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/. Introduction 

As the experimental and. theoretical investigations 
of the structure and energetics of isolated molecules 
are entering a mature stage of development, the 
interactions between molecules are becoming the 
next frontier of molecular science. Such interactions, 
although weak compared to the forces bonding mol
ecules internally, are responsible for an extensive 
range of physical, chemical, and biological phenom
ena: from bulk properties of rare gases to the signal 
induction in neurotransmitters. There are too many 
fields where intermolecular potentials are needed to 
list them here. A few important examples are Monte 
Carlo and molecular dynamics simulations of biologi
cal systems,1 drug design,2 studies of processes in the 
earth's atmosphere,3 and interstellar chemistry.4 

Investigations of intermolecular forces not only en
large our knowledge of nature but may lead to 
significant technological advances. One may hope 
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tha t a proper manipulation of the energetical and 
stereochemical features of intermolecular forces might 
allow design of artificial receptor molecules capable 
of binding substrate species strongly and selectively, 
just as biological enzymes do, leading to construction 
of new materials. 

The purpose of this article is to review a significant 
progress made during the 1980s and early 1990s in 
the perturbation theory of intermolecular interac
tions. The last major reviews in this field5"8 were 
published in late 1970s and early 1980s. The mono
graph by Kaplan,9 containing a broad discussion of 
the perturbation theory approach, is a translat ion 
(with minor extensions) of the 1982 Russian edition 
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and includes complete l i terature until 1979. A 
concise and very readable section on perturbation 
theory approach in the book by Hobza and Zahrad-
nik10 covers l i terature until 1984. It appears, then, 
tha t a review presenting the current s tate of the 
theory is now in order. In our view, the perturbation 
theory approach to intermolecular interactions serves 
three main purposes: (i) it provides the basic concep
tual framework within which the intermolecular 
interactions are discussed, (ii) it provides asymptotic 
constraints on any potential energy surface obtained 
either from experiment or from theory, and (hi) it can 
accurately predict the complete intermolecular po
tential energy surfaces for weakly bound molecular 
complexes. We intend to cover significant develop
ments in all the three areas but we will especially 
focus on the last point where recent advances were 
most rapid. The complete intermolecular potential 
could not be obtained in a perturbation approach 
until the notorious electron exchange problem was 
solved. This solution has been achieved by the 
development8 and many-body implementation1 1 1 2 of 
the symmetry-adapted perturbation theory (SAPT) 
so the discussion of the point (hi) is naturally limited 
to the field of SAPT. The polarization theory and the 
multipole expansion theory are limits of SAPT cor
responding to the neglect of the exchange and of the 
overlap effects. The progress in these fields is 
relevant for applications of SAPT and is also re
viewed. 

By intermolecular interactions we will understand 
all interactions between molecules which are signifi
cantly weaker than the chemical bond. We will 
moreover restrict the scope of this review to interac
tions of closed-shell systems in the nonrelativistic 
quantum mechanics. Relativistic effects become 
important only for distances much larger than those 
of van der Waals minima 1 3 - 1 5 and therefore have a 
negligible effect on most observables. (See, however, 
ref 16 for an example of importance of relativistic 
effects for He2.) The restriction to closed-shell sys-
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terns also means that we will not discuss the reso
nance interactions appearing when at least one 
monomer is in an excited state. Also, we will not 
discuss interactions of more than two monomers, i.e., 
we will not consider here the nonadditive many-body 
effects. (In this review the phrase "many-body" will 
always refer to the many-electron problem.) The 
depths of minima on intermolecular potential energy 
surfaces are typically from a few hundredths of 
kilocalories per mole to several kilocalories per mole, 
in contrast to chemical bonds which are of the order 
of one hundred kilocalories per mole. Some authors 
introduce a further division of intermolecular inter
actions into subtypes such as van der Waals interac
tions or the hydrogen-bonding interactions. How
ever, from the point of view of perturbation theory 
such division is not necessary. All the intermolecular 
interactions contain the four fundamental physical 
contributions: electrostatic, induction, dispersion, 
and exchange—and differ only by proportions of these 
ingredients. The strongest of those interactions 
involve a large negative contribution from the elec
trostatic forces as in hydrogen bonded systems. If 
the electrostatic contribution is small, like in interac
tions of rare gas atoms with molecules, the minima 
depths are often below 1 kcal/mol. Nevertheless, in 
all cases the basic physics of the process is the same. 
Thus, from this point of view, a molecule such as the 
water dimer is also a van der Waals complex.10'17 

The concept of intermolecular interaction energy 
appears in the Born-Oppenheimer approximation. 
The energy of interaction between molecules A and 
B is defined as the difference between the energy of 
the dimer EAB and the energies of the monomers EA 
and EB 

•^int = EAB ~ EA ~ EB 

It is assumed that the internal coordinates of the 
monomers used in computing EA and EB are the same 
as within the dimer AB. Thus, the interaction energy 
depends on the separation R between the centers of 
mass of the monomers, on the Euler angles charac
terizing their mutual orientation, and on monomer's 
internal coordinates. One may mention that pub
lished values of the intermolecular energy are some
times obtained without keeping the internal coordi
nates of monomers the same in computing EAB, EA, 
and EB (often when applying a global geometry 
optimization). The meaning of such a definition of 
the interaction energy is unclear and its usefulness 
for interpretation of experimental data is disputable. 

A complete potential energy surface (containing a 
dependence on internal coordinates) can be utilized 
to obtain a solution of the Schrodinger equation for 
the nuclear motion. This solution provides informa
tion which can be directly compared with experiment. 
Clearly, the inclusion of the dependence on the 
internal coordinates adds significantly to the time of 
calculations of potential energy surfaces. Often a 
reasonable approximation is to decouple the internal 
and external motion of monomers and use in nuclear 
dynamics calculations an intermolecular interaction 
potential computed for fixed internal coordinates. The 
internal coordinates should then be obtained by 
averaging intramonomer geometries over the ap
propriate rovibrational wave function for a given 
monomer. 

Experimental investigations of intermolecular forces 
have undergone a significant development in the past 
two decades. Not long ago only very fragmentary 
information, mainly from bulk measurements and 
scattering experiments, was available.18'19 At the 
present time experiments, in particular the infrared 
spectroscopy,20"23 can provide data enabling construc
tion of quantitatively correct multidimensional em
pirical potential energy surfaces for small van der 
Waals molecules.24'25 Since there exist no direct 
experimental method of measuring the intermolecu
lar potential, a significant amount of theoretical effort 
is needed to fit a surface to a set of experimental 
data.24,25 Until recently theoretical intermolecular 
potentials could not match the accuracy of the 
empirical ones, except for the simplest systems. (See 
refs 7-10, and 26-30 for recent reviews of theory.) 

Since intermolecular forces are so much weaker 
than the intramolecular ones, standard computa
tional methods of electronic structure theory are not 
very well suited for applications to intermolecular 
interactions. The standard methods are always 
applied in the so-called supermolecular approach,31 

i.e., the interaction energy is computed by subtracting 
the sum of monomer's energies from the energy of 
the dimer. However, in practical calculations, due 
to the use of incomplete basis sets, these methods 
always contain the basis set superposition error 
resulting from nonphysical lowering of monomer's 
energy in dimer's calculation due to "borrowing" of 
the basis set from the interacting partner.32 There 
is no general consensus on how to compute the 
supermolecular interaction energies such that the 
effects of basis set superposition are minimized.33"37 

Since for all many-electron systems except for very 
small ones the errors in total energies are much 
larger than the interaction energy itself, accuracy of 
the computed potential depends on a cancellation of 
these large errors. Moreover, a supermolecular 
calculation does not allow any physical insight into 
the nature of intermolecular interactions. Methods 
taking into account specific nature of intermolecular 
interactions, i.e., the perturbation methods which are 
the subject of this review, have actually been useful 
in providing an interpretation and an estimation of 
reliability of potential energy surfaces obtained by 
the supermolecular approach.31 

The first quantum mechanical theory of intermo
lecular interactions was developed in the 1930s by 
London and co-workers38-40 (an even earlier develop
ment was due to Wang41). This theory is based on 
the standard low-order Rayleigh-Schrodinger (RS) 
perturbation expansion with the unperturbed Hamil-
tonian describing noninteracting monomers. The 
difference between the total and the unperturbed 
Hamiltonians is the intermolecular interaction op
erator V. In London's method the exact interaction 
operator is replaced by its multipole expansion.4243 

Since such expansion of V is convergent only in a 
small part of the configuration space (corresponding 
to electrons localized on the monomers), the London 
method is valid only asymptotically for large inter
molecular separations.44 At finite internuclear sepa
rations the resulting multipole expansion of the 
interaction energy is divergent.45-47 London's theory 
became a classical tool for investigating intermolecu-
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lar interactions at large separations and it is still 
actively developed as better methods for calculating 
the asymptotic expansion constants are devised.6,48 

The London theory can be improved by using the 
exact, nonexpanded form of V. The resulting per
turbation expansion is referred to as the polarization 
approximation or polarization theory.49 The interac
tion energy components which are missing in Lon
don's theory but are included by the polarization 
theory are called the charge overlap or penetration 
effects. By inclusion of the charge overlap effects the 
problem of the divergent nature of the multipole 
expansion is circumvented and all interaction energy 
components appearing in the polarization theory 
have well-defined values for finite intermolecular 
separations (see sections II, IV, and V for a further 
discussion of these issues). 

The neglect of the overlap is not the only defect of 
London's theory. Even if the intermolecular interac
tion operator were not expanded, i,e., in the polariza
tion approach, the computed intermolecular potential 
energy surface would be qualitatively incorrect and 
in particular would not exhibit the van der Waals 
minima nor would it give the repulsive wall for small 
intermolecular separations. The reason is that the 
polarization method, as shown in refs 50—52, is not 
able in a finite order to account for the exchange 
effects resulting from tunneling of electrons between 
interacting systems.53 This difficulty is removed by 
combining a perturbation expansion with imposition 
of the correct permutational symmetry of the wave 
function. The resulting symmetry-adapted perturba
tion theory (SAPT)39-54"64 is an ab initio method which 
takes care of both defects of London's theory and 
enables investigations of the complete potential 
energy surface. The method provides a conceptual 
framework for understanding the complete phenom
enon of intermolecular interactions. Similarly as in 
London's theory the starting point are the unper
turbed monomers. Since both the overlap and ex
change effects vanish exponentially for large inter
molecular separations, SAPT is asymptotically 
equivalent to London's theory. Each of the interac
tion energy corrections computed in the SAPT ap
proach can be classified as describing one of the four 
fundamental interactions: electrostatic, induction, 
dispersion, or exchange. Thus, the SAPT approach 
represents the interaction energy as a sum of terms 
with well-defined physical interpretation which al
lows a better insight into the nature of intermolecular 
interaction mechanism. Such insight is helpful in 
understanding of trends in spectroscopic and scat
tering experiments and relations between the strength 
of intermolecular interaction and the properties of 
monomers. It will also provide guidance in construct
ing semiempirical methods to be applied for larger 
systems. Since all the terms computed by SAPT 
contribute directly to the interaction energy, the 
method is free from the basis set superposition error. 

Although the first formulation of SAPT dates back 
to 1930 and properties of SAPT have been extensively 
investigated in the late 1960s and in 1970s, all this 
work has been restricted to the simplest systems such 
as H2

+ and H2. Application of SAPT to many-electron 
systems required development of a double-perturba
tion theory which was done in the late 1970s.65 In 

such theory, referred to as the many-body SAPT, the 
Moller-Plesset fluctuation potentials66 for monomers 
(intramolecular correlation operators) are considered 
together with the standard intermolecular interaction 
operator V. This theory has been initially applied 
to interactions of two helium atoms.65,67,68 More 
recently general formulas of the many-body SAPT in 
terms of one- and two-electron integrals and orbital 
energies have been derived and coded making practi
cal calculations on arbitrary systems possible.11,12,69""74 

We start in section II from a presentation of the 
polarization expansion, including an analysis of its 
convergence properties. The exchange effects and the 
SAPT approach are described in section III. This 
section contains also a discussion of the convergence 
properties of the SAPT expansions for model systems 
(H2

+, H2, and He2). Section IV is devoted to the 
London's theory which can now be treated as a limit 
of SAPT for very large intermolecular separations. 
The use of the multipole expansion in London's 
theory provides a division of the interaction energy 
into components related to "partial waves" on each 
center. It is possible to keep this division in the 
polarization theory replacing the (approximate) mul
tipole expansion of the interaction operator V by the 
exact bipolar expansion, and section V will review 
the present status of theory in this field. In section 
VI the many-body implementation of SAPT is out
lined. Applications of many-body SAPT to several 
weakly interacting systems are surveyed in section 
VII, and section VIII contains conclusions. 

//. Polarization Theory 

The conceptually simplest perturbation approach 
to intermolecular interactions is provided by the 
polarization theory. This is a standard application 
of the Rayleigh-Schrbdinger perturbation method to 
the eigenvalue problem for the electronic (Born-
Oppenheimer) Hamiltonian H for the dimer AB 

(H0 + tV)OAB = EAB^AB (1) 

with the unperturbed operator HQ = HA+ HB chosen 
as the sum of the monomer electronic Hamiltonians 
HA and HB- The perturbation operator V, defined as 
the difference between the total Hamiltonian H and 
Ho, collects all Coulombic potentials corresponding 
to interactions between electrons and nuclei associ
ated with monomer A on one side and those associ
ated with monomer B on the other. Usually, one 
assumes that the Hamiltonians HA and HB act on the 
coordinates of electrons 1, ..., NA and NA + 1, •••, NA 
+ NB, respectively. This means that the electrons 1, 
..., NA are assigned to monomer A and the electrons 
NA + 1, •••> NA + NB to monomer B. The total dimer 
energy EAB = EAB(Q and the wave function OAB = 
^AB(O, satisfying eq 1, depend implicitly on the 
parameter £ introduced to define the orders of 
perturbation expansion. 

The Hamiltonian partitioning used in eq 1 is very 
natural from the physical point of view. When £ = 0 
the intermolecular interaction terms in the Hamil
tonian are switched off and the dimer energy becomes 
equal to the sum of the energies of the unperturbed 
monomers EAB(0) = EA+ EB = E0. At the same time 
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the dimer wave function becomes the product of the 
monomer wave functions OAB(O) = QA^B = <&o (in this 
review we shall be concerned with the situations 
when 3>A and O^ correspond to nondegenerate ground 
states only). When £ = 1, the intermolecular interac
tion terms in the Hamiltonian (given by V) are 
completely included and the corresponding wave 
function 4>AB(1) and energy EAB(V become the exact, 
physical wave function and energy of the dimer. The 
operator V is thus fully responsible for the intermo
lecular interaction phenomenon and is usually re
ferred to as the intermolecular interaction operator. 

A. Polarization Series for the Wave Functions 
and Energy 

The polarization series for the wave function and 
the interaction energy Eint = EAB ~ Eo are defined as 
power series in £ for <&AB(£) and 2?AB(£) ~ E0: 

EiJO=IFE^1 (3) 

The individual corrections 0("i and E^1 are referred 
to as the nth-order polarization wave functions and 
polarization energies. As observed by Ahlrichs,75 it 
follows from the mathematical work of Kato76 that 
OAB(£) and .EW^) are analytic functions of the 
complex variable £ for £ belonging to a certain circle 
|£| < Q of radius Q > O. This means that the series of 
eqs 2 and 3 do converge for sufficiently small values 
of £. Since only for £ = 1 the Hamiltonian Ho + £V 
corresponds to physical reality, the practically rel
evant question is whether these series converge at £ 
= 1 or, equivalently, whether the convergence radius 
Q is greater than unity. Considerable effort has been 
devoted to answer this question.50-52'75,77-78 Irrespec
tive of the controversies surrounding this problem52'87 

and of the definite answer to the convergence ques
tion (which as we know now depends on the consid
ered system, see section ILC), the polarization theory 
still provides the basis for most of our understanding 
of the physical nature of the weak intermolecular 
interaction phenomenon. 

The expression for the interaction energy fJi„t(£) 
takes a particularly simple form 

£int(£) = <3>0l^AB(£)> (4) 

when the arbitrary phase and normalization of the 
wave function <£>AB(0 are fixed by the so-called 
intermediate normalization condition89 

<<B0I*WC)> = 1 (5) 

Consequently, the polarization energy of the nth-
order is given by 

EfR = (G0WQ^1) (6) 

The polarization functions are obtained from the 
recurrence relationships89 

< i = -A 0 V^r" + lE%R0^oik) (7) 
A=I 

The zeroth-order polarization function O ^ needed 
to start the recurrence procedure is equal to the 
unperturbed wave function O0 = O^OB. The operator 
.Ro is the reduced resolvent of Ho, defined, e.g., as90 

R0 = (H0-E0+ P0T
1Q0 (8) 

where P0 = 1O0XOo] and Q0 = 1 - Po- The operator 
Ro, commonly used in perturbation theory consider
ations, may be viewed as an "inverse" of the singular 
operator Ho — E0 in the space orthogonal to Oo- It 
has the following spectral (sum-over-states) repre
sentation 

* o = X - r - — r O) 

in terms of excited eigenfunctions Om and eigenval
ues Em of H0. The sum-over-states formulas charac
teristic of the early development of perturbation 
theory do not have practical utility since they neces
sarily involve continuum wave functions. In practice, 
the action of Ro on an arbitrary function f is calcu
lated by solving the partial differential equation (H0 
- Eo)X = Qof (usually using the Hylleraas variational 
principle89) and orthogonalizing a solution to Oo so 
that R0f= QoX-

B. Physical Interpretation of Low-Order 
Polarization Energies 

The polarization energies through third order have 
an appealing, partly classical, physical interpretation. 
They can also be rigorously related to monomer 
properties, which considerably facilitates their esti
mation and practical evaluation. 

1. Electrostatic Interaction 
The first-order polarization energy is given by 

Using the explicit form of the intermolecular interac
tion operator and performing the integration over the 
coordinates of all electrons except for one electron on 
the monomer A and/or one electron on the monomer 
B, one can express E{1^ in terms of the total charge 
distribution ^ 0 V ) and Q%\r) of the monomers5'17 

C l = / M 0 V 1 ) ^ 0 V 2 ) dV, dv2 ( ID 
'12 

where Ti2 = |ri — r2|. The total electric charge 
distribution for the monomer A is given (in atomic 
units) by 

£#V) = ]>X<5(r - R0) - QA(r) (12) 
a 

where the term containing Dirac's delta Zad(r — R0) 
represents the contribution from the positive point 
charge Za at the position of nucleus a and — QAW is 
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the electronic charge distribution, given by the 
diagonal element of the first-order density matrix 
(normalized to the number of electrons in monomer 
A). 

Equations 11 and 12 show that the first-order 
polarization energy has a very transparent physical 
interpretation. It simply represents the energy of the 
electrostatic (Coulombic) interaction of the mono
mers' charge distributions. For this reason it is 
referred to as the electrostatic energy. At large 
intermonomer distances R the electrostatic energy 
can be represented as a sum of classical electrical 
interactions between the permanent multipole mo
ments of unperturbed monomers (see section IV). 
However, one should emphasize that the electrostatic 
energy contains also important short-range terms 
due to the mutual penetration (charge overlap) of 
monomers' electron clouds (see section V). This 
short-range part of the electrostatic energy makes 
significant contributions to the stabilization energy 
of atom-diatom van der Waals complexes7291-94 and 
cannot be neglected in any accurate calculations of 
potential energy surfaces for such systems. The 
electrostatic interaction plays a major role in deter
mining the structure of dimers consisting of polar 
molecules, in particular hydrogen-bonded sys
tems.29,95"98 The evaluation of the electrostatic in
teraction energy for such systems is often performed 
by approximating the electrostatic potential of a 
molecule by that resulting from a set of point charges5 

or from a multicenter distribution of multipole 
moments.99"105 Evaluation of the electrostatic part 
of the interaction energy for polyatomic molecules, 
often very large ones, is presently an actively devel
oping subfield of the theory of intermolecular forces. 
It has been recently reviewed for this journal by 
Dykstra.106 

2. Induction Interaction 
<2) 

by 
The second-order polarization energy .Ep01 is given 

l(o0|yom>i2 

p̂2Oi = -<O0|Vi?0V|O0> = - X — — (13) 
m*0 &m ~~ &0 

UBW = f^QTW d3r, (17) 
v 

and R^ = (HA-EA + PAY1QA, where PA = |OA)(OA | 
and QA = 1 - PA, is the ground-state reduced 
resolvent of HA, which can also be expressed in terms 
of the excited eigenfunctions and eigenvalues of the 
monomer A using sum-over-states formula similar to 
eq9. 

Equation 15 has the form of the second-order 
energy correction arising when monomer A is per
turbed by the static electric field generated by the 
(unperturbed) monomer B. This field, corresponding 
to the potential coB, induces a modification O1^(A) = 
- $0

iQBOA in the wave function of monomer A and 
the energetic effect of this modification, given by 
(0A |QgO^), is equal exactly to E^(A). The second-
order induction energy results, thus, from the mutual 
polarization of the monomers by the static electric 
fields of unperturbed partners. Asymptotically, at 
large R, this effect is fully determined by the perma
nent multipole moments and static multipole polar-
izabilities of the monomers (see section IV for further 
details). At finite R additional monomer information 
is needed to account for the short-range, penetration 
part of E(^d. This information is contained in the 
short-range part of the electrostatic potentials co^r), 
X = A or B, and in the polarization propagators of 
the monomers. The polarization propagator is a 
molecular property, which fully describes the linear 
response of a molecule to an arbitrary external 
perturbation.107'108 It is defined for an arbitrary 
frequency co by 

n$a>) = - ( O J a ^ V a V X ) -

<0Al4&V)aiOA> (18) 

where ax
K = akaK is a product of ordinary creation (aA) 

and annihilation (aK) operators and RA{to\ is the 
frequency dependent resolvent defined as RA(CO) = 
(HA-E^ + CO)-1QA, for co * O and by RA(0) = R* for 

O. The induction energy E^d(A) is related to the co 
static part (at w = O) of the polarization propagator 
via 

17,74 

The induction energy is obtained when the sum-over
states in definition 13 is restricted to "singly excited" 
(in the molecular sense) eigenfunctions of HQ, i.e., to 
the functions of the form OAOB

XC and OA
XCOS, where 

the superscript exc is used to denote an excited state. 
The corresponding part of Ep2J1, denoted by EZ, is 
given by 

AA'/ 

EZ = EZ(A)+ EZ(B) (14) 

where 

E£d(A) = - ( O ^ Q ^ B I ^ A ) (15) 

and similarly for U1
2^CB). QB denotes here the op

erator of the electrostatic potential generated by the 
unperturbed monomer B 

QB = ^coB{rt) (16) 
KA 

EZ(A) = (~V(<oB)>Brrn^(0) d9) 

where (coB)l is the matrix element of the electro
static potential coB{r) calculated with the one-particle 
functions (spinorbitals) \pi used to define the second 
quantization operators ax, i.e., {coB)K

x = (^AIWBIV*)-
The Einstein summation convention over repeated 
lower and upper indices is used in eq 19 and further 
on in this article. Since the electron densities 
(needed to calculate coB) and the static propagators 
can be calculated as the first and second derivatives 
of the monomer energy with respect to appropriate 
perturbations, the existing quantum chemical tech
nology109-115 of calculating analytic first and second 
derivatives can be directly utilized to study induction 
interactions in the region where charge overlap 
effects play an important role, i.e., in the region of 
van der Waals minima and at shorter distances. 

