH ₂)(Et)P+I-	PhCH ₂	MeOH-H ₂ O	inversion (100%)	56, 283
$Me(Ph)(PhCH_2)(n-Pr)P+Br$	$PhCH_{2}$	EtOH-H2O (3:1)	inversion (100%)	282
		H ₂ O	inversion (100%)	282
$Me(Ph)(PhCH_2)(i-Pr)P^+Br^-$	$PhCH_2$	EtOH-H ₂ O (3:1)	inversion (99 $\%$)	282
		H_2O	inversion (98%)	293
Me(Ph)(PhCH ₂)(Cy)P ⁺ Br ⁻	$PhCH_2$	$EtOH-H_2O(3:1)$	inversion (92%)	282
	-	H ₂ O	inversion (100%)	293
$Me(Ph)(PhCH_2)(t-Bu)P^+1^-$	PhCH ₂	$EtOH-H_2O(3:1)$	retention (68%)	285, 294
	DLOU	H ₂ U	retention (58%)	280, 294
$Me(Pn)(PnCH_2)(CH_2C(CH_3)_3)P^{-1}$	$PnCH_2$	H_{1}^{1}	inversion (100%)	202
Ma(Dh)(DhCU)(n An)D+D+-	DLCU.	$H_{2}O$ $F_{1}OU_{1}U_{1}O(2.1)$	inversion (100%)	290 090
Me(Fii)(FiiCh2)(p-Aii)F [·] Dr	r non2	H ₀	inversion (03%)	202
$M_{e}(Ph)(PhCH_{e})(n-Tol)P+Br-$	PhCH	$E_{tOH-H_{0}O}(3:1)$	inversion (96%)	282
	1 110112	H ₀ O	inversion (79%)	293
$Me(Ph)(PhCH_0)(\alpha-Np)P^+Br^-$	PhCH ₂	EtOH-H.O (3:1)	inversion (70%)	282
	2	H ₂ O	inversion (64%)	293
$Me(Ph)(n-Pr)(\alpha-Np)P^+Br^-$	α -Np	EtOH-H ₂ O (3:1)	retention (87%)	282
• • • • • •	-	H ₂ O	retention (70%)	295
Me(Ph)(n-Pr)(β-Np)P ⁺ Br ⁻	β-Np	$EtOH-H_{2}O(3:1)$	retention (69%)	282
		H_2O	retention (55%)	295
Me(Ph)(n-Pr)(mesityl)P+Br-	mesityl	H_2O	retention (52%)	282
$Me(Ph)(n-Pr)(o-Tol)P^+Br^-$	o-Tol	H ₂ O	retention (64%)	282
$Me(Ph)(n-Pr)(p-Tol)P^+Br^-$	p-Tol	$EtOH-H_2O(3:1)$	retention (72%)	282
	DI.	H ₂ U	retention (56%)	282
	Pn	$H_{2}O(3:1)$	retention (100%)	282
	Dh		retention (66%)	202
$Me(\Gamma \Pi)(I - \Gamma I)(E \cup I - \Gamma I)$ $Me(Dh)(P - DP)(C = V + DP - DP)(C = V + DP - DP)(C = V + DP - DP)(C = V + DP)(D + DP - DP)(D + DP)(D$	Ph	FtOH_H_O (3.1)	retention (86%)	202
	1 11	H ₀ 0	inversion (61%)	202
$M_{e}(Ph)(n_{e}Pr)(ellvl)P^{+}Br^{-}$	allvl	$E_{tOH-H_{sO}}^{112O}$	inversion (93%)	282
	u1., 1	H ₀ O	inversion (96%)	295
Me(Ph)(t-Bu)(allyl)P+Br-	allvl	EtOH-H ₂ O (3:1)	retention (100%)	294
	·	H ₂ O	retention (49%)	294
Cyclic				
cis-1.2.2.3.4.4-hexamethyl-1-benzylphosphetanium bromide	PhCH	H₀O	retention (100%)	66, 255
trans-1.2.2.3.4.4-hexamethyl-1-benzylphosphetanium bromide	PhCH ₂	H ₂ O	retention (100%)	66, 255
cis-1,3-dimethyl-1-benzylphospholanium bromide	$PhCH_2$	H ₂ O	retention (100%)	287, 288
trans-1,3-dimethyl-1-benzylphospholanium bromide	PhCH ₂	H ₂ O	retention (100%)	287, 288
cis-1-phenyl-3-methyl-1-benzylphospholanium bromide	PhCH ₂	H ₂ O	retention (100%)	67, 289
trans-1-phenyl-3-methyl-1-benzylphospholanium bromide	$PhCH_2$	H_2O	retention (100%)	67, 289
cis-1-phenyl-4-methyl-1-benzylphosphorinanium bromide	PhCH ₂	H_2O	inversion (52%)	286
trans-1-phenyl-4-methyl-1-benzylphosphorinanium bromide	PhCH ₂	H ₂ O	retention (78%)	286
cis-1-phenyl-4-methyl-1-benzylphosphepanium bromide	PhCH ₂	H ₂ O	inversion (100%)	290
trans-1-phenyl-4-methyl-1-benzylphosphepanium bromide	PhCH ₂	H ₂ O	inversion (100%)	290

latter reagent is limited only to sterically encumbered phosphonium cations bearing t-Bu groups.²⁵⁸ In all such transformations retention of configuration at phosphorus is usually greatly predominating or is complete, especially in the cases where the phosphorus atom is not directly attacked.

Base-catalyzed hydrolysis of phosphonium salts directly gives phosphine oxides. The stereochemical pattern of the process is rather complex²⁸² but phosphonium salts bearing good leaving groups such as PhCH₂ can be hydrolyzed stereospecifically²⁸³ with virtually complete inversion of configuration at phosphorus.^{56,57,284} With bulky groups²⁸⁵ or aryls either predominant retention or extensive racemization is usually observed.²⁸² Also, frequently, the process differs in its stereochemical preference in acyclic^{56,57,282,284} and in cyclic,^{67,286–290} especially small ring,^{66,255,291,292} systems. Representative stereochemical results of the basecatalyzed hydrolysis of acyclic and cyclic phosphonium salts are collected in Table 4.

