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/. Introduction: The 
Vibration-Rotation-Tunneling (VRT) States of 
van der Waals Molecules and Their Spectra 

Several papers in this issue describe the ab initio 
calculation of intermolecular potentials, and other 
papers are concerned with the experimental spectra 
of van der Waals molecules. It is well known that 
these spectra, especially if the low-frequency inter
molecular modes are resolved, are very sensitive 
probes of the intermolecular potentials. In the 
present paper we explain and illustrate the theoreti
cal and computational methods used to obtain the 
spectrum from a given intermolecular potential. 
Comparison of the measured and computed spectrum 
can be used to check the quality of an ab initio 
potential or, after the introduction of some empirical 
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parameters, to fit the experimental spectrum and 
thus to improve the potential. Given a potential 
energy surface, the calculation of the spectra involves 
two steps: first, one has to calculate the bound states 
(and sometimes resonances) of the van der Waals 
complex; next one has to compute the intensities of 
the transitions between these states from their wave 
functions and dipole (for emission or absorption 
spectra) or polarizability function (for Raman spec
tra). We concentrate on the calculation of the vibra
tion-rotation-tunneling (VRT) states from a given 
potential surface, i.e. on the nuclear motion problem, 
the second step in the Born-Oppenheimer approxi
mation. 

In van der Waals complexes there is, by definition, 
a hierarchy in the nuclear motions. Within the 
stable, chemically bound molecules that constitute 
such a complex, the atoms (nuclei) vibrate fast. The 
motions of the molecules in the complex, against the 
weak van der Waals forces (or the somewhat stronger 
hydrogen bonding) that hold it together, are much 
slower. This allows another Born—Oppenheimer-like 
separation between the intramolecular vibrations 
and the intermolecular motions. The latter usually 
have large amplitudes and, since there are often 
multiple minima in the potential surface with only 
low barriers between them, the intermolecular "vi
brations" may look more like hindered rotations or 
tunneling motions. In practically all cases there is 
a strong coupling between the different intermolecu
lar degrees of freedom. Sometimes, the stable mol
ecules that constitute the complex are flexible. In 
that case, some of the intramolecular modes may 
have low frequencies and large amplitudes as well, 
and will couple strongly to the intermolecular or van 
der Waals modes. In the Born—Oppenheimer-like 
separation of the intra- and intermolecular modes 
they may have to be included with the latter. It will 
be clear from this description that the more or less 
standard methods, based on the harmonic oscillator/ 
rigid rotor model with (perturbation) corrections, 
which are used to study the rovibrational spectra of 
nearly rigid molecules1-3 are not applicable to the 
intermolecular modes in van der Waals complexes. 
A new set of methods especially designed to compute 
the VRT states of van der Waals molecules is, and is 
still being, developed. These methods have much in 
common with the quantum theory of molecule scat
tering. This is natural since the scattering states of 
a pair of molecules are in fact the continuum states 
of a van der Waals molecule. In the present paper 
we describe these methods and illustrate their ap
plication on several examples. 

© 1994 American Chemical Society 
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This paper is organized as follows. First we discuss 
the different choices of coordinate systems that are 
being used in the study of van der Waals molecules 
and give the corresponding kinetic energy expres
sions. The derivations of these expressions are 
outlined in Appendix A. We then discuss the analytic 
forms of the intermolecular potential energy surfaces. 
Since heavy emphasis will be on fits in terms of 
Legendre functions and their more-dimensional gen
eralizations, we summarize the more important facts 
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of the spherical functions in Appendix B. Given the 
Hamiltonians, we go on to discuss how to obtain their 
eigenstates. From the eigenstates we may obtain 
dimer properties and transition intensities. This is 
the topic of the next section. Permutation-inversion 
symmetry plays an important role in van der Waals 
molecules, which are highly nonrigid. We touch 
briefly on this subject, and in Appendix C we go 
deeper into this aspect of the theory. The next 
section is devoted to concrete results of calculations 
and their comparison with experiment. As examples 
we discuss the argon atom in interaction with H2, 
NH3, H2O, and benzene. We look at He -HF and 
finally at the strange case of the ammonia dimer. 

//. The Calculation of VRT States and Spectra 

A. Choice of Coordinates 

The development of an optimum strategy for the 
calculation of the bound (and scattering) states of a 
van der Waals molecule begins with the choice of 
coordinates. The nature of the motions in such a 
complex implies that one has to use mostly curvilin
ear coordinates. If the monomers in the weakly 
bound complex are considered to be rigid, then this 
follows immediately from this constraint. But, even 
if the monomers are not frozen, it is better to use 
curvilinear coordinates, in order to achieve the best 
separability between the internal motions of the 
monomers and the van der Waals motions. For the 
fast vibrations of the nearly rigid monomers it is 
customary to use the standard (harmonic) normal 
coordinates. These are linear combinations of the 
(mass weighted) atomic displacements that satisfy 
the Eckart conditions. Their coefficients might be 
determined by the standard Wilson GF-matrix 
method.1-3 A natural choice of van der Waals 
coordinates in a dimer is given by the distance R 
between the centers of mass of the monomers A and 
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B and the Euler angles £A = (0A,0A,VA) and £B — 
{(PB,6B,IPB) that define the orientations of the Eckart 
frames on the monomers. These Euler angles may 
be defined with respect to a laboratory (or space-
fixed) frame or with respect to a frame that is 
somehow embedded in the dimer. The latter has 
advantages if one tries to separate the "vibrations" 
of the dimer, i.e. its internal (van der Waals) motions, 
from its overall rotations. This separation of vibra
tions and rotations always involves an approxima
tion, even in the case of nearly rigid molecules. For 
a highly nonrigid van der Waals complex there will 
be strong vibration—rotation coupling. Still, in cal
culations it may be advantageous to introduce this 
separation in first instance, and then to include the 
coupling terms in the second step. We will return to 
this point later, when we discuss the dimer Hamil-
tonians. It will be explained that the optimum choice 
of the angular coordinates is in fact determined by 
some characteristic properties of the system at hand, 
such as the rotational constants of the monomers and 
the anisotropy of the intermolecular potential. These 
properties determine already to some extent the kind 
of VRT motions in the complex, the approximate 
constants of the motion and, thereby, the coordinates 
that achieve the best separability. 

It may occur that the rotations of the monomers 
are strongly hindered in some directions and less in 
others, so that the van der Waals motions follow 
certain (curved) pathways. In such a case one can 
introduce special curvilinear coordinates that de
scribe the motions along these pathways and the 
motions orthogonal to them. Examples are given by 
the semirigid bender coordinates in the HF dimer4 

and the specific tunneling pathways in the H2O 
dimer.56 Also it may happen that certain intra
molecular motions are relatively easy so that they 
lead to observable tunneling splittings and coupling 
to the van der Waals motions. An example of this is 
the umbrella inversion tunneling in NH3, which 
occurs also (but more or less hindered) in van der 
Waals complexes such as Ar-NHs7-9 and NH3-
NH3.10-12 These examples will be treated in section 
III. An additional curvilinear coordinate in that case 
is the NH3 umbrella angle; in the calculations9 this 
coordinate is treated along with the intermolecular 
coordinates. 

B. The Hamiltonian, Kinetic Energy Expressions 

Even when we choose a set of intramolecular and 
intermolecular coordinates as described in section 
ILA, the nuclear motion Hamiltonian in a van der 
Waals complex depends on both. In this review we 
will not explicitly write its dependence on the in
tramolecular (normal) coordinates of the nearly rigid 
monomers. If one assumes the standard Eckart or 
Watson forms313 of the Hamiltonians for these mono
mers, then it is easy, if necessary, to reintroduce the 
intramonomer coordinates into the Hamiltonian of 
the complex. Often one may get rid of the intra
monomer coordinates by averaging the Hamiltonian 
of the complex over a given vibrational state of each 
monomer, as the monomer vibrations are usually 
faster by 1 or 2 orders of magnitude than the van 
der Waals motions. The simplest way to avoid the 

dependence on the intramonomer coordinates is to 
assume that the monomers are rigid, and even this 
seemingly crude model works well in many cases, 
especially if one adopts the vibrationally averaged 
geometries of the nearly rigid monomers, instead of 
their equilibrium geometries. And, in the treatment 
of the example Ar-NH3 in section III, we will discuss 
how to reintroduce a monomer coordinate that cor
responds to a large amplitude motion. 

The kinetic energy expression for a set of general 
curvilinear coordinates g, has been given by Podol-
sky,14 see also ref 15, 

T=V3^
2P9Y

72G-1P9 (D 

where p, = —ihidldqd are the momenta conjugate to 
qt, G is the metric tensor and g is the determinant of 
G, see Appendix A. In this appendix the Podolsky 
expression has been explicitly worked out for differ
ent sets of coordinates which are convenient to 
describe van der Waals dimers. The simplest Hamil
tonian for a dimer consisting of two general, non
linear, monomers is obtained by defining both the 
Euler angles £A = ((PAAAMA) and £B = (<PB,9B,IPB) and 
the polar angles R = (/3,a) of the vector R = AB with 
respect to a space-fixed (SF) frame. The kinetic 
energy expression in this Hamiltonian follows im
mediately from the diatom Hamiltonian in Appendix 
A.1, and the rigid rotor Hamiltonian in Appendix A. 2. 
It simply reads 

T = ^ + ̂  + ̂  (2) 

with Tx, X = A or B, given by 

Tx = AxU^)2 + SxOf)2 + C3JJg? (3) 

and 

r - = ^ [ - ^ + ( ' S F > 2 ] (4) 

cf. eqs A54, A39, and A56. Ax, Bx, and Cx are the 
rotational constants of monomer X, the Jx are the 
usual monomer angular momentum operators given 
in eq A52, HAB is the dimer reduced mass, and lSF is 
the end-over-end angular momentum operator. Al
though this choice of SF coordinates leads to the 
simplest kinetic energy expression, the problem is 
that the intermolecular potential is not easily ex
pressed in these coordinates. Instead, the potential 
is naturally dependent on the internal angles of the 
complex, i.e the angles that_ relate the monomer 
orientations to the dimer axis R. These are the Euler 
angles in the embedded dimer frame of Appendix A.4. 
Still, it may be advantageous, when the end-over-
end rotational constant (2,MABi?2)-1 of the dimer is large 
in comparison with the strength of the anisotropy in 
the intermolecular potential, to use the space-fixed 
coordinates that lead to eqs 2—4. This situation is 
called coupling case (a) in the early paper on van der 
Waals molecules by Bratoz and Martin16 and case 1 
in a review by Hutson.17 It corresponds to the nearly 
free rotation of the monomers in the complex. In 
other words, the monomer rotational quantum num-
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bers (e.g. JA and JB in the case of linear molecules) 
and the end-over-end angular momentum I are nearly 
good quantum numbers to describe the dimer states. 
The price one has to pay when using these SF 
coordinates is that the intermolecular potential has 
to be expressed in a specific analytic form, in terms 
of the Euler angles £A

F and £|F of Appendix A.4, and 
then to be transformed to an expression in terms of 
the angles £J[F and £fF. This will be discussed in 
section II.C. In practice this coupling case arises only 
for H2, HD, or D2 containing van der Waals com
plexes. 

In most other cases it is convenient to use the 
dimer-embedded frame of Appendix A.4. The expres
sion of the potential causes no problems then, and 
the kinetic energy operator reads 

ft.+.7B>2-2(/A+Js)-J] (5) 

where J is the total angular momentum of the dimer, 
(JSF)2 is given by eq A80 and is related to J2 via eq 
A79. This expression has been derived from eqs 2-4 
by Brocks et al.18 with the use of chain rules. An 
alternative derivation is given in Appendix A.4. At 
first sight it seems that one may simply obtain eq 5 
by introducing the dimer (BF) frame and substituting 
(ZBF)2 = (j-jA -jBXJ -JA -JB) into eq 4. This is 
assumed in many expositions of the present theory, 
for instance refs 19-21. From the derivations in 
Appendix A.4 and in ref 18 it is evident, however, 
that this ignores the fact that J and jx do not 
commute. Moreover, this procedure does not yield 
the explicit expressions (in terms of differential 
operators) for the components of J, which are quite 
unusual and which do not obey the standard, eq A30, 
or even the so-called anomalous,22 eq A3 7, commuta
tion relations. It implies that one must accept 
without proof that J acts in the usual manner on 
rotation functions, but, as was shown by Brocks et 
al.is and in Appendix B this only holds for a specific 
choice of basis and is not true in general. 

The dimer frame of Appendix A.4 is embedded by 
using only two external Euler angles: the polar 
angles of the vector R. It is shown in the Appendix 
of ref 18 how to introduce the third external Euler 
angle as an embedding angle. The resulting kinetic 
energy expression becomes rather complicated, how
ever, and it has the drawback that, in the case of 
identical monomers A and B, the interchange sym
metry is no longer explicitly visible. Moreover, the 
resulting G tensor becomes singular for linear con
figurations of the dimer. Yet, in certain cases it may 
be useful to apply this form. 

For dimers that consist of a rather large nonlinear 
molecule and an atom, such as benzene-Ar23,24 it 
may be advantageous to use an Eckart frame which 
is embedded in the molecule. The corresponding van 
der Waals coordinates are £A = (0A,0A.VA), the Euler 
angles that describe the orientation of the molecule-
embedded frame with respect to a space-fixed frame, 
and the Cartesian or polar components of the vector 
R = AB with respect to the molecule frame. The 

kinetic energy expression 

has been given in refs 23 and 24, IBF is the inertia 
tensor of the molecule and PR is the momentum 
conjugate to J?, which is the coordinate vector of R 
in the BF frame. An alternative derivation is given 
in Appendix A.3. 

If one prefers to use still other coordinates to 
describe the motions in van der Waals complexes, one 
has to derive the metric tensor that corresponds to 
these coordinates and, according to the recipe of 
Appendix A, to substitute this tensor into the Pod-
olsky formula for the kinetic energy. The same 
prescription can be followed if one wishes to include 
specific internal motions in flexible monomers, or if 
one considers van der Waals complexes consisting of 
more than two monomers. 

C. (Ab Initio) Intermolecular Potentials, 
Representations 

Since there are several papers25-28 in this issue 
which deal with the ab initio calculation of inter
molecular potentials, we will not discuss this problem 
in our contribution. Let us just mention that these 
computations can be divided in two categories: they 
are based on the supermolecule approach or on 
symmetry-adapted perturbation theory (SAPT). Both 
methods have already shown to be able to yield 
accurate potentials for (small) van der Waals 
dimers. We have some preference for the SAPT 
approach,25'29-34 because it gives directly the indi
vidual contributions to the potential. Its accuracy is 
achieved by a well-balanced inclusion of the (intra-
and intermonomer) electron correlation in these 
contributions. Moreover, the knowledge of the indi
vidual short-range and long-range terms makes it 
easier to obtain accurate analytical fits of the poten
tial surface. This, in turn, greatly facilitates the 
calculation of the VRT states. It is relevant, in this 
respect, that, because of the occurrence of multiple 
minima in the potentials of most van der Waals 
molecules, and due to the floppiness of these systems, 
the calculation of the VRT states usually requires the 
knowledge of the complete potential surface. Later 
in this section we will make some comments on the 
various possible ways to represent the potential, 
which depend on the strategy that is chosen to 
calculate the VRT states. 

First, we want to mention the spherical expansion 
of the intermolecular potential for a dimer.35 This 
expansion is a generalization of the well-known 
Legendre expansion17 for atom-diatom systems or 
the expansion in spherical harmonics7 for atom-
(nonlinear) molecule dimers. In its most general 
form it is expressed in the Euler angles Q[F and 
£|F of the monomers and the polar angles R — (j3,a) 
with respect to a space-fixed frame 

V{R£A£BM) = 5>{A}(fl)A{A}(fA,£B,«) (7) 
{A} 

The orthogonal set of angular functions, labeled by 
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Table 1. Some Properties of Spherical Harmonics 
djfid) = [4x/(2l + 1)]1/2 YjOrf) and Wigner D Matrices 
D1

 k(a^fi,y) That Are Useful in the Symmetry 
Adaptation of Angular Basis Functions 

C!
m(jt-6,jT+4>) = 

cl
m(e,x-<t>) = 

clje,d>r = 

DLoW.Y) = 

DL(O-AY) = 

Dl
mk(a,7t-p-y) = 

D'mk(x-a,p,-y) = 

Dl
mk(a+a>,p,Y) = 

Dl
mk{a,p,y+w) = 

= (-

= C 

= (-

= (-

= c 

= (-

= (-

= e~ 

= e~ 

-)lCl
m(d,<p) 

l-je,<P) 

-)mCLm(G,4>) 

-TClm{p,a) 

1-MY) 

-rmDl
mk{o-,P,Y) 

-)mDl_m:_k(a,p,y) 

-imaDl
mk(°-AY) 

-ik"Dl
mk(a,p,y) 

{A} = {LAJCA£BJ{BM, is given by 

A{A}(£f ,£f,fl) = 

MAMBM 

(8) 

where the functions D(£k are Wigner rotation func
tions (see Appendix B), Cl

m are spherical harmonics 
in the Racah normalization and the expression in 
large brackets is a 3 —j symbol.36 Since the functions 
A{A} form a complete set, the expansion in eq 7 is 
exact, in principle. In practice, one may truncate the 
expansion when the coefficients I>{A>CR) have become 
sufficiently small. These coefficients depend only on 
the distance R; if we include the dependence of the 
intermolecular potential on the molecular geometries 
they depend on the intramolecular (normal) coordi
nates too. One advantage of the spherical expansion 
is that it explicitly shows the anisotropy of the 
potential; the term with {LAJKAJLBJ£B£} — {0,0,0,0,0} 
is the isotropic potential. Another advantage is that 
it can immediately be written in terms of the BF 
coordinates. One just has to realize that , by con
struction, the angular functions A{A> are invariant 
with respect to any frame rotation and to use the 
property that the polar angles R = (/3,a) are (0,0) with 
respect to the dimer-embedded frame. Substitution 
of C^f(0,0) = (5MO yields, then 

X lLA LB L\na,A) /*BFs* n (LB ) CfBF--* /QN 
MA \MA MB 0 j UMAKA^A ) VM8K^B ) W 

(MB=-MA) 

For atom—molecule dimers LA = KA = MA = 0. With 
the use of the properties of Wigner D functions and 
spherical harmonics given in Table 1, we find that 

the angular expansion functions become 

^V8(Sf) = (-DLs(2LB + ir1/2 Dfefrfd 
= (-DLB~KB(2LB + i r 1 / 2 ciBW BF 

BF ^ B F 

BF-

y 
^ B .VB*') 

(10) 
The well-known Legendre expansion for a t o m -
diatom systems, where KB = 0, is obtained by the 
simple substitution of C^(8,ip) = Pdcos 0). 

In ab initio calculations of the potential one always 
chooses a BF frame. The expansion coefficients can 
be written as 

>{A}CR) = 

(2LA + 1)(2LB + 1)(2L + 1) 

64TT4 
f*tff< BF 

B 

A { A } (£ f ,S f )*VCR,gf ,Sf ) ( H ) 

with d£x = sin 6x d<px ddx dipx- After the calculation 
of the potential 7 o n a grid of angles S f a n d Sf , the 
integration in eq 11 can be performed by numerical 
quadrature,37 for each distance R. Actually, one may 
choose the BF frame such that one of the Euler 

•Dpi TJIT 

angles, either 4>A or <j>B , is equal to zero and can be 
omitted from the integration. If we deal with simpler 
dimers, e.g. if A or B is an atom or a linear molecule, 
this procedure can be further simplified. Or, if A or 
B have some point group symmetry, we can reduce 
the integration intervals. The expansion coefficients 
U{A}CR) which are thus obtained define the potential, 
both with respect to the BF frame, via eqs 7 and 9, 
and with respect to the SF frame, via eqs 7 and 8. 
The transition from eq 9 to eq 8 is in fact the most 
general way to describe the transformation of a 
potential from BF coordinates to SF coordinates. For 
the Legendre expansion in a tom-dia tom systems 
this transformation is described in refs 17 and 20. 

Also in practical calculations of the VRT states of 
a van der Waals dimer the spherical expansion of the 
potential may be very convenient. If the angular 
basis in such calculations is chosen as (coupled) 
products of monomer and overall rotor functions, all 
the angular integrals in the matrix elements of the 
potential are just 3n-j symbols, see section ILD. For 
the same reason the spherical expansion is used in 
most scattering calculations. Only when the poten
tial is too strongly anisotropic this procedure becomes 
inefficient, since one needs too many terms in the 
spherical expansion and too large a basis. 

We can also explain now why in most cases the use 
of BF coordinates is the most convenient. As it 
follows from the relation MB = -MA in eq 9 and from 
the definition of the Wigner D functions in eq Bl , 
the intermolecular potential depends only on the 
difference angle 4>B — 4>A, not on 4>A itself. Hence, in 
the BF angular basis of eq B18, functions with 
different K are not mixed by the potential. Off-
diagonal matrix elements between such functions are 
given only by the Coriolis terms (JA +JBWKHABR2) in 
the BF kinetic energy operator, eq 5. In practically 
all cases (except for H2 containing dimers or very high 
values of J ) , these terms are much smaller than the 
anisotropy of the potential. This anisotropy is domi
nated by the leading terms V{A}(R) with {A} ^ 
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{0,0,0,0,0}. In all these cases K, which is the eigen
value of both Jz and jz in Appendix A.4, is a nearly 
good quantum number in the dimer. These cases are 
treated as coupling case (b) by Bratoz and Martin16 

and as cases 2 and 3 by Hutson.17 Even when the 
complex becomes nearly rigid, K is still a good 
quantum number in many van der Waals dimers, 
because such dimers are often prolate near-sym
metric tops due to the relatively large van der Waals 
bonding distance R. Coupling case (c) of Bratoz and 
Martin16 is not explicitly treated here, since this is 
the case where a van der Waals dimer is considered 
as a nearly rigid molecule to which the standard 
formalism for vibrations and rotations1-3 can be 
applied. One must be careful, however, because the 
vibrations in van der Waals molecules have large 
amplitudes and rotation-vibration coupling is strong, 
so that the usual perturbation expansions for the 
effects of anharmonicity and rotation-vibration cou
pling may not converge. Still, in some cases like Ar -
benzene (see section III.D) one may use the harmonic 
oscillator-rigid rotor quantum numbers to label the 
(lowest) VRT states. 