In studies of larger molecules one can approximate 
the induction component of the interaction energy 
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using distributed multipole moments and polariz
abilities.101'116,117 It should be noted, however, that 
the distributed polarizabilities (defined usually using 
basis set partitioning techniques) are highly nonu-
nique and do not always lead to stable expressions 
for the induction energy.117 Very recently a basis set 
independent definition of distributed multipole po
larizabilities has been introduced and successfully 
applied.118 

In calculating the induction energy E^d(A) the 
motion of the electrons in monomer A is not cor
related with the motion of electrons in monomer B 
since the effect of the latter is represented only by 
the averaged electrostatic potential oB(r). This 
means that by considering only the induction inter
action we completely neglect the intermonomer elec
tron correlation. (The intramonomer correlation does 
affect the induction interaction, see section VI.) This 
property of the induction interaction is the basis for 
the generalization of the induction energy concept to 
higher orders in V. Specifically, the third-order 
induction energy E^ represents that part of E^1 

which can be obtained when the intermonomer 
electron correlation is completely neglected. In gen
eral, the infinite-order induction energy Ein&(E,) is 
defined via the variational principle as the minimum 
of the expectation value of the Hamiltqnian HQ + £V 
with the (normalized) trial function O of the form 
OAOB, where the functions OA and OB depend on the 
coordinates of electrons assigned to monomers A and 
B, respectively. Expanding £ind(£) as a power series 
in £ one obtains definitions of the induction energies 
of specific order in V.119 In second order one recovers 
the expression given by eqs 14 and 15 and in third 
order one obtains 

#ind = <?A*ol[n f l^]*o) + GBQOWAJBW + 
2Re{IA%\VIB®0) + 2Re(%\ViAIB%) (20) 

where the operators IA = -R^Q8PA and IB = 
-RQQAPB generate the first-order induction func
tions *{»(A) = -RtQB®A and «D<"(B) = 
—RQQA$>B when acting on OA and OB, respectively, 
e.g., ZAOA = O^aCA). The square brackets in eq 20 
denote the commutator of two operators, [X, Y] — XY 
- YX. Note that the third-order induction energy 
cannot be represented as a sum of two terms describ
ing the (second-order) polarization of the monomer 
A by the fields of the monomer B and vice versa but 
contains also mixed terms (the last two terms in eq 
20), which correspond to simultaneous polarization 
of both monomers by the field of their partners. 
Recently, it has been shown74 tha t the third-order 
induction energy (including the charge-overlap con
tribution) can be expressed through the static polar
ization propagators of monomers 

EZ = %coBrx(aB)faB)£n%%o,o) + 

l(coArv(^(<oA^u;^,(o,o) + 
« ^ " » 0 ) 1 1 ^ 0 ) (21) 

where UXA
K

lXK(o1,a)2) denotes the quadratic polariza
tion propagator (quadratic response function108'109'120) 

(in ref 120 the propagator U^xKa)19(D2) is denoted by 
-« aK; a1}; ax

K
2^>ai,W2). In eq 21 we use the convention 

that the indices X and K label spin orbitals of 
monomer A while /a and v label spin orbitals of 
monomer B. The symbol vK

v denotes the standard 
Coulomb integral (^(1)^(2)1 r12

l\xpx(X)ipv(2)). The 
third-order induction effects have thus far been 
considered in the literature only in the multipole 
approximation.121-125 In this approximation the first 
two terms in eq 21 can be related to the multipole 
hyperpolarizabilities of the monomers and the third 
one can be expressed through the polarizabilities 
only. However, it cannot be expected that the mul
tipole approximation can be used to estimate the 
contribution of the third-order induction effects to the 
stabilization of van der Waals complexes. This is due 
to the fact that the importance of the charge-overlap 
effects, which already dominate the second-order 
induction effect at the distances of van der Waals 
minima, increases with the increasing order of per
turbation theory. 

One should emphasize that although the individual 
induction energies of arbitrarily high order can be 
easily defined, the total, infinite-order induction 
energy is not a well-defined concept, except for small 
one- or two-electron monomers. For larger systems 
the induction series, similar to the polarization series 
(see section ILC), must diverge. This divergence 
shows up already in low orders so that an evaluation 
of the third- and higher-order induction energies 
without appropriate exchange corrections leads at 
finite distances to substantial overestimation of the 
total interaction energy.126-127 

3. Dispersion Interaction 

The second-order dispersion energy Ef^ is de
fined as the difference between the second-order 
polarization and induction energies, Ef? ~ ^poi ~~ 
Efad. Equivalently, in view of eqs 13 -15 , one can 
use the following direct definition 

E2P = -(%WRfV\%) (22) 

where R0^ = .Ro _ ROFB ~ ^A^O 1S the "dispersion 
part" of the resolvent Ro, i.e., that part of Ro, which 
involves only "doubly excited" states Om = OA

X0OB
xc 

in the sum-over-states formula of eq 13. Alterna
tively, one may write Efs? = (O0|VO£>p>> where 
O^gp = -R0^VQ0 is the "dispersion function" repre
senting the leading intermolecular correlation con
tribution to the dimer wave function. By the very 
definition the dispersion interaction represents a 
pure intermolecular correlation effect. It may be 
viewed as the stabilizing energetic effect of the 
correlations of instantaneous multipole moments of 
the monomers. Since the classic work of Casimir and 
Polder128 we know that, asymptotically at large R, 
the energy of the dispersion interaction can be 
expressed in terms of dynamic multipole polarizabili
ties of monomers. A powerful generalization of 
Casimir and Polder's result has been found recently 
by Dmitriev and Peinel129 and by McWeeny.17130 (See 
also a closely related work by Claverie.131) These 
authors have shown that the complete dispersion 
energy, including the charge-overlap effects, can be 
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expressed, via Casimir-Polder-type integral, in terms 
of the polarization propagators of monomers 

BZ = ~ ̂ f f i / ^ ^ ) n ^ ( - i o , ) dc 
(23) 

Equation 23 is very important since at physically 
most relevant distances of the van der Waals minima 
the charge-overlap contribution to the dispersion 
energy is always substantial. Additionally, the pow
erful computational techniques, developed in the 
1980s to obtain accurate polarization propaga
tors,108'109 can be utilized via eq 23 in calculations of 
dispersion energies at finite distances. One should 
note, however, that in practice for an accurate 
calculation of the dispersion energy at intermediate 
and short distances the polarization propagators 
must be calculated using the so called dimer-centered 
basis set.71 This reduces somewhat the advantage 
of formula 23 relative to a direct variational calcula
tion of the dispersion function O ^ 67,132 since the 
expensive step of calculating the propagators must 
be repeated at each dimer's geometry. 

In the third order of polarization theory the inter-
molecular correlation contribution 2?p

3
0j - E(^d sepa

rates into two parts: the induction-dispersion energy 
•̂ ind-disp a n ^ the third-order dispersion energy 
Ef?p. The induction-dispersion effect results from 
the coupling of the induction and dispersion interac
tions and gives the following contribution to the 
interaction energy 

^ind-disp = •E'ind-disp^) + -^ind-disp^) (24) 

where 

•^ind-disp^) = 

2Re(b%\[VJA-\%) + 0O 0 I [Q 5 ^]O 0 ) (25) 

and D = -Rf* VP0 = |O^p)<O0[ is the operator 
which produces the dispersion function when acting 
on Oo (the definition of ^ d_ d U p (5) is obtained by 
interchanging A and B). The induction-dispersion 
energy can be expressed through monomer properties 
(electron densities and polarization propagators) us
ing the formula74 

"^ ind-disp^ = 

- ^ B ^ ^ / M ^ . -to>n££(-fo>) da, 
(26) 

where the symbols have the same meaning as in eqs 
21 and 23. 

The third-order dispersion energy Ef? is defined 
by 

EZp = <Z)O0 |[V-QA-Qs^]O0) (27) 

Despite some efforts,133 this energy could not be 
expressed, even asymptotically, through monomer 
properties. One may add here that the third-order 
dispersion energy is a true third-order intermolecular 
correlation effect while the induction—dispersion 
contribution can be obtained in a second-order per

turbation treatment if in zeroth order the monomers 
are fully deformed by the induction effects.134 The 
two-body third-order dispersion interaction has been 
considered in the literature almost exclusively in the 
multipole approximation.122'135-136 For atom-atom 
and atom-molecule interactions this energy contri
bution behaves like R~n and R~w, respectively, and 
can be expected to be small at the distances of van 
der Waals minima. One can expect a larger contri
bution for interactions of polar molecules when 
Ef?sp vanishes like R~9. The calculations for the 
water dimer and the HF dimer11 have shown, how
ever, that even for these polar systems the contribu
tion of the third-order dispersion energy is small ( 1 -
2% of the total interaction energy at the equilibrium 
configurations). It remains to be seen if this opti
mistic result holds also for other complexes. 

C. Large-Order Convergence Properties 
As discussed in section ILB, the polarization theory 

in low orders provides the basis for most of our 
understanding of the physical nature of the weak 
intermolecular interaction phenomenon and gives 
important relations connecting the strength of the 
intermolecular interaction with static and dynamic 
monomer properties. It is not surprising then that 
the question of the convergence of the polarization 
expansion has been studied quite exten-
sively.50-52-75'77"82'84"88 We know75-76 that expansion 
3 must converge for sufficiently small £ and the 
question is whether the convergence radius g is large 
enough so that the physical value of the expansion 
parameter £ = 1 lies within the convergence circle. 

1. H2
+ 

The first studies of the convergence properties of 
the polarization series were carried out for the 
interaction of a hydrogen atom with a proton, i.e., for 
the H2+ system. Initial investigations performed 
using very simple, physically rather unrealistic mod
els of H2"1"78,79 suggested that the convergence radius 
Q is greater than unity and that the polarization 
series converges at £ = 1. Later Whitton and Byers 
Brown80 discovered that the convergence radius g for 
the realistic hydrogen atom—proton interaction is 
determined by a pair of complex branch points £& of 
the function -Eint(?) 

C6 = 1 + d ± irj (28) 

where 6 and rj are real parameters and g = |£&|. 
These authors also found that r] vanishes at large R 
like ZK, and that d is of the order K2, where K * 
2Re~R~l is the so-called exchange energy defined as 
half of the energy difference between the lsag and 
2p<7u states. They incorrectly concluded, however, 
without estimating the sign and the magnitude of 6, 
that Q % 1 + 6 + rf-12 is greater than unity, i.e., that 
the polarization series is convergent in this case. 
Somewhat later the convergence radius for this 
system was computed numerically using quadratic 
Pade approximants51 and shown to be greater than 
unity for internuclear distances corresponding to both 
the chemical and the van der Waals minima. This 
work has resolved the question of the convergence 
of the polarization series for H2+. Very recently 
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Table 1. Interatomic Distance Dependence of the 
Branch Points f& = 1 + d ± it) and of the Convergence 
Radius g of the Polarization Expansion for the 
Interaction Energy in the Ground X1S+ state of H2 
(Ref 52)° 

R 6 rj Q 

1.4 1.717(-1) 5.054(-l) 1.276 
2.0 6.715C-2) 2.442(-l) 1.094 7 
4.0 7.898(-4) 1.577(-2) 1.000 914 
6.0 1.957(-6) 6.134(-4) 1.000 002 15 
8.0 2.897(-9) 2.012(-5) 1.000 000 0031 

" The expression (-A0 denotes the factor of 10_Ar. 

Kutzelnigg88 has found that <5 behaves asymptotically 
at large R as 2RK2, which proves that Q must be 
greater than unity for sufficiently large R, in agree
ment with the findings of ref 51. Since at large R 
the convergence radius Q is only marginally greater 
than unity (at the distance of van der Waals mini
mum Q = 1.000 000 02) one can expect that the 
polarization series converges very slowly in this case. 
This agrees with the results of an early numerical 
study of Chalasinski et al.50 who showed that the sum 
of the polarization series initially approaches very 
fast the so-called Coulomb energy Q, defined as the 
average value of the energies of the lsa g and 2pcru 

states, and then converges, although extremely slowly, 
to the energy of the ground lsa g state. 

2. H2 

Since the symmetry groups of H2+ and H2 are so 
similar, one could expect that for the interactions of 
two hydrogen atoms the convergence properties of the 
polarization expansion will be qualitatively similar 
to those for the hydrogen atom-proton system. Very 
recently, however, Tang and Toennies87 conjectured 
that the polarization expansion for the H2 molecule 
"converges to the Coulomb energy at R —- °° and to a 
value between the Coulomb energy and the singlet 
ground state energy at smaller distances". (For H2 
the Coulomb energy is defined as the average value 
of the energies of the asymptotically degenerate 
X1Sg and b32^ states.) This would be in a striking 
disagreement with the results obtained earlier for 
H2+, and would contradict the conventional wisdom 
that the Rayleigh—Schrodinger perturbation series 
either converges to the right answer {i.e., to an 
eigenvalue) or diverges. Tang and Toennies were 
motivated by an observation137,138 that the polariza
tion expansion for the wave function, when inserted 
into the Herring—Holstein53 surface integral formula, 
gives the correct asymptotic expression for the energy 
of the singlet—triplet splitting in H2, the result which 
is in apparent contradiction with the convergence of 
the polarization expansion to the fully symmetric 
ground-state wave function. To clarify this contro
versy Cwiok et al.52 performed highly accurate nu
merical calculations of the convergence radius and 
the high-order polarization corrections for the inter
action between two ground-state hydrogen atoms. 
The results of this study are summarized in Tables 
1 and 2. Similarly as for H2

+ , the convergence circle 
of the polarization series is determined by a pair of 
complex branch points £& = 1 + d ± irj in the closest 
vicinity of the point £ = 1, where d > 0 for the 
interatomic distances studied (1.4 < R < 8.0 bohr) 

Table 2. Convergence of the Polarization Series at 
the Distance Re Corresponding to the Bottom of the 
van der Waals Minimum for H2

+ (Re = 12.5 bohr), for 
H2 (Re = 8.0 bohr), and for He2 (JK6 = 5.6 bohr)" 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 

H2
+ 

-1.0000 
-0.2781 
-0.2684 
-0.2672 
-0.2671 
-0.2671 
-0.2671 
-0.2671 
-0.2671 
-0.2670 
-0.2670 
-0.2669 
-0.2669 

H2 

-0.9676 
-0.3057 
-0.3296 
-0.3194 
-0.3203 
-0.3193 
-0.3190 
-0.3187 
-0.3186 
-0.3185 
-0.3183 
-0.3182 
-0.3182 

He2 

-0.9656 
-0.5693 
-0.5677 
-0.5629 
-0.5602 
-0.5582 
-0.5567 
-0.5555 
-0.5546 
-0.5539 
-0.5521 
-0.5516 
-0.5514 

a The numbers quoted are relative errors defined as (Z£=1 
E(k) — Eint)/Eint, where Emt is the interaction energy in the fully 
symmetric state to which the polarization series converge. The 
exchange energy K represents -26.725% of the interaction 
energy for H2

+, -31.833% for H2, and -55.15% for He2. 

(see Table 1). At the same time Kutzelnigg88 has 
rigorously shown that at large R the complex part of 
£i approaches the exchange energy K (defined in this 
case as half of the singlet-triplet splitting energy), 
i.e., 

n=K[l+R~1 + (KR"2)] (29) 

No similar rigorous large-i? estimate has been 
found for the real part of £&, although the arguments 
of Kutzelnigg88 make it highly probable that d is 
positive asymptotically at large R. The convergence 
radius Q « 1 + 6 + rfl2 is, thus, greater than unity 
for the distances studied in ref 52 and, most likely,88 

also at arbitrarily large finite values of R. Conse
quently, the polarization expansion is convergent for 
1.4 < R < 8.0 and most likely also at R > 8. The 
results of Table 2 (computed at the van der Waals 
minimum distances) show that the convergence 
properties of the polarization expansion for H2 are 
very similar to those observed for H2

+.50 Initially the 
sum of the series approaches very fast the Coulomb 
energy Q. After the value of the Coulomb energy is 
reached with a very good accuracy, the convergence 
deteriorates dramatically and becomes extremely 
slow, in accord with the computed convergence radius 
of 1.000 000 003 1. Although the series does converge 
in mathematical sense, a certain part of the interac
tion energy is not recovered in any practically rea
sonable order. Asymptotically, at large R, this part 
of the interaction energy turns out to be equal to the 
negative of the exchange energy K. This result, 
illustrated in Figure 1, can be rationalized in the 
following way. The polarization series is a sum of 
two series: one converging quickly to the Coulomb 
energy Q and another converging extremely slowly 
to —K\ the total series converges, also extremely 
slowly, to the interaction energy Eiat = Q - K in the 
ground X1S+ state. Although the exchange part of 
the interaction energy, defined as Emt — Q, cannot 
be obtained in practice by a direct summation of the 
perturbation series, the information about the ac
curate value of K is contained in the polarization 
corrections and can be recovered using appropriate 
analytic continuation procedures51 or large-order 
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Figure 1. Percentage error of the nth-order polarization 
expansion for H2. The error is given with respect to the 
variational energy for the singlet state of H2 computed 
using the same basis set. The distances are marked as 
follows: R = 2, dots; 4, squares; 6, triangles up; 8, 
diamonds; and 10 bohr, triangles down. 

perturbation theory techniques. Specifically, using 
the large-order representation for E^1 it has been 
shown52 that the exchange energy K can be very 
accurately calculated (with five digit accuracy) from 
three consecutive polarization corrections of suf
ficiently large order. 

Cwiok et al. have also shown52 that the polarization 
series for the wave function converges to the wave 
function of the ground state of H2. Although the 
individual polarization functions Op71J1 do not have a 
definite permutation symmetry, the sum of the series 
for C — 1 is symmetric under the interchange Pn of 
the spatial electronic coordinates. This result was 
recently reconciled with the findings of Tang, Toen-
nies, and Yiu137138 by Scott and collaborators.139 

3. He2 and Other Many-Electron Systems 

Very little quantitative information is available 
about the convergence properties of the polarization 
expansion for the interaction of two many-electron 
systems. Recently Cwiok et al.140 performed high-
order polarization expansion calculations for the 
interaction energy of two ground-state helium atoms 
using full configuration interaction basis built from 
a small 5s3pld set of orbitals. This investigation 
suggests that the convergence radius of the polariza
tion series is greater than unity at least for small 
values of the interatomic distance R. Similar nu
merical results have been obtained independently by 
Adams.141 For large interatomic distances the con
vergence radius is very close to unity, too close to 
infer that the convergence will persist in the limit of 
basis set saturation. As shown in Table 2, the 
convergence pattern observed for He2 is very similar 
to that found for H2

+ and H2. There is one very 
significant difference, however. In the case of H2

+ 

and H2 the perturbation series converges to the wave 
function and energy of the ground, physical state of 

the complex. For He2 it converges to a Pauli forbid
den "bosonic" solution of the Schrodinger equation, 
which is completely symmetric under the exchange 
of spatial electronic coordinates. At large R such a 
solution is quasidegenerate with the physical ground 
state (1Sg) but at smaller distances it exhibits a 
strong chemical bond resulting from the 4-fold oc
cupancy of the lowest energy orbital. This behavior 
of the polarization series was predicted by Claverie 
more than 20 years ago.77 Claverie carried out an 
insightful analysis of the permutation symmetry of 
the He2 wave functions and discovered that only the 
fully symmetric "bosonic" solution can correlate at £ 
= 1 [can be analytically connected via the function 
•Eint(£)] with the unperturbed solution at £ = 0 and, 
consequently, can be the limit of the perturbation 
series. 

When one of the monomers has more than two 
electrons and, consequently, its Hamiltonian has a 
Pauli forbidden ground state, the situation is even 
more complicated. The Pauli forbidden state of the 
dimer, which could possibly represent the limit of the 
polarization series, is not asymptotically degenerate 
with the physical ground state of the complex.81,82 In 
such a situation there must be an avoided crossing 
for £ < 1 of two solutions of eq 1 correlating to two 
different limits at R = °°. Such an avoided crossing 
is always associated with a singularity in the complex 
plane (usually a first-order branch point) and this 
singularity will determine the convergence radius for 
the series. This reasoning shows that if a monomer 
has more than two electrons, the convergence radius 
of the polarization series must be smaller than unity 
and the polarization series must diverge for the 
physical value of the expansion parameter £.81>82 The 
above theoretical considerations were recently con
firmed in numerical calculations by Adams.8586141 

This author performed small basis set full configura
tion interaction calculations for the interaction en
ergy of the ground-state lithium and hydrogen atoms 
and found141 that indeed the convergence radius for 
this system is smaller than one for all interatomic 
distances studied (Q = 0.78, 0.77, and 0.78 for R = 
3.0, 5.0, and 10.0 bohr, respectively). 

There exists another reason for the divergence of 
the polarization expansion for many-electron systems 
discovered by Morgan and Simon45 and elaborated 
on by Adams.85'86 The relevant argument is based 
on the observation45 that the energy corresponding 
to the physical ground state of the dimer AB lies 
above the ionization threshold in the Pauli forbidden, 
unphysical part of the spectrum. This means that 
physical states of the system are in fact bound states 
buried in the continuum of states violating the Pauli 
principle. Since the zeroth-order wave function in 
the polarization theory has an exclusion principle 
violating component, it will interact via V with 
unphysical continuum states of the same energy (the 
intermolecular interaction operator V is not invariant 
with respect to all permutations and can mix states 
of different permutation symmetry). Thus, there are 
an infinite number of perturbed states the energies 
of which are arbitrarily close to the unperturbed level 
EQ. The Rayleigh—Schrodinger perturbation theory 
cannot be expected to converge in such circum
stances. 
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D. Significance of the Polarization Theory 
The results of the preceding paragraph show that 

the polarization series must diverge when applied to 
interactions of many-electron systems. The nonsym-
metric decomposition of the Hamiltonian used in eq 
1, which enabled introduction of such useful and 
physically appealing concepts like the electrostatic, 
induction or dispersion interactions, violates the 
principle of indistinguishability of electrons. As a 
result, the corresponding zeroth-order wave function 
Oo does not have the correct, Pauli-allowed permuta
tion symmetry. Only for one- and two-electron 
systems can the perturbation theory cope with this 
defect, although very inefficiently at large inter
atomic distances R. For many-electron systems 
coupling to the unphysical continuum destroys the 
convergence of the perturbation series. One may ask 
then what is the significance of a finite-order polar
ization theory calculation.85 The answer is that the 
polarization series for the energy provides the correct 
asymptotic expansion of the interaction energy in the 
following sense:8 

£int = I X d + 0(R-*{N+l)) (30) 

where K = 2 if at least one of the interacting 
molecules has a net charge and K = 3 if both 
molecules are neutral. After a proper symmetry 
projection, usually the antisymmetrization carried 
out using the antisymmetrization operator A, the 
polarization expansion for the wave function gives 
the correct8 asymptotic expansion for the exact (un-
normalized) wave function *¥ 

N 

W = ^ D 0 + X - ^ P d + 0(R~K(N+1)) (31) 

Moreover, the symmetry-adapted perturbation theory 
provides so-called exchange corrections, which when 
added to the polarization energies lead to rapidly 
convergent perturbation expansions (see section III). 
Finally these exchange corrections can be calculated 
with a very good approximation, although not exactly, 
by employing the polarization wave functions in the 
evaluation of volume integrals of the symmetry-
adapted perturbation theory142 or the surface inte
grals of the Herring-Holstein theory.137-139'143 

///. Exchange Effects 

A. Electron Tunneling Problem 
The origin of the failure of the polarization theory 

to correctly describe the intermolecular interaction 
phenomenon can be identified most easily by consid
ering a hydrogen atom A interacting with a proton 
B at a large distance R.8 The unperturbed function 
Oo is then the Is^ hydrogenic orbital located at the 
proton A. Since the exact wave function W must be 
symmetric with respect to the reflection 9t in the 
plane perpendicular to the internuclear axis and 
passing through its midpoint, the correct form of 1P 
at large R is 

W w lsA + l s s 

It is clear that Oo = ISA is not a good approximation 
to W. The component lss, due to the perturbation V 
= i? - 1 - TB-1, is as large as the unperturbed function 
itself. Thus the perturbation operator V cannot be 
considered as a small perturbation. Actually the 
action of V has a double effect. The tail of V" polarizes 
the electron cloud in the vicinity of nucleus A. This 
effect is small and vanishes at large R as R~2 (as R~3 

for an interaction of neutral systems). The large 
negative part of V in the vicinity of nucleus B has 
another effect on W. It causes a tunneling of the 
electron from the potential energy well at the nucleus 
A to that at nucleus B. The ISB component of W is 
just the result of this tunneling. The polarization 
theory can recover this component but only in a very 
large order because all polarization wave functions 
for this system are localized at the nucleus A (i.e., 
decay exponentially with the distance from the 
nucleus A). 

The situation is not much more complicated for the 
interaction of two hydrogen atoms. In this case both 
electrons can simultaneously tunnel in opposite 
directions between two potential energy wells in the 
six-dimensional configuration space. (See ref 143 for 
a recent discussion of this point.) Such a simulta
neous tunneling of two electrons is called the electron 
exchange. Since the two wells are equivalent by 
symmetry, the tunneling leads to resonance splitting 
of the unperturbed energy level, the magnitude of 
this splitting decaying exponentially with R. Asymp
totically at large R the exact wave function becomes 
a linear combination of two equally weighted "reso
nance structures" Oo = 1SA(1)1SS(2) and P12O0 = 
1SA(2)1SB(1), the second of which cannot be recovered 
by a low-order polarization theory. 