Transformations of phosphonium salts into phosphine oxides with 100% retention of configuration at

phosphorus can be successfully effected via Wittig reactions of the derived ylides with aldehydes.^{56,284,296,297}

Phosphonium cations bearing one heteroatomcentered ligand can be obtained directly from phosphine chalcogenides by alkylation of the chalcogen atom with strong alkylating agents.^{186,188,256,298} Such transformations do not affect stereochemistry at phosphorus and, accordingly, net retention is uniformly the result. Similar alkylation of phosphine imines with alkyl halides gives promptly aminophosphonium salts.^{250,277,278} These phosphonium salts can be reduced to the corresponding phosphines with retention of configuration with LiAlH₄.²⁷⁷ Cathodic reductions result instead in a C-P bond cleavage and lead to the corresponding aminophosphines.²⁷⁸ In the case of alkylthio and alkylselenophosphonium salts nucleophilic displacements at S and Se by RS⁻ or (Me₂N)₃P provide phosphines with full preservation of stereochemical integrity at phosphorus.^{186,280} Base-catalyzed hydrolysis of heteroatom-substituted phosphonium salts yields phosphine oxides with complete inversion of configuration in acyclic systems,^{277,298} whereas clean retention

in hydrolysis of alkoxyphosphetanium results salts.256

e. Complex Formation and Decomplexation (Eq 120).

$$R_{1} \xrightarrow{P}_{R_{2}} R_{3} \xrightarrow{a}_{b} R_{1} \xrightarrow{P}_{R_{2}} R_{3} \xrightarrow{c}_{d} R_{1} \xrightarrow{R_{2}} R_{3} \xrightarrow{c}_{d} R_{1} \xrightarrow{R_{2}} R_{3}$$
(120)
Y= BH₃, metal

Phosphines form complexes with metals as well as with borane with complete preservation of their stereochemical integrity at phosphorus. These complexes are typically obtained by mixing phosphines with appropriate metal derivatives or with THF.BH₃ or $Me_2S \cdot BH_3$. Treatment of phosphine boranes with an excess of Et_2NH or morpholine gives back phosphines with complete retention of configuration.¹⁰⁶ Liberation of phosphines from their complexes with metals is similarly achieved by simply providing a better complexing agent than phosphine. Several such procedures have been exemplified already in section III.

Direct reductive conversion of phosphine oxides into phosphine borane complexes can be realized through the use of $LiAlH_4$ -NaBH₄-CeCl₃ reducing system but only racemic complexes are obtained.¹⁰⁶ Phosphine sulfides can be directly transformed into phosphine nickel complexes by treatment with the nickeloceneallyl iodide system.²⁹⁹ In this case however, formation of the complexes occurs with complete retention of stereochemical integrity at phosphorus as does subsequent liberation of phosphines from these complexes by treatment with $P(OMe)_3$ (cf. eq 9).³⁰⁰

Examples of oxidative decomplexation of phosphines with retention of configuration at phosphorus can be found in eqs 25 and 26. For examples of oxidative cleavage of phosphine copper complexes with either retention or inversion of configuration at phosphorus, see refs 190 and 301, respectively. Procedures for reductive transformations of phosphine sulfides into phosphine complexes with iron or molybdenum are also available but their stereochemical course has not been yet established.302

IV. Concluding Remarks

This review has summarized the methods available for the synthesis of scalemic P-chiral phosphines and their derivatives. The development of methods in their full array ranging from classical resolutions to enantiodifferentiating asymmetric synthesis continues at a fast pace and much further progress can be expected in the near future, especially in the area of chromatographic resolutions and asymmetric transformations of readily available P-chirons.

Scalemic P-chiral phosphines and their derivatives are now available in a whole diversity of structural types and functional patterns which promise that their utility will expand quickly in new directions in the areas of coordination chemistry and asymmetric synthesis and catalysis. The absolute configuration at phosphorus in the majority of scalemic phosphines and their derivatives synthesized to date is known, and convenient chromatographic³⁰³ and NMR^{81,192,304-309} methods for measurement of their enantiomeric purities have been

developed. Also important, viable routes to P-chiral diphosphines with cyclic and acyclic carbon spacers of almost any size have been paved and are likely to lead to the development of novel highly efficient transition metal catalysts incorporating intuitively desirable metal-adjacent phosphorus chirality. Asymmetric processes based on the chirality transfer from phosphine ligands present in the transition metal catalysts have been developed to the level securing access to scalemic products of >95% ee,^{22,311,312} and some of them have already gained industrial significance, e.g., Monsanto L-DOPA process,³¹³ Anic and Monsanto Aspartame processes,³¹⁴ Syntex Naproxen process,³¹⁵ Takasaga L-menthol process,³¹⁵ etc. With the notable early exception of the Monsanto L-DOPA process utilizing P-chiral DIPAMP ligand,¹¹ in all the other highly efficient asymmetric catalyzes developed to date C-chiral ligands, most frequently possessing a C_2 symmetry axis, were employed. Current intensive search for novel efficient ligands for asymmetric catalysis follows these successful leads and focuses mainly on the C_2 -symmetric phosphines,^{316–318} and on ligands bearing pendant functionalities capable of providing remote secondary interactions with the substrate.³¹⁹ The time has come for the P-chiral ligands to merge the stream and to bring in the P-chirality factor into play again.

V. Glossary of Abbreviations

An	anisyl
Ar	aryl
m-CPBA	<i>m</i> -chloroperbenzoic acid
Cy	cyclohexyl
dppe	1,2-bis(diphenylphosphino)ethane
Hex	hexyl
lp	lone pair
mesityl	2,4,6-trimethylphenyl
Met	metal
Men	menthyl
neoMen	neomenthyl
Np	naphthyl
Piv	pivaloyl
Py	pyridyl
rt	room temperature
Tol	tolyl

VI. References

- (1) Meisenheimer, J.; Lichtenstadt, L. Chem. Ber. 1911, 44, 456.
- Stec, W. J. Organophosphorus Chem. 1982, 13, 145. Zon, G. Prog. Med. Chem. 1982, 19, 205. (2)
- (3)
- Eto, M. Organophosphorus Pesticides: Organic and Biological Chemistry; CRC Press: Cleveland, OH, 1974.
 Fest, C.; Schmidt, K. J. The Chemistry of Organophosphorus Pesticides; Springer: Berlin, 1982.