At the end of this section, we make some observa
tions regarding other, analytic or discrete, represen
tations of the potential. These are closely connected 
to the method chosen to calculate the VRT states, so 
it is not so easy to make general remarks. If one 
chooses a discrete variable representation (DVR)38 of 
the VRT states, for example, then it is only required 
to know the potential on a grid of quadrature points. 
But even then, if the potential has to be obtained 
from ab initio calculations, the DVR method may 
require too dense a grid to evaluate the potential in 
all points. Analytic fitting (global or using splines) 
or interpolation may solve this problem. A global 
fitting model which is applied widely is the atom-
atom model:39 VAB — ~LieA E/SB vy(ry) with Lennard-
Jones vy(ry) = Ayry~12 - Byrife or exp-6 potentials 
vy(ry) = Ay exp( -Bifij) - Cyrif6. A conceptual 
advantage of atom-atom potentials is that they also 
model the dependence of the intermolecular potential 
on the intramolecular degrees of freedom. In the 
standard applications of this model it is assumed that 
the atom-atom potentials are isotropic, which is a 
serious limit on its accuracy. In few cases, anisotro
pic atom-atom potentials have been introduced.40 

Another manner to represent the anisotropy of the 
intermolecular potential is to choose a parametrized 
independent form with parameters that depend on 
the orientations of the molecules. An example is the 
Lennard-Jones potential 

V(R£A£B) = 

R 

12 

R 
(12) 

with the parameters e and Rm depending on the Euler 
angles £A and £B-41 In potentials that are used 
especially to fit the spectra of van der Waals 
molecules,42-44 the short-range repulsion is modeled 
by 

A(SA£B) exp[-/3(£A,£B)fl] (13) 

persion terms by 

- Y£nit;A£B)Dn{Rwn (14) 

The damping functions Dn(R) correct the long-range 
contributions for overlap effects.4546 The parameters 
in eqs 13 and 14 are not directly optimized, however. 
Instead, one adopts some reasonable (ab initio) 
values for all but the highest long-range coefficients 
Cn and then writes the highest C„(£A,£B) and the 
short-range coefficient A(£A£B) as functions of the 
(angular dependent) well depth 6(£A>£B) and position 
of the minimum Rm(%A&B) in the potential. The latter 
quantities and the exponent /3(£A,£B) are written as 
truncated expansions in the angular functions 
•A{A}(£A,£B) of eq 9. The actual fitting parameters are 
the coefficients in these expansions. So these occur 
in the potential in a highly nonlinear way. This 
procedure is chosen to reduce the number of fitting 
parameters and to avoid a high correlation between 
them. 

D. Methods for the Calculation of VRT States 
The methods developed to calculate the VRT states 

in van der Waals molecules can be divided into two 
classes: variational and nonvariational. In varia
tional methods one has to choose a basis, the form of 
which, of course, will depend on the choice of the 
(intermolecular) coordinates, see Section ILA. With 
the space-fixed coordinates, for instance, the basis for 
a dimer consisting of two arbitrary nonlinear mol
ecules can be written as 

^JAJ1AJBJ1BJABMJM) -

\(2jA + l)(2/s + 1)(2Z + 1) 
*„Cfl) 

256TT& 

1/2 

and the long-range electrostatic, induction, and dis-

mjimB Km 

i)\mA-jBmB\)-ASK)C1JR)HABK-MIJM) (15) 

cf. eq B15. The angular momentum coupling in this 
basis, by means of the Clebsch—Gordan coefficients 
(ji>ni'J2m2\jm), takes already into account that the 
total angular momentum J and its space-fixed z 
component M are exact quantum numbers, see Ap
pendix B. For the radial basis Qn(R) one uses 
analytic functions, such as the associated Laguerre 
functions47 which resemble the eigenfunctions of a 
Morse oscillator, or distributed Gaussians,4849 or 
numerical functions defined on a grid of R points. If 
the intermolecular potential is just weakly anisotro
pic, a convenient numerical basis may be obtained 
by solving the one-dimensional Schrodinger equation 
with the isotropic potential and the radial terms in 
the kinetic energy. If, on the other hand, the dimer 
potential has a deep well at a certain orientation of 
the monomers, one may solve the one-dimensional 
equation with the ^-dependent potential at fixed 
angles £A and £B. The solutions of the one-dimen
sional Schrodinger equation can be obtained by the 
Numerov-Cooley method,50 for example. One has to 
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remember that it is necessary to generate also 
numerical basis functions that represent the con
tinuum (for instance, by enclosing the system in a 
spherical box with finite or infinite walls), otherwise 
the set of functions Qn(R) is not complete. A similar 
procedure, i.e. the solution of an effective one-
dimensional radial Schrodinger equation, has also 
been used10 with the analytic radial basis sets. The 
eigenvectors from the secular equation for the one-
dimensional problem can be used as contraction 
coefficients for the radial basis functions in the full 
problem. 

In the case of somewhat stronger anisotropy it is 
more natural (because of the nearly conserved quan
tum number K, see section II.C), and also more 
convenient, to use the BF basis 

\n JA>kAJB>kB>)'AB&JTM> = 

\(2jA + l)(2jB + 1)(2J + 1) 

*»CR) 
1/2 

256;r0 

mAmB 

U)1 
i)A™AJB™B\JAj&D^a&O)* d 6 ) 

It is shown in Appendix B that, for fixed JA, &A, JB, 
kB, JAB, J, M, and K running from — min(JJAB) to + 
min(JjAB) the BF basis in eq 16 spans the same space 
as the SF basis in eq 15 with I running from \J -

JAB\ to J + JAB- So the final VRT states will be the 
same in both bases. 

In the SF coordinate system one has to use the 
kinetic energy operator of eq 2. The monomer terms, 
TA and TB in eq 3, act on the functions D^ffi)* 
and D^\ (£§F)* and they yield the standard rigid 
rotor expressions.322 For example, for symmetric 
tops with Ax = Bx the operator Tx is diagonal, with 
eigenvalues AxJx(Jx + 1) + (Cx ~ Ax)Ux2. Since the 
basis functions in eq 15 are eigenfunctions of (ZSF)2, 
with eigenvalue 1(1 + 1), the dimer term TAB in eq 4 
is diagonal in the angular basis. If the potential is 
expanded as in eqs 7 and 8, its matrix elements are 

{n'j\,k\j'B,k'Bj'M,r\JM\V\nj\,kAJB>kB>kABkJ,M) = 

^n,(R)\v {A](R)\^n(R))(-iyA+j^ -j'AB+L+J—k'A—k'B 

{A} 

[(2/A + 1)(2/B + I)QjA + D(2jB + 1 X 2 / ^ + D x 

(2JAB + 1X2Z' + 1X2Z + 1)]1/2 x 

{J'A LA j A \/j'B LB j B w L I \ 
VA KA kA)\-k'B KB kB)[o 0 o j X 

v AB JAB J J L-/ T ,-
UAB L, JAB] 

where the expressions in large braces are S —j and 
9 —j symbols,36 respectively. 

In the two-rotor BF coordinate system one should 
use the kinetic energy operator of eq 5. The monomer 
terms TA and TB yield the same standard rigid rotor 

expressions as in the SF case. The dimer term TAB 
is different, however. In Appendix B it is explicitly 
shown how it acts on the angular basis of eq 16. Most 
of its terms are diagonal in this basis, but the terms 
WAX +JBx)Jx + (JAy +JBy)JyV(MABR2) connect the basis 
functions K with functions K' = K ± 1. After 
expanding the potential as in eqs 7 and 9, the 
potential matrix elements over the BF basis in eq 16 
are 

(n'j'A,k'Aj'B,k'Bj''JuJC-JMWn j^kJ&ksJAsfcJM) = 

dKKJ^n.(R)\vm(R)\^n(R)) (-ir+JB+JAB+L-k'A-uB-K. 
{A} 

[(2fA + 1)(2/B + l)(2jA + l)(2jB + 1) 

1/2 
WAB + WAB + I ) ] " X 

(J'A LA JA \(J'B 

1 - * ' A KA ^AK-* k'B KB 

JB 
kB n 

[J'AB 

L JAB] 
0 K j 
LA JA 
LB JB 

L JAB 

(18) 

The advantages of the BF basis become directly 
apparent now. The potential matrix elements are 
simpler than with the SF basis. This is especially 
advantageous for atom-molecule systems, where J'A 
=JA = LA = 0, and the 9 —j symbol in eqs 17 and 18 
becomes simply df^^6^^6^(2/3 + D(2jB + 1)(2LB 

+ 1)]~1/2. The remaining angular factors in eq 17 are 
called the Percival—Seaton coefficients.17,20 By con
trast with the corresponding expression in the BF 
coordinates, eq 18, these factors still contain the 6 -
j symbol. Moreover, it is obvious from eq 18 that the 
potential does not couple BF basis functions with 
different K. Although such functions are coupled by 
a Coriolis term in the kinetic energy, the correspond
ing off-diagonal matrix elements are small and they 
occur only for K = K ± 1. In calculations one may, 
in first instance, neglect these couplings and, thus, 
reduce the size of the Hamiltonian matrix by a factor 
(2J + 1). If one wishes to go beyond this "helicity 
decoupling" approximation, one may solve a (smaller) 
secular problem in a truncated basis of eigenstates 
of the simpler Hamiltonian while reintroducing these 
terms, or one may take them into account by pertur
bation theory. 

Besides the fact that it gives a very simple kinetic 
energy expression and angular integrals over the 
potential which are just 3rc - j coefficients, the use 
of the free rotor functions in the basis has another 
advantage. It does not introduce any bias for specific 
orientations of the monomers in the complex; these 
are free to find their most favorable orientational 
wave functions, depending on the barriers in the 
potential surface. Often, in van der Waals com
plexes, the orientations of the monomers are quite 
different in different VRT states. 

When the monomers in a van der Waals complex 
are strongly aspherical (very long or flat) and are 
larger than the van der Waals bonding distance, the 
potential becomes too strongly anisotropic and the 
use of the free rotor basis is no longer appropriate. 
A border case is Ar-benzene,5 1 where the spherical 
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expansion of the potential needs terms up to LB = 
36 and the convergence of the VRT states requires 
angular basis functions as high as JB — 27. Other 
types of basis functions have to be applied in such 
cases, and it may be better to use other coordinates 
too. For atom-molecule systems, the BF frame may 
be embedded in the molecule, see Appendix A.3, 
which leads to the kinetic energy expression of eq 6. 
Instead of polar coordinates for the vector R, it is 
advantageous to use its Cartesian components R — 
(xjiyz) and to apply a product basis of harmonic 
oscillator functions Hk(x)Hi(y)Hm(z), centered at the 
equilibrium position Re — (xeje^ze). Or, if the atom 
is assumed to be less well localized, one could use a 
basis of distributed Gaussians.52 The linear and 
angular momentum operators are simply 

id/dx\ 
pR = -ih\ d/dy and I = R x pR (19) 

\d/dz I 
If these are substituted into the kinetic energy of eq 
6 and the coordinate and momentum operators are 
expressed in the ladder operators of the harmonic 
oscillator53,54 (with frequency co and mass m) 

x = [hJ(2ma))]m(al + ax) 

Px = i[(hma))/2]V2(al - ax) (20) 

which act on the basis as follows 

alHk(x) = (k + l)mHk+l(x) 

CixH11(X) = k^H^ix) (21) 

it is still possible to evaluate all the kinetic energy 
matrix elements analytically. For the matrix ele
ments of the potential Vixyjz) over the harmonic 
oscillator basis it is appropriate to use Gauss -
Hermite-type quadrature37 with the same center and 
scaling as the basis functions Hk(x), Hi(y), and Hm(z). 
This procedure works well, even if the molecule 
becomes as large as fluorene.23 In other systems, e.g. 
the van der Waals trimer Ar-Ar-HCl,21 one has 
proposed to combine the different types of analytical 
basis functions for the different intermolecular coor
dinates. This depends on the expected degree of 
localization in these coordinates. 

Let us now discuss some nonvariational methods. 
The traditional nonvariational method to obtain the 
bound states of van der Waals dimers is the close-
coupling method, as implemented for scattering 
calculations.5556 The angular basis functions used 
in such calculations are the same as in eq 15, for SF 
coordinates, and eq 16, for BF coordinates. The 
angular matrix elements are the same as in eqs 17 
and 18, respectively. The radial functions are not 
expanded in a basis, however, but they are written 
as the i?-dependent "coefficients" in the expansion 
of the exact wave function in the complete set of 
angular (channel) functions. When this expansion 
is substituted into the Schrodinger equation one 
obtains a set of coupled differential equations for the 
radial functions of the different channels.17 In prac
tice, this set is truncated, of course. The coupled 

differential equations are solved by the numerical 
propagator methods57'58 developed for scattering cal
culations. For bound states, it is not possible to 
choose the energy, however. One has to find, by 
iteration, those energies that produce the radial wave 
functions which vanish at R — °° and remain finite 
at R = 0.59~62 Since this may be a rather time-
consuming process, special methods for bound state 
calculations have been devised. In the SEPT (secular 
equation perturbation theory) method63 one first 
calculates a (small) set of uncoupled channel func
tions, then solves a secular problem with these 
functions as a basis, and next, includes more chan
nels by perturbation theory. The (first-order) per
turbation equations are again a set of coupled dif
ferential equations in the radial coordinate, but these 
do not contain the unknown energy. Recent improve
ments of this method, such as the ISE (iterative 
secular equation) method64 include the perturbed 
wave functions as additional basis functions in a 
(larger) secular problem. An advantage of these 
methods is that they are directly applicable to the 
resonances, vibrational and rotational predissociation 
states, which are often found in van der Waals 
complexes. 

Nonvariational approaches which are based on 
discrete representations of the wave function are the 
DVR (discrete variable representation)38-52'65 and the 
collocation method.66-68 As we have seen, the use of 
an analytic basis, say cpn(x), leads to simple kinetic 
energy expressions, but to rather difficult multi
dimensional integrals over the potential. If, on the 
other hand, we would represent a wave function by 
the set of its values on a coordinate grid, W(xt), the 
(diagonal) potential energy matrix is just given by 
the potential calculated at the grid points, but the 
kinetic energy would have to be evaluated by finite 
difference methods. This requires the use of high 
order difference formulas or dense multidimensional 
grids. Information on the (approximate) shape of the 
potential is not exploited. The "pseudospectral" 
methods (DVR and collocation) combine the best of 
both worlds. They are based on the property that 
the expansion of the wave function in the analytic 
basis <pn(x) with dimension AT is equivalent to a 
discrete representation 1P(X;) with N points Xi, pro
vided that the potential energy matrix elements are 
approximated by the appropriate quadrature. For 
bases of orthogonal polynomials (of various kinds)69-70 

we must use the associated Gaussian quadratures 
with points x* and weights wt. Following Mucker-
man,71 we show this by introducing the (analytic) grid 
basis 

v*c*) = 5>»c*)r„* (22) 
n 

with the NxN transformation matrix T given by 

T711 = Cpn(X1)W]'2 (23) 

The theory of orthogonal polynomials tells us that 
the integrals over products of these polynomials are 
evaluated exactly by the corresponding Gaussian 
quadrature. As a result we find that T is orthogonal 
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i 

lTmTmi (24) 
i 

From this property it follows easily that the functions 
\pk vanish at all grid points except Xk and have the 
value w^y2 at this point 

V 1̂-) = X ^ ) T n * = <m lTniTnk = w-mdlk 

The essential assumption in the DVR method38,52,65 

is tha t the potential energy matrix elements can be 
approximated by the corresponding quadrature for
mula 

((Pn\V\(Pm) = ^WkCPrS-Xk)V(xk)qm(xk) < 2 6 ) 
k 

Then, with the use of eq 25, it is easy to show that 
the potential becomes diagonal in the grid basis 

(VkWlipi) = f Vk(X)V(X)Ip1(X) dx 

i 

= X"^r1/2 W 2 W(X1) 
= dkiV(xk) (27) 

It is readily demonstrated that the transformation 
to the analytic basis, see eq 22, would recover the 
normal quadrature formula, eq 26. In reality, it is 
more advantageous to keep the potential matrix 
diagonal, however. The kinetic energy matrix is 
calculated with the analytic basis q>n(x) (if this basis 
is conveniently chosen it may even be diagonal), 
transformed to the grid basis by multiplication with 
TT from the left and with T from the right, and then 
added to the potential matrix. This route is prefer
able because, in multidimensional systems, the ki
netic energy is better separable. In Cartesian coor
dinates it separates exactly; in curvilinear coordinates 
the kinetic energy matrix retains a relatively simple 
structure too. Moreover, it stays sparse. 

In applying DVR to multidimensional systems it 
is most common to use a direct product basis, and a 
direct product of quadrature grids in the individual 
coordinates. Improvements of this scheme have been 
proposed recently.72 Or, one may use discrete rep
resentations in some coordinates and analytic bases 
in others. For instance, in atom—diatom systems the 
DVR in the angular coordinate—with Legendre func
tions Pz(cos O) as the basis and Gauss—Legendre 
quadrature for cos 6—has been combined65,73 with a 
basis of distributed Gaussians for the radial coordi
nate R. DVR is not a variational method: due to the 
approximation of the potential matrix elements by 
the quadrature formula the lowest DVR eigenvalue 
is not necessarily an upper bound to the exact ground 
state energy. 

A closely related nonvariational method is the 
collocation method.66-68 In this method the exact 
wave function is expanded in a finite (analytic) 

iV-dimensional basis: W(x) = 1^q)n(X)c„. The Schro-
dinger equation is required to be satisfied exactly, 
for N points Xi in the coordinate space. The resulting 
equation, in Dirac notation, 

N 

J,{{xt\H\qn) - E(Xi\<pn)]cn = O for i = l,...,N 

is an N x N eigenvalue equation for a nonsymmetric 
matrix Hin = (xi\H\q>n) and "overlap' matrix Sjn = 
(xi\(pn) = <Pn(xd. The advantage of this method is that 
it is easy to program; one has just to compute at the 
grid points x,- the values of the potential, the basis 
functions qn, and their second derivatives (which 
occur in Hq)n). If the basis qn consists of orthogonal 
polynomials, it is advised to choose the associated 
quadrature points x;. Formally, this method can be 
justified in the limit of a complete basis qn. Or, it 
can be derived variationally, by searching for a 
stationary point of the asymmetric functional 
(W\H\W), while expanding W in the analytic basis 
qn and W in a basis localized at the grid points X;.68 

This stationary point is not required to be a mini
mum, however, and the collocation method is not 
variational in the sense that it gives an upper bound 
to the exact ground state energy. The eigenvalues 
of the nonsymmetric matrix Hin may even become 
complex. In practive, the collocation method seems 
tO WOrk Well.43,66-68,74 

For a basis qn of orthogonal polynomials with the 
associated quadrature points x;, this method can be 
easily related to the DVR described earlier. In the 
DVR method, it is only the potential energy matrix 
which is assumed to be approximated by numerical 
quadrature. This matrix can then be evaluated in 
the grid basis. The kinetic energy is evaluated in the 
analytic basis qn and then transformed to the grid 
basis xpi by multiplication with T r from the left and 
with T from the right. In the collocation method the 
complete Hamiltonian matrix Hnm is approximated 
by numerical quadrature. We define an alternative 
grid basis tp\ = ipjiv^112. Jus t as ipi, the ith element 
of this basis vanishes at all grid points except xt, cf. 
eq 25, but its value at this grid point is w^1. The 
basis xp'i is obtained from the analytic basis qn by 
transformation with T' = TW"1/2, where W is the 
diagonal matrix with elements equal to the weights 
Wi. The matrix (T)T is just the "overlap" matrix in 
the collocation equation, eq 28, and it is not difficult 
to show now that eq 28 can be obtained from the 
"normal" secular equation by multiplication with the 
matrix (T')T, only from the left. This implies, in other 
words, that the matrix elements Hin in the collocation 
equations are constructed with the analytic basis q„, 
from the right, and with the grid basis \p\, from the 
left. The kinetic energy matrix is kept simple by 
letting the differential operators act on the analytic 
basis, to the right. Also the potential energy matrix 
elements remain simple, however, since the basis 
functions \p\ vanish, except at one grid point x*. The 
inverse weights, which are the function values at 
these points, reflect that , by contrast with DVR, no 
weights are involved in the collocation method. In 
spite of its simplicity, the collocation method may be 
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not the most efficient from the computational point 
of view. If the diagonalization of the H matrix is the 
most time-consuming step (as it is in most calcula
tions, even with the variational methods), the time 
gained by the easier construction of the matrix is 
more than lost by the slower diagonalization of a 
nonsparse, nonsymmetric matrix. 

A common property of all basis set and discrete 
representation methods is that, finally, one has to 
solve the (symmetric or nonsymmetric) matrix eigen
value problem. Standard library routines are avail
able for this purpose. If the basis becomes too large 
to store the Hamiltonian matrix in the computer 
memory, one may also use a different type of iterative 
procedure, such as the Lanczos75,76 or Davidson77 

algorithm. If the system has many degrees of free
dom, or if the construction and diagonalization of the 
H matrix has to be repeated many times in the 
process of improving the potential by fitting the 
experimental spectrum, it is desirable to reduce the 
size of the basis. Early work in this direction78 used 
BOARS: the Born—Oppenheimer (or adiabatic) sepa
ration of the angular and radial motion. More 
recently, it has become common practice to use 
(sequential) adiabatic reduction methods:3852 one or 
more coordinates are clamped and the eigenvalue 
problem is solved for the remaining degrees of 
freedom. The eigenvalues, for different values of the 
clamped coordinates, form the effective potentials for 
the second step in the calculation. Adiabatic (or 
quasiadiabatic) reduction implies that in this second 
step, which yields the final wave function, one uses 
a truncated set of eigenfunctions from the first step. 
In multidimensional systems this procedure may be 
followed sequentially, in the different coordinates. It 
is easily implemented in DVR methods, which al
ready use a finite grid representation for some of the 
coordinates. But, as we have been seen in the 
treatment of the off-diagonal Coriolis coupling in the 
scheme with the BF free rotor basis, similar simpli
fications can be achieved in other methods. 