When the interacting systems are larger, the 
situation is much more complicated since many 
electrons may simultaneously tunnel among many 
potential energy minima. For two nondegenerate 
systems with NA and NB electrons, respectively, there 
are M = (NA + NB)U(NAINBI) equivalent minima and 
the same number of "resonance structures". The 
zeroth-order polarization function represents just one 
of these M equivalent "structures". As the result of 
the resonance tunneling between the equivalent 
wells, the zeroth-order energy is split into many 
energy levels. Since for the interaction of nondegen
erate systems (see ref 144 for a discussion of more 
complicated cases) all of these levels except for one 
correspond to states violating the Pauli exclusion 
principle, the wave function approximating the Pauli-
allowed state can be obtained by antisymmetrization 
of any of the M resonance structures, in particular 
by antisymmetrization of Oo. 

B. Symmetry-Adapted Perturbation Theory 

From the heuristic discussion given above it is clear 
that AQQ rather than Oo should be considered as the 
correct zeroth-order wave function in the theory of 
intermolecular interactions. We also see from eq 31 
that it is AQQ rather O0 that is a good large R 
approximation to the exact function W. Unfortu
nately, the function AQ0 cannot be used in a con
ventional RS perturbation treatment employing the 
sum of the monomer Hamiltonians as the unper
turbed operator since it is not an eigenfunction of Ho 
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= HA + HB- There are two possible ways of overcom
ing this difficulty. We can either abandon the 
natural partitioning of the Hamiltonian and find an 
alternative zeroth-order operator Ho and a perturba
tion V such that <̂E>o is an eigenfunction of Ho and 
V can be considered as a small perturbation or we 
can maintain HA + HB as the unperturbed operator 
and reject the standard Rayleigh-Schrbdinger per
turbation scheme. The first, seemingly more attrac
tive possibility has been exploited in the so-called 
"symmetric" perturbation treatments. 17,145~160 It ap
pears that no really successful construction of Ho and 
Vo has been found thus far.8-144 In fact, in all 
attempts the unperturbed operator has been defined, 
either explicitly or implicitly, by finite matrix ma
nipulations, and consequently, the resulting pertur
bation corrections do not have a well-defined meaning 
in the limit of an infinite, complete basis set. For 
this reason the "symmetric" theories will not be 
further considered in this review. 

The second possibility, i.e., keeping HA + HB as an 
unperturbed operator, requires a modification of the 
perturbation procedure such that the function /̂<t>o 
can be utilized in the perturbation development. 
Such a modification, usually referred to as symmetry 
adaptation, was first attempted in 1930 by Eisen-
schitz and London.39 There was a surge of activity 
in this field in the late 1960s and in the 1970s 
triggered by the important works of Murrell, Randic, 
and Williams,55 Hirschfelder and Silbey,56 Hirsch-
felder,4958 van der Avoird,59 Murrell, Shaw, Musher, 
and Amos,57 and Kirtman.161 (See, however, an 
initially overlooked work by Carr54 containing an 
early presentation of the theory rediscovered later 
in ref 57). The work until 1980 was reviewed in ref 
8 and in the monographs by Arrighini7 and Kaplan.9 

(See also refs 90, 81, and 144 for a critical overview 
of earlier work.) 

From a practical standpoint the proposed sym
metry-adapted perturbation theories can be divided 
into two categories. In the first category, correspond
ing to the so called weak symmetry forcing (or weak 
symmetry adaptation),64-90 the antisymmetrizer A 
is used only in the energy expressions. The pertur
bation equations do not contain the antisymmetrizer 
^{ or any other nonlocal symmetry operator. Only 
these types of theories have been applied thus far to 
interactions of many-electron systems. In the second 
class, corresponding to the strong symmetry forcing 
(or strong symmetry adaptation)6490 the symmetry 
operators enter the perturbation equations, signifi
cantly complicating their solution when the interact
ing monomers have more than two electrons. 

1. Weak Symmetry Forcing 
The simplest possible symmetry-adapted perturba

tion expansion, referred to as the symmetrized Ray-
leigh—Schrodinger or SRS theory,64 can be obtained 
in a straightforward way if the antisymmetrizer A 
is used in eq 4 to project away all Pauli-forbidden 
components from the wave function QABCQ- The 
resulting expression for the SRS interaction energy 
is 

142 

^SRS(£) ~ 
(Q0IZV^A3(Q) 

(Q0\^QAB(Q) 
(32) 

where the function QAB(0 is defined as in the 
polarization theory, i.e., by eq 1. A renormalizing 
denominator was introduced here to guarantee that 
the intermediate normalization of the wave function, 
cf eq 5, is preserved after the projection. The 
individual perturbation energies E(g^s are defined 
by expanding ESRS(Q in powers of £. The resulting 
recurrence relations for Eg^8 are64 '142 

4RS=^o(<$oi^<r1,> 
7 1 - 1 

IO*„i J&tT")) 
k=i 

pol 

(33) 

where No = (O 0 I -^o)" 1 and Q^1 are the usual 
polarization functions given by eq 7. By decomposing 
the antisymmetrizer into contributions from intra-
and intermonomer permutations of electrons one can 
show (see section III.C for more details) that the ?ith-
order SRS correction is a sum of the rcth-order 
polarization energy E^ and the short-range correc
tion involving this part of A which interchanges 
electrons between monomers 

^SRS - -fcpol + & 
in) 
exch (34) 

The short-range corrections represent an exchange 
effect and are, accordingly, denoted by E(^ch. The 
low-order exchange corrections have a simple physi
cal interpretation (discussed in more detail in section 
III.C) resulting from their close relationship with the 
well understood polarization functions. 

Recently Tang and Toennies162 derived a perturba
tion expansion which also uses only the polarization 
functions to express the exchange contribution in 
each order of perturbation theory. These authors 
refer to their theory as the generalized Heitler— 
London method. When the energy expressions of the 
generalized Heitler-London theory are consistently 
expanded in powers of V, they can be shown142 to be 
equivalent to the SRS series of ref 64. 

The so-called MSMA theory discovered indepen
dently by Carr54 and by Murrell, Shaw, Musher, and 
Amos57 represents another example of a theory 
employing a weak symmetry forcing. Although this 
fact is not evident from the original formulations, it 
can be shown90 that the perturbation energies of the 
MSMA theory can be obtained from the recurrence 
relationships of eqs 33 and 7 if the following substi 
tutions are made: E™, — E(n) p(ra) _ jjiin) pin) 

^pol -0MSMA' -0SRS 
s(n) 

-°MSMA> a n c * 

S C ~* *MSMA w n e r e ^ M S M A a r e auxiliary functions 
different from the original perturbed wave functions 
of the MSMA theory.57 In second order the SRS and 
MSMA energies are identical. In higher orders there 
are differences due to the fact that the polarization 
energies .Ej^1 are replaced by the MSMA energies in 
eq 7 when this equation is used in MSMA calcula
tions. Despite some additional complications the 
MSMA theory is not an improvement over the SRS 
theory. Actually, for the ungerade states of H2

+ and 
H2 the MSMA theory diverges,51-64-163164 while the 
SRS expansion remains convergent. For this reason 
we believe that the SRS theory is an optimal sym
metry-adapted perturbation theory based on the 
weak symmetry forcing. 
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2. Strong Symmetry Forcing—One-State Theories 

The theories based on the strong symmetry forcing 
can be divided into two classes: one-state and mul-
tistate theories. In one-state theories39'58'59'62,165-169 

only one state from all states resulting from the 
resonance tunneling is considered and only one 
symmetry projector, usually the antisymmetrizer, 
appears in the perturbation equations. In multistate 
theories56'61'144'161'170"174 all states resulting from the 
resonance tunneling between equivalent minima, 
including those violating the Pauli principle, are 
simultaneously considered. The perturbation equa
tions in these theories contain then permutation 
operators needed to generate all resonance structures 
from the one corresponding to the initial assignment 
of electrons to interacting monomers. 

Early numerical experimentation and analytical 
solutions for the H2

+ system64,90172'175-177 have shown 
that the one-state theories involving the strong 
symmetry forcing39,58'59'62,165-169 suffer from a very 
serious drawback. These theories are asymptotically 
incompatible with the polarization theory and, there
fore, are not able to recover in finite order such 
important and well understood interaction energy 
components as the induction and dispersion energies. 
These components of the interaction energy can be 
obtained64 only in an infinite-order treatment as a 
sum of nonphysical, long-range exchange term. For 
this reason the one-state theories employing the 
strong symmetry forcing are not expected to be useful 
and have not been applied in practice, but for model 
systems. An exception is the so called "intermediate 
symmetry forcing" (ISF) theory of ref 64 when applied 
through second order. At this level the ISF theory 
is equivalent to the SRS theory and, therefore, 
recovers the induction and dispersion energies in the 
second-order treatment. In the third and higher 
order, however, the ISF energies asymptotically differ 
from the corresponding polarization energies. 

3. Strong Symmetry Forcing—Multistate Theories 

The multistate theories—the best known being the 
Hirschfelder-Silbey (HS) theory56—are free from the 
defect discussed above since the exchange contribu
tions to the interaction energy, defined in each order 
n as -Bexch = EM ~ -Epoi* vanish exponentially. Al
though the multistate theories tested thus far for 
small systems50,174,178 converge very well, they pres
ently do not offer a viable alternative to the SRS 
theory because of their complexity in applications to 
many-electron systems. When the interacting mono
mers have NA and NB electrons, respectively, the 
number of quantum states resulting from the reso
nance tunneling is (NA + NB)U(NAINBI). All these 
states would have to be taken into account to 
guarantee the asymptotic compatibility with the 
polarization theory. This difficulty does not appear 
if the interaction energy is calculated within an 
approximate method like the Hartree-Fock theory174 

or a pair theory in a perturbative or nonperturbative 
formulation. Since the basic ideas of the multistate 
approach are quite interesting and potentially useful, 
we give here a brief presentation of this approach in 
the simple case of the tunneling between two minima 
(H2+ or H2 systems). 

The main idea of the multistate approach is as 
follows. Since the simple product function 4>o = 
®A®B is a bad approximation to the exact function 
W and since we want to keep 5>o as a "good" zeroth-
order wave function, we have to find a replacement 
for W. Instead for 1P we will be looking for a linear 
combination F of two exact asymptotically degenerate 
states (in the case of H2+ and H2 the lowest gerade 
1Pg and ungerade Wu states) 

F = C1Wg + c2Wu (35) 

such that F is "close" to O0. When F, usually referred 
to as a "primitive" function,81 is known, the exact 
functions Wg and Wn can easily be recovered by 
projecting the u and g symmetry components from 
F. It is easy to show that the "primitive" function F 
satisfies equation 

HF = QF- KtfF (36) 

where Q and K are the Coulomb and exchange 
energies defined in section II.C and 6? stands for 
the reflection operator in the case of H2

+ and the 
permutation operator Pi2 in the case of H2. Equation 
36 holds for any choice of the coefficients c\ and c2. 
The extra condition, needed to uniquely specify F, 
must follow from the demand that F is close to <l>o-
Since the function $0 is localized at a single mini
mum, this condition can also be viewed as a localiza
tion condition for F.168 Several such localization 
conditions have been proposed thus far. The condi
tion employed in the Hirschfelder-Silbey theory 

(<%&0\H0-EQ\F) = O (37) 

is the simplest because it is linear and involves only 
the unperturbed operator. Other conditions proposed 
in the literature follow from some extremum prin
ciple. Polymeropoulos and Adams168173 determined 
the coefficients C\ and C2 by requiring that F mini
mizes the expectation value of Ho. Chipman167 

demanded that F is least distorted from 4>o in the 
sense of the L2 norm, or equivalently, that a fully 
normalized F has the highest overlap with <J>o-
Klein144 in his very general formulation of the mul
tistate perturbation theory assumed that F can be 
obtained from <J>o by the action of the Bloch operator 
of the quasidegenerate perturbation theory.179 This 
condition can also be formulated174 as a requirement 
of a closeness of F and 4>o. When a localization 
condition is specified, the perturbation expansion can 
be derived in a straightforward manner by param
etrizing H as Ho + £V and by developing F, Q, and K 
as series in powers of £. The localization conditions 
of refs 167 and 144 were tested in large-order 
calculations174 for the He2 system at the Hartree-
Fock level of approximation. The convergence of the 
resulting perturbation expansions was very fast, also 
at small interatomic distances, but no improvement 
was observed in comparison with the convergence 
rate of the Hirschfelder-Silbey expansion in this 
case. Still, it is possible that the localization condi
tions based on extremum principles will be necessary 
in applications to more difficult cases. 

C. Low-Order Exchange Effects 

In this section we shall analyze the physical 
content of the exchange contributions to the interac-
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tion energy predicted through the second order of the 
SRS theory. These results apply also to the MSMA57 

and ISF64 theories, which are fully equivalent to the 
SRS theory through second order. All discussed 
contributions appear also in the first and second 
order of the Hirschfelder-Silbey and other multistate 
theories. The latter theories predict also some ad
ditional exchange contributions in the second order, 
which have been shown to be practically negligible 
in calculations for H2

+,175 H2,
178 and He2.65140 

1. First-Order (Heitler-London) Exchange 
The first-order energy in almost all symmetry-

adapted perturbation theories is given by 

E -(D _ 
(O0IV^O0) 

<4>ol^o> 
(38) 

This energy is identical with the so-called Heitler-
London energy defined as 

E HL 

(A$0\H-EA-EB\A®0) 

U O 0 U O 0 ) 
(39) 

To separate the exchange and polarization part of E(v 

one has to use the following decomposition of the total 
antisymmetrizer180 

,1-. 
NA\NB\ 

(NA + NB)l 
YA„/fl(l+<2?) (40) 

where AA and AB are the antisymmetrizers for 
systems A and B, respectively and J5? is the sum 
of permutations (with appropriate sign factors) in
terchanging at least one pair of electrons betweeen 
interacting monomers. Using eq 40 one finds that 

p ( l ) _ E*(1 ) 1 c 1 

^ exch 

where 

p ( i ) 
-^exch 

(O0I(V-VXgQ0) 

1 + (O0I^O0) 

(41) 

(42) 

and V = (Oo|VOo). This expression vanishes expo
nentially at large 6? since the functions OA and OB 
decay exponentially with the distance from the 
centers of the respective molecules.181 E^ch repre
sents the main exchange contribution to the interac
tion energy. At the van der Waals minima it usually 
accounts for over 90% of the total exchange effect. 
The interpretation of E(^ch is very simple. In view of 
eq 39 E(^ch represents the effect of taking the expec
tation value of the full Hamiltonian with the simplest 
possible function (^O0) representing in zeroth order 
the resonance tunneling of electrons between all 
available equivalent minima. 

An accurate evaluation of E(^ch is difficult because 
multiple electron exchanges present in IS prevent 
us from expressing this quantity through monomer 
properties. A density matrix formalism in principle 
capable of handling the evaluation of eq 42 has been 
presented in ref 182. For the intermonomer dis
tances corresponding to typical van der Waals minima 
eq 42 can be dramatically simplified by neglecting 

higher than single electron exchanges.183182 Since 
the resulting approximate value ofE(^ch is quadratic 
in intermolecular overlap integrals S^ = {ipx \ ipu) i or 
strictly speaking in the intermolecular overlap densi
ties Qiuir) = Ip^r)Ip1Ar)], it is denoted by E£ch(S ) 

-^eXCh(S ) - -(O0I(V-V)^1O0) (43) 

where <S\ denotes the sum of all NANB transpositions 
of electrons between monomers. Equation 43 repre
sents a very good approximation since its error is of 
the fourth order in the intermonomer overlap densi
ties. E(^ch(S

2) can be expressed through one- and 
two-particle density matrices of unperturbed mono-

73 
mers 

where 

£lxch(S2) = f(vtj - v)Qint(ij) dr, dtj (44) 

QintW =
 -QA(WQB(JW ~ fTA(ik\ij)gB(j\k) dtk + 

- fQA(i\l)TB(jl\ji) dr, - fTA(ik\il)TB(jl\jk) dr* di, 

(45) 

v = N^1N8
1 fQA(i\i)vljQB(j\j) dr; dr, (46) 

vtj is a modified interelectronic interaction potential 
defined such that Zi7̂ y = V 

"v = r-tf1 - NB-l^Zp r^r1 - N^^Z^1 + 
/3eB 0L<=A 

aeA /3eB 

and Qx and Tx, X — A or X = B, are the conventional 
one- and two-particle density matrices for the mono
mer X, normalized to Nx and Nx(Nx - 1), respec
tively. In formulas 44-46 dtj denotes integration 
over the spin and space coordinates of the ith 
electron. Since methods of the evaluation of the 
density matrices Qx and Tx for many-electron mol
ecules are well developed, eqs 44—46 enable practical 
calculations of the first-order exchange energy using 
accurate electronic wave functions.73>91>93 

2. Exchange-Induction Interaction 
The second-order exchange energy in the SRS 

theory, defined as E(®ch = EfI3 - .Ep2J1, separates 
naturally into two contributions: exchange-induc
tion and exchange—dispersion energies 

TT1 <2) 
exch 

. p(2) , p(2) 
' -^ exch—ind exch—disp 

(48) 

At the distances corresponding to the van der Waals 
wells, it is sufficient to consider only the single-
exchange part of the exchange-induction energy. 
Higher order terms (in S2) have been computed for 
the helium dimer and found to be negligible in the 
region of the van der Waals minimum.184 In this 
approximation Ef^ch_ind

 1S given by the following 
expression" " 

p(2) 

185 

^ - (1)> 
^exch-ind(S^) = - ( O 0 I ( V - V X ^ 1 - - 2 P 1 ) O ^ 

(49) 

where .V1 = (O0I^1O0) and O ^ = 0^(A)0 B + 
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Table 3. Convergence of Symmetrized Rayleigh-Schrodinger (SRS) and the Hirschf elder-Silbey (HS) 
Perturbation Theories at the Distance Re Corresponding to the Bottom of the van.der Waals Minimum for H2

+ 

(2p<7„ state, Re = 12.5 bohr), for H2 (b
3£u

+ state, Re = 8.0 bohr), and for He2 (X
1E+ state, Re = 5.6 bohr)" 

H^ H2 He2 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 

SRS6 

- 1 . 5 0 6 22 
-0 .006 33 

0.002 77 
0.001 75 
0.000 69 
0.000 21 
0.000 00 

-0 .000 09 
- 0 . 0 0 0 13 
- 0 . 0 0 0 15 
- 0 . 0 0 0 16 
-0 .000 17 
- 0 . 0 0 0 17 

HSC 

- 1 . 5 0 6 22 
- 0 . 0 0 6 29 

0.002 87 
0.001 88 
0.000 83 
0.000 37 
0.000 16 
0.000 07 
0.000 03 
0.000 02 
0.000 00 
0.000 00 
0.000 00 

" The numbers quoted are relative errors defined 
e Reference 178 f Reference 140. 

SRS<* 

- 1 . 6 8 7 84 
0.020 77 

- 0 . 0 1 5 71 
- 0 . 0 0 1 25 
- 0 . 0 0 2 38 
- 0 . 0 0 1 05 
-0 .000 80 
- 0 . 0 0 0 50 
-0 .000 35 
- 0 . 0 0 0 24 
-0 .000 08 
-0 .000 06 
-0 .000 06 

as (2£-i £<*> -

HSe 

- 1 . 6 8 7 84 
0.020 78 

- 0 . 0 1 5 69 
- 0 . 0 0 1 21 
- 0 . 0 0 2 34 
- 0 . 0 0 1 00 
-0 .000 75 
-0 .000 44 
-0 .000 29 
- 0 . 0 0 0 18 
-0 .000 02 
- 0 . 0 0 0 00 

0.000 00 

SRS^ 

-2.225 78 
-0.018 84 
-0.030 26 
-0.018 70 
-0.014 42 
-0.010 95 
-0.008 40 
-0.006 46 
-0.004 99 
-0.003 86 
-0.001 13 
-0.000 38 
-0.000 16 

- £int)/Eint. b Reference 64. c Reference 50. 

HS^ 

-2.225 78 
-0.018 82 
-0.030 23 
-0.018 66 
-0.014 38 
-0.010 90 
-0.008 35 
-0.006 41 
-0.004 94 
-0.003 81 
-0.001 09 
-0.000 33 
-0.000 12 

d Reference 142. 

*A*indS-
s(D <P MLUB). ®Z(A) and <& Ji(B) are the induction (D, 
'ind ino> 

functions (discussed in section II.B.2) accounting for 
the deformation of monomers' wave functions induced 
by the averaged electrostatic field of their interacting 
partners. The exchange-induction energy appears 
since the induction contribution to the wave function 
must be antisymmetrized, i.e., must be transferred 
by the permutation operators to all equivalent minima 
in the potential energy surface governing the elec
tronic motion. In the repulsive part of the intermo-
lecular potential the exchange-induction energy 
quenches a substantial part of the induction contri
bution and cannot be neglected in any quantitatively 
accurate calculation.91 

3. Exchange-Dispersion Interaction 

The exchange-dispersion energy i^x'ch-disp 1S the 
energetic effect (linear in V) of the antisymmetriza-
tion of the dispersion function ^ g introduced in 
section ILB.3. In the single exchange approximation, 
which is expected to be sufficient for all practical 
purposes, E(^ch_di3p is given by the formula185 

: A _ ,(D CWS) = -(^oKV-W^-^W^) (50) 

The effect of multiple exchanges has been computed 
for the He dimer and found to be negligible in the 
region of the van der Waals minimum.184 The evalu
ation of -Elxch-disp^2) for many-electron systems is a 
difficult task, because this quantity cannot be ex
pressed through monomer properties. Moreover, 
even a rough estimation of the exchange—dispersion 
energy requires inclusion of ionic (charge-transfer) 
components into the wave function.186 Fortunately 
the exchange—dispersion contribution is relatively 
small, quenching usually only a few percent of the 
dispersion energy. 

D. Convergence Properties of Symmetry-Adapted 
Theories 

Calculations similar to those described in section 
II.C for the polarization expansion have been per
formed for several SAPT expansions applied to 
H2+ 50,51,84 H2,142'178 and He2.140 Although all those 

en 
D 

Order of per tu rbat ion theory 

Figure 2. Percentage error of the nth-order SRS theory 
for H2 at R = 6 (triangles up), 8 (diamonds), and 10 bohr 
(triangles down) for the antisymmetry projection. The 
error is given with respect to the variational energy for the 
triplet state computed using the same basis set. 

calculations have been done using finite basis sets, 
for the two former systems the quality of the basis 
sets was so good that the observed convergence 
patterns are expected to be closely matching the exact 
ones. In all cases the convergence is evaluated with 
respect to the variational energy computed with the 
same basis set. In the case of He2 the variational 
energy is the full CI energy for this system. 

In Table 3 the convergence of the SRS and HS 
expansions is shown for H2

+ , H2, and He2 at the 
corresponding van der Waals minima. We consider 
here only the ungerade state of H2

+ , the triplet state 
ofH2, and the physical state OfHe2. The interatomic 
potentials for these states correspond to typical 
intermolecular potentials for interactions of closed-
shell systems. More distances and other states have 
been considered in the original papers cited above. 
The results for H2 are also illustrated in Figures 2 
and 3 for a large number of internuclear separations. 
It is seen that, in contrast to the polarization expan-
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Figure 3. Percentage error of the nth-order HS theory for 
H2. See Figure 2 for details. 

sion, both SAPT series converge rapidly. It is quite 
remarkable that the SRS and HS energies are very 
close to each other, even at quite high order (espe
cially for He2). Thus, the SRS method can be 
considered as an excellent approximation to the HS 
method. At very high order the convergence of the 
HS method should be much better than that of SRS. 
This fact is seen from the displayed data for H2

+ and 
H2 but not for He2. However, since the convergence 
radius of the HS expansion is close to 1.3 both for 
H2

178 and He2,140 while the convergence radius of the 
SRS theory is very close to unity (it must be the same 
as for the polarization approximation), at sufficiently 
high order the differences between the HS and SRS 
results must show up also for He2. 

It should also be mentioned that for the considered 
states the SRS expansion converges to an energy 
slightly different from the true physical value. The 
difference between the limit of the SRS series and 
the true value of the interaction energy is referred 
to as the residual exchange energy.52'6* The residual 
exchange energy is negligibly small and the fact that 
it is not accounted for in the SRS theory is of no 
practical consequence. 