- Frey, P. A. Adv. Enzymol. Relat. Areas Mol. Biol. 1989, 62, 119.
 Stec, W. J. In Antisense Research and Applications; Crooke, S. T., Leblau, B., Eds.; CRC Press: London, 1993; p 251.
 Morrison, J. D., Ed. Asymmetric Synthesis; Academic Press, Inc.: Orlando, FL, 1985; Vol. I-V.
 Bersch, P. E. French, Construction of the second system of the second system.
- (9) Bosnich, B.; Fryzuk. Top. Inorg. Organomet. Stereochem. 1981,
- 12, 119.
- (10) Merrill, R. D. CHEMTECH 1981, 1918.
- (11)
- Knowles, W. S. Acc. Chem. Res. 1983, 16, 106. Kagan, H. B. In Comprehensive Organometallic Chemistry; Wilkinson, G., Gordon, F., Stone, A., Eds.; Pergamon Press: New (12)York, 1982; Vol. 8, p 464. (13) Valentine, D., Jr. In Asymmetric Synthesis; Morrison, J. D., Scott,
- J. W., Eds.; Academic Press: Orlando, FL, 1984; Vol. 3, Chapter
- (14) Imamoto, T. In Handbook of Organophosphorus Chemistry; Engel, R., Ed.; Marcel Dekker: New York, 1992; Chapter 1.
- The term scalemic refers to unequal mixtures of enantiomers: Heathcock, C. H.; Finkelstein, B. L.; Jarvi, E. T.; Radel, P. A.; (15)Hadley, C. R. J. Org. Chem. 1988, 53, 1922. Eliel, E. L.; Wilen, S.

H. Chem. Eng. News 1990, Sept. 10, 2. Heathcock, C. H. Chem. Eng. News 1991, Feb. 4, 3.

- (16) Engel, R. Synthesis of Carbon-Phosphorus Bonds; CRC Press, Inc.: Boca Raton, FL, 1988.
- (17) Mann, F. G. Progr. Stereochem. 1987, 2, 196.
- (18) McEwen, W. E. Top. Phosphorus Chem. 1965, 2, 1.
- (19) Gallagher, M. J.; Jenkins, J. D. Top. Stereochem. 1968, 3, 1.
- (20) Gallagher, M. J. In Stereochemistry of Heterocyclic Compounds; Armarego, W. C. F., Ed.; Wiley and Sons, Inc.: New York, 1977; Part 2, p 339.
- (21) McEwen, W. E.; Berlin, K. D. Organophosphorus Stereochemistry; John Wiley and Sons, Inc.: Stroudsburg, 1975; Parts I and II.
- (22) Kagan, H. B.; Sasaki, M. In The Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; Wiley: New York, 1990; Vol. 1, Chapter 3.
- (23) Gallagher, M. J. In The Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; Wiley & Sons, Ltd.: New York, 1992; Vol. 2, Chapter 2.
- (24) Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1873, 6, 292.
- (25) Fild, M.; Schmutzler, R. In Organic Phosphorus Compounds; Kosolapoff, G. M., Maier, L., Eds.; Wiley Interscience: New York, 1972; Vol. 4, Chapter 1.
- (26) Davies, W. C.; Mann, F. G. J. Chem. Soc. 1944, 276.
- Compare with: Jore, W.; Guillerm, G.; Chodkiewicz, W. J. Organomet. Chem. 1978, 149, C7. (27)
- (28) Quin, L. D.; Anderson, H. G. J. Org. Chem. 1966, 31, 1206.

- (31) Horner, L.; Schedlbauer, F.; Beck, P. Tetrahedron Lett. 1964, 1421.
 (32) Hall, C. R.; Inch, T. D. Tetrahedron 1980, 36, 2059.
- (33) Koizumi, T.; Yanada, R.; Takagi, H.; Hirai, H.; Yoshii, E. Tetrahedron Lett. 1981, 22, 477; 571.
- Korpiun, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. Am. Chem. (34)Soc. 1968, 90, 4842.
- (35) Meisenheimer, J.; Cooper, J.; Horing, M.; Lauter, W.; Lichtenstadt, L.; Samuel, W. Justus Liebigs Ann. Chem. 1926, 449, 213.
 (36) Wittenberg, D.; Gilman, H. J. Org. Chem. 1958, 23, 1063.
 (37) Issleib, K.; Völker, H. Chem. Ber. 1961, 94, 392.
 (38) Payne, N. C.; Stephan, D. W. Can. J. Chem. 1980, 58, 15.
 (30) Detailing D. H. M. and Docardina J. M. Hibborn N. Bard, Trans.

- Budzelaar, P. H. M.; van Doorn, J. A.; Meijboom, N. Recl. Trav. (39) Chim. Pays-Bas 1991, 110, 420.
- Chou, T.-S.; Yuan, J.-J.; Tsao, C.-H. J. Chem. Res. (S) 1985, 18. (40)(41) However compare with: Appel, R.; Geisler, K.; Schöller, H. F. Chem.
- Ber. 1979, 112, 648. (42) For a recent inventory of the reductive cleavage of P-Ar bonds, see
- ref 39.
- (43) Chou, T.-S.; Tsao, C.-H.; Hung, S. C. J. Org. Chem. 1985, 50, 4329. (44) Brooks, P.; Gallagher, M. J.; Sarroff, A. Aust. J. Chem. 1987, 40,
- 1341. (45) Roberts, N. K.; Wild, S. B. J. Am. Chem. Soc. 1979, 101, 6254.
- (46) For a brief discussion on this method, see ref 111.
- (47) Cervinka, O.; Kriz, O. Collect. Czech. Chem. Commun. 1966, 31, 1910.
- (48) Pietrusiewicz, K. M.; Koprowski, M. Unpublished work.

- (49) Horner, L.; Simons, G. Phosphorus, Sulfur 1984, 19, 65.
 (50) Yamamoto, K.; Tomita, A.; Tsuji, J. Chem. Lett. 1978, 3.
 (51) Brunner, H.; Pieronczyk, W. Angew. Chem., Int. Ed. Engl. 1979, 18. 620.
- (52) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20.
 (53) Toda, F.; Mori, K.; Stein, Z.; Goldberg, I. J. Org. Chem. 1988, 53, 308.
- (54)
- Ostrogovich, G.; Kerek, F. Angew. Chem. 1971, 13, 496. Kumli, K. F.; McEwen, W. E.; Vander Werf, C. A. J. Am. Chem. (55) Soc. 1959, 81, 248.
- (56) McEwen, W. E.; Kumli, K. F.; Blade-Font, A.; Zanger, M.; Vander Werf, C. A. J. Am. Chem. Soc. 1964, 86, 2378. Horner, L.; Winkler, H.; Rapp, A.; Mentrup, A.; Hoffmann, H.;
- (57)Beck, P. Tetrahedron Lett. 1961, 161. (58) Bestmann, H. J.; Lienert, J.; Heid, E. Chem. Ber. 1982, 115, 3875.

- (66) Bestmann, H. 9.; Elener, 9., 1161, B. Oken, 1961, 1960, 19
- Horner, L.; Bercz, J. P.; Bercz, C. V. Tetrahedron Lett. 1966, 46, (62) 5783.
- (63) Horner, L.; Jordan, M. Phosphorus, Sulfur 1980, 8, 225.