We end this discussion of methods for the calcula
tion of the VRT states of van der Waals molecules 
by briefly mentioning the quantum Monte Carlo 
method. The variational Monte Carlo procedure,79,80 

in essence, is a method for the numerical computation 
of the multidimensional integrals of the Hamiltonian 
over a trial wave function. So, the accuracy of this 
method is limited by the trial function chosen. The 
Green's function or difiusional Monte Carlo method80,81 

is very powerful, however, and it will converge to the 
exact quantum states of the system. In its "standard" 
version, which converges to the ground state, it has 
been applied to several van der Waals complexes 
including even multiple monomers.80,82 Also excited 
states can be studied, if they have a different sym
metry from the ground state, so that their nodal 
planes are fixed, or if one applies the following 
adiabatic separation scheme:81 A special coordinate 
in which the wave function is expected to have a node 
is clamped (at different values) and the Monte Carlo 
method is applied to the remaining degrees of free
dom. The Schrodinger equation for the special 
coordinate is solved in the traditional manner (nu
merically or in a basis) with the effective potential 

given by the energies from the Monte Carlo calcula
tions. This adiabatic separation involves an ap
proximation, however, and it may be difficult to 
define the special (curvilinear) coordinate beforehand. 
A new, "correlation function" quantum Monte Carlo 
method which, by the use of the operator exp(-tH), 
will converge directly to vibrationally excited states 
(at the expense of a higher computational cost), has 
been devised also,83 but not yet applied to van der 
Waals molecules. For a more detailed description of 
these Monte Carlo methods we refer to the papers 
mentioned in this paragraph. 

E. Properties, Transitions, and Intensities 

Most of the methods used for the calculation of the 
VRT states yield explicitly the wave functions of 
these states. It becomes relatively easy, then, to 
compute the different measurable properties and to 
evaluate the intensities of the transitions observed 
in spectra. The (infrared) absorption coefficient for 
the transition between two thermally populated VRT 
levels (i,J) and (Jl',J') is given by84 

- ^ - (E1,, - EhJ)[eM-EJkT) -
on e0cZ 

exp(-Ei,tJ./kT)]S(i,J—i',J') (29) 

where Ei j is the energy of the VRT state (i,J) and Z 
is the partition function 

Z = 2> ; (2J + 1) exp(-£ 'JkT) (30) 
i,J 

It is assumed here that the distribution over the VRT 
levels is a Boltzmann distribution with temperature 
T; gi is the nuclear spin statistical weight of the level 
i, NA is Avogadro's number, and the other constants 
are fundamental constants. The (calculated) wave 
functions of the VRT states are the kets \UM); in the 
absence of external fields these are degenerate for 
M = - J , - J + 1, ..., J. The line strengths in eq 29 
are defined as 

S{i,J-i',J') = X \(i'J'M'\fiSJ\iJM)\2 (3D 
MM'm 

If the wave functions \MM) of the VRT states have 
been calculated in terms of the SF basis in eq 15, it 
is convenient to express the space-fixed (spherical) 
components fim

F of the dipole moment operator in 
the same basis 

Mm (R>£A >£i ^ ) = X d{AU(R) B{mm(£A ,£% Jl) 

The angular functions BWAm must transform as a 
vector quantity. In terms of the space-fixed orienta
tion angles £fF and £fF and end-over-end angles R 
they read 
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ZjSF (?£F fSF As 
B[A]AmStA &B >**•> ~ 

MAMBMABM 

( L A M A ^ s M B | L M V ^ M A B ; A M | l m ) (33) 

with the composite index {A} = {LAJCAJ^BJKBJ'}- This 
might be compared with the functions in eq 8 for the 
angular expansion of the potential. Since the latter 
functions are scalars, the combination of the two 
Clebsch-Gordan coefficients becomes simply a 3 - j 
symbol 

^(LAM^SM^LM^XLM^XMIOO) = 

MAB 

« « ( - « * * • « & % M) (34) 

If the dipole moment given by eq 32 and the wave 
functions \UJM) in terms of the basis in eq 15 are 
substituted into eq 31 for the line strength, all the 
occurring angular matrix elements are just Sn — j 
symbols. The result is similar to, but slightly more 
complicated than, the corresponding result for the 
potential, eq 17. 

If the wave functions \iJM) have been calculated 
in terms of the BF basis, eq 16, it is preferable to 
express the dipole moment operator in that basis too. 
The dipole components relative to the BF frame are 
given by 

,,BF/Tf f-BF 5.BFs 
Mk (-"'feA &B > 

,BF P.BF t-BFs Y,dYvk(R)B™}k{?/,?/) (35) 
{A} 

and the angular functions are 

B 
BF / J3F *-BFs _ 
{A}*vbA >±B > ~ 

I D(^TrD^B(^F)*(LAMA^BMB\Lk) (36) 
MAMB 

The relation between the SF and BF expansion 
coefficients is given by 

<}*Cfl) = X dflu(R)(Lk-AO\lk) (37) 

This relation follows directly, as a special case with 
J=I, from eq B17 derived in Appendix B. The 
relation between the SF and BF dipole components 
is 

[I8J (R,£F,£Fji) = 5 > f ( * , M F ) ^i(M1O)* 

* (38) 

and the BF label k indicates whether a given transi
tion has a parallel (k = 0) or a perpendicular (k = 
±1) component. 

If the monomers have large dipole moments, the 
infrared transitions are strongly determined by these, 
and the corresponding coefficients in eq 35 become 
simply 

dLAJiAJ,BJiB^R>> ~ dLBOdKB0dLAldLAL t*KA + 

5 L 4 O ^ ( A 5 A g L VKB ( 3 9 ) 
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Table 2. F a c t o r s of Q%$*MR-LB~2 i n t h e I n d u c e d 

D i p o l e E q u a t i o n (Eq 40) w i t h k > 0" 

LB 

0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 

LA 

0 
2 
2 
0 
2 
2 
0 
2 
2 
2 
0 
2 
2 
0 
2 
2 
2 

L 

0 
2 
2 
1 
1 
3 
1 
1 
2 
3 
2 
2 
4 
2 
2 
3 
4 

jfe 

0 
0 
1 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 

(V3)V3 
(-V3)Ve 
(-V2)V2 
(-2/3)V3 
(-V16)Vl5 
(3Z6)VlO 
(1Wa 
(V30)Vl5 
(V2)V3 
(2X6)ViS 
V3 
(V7)V21 
(-2/7)Vl05 
- 1 
(-V7)V7 
(-V2)VlO 
(-5/i4)V42 

" A coefficient wi th k = - 1 is obtained from the coefficients 
in th is table with the same LB, LA, L values by multiplication 
with {-iy-+LB. The factors of <^K

Aa{^'MR'lA'2 are obtained 
from the corresponding coefficients in this table by multiplica
tion wi th -(-1Y-+L*. 

where HKA = QK a n d ^K8 = QK a r e the components 
of the permanent dipoles on the monomers, expressed 
in the monomer frames. If we wish to include also 
the dipole moment induced on monomer A by the 
permanent multipole moments Qx

8 on monomer B, 
we must add 

£ B F 

LAJtA£BJ(B£,k 
(R) = 

X(-1)*+H(2LA + 1)(2ZA + 2LB + 1)(2L + 1)]1/2 

IA 

2lA + 2LE 

2U 

!•A + LB LB 

112HA+LB L 

Q%,a%'AMR 

k -k 

^AILA)TI-IA-LB-I (40) 

where a^''A;LA) are the irreducible components of the 
(mixed) dipole—2^-pole polarizability tensor of mono
mer A, with respect to the monomer frame. For IA = 
1 this is the normal dipole polarizability, with the 
isotropic value given by a^'1''® = -(Oxx + Oyy + azz)l 
V3 and the axial anisotropic component by o^'v'2) = 
(2aJ0 - CLa: - Oyy)/V6. The dipole induced on mono
mer B is obtained if we interchange A and B in this 
formula, and multiply by {-V^B+L-IB_ p o r the most 
common cases of a dipole moment induced by a 
monopole (charge), dipole, or quadrupole through the 
normal dipole polarizability we have listed the nu
merical values of the coefficients in Table 2. For 
special cases, such as atom-polyatom,8 a t o m -
diatom,85'86 and diatom-diatom complexes,87,88 these 
formulas have been derived earlier. If monomer A 
is an atom, IA = 1 and LA = 0, and the 6—j coefficient 
in eq 40 becomes simply <5LSL[3(2LB + I)T112. The line 
strengths, eq 31, are calculated in the BF basis of eq 
16 by the use of eqs 35 and 36 for the dipole moment, 
the computation of the radial integrals over eqs 39 
and 40, and the evaluation of the angular integrals 
in terms of 3n - j symbols. Again, the result is 
similar to the expression, eq 18, for the potential 
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matrix elements, but slightly more complicated. For 
other (tensorial) properties, such as the polarizability 
function needed for the calculation of Raman intensi
ties, it is easy now to write similar expressions. 

As the van der Waals or hydrogen bonds are weak, 
the transitions between different VRT levels in a van 
der Waals complex are observed in the far-infrared, 
typically below 200 cm - 1 . They may also be seen in 
the mid- or near-infrared, however, or even in visible 
or UV spectra, if they occur simultaneously with 
vibrational or electronic transitions in the monomers, 
van der Waals complexes are formed in relatively 
high concentrations during the expansion of a super
sonic nozzle beam; the use of such beams for spec
troscopy has two other important advantages. First, 
when the spectra are taken somewhat downstream 
from the expansion, they are practically free of 
collision and Doppler broadening. The spectral reso
lution can be enormously increased, so that the 
individual rotational J^J' transitions are resolved, 
even for rather large complexes. This yields a wealth 
of detailed and accurate information.6,89-98 Second, 
the molecules have become very cold, typically a few 
degrees Kelvin. Only some J levels of the ground 
state are populated, which leads to simple spectra 
that can be (relatively) easily interpreted. Also the 
calculation of such spectra from the VRT states 
presents no special problems, once the wave functions 
of these states are known.8'17-49 In gas phase spectra 
higher states are populated too, which causes a 
multitude of hot bands. In combination with the 
lower resolution this leads to very complex spectra, 
with composite, overlapping bands.99"103 Also the 
computation of such spectra from the VRT states 
becomes a major task.88'104,105 

F. Symmetry Aspects 

In "normal" nearly rigid molecules it is customary 
to use the point group of the equilibrium structure 
to classify the vibrations and the electronic states. 
This is just an approximate symmetry, however. In 
van der Waals molecules with multiple minima in 
the potential surface and large amplitude vibrations 
it is no longer valid. The symmetry group of such 
molecules contains (i) permutations of identical nu
clei, (ii) space inversion, and (iii) products of i and ii. 
Usually not all permutation inversions (PFs) are 
physically meaningful in the sense that they give rise 
to observable splittings; one only has to consider the 
so-called106'107 feasible PFs. There are two kinds of 
these. The first kind is equivalent to a rotation of 
the (rigid) complex in isotropic space. In this case 
no energy barrier has to be surmounted. The second 
kind of feasible PFs requires the tunneling through 
some barrier, deforming the complex to another 
equivalent structure that is distinguished from the 
earlier structure by the change in one or more 
internal coordinates. It is very hard to predict a 
priori if an operation of the second kind is feasible. 
Detailed experiments or elaborate calculations are 
required to do so. Furthermore, whether or not an 
operation is considered to be feasible depends on the 
resolution of the measuring device. 

The application of the molecular symmetry group, 
i.e. the group of all feasible PFs, is treated in several 

textbooks.108109 In Appendix C we have shown, for 
the various coordinate systems commonly used in van 
der Waals molecules, how to derive the action of the 
PFs on the coordinates. The action on the different 
basis functions then follows rather easily from the 
well-known analytic properties of these functions, see 
Table 1. In SF coordinates this derivation is rather 
trivial, and not much can be learned from it, since it 
is not possible in these coordinates to separate the 
overall rotations of the complex from its internal 
motions. With the use of BF coordinates such a 
separation is possible, although approximate. The 
action of the PFs becomes more complicated: each 
PI corresponds with an "equivalent rotation" of the 
BF frame108 and a transformation of the internal 
coordinates of the complex. If the complex is nearly 
rigid and has a single equilibrium structure, the PI 
group contains just the operations of the first kind 
and it is isomorphic to the point group of the 
equilibrium structure. The action of the Pi's on the 
internal coordinates is equivalent to that of the point 
group operations on the small vibrational displace
ments. It is the additional PFs, of the second kind, 
which make the VRT states of van der Waals 
molecules so interesting, however. 

The PI group symmetry can be used for different 
purposes. In the calculation of the VRT states, the 
adaptation of the basis to the irreducible representa
tion (irreps) of the PI group leads to a separation of 
the Hamiltonian matrix into smaller blocks. In some 
examples, such as (NH3)2,10 this simplification was 
essential to make the calculations practically feasible. 
Also the VRT states are symmetry adapted and, since 
the dipole operator is invariant under all permuta
tions of identical nuclei and antisymmetric under 
space inversion E*, this causes the (exact) selection 
rules. Further, approximate selection rules may be 
derived as well, by considering the separate PI group 
adaptation of the overall rotation functions and of the 
internal VRT wave functions. For this purpose, the 
components of the dipole operator should be ex
pressed with respect to the BF frame, as in eq 35. 
The PI group symmetry of the "parallel" and "per
pendicular" dipole components follows easily from the 
transformation properties of the coordinates. 

Finally, we note that also the nuclear spin eigen-
functions must be adapted to the permutations of (all) 
identical nuclei. The spin functions are invariant 
under space inversion. Since the nuclei are bosons 
(for integer /) or fermions (for half-integer / ) , it 
follows from the Pauli principle that the spatial wave 
functions of the VRT states are explicitly related, 
through their permutation symmetry, to the occur
rence of specific nuclear spin quantum numbers. It 
is this relation that determines the nuclear spin 
statistical weight108 of each VRT level. For the 
vibrational spectra of nearly rigid molecules this is 
not relevant, but for floppy van der Waals molecules 
the permutation symmetry of the VRT states will 
strongly affect the spectra. So, the spectra that 
pertain to the different nuclear spin species will be 
rather different. As, practically always, the various 
nuclear spin species occur simultaneously, the mea
sured spectra in fact consist of a set of overlapping 
spectra for all the species. In high-resolution spectra 
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it is no problem to separate the individual species 
and to relate their spectra to the spectra calculated 
for the corresponding species. 

///. Comparison with Experimental 
High-Resolution Spectra, Verification of ab Initio 
Potentials, Semiempirical Potential Fits, 
Examples 

The route from the intermolecular potential to the 
spectra and vice versa, for which the map has been 
laid out in the preceding sections, will now be 
illustrated on several examples. These examples are 
mostly taken from our own work, as we have il
lustrative material available for these systems. First, 
we will describe two atom—diatom complexes, Ar -
H2 and He-HF, for which the route has been followed 
very precisely in both directions: recently calculated 
ab initio potentials reproduce the spectra with great 
precision, accurate semiempirical potentials were 
constructed already some time ago. 

Next we discuss two atom-polyatom dimers, Ar-
NH3 and Ar-H2O, where both directions were taken 
too, but the anisotropy of the ab initio potential still 
had to be scaled to get agreement with the spectra. 
The semiempirical potentials which were obtained 
from fits to the spectra are probably more accurate, 
but this is still being established by using them to 
calculate other observed data (such as state-to-state 
inelastic scattering cross sections). Higher quality 
ab initio potentials are now becoming available for 
these complexes. In the example of Ar-NH3 an 
internal motion, the NH3 umbrella vibration and 
inversion, was included in the calculations of the far-
and mid-infrared spectra. 

We then consider systems, some rare gas atom-
aromatic molecule dimers, for which the use of 
"scattering" coordinates is better abandoned. This 
is because, for these large flat molecules, the distance 
to the rare gas atom is not too large at the van der 
Waals minimum, but at the same distance and other 
values of the angles, the atom feels a strong "steric" 
repulsion. The problem separates much better and 
is treated more naturally in Cartesian coordinates: 
z is the height of the rare gas atom above the 
molecular plane and x and y describe the lateral 
motions. For such systems, it proved to be conve
nient to embed the BF frame in the molecule and to 
use the kinetic energy operator in eq 6. 

Finally, as an example of a dimer consisting of two 
nonlinear molecules, we discuss NH3-NH3. The 
question whether hydrogen bonding occurs in this 
complex, and whether the (average) structure found 
from microwave spectra is significantly different from 
the (calculated) equilibrium structure, has been 
subject to much debate. Far-infrared spectra became 
recently available, but it was not obvious which 
conclusions regarding the structure and the internal 
motions of this dimer had to be drawn from the 
various experimental data. Also the (incomplete) 
information about the potential surface from different 
ab initio calculations was partly contradictory. We 
will show that, with the use of the two-rotor BF 
coordinates and a sufficiently large basis of sym
metrized free-rotor functions, this problem can be 
solved and these questions can be answered. 

The examples given are by no means complete. We 
forgo a discussion of the simplest of all van der Waals 
molecules: the rare gas (Rg) pairs. The spectroscopy 
of those dimers is discussed in ref 110 (p 403). For a 
long time it was thought that the He—He potential 
did not support a single bound state, but bound He2 
was observed recently.111 See ref 112 for a discussion 
of the Rg dimer potentials. Extensive work, which 
we will not explicitly review, has been performed also 
for Rg-HX dimers, with X = F, Cl, or Br. This work 
is summarized in ref 113. Further, we might men
tion the experimental and theoretical studies of the 
(HF)2 dimer. This system is a typical example of a 
diatom-diatom complex, for which the whole trajec
tory from ab initio calculations of the potential 
surface to the spectra has been followed. We list only 
two papers,81'114 which describe the calculation of the 
spectra from the potential and the comparison with 
the experimental data. For further information we 
refer to these papers and the references therein. 

A. Ar-H2 

The Ar-H2 van der Waals molecule is one of the 
most thoroughly investigated atom-diatom com
plexes, and the empirical potential energy surface for 
this system is probably the most accurately deter
mined of any atom-diatom potentials. One of the 
earliest studies of the anisotropic interactions in Ar-
H2 was the work of Le Roy and van Kranendonk.115 

They derived an anisotropic potential energy surface 
for Ar-H2 by fitting the potential to the near-infrared 
spectra of McKellar and Welsh.116 Although these 
spectra were measured in the gas phase, with very 
long path cells, the rotational structure could still be 
resolved because H2 is extremely light. Complemen
tary work was later reported by Dunker and Gor
don,85 who also based their fits on the McKellar and 
Welsh data. In 1980 Le Roy and Carley19 published 
further improved potentials based on these data. In 
the 1980s high-resolution near-infrared spectra,117 

hyperfine spectra,118 and molecular beam differential 
cross sections119 have been measured. Using these 
data Le Roy and Hutson120 gave a new multiproperty 
fitted potential for Ar-H2. Their final potential fit 
has been very successful. It reproduces the results 
of all the measurements to within the experimental 
error bars, including the data not utilized in the fit. 
The authors give the value of the potential at the 
minimum to an astonishing accuracy of four figures, 
and the free parameters of the potential have uncer
tainties of about 1%. Very recently McKellar121,122 

was able to measure also the far-infrared spectra 
which correspond to the pure van der Waals transi
tions, not accompanied by a vibrational excitation of 
the H2 molecule. 

Surprisingly, there is only one, very recent, full ab 
initio study of the potential and VRT states of this 
dimer. Williams et al?1 performed symmetry-adapted 
perturbation theory (SAPT) calculations of the com
plete (i.e., including variation of the H - H distance) 
potential energy surface for Ar-H2. For a detailed 
discussion of the resulting potential we refer the 
reader to ref 31. Here, we only want to stress that 
high-level theory and large spdfgh-symmetry basis 
sets carefully optimized for intermolecular interac-
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Figure 1. Ab initio SAPT31 and empirical120 indicated by 
TT3(6,8) interaction potentials OfAr-H2. 

tions have been used to achieve converged results. 
For a broad range of the configuration space the 
SAPT potential agrees to almost two significant digits 
with the empirical potential of Le Roy and Hutson120 

(see Figure 1). In particular, at the van der Waals 
minimum the two potentials agree within 3%. 

Although the SAPT potential surface agrees very 
well with the empirical potentials, its accuracy is 
better judged by direct comparison with experiment. 
The quality of the ab initio SAPT potential31 was 
checked32 by exposing it to the severe test of comput
ing the observed high-resolution near- and far-
infrared spectra of McKellar.117'121 Since for Ar-H2 
nearly exact calculations of the VRT states can be 
performed, any discrepancy between the observed 
and calculated transition frequencies can be at
tributed to possible deficiencies of the intermolecular 
potential. 