The HS method cannot be applied at present to 
many-electron systems due to its multistate charac
ter. In practical calculations for many-electron sys
tems the SRS theory is applied only through the 
second order in V (although Ef®l has been coded 
and calculated for a few systems"). Therefore it is 
important to establish how large the error is in 
second order and how much the SRS expansion 
differs from the HS expansion. As the results in 
Table 3 demonstrate, the difference between the two 
theories is completely negligible at the van der Waals 
minimum. For H2 even at a rather small inter-
nuclear separation of 6 bohr the two energies agree 
to four significant digits. Clearly, at least for those 
systems it would not matter which theory is applied. 

The comparison of the interaction energy for H2 

through second order with the exact interaction 
energy for the triplet state is presented in Figure 4. 

R [bohr] 

Figure 4. The SRS interaction energy through second 
order (solid line) and the variational interaction energy 
(broken line) for H2 computed in the same basis set as 
functions of R. 

Clearly, the SRS approach recovers the accurate 
interaction energy very closely. For the shortest 
distance of 6 bohr the error is 5.6% and drops to 2% 
at the van der Waals minimum distance of 8 bohr. 
The results included in Table 3 also show that 
addition of the third-order correction leads to a minor 
improvement. 

The convergence of the polarization expansion can 
be accelerated using either the analytic continuation 
or large-order perturbation techniques, as discussed 
in section II. Similar techniques can be applied to 
SAPT expansions and have been shown to work very 
well.51-163 

IV. Multipole Expansion of Interaction Energy 

A. General Asymptotic Expansion of Interaction 
Energy 

According to London's theory38 the interaction 
energy can be represented as an asymptotic ("mul
tipole") expansion in powers of R'1 

EiJ-R^A>^B^ ~ X 
Cn($A,$B*) 

n=l Rn 
(51) 

The coefficients CJ,^A£BM)> referred usually to as the 
van der Waals constants, depend on the Euler angles 
£A and £B specifying the orientation of the monomers 
in an arbitrary space-fixed frame and on the polar 
angles R = (0,<f>) determining the orientation of the 
intermolecular axis (vector R is usually assumed to 
join the monomers' centers of mass) with respect to 
the same space-fixed frame. The coefficients 
Cn{CA,ZBfi) are uniquely defined by the function 
Eio.t(R,£A,$BJfe) and in principle can be deduced from 
the equations 

(52) 
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and 

UmRHE1JR^8Jl) - X : 1 (53) 
R—o< *- i RK 

Equation 51 is nontrivial since it tells us that the 
large R asymptotic expansion of the function 
Emt(R£A,%Bjt) does not contain fractional powers of 
R or logarithmic singularities of the form of R~n log 
R. London's derivation of eq 51 can be regarded only 
as a heuristic one since he applied the ordinary 
Rayleigh-Schrodinger perturbation theory to a highly 
singular perturbation, which was mathematically 
unjustified at that time. Mathematically rigorous 
proofs of eq 51 have been given only recently by 
Ahlrichs44 and by Morgan and Simon.45 

Since the interaction energy as a function of R has 
an essential singularity at infinity44 (due to the 
exponential terms resulting from the charge overlap 
and exchange effects), the knowledge of the van der 
Waals constants would not be sufficient to recon
struct the function E'mtCR,£A£BM) at finite R even if 
the series 51 were convergent. Actually, it appears 
that the series 51 diverges for any finite value of R 
and is probably not summable using standard sum
mation techniques.187 For H2+, a system for which a 
mathematically rigorous analysis could be carried 
out, the constants Cn behave for large n as —2~ne~2 x 
(n + I)!;

45.i88,i89 whjch shows that in this case the 
expansion 51 is indeed strongly divergent for each 
value of R. Moreover, since all values of Cn are of 
the same sign, the asymptotic expansion for the H2+ 

ion is not summable (for positive, physical values of 
R) using conventional summation techniques (e.g., 
Pade or Borel methods,187 see refs 46 and 47 for a 
detailed discussion of the summability of the expan
sion 51 for this system). These results have not been 
extended to systems larger than the H2+ ion but there 
is no reason to expect that series 51 will behave 
better for interactions of many-electron systems. 

In view of its asymptotic character, expansion 51 
can approximate the exact interaction energy arbi
trarily closely at large R, in the sense that190 

. NCn($A,SB#) 
Eint(R£A£BJ& ~ X 

»=i Rn 

= 0(R-"-L) -N-U 

(54) 

Therefore, the knowledge of the van der Waals 
constants is very useful in estimating the interaction 
energy at large distances and is necessary to guar
antee the correct large R asymptotic behavior of the 
potential energy surface Emt(R,^A,^BM)- Although 
the constants Cn(£A£BJi) could in principle be com
puted using eqs 52 and 53, the multipole expansion 
can be useful only if direct methods of calculating 
them without the prior knowledge of the interaction 
energy are available. This section will be devoted to 
a discussion of such methods. 

B. Multipole Expansion of lntermolecular 
Interaction Operator 

The asymptotic expansion of the interaction energy 
follows from the multipole expansion of the intermo-

lecular interaction operator V. The latter expansion 
can be formulated using either the irreducible spheri
cal tensor formalism191-200 or the Cartesian ten
sors.201-206 In an arbitrary space-fixed coordinate 
system, this expansion can be written as 

V = X - (55) 
n=\Rn 

where the operator Vn is given by 

^ = I V M (56) 
Z=O 

The operator ViA,iB is physically interpreted as rep
resenting the interaction of the instantaneous 2^ 
moment with respect to center A with the instanta
neous 2's moment with respect to center B and can 
be expressed in terms of tensor operators of multipole 
moments. 

We will first follow here the approach based on the 
spherical tensor formalism developed by Wormer and 
collaborators195,197 which fully utilizes the SO(3) 
invariance of the intermolecular interaction operator. 
The irreducible spherical components of the multipole 
moment operators of the molecule X will be denoted 
by MT 

peX 

(57) 

where the summation index p runs over all particles, 
both nuclei and electrons, of molecule X, Zp axe the 
charges of those particles, and C™(r) is a spherical 
harmonic in the Racah normalization.207 All the 
coordinates are defined in an arbitrary space-fixed 
coordinate system with its origin at the center of 
mass of the molecule X. The operator ViAjB can be 
written as 

Vi i = 

k+h 

KhR~lA~lB~l I (-»mCXlB(R)lMlA® M1X+I8 
m—IA~IB 

(58) 

where the numerical constant XiAiiB is given by 

2h + 2lB\w ^-<-»fsn (59) 

and the irreducible tensor product of two multipole 
moment tensors MiA = {MfA, mA — -IA, ..., +IA} and 
MiB = {MZB, rriB = -IB, •••, +h] is defined by 

[M1 ® M1 T = 
1A 1B ' 

X X MTB
AMTB

B(lA,mA;lB,mB\l,m) (60) 
mA——IA mB——lB 

where {li,mi;l2,rri2\L,M) is the Clebsch-Gordan coef
ficient.207 In practice it is convenient to replace the 
complex spherical harmonics Cp in eq 58 by real 
tesseral harmonics.208 Explicit expressions for the 
tesseral harmonics as functions of x, y, and z can be 
found in ref 209 for l < 6. 
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The spherical form of the multipole expansion is 
most appropriate for expressing the explicit orienta-
tional dependence of the interaction energy. In some 
applications the use of the conceptually simpler 
Cartesian form may be more convenient. To express 
the operator ViAiiB in terms of Cartesian tensors, the 
reducible [with respect to SO(3)] tensorial compo
nents of multipole moments are defined as 

K} = X V, 
peX 

P,YirP,Y2'"rP>Yix 
(61) 

where rPiVi is the y;th Cartesian coordinate of particle 
p, i.e., yi = 1, 2, or 3, so that rPtYi — xp, yp, and zp, 
respectively, {y} denotes the set of indices {yi, Yi, •••, 
Yix] and the coordinates are measured in a space-
fixed system with its origin at the center of mass of 
molecule X. In this notation the operator ViAtiB can 
be written as 

WW 

where the tensor ^atlf] describing the orientational 
dependence of the interaction between the instanta
neous 21*- moment on molecule A and the instanta
neous 21B moment on molecule B is given by 

rrUA+lB) -

RlA+h+1 W (v«iV<V"V^v/V" V ^ ) WS) 
and the sums run over all distinct sets {ai, a.2, ..., 
azA} and {/3i, fi%, ..., /3;g}. Explicit expressions for the 
tensors T^atm h a v e keen derived by Mulder et al.206 

for IA + IB 5 6. Specific formulas applying to linear 
and tetrahedral molecules have been reported in ref 
210 for lA+ h ^ 7. 

The expressions for the transformations between 
the spherical and Cartesian form are quite complex. 
In view of the Laplace equation, the partial traces 
VyV;, (VR) vanish. Therefore, the operators M\y) 

can be expressed in terms of M™x. The formal 
relationship between Cartesian tensors and their 
irreducible spherical components has been thor
oughly investigated by Coope et al.2n~213 and by 
Stone.214,215 Stone derived214 a general scheme of 
reducing a Cartesian tensor of rank n into several 
spherical components and investigated in detail 
properties of Cartesian—spherical transformation 
coefficients.215 (Some applications of these results 
can be found in refs 200, 216, and 217). 

Unlike the individual operators ViAjB the operators 
Vn of eq 56 are invariant under identical translations 
and rotations of the local molecular axes.218'219 More
over, the multipole expansion truncated at the R'N 

term 

N V 

1=1 fl" 
(64) 

is also invariant under arbitrary translation and/or 
rotation of one of the local molecular coordinate 
systems220 in the sense that this operation introduces 
errors into eq 64 smaller than the truncation error 
itself, i.e., errors of the order of 0(R~N~1). 

The multipole expansion of the intermolecular 
interaction operator is divergent in most part of the 
configuration space, the region of convergence being 
restricted to the Cartesian product of all spheres r,-
< R/2, ra < R/2, rj < R/2, and rp < R/2, for i, a e A, 
and j , /3 e S,219 where the indices i and j refer to 
electrons while a and /3 to nuclei. This particular 
region corresponds to that part of the configuration 
space in which the electrons initially assigned to 
molecules A and B axe "localized" on their original 
monomers. If the operators Vn are interpreted as 
multiplicative operators in the Hilbert space, the 
series 55 is divergent for each R. 

C. van der Waals Constants 
Despite the divergence discussed above, the trun

cated multipole expansion, eq 64, can be used to 
define van der Waals constants. By applying the 
Rayleigh-Schrodinger perturbation theory to the 
Schrodinger equation with the Hamiltonian HN 

HN = Hn + VN (65) 

and using 1/R as the expansion parameter Ahlrichs44 

has shown that the van der Waals constants entering 
the asymptotic expansion51 can be computed from the 
following recursive formulas (see also ref 8 for a 
proof): 

Cn = X<O[0]|V,0>["-«> (66) 
k=\ 

and 

<DW = -^R0(Ck -Vk)0 [n-k] (67) 
A=I 

where the superscript [n] at ^1"1 denotes the order 
in 1/R. For simplicity we have omitted the depen
dence of the van der Waals constants on the angles 
{£A£BM) in eqs 66 and 67. Note that similar to the 
Hamiltonian in the theory of the Stark effect221 the 
Hamiltonian HN has a purely continuous spectrum. 
Consequently, the operator V^ cannot be considered 
as a small perturbation and the RS perturbation 
theory based on the partitioning 65 of the Hamilto
nian HN is divergent for each R. 

Although a direct application of eqs 66 and 67 is 
straightforward, in practice van der Waals constants 
are obtained by first performing the asymptotic 

<*) expansion of the polarization energies JSp01 

A po l 

- Cf 
X— (68) 

and then representing each constant Cn as a finite 
perturbation series in V 

M 

cn = Xcf 
k=i 

(69) 

Here M denotes the smallest integer satisfying M 
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U/K — 1, where K = 3 if both interacting molecules 
are neutral and K = 2 if one molecule has a net 
charge. Such a procedure is legitimate since, in view 
of eq 30, the polarization expansion of the interaction 
energy gives a correct asymptotic representation of 
the interaction energy. It can also be shown8 that 
the constants C f can be computed from the stan
dard equations of the polarization perturbation theory, 
provided that the operator V is replaced by its 
truncated multipole expansion 64 with N > n. In 
particular, the van der Waals constants C f and 
Cf are given by 

C f = <o0ivn3>0> (70) 

(71) 
k—K 

Equations 70 and 71 have been applied with success 
to compute van der Waals constants for quite large 
systems.222-225 

D. Convergence Properties of Multipole 
Expansion of Interaction Energy 

The asymptotic expansions of the polarization 
corrections EJf01, eq 68, are probably divergent for all 
values of R, although this fact has been proven 
rigorously only for k = 2 and only for the H2+ and H2 
systems. The convergence of the multipole expansion 
for the electrostatic energy .Ep1J1 has been the subject 
of many computational studies (see, e.g., refs 132 and 
226). The numerical results for the water dimer132 

and for the N2 dimer226 suggested that the multipole 
expansion of E^1 converges even in the region of the 
van der Waals minimum, although the sum of the 
series appears to be quite different from the exact 
value of E S . This is not surprising, however, since 
in view of the results of Ng et a/.227"229 the charge-
overlap (penetration) effects, entirely neglected in the 
multipole approximation, play an important role in 
this region (see section V). Recently, Vign^-Maeder 
and Claverie230 have shown that the multipole ex
pansion of the electrostatic energy is convergent (alas 
to a spurious value) if the unperturbed charge 
distributions of the interacting molecules are ap
proximated by Gaussian functions. For large mol
ecules the multipole expansion provides better results 
if multipole moments localized at various points of a 
molecule are used instead of global multipole mo
ments. This idea forms the basis of the so-called 
distributed multipole analysis of electrostatic interac
tions between molecules99'100'102,103 (see ref 101 for a 
recent review) which has been a popular field of 
research in recent years. 

Little is known about the convergence properties 
of the multipole expansions of the second-order 
induction and dispersion energies. Dalgarno and 
Lewis231 have shown that the multipole expansion of 
the second-order induction energy for the H2

+ system 
is given by 

jn(2) -x 
(2n + 2)!(re + 2) 

»"=i n(n + i)2
2n+2R2n+2 

(72) 

Later Young232 proved that the multipole expansion 
of the second-order dispersion energy for the H2 
molecule can be written as 

-.(2) 

p(2) - X X 
lPl lPlR2U+2lB+2 

(73) 

where 

c?>, 
(2lA + 2lBWA + l)(lB + 1) 

(74) 

Both series are rapidly divergent for any R. More
over, they are neither Pad6 nor Borel summable.187 

Since the observed divergence occurs for the interac
tion of spherical atomic systems it is not clear how it 
could be circumvented using the so-called distributed 
polarizabilities analysis116-233"235 of the induction and 
dispersion energies. These results strongly suggest 
that for many-electron systems the multipole expan
sions of the induction and dispersion energies are 
divergent and that this divergence cannot be elimi
nated using the distributed polarizabilities analysis. 

E. Angular Dependence of Interaction Energy 

The van der Waals constants C f depend on the 
angles {£A£BM)- If these constants were computed 
from eqs 70 and 71, such calculations would have to 
be performed for each orientation of interacting 
molecules. Instead, one may introduce the multipole 
expansions for the interaction energy components in 
a such a way that the whole angular dependence is 
separated. In fact, for all intermolecular separations 
the &th-order polarization correction E^1 can be 
written in terms of a complete orthogonal set of 
angular functions labeled by {A} = {LA, KA, LB, KB, 
L] 

d = ^{A}^(R)A{A](sA,z;Bfr (75) 

LA LB 

A{A}(ZA£B£) = X X X 
MA=-LA MB=-LB M=-L 

(LA LB L 
\MA MB M j^r^ '^U.Cei . /Cf ( f t ) (76) 

where Lfy^) denotes an element of the Wigner 
rotation matrix,207 and the expression in large pa
rentheses is a 3j symbol.207 The components of R are 
determined with respect to an arbitrary space-fixed 
coordinate system. The Euler angles specify the 
rotation of a body-fixed coordinate system located at 
the center of mass of monomer X with respect to a 
system located at the same point with axes parallel 
to the chosen space fixed system, X = A or B. See 
refs 123, 124, 198, 199, and 236 for various rederi-
vations of eqs 75 and 76. 

If the interaction operator V is replaced by its 
multipole expansion, the radial expansion coefficients 
{A}4*oiCR) in eq 75 are approximated by {A}(SgJ(fl) 
and, consequently, can be written195'197 exclusively in 
terms of irreducible spherical tensors of multipole 
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moments and polarizabilities (see ref 6 for a review). 
In particular, the radial part of the electrostatic 
energy in the multipole approximation is given 
byl95,197-199 

{ A }4» = W 

(-I)Ss LA+LB£ 

(2L4 + 2LR + 1)! 

(2LA)\(2LB)\ 

1/2 Qf'Qfl 
R ,LA+L S +1 

(77) 

where Qfx = ($^|Mfx4>f) denotes the spherical com
ponent or the 2L* moment of the molecule X, and 
Mfx denotes the multipole moment operator in the 
body-fixed coordinate system. Equation 77 clearly 
shows that the first-order polarization energy in the 
multipole approximation is represented by the clas
sical electric interaction between the permanent 
multipole moments of the unperturbed monomers. It 
follows from eqs 75-77 that the electrostatic energy 
is strongly anisotropic—it may change sign upon a 
rotation of the monomers. 

Denoting by {A} the set of indices {A} = {IAJ'AJBJ'B} 
and by n the sum n = IA + VA + IB + VB + 2, the 
radial component of the second-order induction en
ergy in the multipole approximation can be written 
a s 195,197-199 

{A}<CCR) = - - I I I I 
°{A},ind-A 

2 lA=l VA=1 lB=0 Z'B=0 Rn 

°{A},ind-B 

- X X X Z 
2 ?A=o l'A=o lB=l VB=1 Rn 

(78) 

where the long-range induction coefficient describing 
the polarization of the monomer A, C{f}

}
ind.A is given 

by 

C\tUA = $fi&B<$rjLA«>mB ® QrBtB
B (79) 

The symbol o^lx)L (0) denotes the irreducible com
ponent of the multipole polarizability 

°Wx ( f l , ) ^ ( ^ - < ) 2 - o > 
2(E*s — En) v~ v 

[(<S>x
0\Mlx&i)® 

<$f|Mr <&*>]£ (80) 

the irreducible tensor product of two sets of tensors, 
[~z <8> -/']f, is defined by eq 60, and the numerical 
constant | f f f k is given by 

•LALBL pl^Al^BL f — 
'A1 AlBc B 

(~lf 
(2lA + ZlB + DK2Z'A + 2VB + 1)! 

(2ZA)!(2ZS)!(2Z'A)!(2Z'B)! 

[(2LA + 1)(2LB + 1)(2L + 1)]1/2 

1/2 

h. 
{lA+lB,0;VA+VB,0\L,0){ I1 

\ I A + Zg 
VB 

VA +I'B 

^A 

L8 

L 
(81) 

where the quantity between curly braces denotes a 
9/ symbol.207 The energies and wave functions ap
pearing in eq 80 belong to the spectrum of the total 
Hamiltonian of monomer X. In view of eq 79 the first 
term on the right hand side of eq 78 corresponds to 
the energy of the polarization of the monomer A by 
the permanent multipole moments of the monomer 
B. Thus, the induction energy in the multipole 
approximation is represented by the classical inter
action between permanent multipole moments of one 
monomer and induced multipole moments of the 
other. 

Finally, the expression for the radial part of the 
dispersion energy in the multipole approximation 
reads195 '197"199 

{A} dX) /D-V 
°{A},disp 

X X X X „ 
lA=l l\=l lB=l l'B=\ Rn 

(82) 

The long-range dispersion coefficient C|^d i s p is 
given by 

(83) 

where of^x)L (ico) (X = A or B), defined by eq 80, is 
the dynamic multipole polarizability at imaginary 
frequency icy. 

Equations 7 5 - 8 3 are valid in an arbitrary space-
fixed coordinate system. However, since the angular 
functions AW(£A£BJR) are invariant with respect to 
any frame rotation (for the proof, see the Appendix 
of ref 6), a specific choice of the coordinate system 
may considerably simplify eq 76. In particular, in 
the body-fixed coordinate system with the z axis 
along the vector R the polar angles R = (6, <p) are 
zero. Using the fact that C^ (R = (0,0)) = ^ 0 , 2 0 7 eq 
76 simplifies to 

-A{A}(£A>£B) = 

M 5 L WA -MA 0 Y^*K^A)*DL-M*K^B)* 
(84) 

Further simplifications may be obtained if one con
siders the molecular symmetry groups of the mono
mers. For all point groups, except for the tetrahedral 
and cubic groups, all symmetry operators can be 
constructed from the inversion / , rc-fold rotation about 
the principal (z) axis R2(2jiln), and 2-fold rotation 
about the x axis Rx(Jt). Therefore, to determine the 
components of the multipole moment and polariz
ability tensors that span the totally symmetric rep
resentation of the symmetry group (i.e., tha t are 
invariant under operations of the symmetry group), 
it is enough to determine the action of these three 
operators on the multipole moment and polarizability 
tensors.198 It follows from ref 198 that the multipole 
moment and polarizability tensors transform under 
these operations according to 
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Qf~(-l)LQf, a ^ ( - l / + X * ) L (85) <$%(«>) = XI^+™'<Z-A,0;Z'-A',0|A,0> x 

RJ&dn): Q?-e-2jziWnQ¥, ~M _ , -2mM/n„M 
a(ll')L e 0HV)L 

(86) 

* » : Qf-(-l)LQ£M , a^ ) L-(- l )La(^L (87) 

Using the transformation rules given above one can 
easily derive the (nonzero) components of spherical 
tensors that are invariant under the molecular sym
metry group. This result, in turn, can be used to 
obtain the multiple expansions of the electrostatic, 
induction, and dispersion energies for the interac
tions of specific systems (see, e.g., refs 237 and 238 
for expressions applying to atom-diatom and diatom-
diatom interactions). In general, the symmetry-
adaptation of a tensor to the molecular symmetry 
group can be obtained by a reduction with respect to 
the full rotation-reflection group 0(3), followed by 
a subduction of the 0(3) irreducible representations 
to the point symmetry group of the molecule.239 This 
symmetry-adaptation scheme has been applied with 
success to derive all components of the (hyper)-
polarizability tensors that are invariant under IL/,.240 

Although the spherical form of the multipole ex
pansion, eq 75, is definitely superior if the orienta-
tional dependence of the electrostatic, induction, or 
dispersion energies is of interest, the Cartesian 
form43,202'241'242 may be useful in some cases (e.g., in 
the studies of the collision-induced multipole mo
ments243-245). Mutual transformations between the 
spherical and Cartesian forms of the multipole mo
ment and (hyper)polarizability tensors have been 
derived by Gray and Lo.246 The symmetry adaptation 
of the Cartesian tensors of quadrupole, octopole, and 
hexadecapole moments to all 51 point groups can be 
found in ref 247, while the symmetry adaptation of 
the Cartesian tensors of multipole (hyper)polariz-
abilities to simple point groups has been considered 
in refs 43 and 246. 

As discussed above, the multipole expansions of the 
electrostatic, induction, and dispersion energies, 
truncated after the R~N term are invariant under 
identical translations and rotations of the local 
molecular axes. Sometimes it is useful to shift only 
one of the expansion centers. This can be done using 
translation formulas for the spherical tensors of 
multipole moments and dynamic polarizabilities. 
These formulas can be applied for example to obtain 
the long-range coefficients for the isotope substitutes 
(i.e., when the center of mass of the complex is shifted 
by isotopic substitution). Using the addition (trans
lation) theorem for solid spherical harmonics207 (see 
ref 248 for a simple proof), Bulski et al.249 derived 
explicit formulas for the translation of the multipole 
moment and polarizability tensors. Denoting by 
Q™ and a^-)L(a») the tensors of multipole moments 
and polarizabilities with^ respect to an origin trans
lated by a vector t = (t, t), the translation formulas 
read: 

Qf = I 
i 

1 

1/2 21 \(2V > 
2k}\2k'> 

1/2 

I=O m=-l 
(88) 

[(2Z+1X2Z'+1)(2A+1)(2A'+1)] 

( I — A A 11 A A' 
V-X' X Z' X I C ^ ) < ' , A ' ( « ) (89) 

A A' L) Q=-A Q'=-A' 

Equations 88 and 89 can be used to obtain the 
translated long-range coefficients appearing in the 
expressions for {A}<S$(R), {A>0-R)> and {A}^sp(R), 
cf., eqs 77, 78, and 82. Note that the backward 
transformation can be obtained by multiplying the 
expressions under the summation symbols in eqs 88 
and 89 by (-I)1'1 and (-1)A, respectively. 