- (64) Holliman, F. G.; Mann, F. G. J. Chem. Soc. 1947, 1634.
 (65) Hart, F. A.; Mann, F. G. J. Chem. Soc. 1955, 4107.
 (66) Corfield, J. R.; Shutt, J. R.; Trippett, S. J. Chem. Soc., Chem.

- (66) Corfield, J. R.; Shutt, J. R.; Hippett, C. J. Chem. 2011, Commun. 1969, 789.
 (67) Marsi, K. L.; Tuinstra, H. J. Org. Chem. 1975, 40, 1843.
 (68) Chen, C. H.; Berlin, K. D. J. Org. Chem. 1971, 36, 2791.
 (69) Gurusamy, N.; Berlin, K. D. J. Am. Chem. Soc. 1982, 104, 3114.
 (70) Horner, L. Pure Appl. Chem. 1964, 9, 225.
 (71) Wittig, G.; Cristau, H. J.; Braun, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 700 1967, 6, 700.
- (72) Chan, T. H. J. Chem. Soc., Chem. Commun. 1968, 895.
- (73) Edward, A. C.; Cope, A. C. J. Am. Chem. Soc. 1966, 88, 1711.

- (74) Tani, K.; Brown, L. D.; Ahmed, J.; Ibers, J. A.; Yokota, M.; Nakamura, A.; Otsuka, S. J. Am. Chem. Soc. 1977, 99, 7876. Otsuka, S.; Nakamura, A.; Kano, T.; Tani, K. J. Am. Chem. Soc. 1971, 4301.
- (75) Salem, G.; Wild, S. B. Inorg. Chem. 1983, 22, 4049.
- (76) Allen, D. G.; McLaughlin, G. M.; Robertson, G. B.; Steffen, W. L.; Salem, G.; Wild, S. B. Inorg. Chem. 1982, 21, 1007.
- Martin, J. W. L.; Palmer, J. A. L.; Wild, S. B. Inorg. Chem. 1984, (77)23. 2664
- (78) Leung, P. H.; Willis, A. C.; Wild, S. B. Inorg. Chem. 1992, 31, 1406.
- (79) Alcock, N. H.; Brown, J. M.; Hulmes, D. I. Tetrahedron: Asymmetry 1993, 4, 743. Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932. Miyashita, A.; Takaya, H.; Souchi, T.; Noyori, R. Tetrahedron 1984, 40. 1245.
- (80) Bolm, C.; Sharpless, K. B. Tetrahedron Lett. 1988, 29, 5101. Bolm, C.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1988, 27, 835.
- (81) Kyba, E. P.; Rines, S. P. J. Org. Chem. 1982, 47, 4800. (82) Henc, B.; Pauling, H.; Wilke, G.; Kruger, C.; Schroth, G.; Hoffmann,
- E. G. Liebigs Ann. Chem. 1974, 1820.
- (83) Behrens, O. Dissertation, Bochum University, Bochum, 1973.
- (84) Krüger, C. Chem. Ber. 1976, 109, 3574.
- (65) Bogdanović, B.; Henc, B.; Lösler, A.; Meister, B.; Pauling, H.; Wilke, G. Angew. Chem. 1973, 23, 1013.
 (86) Yoshikuni, T.; Bailar, J. C., Jr. Inorg. Chem. 1982, 21, 2129.
 (87) Bader, A.; Salem, G.; Willis, A. C.; Wild, S. B. Tetrahedron: Animatotic 1982, 1297.
- Asymmetry 1992, 3, 1227. Crisp, G. T.; Salem, G.; Wild, S. B. Organometallics 1989, 8, 2360.
- (88)
- (89) Mathey, F.; Mercier, F. J. Organomet. Chem. 1979, 177, 255. For a recent review see: Pirkle, W. H.; Pochapsky, T. C. Adv. (90)
- Chromatogr. 1987, 27, 73. Pirkle, W. H.; Pochapsky, T. C. Chem. Rev. 1989, 89, 347.
- (91) Okamoto, Y.; Honda, S.; Hatada, K.; Okamoto, I.; Toga, Y.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1984, 57, 1681. (92) Pescher, P.; Caude, M.; Rosset, R.; Tambuté, A. J. Chromatogr.
- 1986, 371, 159.
- Macaudière, P.; Caude, M.; Rosset, R.; Tambuté, A. J. Chromatogr. (93) 1987, 405, 135.
- (94) Tambuté, A.; Garell, P.; Caude, M.; Rosset, R. J. Chromatogr. 1986, 363, 81.
- Brèque, A.; Alcaraz, J.-M.; Ricard, L.; Mathey, F.; Tambuté, A.; (95) Macaudière, P. New J. Chem. 1989, 13, 369.
- Oebels, D.; Klärner, F.-G. Tetrahedron Lett. 1989, 30, 3525.
- (97) Klärner, F.-G.; Oebels, D.; Sheldricks, W. S. Chem. Ber. 1993, 126,
- (98) Gasparrini, F.; Cicchi, S.; Brandi, A.; Maggio, F.; Vilani, C.; Koprowski, M.; Pietrusiewicz, K. M. Manuscript in preparation. For a recent review on DACH-DNB CSPs, see: Gasparrini, F.; Misiti, D.; Villani, C. Chirality 1992, 4, 447.
- (99) Campbell, I. G. M.; Way, J. K. J. Chem. Soc. 1961, 2133.
- (100) Bodalski, R.; Janecki, R.; Galdecki, Z.; Główka, M. Phosphorus, Sulfur 1982, 14, 15.
- (101) Koszuk, J. Dissertation, Technical University, Łódź, 1981.
- Bodalski, R.; Rutkowska-Olma, E.; Pietrusiewicz, K. M. Tetra-hedron 1980, 36, 2353.
 Pietrusiewicz, K. M.; Zabłocka, M.; Monkiewicz, J. J. Org. Chem.
- 1984, 49, 1522.
- (104) Pietrusiewicz, K. M.; Wiśniewski, W.; Wnuk, A. To be published. Compare with: Pietrusiewicz, K. M.; Wieczorek, W. Phosphorus, Sulfur, Silicon 1993, 82, 99.
- (105) Imamoto, T.; Sato, K.; Johnson, C. R. Tetrahedron Lett. 1985, 26, 783.
- (106) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244. Imamoto, T.; Kusumoto, T.; Suzuki, N.; Sato, K. J. Am. Chem. Soc. 1985, 107, 5301.
- (107) The two salts could be assigned the absolute configurations, i.e., (R_P)-107, mp 89 °C, and (S_P)-107, mp 198 °C, by chemical correlation involving their Wittig transformation into enantiomeric phospholene oxides assumed to occur with retention of configuration at phosphorus. Pietrusiewicz, K. M.; Koprowski, M. To be published.
- (108) Naylor, R. A.; Walker, B. J. J. Chem. Soc., Chem. Commun. 1975,
- (109) Fisher, C.; Mosher, H. S. Tetrahedron Lett. 1977, 2487.
- (110) Valentine, D., Jr.; Blount, J. F.; Toth, K. J. Org. Chem. 1980, 45, 3691
- (111) Burgess, K.; Ohlmeyer, M. J.; Whitmire, K. H. Organometallics 1992, 11, 3588.
- (112) Beneš, J.; Hetflejš, J. Collect. Czech. Chem. Commun. 1976, 41, 2264.
- J., and Wilke, G., cited in ref 119. (114) King, R. B.; Bakos, J.; Hoff, C. D.; Marko, L. J. Org. Chem. 1979, 44, 3095.
- (115) Kinoshita, I.; Kashiwabara, K.; Fujita, J. Chem. Lett. 1977, 831. (116) Andel, U.; Krink, T. Chem. Ber. 1993, 126, 1091.
 (117) Nagel, U.; Rieger, B. Chem. Ber. 1988, 121, 1123.