Since the anisotropy in the potential for this system 
is very weak, relative to the large rotational constant 
of the H2 subunit, we use the SF coordinates. The 
kinetic energy operator is given by eqs 2 - 4 with TA 
— O and TB = C(r]jB2, where C(r) is the rotational 
constant of H2 which depends on the H - H bond 
length r. The potential can be expanded as in eq 7; 
the expansion functions would simply be Legendre 
functions PL(COS 6B) when expressed in BF coordi
nates, cf. eqs 9 and 10, but they must be transformed 
to the SF coordinates, cf. eq 8. The SF expansion 
functions are coupled products of two spherical 
harmonics1720 which are functions of ffF = 
(^lF,0lB) = r and R = Q3,a). Also the SF angular 
basis functions for the VRT states, cf. eq 15, are 
coupled products of two spherical harmonics in r and 
R. The expansion coefficients VL(R, r) in the potential 
depend on the length R of the van der Waals bond, 

Table 3. Calculated Energy Levels (in cm-1) of the 
Ar-H2 (» = Oj = 0) and Ar-D2 (i> = OJ = 0) Complexes 
from the ab Initio SAPT Potential 

J 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

I 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Ar-H 2 

-21.883 
-20.756 
-18.516 
-15.188 
-10.821 

-5.487 
+0.685 

Ar-

-28.387 
-27.752 
-26.484 
-24.590 
-22.078 
-18.962 
-15.257 
-10.987 

-6.183 
-0.888 
+4.828 

-D2 

-4.134" 
-3.734" 
-2.942c 

-1.776" 
-0.260" 
+1.571" 

0 Excited Van der Waals stretch levels. 

Table 4. Calculated Energy Levels (in cm 1 ) of the 
Ar-H2 (» = Oj = 1) Complex from the ab Initio SAPT 
Potential 

J = l + 1 

-22.352 
-21.206 
-18.956 
-15.662 
-11.246 

-5.894 

J=I 

-19.915 
-17.677 
-14.355 

-9.998 
-4.686 

J = Z - I 

-22.437 
-18.883 
-15.572 
-11.207 

-5.868 

as well as on r. Morse-type oscillator functions47 were 
used as the basis in R, and since the potential in ref 
31 was expanded as a Taylor series in r, the required 
integrals over the vibrational states of H2 could be 
obtained from ref 19. The elements of the kinetic 
energy matrix become extremely simple with the SF 
angular basis, the potential matrix elements are 
more complex, cf. eq 17. For atom-molecule dimers 
one can avoid the calculation of the 9 - j symbols, 
however, by using the simplification indicated below 
eq 18. When the molecule is linear, as in this case, 
one can substitute KA = KB = 0 in the expansion of 
the potential and h,A = &B = 0 in the basis. The 
angular factors thus appearing in these matrix 
elements are the Percival-Seaton coefficients.17'20 

The only rigorously conserved quantum numbers 
are the total angular momentum J , its projection M 
on the space-fixed z axis, and the parity a. Because 
of the very weak anisotropy of the potential, the H2 

rotational quantum number j and the quantum 
number I associated with the end-over-end rotation 
of the vector R are nearly conserved too (coupling 
case a of ref 16). These approximate quantum 
numbers can be used to label the VRT levels. In 
Tables 3 and 4 we report results of converged 
variational calculations for the bound states of A r -
H2 (j = 0) and A r - D 2 (j = 0), and for A r - H 2 (J = 1), 
respectively. For details of the calculations we refer 
to ref 32. For thej = 0 states OfAr-H2 the potential 
affords only one bound stretch state, with J = I 
running from 0 to 5. By virtue of its larger mass, 
A r - D 2 has two such bound states; the second state 
corresponds to the excited van der Waals stretch. In 
the j = 1 manifold of A r - H 2 there are 16 bound 
states, see Table 4. The anisotropy of the potential 
splits each O'=l,0-level into states with J = I - 1,1, 
and I + 1. In Table 4 we see illustrated that these 
splittings are very small. This is not surprising in 
view of the small anisotropy in the potential. 
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Table 5. Near-Infrared Transitions in Ar-Dj (in 
cm-1) Accompanying the Fundamental Band of o-D2 
[Q1(O) = 2993.614 c m 1 ] 

AE(J" - J ' ) 

computed observed 
J" I" J' V (ref 32)" (refll7)6 Ac 

Table 6. Near-Infrared Transitions in Ar-D2 (in 
cm-1) Accompanying the Fundamental Band of o-D2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 

2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2994.117 
2994.728 
2995.326 
2995.908 
2996.470 
2997.009 
2997.517 
2997.986 
2998.399 

2991.592 
2990.955 
2990.322 
2989.698 
2989.087 
2988.496 
2987.935 
2987.419 
2986.976 

2994.042 
2994.659 
2995.287 
2995.835 
2996.402 
2996.952 
2997.475 
2997.995 
2998.375 

2991.542 
2990.904 
2990.297 
2989.690 
2989.080 
2988.549 
2987.988 
2987.485 
2987.040 

+0.075 
+0.069 
+0.039 
+0.073 
+0.068 
+0.051 
+0.042 
+0.031 
+0.024 

+0.050 
+0.051 
+0.025 
+0.008 
+0.007 
-0.053 
-0.053 
-0.066 
-0.064 

" Computed near-infrared transitions from the ab initio 
SAPT potential (ref 31). b Measured near-infrared transitions 
(ref 117). ° Absolute error of the transition frequency computed 
from the ab initio SAPT potential. 

In the presentation of the computed transition 
frequencies we follow the spectroscopic notation 
which is common for the H2 transitions. The symbols 
Q(j) and S(J) denote Aj = 0 and Aj = 2 transitions, 
respectively, that depart from a state j . The change 
in the vibrational quantum number is indicated by 
a subscript. For example, Qi(O) stands for a v = 
0 — 1 transition in para (even,/) hydrogen in which 
the rotational state does not change. The Q1XO) 
transitions probe mainly the isotropic part of the 
potential and its dependence on the diatom stretching 
distance. The levels with higher j are also perturbed 
by the anisotropic part of the potential, so that the 
Qv(j) and Sv(j) transitions contain information about 
the anisotropy in the interaction. 

In Tables 5 and 6 we present the near-infrared 
transitions of the Qi(O) and Si(O) spectra of Ar-D2. 
Note that both upper states are resonances that 
undergo vibrational predissociation and that the 
second upper state also decays via internal rotation 
predissociation. The lifetimes of these compound 
resonances are so long123'124 tha t the associated line 
broadenings have not been observed experimentally 
and a bound state method can be safely applied. 
Table 7 gives the far-infrared transitions in the 
So(O) spectrum OfAr-D2 . (Note that in ref 117 the 
assignments for the R branch of the Qi(O) spectrum 
OfAr-D2 and the T branch of its Si(O) band contain 
some typographical errors.125) An inspection of Tables 
5—7 shows that the SAPT potential31 produces very 
accurately the transition frequencies for both the 
Qi(O) and S„(0) bands: typical errors are of the order 
of 0.1 cm"1. This very good agreement between the 
results of ab initio calculations32 and high-resolution 
measurements117 '121 suggests that not only the domi
nant isotropic part of the SAPT potential,31 but also 
its dependence on the diatom stretching distance and 
the weak anisotropic term are very accurate. 

[S1(O) = 3166.3S9 c m 1 ] 

AE(J" 

computed 
J" I" J' V (ref 32)° 

-J') 

observed 
(refll7)6 Ac 

3 
4 
5 
6 
7 
8 
9 

10 

3 
4 
5 
6 
7 
8 
9 

10 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2 
3 
4 
5 
6 
7 
8 
9 

4 
5 
6 
7 
8 
9 

10 
11 
12 

0 
1 
2 
3 
4 
5 
6 
7 

3170.335 
3172.221 
3174.038 
3175.790 
3177.470 
3179.059 
3180.525 
3181.797 
3182.704 

3161.352 
3159.449 
3157.612 
3155.868 
3153.806 
3152.336 
3150.829 
3149.147 

3170.290 
3172.159 
3173.986 
3175.725 
3177.387 
3178.964 
3180.418 
3181.676 
3182.640 

3161.350 
3159.472 
3157.585 
3155.768 
3153.995 
3152.290 
3150.692 
3149.246 

+0.045 
+0.062 
+0.052 
+0.065 
+0.084 
+0.095 
+0.107 
+0.121 
+0.064 

+0.002 
-0.023 
+0.027 
+0.100 
-0.186 
+0.046 
+0.137 
-0.099 

" Computed near-infrared transitions from the ab initio 
SAPT potential (ref 31). b Measured near-infrared transitions 
(ref 117).c Absolute error of the transition frequency computed 
from the ab initio SAPT potential. 

Table 7. Far-Infrared Transitions in Ar-D2 (in cm"1) 
Accompanying the Aj = 2 Band of 0-D2 [So(O) = 
179.069 cm 1 ] 

AE(J" - J') 

J" 

1 
2 
3 
4 
5 
6 
7 
8 

3 
4 
5 
6 
7 
8 
9 

10 

I" 

1 
2 
3 
4 
5 
6 
7 
8 

3 
4 
5 
6 
7 
8 
9 

10 

J' 

2 
3 
4 
5 
6 
7 
8 
9 

2 
3 
4 
5 
6 
7 
8 
9 

Y 

4 
5 
6 
7 
8 
9 

10 
11 

0 
1 
2 
3 
4 
5 
6 
7 

computed 
(ref 32)° 

183.913 
185.822 
187.666 
189.447 
191.154 
192.765 
194.241 
195.491 

174.844 
172.911 
171.032 
169.202 
167.431 
165.734 
164.138 
162.688 

observed 
(refl21)6 

183.875 
185.749 
187.560 
189.331 
191.004 
192.598 
194.055 
195.257 

174.903 
172.995 
171.140 
169.323 
167.589 
165.900 
164.326 
162.895 

Ac 

+0.038 
+0.073 
+0.106 
+0.116 
+0.150 
+0.167 
+0.186 
+0.234 

-0.059 
-0.084 
-0.108 
-0.121 
-0.158 
-0.166 
-0.188 
-0.207 

" Computed far-infrared transitions from the ab initio SAPT 
potential (ref 31). b Measured far-infrared transitions (ref 121). 
c Absolute error of the transition frequency computed from the 
ab initio SAPT potential. 

B. He-HF 
The H e - H F complex is very weakly bound and 

until recently it was investigated only by scattering 
techniques.126,127 In 1990 Lovejoy and Nesbitt128 

reported the first study of the high-resolution near-
infrared vibration—rotation spectra, corresponding to 
the simultaneous excitation of the vibration and 
rotation of HF within the H e - H F complex, and of 
the rotational predissociation. 

The few dynamical calculations for this com
plex128-130 were based on the ab initio potential of 
Rodwell et al.131 The most advanced of these studies 
was reported by Lovejoy and Nesbitt.128 Their cal
culations of bound and quasibound rovibrational 
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these coordinates and the basis of eq 16, with JA — 
JtA — &B = 0 and after parity adaptation, is given by 
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Figure 2. Ab initio interaction potential of He-HF 
computed by SAPT33 (solid line) and semiempirical poten
tial128 (dashed line), for d = 0°, 90°, 180° and r = 1.7328 
bohr. 

levels and of the line widths revealed that the ab 
initio potential131 does not correctly reproduce the 
near-infrared spectrum of the complex. Comparison 
of the experimental results with the ab initio predic
tions suggested that the van der Waals well in this 
potential is 11% too shallow and that its anisotropic 
terms are 30% too large in the repulsive region. This 
is not entirely surprising since the potential devel
oped by Rodwell et al. follows the "Hartree—Fock plus 
dispersion" model45 and neglects important intra-
monomer correlation effects. However, by a simple 
scaling of the long-range dispersion coefficients in 
this potential Lovejoy and Nesbitt128 were able to 
obtain an anisotropic potential surface which repro
duced all spectroscopic data available for H e - H F . 

Recently, Moszynski et al.33 reported a SAPT 
calculation of the three-dimensional potential energy 
surface for the H e - H F complex. This potential was 
represented by an expansion in Legendre polynomi
als Pz,(cos 8B). The expansion coefficients vdR,r), 
calculated for different values of the HF bond length 
r, were fitted by analytic functions of R which 
represent the various long-range R~n and short-range 
(exponential) contributions. Further improvement of 
the important dispersion term was achieved by the 
computation of high-quality long-range dispersion 
coefficients at the same level of electron correla
tion132"134 in a large spdfg basis set. The SAPT 
potential surface is in very good agreement with the 
semiempirical potential of Lovejoy and Nesbitt128 (see 
Figure 2). In ref 34 the SAPT potential was checked 
by direct comparison with experiment,128 after com
putation of the near-infrared spectrum and line 
widths. Here, we present a brief summary of the 
VRT states and spectrum of H e - H F , as calculated 
with the SAPT33 and semiempirical128 interaction 
potentials. 

Although the H e - H F interaction potential in the 
region of the van der Waals minimum is only weakly 
anisotropic, it is most convenient to use the BF 
coordinates, with the kinetic energy operator given 
by eq 5 with TA = 0 and TB = C{r)JB2. The Legendre 
expansion of the potential can be directly used in 

\njJt;p,J,M) 

^(Rm^riY^D^a^O)* + An 

pY.jtwfl-tfapm (4i) 
where r = (6B,<PB) and p is the spectroscopic parity. 
This parity is related to the conventional parity a 
under space inversion E* as p — o(-l)J.135 The 
potential matrix elements are given by eq 18, with 
the 9 —j symbol substituted as indicated below this 
equation and the labels WA, KA, &A and WB, KB, &B in 
the 3 - j symbols equal to zero. The only rigorous 
quantum numbers are the total angular momentum 
J, M and the parity p . The HF rotational quantum 
number j , and the projection K of J (and j) onto the 
body-fixed intermolecular axis, are nearly conserved 
(coupling case b of ref 16). Functions with different 
j are mixed by the anisotropic potential, functions 
with different K only by the off-diagonal Coriolis 
interactions. States with (approximately) K=O, ± 1 , 
etc. are denoted as 2, n , etc. Levels with p — +1 
and p = - 1 are designed by the superscripts e and f, 
respectively. For K=O only e parity states exist. 
The splitting of the states with \K\ > 0 (the so-called 
Z-doubling) into states with e and f parity is caused 
by the Coriolis interactions. 

The allowed dipole transitions between the VRT 
states of the complex can be deduced from the 
expressions in section II.E. Also the simplified 
formulas for a tom-diatom systems are indicated in 
this section, as well as in ref 86. They lead to the 
following rigorous selection rules 

J" = J', p" = ~p', or J" = J'±1, p"=p' 
(42) 

Since the quantum number K is nearly conserved, 
an additional selection rule 

K" -K = O, ± 1 (43) 

holds to a good approximation. Thus, the observed 
bands in the cold H e - H F near-infrared spectrum 
correspond to the transitions from the bound 2 
states of H e - H F (v = 0) to 2e, Ue, and n^ states of 
H e - H F (i; = 1). In view of eq 42, two branches (P 
and R) corresponding to J" = J' + 1 and J" = J' - 1, 
respectively, are observable for 2 — 2e and 2 —* IP 
bands, for the 2 -* n^ transitions one should see only 
one (Q) branch. A schematic diagram of the energy 
levels and observed near-infrared transitions is de
picted in Figure 3. 

The only truly bound states in H e - H F are those e 
levels which lie below t h e j = 0 states of the free HF, 
and since the parity must be conserved, the /"levels 
which lie below the j = 1 state of HF. Other states 
are either so-called "shape" or "orbiting" resonances 
which dissociate directly by tunneling through the 
centrifugal barrier, or Feshbach or "compound" reso
nances56 which decay via rotational predissociation. 
The latter mechanism implies that the energy of the 
rotational excitation to j = 1 is converted into 
translation energy of the dissociating fragments. Of 
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Figure 3. Schematic diagram of the rovibrational levels 
and nearinfrared transitions in He-HF, according to ref 
34. Qi(O) = 3961.4229 cm"1 corresponds to the stretch 
fundamental of HF. The Uf state is located 33.9 cm-1 above 
the He-HF (v = IJ = 0) threshold, while the I doubling 
(the splitting of the IP and IP" energy levels) is 0.4 cm-1. 

course, all states of H e - H F (v = 1) may undergo 
vibrational predissociation, which utilizes the H F 
vibrational energy to dissociate the H e - H F (v = 1) 
complex into He and HF (v = 0) fragments. This 
process was found to be extremely slow,128 however, 
and was ignored in ref 34. 

By contrast with Ar-H2, the lifetimes of metastable 
states of H e - H F are not negligible, and the cor
responding line broadenings have been measured.128 

In ref 34 the positions and widths of these upper 
states have been obtained from close-coupling scat
tering calculations. The resonance parameters can 
be extracted from the behavior of the S matrix as a 
function of the energy. In the vicinity of a resonance 
the energy dependence of the phase shift dj(E) is 
described by the Brei t-Wigner function56 

djiE) = SfrS) + t a n - ^ ^ ^ ) (44) 

where Sj(E) is the contribution from direct scatter
ing and Ej and Tj are the position and the width of 
the resonance. Equation 44 is valid only in the one 
open channel case. For a generalization to situations 
with two or more open channels we refer to ref 136. 
Note that the parameters Ej and Tj are assumed to 
be independent of the energy, i.e., tha t the isolated 
narrow resonance approximation56 is valid. This is 
expected to hold since the resonances observed for 
van der Waals molecules are usually narrow and do 
not overlap with neighboring ones. In practice, the 
following procedure136 can be applied to find the 
position and the width of a resonance. First, the 
phase shift must be computed as a function of energy 

ground statec 

2" bendd<! 

Ile bend** 

l P b e n d ^ 

J 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 
5 

1 
2 
3 

1 
2 
3 
4 

Ej 

ref 34" 

-7.380 
-6.608 
-5.085 
-2.861 
-0.040 

+30.684 
+31.056 
+32.013 
+33.656 
+35.982 
+38.915 

+34.298 
+36.371 
+39.120 

+33.885 
+35.364 
+37.512 
+40.206* 

ref 128* 

-7.347 
-6.572 
-5.043 
-2.812 
+0.011 

+30.725 
+31.124 
+32.109 
+33.776 
+36.124 
+39.071 

+34.508 
+36.565 
+39.294 

+34.112 
+35.592 
+37.736 
+40.371 

0 Energy levels computed using the ab initio SAPT potential 
(ref 33).b Energy levels computed using the empirical potential 
(ref 128). ° Energies relative to HF (i; = O1/ = 0). d Energies 
relative to HF (v = Ij = 0).e Resonance states determined 
from close-coupling scattering calculations. ! Bound states 
relative to HF (v = I1/ = 1). g Obtained from a variational 
calculation without they = 1 function in the basis. 

by solving the close-coupling scattering equations at 
a closely spaced grid of energies Et around the 
location estimated eg. from bound state calculations, 
subject to standard S-matrix boundary conditions. 
The position Ej and the width Tj can then be 
obtained by fitting the computed phase shifts djiEd 
to the Breit-Wigner function.44 The direct scattering 
term dj(E), which depends very weakly on the en
ergy, may be approximated as a linear or quadratic 
function of the energy.136 

In Table 8 we report the results of bound state and 
close-coupling calculations34 of the energy levels in 
H e - H F obtained from the ab initio potential energy 
surface.33 As expected, the H e - H F complex is very 
weakly bound. The potential energy surface for v = 
0 supports only five bound states: the ground rovi
brational state (J = 0) and four rotationally excited 
levels. The energy levels computed128 from the 
semiempirical potential are also included in Table 8. 
The agreement is very good: the energies of bound 
states agree within 0.05 cm - 1 or better, the positions 
of the 2* resonances within 0.1 cm - 1 , and the posi
tions of the IP resonances and the energies of the IP 
states within 0.2 cm - 1 . The theoretical dissociation 
energy, Do = 7.38 cm - 1 , compares very well with the 
result obtained from the semiempirical potential, Do 
= 7.35 cm"1. 

The computed transition frequencies34 correspond
ing to the experimentally observed128 2 — 2s, 2 —• IP, 
and 2 — IP" bands are presented in Table 9. The 
SAPT potential surface33 predicts all infrared transi
tions with errors smaller than 0.1 cm - 1 . For com
parison we also report in Table 9 the transition 
frequencies computed from the semiempirical poten
tial.128 In general, the ab initio SAPT potential 
reproduces the experimental data with similar ac
curacy as the semiempirical potential, which is fitted 
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Table 9. Near-Infrared Transitions in He-HF (in cm J) Accompanying the Fundamental Band of HF" 

transition 

AE(J" — J') 

J' computed (ref 34)6 observed (ref 128)c computed (ref 128)d A' 

IP 

X - I T 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 
5 

1 
2 
1 
2 
3 

1 
2 
3 
4 

3999.860 
4000.044 
4000.164 
4000.266 
4000.378 

4003.102 
4004.402 
4000.806 
4000.655 
4000.583 

4001.916 
4001.871 
4001.796 
4001.669 

3999.953 
4000.137 
4000.251 
4000.345 
4000.449 

4003.161 
4004.418 
4000.904 
4000.735 
4000.639 

4002.005 
4001.952 
4001.859 
4001.680 

3999.894 
4000.104 
4000.242 
4000.359 
4000.483 

4003.278 
4004.560 
4000.974 
4000.800 
4000.706 

4002.107 
4002.058 
4001.971 
4001.783 

-0.094 
-0.093 
-0.087 
-0.079 
-0.071 

-0.059 
-0.016 
-0.098 
-0.080 
-0.056 

-0.089 
-0.081 
-0.063 
-0.011 

-0.059 
-0.033 
-0.009 
+0.014 
+0.034 

+0.117 
+0.142 
+0.070 
+0.065 
+0.067 

+0.102 
+0.106 
+0.112 
+0.103 

" The frequency corresponding to the HF stretch fundamental is Qi(O) = 3961.4229 cm-1. 6 Computed transitions from the ab 
initio SAPT potential (ref 33). c Measured transitions (ref 128). d Computed transitions from the empirical potential (ref 128). 
e Absolute error of the transition frequency computed from the ab initio potential. ''Absolute error of the transition frequency 
computed from the empirical potential. 

to these data. Some transition frequencies are 
predicted even more accurately by the SAPT poten
tial. 

For dimers consisting of linear molecules, and in 
particular for an a tom-dia tom system (with LA =JA 
— /A = 0) as we have here, the labels KA and KB in 
the angular expansion of the potential and the labels 
UA and UB in the basis functions are zero. From eq 
18 it follows then that the diagonal potential matrix 
elements vanish for odd values of L = LB. This 
suggests that the energy levels and transition fre
quencies are mainly sensitive to the terms with even 
L in the Legendre expansion of the intermolecular 
potential. The results reported in Table 9 confirm 
that these terms in the ab initio potential33 are 
indeed very accurate. The correctness of the (much 
smaller) terms with odd L can be checked by comput
ing the widths of resonances which decay via rota
tional predissociation. Rotational predissociation 
lifetimes can be defined via the Fermi golden rule 
expression137 which, indeed, mixes states with j — 0 
and j = 1 via the L - I term in the Legendre 
expansion of the potential. Since Lovejoy and Nes-
bitt128 measured the line widths of all 2 —• 2e and 
S —- IT transitions in H e - H F , a direct comparison 
of the computed and measured widths serves as a 
further test of the accuracy of the ab initio potential. 

In Table 10 we report the widths of the If and IP 
resonances computed on the ab initio potential. The 
agreement here is less satisfactory: all computed 
widths are too large by a factor of 2. This suggests 
that the small L - I anisotropy in the ab initio 
potential is not correct. To confirm this assumption, 
the short-range contribution to the L = I angular 
component of the potential was scaled by a factor of 
0.95 and the widths of the E6 and LP resonances were 
recomputed. The results are given in parentheses 
in Table 10. The agreement with the measured line 
widths128 is very good now: almost all widths com
puted from the scaled potential agree with the 
experimental data within the error bars. Also the 
agreement with the widths computed from the 
semiempirical potential128 is very satisfactory. It 
should be noted that this scaling introduces a very 

Table 10. Calculated Widths (MHz) of the He-HF 
Resonance States" 

computed 
(ref34)6 

observed 
(refl28)c computed 

(ref 128)d 

2? bend 

IP bend 

7203 (3452) 
5731 (2673) 
4453 (2001) 
3280 (1397) 
2158 (848) 

1080 (575) 
1773 (928) 
1930 (993) 

3020 ± 500 
2830 ± 200 
1640 ± 150 
1260 ± 100 
770 ± 100 

530 ± 100 
890 ± 150 
1000 ± 400 

3550 
2730 
1999 
1349 
780 

532 
900 
990 

a The widths corresponding to the scaled potential are given 
in parentheses. * Line widths computed using the ab initio 
SAPT potential (ref 33).c Measured line widths (ref 128). 
d Line widths computed using the empirical potential (ref 128). 