Few attempts have been done in the past to apply 
the multipole approximation to nonadditive interac
tions.121'122 Only recently, Piecuch250 generalized the 
spherical tensor formalism introduced by Wormer et 
al 195,197 for t n e two-body case, to systems of M 
molecules and to arbitrary orders of perturbation 
theory. Specific expressions that can be applied to 
systems of M molecules were derived for the aniso
tropic induction energies,125 anisotropic dispersion 
energies,136 and isotropic interaction energies251 

through the third order of the perturbation theory. 
Later, the fourth-order induction terms were also 
discussed.252,253 For a review of these results, we 
refer the reader to ref 254. These very general 
formulas were recently applied to study nonadditive 
contributions to the induction energy in the Ar2-HF 
and Ar2-HCl systems.255-256 

F. Computations of van der Waals Constants 

It should be noted that despite the divergent nature 
of the multipole expansions for the induction and 
dispersion energies, eqs 78 and 82 were often used 
to compute attractive contributions to the interaction 
potentials (see refs 226 and 257 for examples of 
typical applications and ref 258 for a review). Since 
the long-range electrostatic and induction coefficients 
are expressed exclusively via multipole moments and 
polarizabilities of the isolated monomers, they can 
be routinely computed at various levels of approxi
mation. See, e.g., ref 258 for a collection of review 
papers discussing the current status of the theory 
and its applications to various atomic and molecular 
properties. The calculations of the long-range dis
persion coefficients are somewhat more sophisticated, 
as they require the knowledge of dynamic multipole 
polarizabilities at imaginary frequency. Nowadays 
this problem is solved, however, and accurate long-
range dispersion coefficients can be computed. The 
review of all methods that can be applied to obtain 
such coefficients is beyond the scope of the present 
paper. Here we only want to mention that at present 
these coefficients can be calculated using the time-
dependent coupled-Hartree-Fock (TD-CHF) or the 
random phase approximation (RPA),260"263 the (lim
ited) configuration interaction (CI) approach,264'265 the 
multiconfigurational time-dependent Hartree-Fock 
(MCTDHF) method,266-267 the second-order polariza
tion propagator approach (SOPPA),268 and the many-
body perturbation theory (MBPT).48'269"272 In par
ticular, the MBPT approach has been successfully 
applied to various van der Waals complexes providing 
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state-of-the-art values of the long-range dispersion 
coefficients.48,273"275 These coefficients, in turn, can 
be used to define the exact asymptotics of the 
dispersion energy, or may serve as an ab initio input 
to empirical potentials fitted to reproduce the high-
resolution spectroscopic data (see, e.g., refs 48 and 
276). Let us mention, finally, that very accurate 
values of the isotropic Cg0} dispersion coefficients 
can be obtained from pseudospectral expansions in 
terms of (experimental) dipole oscillator strengths.277 

These data, available now for many systems (see refs 
277-297), are considered to constitute benchmark 
values for ab initio calculations. 

V. Charge-Overlap Effects and Bipolar 
Expansion of Polarization Energies 

The energy corrections of the polarization theory 
computed with the exact, nonexpanded intermolecu-
lar interaction operator can be referred to as nonex
panded polarization energies. Such computation 
gives the polarization energies pointwise, i.e., as a 
single number for each dimer's geometry and there
fore has to be performed for all geometries of interest. 
In contrast, as discussed in section IV, the multipole 
expansion of polarization energies is obtained by 
calculating the van der Waals constants only once. 
The polarization energies in this approximation can 
then be computed for all geometries from simple 
expressions involving these constants and Wigner's 
angular functions. The difference between the n o n -
expanded value of a given energy correction and the 
value computed from a truncated multipole expan
sion is due to the so-called overlap (or penetration) 
effects. Notice that this definition of the overlap 
effects does not allow one to determine a unique 
numerical value for these effects since it depends on 
the place where the multipole expansion is truncated. 
Since the multipole expansion is divergent at all 
orders (except possibly in the first order), the overlap 
effects clearly cannot be defined with respect to this 
expansion summed to infinity. A more precise defi
nition of the overlap effects will be given below. 

While the multipole expansion constants have been 
computed since the 1930s, calculations of the com
plete polarization energies including overlap effects 
for many-electron systems date back only to the 
1970s. In fact even for the interaction of two hydro
gen atoms accurate nonexpanded second-order dis
persion energies were computed for the first time in 
the late 196Os.298"300 (The work of Murrell and 
Shaw298 presented at the same time the first calcula
tion of the dispersion energy for a many-electron 
system, He2.) For generaly many-electron systems, 
calculations of the nonexpanded first-order electro
static energy date back to the early 1970s and have 
often been performed as a part of Morokuma's parti
tion of the SCF interaction energy.301 The first 
calculations of nonexpanded dispersion energies for 
such systems were those of Murrell and Shaw298 and 
Kochanski302 for the case of two-electron monomer's, 
and by Jeziorski and van Hemert132 for general 
molecules. All of the work cited above has been 
performed with a complete neglect of intramonomer 
correlation effects. These effects were included for 
the first time in refs 303-305 where the first-order 
contributions E^1 and E^ h were calculated for He2 

with short CI expansions, then in ref 227 where 
-Ep1J1 was computed for two interacting hydrogen 
molecules using accurate correlated densities, and in 
ref 65 where the lowest-order intramolecular correla
tion effects on the induction and dispersion energies 
(as well as on the first-order exchange energy) were 
computed for two helium atoms using explicitly 
correlated functions. The present many-body imple
mentation of SAPT (see section VI) computes the 
first-order polarization energy up to the fourth order 
in the intramolecular fluctuation potential W, the 
induction energy up to infinite order in W at the 
coupled-Hartree-Fock (CHF) level, and the dispersion 
energy up to second-order in W plus an infinite 
summation of random-phase approximation (RPA) 
type terms—all of this with a complete account of the 
overlap effects. 

There exists a method of calculating the polariza
tion energies at a level of approximation intermediate 
between the multipole expansion and the nonex
panded method. This method is based on the so-
called bipolar expansion of the intermolecular inter
action operator.306 The resulting expansion of a 
polarization correction CE^1, E

(^d, E^p) is referred to 
as the bipolar expansion (or representation) of this 
correction. Although a calculation of bipolarIy ex
panded polarization energies is usually more difficult 
than a nonexpanded calculation and the former 
energies always contain a truncation error, this 
approach has been actively explored in order to 
provide semiempirical methods of improving over the 
multipole expansion results. In the bipolar expan
sion a polarization correction is represented as a sum 
of terms decaying at large intermonomer separations 
as single powers of R _ 1 or exponentially, making the 
comparison with the multipole expansion straight
forward. This comparison also provides a precise 
definition of the overlap effects for each term in the 
multipole expansion. The polarization corrections in 
the form of the bipolar expansion are sometimes 
referred to as nonexpanded corrections meaning that 
the multipole expansion has not been utilized. This 
terminology is somewhat misleading since this rep
resentation always involves a truncated expansion 
of the intermolecular interaction operator. 

There are several reasons for development of 
methods allowing an extension of the multipole 
expansion results to finite intermonomer separations, 
including the van der Waals minimum region. The 
constants of the multipole expansion are much easier 
to compute than the nonexpanded polarization ener
gies and, as pointed out above, need to be computed 
only once (as opposed to computations for each 
intermonomer geometry). Moreover, accurate con
stants can be obtained semiempirically, as discussed 
in section IV. A direct use of the multipole expansion 
in the van der Waals minimum regions is out of 
question. Some time ago one might have hoped that 
despite the formal divergence of this expansion, its 
truncated form might still provide a reasonable 
approximation of the polarization corrections. As we 
know now from comparisons with nonexpanded ener
gies, such results are highly unreliable. A compari
son of the bipolar and multipole expansion enables 
calculation of the damping functions defined as the 
ratios of the bipolar components to their multipole 
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counterparts. Knowledge of such ab initio damping 
functions may lead to construction of useful semiem-
pirical formulas, as shown by Tang and Toennies.307 

With the use of such damping functions one may hope 
to obtain a reasonable representation of the polariza
tion interaction energies at finite R, and, in fact, 
semiempirically damped multipole expansions are 
presently a very popular method of describing inter-
molecular potentials. 

The bipolar expansion of polarization energies is 
related to the general angular expansion of the 
interaction energy already discussed in section IV. 
For two interacting rigid molecules the total interac
tion energy as well as any of its components are 
functions depending on the vector R connecting the 
centers of mass of the monomers and on the Euler 
angles £A = (aA,/3A,yA) and £B = (CLB,PB,YB) determining 
the mutual orientation of the two molecules. The 
components of R are determined with respect to an 
arbitrary space-fixed coordinate system. The Euler 
angles specify the rotation of a body-fixed coordinate 
system located at the center of mass of monomer X 
with respect to a system located at the same point 
with axes parallel to the chosen space-fixed system, 
X = Aor B. The interaction energy (as well as any 
scalar function of those variables) can be expressed 
as an infinite expansion in a complete orthonormal 
set of functions depending on the angular subset of 
variables, cf. eqs 75 and 76 in section IV. This kind 
of expansion has been introduced for the first time 
by Steele.308 In this section it is convenient to use a 
simplified form of the angular functions, sufficient 
when only the interaction potential is discussed, and 
connected straightforwardly to the general form 
needed for applications of this potential in dynamical 
calculations. Since the interaction energy cannot 
depend on the orientation of the dimer with respect 
to the space-fixed coordinate system, one may choose 
a coordinate system such that R is along its z axis, 
which eliminates two angular components of R. In 
this way the interaction energy or any other scalar 
function of the same variables can be written analo
gously to eq 75 as 

EW£M= I tf^ME&R) (90) 

where A^(£A,£B) is the angular function A{A}(£A,£B) 
of eq 84 with {A} = {lA,kA,lB,kBj}- The summations 
over IA, IB, and,/ run from zero to infinity, while kx = 
~~Ix, .», Ix- Equation 90 can be called the angular 
expansion of a polarization correction. Except for the 
first-order energy the angular expansion is not 
equivalent to the bipolar expansion since the coef
ficients E^(R) are not monomials in HR at large 
R. On the other hand, the bipolar expansion can 
always be rearranged into the form of eq 90. 

For the interaction of two hydrogen atoms at the 
second order, the bipolar expansion results automati
cally if the dispersion energy is computed using only 
products of orbitals of given symmetries (similarly 
for the induction part).299,309 The same is true for the 
dispersion energy with complete neglect of intra-
atomic correlation effects in the case of interactions 
of atoms with s orbitals only like He2.186'298,310 For 
general atoms, the bipolar expansion of the second-

order energy also results automatically if the function 
in eq 13 are eigenfunctions of the squares and of the 
z components of the total angular momentum opera
tors for atoms A and B. Knowles and Meath311 used 
this fact to calculate the bipolarly expanded atomic 
second-order interaction energies in the time-depend
ent Hartree-Fock approach. Recently Wheatley and 
Meath extended this method by using CI functions 
for ground and excited states of monomers in interac
tions involving H, He, Li, and their ions.312'313 

A. Bipolar Expansion of Buehler and Hirschfelder 

For interactions of general atoms or molecules in 
the first and second order of the polarization theory 
the bipolar expansion of a given energy correction can 
be achieved by representing the interaction potential 
by its exact bipolar expansion proposed by Buehler 
and Hirschfelder.306 Consider the two space-fixed 
coordinate systems introduced above with origins at 
the centers of masses of monomers A and B, their x 
and y axes parallel, aligned along their z axes, 
with the origins separated by a distance R. The 
inverse of the distance between two particles in space 
can then be expressed in the form of the following 
expansion (using notation of Meath et al.221) 

1 - '< 

r 12 IAJB=O m=-l< 

(91) 

where r*, fy, fa are the polar coordinates of ith particle 
and l< denotes the smaller of IA and IB. The coordi
nates of particle 1 are measured in system A while 
those of particle 2 are measured in system B. The 
expression for the function Jjm/ (r1;r2fR) has a differ
ent form in each of the four regions: 

R > T1 + r2 r2 > R + T1 

rx > R + r2 Ir1 - r2\ < R < T1 + r2 (92) 

The functions e/g^(rlfr2>R) used by Meath et al.221 

are proportional to the functions Bj™1 (r1(r2rfi) used 
by Buehler and Hirschfelder. In the first three 
regions the expressions for JJ"]1 (r1,r2rR) are simple 
combinatorial formulas containing IA, IB, and m times 
a product of powers of r\, r-i, and R. In the last region 
the expression contains a (finite) sum of powers of 
r\, r<i, and R. The expansion given above is exact 
(except at ri2 = 0). If the terms resulting from the 
regions II-IV are neglected, one obtains the standard 
multipole expansion of the interaction potential. 

When the bipolar expansion of \lr\i (and analogous 
expansions for other terms in the operator V) is 
substituted into each matrix element (<&o\V\<!>n), one 
obtains a bipolar expansion of a given polarization 
correction. For interactions of atoms that is all that 
is to be done. For interactions involving molecules, 
however, the coefficients of such an expansion would 
have to be calculated separately for each molecular 
orientation and the form of eq 90 would not be 
recovered. This problem is solved by a transforma
tion from the space-fixed coordinate systems used in 
eq 91 to the body-fixed coordinate systems defining 
the Euler angles.314 

file:///lr/i
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B. Bipolar Expansion via Fourier Integral 
The bipolar expansion of the interaction potential 

can also be obtained by using an alternative ap
proach, proposed for the first time by Kay et al.,315 

which leads directly to expressions of the form of eq 
90. The basic idea of this alternative approach is to 
represent the interaction potential as its Fourier 
transform 

12 2x* J k2 
(93) 

where R is a vector from the center of mass of 
molecule A to the center of mass of molecule B and 
as before the vectors r\ and f"2 are expressed in the 
coordinate systems centered on the molecules A and 
B, respectively, with their axes parallel to an arbi
trary space-fixed coordinate system. At this point it 
is more convenient to use a general space-fixed 
coordinate system as in section IV. The plane waves 
are next expanded in terms of Bessel functions and 
spherical harmonics 

J k * XI''-
27! 

Z=O TO = -i (2Z)! 
Cim(k)qT(k,r) (94) 

where k — klk is the unit vector with components 
dk, fa and 

<?<*) = ( ^ 1 ) 1 V ( M i ) (95) 

C. Applications to First-Order Polarization 
Energies 

The bipolarly expanded first-order electrostatic 
energy has been calculated by Meath and co-workers 
in a series of papers227"229,318 for interactions of 
diatomics. The earlier work227-229 utilized the po
tential in the form of eq 91, while more recently Koide 
et al.318 switched to the expansion of eq 97 since it 
provides a scheme which is superior from the nu
merical point of view. In most cases these calcula
tions completely neglect the intramonomer correla
tion effects, however, for some two-electron monomers 
correlated densities were used. Although expansions 
91 or 97 can be substituted for V in the general 
expression 10 for the first-order polarization energy, 
it is more convenient to start with the alternative 
form 11. By substituting expression 91 for l/ri2, 
E^1 can be written as a sum of contributions 

i< 
El(D _ V El(D _ V V P^ 

W s = 0 IAJB=® m=—l< 

i(D (98) 

Performing the transformation to monomer-fixed 
coordinate systems one obtains the following expres
sion for the components of E^1 

E\ <i) 

X X iUk^Dtk^D1^^)* (99) 
*A—IA kB—h 

is a Racah spherical harmonic.207 The other quanti
ties in eq 94 are the so-called wave number (k) 
dependent multipole operators 

q?(kf) = ^r^C?(f) J1(Hr) 
27! 

where 

XupkAkSR^ ~ 
2h + 1 

4JZ 

1/2 2U + 1 

4JT 

1/2 

(96) f K W ^ i ^ î dr2 (100) 

where ji(kr) is a spherical Bessel function. Substitu
tion of eq 94 into eq 93, integration over angles of k, 
and the transformation to monomer-fixed coordinate 
systems leads to the following expression 

1 W 
— = £ ilA~lB~J{2j + \)21A+1B+1 x 
r12 iAiBJkAkB jr(2ZA)!(2ZB)! 

0 0 {YI&^BM ) X 

f;dkjj(kR)qTA
A(k>ri)qTB

B(k,r2) (97) 

where the angular function AfA^(fA,£B)i?) is defined 
by eq 76 with {A} = {lA,kA,h,kBJ} • This equation can 
be simplified by choosing a special space-fixed coor
dinate system such that R is along its z axis. 
Substitution of the expansion derived above into the 
matrix elements (<&o|Vl<I>„) and the use of this special 
space-fixed coordinate system gives an expansion of 
this matrix element exactly in the form of eq 90. For 
details of this approach in the context of the polariza
tion energies and for a discussion of its equivalence 
to the Buehler-Hirschfelder expansion see refs 316 
and 317. 

The so-called partial-wave components of the electron 
density QA(D = £AO"I,0I,0I) are defined by 

Qi?(ri) = 
4JI 

2lA + 1 
1/2 ^2Jt rTt 

Jo J0 QA^H6M X 

Y?A( B1^1) SmO1 6Ld1 (1^1 (101) 

and similarly for system B. The partial wave com
ponents of the electron density need to be computed 
only once for each monomer. All the orientational 
dependence is then obtained via the simple products 
of Wigner's functions. (Meath et al. have not trans
formed their expression into the form of eq 90.) The 
double radial integral of eq 100 has to be evaluated 
separately for each R. 

Using the method outlined above Meath and co
workers227 '229 calculated the first-order polarization 
energies for interactions of several atoms and di
atomic molecules. In the case of H2 interactions they 
have also used correlated electron densities. They 
found that the importance of the overlap effects 
strongly depends on the interacting species. For 
several of the investigated molecules the charge 
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overlap effects were found to be large showing that 
the multipole expansion of the electrostatic energy 
is not a particularly reliable representation of this 
correction in the van der Waals minimum region. 

D. Applications to Second-Order Polarization 
Energies 

Either of the two bipolar expansions of the inter-
molecular interaction operator can formally be used 
in any order of polarization perturbation theory by 
expanding all the matrix elements ($m|V|4>re) appear
ing in the spectral representation of a given correc
tion. Although the exact spectral sums cannot be 
evaluated in practice, various pseudospectral expan
sions based on Hylleraas-type variational principles 
can be used. Alternatively, the expansion can be 
applied to one- and two-electron integrals appearing 
in many-body formulas for polarization energies. 
Similarly as in the first order, radial coefficients in 
the expansion of the matrix elements decay either 
exponentially or as monomials in R'1. This approach 
makes a direct comparison of the coefficients at each 
power of R and the definition of damping functions 
possible. The final expression will, of course, contain 
products of several angular functions A^Ay(£A£B). 
For example, the second-order (induction or disper
sion) contribution can be written as 

%$&£A>M$$$'3W) (io2) 

At large R expansion 102 becomes equivalent to the 
multipole expansion since for R —- «> the radial 
coefficients EkA$f VR) - c^fpk'B/RlA+lB+l'A+l'B+2 for 

, .JA1Bl1AlBl 1A1Sl-A1B 

J — LA + LB, J = L A + L B, and none ot LA, IB, L A, L B 
equal to zero. The other combinations of indices give 
exponentially decaying terms which do not have 
counterparts in the multipole expansion. Notice that 
this multipole expansion is equivalent but not identi
cal to that defined by eqs 78 and 82 and a recoupling 
of spherical tensors is required to transform from one 
form to another.195,197 

Equation 102 enables the determination of damp
ing functions for each term in the multipole expan
sion of E^ and E(^ . The damping function for a 
general term c*f/p«B/RlA+lB+l'A+l'B+2 can now be pre
cisely defined as the ratio 

kAkBk'Ak''B( T) \ — 
XWJ'B W _ 

where j -IA + IB, f = I'A + I'B, and none of IA, IB, VA, 
VB equal to zero. By grouping terms with the same 
explicit dependence on the inverse power of R one 
may find the damping function corresponding to a 
fixed power of R. Note that such damping functions 
depend now on angles. 

Knowles and Meath319 have calculated the disper
sion and induction energies for He-HF by expanding 
each matrix element appearing in (pseudo)spectral 
expressions for these corrections in the RPA ap
proximation (following the method of Jaszunski and 
McWeeny320). In fact these authors have not used 

the bipolar expansion of the interaction operator 
explicitly. Instead, they utilized the orthogonality 
properties of Wigner's functions and integrated the 
particular components out from the matrix elements. 
Since each component is asymptotically a monomial 
in R _1, or decays exponentially, the bipolar expan
sion of the second-order polarization energy can be 
obtained in this way. The considered matrix ele
ments are known only pointwise, so that the angular 
integration has to be done numerically. For general 
systems the needed integration is five dimensional 
and therefore not possible in practice. However, for 
interaction of atoms with linear molecules only one-
dimensional integrals are needed, and the method 
can be applied. The terms in expansion 102 which 
decay as inverse powers of R were compared with 
those given by the multipole expansion, the ratio 
providing the damping function. Knowles and 
Meath319 computed such damping functions for most 
terms with up to R "10 dependence, showing that 
damping is very significant in the region of van der 
Waals minimum. Moreover, the exponential terms 
were shown to contribute quite substantially for such 
distances. 

The bipolar expansion of eq 97 was first applied to 
intermolecular interactions by Koide321 and by Linder 
et al.322 In addition to the first-order work discussed 
above,318 it has been used to compute dispersion 
interactions of two hydrogen atoms321'309 and of 
general atoms.323 It was extended to interactions of 
atoms with diatomics by Rosenkrantz and Krauss324 

and later to arbitrary systems by Knowles and 
Meath.314 The latter work represents the most 
advanced application of the bipolar expansion. The 
authors used the Fourier integral form of the bipolar 
expansion of the intermolecular interaction operator 
to compute the dispersion energies at the RPA level. 
In the case of the second-order dispersion energy the 
expression for E*AffiAfj(R) contains a two dimen
sional integral over k and k' (k' comes from the 
complex conjugate matrix element in the expression 
for the second-order energy) with an integrand 
containing matrix elements of generalized multipole 
operators. In this form the expression still couples 
systems A and B. The Casimir-Polder formula could 
be utilized here (as has been done for the H2 case321), 
but it would introduce one more difficult integral. 
Instead, Knowles and Meath314 expanded the Bessel 
functions in a power series. Although the resulting 
expansion of the dispersion energy components was 
slowly convergent or divergent, it was possible to sum 
it using Pade approximants. The accuracy of the 
final results was, however, rather limited. Using this 
approach Knowles and Meath computed the damping 
functions for all dimers resulting from the interaction 
ofHe, Ne, and HF. 

E. Summary 

One may conclude from the above work that the 
overlap effects are significant in the region of the van 
der Waals minimum and for smaller separations. 
This fact is not surprising since the very existence 
of the van der Waals minimum and of the repulsive 
wall is connected with overlap of monomer's charge 
distributions. The information about the damping 
functions for electrostatic, induction, and dispersion 
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energies obtained from such calculations is being 
utilized in construction of the damping functions for 
semiempirical potentials. This work also shows that 
the spherical, exponentially decaying components of 
the polarization corrections are significant at the van 
der Waals minimum and smaller distances. So far, 
these components have not been included directly in 
empirical potentials although they are effectively 
taken into account by the Born-Mayer exchange 
terms. 

Calculation of polarization energies using the 
bipolar expansion represents apparently a very at
tractive approach if a complete potential energy 
surface is to be obtained. Such a calculation formally 
involves less effort than a nonexpanded one since 
only the radial coefficients have to be recomputed for 
each R, while the angular dependence is given by 
simple products of Wigner's functions. This effort is 
larger than that of the multipole expansion approach 
but still is many times smaller than the effort of a 
full nonexpanded calculation. Unfortunately, already 
in the second order the number of coefficients to be 
computed for each R is very large and the numerical 
methods for such calculations are not well developed 
yet. 

W. Intramonomer Electronic Correlation Problem 
and Many-Body Formulation of 
Symmetry-Adapted Perturbation Theory 

A. Double Perturbation Theory Approach to 
Intramonomer Correlation 

The theory presented in the preceding sections 
cannot be applied directly to interactions of many-
electron atoms or molecules since the exact unper
turbed monomer wave functions are not known for 
these systems. For two-electron monomers highly 
accurate, practically exact wave functions are avail
able,325-328 but they are difficult to use in perturba
tion theory because of the explicit dependence on the 
interelectronic distance. Thus far, such wave func
tions have been applied only to calculate highly 
accurate values of the van der Waals constants for 
He2

329,330 and for (H2)2
331 and of the first-order polar

ization and exchange energies for He2.327 

For very small monomers one can perform direct 
calculations within the full configuration interaction 
(FCI) model. Such calculations (through high orders 
of perturbation theory) have been recently performed 
for four-electron dimers,84"86140 but the aim of this 
work was an analysis of mathematical models of 
intermolecular interactions rather than actual cal
culations of accurate interaction energies. 