(118) Nagel, U.; Bublewitz, A. Chem. Ber. 1992, 125, 1061.
 (119) Nagel, U.; Rieger, B.; Bublewitz, A. J. Organomet. Chem. 1989, 370, 223.

- (120) de Vaumas, R.; Marinetti, A.; Ricard, L.; Mathey, F. J. Am. Chem. Soc. 1992, 114, 261.
- (121) Marinetti, A.; Ricard, L.; Mathey, F. Synthesis 1992, 157.
- (122) Marinetti, A.; Mathey, F.; Ricard, L. Organometallics 1993, 12, 1207
- (123) Richter, W. J. Angew. Chem., Int. Ed. Engl. 1982, 21, 292.
- (124) Vilkas, E.; Vilkas, M.; Joniaux, D.; Pascard-Billy, C. J. Chem. Soc., Chem. Commun. 1978, 125.
- (125) Vilkas, E.; Vilkas, M.; Sainton, J.; Meunier, B.; Pascard, C. J. Chem. Soc., Perkin Trans. 1 1979, 2136.
- (126) Takenaka, A.; Sasada, Y.; Yamamoto, K.; Tsuji, J. Bull. Chem. Soc. Jpn. 1977, 50, 3177.
- (127) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 1991, 2, 1063
- (128) Goti, A.; Cicchi, S.; Brandi, A.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 1991, 2, 1371. (129) Brandi, A.; Cicchi, S.; Goti, A.; Koprowski, M.; Pietrusiewicz, K.
- M. J. Org. Chem. 1994, 59, 1315. Yamamoto, H.; Nakamura, Y.; Inokawa, S.; Yamashita, M.; Armour,
- M.-A.; Nakashima, T. T. J. Org, Chem. 1984, 49, 1364. (131) Inokawa, S.; Yamamoto, K.; Kawamoto, H.; Yamamoto, H.; Yamashita, M.; Luger, P. Carbohydr. Res. 1982, 106, 31.
- (132) Luger, P.; Müller, E. Carbohydr. Res. 1985, 145, 25.
- (133) Luger, P.; Yamamoto, H.; Inokawa, S. Carbohydr. Res. 1982, 110, 187
- (134) Luger, P.; Yamashita, M.; Inokawa, S. Carbohydr. Res. 1980, 84,
- (135) Yamamoto, H.; Yamamoto, K.; Inokawa, S.; Luger, P. Carbohydr. Res. 1983, 113, 31.
- (136) Richter, T.; Luger, P. Carbohydr. Res. 1991, 222, 11.
- (137)Yamamoto, H.; Hanaya, T.; Inokawa, S. Carbohydr. Res. 1983, 114.83.
- Yamamoto, H.; Nakamura, Y.; Kawamoto, H.; Inokawa, S.; Yamashita, M.; Armour, M.-A.; Nakashima, T. T. Carbohydr. Res. (138)1982, 102, 185.
- (139) Hanaya, T.; Yasuda, K.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1993,
- 66, 2315.
 (140) Hanaya, T.; Okamoto, R.; Prikhod'ko, Y. V.; Armour, M. A.; Hogg, A. M. J. Chem. Soc., Perkin Trans. 1 1993, 1663.
- (141) Pietrusiewicz, K. M.; Kuźnikowski, M.; Koprowski, M. Tetrahedron: Asymmetry 1993, 4, 2143.
- (142) Pietrusiewicz, K. M.; Zabłocka, M. Tetrahedron Lett. 1988, 29, 1991.
- (143) Pietrusiewicz, K. M.; Wiśniewski, W.; Zabłocka, M. Tetrahedron 1989, 45, 337.
- (144) Pietrusiewicz, K. M.; Zabłocka, M.; Wieczorek, W. Phosphorus, Sulfur, Silicon 1989, 42, 183.
- (145) Bestmann, H. J.; Tömösközi, I. Tetrahedron 1968, 24, 3299.
- (146) Okruszek, A. Dissertation, Center of Molecular and Macromolecular
- (147) Studies, Łódź, 1975.
 (147) Cernia, E.; Giongo, G. M.; Marcati, F.; Marconi, W.; Palladino, N. Inorg. Chim. Acta 1974, 11, 195.
 (148) Macpherson, A. J.; Smith, D. J. H. J. Chem. Res. (S) 1984, 32.
- (149) Henson, P. D.; Naumann, K.; Mislow, K. J. Am. Chem. Soc. 1969, 91. 5645.
- (150) Pietrusiewicz, K. M.; Wieczorek, W.; Goti, A.; Brandi, A. Phosphorus, Sulfur, Silicon 1992, 70, 131.