-0 .05 

CU 
CU 
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-0.15 
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Figure 4. Anisotropics of the ab initio (- - -), scaled 
( ),34 and semi-empirical (solid line)128 potentials of 
He-HF in the region of the van der Waals minimum (R = 
6 bohr and r = 1.7328 bohr). 

small change in the interaction potential (see Figure 
4). In the repulsive region the scaled potential is 
~ 4 % smaller than the original ab initio potential,33 

while the depth of the van der Waals well is only 2% 
lower. These results clearly show that the widths of 
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resonances are extremely sensitive to the accuracy 
of the small odd terms. The quantitative prediction 
of the rotational predissociation lifetimes is a chal
lenge for ab initio calculations. 

C. Ar-NH3 and Ar-H2O 
A considerable amount of high-resolution spectral 

data is available for both Ar-NH3
138-146 and Ar-

H2O
43'44'146"150 in the infrared, far-infrared, and mi

crowave regions. Also the isotopomers Ar-D2O and 
Ar-HDO have been investigated. Ab initio poten
tials have been calculated for both dimers by the 
supermolecule MBPT2 method (second-order many-
body perturbation theory),151,152 as well as by an 
approximate SAPT approach.153'154 The super-
molecule results151,152 can only be used for comparison 
with other ab initio or semiempirical potentials. 
They cannot be tested in calculations of the VRT 
states and spectra, since they did not represent 
complete potential surfaces, but only some specific 
cuts. The perturbational approach153,154 used large 
(spdfg) basis sets and it did produce complete inter-
molecular potential surfaces. For Ar-NHs the NH3 
umbrella angle was varied too. The potential was 
represented as the sum of electrostatic, first-order 
exchange, induction, and dispersion interactions. The 
electrostatic and first-order exchange interaction was 
defined by the well-known Heitler-London formula 
(neglecting intramonomer correlation effects), while 
the second-order induction and dispersion interac
tions were calculated as damped multipole expan
sions. Tang-Toennies-type46 damping functions were 
used to correct the second-order interactions for 
overlap effects; the damping parameters in these 
functions were derived from the exponential fits of 
the first-order exchange repulsion in the Heitler-
London energy. The permanent multipole moments 
of the monomers were obtained from SCF calcula
tions, while their static- and frequency-dependent 
polarizabilities were computed by the time-dependent 
coupled Hartree-Fock (TDCHF) method, followed by 
second-order many-body perturbation theory (MBPT) 
to account for the effects of (true) electron correla
tion.155 Alternative calculations156 were performed 
for Ar-H2O by the "Hartree-Fock plus damped 
dispersion" approach, with the same basis. The 
resulting potential differed only slightly from the 
perturbational result. The calculations were per
formed on a Gauss-Legendre quadrature grid37 of 
angles QB and Gauss-Chebyshev grid of angles ipB, 
so that the anisotropy of the potential could be 
expanded in spherical harmonics, cf. eq 10, and the 
coefficients VL11KB(R) in the expansion could be directly 
obtained by numerical integration, cf. eq 11. Analytic 
fits were made of the short-range (exponential) 
contributions to these coefficients. The different 
long-range R~n terms were given automatically in the 
spherical expansion.35 The results for Ar-NH3 are 
shown in Figure 5. 

In the paper on Ar-H2O154 it was shown how to 
transform the anisotropic potential to Ar-D2O, i.e. 
how to correct for the shift of the monomer center of 
mass. The long-range contributions can be trans
formed analytically, a numerical transformation pro
cedure was described for the short-range terms. If 
also the principal inertia axes of a monomer are 

400 
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-400 
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Figure 5. Coefficients vim{R) in the expansion (without 
the scaling in 03,3) of the ab initio Ar-NH3 interaction 
potential153 in functions Sim(d,ip). These functions are 
normalized real combinations of spherical harmonics 
Y1Jd1Ip), which differ from the angular functions in eq 10 
only by normalization. 

rotated by isotope substitution, as in Ar-HDO, it is 
possible to transform the potential by the use of the 
well-known rotation properties of spherical harmon
ics.36 Or, alternatively, one may retain the off-
diagonal components of the inertia tensor in the 
kinetic energy expression. 

The calculation of the VRT states and spectra for 
Ar-NH3 from the ab initio potential153 was described 
in refs 7-9. Similar calculations were performed for 
Ar-H2O, Ar-D2O, and Ar-HDO.158 It was most 
convenient to use the BF coordinates with the kinetic 
energy expressed as in eq 5 with TA = 0, the potential 
expanded as in eq 10 and the basis of eq 16 withjA 
= vrtA = fiA = 0. The inclusion of the monomer 
umbrella angle 0 < Q < n as a dynamical variable in 
Ar-NH3 can be based on the existing theory for NH3.

3 

The principal moments of inertia, which are the 
inverse of the rotational constants (times n2/2) in the 
kinetic energy TB of the NH3 monomer are given by 

I3JQ) = Iyy(g) = 3mHro( /2sin Q + t, cos Q) 

IJQ) = 3mHr0 sin Q (45) 

where KIH and m^ are the masses of hydrogen and 
nitrogen, £ = niNKSma + KIN), and ro is the (fixed) 
N - H bond length. The kinetic energy associated 
with the curvilinear umbrella motion is given by the 
Podolsky14 expression 

• umb (Q) = 4^>~"£V<?>_ W * £ (46) 
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with 

Ieg(g) = 3mHr2
0(cos2 g + £ sin2 g) (47) 

and, since the G(= I) tensor is diagonal (there is no 
Coriolis coupling, because the 3-fold symmetry is 
conserved159) 

g(Q) = hJyJzJoo (48) 
Also the well-known3 double-well potential Vumb(£>) for 
the umbrella motion in the NH3 monomer has to be 
included in the Hamiltonian, and the expansion 
coefficients vLgK8(R) °f the intermolecular potential 
become dependent on g. A convenient numerical 
basis or contracted basis of analytic functions 
sin(mg) can be obtained by first diagonalizing the 
monomer Hamiltonian Humb(g) = Tumb(g) + Vumb(g). 
The V2 vibrational ground state 0* is split by 23.8 
GHz = 0.793 cm"1 by tunneling through the NH3 

inversion barrier,160 and the first excited 1* state 
splits by 35.8 cm - 1 . Since the v2 fundamental fre
quency is about 950 cm"1, the inclusion of other than 
the 0* basis functions in the calculation of the VRT 
states has very little effect.9 In the calculation of the 
mid-infrared spectrum140 '143 of Ar-NH3, which cor
responds to excitation of the v2 mode, the 1* functions 
must be taken into account. Note, incidentally, tha t 
the simple basis functions sin(mg) are not orthogonal, 
since the volume element is gig)1'2 dg. 

The consideration of permutation inversion sym
metry is important in these dimers. For Ar -H 2 O the 
feasible symmetry operations are (12), the inter
change of the two protons, and space inversion, E*. 
The PI group is isomorphic with the point group C21, 
and it may be designated as Pi(C21,). The VRT states 
of Ar -H 2 O with Ai and A2 symmetry correspond to 
P-H2O, states with S i and B2 symmetry to 0-H2O. 
Transitions within each dimer species are observed 
in the spectrum in the weight ratiopara:ortho = 1:3. 
Since deuterons are bosons, while protons are 
fermions, the ortho-para classification of the VRT 
states is reversed in Ar-D 2 O; the weight ratio is 
ortho:para = 6:3. For Ar-NHa the symmetry group 
is PI(Czv) if the NH3 umbrella is considered to be 
frozen and PI(D3h) if the umbrella inversion is 
included; see Appendix C. VRT states with A'i and 
A"i symmetry are Pauli—forbidden; states with A'2 

and A"2 symmetry correspond to 0-NH3 and states 
with E' and E" symmetry to /J-NH3. The observed 
spectra are superpositions in the ratio ortho:para = 
4:2. 

In Figures 6 and 7 we illustrate how the rotor 
states of NH3, with energies Aj(j + 1) + (C - A)k2, 
which are (2/ + l)-fold degenerate in the free mono
mer, are split by the anisotropic potential in Ar-NH 3 . 
We observe that the terms with (LBJ^B) = (1,0) and 
(3,3) are the dominant anisotropic interaction terms. 
States with different j and k are mixed by these 
interactions, but the symmetry restrictions tell us 
that the ortho states with & = 0 (mod 3) must remain 
separate from the para states with k — ± 1 (mod 3). 
It is typical for a van der Waals complex that the 
states with different ortho/para symmetry display a 
completely different VRT level scheme, although they 
feel the same interaction potential. For normal, 
nearly rigid molecules such differences are usually 
not visible in vibrational spectra, only in rotational 
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Figure 6. Calculated and experimental VRT levels (band 
origins) of 0-Ar-NH3. The leftmost column is obtained 
from the isotropic potential Uo.oCR); j and k are exact 
quantum numbers at this level, vs is the R stretch quantum 
number. The second column shows the effect of the 
i>i,o(R) term; the third column, the cumulative effect of the 
(scaled) u3>3(.R) term; the fourth column, the effect of the 
remaining anisotropic interactions. The quantum number 
\K\ is approximate. The fifth column includes the inver
sion-tunneling splittings, and the last column contains the 
experimental frequencies from refs 141,142,144, and 146. 
The dashed levels in the inversion doublets are Pauli 
forbidden. The arrows indicate the calculated and mea
sured transitions, with the ground level adjusted. 
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Figure 7. Calculated and experimental VRT levels of 
P-Ar-NH3. See the caption of Figure 6 for the explanation. 
The inversion splitting of the \K\ = 1 levels is so small that 
it is not visible here. 

ones. We also observe in these figures that the K 
label in the BF basis (i.e. the projection of j and J on 
the dimer axis) remains a nearly good quantum 
number. Although this is formally justified only for 
a tom-l inear molecule dimers, states with .K=O are 



Spectra from lntermolecular Potentials Chemical Reviews, 1994, Vol. 94, No. 7 1951 

often called 2 states, and states with \K\ = 1 are II 
states. The 2 states in Ar-NHs are split by the NH3 
inversion tunneling by almost the same amount as 
in free NH3. The II states are split only by minute 
amounts; if they were not mixed with the 2 states 
through the weak Coriolis coupling they would not 
split at all. This can be understood from the model 
in ref 8, which treats the effect of the NH3 umbrella 
inversion as a (first-order) perturbation on the VRT 
states. 

The VRT levels in Ar-NH3 have been calculated 
for J = 0,1, ..., 15 and, with the aid of the theory in 
section II.E, also the intensities of all the allowed 
transitions from the ground state in the ortho and 
para species have been computed.8 The applied 
dipole surface contains the permanent dipole of NH3 
and the dipole induced on Ar by the NH3 permanent 
dipole and quadrupole, cf. eq 40 and Table 2. The 
induced dipole contributes only about 10% to the 
intensities, however. Also the 14N nuclear quadru
pole splittings have been computed for the different 
VRT states. Some generated spectra8 are shown in 
Figure 8, parts A-C. The intensity ratios between 
the P, Q, and R branches in Figure 8, parts A and B, 
are mostly determined by the Hbnl-London fac
tors,157 but in Figure 8C they show a typical deviation 
from these factors. This was found in the experi
ment142 also. It turned out, however, that the fre
quencies of the bands resulting from the ab initio 
potential153 deviate rather strongly from the mea
sured frequencies.138-146 The van der Waals stretch 
frequency which probes the R dependence of (mainly) 
the isotropic potential was quite realistic, but the 
"bending" frequencies which correspond to the level 
splittings by the anisotropic potential, cf. Figures 6 
and 7, were completely wrong. Even the order of 
these hindered rotor levels was incorrect. A simple 
scaling by a factor of 1.43 of the short-range contri
bution to the anisotropic expansion coefficient 
t>3,3CR) produced nearly correct splittings; see Figures 
6 and 7. Also the calculated intensities (which could 
only be measured rather crudely142) and quadrupole 
splittings agree well with experiment then. 

Something similar was experienced for Ar- r^O 
and Ar-D20: the order of the hindered rotor levels 
from the ab initio potential154 was incorrect.158 Here, 
it was not so easy to obtain the correct splittings, 
however, since many different anisotropic terms in 
the potential appeared to contribute to these split
tings. Several anisotropic coefficients VLgKB(R) change 
sign, just in the range of R where they are probed, 
i.e. in the well of the isotropic potential vo,o(R). We 
may conclude that, indeed, the spectra probe the 
anisotropy of the potential surface very sensitively. 
The accurate ab initio prediction of this anisotropy, 
especially for Ar-HaO, is a great challenge. Neither 
the supermolecule MBPT2 method,151'152 nor the 
approximate SAPT,153154 nor the "Hartree-Fock plus 
damped dispersion" model156 can meet this challenge. 
We have seen in sections III.A and III.B, however, 
that considerably more accurate ab initio potentials 
are now becoming available for atom—diatom sys
tems, both from a more rigorous version of SAPT31'33 

and from supermolecule MBPT4 calculations.161 It 
will not take much longer before we will see full ab 
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Figure 8. Rovibrational spectra calculated for (A) the 
lowest 2 — n transition in o-Ar—NH3 and (B) the lowest 2 
— Il and (C) II — II transitions inp-Ar-NH3 from ref 8. 
Intensities in 1010 m2 s_1 mol-1; temperature 5 K. The two 
windows in the last two figures contain the spectra for the 
allowed E' ** E" transitions between inversion doublets. 

initio potentials of similar accuracy for atom—poly-
atom systems such as Ar-HaO and Ar-NH3. 
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Table 11. State-to-State Cross Sections oiOg ~fk) for 
o-Ar-NH3 (in A2) at a Collision Energy of 280 c m 1 " 

Jl 
Io 
2t 
St 
< 
3t 
3 ; 
4 ; 

^ 
5 : 

5s 

Qb 

scaled ab initio 
potential 

(ref8) 

9.14(5.83) 
9.65 (9.63) 
3.21 (3.26) 
0.33 (0.47) 
1.18(1.67) 
6.78 (6.50) 
0.80(0.81) 
0.17(0.26) 
0.08 (0.09) 
0.10(0.14) 

54% 

experiment 

4.51 
5.01 
1.63 
0.36 
2.56 
9.10 
4.29 
0.97 

semi-empirical 
potential 
(refl45) 

10.21 (5.94) 
4.59 (5.28) 
2.14(2.05) 
0.13(0.19) 
0.22 (1.06) 

13.79(13.24) 
7.19(6.75) 
0.09 (0.46) 
0.04 (0.06) 
0.30(0.29) 

23% 

experiment 

5.55 
6.16 
2.01 
0.44 
3.15 

11.19 
5.28 
1.19 

a The values given in parentheses are corrected for the 
imperfect initial state preparation; the OQ ground state is 
contaminated with 8% of the IQ state. Since the measure
ment provides only relative cross sections, the sum of the 
experimental values has been "normalized" to the sum of the 
corresponding calculated values. The error is defined as Q = 

^exper, 
!)2/Si<7,Lper,<]1/2> where the values of crcaic are 

those given in parentheses.'b For a collision energy of 485 cm -1 

the error is 55% for the scaled ab initio potential and 31% for 
the semiempirical potential. 

Rather soon after the measurement of the high-
resolution spectra, one tried to extract intermolecular 
potentials directly from these spectra. At first, this 
was restricted to an effective angular potential 
surface (see refs 150 and 162 for Ar-HaO and refs 
142 and 144 for Ar-NHa) which yields information 
about the anisotropy of the potential, without speci
fying at which (in fact, variable) value of R this 
anisotropy was probed. Cohen and Saykally43 were 
the first to obtain a full three-dimensional intermo
lecular surface for Ar -H 2 O. This surface was im
proved44 when more spectral data became available. 
A similar semiempirical potential surface was re
cently constructed145 for Ar -NHs . The potentials 
used are of the form of eqs 13 and 14; the long-range 
coefficients Cn were partly fixed at the ab initio 
values,133153154 and typically, about 10 nonlinear 
parameters were varied. The VRT levels were cal
culated by the collocation method (see section II.D) 
and the parameters were optimized by a nonlinear 
least-squares fit to the observed transition frequen
cies. 

For Ar -NHs a very effective, independent test of 
the accuracy of the intermolecular potential was 
applied. A state-selected crossed-beam experiment163 

has provided the cross sections for the inelastic 
collisions in which the rotational (j,k) and the um
brella inversion e = ± states of NH3 are changed by 
the anisotropic interaction with the Ar atoms. These 
scattering cross sections o(j\ ~* /^ ) could be calcu
lated in a full close-coupling calculation.164 Both the 
experiments and the scattering calculations were 
performed for 0- andp-NH3, at two different collision 
energies (280 and 485 cm -1). The results obtained 
from the scaled ab initio potential8 and from the 
semiempirical potential of Schmuttenmaer et al.U5 

are given in Tables 11 and 12, for 0- andp-NH3 . We 
observe that the scaled ab initio potential, as well 
as the semiempirical potential yield very realistic 

Table 12. State-to-State Cross Sections 0(I1 —vp for 
P-Ar-NH3 (in A2) at a Collision Energy of 280 c m 1 " 

Jl 
Zi 

% 
K 
37 
A\ 
4+ 

2~2 n 
32

+ 

3J 
4 2 

< 
S2

+ 

S2" 
44 
44

+ 

S4
+ 

S4" 
5? 
S5" 

Qb 

scaled ab initio 
potential 

(ref8) 

4.71 (4.83) 
7.02(6.91) 
1.82 (1.84) 
2.19(2.17) 
0.63 (0.60) 
0.09(0.12) 
0.96(1.51) 

11.97(11.42) 
3.01 (2.96) 
2.03 (2.08) 
0.60 (0.58) 
0.35 (0.36) 
0.12(0.11) 
0.01 (0.02) 
0.74(0.75) 
0.91 (0.90) 
0.33(0.32) 
0.10(0.11) 
0.20 (0.20) 
0.21(0.21) 

16% 

experiment 

4.51 
6.06 
0.85 
1.30 

1.14 
12.40 
3.10 
2.45 
0.93 

0.77 
2.33 
0.43 

semiempirical 
potential 
(refl45) 

8.13 (7.95) 
4.47 (4.65) 
1.69(1.64) 
0.76 (0.80) 
0.30 (0.29) 
0.01 (0.03) 
0.07 (0.71) 

12.88 (12.24) 
7.22(6.91) 
1.12(1.43) 
0.78(0.77) 
0.69 (0.69) 
0.04 (0.04) 
0.04 (0.04) 
1.08(1.14) 
2.24(2.18) 
0.96 (0.92) 
0.07 (0.12) 
0.08(0.10) 
0.56 (0.53) 

32% 

experiment 

5.14 
6.91 
0.97 
1.48 

1.30 
14.13 
3.53 
2.79 
1.06 

0.88 
2.66 
0.49 

a The values given in parentheses are corrected for the 
imperfect initial state preparation; the I^ state is contami
nated with 5% of the I^ state. The normalization of the 
experimental values and the error Q are defined in Table 11. 
6 For a collision energy of 485 cm -1 the error is 36% for the 
scaled ab initio potential and 19% for the semiempirical 
potential. 

values of the inelastic scattering cross sections. 
Without the scaling of the anisotropic 1)3,3(7?) term, 
the cross sections from the ab initio potential were 
considerably worse. Especially in the case of the 
semiempirical potential obtained from the spectra, 
the agreement with the measured scattering cross 
sections begins to approach the (estimated) experi
mental accuracy. Hence, we are justified to believe 
that the semiempirical potential for Ar-NH 3

1 4 5 and 
also the one for Ar-H 2O, 4 4 are rather accurate. 

D. Ar-Benzene 
Although the VRT states of Ar-benzene and A r -

tetrazine have been calculated51 by the same ap
proach as described for Ar -H 2 O and A r - N H 3 in the 
preceding section, this approach proved to be rather 
inefficient. The expansion of the (empirical) inter
molecular potential in spherical harmonics required 
very high values of L (up to 36) and the angular basis 
had to contain Wigner D functions with values of j 
up to 27. A different embedding of the BF frame (in 
the molecule rather than along the intermolecular 
axis, see Appendix A.3) and a different choice of 
coordinates (the Cartesian components of the vector 
R, rather than the polar coordinates R,6,<p) have been 
proposed.23 The kinetic energy for these coordinates 
is given by eqs 6 and 19. This approach can be easily 
applied to even larger atom—aromatic molecule 
dimers, such as Ar-fluorene2 3 and Ar-naphtha
lene.52 Different basis sets, harmonic oscillator func
tions,23-24 distributed Gaussians,165 and discrete vari
able representations (DVR),52 have been implemented 
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Table 13. van der Waals Vibrational Energies and Properties of Ar-CeH8 Calculated with the "Global" Fit of the 
ab initio Potential (ref 175) for «7=0° 

PI(Cgv) irrep band origin (cm x) (z) (A) Ax (A) Ay (A) Az (A) (Z2) (h) moded character 
Ai 
E1 
A1 

A1 
E1 
B1 
B2 
A1 

o.oo6 

25.52 
37.51 
49.12 
54.89 
58.27 
70.72 
71.08 
71.20 

3.608 
3.622 
3.655 
3.632 
3.660 
3.654 
3.637 
3.638 
3.686 

0.348 
0.364 
0.515 
0.662 
0.564 
0.493 
0.799 
0.794 
0.687 

0.348 
0.631c 

0.515 
0.659* 
0.564 
0.855c 

0.799 
0.794 
0.687 

0.121 
0.123 
0.179 
0.126 
0.173 
0.168 
0.130 
0.129 
0.212 

0.0 
±0.999997 

0.0 
±1.999936 

0.0 
±0.999945 

0.0 
0.0 
0.0 

ground state 
b1 

sH43% b2) 
b2 

b2(48% s) 
S1V 
b3 

b3 

s2(57% b2) 
a Equilibrium distance Re = 3.560 A, well depth De = 393.44 cm-1. The root mean square displacements are defined as Ax = 

[(x2) - (x)2]1'2, etc. b Do = 342.47 cm"1. c These numbers are interchanged for the other substate in the degenerate pair. d s"> and 
b"i> indicate the excitation level in stretch and bend, as determined from the eigenvectors. 

in computer programs. Other dimers for which 
experimental spectra needed interpretation, such as 
Ar-aniline,166 Ar-styrene and Ar-4-fluorostyrene,167 

and Ar-2,3-dimethylnaphthalene168 have been stud
ied too, but we will further concentrate on the 
prototype system Ar-benzene. 