In evaluating the first-order energies one does not 
have to assume that the zeroth-order problem has 
been solved exactly. In this case approximate mono
mer wave functions can be used to evaluate the first-
order energy expressions. In fact, CI wave functions 
were used with success to compute the first-order 
contributions CEp1J1 and E^ch) to the interaction en
ergy for two-electron monomers227-332-337 and for 
larger systems.338 

For many-electron atoms and molecules the only 
widely available wave functions are the Hartree— 
Fock determinants. Using these determinants as 

zeroth-order wave functions in the polarization theory 
or in SAPT amounts to a complete neglect of the 
effects of the correlation of electronic motion within 
monomers. These effects can be taken into account 
by an application of the powerful techniques of the 
many-body perturbation theory and/or coupled-
cluster theory.339'340 Since the Hart ree-Fock deter
minants are eigenfunctions of the monomer's Fock 
operators FA and FB, we have to consider a new 
perturbation operator W = WA + WB, where WA and 
WB are the intramonomer correlation operators cor
responding to the Moller-Plesset66 partitioning of the 
monomer Hamiltonians, WA-HA- FA and WB = HB 
- FB- The interaction energy can now be calculated 
using a suitable double perturbation theory in which 
F— FA +FB serves as the unperturbed operator while 
the intermolecular interaction operator V and the 
Intramonomer correlation operator W act as pertur
bations. Such a double perturbation theory proposed 
in ref 65 is based on the following parametrization 
of the Schrodinger equation for the dimer AB 

(F + £V + A W ) G 4 8 ( ^ ) = £ A B ( ^ , A ) O A B ( S , A ) (104) 

The parameters £ and X have the physical values 
equal to unity and are introduced to define the 
perturbation theory orders. The parametrized wave 
function of the dimer satisfies 

3^(0,0) EE ^ HF (105) 

where OfF denotes the product the Hart ree-Fock 
determinants for the isolated monomers A and B, 
respectively, and 

^AB(OA) = o A a)o B a) (106) 

where OA(A) and <&BW are the ground-state eigen
functions of the parametrized monomer Hamilto
nians HA = FA + XWA and HB = FB + XWB. Expand
ing EAB(£,&) and <I>AB(£,A) in powers of £ and X and 
combining terms of the same order in Z, one obtains65 

the following perturbation expansions for the /ith-
order polarization wave function and energy: 

<&: = X0POl 
(m) 

i=0 

IjKn) 1V1 jjKrai) 
ypol 

i=0 
pol 

(107) 

(108) 

where *<$ and E{$ are the double perturbation 
theory corrections of the nth order in V and of the 
ith order in W. 

The corresponding double perturbation expansion 
of the SRS energies E(g^s is obtained in a similar 
way by parametrizing the expression for the SRS 
interaction energy of eq 32 with the intramonomer 
correlation parameter X 

^SRs(W) ~ 
(^^,XMV^AB^X)) 

(109) 

Expanding £SRS(S,A) as a double power series in £ and 
in X, and grouping terms of the same order in £ one 
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obtains12 the following expansion for E^n) 
SRS 

p(n) _ V E1W) 
J SRS = E*&: 

SRS (110) 
J=O 

where the corrections SgRg a r e formally defined as 
the coefficients at £nA' in the Taylor expansion of the 
function 2?SRS(£,A). 

The SRS corrections Eg^8 naturally decompose as 

EiO") jp(ni) I jp(ni) 
-^SRS — -^pol "I" ^ e x c h (111) 

where the polarization corrections are defined by eq 
108. For a fixed n the exchange contributions 
2JeXCh s u m UP to the total nth-order SRS exchange 
energy Ef^ 

EiW _ V 1 jp(ni) 
""•"•y ^ ^ exch 

7(n) 
' exch (112) 

The corrections E($ and E(^l can be viewed as 
describing the interaction of "Hartree-Fock" mol
ecules, while the remaining terms in the expansions 
108 and 112, i.e., K pol 

E7^O) j jTi(re) jp(n0) 

represent the intramonomer correlation effects 
The conventional perturbation theory expressions 

for the perturbed wave functions Op"'/ and the per
turbation energies Ef^, eqs 107 and 108, are given 
in terms of $^ F , V, W, and the reduced resolvent 
R^F of F.65 '341 Final expressions in terms of molecu
lar integrals and orbital energies can then be ob
tained using the Slater—Condon rules or many-body 
techniques. The derivation of the explicit orbital 
formulas for the exchange energies E(^h is much 
more difficult because of the necessity of handling 
overlap integrals for nonorthogonal sets of orbitals. 
When the intramonomer correlation is neglected, the 
nonorthogonality problem becomes easier and it was 
solved some time ago both in the case of the first-
order exchange energy E™h

 182,342 and the ex
change-induction ^Ixch-ind an& exchange -disper
sion -Blxch-disp energies.185 The conventional orbital 
expressions for the corrections E^ and E(^h con
tain disconnected terms341 (or diagrams) which be
have incorrectly when the size of the system in
creases. Although the final formulas can be written 
exclusively in terms of connected contributions, the 
cancellation of disconnected terms requires consider
able algebraic manipulations. Therefore, in practice 
such an approach has only been used to derive the 
simplest approximations to the first- and second-
order polarization and exchange energies, namely: 
ET(IO) 132 EI(IO) 182 EI(20) 132 E I ( 2 1 ) 343 EI(20) 132 E I ( 2 1 ) 8,344 

' ind > J ind ' ^disp' ^disp> Jpol > exch> 

To derive higher-order terms in the intramonomer 
correlation, it is advantageous to rewrite the pertur-
bational equations in an explicitly connected form, 
which guarantees the extensivity339'340 of the energy. 
Such a form can be obtained by a generalization of 
the ideas of the coupled-cluster (CC) theory339'340-345-352 

to intermolecular interactions. This approach leads 

to an explicitly connected formulation of the RS and 
SRS perturbation equations.11'12-67'69 Rybak et al.n 

postulated a coupled-cluster ansatz for the wave 
function <&AB based on the product of Har t ree-Fock 
determinants of the isolated monomers and derived 
explicitly connected expressions for the polarization 
components of the interaction energy. Generalization 
of the results of ref 11 to the case of the symmetrized 
polarization expansion is difficult, and an explicitly 
connected form of eq 109 has not yet been obtained. 
Only recently has an explicitly connected expansion 
of the first-order exchange energy in the single-
exchange approximation55-180353 been derived.12 Us
ing the second-quantized representation of the single-
exchange operator (£\ and the explicitly connected 
expansion of the expectation value in the coupled-
cluster theory,354 the present authors have shown12 

that the first-order exchange energy can be expressed 
directly through the monomer cluster operators in a 
form showing explicitly its connected and size-
extensive character. The coupled-cluster formulation 
of the many-body SAPT theory has been applied to 
derive orbital expressions for the corrections Ef£J,n 

E™h,
12 and Ef^11 for I < 2, as well as some 

coupled-cluster approximations to 2?exchU a n c^ to 
Ei(2) 71 
•^disp-

The alternative formulas of eqs 11, 44, 19, and 23 
expressing the electrostatic, first-order exchange, 
induction, and dispersion energies, respectively, 
through the density matrices and polarization propa
gators can also be used to derive many-body pertur
bation expansions of these components. In some 
situations this approach may offer advantages com
pared to the coupled-cluster approach discussed 
above, and it has recently been used to define many-
body perturbation expansions of the electrostatic,7072 

exchange,73 and induction74 energies. 
One advantage of using the formulas expressed in 

terms of density matrices and polarization propaga
tors is that techniques developed for those quantities 
can be utilized in the theory of intermolecular 
interactions. Another reason for considering this 
approach is that there exist alternative many-body 
perturbation expansions of the density matrices,110-112 

and polarization propagators,355 referred to as relaxed 
expansions or as expansions including response. The 
alternative expansions are obtained by differentiation 
of the M0ller—Plesset correlation energies corre
sponding to an external field dependent partitioning 
of the Hamiltonian.110 '111 The perturbation correc
tions corresponding to the relaxed expansions will be 
denoted by adding the subscript "resp", e.g., 
înd!resP- The relaxed expansion for the electrostatic 

energy was introduced in ref 70 and applied to 
compute E^ . Recently, this approach has been 
generalized to nigher orders in the intramonomer 
correlation72 and applied to study the convergence 
properties of both expansions. Possible applications 
of the two expansions for the electron densities and 
polarization propagators in calculations of the induc
tion energy have been discussed in ref 74. Calcula
tions of the dispersion energy using the leading-order 
terms from both many-body perturbation expansions 
of the polarization propagators have been described 
in refs 320 and 356. 
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B. Many-Body Perturbation Expansions for the 
Interaction Energy Components 

1. Electrostatic Energy 

The importance of the intramonomer correlation 
contributions to the electrostatic energy can be as
sessed by comparing the Hartree—Fock and cor
related multipole moments of monomers. Such a 
comparison110 suggests tha t at least for the interac
tion of polar molecules at large intermolecular dis
tances the intramonomer correlation effects on the 
electrostatic energy are important. In addition, 
calculations for the He, Be, and H2 dimers at the full 
CI level327332"335 suggested that even for nonpolar 
dimers the correlation part of the electrostatic energy 
is nonnegligible. 

The leading correlation correction E1^ has been 
first derived and computed in ref 11, while the 
correction E(^resp has been developed in ref 70 and 
further considered in ref 357. Here we will discuss 
methods which use eq 11 as the starting point for 
various many-body perturbation expansions of the 
electrostatic energy.70'72 To introduce a perturbation 
series of the electrostatic energy it is useful to rewrite 
eq 11 as 

41Oi = /QAWV^BW d3r, d3r, (113) 

where Qxird is the electron density of the monomer 
X, and Vij is the generalized interaction potential 
defined by eq 47. Equation 113 can be easily ex
panded as a perturbation series in terms of the 
correlation operators WA and WB- The electron 
density can be represented as the Moller-Plesset 
perturbation expansion of the form 

£>xW = 1 « V) (H4) 
k=0 

where Xx is a formal expansion parameter set equal 
to 1 later. The consecutive terms in eq 114 are 
defined by expanding the expectation value of the 
electron density operator D(r)354 

Nx 

D(r) = X<5(r - r{) (115) 
j=i 

Substitution of the expansion 114 for the monomer 
A and B into eq 113 defines the intramonomer 
correlation corrections to E^ 

C = IfQT1V1)V1JQ^rJ) dsrt d
3r, (116) 

Z=O 

Another expansion of the electron densities can be 
obtained by considering a new "perturbed" monomer 
Hamiltonian Hx — Hx + W(r) parametrized in the 
following way 

Hx = Fx(^r)+ Wx(^r) (117) 

where Fxi^',r) is the Fock operator corresponding to 
the Hamiltonian Hx (which includes the operator 
£D(r)) and Wxi^;r) is defined as thejiifference Hx(^r) 
— FxiS,;r). The operators Fx and Wx differ from the 
standard operators Fx and Wx since the occupied 

Hart ree-Fock orbitals used to construct Fx(£;r) now 
depend on the parameters £ and r. The nth-order 
correlation correction to the electron density can now 
be defined as the derivative of the nth-order MBPT 
energy <^x\^;r) computed using the Hamiltonian 
partitioning of eq 117 

^ 1 = ^ i S = . <118) 

These density corrections will be referred to as 
relaxed ones or as those including orbital relaxation 
(response) effects.110,111 The use of the relaxed density 
corrections in eq 113 will lead to a different expansion 
of E^ with corrections denoted by E{$resr The 
relaxed corrections are of infinite order in W, so that 
the corresponding (truncated) perturbative expan
sions may be viewed as nonperturbative, infinite-
order summation schemes. Only in the zeroth-order 
do the two approaches lead to the same result, which 
is a simple consequence of the fact that the Har t r ee -
Fock wave function fulfills the Hel lmann-Feynman 
theorem. 

Substitution of the multipole expansion of vy- (which 
can be obtained in an analogous way as the expan
sion of V discussed in section IV) into eq 113 shows 
that for interactions of polar molecules at large 
intermonomer distances R the two corrections behave 
like 

^1Oi' ~ i > r x ^ -3 (H9) 

4oi,U ~ i /#-W /#fe "3 (120) 

where /ux
} and p.x

} denote the /ith-order correlation 
correction to the dipole moment in the nonrelaxed 
and relaxed approach, respectively. 

Rybak et al.11 computed the leading-order correla
tion correction E^ for the water and HF dimers, 
and showed that E^ represents as much as 10% of 
the total interaction energy for these systems in the 
region of the van der Waals minimum. The two 
perturbative expansions of the electrostatic energy 
discussed above have been applied in ref 70 through 
the second order in the respective intramonomer 
correlation operators for the interaction of two hy
drogen molecules. It has been found that the con
vergence is only moderately fast: the second-order 
results reproduced only 50% to 70% of the correlated 
part of the electrostatic energy computed with mono
mers' FCI functions obtained in the same orbital 
basis set. Recently, the study of ref 70 has been 
extended in ref 72 to higher orders in the intramono
mer correlation. General expressions for the intra
monomer correlation corrections JE 0̂*' and Bf^iTesp, k 
< 4, have been derived and the convergence proper
ties of the nonrelaxed and relaxed perturbation 
expansions of the electrostatic energy have been 
investigated for model four-electron dimers contain
ing He and H2. 

The numerical results of these calculations72 are 
presented in Table 4. To demonstrate the conver
gence properties of the two perturbation expansions 
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Table 4. Convergence of the Many-Body 
Perturbation Expansions for the Electrostatic Energy 
of the He and H2 Dimers" 

He2
6 (H2V 

nonrelaxed relaxed nonrelaxed relaxed 
0 
2 
3 

$<4> 

-0.4955(-5) 
-0.2689(-6) 
-0.1755(-6) 
-0.8842(-7) 
-0.5328(-6) 
-0.5882(-6) 

-0.4955(-5) 
-0.3949(-6) 
-0.1114C-6) 
-0.4804(-7) 
-0.5543(-6) 
-0.5882(-6) 

0.7568(-4) 
-0.1130(-4) 
-0.6568C-5) 
-0.2805(-5) 
-0.2068(-4) 
-0.2218C-4) 

0.7568(-4) 
-0.1434C-4) 
-0.5122(-5) 
-0.172K-5) 
-0.2118C-4) 
-0.2218(-4) ^i(FCI) 

0 The energies are given in hartree. The expression (-AO 
denotes the factor of 10-JV. For details of calculations, see ref 
12.bR = 5.6 bohr.c Linear HH-HH geometry. The distance 
between the centers of mass of H2 is 6.5 bohr while the H-H 
distance is 1.4 bohr. 

Table 5. Convergence of the Many-Body 
Perturbation Expansions for the Electrostatic Energy 
of the H2O and HF Dimers0 

n 

0 
2 
3 
4 
ta\(k)d 

(H2O)2' 

nonrelaxed 

-7.124 
0.233 

-0.172 

0.061 

b 

relaxed 

-7.124 
-0.014 

0.140 
0.045 
0.171 

(HF)/ 

nonrelaxed 

-6.327 
0.460 

-0.305 

0.155 

relaxed 

-6.327 
0.219 
0.053 
0.068 
0.340 epol' 

" Energies are given in kcal/mol. For the details of calcula
tions, see ref 358. b Geometry is the same as specified in Table 
3 of ref 11 except that R = 5.67 and the angle between the 
0—0 axis and the HOH bisector of the proton acceptor is 120°. 
The basis set T~ (2d, 2p)* from ref 11 was used. ° The nonlinear 
geometry specified in Table 4 of ref 11. The basis set T~s (2df, 
2pd)' from ref 11 was used. d k equals 3 and 4 for the 
nonrelaxed and relaxed approaches, respectively. 

i(U) for these systems the consecutive corrections Epol 

"" the sum of the series truncated after 
^ (4 ) , and the total electrostatic -

correlation energy, defined as 

a n d Epoliesp 

the fourth-order €^(4) 

41J1(FCI) =E% -E™ (121) 

calculated at the full CI level using the same basis 
sets are given. These results show that the conver
gence properties of both many-body perturbation 
expansions of the electrostatic energy are satisfac
tory. For the He and H2 dimers the sum of correc
tions through the fourth order reproduces well over 
90% of the total electrostatic-correlation energy. The 
leading, second-order term represents approximately 
50% or more of the total intramonomer correlation 
effect. Taking into account the third-order correction 
adds an additional 20-30%. Note also, tha t the 
inclusion of the orbital relaxation effects results in a 
faster convergence. Through the fourth order the 
results of both methods are very close to each other 
confirming that both methods have converged from 
a practical point of view. The total intramonomer 
correlation contribution to the electrostatic energy 
amounts to 11% and 23% for the He and H2 dimers, 
respectively. 

In Table 5 convergence of the many-body perturba
tion expansion of the electrostatic energy is presented 
for the H2O and HF dimers.358 Somewhat surpris
ingly the total intramonomer correlation effect is 
relatively small, amounting to 2% and 5% of E^, 

respectively. Mostly likely there is some cancellation 
between the long-range and overlap effects for the 
geometries chosen. In fact the leading term E^ is 
larger for other geometries investigated in ref 11. 
Nevertheless, contributions of the order of a few 
tenths of kilocalories per mole are significant at the 
level of accuracy presently achieved for those sys
tems. The convergence pattern is somewhat erratic 
(and very different for the relaxed and nonrelaxed 
approaches) but this fact can be attributed to the 
smallness of the correction. 

2. First-Order Exchange Energy 

The most important short-range contribution to the 
interaction energy between closed-shell molecules is 
the exchange part of the first-order energy, Ef^. If 
the interacting monomers are described by the Har
tree— Fock wave functions, the corresponding ex
change energy E^h c a n ^ e routinely calculated even 
for large systems. The studies performed for small 
systems using FCI wave functions327'332"335 have 
shown that the intramonomer electron correlation 
effects are significant. For the He dimer rather large 
orbital basis sets could be used and even explicitly 
correlated Gaussian-type geminals (GTG) have been 
applied,327 so that the values of El^ch for this system 
are known to accuracy of a few digits. Until very 
recently, perturbative studies of the intramonomer 
correlation part of the first-order exchange energy 
have also been restricted to the interaction of two He 
atoms. The leading correlation correction, E(^h, 
has been considered in ref 65. Jankowski et al.68 

computed the corrections E(^Jh and E(^h
 a n d found 

that the sum E(^h + E^ reproduces only ~60% of 
the total intramonomer correlation contribution to 

O) 327 
exch" K... 
Two general schemes for calculations of the intra

monomer correlation corrections to E(^h have been 
recently proposed: a CC-based method utilizing the 
second-quantized representation of the single-ex
change operator i?i1 2 and a straightforward applica
tion of the M0ller-Plesset expansions of density 
matrices in eqs 44 and 4573 

^m') = 14^(HiO 
A=O 

(122) 

r_x(12|l '2 ')= ^k
xT

(£\l2\r2') (123) 
fe=0 

Both approaches give identical numerical results 
when dimer-centered basis sets are used, but the 
final expressions for the corrections E^Ih differ dis
tinctly. In particular, the latter scheme gives for
mulas for the correlation corrections iŝ xch with a 
smaller number of summations and it is fully valid 
also in monomer-centered basis sets. Although in 
some cases the use of the dimer-centered basis set is 
essential for an accurate description of the exchange 
effect,359 in other cases computationally less demand
ing monomer-centered basis sets may be preferred.360 

Recently, extensive numerical studies of the con
vergence properties of the many-body perturbation 
expansion of the £(

exch correction for model four-
electron systems12 and many-electron systems73 have 
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Table 6. Convergence of the Many-Body 
Perturbation Expansions for the First-Order 
Exchange Energy of the He2, (Ha)2, He-HF, and 
Ar-H 2 Systems" 

He2
6 (H2)2

C H e - H F d Ar -H 2
6 

0.3559(-4) 0.2493(-3) 0.8295(-4) 0.4799(-3) 

0.5318(-6) 0.1786(-4) 0.2742(-5) 0.2360(-4) 

0.1448(-5) -0 .7369(-5) 0.2114(-4) 0.1543(-4) 

(2) 0.1980(-5) 0.1049(-4) 0.2389(-4) 0.3903(-4) 

ET(Il) 
•^exch 
rr<12> 
•^exch 

c e x c h 

A^11 (CCSD) 0.1866(-5) -0.2257(-5) 0.2942(-5) 0.5705(-5) 

^ (CCSD) 0.3845(-5) 0.8234(-5) 0.2683(-4) 0.4474(-4) 

e^ch (FCI) 0.3914(-5) 0.8354(-5) 

" The expression (—A7) denotes the factor of 10_JV. For the 
details of calculations, see refs 12 and 73. b R = 5.6 bohr. 
c Linear HH-HH geometry. The distance between the centers 
of mass ofH2 is 6.5 bohr while the H - H distance is 1.4 bohr. 
d Linear He-HF geometry. The distance between the He atom 
and the center of mass of HF is 6.5 bohr while the H - F 
distance is 1.7328 bohr. e Linear Ar-H 2 geometry. The dis
tance between the Ar atom and the center of mass of H2 is 6.7 
bohr while the H - H distance is 1.4 bohr. 

been reported. Since the results of Jankowski et al.6a 

suggested that the convergence of the many-body 
expansion of the first-order exchange energy is only 
moderately fast, nonperturbative infinite-order sum
mation techniques based on the coupled-cluster singles 
and doubles theory (CCSD)361 have been proposed. 
The simplest way of performing such infinite-order 
summations, introduced in ref 12, is to approximate 

^ X C h b y 

2C11(CCSD) = 
;i(10) run ji(12) kU) QZL + êX1Ch + E^ + A-h(CCSD) (124) 

where the term A^j1(CCSD) collects all higher-
order terms in W obtained by replacing the first and 
second-order cluster operators entering the expres
sion for êxch by the converged CCSD operators. 
This method of performing an infinite-order summa
tion of selected perturbation theory contributions is 
similar in spirit to the CCSD(T) method of Urban et 
at.362 widely used in correlation energy calculations. 

In Table 6 numerical results of perturbative cal
culations through the second order in W as well as 
the results of coupled-cluster calculations (using eq 
124) for He2, (H2J2, He-HF, and Ar-H2 are pre
sented. To demonstrate the convergence properties 
of the perturbation series for various dimers, con
secutive corrections 2Ch> the sum of the correlated 
part of the series truncated after the Zth order 
41XCĥ )* t n e higher-order contribution A^h(CCSD), 
the total correlation part of the CCSD exchange 
energy 

UO) Ch(CCSD) = 2C1(CCSD) - 2 C h (125) 

and the full CI (FCI) exchange-correlation energy 

Ch(FCI) = 2Ch " i d d26) 

computed for four-electron dimers at full CI level 
using the same basis sets have been tabulated. The 
results show that the convergence of the many-body 
perturbation expansion of the first-order exchange 
energy is only moderately fast. For the He dimer the 

sum of the first two terms reproduces only 50% of 
the FCI result, while for the H2 dimer the sum of 
perturbation series overestimates the FCI result by 
25%. The inclusion of the higher-order terms by 
means of the CCSD approximation improves the 
situation considerably, and Ch(CCSD) recovers the 
full CI exchange-correlation energy to within a few 
percent. 

For many-electron systems it is not possible to 
compute the total first-order exchange energy 
2Ch- However, in view of the results for four-
electron systems, A^.h(CCSD) should to a good ap
proximation represent the sum of the corrections 
2C\i with I > 3. If this assumption is correct, an 
inspection of Table 6 shows that the convergence of 
2Ch a s a power series in W is actually faster than it 
was the case for four-electron systems. The values 
of higher order terms included in A^ch(CCSD) are 
only about 10% of Ch(CCSD). Nevertheless, in 
accurate calculations the use of the CCSD approach 
will be necessary. The iterations of the CCSD 
equations361 for the monomers add somewhat to the 
total time of calculation, but when the CCSD cluster 
amplitudes are available, the calculation of the 
6^Ch(CCSD) correction is computationally equiva
lent to the calculation of E(™h. For He2 and He-HF 
2Ch i s smaller than 2CL while for other systems 
the two corrections are of the same order of magni
tude. This behavior does not indicate a divergence 
of the many-body perturbation series but is related 
to the fact that E^ vanishes due to the Brillouin 
theorem. 