- phorus, Sulfur, Silicon 1992, 70, 131.
 (151) Cicchi, S.; Höld, I.; Brandi, A. J. Org. Chem. 1993, 58, 5274. Ballini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1992, 57, 1316.
 (152) Kiełbasiński, P.; Mikołajczyk, M.; Pietrusiewicz, K. M.; Zabłocka, M.; Żurawiński, R. To be published.
 (153) Nudelman, A.; Cram, D. J. J. Am. Chem. Soc. 1968, 90, 3869.
 (154) Korpiun, O.; Mislow, K. J. Am. Chem. Soc. 1967, 89, 4784.
 (155) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946.
 (156) Lewis, R. A.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7009.
 (157) Farnham, W. B.; Murray, R. K., Jr.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 5809.
- 1970, 92, 5809.
- (158) Horner, L.; Schlotthauer, B. Phosphorus, Sulfur 1978, 4, 155.
- (159) Knowles, W.S. Seminar at Stanford University, Industrial Affiliates Symposium, 1975; cited in ref 13, p 272.
- (160) Kyba, E. P. J. Am. Chem. Soc. 1976, 98, 4805.
- (161) Bodalski, R.; Koszuk, J. Phosphorus, Sulfur, Silicon 1989, 44, 99. (162) Mikołajczyk, M.; Omelańczuk, J.; Perlikowska, W. Tetrahedron
- 1979, 35, 1531.
- (163) Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90, 3459. (164) Oshiki, T.; Imamoto, T. J. Am. Chem. Soc. 1992, 114, 3975. Also compare with: Zhang, J.; Xu, Y.; Huang, G.; Guo, H. Tetrahedron
- Lett. 1988, 29, 1955. (165) Horner, L.; Simons, G. Phosphorus, Sulfur 1984, 19, 77
- (166) Compare with sections III.B.2 and 3. See also refs 165-167.
 (167) DeBruin, K. E.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7393.
 (168) DeBruin, K. E.; Perrin, D. E. J. Org. Chem. 1975, 40, 1523.
 (169) Kolzumi, T.; Amitani, H.; Yoshii, E. Synthesis 1979, 110.

- (170) De'ath, N. J.; Ellis, K.; Smiths, D. H. J.; Trippett, S. J. Chem. Soc., Chem. Commun. 1971, 714.
- (171) Herriott, A. W.; Mislow, K. Tetrahedron Lett. 1968, 3013.
- (172) Kyba, E. P. J. Am. Chem. Soc. 1975, 97, 2554.
 (173) Oshiki, T.; Imamoto, T. Bull, Chem. Soc. Jpn. 1990, 63, 3719.
- (174) Baechler, R. D.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 3090.

- (175) Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D. Homogeneous Catalysis II. Adv. Chem. Ser. 1972, 132, 274. Cardellichio, C.; Fiandanese, V.; Naso, F.; Pacifico, S.; Koprowski,
- (176)M.; Pietrusiewicz, K. M. Submitted for publication. Compare with: Cardellichio, C.; Flandanese, V.; Naso, F.; Pietrusiewicz, K. M.; Wiśniewski, W. Tetrahedron Lett. 1993, 34, 3135.
- (177) Oshiki, T.; Hikosaka, T.; Imamoto, T. Tetrahedron Lett. 1991, 32, 3371.
- (178) Koide, Y.; Sakamoto, A.; Imamoto, T. Tetrahedron Lett. 1991, 32, 3375.
- (179) Cervinka, O.; Belovsky, O.; Hepnerova, M. J. Chem. Soc., Chem. Commun. 1970, 562.
- Farnham, W. B.; Lewis, R. A.; Murray, R. K., Jr.; Mislow, K. J. Am. (180) Chem. Soc. 1970, 92, 5808.
- (181) Michalski, J.; Skrzypczyński, Z. J. Organomet. Chem. 1975, 97, C31.
- (182) Skrzypczyński, Z.; Michalski, J. J. Org. Chem. 1988, 53, 4549.
- (183) Benschop, H. P.; Platenburg, D. H. J. M.; Meppelder, F. H.; Boter, H. L. J. Chem. Soc., Chem. Commun. 1970, 33. (184) Mikołajczyk, M.; Drabowicz, J.; Omelańczuk, J.; Fluck, E. J. Chem.
- Soc., Chem. Commun. 1975, 382.
- (185) Omelańczuk, J.; Mikolajczyk, M. J. Chem. Soc., Chem. Commun. 1976, 1025.
- (186) For a summary see: Mikołajczyk, M. Pure Appl. Chem. 1980, 52, 959.
- (187) Omelańczuk, J.; Perlikowska, W.; Mikołajczyk, M. J. Chem. Soc., Chem. Commun. 1980, 24.
- (188) Omelańczuk, J.; Mikołajczyk, M. J. Am. Chem. Soc. 1979, 101, 7292
- (189) Chodkiewicz, W.; Jore, D.; Wodzki, W. Tetrahedron Lett. 1979, 12, 1069
- (190) Chodkiewicz, W.; Jore, D.; Pierrat, A.; Wodzki, W. J. Organomet. Chem. 1979, 174, C21.
- Cooper, D. B.; Inch, T. D.; Lewis, G. J. J. Chem. Soc., Perkin Trans. (191)1974, 1043.
- (192) Moriyama, M.; Bentrude, W. G. J. Am. Chem. Soc. 1983, 105, 4727.
- (193) Boter, H. L.; Platenburg, D. H. J. M. Recl. Trav. Chim. Pays-Bas 1967, 86, 399.
- (194) Corey, E. J.; Chen, Z.; Tanoury, G. J. J. Am. Chem. Soc. 1994, 115, 11000.
- (195) Goodridge, R. J.; Hambley, T. W.; Haynes, R. K.; Ridley, D. D. J. Org. Chem. 1988, 53, 2881. Hung, S.-M.; Lee, D.-S.; Yang, T.-K. Tetrahedron: Asymmetry 1990, 1, 873. Chodkiewicz, W. J. Organomet. Chem. 1984, 273, C55.
- (196)
- (197) Neuffer, J.; Richter, W. J. J. Organomet. Chem. 1986, 301, 289. (198) Segi, M.; Nakamura, Y.; Nakajima, T.; Suga, S. Chem. Lett. 1983,
- (199) Kato, T.; Kobayashi, K.; Masuda, S.; Segi, M.; Nakajima, T.; Suga, S. Chem. Lett. 1987, 1915.
- (200) Jugé, S.; Genet, J. P. Tetrahedron Lett. 1989, 30, 2783.
- (201) Richter, W. J. Chem. Ber. 1984, 117, 2328.
 (202) Jugé, S.; Wakselman, M.; Stephan, M.; Genet, J. P. Tetrahedron Lett. 1990, 31, 4443.
- (203) Jugé, S.; Stephan, M.; Laffitte, J. A.; Genet, J. P. Tetrahedron Lett. 1990, 31, 6357.
- (204) Jugé, S.; Stephan, M.; Merdes, R.; Genet, J. P.; Halut-Desportes, S. J. Chem. Soc., Chem. Commun. 1993, 531.
- (205) Brown, J. M.; Carey, J. V.; Russell, M. J. H. Tetrahedron 1990, 46, 4877.
- (206) Carey, J. V.; Barker, M. D.; Brown, J. M.; Russell, M. J. H. J. Chem. Soc., Perkin Trans. 1 1993, 831.
 (207) Crisp, G. T.; Salem, G.; Stephens, F. S.; Wild, S. B. J. Chem. Soc., Chem. Commun. 1987, 600.
- (208) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M.; Zabłocka, M.; Wiśniewski, W. J. Org. Chem. 1991, 56, 4383.
 (209) Pietrusiewicz, K. M.; Wieczorek, W.; Cicchi, S.; Brandi, A. Heteroat.
- Chem. 1991, 2, 661
- (210) Pietrusiewicz, K. M.; Koprowski, M. Manuscript in preparation.
- (211) Hellwinkel, D. Chem. Ber. 1966, 99, 3642
- (212) Horner, L.; Balzer, W. D.; Peterson, D. J. Tetrahedron Lett. 1966, 3315.
- (213) Maryanoff, C. A.; Maryanoff, B. E.; Tang, R.; Mislow, K. J. Am. Chem. Soc. 1973, 95, 5839.
 (214) Knowles, W. S.; Christopfel, W. C.; Koenig, K. E.; Hobbs, C. F.
- Adv. Chem. Ser. 1982, 196, 325.
- (215) Johnson, C. R.; Imamoto, T. J. Org. Chem. 1987, 52, 2170.
 (216) Jugé, S.; Merdes, R.; Stephan, M.; Genet, J. P. Phosphorus, Sulfur, Silicon 1993, 77, 199.