The UV spectrum of Ar-benzene has been recorded 
in such high resolution169"171 tha t the rotational 
structure in this spectrum could be well resolved. It 
corresponds to the excitation of the benzene monomer 
to its lowest excited electronic singlet Si state. The 
pure So — Si transition is dipole forbidden, however. 
The (strong) transition which is actually observed is 
the vibronic 6j transition from the ground So state 
to the Si state with the Ve vibration excited simul
taneously. For Ar-benzene, formed in a cold mo
lecular beam, three different van der Waals transi
tions were observed, in combination with the 6j 
transition. Two of these bands, at relative frequen
cies of 40.1 and 62.9 cm"1, had essentially the same 
rotational structure as the pure 6j transition. So, 
the excited VRT states should have Ai symmetry, just 
as the ground state, and these transitions were 
assigned170 to the R stretch fundamental, s1, and 
overtone, s2. This implies a very strong anharmo-
nicity. The third band, at 31.2 cm - 1 , has a different 
rotational structure and was tentatively assigned to 
the bending overtone 62, which has components of Ai 
and £?2 symmetry. The observed rotational structure 
of this band could not be understood, though. Fur
ther information is available from the microwave 
spectrum,172 which yields the ground state rotational 
constants, and from stimulated Raman scattering173 

which shows an unresolved band at about 33 cm - 1 . 
It followed from the experimental setup that this 
band corresponds to the same transition, in the So 
ground state, as the transition at 31.2 cm"1 in the 
excited 61 state. 

An ab initio potential surface for Ar-benzene was 
available from supermolecule MBPT2 calculations.174 

Another unsolved problem was that the well depth 
in this potential was 429 cm"1, while the anharmo-
nicity in the assigned s1 and s2 frequencies would not 
allow a well depth greater than about 150 cm -1 . Two 
different analytic representations were made of this 
ab initio potential.175 The first is a "global" fit by an 
a tom-a tom potential of generalized Lennard-Jones 
type 

V(R) = X 
6 

I 
i=l 

C1 \N I C2 \« 

rArC;, ArC;, 
+ 1 

i=\ 

C, \N 

'ArH1, 

1 -
rAiHtJ\ 

(49) 

the second is an expansion in displacements dx, dy, 
dz about the minimum at Re = (xe^ye^e) = (0,0,i?c) 

V(d) = kjd2 + dy
2) + kzzw

2 + ^Mdx
2 + d?) -

De (50) 

with a "Morse-type" scaling applied to the z coordi
nate: w = l — exp(-adz). Given these ab initio 
potentials and the unsolved questions regarding the 
interpretation of the experimental high-resolution 
spectrum, it was worthwhile to undertake a calcula
tion of the VRT states of Ar-benzene and to study 
the symmetry-allowed transitions. Such calculations 
were made by Bludsky et al.,115 by van der Avoird,24 

and by Faeder.165 Different numerical and analytic 
bases were used, and the results of Faeder agree very 
well with those of van der Avoird. The results of 
Bludsky et al. are different, however, although they 
used the same potential and kinetic energy expres
sion. The energies and some characteristics of the 
VRT states are listed in Tables 13 and 14. The two 
different analytic fits of the same ab initio potential 
produce somewhat different results. Especially those 
from the "Morse-type" expansion agree well with the 
experimental frequencies, if one makes the assign
ment24 that the band observed at 40.1 cm"1 indeed 
corresponds to the Ai stretch fundamental s1, but that 
the band at 62.9 cm"1 corresponds to the Ai compo
nent of the bending overtone b2 and the band at 31.2 
cm - 1 to the bending fundamental b1 of Ei symmetry. 
Although the s1 and b2 frequencies are rather differ
ent, there is strong mixing (Fermi resonance) be
tween these modes; see also Figures 9 and 10. It 
must be noted here that the calculations were per
formed on the ground state potential, whereas the 
experimental spectra probe the intermolecular po
tential of the vibronically excited 61 state. It can be 
inferred from the observed rotational constants and 
from the relatively small red shift of the 6j band in 
Ar-benzene (with respect to the benzene monomer) 
that the intermolecular potential is not strongly 
altered upon 6j excitation. 
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Table 14. van der Waals Vibrational Energies and Properties of Ar-C6H8 Calculated with the "Morse-type" Fit of 
the ab Initio Potential (ref 175) for J = 0 (Equilibrium Distance Re = 3.553 A; Well Depth De = 425.00 cm1) 

PI(Ce,,) irrep 

Ai 
E1 
A1 
E% 
A1 
E1 
A1 

S 1 
B2 

a D0 = 371.48 
excitation level 

band origin (cm x) 

0.00" 
30.17 
41.03 
60.35 
64.39 
68.45 
79.35 
90.50 
90.50 

cm-1. b These numbers 
m stretch and bend, as 

<2> (A) 

3.594 
3.605 
3.651 
3.617 
3.627 
3.660 
3.710 
3.629 
3.629 

Ax(A) 
0.320 
0.321 
0.385 
0.560 
0.519 
0.370 
0.451 
0.651 
0.651 

*» 

*» 

— 

Ay(A) 
0.320 
0.557* 
0.385 
0.560* 
0.519 
0.642* 
0.451 
0.651 
0.651 

are interchanged for the other substate in 
determined from the eigenvectors. 

Az(A) 
0.121 
0.123 
0.197 
0.125 
0.147 
0.194 
0.254 
0.127 
0.127 

the degenerat 

(h) (h) 
0.0 

±1.0 
0.0 

±2.0 
0.0 

±1.0 
0.0 
0.0 
0.0 

3 pair.c sn 

mode0 character 

ground state 
bl 

s1 (18% b2) 
b2 

b2 (22% s) 
S1V 
s2 (21% b2) 
b3 

b3 

and b"i> indicate the 

s1 STATE (A, SYMMETRY) 

-1.4 - 1 . 0 - 0 . 6 - 0 . 2 0.2 0.6 1.0 

4 - 1 . 0 - 0 . 6 - 0 . 2 0.2 0.6 1.0 
x-coordinate 

Figure 9. Fundamental stretch excited wave function of 
Ar-benzene calculated24 from the "global" fit of the ab 
initio potential175 for J = 0 (coordinates in A). Observe 
that the nodal plane is not horizontal, because of the Fermi 
resonance with the wave function in Figure 10. 

b2 STATE of A, SYMMETRY 

- 1 . 4 - 1 . 0 - 0 . 6 - 0 . 2 0.2 0.6 1.0 1.4 

- 1 . 4 - 1 . 0 - 0 . 6 - 0 . 2 0.2 0.6 1.0 1.4 
x-coordinate 

Figure 10. Bending overtone wave function of Ar-
benzene calculated24 from the "global" fit of the ab initio 
potential175 for J = 0 (coordinates in A). 

For an analysis of the experimental spectrum it is 
very important to use the symmetry and to include 
the vibronic 6j excitation in the selection rules. The 
symmetry group of the nearly rigid benzene monomer 
is isomorphic to the point group D6h- If the Ar atom 
would be delocalized to both sides of this planar 

molecule, the PI group of Ar-benzene would also be 
Pl{Deh)- Since it appears to be localized on one side, 
with no observable tunneling to the other side, the 
feasible symmetry group is PI(C$V). The symmetry 
of the VRT states for J = 0 is indicated already in 
Tables 13 and 14. It can easily be derived if one 
realizes that the relative motions of the Ar atom are 
nearly isotropic in x andy (the first anisotropic terms 
are of order 6). The states of a two-dimensional 
isotropic (harmonic) oscillator can be characterized 
by the label Z, which is the eigenvalue of the vibra
tional angular momentum operator lz. As we observe 
in Tables 13 and 14, this vibrational angular mo
mentum is nearly unquenched in Ar-benzene, and 
the symmetry of the VRT states follows directly from 
Table 15. Also the symmetry of the rotational wave 
functions is given in this table. One should realize 
that Ar-benzene is a prolate symmetric top, with the 
quantum number K broken only by weak Coriolis 
coupling. Further, it is important to observe that the 
vibronically excited 61 state has Ei symmetry, while 
the ground So state has A1 symmetry, of course. The 
dipole moment operator has Ai symmetry, when 
expressed with respect to the SF frame (it is invari
ant under all permutations and antisymmetric under 
space inversion). With the use of eq 38 it can be 
expressed with respect to the BF frame. Its "inter
nal" components have Ai symmetry (the parallel 
component with k — 0) and Ei symmetry (the 
perpendicular components with k — ±1) and the 
corresponding rotation functions (the Wigner D func
tions) have A2 and E\ symmetry, respectively. 

All the appropriate selection rules can be derived 
then, and it follows that the assigned transitions are 
indeed allowed. Still, it was expected that the 
transition to the b1 state of Ei symmetry would be 
extremely weak, since it is forbidden by the F r a n k -
Condon principle (ref 176, p 149). This principle is 
based on the assumption that the electronic transi
tion dipole moment does not depend on the nuclear 
displacements and, hence, that simultaneous vibra
tional excitations are allowed only when the excited 
vibrational state has Ai symmetry. We shall return 
to this point below. First, we note that it was 
possible to explain the complete rotational structure 
of the band at 31.2 cm - 1 based on the assignment of 
ref 24. Apart from the selection rules, one has to take 
into account that the VRT levels are split by first and 
higher order Coriolis coupling between the vibronic 
angular momentum of the monomer 61 state (remem
ber that this state is degenerate with Ei symmetry), 
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Table 15. Symmetry-Adapted Rotational and Vibrational States of Ar-Benzene 

PI(Ce0) irrep statistical weight" rotor state If (mod 6) vibrational state \ns,ni,,l) I (mod 6) 
A1 

A2 
E1 

.C/2 

B1 
B2 

a For the 

10 
10 
22 
18 
14 
14 

complete rovibrational states. 

\JKtf) + (-
WXM) ~ (-
\JXM) 
\JKM) 
\J#M) - (-
\JJKM> + (-

- W -
-y\j,-

-y\j,-
-YV,-

-KM) 
-KM) 

-KM) 
-KM 

0 
0 

±1 
±2 

3 
3 

10+I 
10 - I-
10 
10 
10 +I 
10-I 

-0 
-0 

-0 
-o 

0 
0 

±1 
±2 

3 
3 

C 6 H 6 - A r 61ob1o 

V0 = 38 616.235 (8) cm"1 

Av = +31.164 cm"1 

experimental 

UwIW 

calculation 

-40 -20 20 Av [GHz] 

Figure 11. Measured170 and calculated177 rotational structure of the Ar-benzene band at (relative) frequency 31.2 cm l, 
assigned24 to the bending fundamental. The ground-state rotational constants A" = 0.0948 809 cm"1 and B" = 0.0394 025 76 
cm-1 were taken from microwave measurements,172 and the b1 excited state rotational constants A' = 0.091 583 cm-1, B' 
= 0.039 222 cm-1, and the Coriolis splitting constant £' = 0.7987 were fitted to the experimental spectrum, with the ab 
initio value £' = 0.79724 taken as starting value. 

the vibrational angular momentum of the bl state of 
Ei symmetry and the overall rotations (labeled by 
JJKJf). Calculations of the VRT states have recently 
been performed177 for different J, in which the 
coupling to the vibronic angular momentum of the 
benzene 61 state was explicitly included. The perfect 
agreement with the observed rotational structure of 
the band at 31.2 cm - 1 (see Figure 11) confirms 
without doubt that the assignment of this band to 
the (parallel) 6J&1 transition must be correct. The 
fact that this band, in spite of the Frank-Condon 
principle, has an appreciable intensity, shows that 
the vibronic 6j transition dipole moment in benzene 
is influenced rather strongly by the interaction with 
the Ar atom. More generally, it might be learned 
from this conclusion that the applicability of such 
principles, which are usually based on the experience 
with "normal" nearly rigid molecules, must be recon
sidered in van der Waals molecules with their large 
amplitude motions. 

Additional calculations were performed177 for the 
fully deuterated species Ar-CeDe. These calculations 
reproduce the observed isotope shifts in the van der 
Waals frequencies.170 The observed change in the 
relative intensities of the s1 and b2 bands can be 
understood from the calculated change in the extent 
of Fermi resonance between these modes. Note that 
the b2 overtone steals intensity from the s1 funda
mental through this resonance. This is a further 

confirmation of the assignment proposed in ref 24. 
Finally, let us mention that , also via calculations of 
the VET levels, an empirical potential has been 
fitted178 to the spectra. This potential is, ra ther 
crudely, represented by a simplified a tom-a tom 
model which omits the hydrogens, but the param
eters in this model have been optimized such that 
the measured vibrational frequencies are reproduced. 
The well depth in the optimized empirical potential 
is about 400 cm - 1 , just as in the ab initio potential. 
Collecting all these experiences, we think that the 
latter is of fairly good quality. The local "Morse 
-type" expansion is better in representing the vibra
tional frequencies, but it lacks some of the anhar-
monicity, which in the "global" fit gives rise to 
additional splittings and shifts and to a slight break
ing of the cylindrical symmetry in the (xy) directions. 

E. NH3-NH3 

It is a fact, well-established theoretically4'179-187 and 
experimentally,6188-192 tha t the dimers (HF)2 and 
(H2CO2 have a hydrogen-bonded structure. Until 
1985 it was generally believed that the ammonia 
dimer, too, had a "classical" hydrogen-bonded struc
ture with a proton of one monomer pointing to the 
nitrogen lone pair of the other. In tha t year Nelson, 
Fraser, and Klemperer193 interpreted their micro
wave spectra by assuming that the dimer has a 
nearly cyclic structure in which the two umbrellas 
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are almost antiparallel. This finding was surprising 
in view of the fact that most ab initio calcula
tions194195 predicted the classical, nearly linear, 
hydrogen-bonded structure. Although the calcula
tions by Sagarik, Ahlrichs, and Brode196 seemed to 
support the nearly cyclic structure, it was convinc
ingly argued later197 that a slight bending of the 
linear hydrogen bond in these calculations would 
have favored the classical hydrogen-bonded struc
ture. And, in fact, it was shown in ref 10 that the 
analytical model potential which Sagarik et al. fitted 
to their ab initio data indeed supports a slightly bent 
hydrogen-bonded structure as the most stable one. 
Two of the most recent calculations differ in the 
prediction of the equilibrium structure: Hassett, 
Marsden, and Smith197 found a hydrogen-bonded 
structure, whereas Tao and Klemperer198 found a 
cyclic structure thanks to the addition of bond func
tions. 

An obvious explanation of the discrepancy between 
the outcome of most calculations and the microwave 
data might be found in the effect of vibrational 
averaging. Whereas the electronic structure calcula
tions focus mainly on finding the minimum of the 
intermolecular potential, the experiment gave a 
vibrationally averaged structure. This question was 
addressed experimentally by Nelson et al69-199 by 
means of various isotope substitutions. From the fact 
that the relevant intermolecular bond angles hardly 
change with isotope substitution they conclude that 
(NH3)2 is fairly rigid and that also its equilibrium 
structure must be (nearly) cyclic. They supported 
this latter conclusion by the observation that the 
dipole moment of (NDa)2-in which the vibrational 
averaging effects are expected to be less than in 
(NH3)2-is 0.17 D smaller than the value of 0.74 D 
found for the (NHa)2 dimer. Nelson and co-workers 
took this as an indication that, indeed, the equilib
rium structure is nearly cyclic. Note, parenthetically, 
that the dipole of the free ammonia is 1.47 D, which 
means that the sum of the components of the 
permanent dipoles along the dimer axis in the linear 
hydrogen-bonded structure is about 2.0 D. 

The effects of vibrational averaging have been 
assessed theoretically in our group by van Bladel et 
al.10 With the use of the model potential of Sagarik 
et al.,196 which was the only full potential surface 
available from ab initio calculations at the time, the 
six-dimensional Schrodinger equation for the inter
molecular motions was solved in a basis of coupled 
internal rotor functions and Morse-type stretch func
tions. Although it was found that the vibrationally 
averaged structure was shifted from the equilibrium 
hydrogen-bonded structure toward the cyclic geom
etry, the work did not produce complete reconciliation 
with the microwave geometry. Further van Bladel 
et al. obtained indirect evidence that the umbrella 
inversion of the two monomers is not completely 
quenched, as was assumed by Nelson et al.193 

The latter conclusion was also reached by Loeser 
et al.,11 who reported an extensive set of new far-
infrared and microwave measurements and gave a 
very detailed analysis of these—as well as 
previous200—experimental data. They conclude that 
the group of feasible operations (permutations, inver

sion and their products, see Appendix C) is of the 
order 144, which implies that they observed the 
tunneling splittings associated with the two umbrella 
inversions and the interchange tunneling in which 
the role of the two monomers is reversed. The same 
conclusion was reached by the Nijmegen/Bonn group,12 

on the basis of infrared/far-infrared double-resonance 
experiments. The latter authors also measured the 
dipole moment in the \K\ — 1 state of G symmetry.201 

Thus, the various experimental approaches present 
evidence that seems conflicting regarding the rigidity 
of (NHs)2 and its equilibrium structure. Also the 
different ab initio calculations lead to different 
pictures. Multiple discussions89,94-202 have been de
voted to this problem. 

Recently Olthof et aZ.203-206 presented a more 
complete theoretical approach. They constructed a 
family of model potentials with different barriers in 
the interchange motion and in the hindered rotations 
of the two NH3 monomers around their C3 axes. For 
each of these potentials they calculated the six-
dimensional v ibra t ion-rota t ion- tunnel ing (VRT) 
states and the various transition frequencies that 
have been observed. For various states they com
puted the expectation values of the dipole moment 
and the nuclear quadrupole splittings, which are 
indicative of the orientations of the NH3 monomers 
in the complex. By improving the parameters they 
arrived at a model potential that was able to repro
duce all observed splittings with deviations of less 
than 0.5 cm - 1 . Also the dipole and the nuclear 
quadrupole splittings were in good agreement with 
the observed values, both for (NHa)2 and (ND3)2. 

The potentials used by Olthof et al. contain the 
permanent dipole, quadrupole, and octopole moments 
(calculated at the MBPT2 level133) on the NH3 

monomers to model the electrostatic interactions. In 
Figure 12A a cut through the electrostatic potential 
energy surface is shown. The angles Qx are the 
angles of the respective symmetry axes with the 
vector connecting the mass centers of the monomers. 
We observe two equivalent minima, both correspond
ing to a slightly bent hydrogen bridge, separated by 
an energy barrier. To this the exp-6 s i te-s i te 
potential 

^ = IS 
I'eA/eB 

AAj exp[-(&, + bj)Ry] 
cfj 

R; 
(51) 

was added to account for the exchange repulsion and 
dispersion interactions. The parameters Ai were 
tuned to give agreement with the observed quanti
ties. By changing these parameters in the exchange 
repulsion one is able to alter the shape of the 
potential surface and, in particular, to vary the 
barriers to internal rotation and to interchange of the 
monomers. Since induction effects are not explicitly 
included and the parameters are adapted to repro
duce the experimental data, the potential must be 
considered as largely empirical. The presence of an 
octopole is essential, because the dipole and quad
rupole of NH3 have only axial components and the 
octopole yields the first contributions to the electro
static interactions that depend on the directions of 
the individual N - H bonds. In addition to the 
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A: electrostatic B: total 
180 180 

180 

Figure 12. NH3—NH3 interaction potential (in cm-1) as a function of 8A and 8B, with all other angles at their equilibrium 
values. Part A shows the electrostatic dipole—quadrupole—octopole interaction at R = 3.23 A. Part B shows the total 
potential, with R = 3.373 A; observe the same valley for interchange tunneling as in the purely electrostatic case. 

nitrogen nuclei and protons also the nitrogen lone 
pairs were considered as centers of force, following 
the work of Dykstra and Andrews.207 Olthof et al. 
took the parameters c; simply from ref 207. The 
parameters bi were determined from the (6-12) 
Lennard- Jones (LJ) potential of ref 207 by requiring 
that the depth and the position of the minimum in 
the N - N and H - H terms of eq 51 coincide with the 
minimum in the corresponding term of the LJ 
potential. See ref 204 for the reason why Olthof et 
al. did not use the LJ potential itself. This potential 
is shown in Figure 12B, where we see the consider
able lowering of the barrier to 7.5 cm - 1 . Further the 
minima are shifted somewhat to a cyclic structure 
(the saddle point of the barrier) by the addition of 
the si te-si te potential, but the equilibrium structures 
can still rightly be called "hydrogen bonded". 

Before use in the calculation of the VRT states the 
potentials were expanded in the complete set of 
angular functions of eq 9. The ^-dependent coef
ficients were computed by numerical quadrature, cf. 
eq 11. Olthof et al. carefully checked that the 
truncation of these expansions at L™3* = Lg3* = 5 
did not significantly affect the shape of the potential 
surfaces. The Hamiltonian, which has to be diago-
nalized in order to obtain the VRT states, is given 
by eqs 5, 7, and 9. The body-fixed basis and the 
calculation of the matrix elements are described in 
section II.D. In the exploratory calculations, in which 
the potential parameters were varied in order to get 
agreement with the experiments, the bases were 
truncated at JA = JB = 5, cf. eq 16. The final 
calculations, employing the optimum parameters, 
were performed in a much larger basis truncated at 

JA =JB = 7. 