3. Induction Energy 

Until recently studies of the intramonomer cor
relation effect on the energy of induction interactions 
were restricted to large distances, where the use of 
the multipole expansion of the intermolecular inter
action operator is legitimate. In this region the 
importance of the correlation contributions to the 
induction energy could be assessed by comparing the 
Hartree-Fock and correlated multipole moments and 
polarizabilities of monomers. Such a comparison363-365 

indicates that the effect of the intramonomer cor
relation on the induction energy may be important. 
Recently, a general form of the many-body perturba
tion expansion for the induction energy based on eq 
19 has been introduced.74 Similarly as in the case 
of the electrostatic energy two types of such expan
sions were introduced: the nonrelaxed one based on 
the standard Moller—Plesset expansion of the elec
tron densities and polarization propagators,354366 and 
the relaxed one based on the relaxed expansions of 
the electron densities and polarization propa
gators. n°-112.355 The corrections computed using the 
former scheme will be simply denoted by 2?-^, while 
the latter ones will be denoted by 22-jfj rgSp. The long-
range behavior of the corrections 25[nd' and U-jfj resp 
can be obtained in an analogous way to that dis
cussed before for the electrostatic energies. 

Each correction E^l can be decomposed as 

E\ '(2I) _ a r r (2» , t P (22 ) 
ind — -^ ind "T ^ i n d (127) 
1.77(2» 

where a£jnd a n d E\nl denote the so-called "appar-
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Table 7. Convergence of the Many-Body 
Perturbation Expansions for the Induction Energy of 
the He-K+ , He-F", (H2O)2, and He-HCl Systems" 

He-K + H e - F - (H2O)2' He-HCP 

-0.9375 

-0.0419 

-0.5625 

-0.0560 

-3.4629 

-0.9531 

-0.0363 

-0.0008 

p(20) 
•"ind.resp 
p(22) 

ind.resp 

" Energies are in mhartree. For details of calculations, see 
refs 74 and 93. h R = 5.4 bohr.c R = 6.0 bohr. d The equilib
rium geometry from ref 370. The distance between the O 
atoms is 5.66918 bohr. e Linear He-HCl geometry. The 
distance between the He atom and the center of mass of HCl 
is 7.5 bohr while the H-Cl distance is 2.40940 bohr. 

enf'and "true" correlation contributions to the induc
tion energy.119 The apparent correlation contribution 
is defined rigorously as that part of the induction 
energy which can be computed using the RPA propa
gator. It can be represented diagrammatically by a 
set of linear diagrams without rings,367 while the 
diagrammatic representation of the true correlation 
contribution involves at least one ring. Tuan et al.343 

have proved that E^ = 3 E ^ , which shows that the 
leading-order contribution to the induction—correla
tion energy can hardly be considered as a correlation 
effect. By definition the zeroth-order term in the 
relaxed many-body perturbation expansion of the 
induction energy sums up to infinity all apparent 
contributions of eq 127 

p(20) 
ind.resp 1% ind (128) 

1=0 

Thus, a large part of the intramonomer correlation 
contribution to E^ with respect to W is already 
included in the first term of the relaxed expansion, 
^hTdUp- Note also that ^fd|resp is fully included in 
the Hartree-Fock interaction energy.119'174'368-369 

Clearly, the induction-correlation energy 

.(2) - Ei(2) ?(20) e^— = Wy ' — F ind,resp ind •"ind^esp (129) 

is a more appropriate representation of the intra
monomer correlation effects in the induction compo
nent than <̂ d = #ind ~ ^a- T h e leading-order term 
in the relaxed many-body expansion of E(®d is the 
-̂ indVesp correction since the first-order correction 
-̂ indiresp vanishes on account of the Brillouin theo
rem. 

In Table 7 results of perturbative calculation of the 
induction energy through the second-order in W are 
presented for several representative van der Waals 
complexes: a rare gas atom and an ion, He-K+ and 
He-F", two polar molecules, (H2CO2, and a rare gas 
atom and a polar molecule, He-HCl. In these 
systems the induction contribution plays a varying 
role, from the dominant one in the complexes of rare 
gas atoms and ions, to a significant one in the 
complexes of rare gases and polar molecules. The 
ratios of the E^<Teap contribution to the jEJ[nd!resp term 
depend strongly on the system studied and can be 
related to the correlation effect on the polarizability. 
The induction—correlation term is completely negli
gible in the interaction of rare gas atoms with 
nonpolar molecules, so small that for such systems 
-̂ incUesp does not need to be computed unless a very 

high accuracy is needed. For interactions of rare gas 
atoms with polar molecules the induction-correlation 
can be significant as examplified by the results for 
the Ar-HF molecule discussed in more detail in 
section VILE.3. For the H e - F - system, the induc
tion-correlation contribution is very important: it 
represents about 10% of jEJnd'resp

 m the minimum 
region. This is partly due to the fact that in the 
interactions involving negative ions a partial elec
tronic transfer from the anion toward an atom or 
molecule may occur. The discussed effect is even 
larger in interactions of polar molecules. For the 
water dimer in the region of the van der Waals 
minimum J ĵ̂ resp represents as much as 30% of the 
uncorrected result. Thus, in this case even higher-
order (in correlation) terms may be quite important. 

4. Dispersion Energy 

The dispersion energy always constitutes a signifi
cant part of the interaction energy. For interactions 
involving a nonpolar molecule the dispersion interac
tion is the dominant attractive component of the 
interaction energy. Therefore the effects of intra
monomer correlation in the dispersion energy deserve 
special attention. Early calculations for the He 
dimer65 have shown that already the first term in the 
many-body expansion of the dispersion energy, 
Ef^, reproduces a large part of the intramonomer 
correlation contribution to Ef^. The expansion of 
the dispersion energy in terms of the intramonomer 
correlation operator W can be obtained by using the 
explicitly connected formulation of polarization theory 
discussed in section VLA. Rybak et al.n derived 
orbital expressions for the corrections E^p for I < 2 
and computed these corrections for the water and 
hydrogen fluoride dimers. For these systems the 
correction Ef?p turned out to be important, in some 
cases even larger than -E^.11 '69 

The multipole representation of the corrections 
Ef^ can be obtained by utilizing the standard 
M0ller-Plesset expansions of the dynamic polariz-
abilities. The relevant long-range dispersion coef
ficients are given by the Casimir-Polder integral (eq 
83) with exact polarizabilities replaced by their &th-
and Zth-order correlation corrections in the Moller— 
Plesset series with k + I = n. Recently, Wormer et 
al 48,270-272 developed a diagrammatic many-body 
perturbation theory of the correlation effects on 
dynamic polarizabilities and a general scheme for 
calculations of correlated long-range dispersion coef
ficients. The long-range dispersion coefficients cor
responding the sum Ef^ + Ef^ + E^ can now be 
routinely computed using the Polcor package devel
oped by Wormer and Hettema.48,272 [Note, however, 
that the so-called exclusion principle violating dia
grams must not be included, i.e., the scheme A of ref 
48 must be used.] 

The dispersion energy can alternatively be com
puted using the expression of eq 23 involving the 
polarization propagators. A many-body perturbation 
expansion of the polarization propagator provides the 
consecutive corrections Ed^p. Jaszunski and 
McWeeny320 argued that eq 23 represents an advan
tage relative to conventional techniques11132 since the 
polarization propagators for the isolated monomers 
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Table 8. Convergence of the Many-Body 
Perturbation Expansions of the Dispersion Energy 
for the He2, (H2)2, and (HF)2 Systems" 

He2
6 (H2)2< (HF)2' 

Ei(20) 
•^disp 
p(21) 
•^disp 

E>(22) 
•^disp 

^ p (2) 

-0.0490 
-0.0091 
-0.0017 
-0.0042 
-0.0623 
-0.0004 

-0.9098 
-0.0913 
-0.0486 
-0.3816 
-1.3827 

0.0087 

-1.8525 
0.0406 

-0.1078 
-0.4003 
-2.2122 
-0.0078 2 ^ p ( R A ) 

" Energies are in mhartree. For details of calculations, see 
ref 71. ^2? = 5.6 bohr. c Linear HH-HH geometry. The 
distance between the centers of mass of H2 is 6.5 bohr while 
the H - H distance is 1.4 bohr. d Nonlinear geometry from ref 
11. 

can be computed once and the calculations of the 
dispersion energy at various geometries would re
quire only a recalculation of two-electron integrals 
and repeated applications of eq 23. This advantage 
is only apparent, however, since accurate calculations 
of dispersion energies require the use of dimer-
centered basis sets, which means that the polariza
tion propagator would have to be recomputed at each 
geometry. 

Recently much attention has been paid159'160-311'320,356 

to that part of the dispersion energy which behaves 
at large R as CfA/R 6, where CfA is the long-range 
dispersion coefficient corresponding to the use of the 
random-phase approximation (RPA) polarizabilities 
in eq 83.260'261'264 Since this part of £ ^ p is the sum 
of ring diagrams,71 it has also been referred to as the 
dispersion energy in the ring approximation (RA), 
and denoted accordingly by E^.(RA). The disper
sion energy in the ring approximation can be ob
tained in an order-by-order summation of contribu
tions of ring diagrams to Ef^ 71 (these contributions 
will be denoted as E(^p(RA)), by the use of the RPA 
polarization propagators in eq 23,320-356 or by the use 
of coupled-cluster equations derived in ref 71. Jas-
zunski and McWeeny320 suggested that 2^p(RA) 
may be a significantly better approximation to the 
exact dispersion energy than the zeroth-order term 
-E ŝp. Further studies by Cybulski356 have shown, 
however, that for many van der Waals complexes the 
dispersion energy in the ring approximation is not a 
considerable improvement over Ef^. 

The convergence of the many-body series for the 
dispersion energy has been studied already some 
time ago but only for the He2 system67 or at large 
intermonomer distances262 where the use of the 
multipole expansion of V is legitimate. Results 
obtained from a more recent work71 are shown in 
Table 8 where dispersion energies through second 
order in W are presented for the He, H2, and HF 
dimers. Also included in this table are the sum of 
the series truncated at the second order, Ef^ (2), 
and the sum of terms £Jjfsp(RA) with I > 3. These 
results show that the convergence of the many-body 
expansion is relatively fast. The sum of third and 
higher-order terms 2?^ (RA) is indeed very small 
compared to the sum of the series through the second 
order. On the other hand, the contribution of dia
grams of more complex topologies, i.e., the difference 

Bdisi _ E^(RA), turns out to be very important, 
and it remains to be seen whether the higher order 
contributions from these diagrams are also signifi
cant. These results show that the inclusion of ring 
diagrams through the second order in W reproduces 
99% of the exact value of E ^ R A ) . Such a second-
order calculation is much simpler since it does not 
require solving RPA equations or iterating coupled-
cluster equations. 

VII. Applications 

The first applications of SAPT to systems larger 
than H2 appeared in the 1970s. Initially interactions 
of "Hartree—Fock" molecules were considered, i.e., all 
intramolecular correlation effects were neglected. 
These effects were included in calculations for small 
atoms at the end of 1970s and for general systems 
at the end of 1980s. The many-body SAPT codes 
performing such calculations are available through 
the METECC-94 project.371 These codes include 
terms up to the second-order in the intermolecular 
interaction operator. The order with respect to the 
intramolecular correlation operator depends on par
ticular type of interaction and some effects include 
even terms of the fourth order (for electrostatic 
interaction) or infinite CCSD-type summations. The 
list of the corrections programed so far is given in 
Table 9. Below we will present a discussion of recent 
applications of many-body SAPT. We will compare 
the potential energy surfaces to empirical ones as 
well as to supermolecular calculations when avail
able. Since recently the SAPT potentials have been 
used to compute directly measured quantities. This 
most unambiguous test of the quality of intermolecu
lar potentials is now available for SAPT and will be 
discussed below. In this section we will also briefly 
mention some approaches of approximate nature 
which are based on ideas of SAPT. 

A. Accuracy of Potentials Computed by 
Many-Body SAPT 

An important aspect of a theoretical result is the 
possibility of providing a reliable estimation of its 
accuracy. Before we start a discussion of applications 
of SAPT, let us briefly elaborate on how it is possible 
to get such estimations for this theory. The error of 
truncation of the double SAPT expansion has already 
been discussed in sections III and VI. The conclu
sion—drawn from calculations on few-electron sys
tems and from asymptotic analysis—is that we may 
expect errors of the order of a few percent from this 
source. Moreover, for some of the energy terms 
infinite-order (in W) summations in the spirit of 
CCSD method have been developed.1271'73 In the 
majority of calculations a more important source of 
error will be that resulting from incompleteness of 
orbital basis sets. Since each term in the SAPT 
expansion can be computed separately using a basis 
set designed specifically for this term, this source of 
error can be conveniently investigated on a term by 
term basis. This feature turns out to be important 
since the basis set convergence patterns do depend 
to a large extent on the type of interaction considered. 
It follows that the use of a single orbital basis set for 
all corrections may not lead to an optimal conver-
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Table 9. List of the Many-Body SAPT Corrections Developed to Date" 

Chemical Reviews, 1994, Vol. 94, No. 7 1919 

symbol name physical interpretation 
Ei(IO) 
•fcpol 

BS?/=2,3,4 

electrostatic energy accounts for damped electrostatic interactions of Hartree—Fock permanent 
electric multipole moments of the monomers 

intramonomer correlation account for damped electrostatic interaction of correlated multipole moments 
corrections to electrostatic energy of the monomers; contain correlation effects of the Zth-order in W 

<10> 
t!i. 

^ e x c h ^ - 1 ' 2 

exchange repulsion results from exchange of electrons (quantum mechanical tunneling) between 
unperturbed monomers described at the Hartree-Fock level 

intramonomer correlation account for the effects of the intramonomer correlation (of the lth. order in W) 
corrections to exchange repulsion on the exchange repulsion 

F (20) 
•^ind 

<22) 

originates from the damped interactions between the permanent and induced 
multipole moments obtained at the Hartree-Fock approximation 

accounts for the damped interactions between correlated permanent and 
induced multipole moments 

additional exchange repulsion due to the coupling of electron exchange and the 
induction interaction in zeroth order with respect to W 

originates from damped interactions of instantaneous electric multipole 
moments of the monomers described at the Hartree-Fock approximation 

intramonomer correlation correction (of the Zth order in W) to the dispersion 
energy; originates from the coupling of the intramonomer correlation effects 
and the intermolecular dispersion interaction 

additional exchange repulsion due to the coupling of electron exchange and the 
dispersion interaction in zeroth order with respect to W 

a The superscripts n and I in Einl> denote the orders of perturbation in V and W, respectively. Most of the electrostatic and 
induction corrections have been programed in both the regular and response versions. Some corrections are available in CCSD 
versions, see text. 

p i 

p(20) 
•"exch-ind 

Ei(20) 
•^disp 

J 0 = l , 2 

EI(20) 
exch-disp 

induction energy 

intramonomer correlation 
correction to induction energy 

exchange-induction energy 

dispersion energy 

intramonomer correlation 
correction to dispersion energy 

exchange—dispersion energy 

gence with the number of orbitals. Also it so happens 
that the terms least rapidly converging are at the 
same time computationally least demanding, which 
allows one to compute them with very large basis sets 
leading to reliable final results. In contrast, it is very 
difficult to estimate accuracy of supermolecular 
calculations. Since the supermolecular approach 
provides only the total interaction energy which is 
usually a rather small sum of large components, 
small relative changes of those components may 
change the interaction energy quite significantly. The 
basis set superposition errors can often "make up" 
for deficiencies of the method and of the basis set and 
lead to fortuitous agreement with experiment. Sub
sequent improvements of the basis set or the method 
may as well increase as decrease the agreement with 
experiment. 

Applications of SAPT at the highest coded level of 
theory have been performed for several representa
tive systems. These systems include dimers bound 
mainly by dispersion forces like those of rare gas 
atoms or the Ar-H2 molecule, systems dominated by 
the induction interaction like He-K+, and systems 
where electrostatic effects play a leading role like the 
water dimer. Most SAPT calculations have been 
performed for systems for which large amounts of 
experimental data are available (in particular data 
sensitive to intermolecular potentials, such as ion 
mobilities, diffusion coefficients, near- and far-
infrared transition energies, and lifetimes for excited 
rovibrational states) and for which accurate empirical 
potentials exist. Of particular interest for testing the 
many-body SAPT are experimental results sensitive 
to anisotropies of the potential energy surfaces and 
to many regions of the potentials (short range vs the 
van der Waals minimum region). 

B. Approximate Implementations of SAPT 

There exists several methods of calculating inter
molecular interactions which can be viewed as ap
proximations to SAPT. The most popular is the so-
called Hartree-Fock plus dispersion (HFD) model.372 

This approach first calculates the Hartree-Fock 
interaction energy which, as discussed elsewhere in 
this review, can be viewed as a quantity summing 
several lowest SAPT corrections.174-369 Since SCF 
calculations are much faster than correlated ones, 
large basis sets can be used making the basis set 
superposition effects relatively unimportant. This 
energy is then supplemented by the dispersion en
ergy which is usually calculated from the asymptotic 
expansion with some damping function. Since damp
ing is introduced in a more or less arbitrary manner, 
such method should be viewed as a heuristic model 
of intermolecular interactions. The dispersion energy 
can also be easily included in a nonempirical way by 
computing the Ef^ correction. The exchange 
quenching of the dispersion energy can be included 
by computing l C U s p . 1 8 5 

The accuracy of the HFD model can be now 
assessed using the results of recent extensive SAPT 
calculations. The model neglects all the effects of the 
intramonomer correlation on the first-order interac
tion energy. As discussed in section VI, these effects 
typically give contributions of the order of 10 to 20 
percent of the interaction energy. In the second-order 
semiempirical treatment the main source of error is 
due to ad hoc assumptions in construction of the 
damping functions. This error is very difficult to 
estimate. The asymptotic coefficients, on the other 
hand, can often be quite accurate and include high-
level intramonomer correlation effects. For small 
systems the leading coefficients can be obtained 
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semiempirically.277-297 Recently it has become pos
sible to compute these coefficients by many-body 
methods developed by Wormer et aZ.48'269"272 

A somewhat different method has been recently 
applied to interactions of several systems by the 
Nijmegen group.226,249'373""375 In this method the first-
order polarization and exchange energies are com
puted at the Har t ree-Fock level, i.e., including only 
the correction E(m. The induction and dispersion 
effects are taken into account by using damped 
asymptotic expansions. An important advantage of 
this method is its computational efficiency. A cal
culation of Eam is much faster than a calculation of 
£™. In addition E(lm was calculated in monomer-
centered basis sets which leads to further computa
tional savings (but may introduce significant errors 
resulting from too fast decay of the tails of wave 
functions). Calculations of the dispersion and induc
tion energies from asymptotic expansions are also 
computationally relatively undemanding since each 
such calculation involves only one monomer at a time 
and has to be done just once. The consecutive 
computation of the values of the dispersion or induc
tion energies at particular geometries requires only 
a calculation of Wigner's D functions defined in 
section IV. In the work of the Nijmegen group the 
long-range coefficients have been calculated using the 
many-body method of Wormer et al.46'269'272 The 
damping parameter in the generalized Tang-Toen-
nies307 damping functions was set equal to the value 
of the exponent from the Born-Mayer fit to Ea0). The 
replacement of E^ by Eao) plus the damped asymp
totic induction is a very reasonable idea. Although 
the results are somewhat less accurate than in the 
HFD model, this loss of accuracy is insignificant 
compared to the important effects neglected by both 
models, while computational saving are significant. 
Because of the small computational demands of this 
method, the authors have been able to compute 
complete potential energy surfaces including some 
variations of molecular coordinates for N2-N2,373 

CO-CO,3 7 4 Ar-H2O,2 4 9 and Ar-NH 3
3 7 5 (e.g., for A r -

NH3 calculations have been performed for four dif
ferent HNH "umbrella" angles of ammonia). The 
analytical potentials obtained for N2-N2 and C O 
CO have been successfully applied to compute trans
port properties and in studies of dynamics of molecu
lar crystals (see refs 376 and 377, respectively, for a 
review of those two applications). Several of the 
potentials computed by this group have been applied 
in dynamical calculations of the rovibrational levels 
of the investigated systems.378"383 (See also ref 384 
for a summary of these results.) 

C. Dimers of Rare Gas Atoms 

Rare gas dimers are the simplest van der Waals 
molecules and several ab initio SAPT potentials at 
various levels of approximation have been computed 
for these systems. Except for the He dimer, all other 
dimers have been observed in UV and/or Raman 
spectra. A detailed discussion of the spectroscopy of 
these molecules can be found in ref 19. For a long 
time there were speculations that the H e - H e poten
tial does support a single bound state but no experi
mental evidence for the existence of He2 molecule was 
available. Very recently, however, the helium dimer 

has been indirectly detected385""387 in experiments 
involving electron impact ionization of a supersonic 
beam of helium gas at very low temperatures. The 
analysis of the experimental data revealed that the 
He2

+ ions detected in a mass spectrometer can arise 
only from the ionization of the neutral He2 molecule. 

The helium dimer has been traditionally the most 
often theoretically studied system due to its simplic
ity and availability of very accurate empirical poten
tials for comparison. The first large-scale SAPT 
calculation was that of ref 65, later improved upon 
in refs 68, 67, and 327. Recently all presently coded 
many-body SAPT corrections have been computed for 
this system.388 These results, together with the 
previously computed limits of some corrections in 
(explicitly correlated) Gaussian geminal basis sets,68,327 

provide the potential energy curve with the minimum 
depth of 10.86 K388 which compares very well with 
the best empirical value of 10.97 K.389 The SAPT 
results are also in very good agreement with the 
supermolecular results of Vos et al.390 obtained by 
using the multireference CI method, and with those 
from quantum Monte Carlo calculations.391 

Several calculations of ab initio SAPT intermolecu-
lar interaction energies between the "Hartree-Fock" 
rare gas atoms have been published by Chalasinski 
et al. In refs 392 and 393 the potential energy curve 
for Ne2 interaction has been computed using large 
spdfgh orbital basis sets. Since the exchange-
correlation effects seem to be large for Ne2, the 
potential of Chalasinski et al. had the minimum 
about 12% too deep and shifted to smaller R by about 
0.5 bohr compared to the accurate semiempirical 
potential of Aziz et al.394 The other reason for the 
discrepancy could be the use of a nonstandard 
expression for E^L with the Moller-Plesset de
nominators replaced by the so-called Epstein-Nesbet 
ones. 

D. Interactions of Rare Gas Atoms with Ions 

The mobilities of ions moving through a dilute 
neutral gas under the influence of an externally 
applied electric field are closely related to the inter
action potential in the region of the potential 
well.395-397 In principle the a tom-ion potentials can 
be obtained by a direct inversion of the ion transport 
data which does not require arbitrary assumptions 
about the analytic form of the interaction potential. 
Using the rigorous kinetic theory of ion mobilities in 
gases398 one can determine directly the numerical 
values of the interaction energies for a wide range of 
internuclear distances. In this way the interaction 
potentials for all alkali ion—rare gas atom399,400 and 
halide ion—rare gas atom401 complexes have been 
obtained. The correctness of these potentials de
pends critically on the accuracy of the (experimental) 
transport data, but at present reliable mobility data 
are available for several ion-a tom combinations.402 

Recently an ab initio SAPT potential for the He— 
K+ system has been computed.93 It agrees very well 
with the mobility-derived potential of Viehland400 

obtained by inversion of gaseous ion mobility data 
(typical errors are 2% in the repulsive region, 0.5% 
at the van der Waals minimum, and 1% in the 
attractive region). In particular, the minimum depth 
has been found to be equal to 170.9 cm - 1 while the 
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empirical potential400 predicts 169.9 cm"1. The SAPT 
potential has been applied in simulations of K+ 

mobilities and diffusion coefficients in the He gas 
providing results supporting one set of experimental 
observables over another. (See ref 93 for details.) 
This is the first time that a theoretical potential 
achieved such a level of predictability. 

Similar application of the many-body SAPT ap
proach has been recently reported for the He-Na+ 

system.403 The calculations of the transport coef
ficients for the Na+ ions in the He gas have shown 
that the SAPT potential for this system predicted the 
mobility and diffusion data with an accuracy com
parable to that of a semiempirical potential404 ob
tained by fitting the mobility-derived potential of ref 
400 to a functional form. 