(219) Pietrusiewicz, K. M.; Zabłocka, M. Tetrahedron Lett. 1989, 30,

(220) Bodalski, R.; Michalski, T. J.; Monkiewicz, J.; Pietrusiewicz, K. M.

Balzer, W.-D. Chem. Ber. 1969, 102, 3557. Also compare with ref

Pietrusiewicz, K. M.; Zabłocka, M. Tetrahedron Lett. 1988, 29,

- (217) Mathey, F.; Mercier, F. Tetrahedron Lett. 1979, 33, 3081.
- (218) Haynes, R. K.; Stokes, J. P.; Hambley, T. W. J. Chem. Soc., Chem. Commun. 1991, 58.

ACS Symp. Ser. 1981, 171, 243.

(221)

(222)

295

937.

- (223) Pietrusiewicz, K. M.; Zabłocka, M. Tetrahedron Lett. 1988, 29, 1987.
- (224) Pietrusiewicz, K. M.; Zabłocka, M. Phosphorus, Sulfur 1988, 40,
- (225) Zabłocka, M. Dissertation, Center of Molecular and Macromolecular Studies, Łódź, 1991.
- Pietrusiewicz, K. M.; Wiśniewski, W.; Zabłocka, M.; Wieczorek, (226)W.; Brandi, A. Unpublished results. (227) Maffei, M.; Buono, G. New. J. Chem. 1988, 12, 923.
- (228) Pietrusiewicz, K. M.; Zabłocka, M.; Wieczorek, W.; Brandi, A. Tetrahedron: Asymmetry 1991, 2, 419.
- (229)Pietrusiewicz, K. M.; Zabłocka, M.; Kuźnikowski, M.; Wieczorek, W.; Maniukiewicz, W.; Rospent, M. Heteroatom Chem. 1991, 2, 111.
- (230) Pietrusiewicz, K. M.; Kuźnikowski, M.; Wieczorek, W.; Brandi, A. Heteroat. Chem. 1**992**, 3, 37.
- (231) Bodalski, R.; Koszuk, J.; Krawczyk, H.; Pietrusiewicz, K. M. J. Org. Chem. 1982, 47, 2219.
- Brandi, A.; Cannavo', P.; Pietrusiewicz, K. M.; Zabłocka, M.; Wieczorek, M. J. Org. Chem. 1989, 54, 3073. Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. Gazz. Chim. (232)
- (233)Ital. 1991, 121, 285.
- Pietrusiewicz, K. M.; Zabłocka, M.; Wiśniewski, W. Phosphorus, (234)Sulfur, Silicon 1990, 49/50, 263.
- Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. Tetrahedron Lett. 1991, 32, 3265. (235)
- Lett. 1991, 32, 3205.
 (236) Zabłocka, M.; Boutonnet, F.; Igau, A.; Dahan, F.; Majoral, J. P.; Pietrusiewicz, K. M. Angew. Chem., Int. Ed. Engl. 1993, 32, 1735.
 (237) Denney, D. B.; Hanifin, J. W., Jr. Tetrahedron Lett. 1963, 30, 2177.
 (238) Woźniak, L.; Kowalski, J.; Chojnowski, J. Tetrahedron Lett. 1985, 1000 (2007)
- 40, 4965. (239) Kowalski, J.; Woźniak, L.; Chojnowski, J. Phosphorus, Sulfur 1987, 30.125.
- (240) Skowrońska, A. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1973, 21, 459.

- (241) Mikołajczyk, M.; Łuczak, J. J. Org. Chem. 1978, 43, 2132.
 (242) Horner, L.; Winkler, H. Tetrahedron Lett. 1964, 9, 455.
 (243) Michalski, J.; Okruszek, A.; Stec, W. J. J. Chem. Soc., Chem. Commun. 1970, 1495.
- (244) Stec, W. J.; Okruszek, A.; Michalski, J. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1973, 21, 445.

- Ste. Chin. 1313, 21, 440.
 (245) Stec, W. J.; Okruszek, A. J. Chem. Res. (S) 1977, 142.
 (246) Denney, D. B.; Adin, N. G. Tetrahedron Lett. 1966, 23, 2569.
 (247) Omelańczuk, J.; Mikołajczyk, M. Tetrahedron 1971, 27, 5587.
 (248) Denney, D. B.; Gershman, N. E. Tetrahedron Lett. 1965, 3899.
- (249) Horner, L.; Winkler, H. Tetrahedron Lett. 1964, 3275.
- (250) Horner, L.; Winkler, H. Tetrahedron Lett. 1964, 175. (251) Horner, L.; Balzer, W.-D. Tetrahedron Lett. 1965, 1157.
- (252) Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7012.
- (253)Marsi, K. L. J. Org. Chem. 1974, 39, 265.
- Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91, (254) 2788
- Cremer, S. E.; Chorvat, R. J. J. Org. Chem. 1967, 32, 4066. (255)
- (256) DeBruin, K. E.; Zon, G.; Naumann, K.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7027.
 (257) Quin, L. D.; Caster, K. C.; Kislaus, J. C.; Mesch, K. A. J. Am. Chem.
- Soc. 1984, 106, 7021.
- (258) Luckenbach, R. Phosphorus 1973, 3, 77. (259) Luckenbach, R. Tetrahedron Lett. 1971, 24, 2177.
- (260) Stec, W. J.; Okruszek, A.; Michalski, J. Angew. Chem. 1971, 13, 491. (261) Zon, G.; DeBruin, K. E.; Naumann, K.; Mislow, K. J. Am. Chem.
- Soci, 1969, 91, 7023.
 (262) Luckenbach, R. Synthesis 1973, 307.
 (263) Luckenbach, R.; Kern, M. Chem. Ber. 1975, 108, 3533.