Because of the size of the basis, the full symmetry 
of the system had to be taken into account. The 
molecular symmetry group is of order 36, provided 
the umbrella inversions are frozen. Otherwise it is 
of order 144. These groups are denoted by G36 and 
Giu, respectively. Olthof et al. mainly focused on G36, 
which has four one-dimensional irreducible repre
sentations (irreps), designated Aj, i = 1, ..., 4, four 
two-dimensional irreps (Ei, i — 1,..., 4), and one four-

Table 16. Transformation Properties of the 
Coordinates in (NH3)2 under the Generators of Gse 
(the First Five Columns) and G144 (Here to = 2^/3) 

E 

R 
a 

P 
4>A 
8A 
TpA 
4>B 
OB 

xpB 
QA 
QB 

(123) 

R 
a 

P 
4>A 
8A 

XpA-O) 

<t>B 

8B 

TpB 
QA 
QB 

(456) 

R 
a 

P 
4>A 
8A 
rpA 
<PB 

8B 

\pB~Oi 

QA 
QB 

(14X25X36X78) 

R 
a+7T 
JI-P 
~<pB 
Jt-8B 

Tl+XpB 
—<t>A 
Tl-8A 

TC+XpA 

QB 
QA 

(23X56)* 

R 
a+Ti 
TC-P 

Tl—<pA 
BA 

-XpA 
Ti—(pB 

BB 
-XpB 

QA 
QB 

(23) 

R 
a 

P 
Tt+4>A 
TC-8A 

-XpA 
4>B 
8B 
XpB 
TC-QA 

QB 

(56) 

R 
a 

P 
4>A 
BA 

XpA 
TC+(j>B 

n-8B 

-XpB 
QA 
TC-QB 

Table 17. Comparison of Calculated and Measured 
Properties of (NHs)2 (AU Values Pertain to K = 0 
States, Unless Indicated Otherwise) 

property 

equil ibrium dipole 
equil ibrium &A 
equil ibrium 180° - 8B 

dipole G 
dipole G(\K\ = 1) 
BA" 
180° - 8B

b 

EA4 — EA1 

EE2 — EE1 

E'a — Eo 
EG- ~ EGt 
E'GS ~ E'ai 

0 F rom (P2(COS 8A)). b 

calculation 
(ref 205) 

1.08 D 
40.47° 
84.49° 
0.66 D 
0.19 D 
48.5° 
64.7° 
15.85 cm"1 

19.14 cm- 1 

20.25 c m - 1 

2.05 GHz 

1.24 GHz 

exper iment 

0.74 D (ref 199) 
0.10 D (ref 201) 
48.6° (ref 199) 
64.5° (ref 199) 
16.12 cm"1 (ref 11) 
19.36 cm"1 ( r e f l l ) 
20.50 cm"1 (ref 11) 
3.31 GHz ( r e f l l ) 

2.39 GHz (ref 11) 

From (P2(COS 8B)). 

dimensional irrep G. Recall tha t the three proton 
spins of NH3 can couple either to a quartet (0-
ammonia) or to a doublet (p-ammonia). The kets of 
Aj symmetry belong to two ortho monomers, those of 
Ei symmetry belong to two para monomers and G 
kets describe a mixed ortho-para dimer. For more 
details on symmetry adaptation we refer to Appendix 
C. See Table 16 for the behavior of the coordinates 
under the symmetry operations. 

The results from the calculations on (NHs)2 are 
summarized in Table 17 for K — 0 and \K\ = 1. Note 
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Figure 13. Comparison of computed and observed levels 
of NH3-NH3: dashed lines, computed; solid lines, ob
served.11 The K=O ground level of each species A, E, and 
G is adjusted. In several cases the difference between 
computed and observed values is within the width of the 
lines. 

that K, which is the projection of the total angular 
momentum J on the dimer bond axis, is not an exact 
quantum number. Since the off-diagonal Coriolis 
coupling is small, the observed states can be well 
characterized by K and therefore the Coriolis cou
pling was neglected. The energy differences E^ — 
EA1 and EE2 - EE1 in Table 17 are due to the 
interchange tunneling. Note that these differences 
are large, in the order of 20 cm -1 , which confirms that 
the interchange between the donor and the acceptor 
molecule in the hydrogen bond takes place rapidly. 
Also the splitting E'Q — EQ between the lowest G 
states is partly due to this interchange tunneling and 
partly to the difference between the ortho and the 
para monomers that form these G states. We present 
values of 180° - 6B in Table 17, rather than of 6B, 
because whenever 8A % 180° - QB, we have a cyclic 
structure. The observed and calculated energy levels 
are visualized in Figure 13, which clearly shows their 
surprisingly good agreement. 

Owing to the fact that the G states belong to two 
nonidentical molecules, viz. ortho and para, they are 
localized to some extent on one side of the inter
change barrier. This is in contrast with the A* and 
Ei states, which are either symmetric or antisym
metric with respect to interchange. See Figure 14 
for contour plots of the G symmetry wave functions. 
These plots show clearly that the dimer is highly 
nonrigid, a fact which is confirmed by the difference 
between the equilibrium dipole and the G state 
dipoles, see Table 17. Another important observation 
is that the partial localization, which manifests itself 
in the G state expectation values of the dipole 
moment, depends also on the barriers to rotation 
around the symmetry axes over xpA and rpB- It was 
found that addition of octopole moments to the 
potential gave a substantial increase in the dipole 
moment; recall tha t the first Vx-dependent electro
static term is due to the octopole on monomer X. 

The final two splittings in Table 17 are due to 
monomer umbrella inversion. An exact calculation 
would require the solution of an eight-dimensional 
dynamics problem: six intermolecular coordinates 

plus the two umbrella angles QA and QB- The group 
of this system is Gm and the labels G% refer to 
irreps of this group. These irreps correlate with the 
irrep G of G36 C G144. A dynamics problem of this 
size cannot be handled at present, so Olthof et al.20e 

employed an approximate model, which is an exten
sion of a model proposed earlier for Ar-NHa.8 In 
order to explain this model, we recall that in section 
III.C the inversion part of the monomer Hamiltonian 
was designated by Humb(Q). The model entails the 
computation of the expectation value of Hum\,(QA) + 
-HumbCps), with respect to the functions [E - (5Q)][E 
1F (56)*WVAy/f(QA)f{QB), where (56)* is the operator 
inverting monomer A and (56) inverts B. The wave 
function Wydw is the lowest, or the one but lowest, 
eigenstate of the body-fixed Hamiltonian of G sym
metry, J{QA) and figs) are ground umbrella (v2) states 
of A and B localized in one of the wells of their 
respective monomers. Assuming that (fiQA)\(56)*\f{QA)) 
% 0 and an equivalent relation on B, we obtain for 
the splitting 

EG~ - EG+ = A<WvdW|(56)*|WvdW) (52) 

where A = 0.793 cm"1, the tunneling splitting of the 
free monomer.160 This splitting corresponds to the 
inversion of the para partner in the dimer. 

Let us end this section by discussing the decrease 
of the G state dipole moment observed when going 
from (NHa)2 to (ND3)2. Since the value of the dipole 
at the equilibrium geometry is 1.08 D, much larger 
than the average value of 0.66 D, and since one would 
expect (ND3)2 to stay closer to equilibrium than 
(NHa)2, it is not a priori clear that this decrease will 
also come out of the calculations. However, the 
rovibrationally averaged computed dipole moment 
does decrease, from 0.66 D for (NHg)2 to 0.38 D for 
(NDa)2. This decrease follows nicely the experimen
tally observed199 decrease from 0.74 D for (NHs)2 to 
0.57 D for (NDa)2. And, also the accompanying 
changes in the angles 0A and 6B obtained from the 
expectation values (P2(cos 6A)) and (P2(cos 8B)) agree 
well with the changes observed by measuring the 
nuclear quadrupole splittings in (NHa)2 and (NDa)2: 
(0A,18O°-0fl) change from (48.5°,64.7°) to 
(51.2°,61.7°), experimentally they change from 
(48.6°,64.5°) to (49.6°,62.6°). So it appears that 
(NDa)2 is more nearly cyclic than (NHa)2. In ref 204 
this rather unexpected observation is explained by 
analysis of the wave functions (see Figure 14). When 
the wave function of the lowest G state of (NDa)2 is 
compared with the corresponding wave function of 
(NH3)2, we clearly observe two effects. First, as 
expected, the wave function of (ND3)2 has a larger 
amplitude near the equilibrium position around 
which it is localized. This leads to an increase of the 
average dipole moment. Secondly, a substantially 
larger amplitude of the wave function of (NDa)2 on 
the side of the other, equivalent, minimum is ob
served. In order to understand the latter effect one 
has to remember that, in spite of the equivalence of 
the two minima in the potential, the G-state wave 
functions are mainly localized on one side because 
of the ortho-para differences. This difference in the 
behavior of ortho and para monomers will be less for 
ND3 than for NH3, because its rotational constant A2 
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(ND3); 

180 

Figure 14. The lowest G state wave functions (absolute squared) of NH3-NH3 and ND3-ND3 in the 6A-8B plane. All 
other angles are fixed at their equilibrium values and R = 3.373 A. Note that the wave functions are not symmetric with 
respect to reflection in the diagonal, unlike the potential in Figure 12 from which they are obtained. 

Table 18. Comparison of Calculated and Measured 
Properties of (ND3)2 (All Values Pertain to K = O) 

property calculation (ref 205) experiment (ref 199) 
dipole G 
eA

a 

180° - eB
b 

EA4 - EA1 

EE2 — EEI 
E'G — Eo 

0.38 D 
51.2° 
61.7° 
11.03 cm-1 

13.78 cm"1 

13.06 cm"1 

0.57 D 
49.6° 
62.6° 

a From (P2(COS 9A))- b From (P2(cos BB)). 

is smaller by a factor of 2. And, consequently, the 
asymmetry in the G state wave functions which is 
caused by these ortho-para differences, will be 
smaller in (NDa)2. In other words, (ND3)2 is more 
nearly cyclic (in its G state) because of the smaller 
ortho-para differences. This leads to a smaller 
average dipole moment. Apparently, for the final 
potential used in the calculations with its low inter
change barrier of 7.5 cm - 1 the latter effect dominates 
the first and explains the observed decrease of the 
dipole moment. 

Other results from the calculations on (ND3^ which 
are most relevant for comparison with the quantities 
observed by Nelson et al.199 are collected in Table 18. 
We note that the interchange tunneling frequencies, 
which have not been measured yet, are about 30% 
smaller than in (NH3)2. 

So, within one consistent computational model and 
by the use of a single parametrized potential, Olthof 
et al. were able to reproduce the observed level 
splittings, the observed dimer geometry, and the fact 
that the deuterated dimer has a smaller dipole than 
the protonated one. In the explanation of these 
features there was no need to invoke near-rigidity 
or a nearly cyclic equilibrium structure. 

IV. Summary, Related Work 

In the first part of this paper we have given an 
overview of the methods used to obtain the bound 
states and the spectra of van der Waals molecules 
from a given intermolecular potential. The basic 

theory is outlined in sections I I .A-F, derivations are 
given in the appendixes. In the second part we have 
illustrated that the spectra of van der Waals mol
ecules are very sensitive, but indirect, gauges of 
intermolecular potentials. Indirect, because one has 
to use the methods of section II with (sometimes 
extensive) computational efforts to extract the infor
mation from this gauge. 

In Ar-H2 and H e - H F we have seen examples 
where recent ab initio potentials31,33 perfectly repro
duce32'34 the spectra. Still, a minor improvement in 
the anisotropy of the ab initio potential could be 
achieved for H e - H F by considering the rotational 
predissociation line width. Accurate semiempirical 
potentials are available for these systems too.120'128 

For A r - N H 3 and Ar -H 2 O it was found7-9-158 that the 
available ab initio potentials153 '154 were not yet suf
ficiently accurate to reproduce the high-resolution 
spectra. A fairly accurate spectrum could be calcu
lated8'9 for A r - N H 3 by scaling one parameter in the 
short-range anisotropy of the ab initio potential. For 
Ar -H 2 O this was not possible.158 Taking param
etrized model potentials and optimizing the param
eters in a fit of the spectrum was more successful for 
these systems.44 '145 Yet, it might be said in favor of 
the electronic structure calculations that the analytic 
form of these model potentials, as well as a number 
of their parameters, is fixed in advance on the basis 
of ab initio calculations. Full close-coupling calcula
tions164 of the measured163 inelastic scattering cross 
sections have confirmed for A r - N H 3 tha t the semi-
empirical potential145 thus obtained is rather ac
curate. We expect, however, that for these and 
similar systems with three or four intermolecular 
degrees of freedom high-quality ab initio potentials 
will very soon be available also. 

For Ar-benzene the ab initio potential174 '175 is 
probably of about the same quality as the ab initio 
potentials for A r - N H 3 and Ar-H 2 O, but the require
ments to get a correct description of the bound states 
are less subtle. The reason for this is the much 
stronger anisotropy in Ar-benzene, which restrains 
the Ar atom to stay fairly close to its equilibrium 
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position, above the center of the benzene ring. The 
frequencies of the van der Waals vibrations which 
were calculated24'165 from this ab initio potential 
agreed sufficiently well with the measured values to 
assign the experimental spectrum. To interpret also 
the rotational structure in this UV spectrum,169-171 

it was necessary177 to include all Coriolis coupling 
between the (partly degenerate) van der Waals 
vibrations, the vibronic excitation on the benzene 
monomer which accompanies these van der Waals 
vibrations, and the overall rotations of the dimer. 
Further, it was essential to look in detail at the 
selection rules based on the permutation inversion 
symmetry. Another conclusion from this study on 
van der Waals vibrations in combination with a 
vibronic transition on the monomer is that the 
Frank-Condon principle, which determines the in
tensities of vibronic transitions in normal molecules, 
is less applicable in van der Waals complexes. 

In N H 3 - N H 3 the ab initio calculations196-198 cov
ered only a small fraction of the potential surface, 
viz. tha t part which is critical for the question 
whether hydrogen bonding occurs in this complex. 
The calculation of bound states requires a full 
surface, however, or at least a full scan of the regions 
with lower energy. A model potential was found203-205 

which gives an accurate reproduction of the mea
sured far-infrared and microwave spectra. Questions 
regarding the deviation between the vibrationally 
averaged structure and the equilibrium structure and 
regarding the rigidity of this dimer, in relation with 
isotope substitution studies, could thus be answered. 
It appeared that the far-infrared frequencies, as well 
as the dipole moment and nuclear quadrupole split
tings derived from the microwave spectrum, are 
particularly sensitive to the height of the interchange 
barrier. This barrier separates one hydrogen-bonded 
structure from the equivalent structure in which the 
proton donor and acceptor are reversed. The am
monia dimer is one of the cases where it will be hard 
to get accurate ab initio results, since it was found205 

tha t the height of this barrier is only about 7.5 cm - 1 , 
less than 1% of the binding energy (De) OfNH3-NH3 , 
which is about 1000 cm -1 . Another interesting aspect 
of this study on N H 3 - N H 3 is that it was necessary 
to use the full permutation inversion symmetry, in 
order to make the calculations feasible, but also to 
get even a qualitative understanding of the measured 
properties. The fact that the dipole moment, nuclear 
quadrupole splittings, etc., depend so much on the 
symmetry of the different rovibrational states which 
feel the same potential, and on the associated nuclear 
(ortho-para) spin species, is typical for a van der 
Waals molecule. 

Finally, we wish to give some references to work 
on van der Waals molecules which was not covered 
in this review. We have concentrated on dimers, 
consisting of stable, although sometimes flexible, 
closed-shell molecules. The angular momentum cou
pling techniques which are extensively described in 
this paper are also applicable to open-shell mono
mers. The coupling scheme has to be extended, 
however, in order to include the electronic orbital and 
spin momenta of such monomers. Examples are 
given by the theoretical studies on Ar-OH, 2 0 8 A r -

O2j209-2ii Ar-NH,2 1 2 and O2-O2 .213 A general discus
sion of the possible coupling cases for a tom-diatom 
systems with open shells is given in ref 214. 

Trimers can also be treated by the dimer methods 
described in section II if two of the monomers are 
considered as a single subunit. Thus, it was possible, 
for instance, to describe Ar3 as an atom-diatom 
system215 and Ar2HCl as a diatom-diatom com-
plex.21,216'217 The internal vibration of the Ar2 diatom 
must be explicitly included, of course, and the basis 
provided has to be adequate to take into account that 
the amplitude of this vibration is as large as that of 
other motions in the trimer. Alternatively, one may 
use the quantum Monte Carlo method which was 
briefly mentioned in section ILD. This method was 
applied to (HF)3,82 but also to van der Waals com
plexes with more than three monomers.79'80'218 Still 
larger clusters were used to study the onset of 
macroscopic processes such as melting, evaporation, 
wetting, etc. The spectra can be used to monitor 
these processes.219 The interpretation of these spec
tra may be supported by classical molecular dynamics 
of (MD) or Monte Carlo calculations220-225 or by 
thermodynamical considerations.226 

Another topic which was mentioned only in passing 
is the vibrational (or electronic) predissociation of van 
der Waals complexes. If one of the monomers is 
vibrationally or electronically excited, the excitation 
energy will be redistributed among the various intra-
and intermolecular modes of the complex, in a rather 
specific manner.227 When the excitation energy is 
higher than the binding energy of the complex and 
sufficient energy enters into the intermolecular stretch 
mode, the complex dissociates. In high-resolution 
spectra this manifests itself by a broadening of the 
spectral lines, which is inversely proportional to the 
time that it takes for the excited state to dissociate. 
More detailed information can be obtained98 by 
analyzing the velocities and the vibrational and 
rotational state distributions of the fragments. In 
time-resolved experiments228 these dynamical pro
cesses can be probed directly. In calculations of such 
processes, especially the angular aspects of the theory 
presented in this review can still be used. At least 
one relevant intramolecular degree of freedom must 
be included, however, and the description of the 
photodissociation process requires a special treat
ment of the R stretch coordinate.208,229-235 

An interesting option is the use of van der Waals 
complexes to study chemical reactions. Thus, one can 
prepare the impact geometry of the reactants, and 
by photoexcitation, one can select specific initial 
states. Also the final state distributions of the 
reaction products can be monitored through their 
spectra. Very detailed state-to-state knowledge about 
a chemical reaction is then becoming available, even 
more so than in crossed (oriented) beam experiments 
where the impact parameter cannot be controlled. 
Interesting experimental work is going on 
already,236-238 but the theory to describe the dynamics 
of these van der Waals molecule reactions in equally 
great detail is still lagging behind. 

In closing, we wish to mention the previous issue 
of Chemical Reviews (ref 239) which was devoted to 
van der Waals complexes, as well as some other 
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reviews (refs 17, 89, 91-94, and 98), conference 
proceedings and books (refs 240-244). 
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Appendixes 

A. Kinetic Energy 

In this appendix we sketch the derivation of the 
kinetic energy in three different frames commonly 
used in calculations on van der Waals molecules. The 
first is a space- (or laboratory-) fixed frame, the 
second is the "two-angle embedded frame" discussed 
by Brocks et al.,18 and the third is a frame fixed to 
one of the monomers. The derivations depart from 
a general expression—derived by Beltrami over 125 
years ago—for the Laplace operator in general non-
orthogonal curvilinear coordinates. In 1928 Podol-
sky14 pointed out that the Beltrami form of the 
Laplacian (times -1^h2) is the proper expression for 
the quantum mechanical kinetic energy. By its use 
one avoids tedious applications of the chain rule and 
is also able to take account of possible holonomic 
constraints that reduce the number of degrees of 
freedom. See the excellent review by Essen15 for a 
discussion of the problems associated with this ap
proach. 

First we will review the case of a system of two 
atoms and point out some problems that appear in 
body-fixed frames. The diatom is the simplest ex
ample by which we can discuss this. Then we review 
the case of a rigid rotor, because the monomers 
constituting a van der Waals molecule are often 
assumed to be rigid. This is followed by a discussion 
of a rotor-atom system with the frame attached to 
the rotor. Finally we consider a dimer consisting of 
two rigid rotors described in the two-angle embedded 
frame. 

We will indicate a geometric—frame indepen
dent—vector (an "arrow") by an arrow over the 
symbol. Usually such a vector points from one 
particle to another. The coordinate representation 
(three real numbers) of a vector with respect to a 
certain frame, is given in bold face. A frame is bold 
with an arrow on top of it. Thus, the vector pointing 
from A to B is written as 

AB = exx + etf + e3z = (e1; e2 ,e3)\y \ = e r 

where c = (e1; e2, e3) is a certain frame. 
In the case of time-independent constraints the 

classical kinetic energy of a system with n degrees 
of freedom can be written (see ref 245, p 25) in 
general curvilinear coordinates qt, i = 1, ..., n, as 

— A ^ C 
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which defines the metric tensor G. The determinant 
of G will be denoted by g; as is well known (ref 246, 
p 195) *Jg dgi...d<7„ is the volume element of the 
coordinate system. The momentum pq conjugate to 
q is defined by 

Pq = Gq^p. = K ( A 2) 

so that the kinetic energy in Hamilton form is 

2T = pT
qG'xpq (A3) 

Quantization is performed by substituting 

a 
-ih 

dqt 
i = 1, ..., n (A4) 

not into eq A3, but into 

2T = i f 172P9Y72- r, 
This is because the Laplace operator in general 
curvilinear coordinates has the form (ref 246, p 197) 

G -1P0 (A5) 

A = S - 1 T ; .1/2 (G-1X1 (A6) 

Podolsky14 also discusses a more symmetric form of 
the operator obtained by renormalizing the wave 
function W. That is, he substitutes W — g-i/4ip and 
takes an unweighted volume element. This gives 

2 T=-ftV1 / 4X-/ / 2(G-1) , -g-
ij 9?j &lj 

1/4 (A7) 

1. Two Atoms 

Let us apply formula A6 to a diatomic van der 
Waals molecule A-B with its mass center at rest. In 
a space fixed frame c 
cally 

(ex, ey, ez), we have classi-

/R(t) cos alt) sin /3(t) \ jx(t) 1 
AB = e\R(t) sin ait) sin 0(t) = e \y(t) 

W)1 \ R(t) cos /3(t) 

By the chain rule 

d{xy,z) fi\ 
a 

d(P,ajR) U 

(A8) 

(A9) 

It is easily verified that the Jacobi matrix arising in 
this expression is given by 

0 Ô  9(**y,2) (R 

(AlO) 

where 

icos a —sin a 0 * 

sin a cos a 0 
0 0 1, 

and 

2T = qlGq (Al) 

/ cos/? 0 s i n ^ 
RyW= 0 1 0 

\—sin/3 0 cos/3/ 
(All) 
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Hence 

2T = pMaJiy 
Hd{xy^)T d{xyz) fa 

d(p,a&) difraMft 
(A12) 

with 

mAm 
I1AB 

•A"<-B 

(mA + mB) 
so that 

~ I1AB 

IR2 

0 i ? 2 s i n 2
; 

\ 0 

0 

sir 
0 

0 \ 

0 

1/ 

(A13) 

and 

^ = IiJ12R2SmP 

The momentum conjugate to the spherical polar 
coordinates is 

P - , " A B 

' R2P \ 

R2 sin2 pa 

* I 
= 
h\ 
Pa 

H 
(AU) 

The quantum mechanical kinetic energy is from eqs 
A13 and A6 

2T=- K1 

^A3R' 

1 _9_ . Rd_ 1 jf_ , 
s i n / 3 a / m / 5 9 / 3 +

 s i n 2 « a a 2 

9 ff2 9 
9i? dR 

(A15) 

which we recognize as the usual one-particle kinetic 
energy in spherical polar coordinates. In the absence 
of an external potential the Schrodinger equation can 
be separated and the angular solutions are the 
spherical harmonic functions Y^(/J,a). In this dis
cussion we ignored the quantum mechanical trans-
lational motion, which we do everywhere in this 
paper. 