Other atom-ion interaction potential computed 
recently by many-body SAPT is the H e - F - poten
tial.405 In this case the mobility-derived potential401 

is known only in the highly repulsive region. Two 
semiempirical potentials for this system have been 
reported in the literature.404-406 Koutselos et al.404 

constructed a model potential by approximating its 
long-range part by the sum of induction and disper
sion energies calculated using the HFD model,372 and 
representing the remaining short-range part, derived 
from the empirical potential,401 with a suitably scaled 
"universal" function describing the exchange interac
tion of the halide ion-rare gas atom system. The 
semiempirical potential of Ahlrichs et al.406 can be 
viewed as an extension of the Tang—Toennies 
model,307 originally developed for interactions of rare 
gas atoms. The SAPT potential agrees well with the 
supermolecular results of Diercksen and Sadlej407'408 

computed at the MBPT4 level (MBPTrc will always 
denote the supermolecular MBPT calculation through 
the nth. order based on the M0ller-Plesset partition
ing of the dimer Hamiltonian) and corrected for the 
basis set superposition error using the Boys-Ber-
nardi counterpoise correction.32 The depths of all ab 
initio potentials for this system405,407'408 are much 
smaller than those predicted by the semiempirical 
potentials. The reasons for the discrepancy between 
the SAPT potential and the semiempirical potential 
of Ahlrichs et al.406 have been later traced down405,409 

as due to an incorrect theoretical input, while the lack 
of agreement with the model of Koutselos et al.404 is 
probably due to an incorrect extrapolation from the 
repulsive region to the region of the van der Waals 
minimum.405 The supermolecular MBPT series which 
usually seems to converge relatively fast behaves for 
H e - F - in a rather erratic way.407'408 This conver
gence pattern has been rationalized by the SAPT 
results.405 Recently Chalasinski and Szczesniak31 

have shown that the CCSD(T) contribution beyond 
the fourth order of MBPT increases the depth in the 
minimum by as much as 24%. It remains to be seen 
if this increase can be related to the contribution from 
CCSD-type summations of the induction and disper
sion energies. 

E. Interactions of Rare Gas Atoms with 
Molecules 

Since the nuclear dynamics calculations for atom-
small molecule systems can be presently performed 
in a virtually exact way,24 the empirical potentials 

fitted to spectroscopic and scattering measurements 
are free from uncertainties related to dynamical part 
of the inversion procedure. The empirical intermo-
lecular potentials for Ar-H2, He-HF, and Ar-HF, 
discussed in this subsection, are based on a large 
amount of high-resolution spectroscopic data and are 
believed to be very accurate. These potentials present 
a very challenging test for theory. For argon-
ammonia and argon-water systems the number of 
parameters in empirical potentials is not much 
smaller than the number of measured transitions, so 
that the resulting potentials may be somewhat less 
accurate. Since only an approximate version of SAPT 
has been applied to these systems thus far, the 
accuracy of the obtained theoretical potentials is also 
lower than the accuracy of the potentials computed 
for atom-diatom systems. 

1. Ar-H2 

The most elaborate application of many-body SAPT 
was that to the Ar-H2 interaction91 where the 
complete potential energy surface (including the 
variation of the H - H distance) was computed using 
spdfg-quality basis sets. The Ar-H2 van der Waals 
molecule is one of the most thoroughly investigated 
atom-diatom complexes, and the empirical potential 
energy surface for this system is probably the most 
accurately determined of any atom—diatom poten
tials. Using the high-resolution near-infrared spec
tra,410 hyperfine spectra,411 and molecular beam 
differential cross sections,412 Le Roy and Hutson413 

determined a multiproperty fitted potential for Ar -
H2. Their final potential reproduced the results of 
all the measurements to within the experimental 
error bars, including some data not utilized in the 
fit. The comparison of the SAPT and empirical 
potentials is presented in Figure 5. As one may see 
the agreement is excellent. In fact, the agreement 
is uniform in the whole configuration space, including 
angular variation and the variation of the H - H 
distance. The positions of minima agree to 0.03 bohr 
and the depths are 164.7 and 161.9 cal/mol for the 
SAPT and empirical potentials, respectively. For the 
first time such an agreement has been reached 
between theory and experiment for a system that 
large. 

More recently Schwenke et al414 computed the 
complete (including a variation of the H - H distance) 
potential energy surface for Ar-H2 using a large spdf 
basis set and the averaged coupled-pair functional 
method. These authors have used a variant of the 
Boys-Bernardi counterpoise method (with an ad
ditional correction aimed at partially remedying the 
size nonextensivity of their method). At the region 
near the van der Waals minimum their fitted poten
tial energy surface is significantly above the Le Roy 
and Hutson results—the minimum depth is only 67% 
of the empirical depth. Thus, the authors had to 
resort to an empirical scaling of their potential. They 
have attributed the problem to the inadequacy of the 
orbital basis set. However, their basis was relatively 
large and most likely deficiencies of the method (such 
as incomplete account of multiple electron excita
tions, size nonextensivity, and the basis set super
position effects) are responsible for a large part of 
this disagreement. 
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R [bohr] 

Figure 5. Comparison of computed interaction energies 
for Ar-H2 (broken line) with the empirical TT3(6,8) poten
tial of Le Roy and Hutson (solid line).413 The energies are 
shown as functions of R for 0 = 0° and 90° and for TH-H = 
1.4 bohr. 

The SAPT potential91 has recently been applied in 
dynamical calculations of the rovibrational energy 
levels of Ar-H2 and Ar-D2.415 It reproduced very 
accurately transition frequencies for all the measured 
bands in the near- and far-infrared:410-416 typical 
errors are of the order of 0.1 cm-1 (see also ref 384 
for a discussion of dynamical calculations). This very 
good agreement between the results of ab initio 
calculations415 and high-resolution measurements410'416 

show that SAPT calculations correctly account not 
only the dominant isotropic part of the true interac
tion potential, but also its dependence on the diatom 
stretching distance and small anisotropic terms. 

2. He-HF 

The He-HF complex is very weakly bound and it 
was investigated mainly using scattering tech
niques.417-418 Only recently Lovejoy and Nesbitt419 

reported the first spectroscopic study of the high-
resolution near-infrared vibration—rotation spectra 
corresponding to the simultaneous excitation of the 
vibration and rotation of HF within the He-HF 
complex. The broadening of the spectra due to rapid 
rotational predissociation of the system was also 
measured. 

Many ab initio studies of the He-HF interaction 
have been reported in the literature420-421 and the 
depths of the van der Waals minima predicted by 
these potentials range from 8 to 40 cm-1. The most 
advanced of the ab initio potentials, developed by 
Rodwell et al.,421 follows closely the HFD model372 and 
neglects important intramonomer correlation effects. 
Lovejoy and Nesbitt419 reported calculations of bound 
and quasibound rovibrational levels and of the line 
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Figure 6. Comparison of computed interaction energies 
for He-HF (solid line) with the empirical potential of 
Lovejoy and Nesbitt419 (dashed line). The energies are 
shown as functions of R for 8 = 0°, 90°, and 180°, and for 
r-a-v = 1.7328 bohr. 

widths using the ab initio potential of Rodwell et al.421 

Their results have shown that this potential repro
duces the near-infrared spectrum of the complex 
rather poorly. However, by a simple scaling of the 
long-range dispersion coefficients in this potential 
Lovejoy and Nesbitt419 were able to obtain an aniso
tropic potential energy surface which satisfactorily 
reproduced all spectroscopic data available for H e -
HF. 

Recently, SAPT calculations were performed on the 
He-HF system.92 In this work the potential has 
been computed for three H - F separations. Since 
only a basis set of spdf quality has been employed, 
the dispersion energy has been asymptotically scaled 
in the final potential. The idea of this asymptotic 
scaling of the dispersion energy was that the pen
etration part of the dispersion energy (i.e., the short-
range charge-overlap contributions to Ef^) are less 
sensitive to the quality of the basis set than the 
multipole part (i.e., the long-range dispersion coef
ficients), provided that dimer-centered basis set is 
used in calculations. The scaling was then achieved 
by replacing the long-range dispersion coefficients 
Cl

n disp used in the functional fit to the computed 
dispersion energy (calculated in the same basis set 
as that used in the finite R calculations and at the 
same level of theory, cf. section VI) by the coefficients 
computed in a much larger basis. The scaled poten
tial energy surface of ref 92 agrees very well with 
the HFD2-M1 empirical potential of Lovejoy and 
Nesbitt,419 as shown in Figure 6. The depths of the 
two potentials are 39.68 and 39.20 cm-1, respectively. 

The SAPT potential has been subsequently used422 

in dynamical calculations of rovibrational energy 
levels ofHe-HF (v = 0) and He-HF (v = 1). For a 
detailed account of these calculations we refer the 
reader to the original paper422 (see also ref 384 for a 
review of these results). The agreement between the 
results of high-resolution measurements419 and ab 
initio calculations422 was excellent: the SAPT poten
tial energy surface73 predicted all infrared transitions 



Perturbation Theory Approach Chemical Reviews, 1994, Vol. 94, No. 7 1923 

Rtbohr] 

Figure 7. Comparison of computed interaction energies 
for Ar-HF (solid line) with the empirical potential of 
Hutson423 (dashed line). The energies are shown as func
tions of R for 6 = 0°, 90°, and 180°, and for rH-F = 1.7328 
bohr. 

with accuracy comparable to that of the empirical 
potential.419 Absolute errors were always smaller 
than 0.1 cm-1, and some transition energies were 
predicted even more accurately by the SAPT poten
tial. The ab initio potential failed, however, to 
reproduce correctly the line widths. Minor scaling 
of the short-range contribution to the small Z = I 
angular component of the potential was necessary to 
obtain agreement with the experimental data.419 This 
scaling introduces, in fact, a very small change in the 
interaction potential: the depth of the van der Waals 
minimum was affected by only 2%. 

3. Ar-HF 

The Ar-HF molecule is also one of the most 
thoroughly investigated rare gas-hydrogen halide 
systems. Recently, Hutson423 developed a complete 
potential energy surface for this system (including 
explicitly the dependence on the vibrational quantum 
number v of the HF monomer) by fitting extensive 
high-resolution microwave, near-infrared, and far-
infrared spectra.424 The resulting potential energy 
surface423 has been recently thoroughly tested425-428 

and proven to be very accurate. The empirical 
potential predicted accurately new bands in the 
spectra425426 and reproduced correctly inelastic scat
tering cross sections427 and pressure broadening and 
shifting coefficients.428 

A SAPT calculation of the interaction potential for 
Ar-HF94 (for a fixed H - F distance) has recently been 
completed. Also in this case the many-body SAPT 
potential is very close to the empirical potential of 
Hutson,423 the differences being pronounced only in 
the short-range repulsive region (see Figure 7). The 
SAPT potential predicts a global minimum of em = 
-207.3 cm-1 at R7n = 6.51 bohr and a secondary 
minimum of em = -110.1 cm-1 atRm = 6.38 bohr, in 
very good agreement with em — -211.1 cm -1 and R7n 
= 6.50 bohr for the primary minimum and em = 
-108.8 cm'1 and R7n = 6.38 bohr for the secondary 

minimum as predicted by the empirical potential (at 
the equilibrium separation of HF). Taking into 
account the intramonomer correlation effects on the 
induction and exchange—induction energies was es
sential for achieving this agreement. The SAPT 
potential is now being tested in dynamical computa
tions of transition energies in the far-infrared region. 

Very recently, Chang et al.426 reported an ab initio 
potential for this system computed using the super-
molecular MBPT4 method corrected for the basis set 
superposition error using the Boys-Bernardi coun
terpoise correction.32 Despite the use of spdf basis 
sets including bond functions, the depths of the 
predicted primary and secondary minima em = 
-193.15 cm-1 and about -90 cm"1, respectively, 
differ somewhat from those obtained from the SAPT 
calculations94 or from the empirical potential. 

4. Ar-H2O 

The Ar-HaO van der Waals molecule is considered 
to be a prototype of systems which exhibit hydropho
bic interactions. Therefore, it attracted much atten
tion of both experimentalists and theoreticians. High-
resolution spectra in the microwave, near-infrared, 
and far-infrared regions have been measured for this 
system429 and these data have been used to construct 
empirical potential energy surfaces. Hutson430 re
ported a series of effective angular potentials. Cohen 
and Saykally determined a three-dimensional inter-
molecular potential431 by fitting 9 parameters to 11 
spectroscopic measurements. Very recently, these 
authors improved their potential and a new detailed 
potential energy surface has been obtained432 by a 
direct nonlinear least square fit of 12 parameters to 
37 spectroscopic measurements. Some parameters 
in the latter potential were fixed at their ab initio 
values from ref 249. 

Chalasinski and collaborators433 performed super-
molecular MBPT2 calculations of two cuts through 
the potential energy surface using an spd basis set. 
In addition, for two points these authors reported 
supermolecular MBPT4 results in spdf basis sets. 
The anisotropy of the interaction energy at the 
Hartree-Fock and correlated MBPT2 levels of theory 
was interpreted using low-level SAPT corrections: 
^jJS'. C l and E(™rmp at the Hartree-Fock level, 
£pdresP and E ^ at the correlated MBPT2 level, and 
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SAPT corrections have been neglected, the agreement 
between the SAPT and MBPT results is only qualita
tive. The minimum depth obtained by Chalasinski 
et al. at the MBPT4 level of theory in spdf basis is 
108 cm-1 which can be compared to the value of 158 
cm-1 computed by Bulski et al.249 Empirical estima
tion of this quantity is 142.98 cm-1.432 All potentials 
have the minima at the planar geometries. The most 
striking difference between the empirical potential432 

and the potential of Bulski et al.249 is that the former 
potential obtains the equilibrium geometry close to 
the nonlinear hydrogen-bond configuration at 8 = 
106° (where 0 = 0° corresponds to Ar on the O side), 
while the latter finds the minimum at 8 — 50°. The 
potential of Chalasinski et al. predicts an essentially 
flat minimum valley between 8 = 70° and 120° (with 
varying R). The potential energy surface of Bulski 
et al.249 has been tested in dynamical calculations of 
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the rovibrational energy levels.434 See ref 384 for a 
discussion of these results. 

5. Ar-NH3 

Similarly as for the Ar-H2O complex, high-resolu
tion spectra in the microwave and far-infrared region 
have been measured435 for the Ar-NH3 system. 
Recently, Schmuttenmaer et al.276 determined a 
three-dimensional potential energy surface from a 
least square fit of 13 parameters to 61 spectroscopic 
measurements. Important ingredients in this poten
tial were ab initio long-range induction and disper
sion coefficients from ref 48. 

Chalasinski et al.436 reported two cuts through the 
potential energy surface of Ar-NHa computed using 
the supermolecular MBPT2 method and an spd basis 
set. Similarly as in the case of the Ar-H2O interac
tion, the anisotropy of the interaction energy was 
interpreted in terms of low-level SAPT corrections. 
In addition, the interaction energy at the minimum 
was computed at the MBPT2 level of theory using 
an spdf basis set. Bulski et al.375 in the work 
discussed above compared their results to those of 
ref 436. In general the agreement was reasonably 
good. The minimum depth found by Bulski et al. is 
larger by about 20% than that obtained by Chala
sinski et al. which can be attributed mainly to a 
better basis set saturation of the dispersion energy 
and to the effects of intramonomer correlation in
cluded for this component in the former work. On 
the other hand, the result of Bulski et al. contains a 
hard to estimate inaccuracy resulting from the model 
damping functions. The depth of the potential of 
Bulski et al. is 134.2 cm-1 which compares reasonably 
well with the empirical result of 147.0 cm-1 from ref 
276. Notice that if the E^ correction, computed by 
Chalasinski et al. to be equal to -7.2 cm-1, were 
added to the minimum found by Bulski et al., the 
agreement with experiment would improve quite 
significantly, van Bladel et aZ.381-383 used the poten
tial energy surface of Bulski et al.375 to generate the 
infrared spectrum of the Ar-NHa complex. For a 
discussion of these results we refer the reader to the 
original papers381"383 (see also ref 384 for a review). 

F. Hydrogen-Bonded Dimers 

The water dimer is a benchmark system for hy
drogen-bonded interactions and an early version of 
SAPT has been applied to this system already in 
1976.132 More recently the Hartree-Fock plus 
^Ssp level of theory has been used in calculations 
with large orbital basis sets.35 Hess et al.437 com
puted the Ea0) and Em) corrections for the water 
dimer using spd basis sets. Notice that Hess et al. 
have not used the standard dimer-centered basis set 
in their work but a basis constructed in such a way 
that the occupied orbitals are expressed in monomer-
centered basis functions only while the virtual orbit
als extend over all centers. This choice leads to minor 
differences when compared to dimer-centered results. 
A higher level of SAPT was included in ref 11 where 
two cuts through the potential energy surface have 
been computed using spdf basis sets. The computed 
SAPT interaction energy at the minimum is —5.6 
kcal/mol which agrees well with the experimental 

estimate of -5.4 ± 0.7 kcal/mol438 (based mainly on 
bulk properties). However, Rybak et al. were aware 
that some of the SAPT corrections not available at 
that time may change their theoretical result ap
preciably. These corrections were estimated by tak
ing into account also the supermolecular results, and 
the final recommended minimum depth, arrived at 
in ref 11, was 4.7 ± 0.2 kcal/mol. All the presently 
coded SAPT corrections have recently been com
puted358 for the water dimer providing in fact the 
same minimum depth as estimated by Rybak et al.11 

The results of SAPT are in agreement with recent 
very careful, large basis set supermolecular calcula
tions of van Duijneveldt-van de Rijdt and van Duijn-
eveldt439 who estimated the water dimer binding 
energy at 4.7 ± 0.1 kcal/mol. 

Reference 11 also presented a calculation of the 
interaction energy for the hydrogen fluoride dimer 
which gave the minimum depth of 4.85 kcal/mol. 
When the additional SAPT corrections estimated as 
in the case of the water dimer were added, the 
recommended value of the minimum depth was 4.2 
± 0.2 kcal/mol.11 Recent calculations of these cor
rections gives the depth of 4.56 kcal/mol,358 in excel
lent agreement with the empirical depth of 4.46 kcal/ 
mol440'441 obtained from spectroscopical data and 
quite likely accurate to all digits given. For a recent 
review of supermolecular results for this system see 
ref 442. 

G. Interactions of Large Molecules 

The many-body SAPT has also been applied to 
much large systems than discussed so far. At the 
E™t plus Ef^ level it was used to compute the 
potential energy surface for the nitromethane dimer.443 

Recently single-point calculations have been per
formed for the uracil-water complex444 using a 
higher level of theory. The computed value of the 
interaction energy is in reasonable agreement with 
the empirical result of Sukhodub.445 

VIII. Summary 

We have reviewed here the present state of the 
perturbational theory of the intermolecular interac
tions phenomenon. The whole potential energy 
surface, from the short-range repulsive region to the 
long-range asymptotic regions, can be described by 
the currently developed level of symmetry-adapted 
perturbation theory. The presently available imple
mentation of this theory at the second-order level 
with respect to the intermolecular interaction opera
tor is capable of reproducing interaction energies with 
only few percent errors. This conclusion has been 
reached on the basis of extensive tests of the conver
gence properties of various formulation of SAPT on 
model systems: H2

+, H2, and He2. This work has first 
shown that the simplest polarization theory which 
uses wave functions of incorrect permutational sym
metry cannot provide an adequate description of the 
potential energy surface, except for very large inter
molecular separations. It has been further demon
strated that at least one of the variants of SAPT, the 
Hirschfelder—Silbey method, provides a well conver
gent expansion of the interaction energy. While the 
HS method is too complicated to be at present 
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practically applied to larger many-electron systems, 
a much simpler symmetrized Rayleigh-Schrodinger 
method is in low order practically equivalent to the 
HS method. In particular the differences between 
the two methods are negligible at the second order, 
i.e., at the level of theory which can be practically 
computed for larger systems. Thus, the SRS theory 
takes a proper account of the electron exchange 
effects and it is the SRS method which has been 
programed and applied to many-electron systems. 

The polarization expansion can be legitimately 
used at large intermolecular separations. It is usu
ally applied then in conjunction with the multipole 
expansion of the interaction operator. This expan
sion simplifies the calculations significantly, allowing 
a construction of the long-range potentials utilizing 
only monomer-specific information. Actual values of 
the interaction energy are then obtained by a mul
tiplication of the radial part by simple angular 
functions. The long-range constants can now be 
computed using many-body techniques closely related 
to those employed in many-body SAPT. Use of the 
data obtained from long-range multipole expansion 
results in significant savings of computer time since 
SAPT calculations need not be performed for larger 
R. The information from the asymptotic expansion 
is also utilized in the construction of the analytical 
potentials used to fit the computed points. 

An important question in construction of analytical 
potentials is the form of the damping functions 
describing the charge-overlap effects, i.e., accounting 
for the difference between the exact value of the 
polarization energy of a given order and the multipole 
approximation to it. A lot of effort has been invested 
in ab initio calculations of the damping functions. 
These calculations have shown that semiempirical 
accounts of damping are difficult since it is dependent 
on properties of interacting systems in a complicated 
way. Fortunately, recent experience has shown that 
in fitting the points computed ab initio by SAPT the 
standard form of the damping function (inferred from 
accurate results for H2) is flexible enough. 

The many-body perturbation expansion of the first-
and second-order interaction energies is made with 
respect to the M0ller-Plesset fluctuation potentials 
for monomers. This expansion is presently truncated 
at various orders, depending on a particular compo
nent. This truncation has been determined by ana
lyzing the convergence patterns for several test 
systems. It is believed that the error introduced by 
this truncation is of similar magnitude as the error 
resulting from the truncation of the expansion in 
powers of the intermolecular interaction operator. It 
has been shown that inclusion of electron correlation 
is critical for almost all intermolecular interactions. 
In particular the hard-to-compute effects of intra-
monomer correlation on the dispersion and exchange 
energies are far from being negligible. 

Actual calculations for systems of interest require 
dealing with the question of preparing orbital basis 
sets which would furnish reliable results at lowest 
computational cost. It has been found that the 
interaction energies converge with the number of 
basis functions even slower than the total correlation 
energies. Large basis sets containing up to g orbitals 
are needed to reach accuracies better than 10%. 

Moreover, the orbital exponents optimal for calcula
tions of interaction energy are somewhat different 
from those optimal for describing correlation effects 
within monomers which requires some extra effort 
on optimization of such orbitals. Proper computa
tional strategies have been developed to make cal
culations of complete potential surfaces possible 
despite these significant computational demands. 

At the first- and second-order (in V) level of theory 
the energy components computed by SAPT can be 
classified as describing the electrostatic, induction, 
dispersion, or exchange interactions. The relative 
contributions from these components change depend
ing on the intermonomer separation. The relative 
contributions depend also on the type of the interact
ing systems and can be approximately related to 
monomer's properties, providing some guidance in 
understanding the shapes and depths of the poten
tials for various systems. SAPT calculations show 
that the form of potential energy surfaces for most 
regions and most systems results from a subtle 
balance of the four components. While computation
ally this fact means the necessity to calculate the 
components to a higher accuracy than it would 
otherwise be needed, it is this feature of intermo
lecular interactions which makes them so specific and 
selective that they can determine complicated struc
tures and activity of biological systems. 

In view of above observations the following remark 
can be made about supermolecular calculations. In 
the supermolecular approach all the components of 
the interaction energy included at a given level of 
theory have to be computed simultaneously. There
fore, there exists no method of investigating the basis 
set convergence of a given physical component of 
interaction energy, nor is there a possibility of 
computing the slowly convergent components in a 
larger basis set. Further, it is sometimes expected 
that if there existed a method of removing the basis 
set superposition error completely, the supermolecu
lar method would give the exact interaction energy. 
This expectation clearly cannot be correct since even 
if the basis set superposition errors were removed, 
various interaction energy components would still be 
far from saturation even in relatively large size basis 
sets. Neither can it be true that once the basis set 
superposition error is removed, the supermolecular 
approach would give a potential energy surface 
parallel to the exact surface. Since the interaction 
energy results from a subtle balance of components 
of diverse radial and angular dependence, and each 
of those components is computed to a different degree 
of basis set saturation, uniform cancellation of these 
errors over the whole potential energy surface is 
highly improbable. 

The many-body SAPT has been applied to quite a 
broad and diversified group of interacting systems. 
In all cases, except perhaps for very small systems, 
recent SAPT results (which include all components 
developed so far) are superior to any theoretical data 
available. These results match the accuracy of the 
best existing empirical potentials. Recently SAPT 
potentials have been used to compute the directly 
measured quantities such as the rovibrational spec
tra or ion mobilities. These results have already been 
used to guide experiments and more of such interac-
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tion is expected in the near future. The SAPT 
method has already been applied to quite complex 
systems (like uracil—water) and more of such ap
plications should appear soon, leading to a new 
reliable set of potentials for use in molecular dynam
ics simulations of biological systems. 
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