- (264) Mikołajczyk, M.; Łuczak, J. Synthesis 1975, 115.
 (265) Stec, W. J.; Okruszek, A.; Michalski, J. J. Org. Chem. 1976, 41, 233.
 (266) Sakaki, K.; Oae, S. Chem. Lett. 1977, 1003.
 (267) Drabowicz, J.; Łuczak, J.; Martin, J. C. Phosphorus, Sulfur, Silicon 1993. 77. 215.
- (268) Skowronńska, A.; Krawczyk, E. Synthesis 1983, 509
- Chan, T. H.; Finkenbine, J. R. J. Am. Chem. Soc. 1972, 94, 2880. Maryanoff, B. E.; Tang, R.; Mislow, K. J. Chem. Soc., Chem. (270) Commun. 1973, 273.
- (271) Omelańczuk, J.; Mikołajczyk, M. Phosphorus, Sulfur 1983, 15, 321.

- (272) Hall, C. R.; Smith, D. J. H. J. Chem. Soc., Perkin Trans. 2 1977, 1373
- (273) Hall, C. R.; Smith, D. J. H.; Watts, P. J. Chem. Soc., Perkin Trans. 2 1977, 1379.
- (274) Horner, L.; Fuchs, H.; Winkler, H.; Rapp, A. Tetrahedron Lett. 1963, 15, 965.
- (275) Luckenbach, R. Phosphorus 1971, 1, 77.
 (276) Horner, L.; Mummenthey, G.; Moser, H.; Beck, P. Chem. Ber. 1966, 99, 2782. Horner, L.; Luckenbach, R.; Balzer, W.-D. Tetrahedron Lett. 1968, 3157.
- (277) Horner, L.; Jordan, M. Phosphorus, Sulfur 1979, 6, 491.
 (278) Horner, L. Pure Appl. Chem. 1980, 52, 843.
- (279) Horner, L.; Luckenbach, R. Phosphorus 1971, 1, 73.
- (280) Omelańczuk, J.; Mikołajczyk, M. Tetrahedron Lett. 1984, 25, 2493.
- (281) Horner, L.; Mentrup, A. Liebigs Ann. Chem. 1961, 646, 65.
 (282) Luckenbach, R. Z. Naturforsch. 1976, 31b, 1127.
 (283) Kumli, K. F.; McEwen, W. E.; Vander Werf, C. A. J. Am. Chem.
- Soc. 1959, 81, 3805. Zanger, M.; Vander Werf, C. A.; McEwen, W. E. J. Am. Chem. Soc. (284)1959. 81. 3806.
- (285) De'ath, N. J.; Trippett, S. J. Chem. Soc., Chem. Commun. 1969,

- (286) Marsi, K. L.; Clark, R. T. J. Am. Chem. Soc. 1970, 92, 3791.
 (287) Marsi, K. L. J. Chem. Soc., Chem. Commun. 1968, 846.
 (288) Marsi, K. L. J. Am. Chem. Soc. 1969, 91, 4724.
 (289) Egan, W.; Chauvière, G.; Mislow, K.; Clark, R. T.; Marsi, K. L. J.
 (280) Cham. Commun. 1970, 7070.
- (299) Egan, W.; Chauviere, G., Jansiow, R., Olara, W. T., Marsi, H. 2007. Chem. Soc., Chem. Commun. 1970, 733.
 (290) Marsi, K. L. J. Am. Chem. Soc. 1971, 93, 6341.
 (291) Hawes, W.; Trippett, S. J. Chem. Soc., Chem. Commun. 1968, 295.
 (292) Cremer, S. E.; Chorvath, R. J.; Trivedi, B. C. J. Chem. Soc., Chem.
- Commun. 1969, 769. (293) Luckenbach, R. Phosphorus 1972, 1, 223.
- (294) Luckenbach, R. Phosphorus 1972, 1, 293. (295) Luckenbach, R. Phosphorus 1972, 1, 229.
- (296) Blade-Font, A.; Vander Werf, C. A.; McEwen, W. E. J. Am. Chem.
- Soc. 1960, 82, 2396. Trost, B. M.; Curran, D. P. J. Am. Chem. Soc. 1980, 102, 5699. (297)
- (298) Zon, G.; DeBruin, K. E.; Naumann, K.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7023. (299) Mathey, F. J. Organomet. Chem. 1975, 87, 371
- (300) Mathey, F.; Mercier, F. Tetrahedron Lett. 1979, 3081.
- (301) Chodkiewicz, W. J. Organomet. Chem. 1979, 184, C61.
- (302) Compare with: Mathey, F.; Marinetti, A.; Mercier, F. Synlett. 1992, 5, 363.
- (303) Cf.: references cited in section III.A.1.b. See also refs 106, 177 194, and 203 for few examples of the use of commercially available columns.
- (304) Moriyama, M. J. Synth. Org. Chem. Jpn. 1985, 42, 75.
- (305) Casey, J. P.; Lewis, R. A.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 3869.
- (306) Cf.: Wilke, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 185
- (307) Dunach, E.; Kagan, H. B. Tetrahedron Lett. 1985, 26, 2649.
- (308) Pasquier, M. L.; Marty, W. Angew. Chem., Int. Ed. Engl. 1985, 24, 315.
- (309) See also refs 78, 129, 172, 192, and 300, for some examples of applications. Casey, J. P.; Lewis, R. A.; Mislow, K. J. Am. Chem. Soc. 1969, 91,
- (310)2789.
- (311) Noyori, R.; Kitamura, M. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer Verlag: Berlin, 1989; p 115.
 (312) Bosnich, B., Ed. Asymmetric Catalysis; Martinus Nihjoff Publishers, Dede. 1992.
- Publishers: Dodrecht, 1986. (313) Knowles, W. S. J. Chem. Ed. 1986, 63, 222. (314) Kagan, H. B. Bull. Chim. Soc. Fr. 1988, 846.

- (315) Noyori, R. Chem. Soc. Rev. 1989, 18, 187.
- (316) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345 and references cited therein.
- (317) Fiaud, J. C.; Legros, J. Y. Tetrahedron Lett. 1991, 38, 5089.
 (318) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518 and references cited therein.
- (319) Börner, A.; Ward, J.; Kortus, K.; Kagan, H. B. Tetrahedron: Asymmetry 1993, 4, 849 and references cited therein. See also ref 320 for a recent review on secondary interactions between chiral ligands and substrates.
- (320) Sawamura, M.; Ito, I. Chem. Rev. 1992, 92, 857.