The angular momentum defined classically as 

7 TO dAB 
(A16) 

can be most easily evaluated in the following frame 
embedded in the molecule 

J=eR(a,p) with R(a,/3) = R2(Cx)Iy^) (A17) 

It is worth noting that the matrix R(a,/J) consists of 
direction cosines, since [R(a,/3)]y = ei • /J-. By the use 
of eqs A17, A9, AlO, and A14 we find that in this 
frame 

AB= f 

so that 

10' 
0 

[R1 

, dAB -2. 
a n d ST= f 

j PpIR 

P0Z(R sin p) 

\ PR 

l=f 

j-pa/smp\ 

Pfi 
0 

= fl BF 

(A18) 

(A19) 

van der Avoird et al. 

Quantization gives 

lBF=-ih 
sin p 9a 

_9_ 
dp 
0 

(A20) 

It is important to note that the components of ZBF do 
not satisfy the usual angular momentum commuta
tion relations. Because of the presence of sin /3 in 
the volume element, the operator if is not even 
Hermitian. In the space-fixed frame we obtain the 
usual orbital angular momentum operators, which 
are Hermitian and do satisfy the normal commuta
tion relations 

BF _ "TiSF _ I = eR(a,P)l = e r = 

-ihe 

. a 9 . 9 \ 
- cot a cos a s i n a r : 

9a dp 
r) 9 

- cot P sin a — + cos a —^ 
da dp 

_9_ 
9a 

(A21) 

It is also important to note that the operators 
representing \l\2 in the space- and body-fixed frame 
are different 

(F)2 = (F)2 - ift cot pif = 
i 9 . p d i dz 

smPdpSmPdP +
 sin^da2 

(A22) 

The space-fixed operator is the proper representation 
of the observable |7|2. 

2. The Rigid Rotor 

We next turn to a rigid rotor consisting of iV point 
masses m* with space-fixed coordinate vectors r*. We 
take a frame f attached to the rotor and define the 
Euler angles of the rotor by 

? = eR,(0)Ry(0)R,(V) s eR(f), f = (</>, 8, V) (A23) 

The matrices R; are defined in eq A l l . The classical 
kinetic energy of a rigid rotor is 

2T = ( O 8 W V (A24) 

The inertia tensor of the rotor is defined by (ref 245, 
p 195) 

N 

€ - X^(<W - rmrib) (A25) 
j = i 

The components of the angular velocity coSF are not 
the time derivatives of certain coordinates (ref 247, 
p 41), but they are related to the derivatives of the 
Euler angles by 

SF _ 
(O 

Hence 

/O — sin 4> cos 4> sin 8 \ 
where M = O cos 4> sin <p sin 8 

\1 O cos 8 I 
(A26) 
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G = MTISFM (A27) 

The derivation of eq A26 is along the lines given in 
ref 245, sections 4-9 , but modified for our definition 
(eq A23) of Euler angles, which differs from the one 
in ref 245. 

The determinant of G is the product of the inertia 
moments (the eigenvalues of ISF) and the determinant 
squared of M; the latter factor is sin2 6. The angular 
momentum of the rotor is 

lBF, see eq A21. However, the components of j B F are 
Hermitian (as are the components ofjSF), although 
they do not satisfy the usual commutation relations, 
but rather the so-called anomalous relations 

r-BF -BFn - k V -BF (A37) 

The lengths are the same in the two frames 

J = eI sVF = e( rVpt i efY (A28) 

where pt, is the momentum conjugate to £. By 
substituting p, — —ih 9/3£; and inverting M we find 
the well-known expressions 

•SF -J , . a 3 , • , 3 COS </> 3 

Jx =lh[CoS<pcot8- + S m < ^ - ^ -

I -SF -J • , . a 3 . 3 sin <p 3 
,-SF _ ,-* 3 

(A29) 

It is not difficult to prove that these operators satisfy 
the usual commutation relations 

r-SF -SFn t r -S 

k 

•SF (A30) 

where ep is the antisymmetric (Levi-Civita) tensor. 
By virtue of the fact that 

—,sin 6(M 1 I 
.Ki 

0 for j = l, 2, 3 (A31) 

the square roots of the determinant of G appearing 
in the Beltrami formula (eq A6) cancel and the kinetic 
energy of the rotor can be written in terms of the 
angular momenta 

2T = (/SF)T(ISF)-1/F (A32) 

If we take the frame /"to be a principal axes frame 
(i.e. it to consist of eigenvectors of the inertia tensor), 
then by definition 

(/SF)2 = yBFyi = _ + t 
sin^ 0L3<^ ty* 

2 cos d 
d<pdip. sb! s t o e ! ( A 3 8 ) 

Since a relation analogous to eq A31 holds for N, the 
kinetic energy can be written as 

T = A(Jf)2+ B(Jf)2 +C(Jf)2 (A39) 

where the rotational constants A, B, and C are 
inversely proportional to the inertia moments of the 
rotor. 

3. Rotor-Atom 

We will now consider the case of a rigid rotor A 
and a freely moving point mass B. The kinetic 
energy_operator will be expressed with respect to a 
frame f attached to A. The frame is for example a 
principal axes frame of the rotor. The kinetic energy 
expression, to be derived via the Podolsky route, was 
obtained earlier24 by application of the chain rule. 

The frame independent classical kinetic energy 
takes the form 

2T = 2TA + fiAB 
dAB 
~3F (A40) 

where /UAB is the reduced mass of the dimer and A 
and B are the respective centers of mass. By the use 
of eqs A24, A33, and A34 we can write 

'a 0 0 
no i m) = i = o h o 

\0 0 L 
(A33) 

If all three inertia moments Ia, h, Ic are equal, the 
rotor is a spherical top (example CH4). If two are 
equal we have a symmetric top (example NH3) and 
if none are equal we have an asymmetric top (ex
ample H2O). Defining the matrix 

= R(£)" (A34) 

2TA = o)TIBF(o with to *£ (A41) 

where £ = (<p,d,xp) are the Euler angles of the 
rotor. The vector AB has the coordinate R(t) = 
[x(t)y(t)z(t)] with respect to the body-fixed frame, and 
so 

6SB_W) mmt) 
ST - -3FR(t) + ^ ) _ d T (A42) 

we find 

with 

UTn _ 7..BF j = f(N-iyPi = fj 

/ F = R(£fjSF 

(A35) 

(A36) 

It is well-known, see for instance ref 245, sections 
4-9 , that 

d/W -~ 
SfR(.t) = fitya x R(JL) (A43) 

This relation is analogous to the one between IST and We will rewrite the vector product as follows, in order 
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to get an expression for T quadratic in Q, 

/ 0 z(t) -y(t)\ 
coxR(t) = XTci) = \-z(t) 0 x(t) U (A44) 

From 

we find 

y(t) -x(t) 0 / 

^ I P = /TX7O + R] (A45) 

dAB 
at 

= (i)TXXTco + R(t)TXT(o + coTXR(t) + 

\R(t)\2 (A46) 

Equation A51 has a clear physical interpretation: 
since JBF-lBF is the angular momentum of the rotor 
and IBF is its inertia tensor, the total kinetic energy 
is the sum of the kinetic energies of the rotor and 
the relative particle. 

In order to obtain the quantum mechanical form 
we use again the Laplace-Beltrami expression, eq A6, 
for which we need the determinant <g = det(G). From 
eq A47 follows that £ = /4u det(N)2 det(IBF). Fur
thermore, on account of eq A34 we have det(N) = 
- s i n 6. By the analogue of eq A31, holding also for 
N, it follows that gm drops out of the Laplace-
Beltrami expression, so that the quantum mechanical 
kinetic energy obtains the same appearance as the 
classical expression A51, but with the total angular 
momenta defined as follows: 

By the use of eqs A41 and A46, we obtain the 
following expression for the rotor-atom system, from 
which we may extract the metric tensor G: 

2T = 

^ * i \ / N r
 0 V I B F + ^ABXXT PAB&\IN O \ /£ 

i S * \ 0 E A / W ^ HAB* k> E K 
(A47) 

The inverse of G can easily be calculated by the 
Frobenius formula (ref 248, p 73) and gives (cf. eq 
A3) the classical Hamiltonian 

T_Ts 2T = (PM) 

OF)"1 
- ( I 8 V o 

. ( IBF )-1 (!BF)-I + ( ^ x T 5 0 - I ^ 0 XTJ ( ^ ) 

(A48) 

where PR = /UABR + ^ABX T N£ is conjugate to R and 
p^ to £, and 

T-BF _ ih[-cos xp cot 0 
_3_ , cos xp _3_ 

dtp S m ^30 sin 0 d<pi 
TBF -J- , , n 9 , 3 sin xp 3 J = in sin xp cot 0— - cos xp— —^ —, 
y y dip 30 sin 0 907 

J?* = -ih dtp 
(A52) 

and the operators depending on the position of the 
atom defined as 

lBF = -ihR x V and \pR\2 = -H2V2 (A53) 

4. Two Rotors 

We now consider the kinetic energy of the dimer 
A-B consisting of two rigid rotors. From classical 
mechanics we know that 

TA + TB + Tm (A54) 

where the kinetic energy of the "relative particle" is 
given by 

Pi f[(IBF + / ^ X X ^ N f + HAB^ (A49) 

Note that p^ contains contributions due to the motion 
of the rotor (the terms linear in IBF), and terms 
arising from the motion of the "relative particle" 
(linear in the reduced dimer mass HAB)- After quan
tizing, i.e., after replacing P4, by —ih d/8(p, etc., the 
operator Pf depends only on the Euler angles of the 
rotor. However, we must bear in mind that these 
angles are also the Euler angles of the frame in which 
the motion of the whole complex is described, so p^ 
is (the angular part of) the generalized momentum 
of the whole complex. 

In accordance with eq A35 we write <PF = (N -1FpJ, 
which is the total dimer angular momentum. We 
define the angular momentum of the relative particle 
by 

#BF la*=RxpR = XpR (A50) 

With these definitions the classical Hamiltonian A48 
becomes 

T-BF 
IT = (ja* - zB')J(r*)~VB* - r*) + 

LP* 

^AB 
(A51) 

2-TAB — ^AB 
dAB 

and PM 
mjn A111B 

mA + mB 
(A55) 

The kinetic energies of the monomers X are indicated 
by Tx, X = A, B. In order to obtain quantum 
mechanical operators we describe the kinetic energies 
with respect to a frame. The most obvious frame is 
the space-fixed frame e, with fi(i), a(t), and R(t) being 
the spherical polar coordinates of AB. Exactly as 
for the diatom, eq A15, we find 

2 7 ^ = 
HASR' 

(P)2 _ ft2JLfl2-9 _3_ 
3i?J (A56) 

with (ZSF)2 given by eq A22. The kinetic energies TA 
and TB aire given by eq A32. 

The main advantage of a space-fixed frame is that 
it yields a simple kinetic energy expression. How
ever, the matrix elements of the anisotropic terms 
in the intermolecular potential are complicated when 
evaluated space-fixed and require much computer 
time. Furthermore, the Coriolis coupling between 
the motions of the monomers and the overall rotation 
of the dimer is often weak for low angular momentum 
quantum numbers. Since this coupling does not 
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appear explicitly in the space-fixed kinetic energy, 
it is difficult to take advantage of this fact and to 
simplify the computation by neglecting or approxi
mating the Coriolis interaction. See ref 20 for a 
discussion of body- versus space-fixed axes in the 
framework of scattering theory. 

For these reasons we consider an embedded frame 

f, with its z axis along AB, obtained from the space-
fixed frame as in eq Al 7. Classically the kinetic 
energy is a rotational invariant, i.e. it can be written 
as, 

2T 
PABR 

_[(ZBF)2 +pZ] + JjT1x-Ijx (A57) 

where P = HARR is conjugate to RJx = R(a,/3)^/fF (do 
not confuse jx withjfF given in eq A36), lBF is given 
in eq A19, and 

TVSFT Ix = R(O^r IxUa,/3) (A58) 

Quantum mechanically we must proceed with care 
because the frame gx attached to the rotor X is 
expressed with respect to the embedded and space 
fixed frames as follows: 

~gx = JR(ZX) = eR(a,,3)R(£x) (A59) 

and since/is a noninertial frame, the kinetic energy 
expressions for the rigid rotors constituting the dimer 
must be revised. More specifically, for an arbitrary 
vector r we write 

R(a,/?)r = 
O —a cos /3 /3 \ 

R(a,/3) I a cos 0 o a sin fi r = 
-/3 - a sin /3 o / 

R(a.fi)mR x (A60) 

where, with Q = (/3, a) 

O)T, = 

/ - a sin /3 \ 

. $ 
a cos/S 

= YQ and Y = 
/O - s in /3^ 
1 O 
fi cos /3 

(A61) 
So, we get an extra angular velocity component which 
must be added to the angular velocities &x of the tops 
with respect to the frame f obtained in the usual 
manner from R(Sx)- Hence by an easy extension of 
the usual rigid rotor theory (ref 245, sections 4-9) 
the classical kinetic energy of X takes the form 

2Tx = (Mx^x + Y^)7Ix(MxSx + Yp), X = A, B 
(A62) 

The inertia tensor is defined in eq A58, i.e. it has the 
form of eq A25 with the particle coordinates ex
pressed with respect to f. The matrix M* is defined 
in eq A26, with the suffix X reminding us that it 
depends on Sx-

The kinetic energy TAB has the diatom form, cf. eqs. 
Al and A13: 

2TAB = ^ABR2 + QTKQ where 

K = MAB 
R2 

n ~ 2 0 2 „) < A 6 3 ) 
O R2Sm2P) 

Combining eqs A54, A62, and A63 we obtain for the 
dimer 

2T=[IjJe + ^,FJl) 
(K + Yr(XA + I5)Y YrIAMA 

MjlAY 

MBI5Y 

MAIAMA 

O 

Y%MB \ 

O 

MllBMBj 

(A64) 

which defines the angular part G of the metric tensor. 
According to the Beltrami expression A6 we must 
invert this tensor, which is most easily done by the 
Frobenius formula (ref 248, p 73) for the inverse of 
block matrices. Thus we find 

G-1 = 

/E O 
O MA

J 

O O 

O 
O 

\ 

K - i -K 1Y7 

I-YK 

I - Y K -
YK' • i Y r 

YK 1Y7, 

-K-V" 
YK-1Y7 

+ YK' 

E O 
O MA

: 
O 
O 

O O M' B 

/ 

T 
7 

(A65) 

The determinant of a block matrix can also be 
calculated (ref 248, p 71), we find that det(G) = 
det(MA)2 det(MB)2 det(K) = R* sin2 9A sin2 6B sin2 /3; 
the proportionality factor is a product of the inertia 
moments of the monomers and the reduced dimer 
mass. The classical kinetic energy in Hamilton form 
becomes: 

2T = f- +PIMIVCMI 1 ) 2 ^ + 
^AB 
plMlWM^fps + lrf- p^M^Y -

P S M B 1 Y ] K - 1 L ^ - Y^M^fpA - Y^M^fpg] 
(A66) 

where Jte is conjugate to @ = (/3, a) and px to Sx-
In eq A57 we saw that the Hamiltonian becomes 

very simple when expressed in terms of angular 
momenta; we will see that the same is true for the 
corresponding quantum mechanical expression. In 
order to make the transition to quantum mechanics 
we must express the classical angular momenta in 
terms of linear momenta conjugate to the coordinates. 
It follows directly from eq A64 that 

Jt0 = Kd + Y ^ M ^ + Y£) (A67) 
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P x = M x I x ( M x ^ x + Y£) (A68) 

It is not difficult to show with the use of eqs A26 and 
A61 that the angular momentum of X expressed with 
respect to the embedded frame is 

Tx" = f IxK(Ox +0)R) = f I x (M x ^ x + Y£) (A69) 

from which follows by the use of eq A68 and the 
definition A28 

i\r_ Jx = f(MxlYPx=fJx (A70) 

Incidentally, this proves that jx indeed rotates as a 
vector, which we already used to arrive at eq A57. 
Substitution of eq A69 into eq A67 gives 

X0 = Ke+ YT<jA+jB) (A71) 

From eq A19, eq A14, and the definitions of K and 
we obtain 

{TtBF ; ft)"* (A72) 

From J = 1 +jA + j B , where J is a constant of the 
motion, we conclude that 

Jtn (T(lBF+jA+jB)=YTJ (A73) 

From the definition of Y and upon noting that Jz 
BF JAz +JBz, since I2 = 0, we find 

Jx = - sin /3 Jia + cot /3(/'^ +jBz) 
Jy = Jt{$ 

Jz =JAz + J. 

(A74) 

Bz 

The quantum mechanical form of the operators jx is 
obtained by replacing in eq A70 pxi by — ih 3/30x, etc. 
This shows that these operators have the space-fixed 
form of eq A29, but with the Euler angles of the rotors 
referring to the embedded frame. The equations A74 
give the quantum mechanical form of Jx, Jy, and J2, 
the projections of the total angular momentum on the 
embedded axes. Jus t as in the diatom case in 
Appendix A.l, these projections do not satisfy the 
usual angular momentum commutation relations (eq 
A30), nor the anomalous ones (eq A37), which is why 
Brocks et al.18 refer to them as pseudoangular 
momentum operators. Observe that J is the sum of 
the angular momentum of the "diatom" A-B and the 
effective angular momentum (cot /3(JAZ + JBz), OJAZ + 

JBZ), which arises from the motion of the rigid rotors. 
Because of the presence of sin /3 in the volume 
element, the operator Jy is not Hermitian. The 
quantum mechanical expression for the operator lBF 

follows from /BF = J - JA -JB-
The kinetic energy becomes by substitution of eqs 

A70 and A73 into eq A66 and remembering that J2 

~ JAz - JBz = 0 

2T 
f-AB • 

P2 + 

(Jx JAx JBX^ + (^y JAy JBy) 

I? 
+ 2TA + 2TB 

When evaluating the kinetic energy operator we can 
follow the route that led to this classical Hamiltonian 
with one modification: we must insert [det(G)]1/2 at 
two places in accordance with eq A6. Because of eq 
A31 the factors sin 6A and sin dB drop out of the 
expressions, but sin j3 gives an extra term not present 
in the classical kinetic energy. Using 

^1[J1, sin /3] = [Jy, sin /3] = [Jr8, sin /3] = -ih cos yS 

(A75) 

we find 

2T = 
PABR' 

- ^ % + (JX-JAX-JBX)2 + 

(Jy JAy JBy) ih COt P(Jy ~ jAy -JBy)] + 

2T 4 + 2TB (A76) 

By the definition of J, eq A74, and the angular 
momentum commutation relations in eq A30 it is 
readily derived that 

(Jx -JAX -JBX)2 + (Jy -JAy -JB7)
2 = J2 + <JA + 

JB)2 ~ 2(7A +JB>J ~ ^ cot /3(/Ay + jBy) (A77) 

Note that J2 = J2
X + J2

y + J2
X is not the operator 

representing \J\Z, since it gives the total angular 
momentum with respect to the embedded frame. 
Defining 

JSF = R(a,l3)J (A78) 

we can show as for the orbital angular momentum, 
eq A22, that 

T S F A 2 _ ( J 0 T = J - i h cot /3Jv (A79) 

From eq A74 it follows then that (J3*)2 has the rigid 
rotor form 

( J ^ ) 2 = -
h2 \d2 

snT /3La(T dy 
i 9 o a 9 

H - 2 cos p-dady. 

hl 

-^ - r ^ sin /3 J j (A80) 
sin /3 3/3 dp 

with y = ((J)A + 4>B)/2- The kinetic energy in the 
embedded frame can finally be written as 

2T: 
^AB^' 

- ^ 2 J ? + (jSF)2 + v* +^)2 -
2(JA +JB>J\ + 2TA + 2TB (A81) 

We are free to write TA and TB in the principal axes 
form of eq A39, but notice that the angular momenta 

j A a n d j B in this expression are not the operators 
JA and JB appearing in eq A81. The latter are given 
by eq A70, that is, they have the space-fixed form of 
eqA29. 

In the calculation of matrix elements of the Hamil
tonian A81 it is convenient to introduce step opera
tors. Writingj'm =jAm +jBm, (m = +, z, - ) , we define 
these by 
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j±= Jx ±ijy a n d J ± = Jx^iJy (A82) 

The Coriolis interaction then takes the form 

2(JA +JB)>J = %'J = ^j2J2 +J+J+ +j.J. (A83) 

Notice that Jx —jz commutes with the whole Hamil-
tonian (eq A81), except with the last two terms of eq 
A83, the off-diagonal Coriolis interaction. The 
"pseudoshift" operators J+ follow from eq A74. The 
usual body-fixed step operators J± follow from eq 
A52. Comparison of the pseudo- and body-fixed step 
operators shows the following relation, which we note 
for future reference 

J + = e V TiJ*F) = e^jf (A84) 

B. Angular Basis Functions 
When using the irreducible matrices B^Ca,/?,/), 

which represent the full rotation group SO(3), one 
must be aware of different conventions used by 
different authors. In the first place, some authors 
rotate the reference frame (the "passive" convention) 
and others rotate the molecule (the "active" conven
tion). Secondly, two Euler parametrizations are in 
common use: the zxz and the zyz convention. In the 
first case one rotates around the z, x', and z" axes, 
successively, and in the second case around the z, y', 
and z" axes. The third point to be noted is whether 
the three-dimensional rotations are mapped homo-
morphically ("Wigner's convention") or anti-homo-
morphically onto Hilbert space operators. A final 
point of concern is the phase of the kets carrying the 
irrep of SO(3). Since we consider only integer 
quantum numbers in this work, this is tantamount 
to specifying the phases of the spherical harmonic 
functions. The physics literature seems to converge 
to the following convention: (i) active rotations, (ii) 
zyz Euler angles, (iii) Wigner's convention, and (iv) 
Condon and Shortley249 phases for spherical harmon
ics. Making these choices, we define the Wigner 
rotation matrix depending on the Euler angles 0 < 
a < 2JT, 0 < /3 < Ti, and 0 < y < 2JZ as follows 

D^m(a,p,y) = e-"n«d^m(l3)e im'ajij) 
y-imy (Bl) 

The functions c^J/3) were first derived by 
Wigner250 by means of a simple group theoretical 
argument, 

[(J + m')\(j - m')l(j + m)\(j - m) ! ] 1 / 2 £( - i r ' -
S 

R\2j+m-m'-2s I R\m'-m+2s 

m+s 

COS sin 

(J + m — s)\s\(m' — m + s)!(/ — m' — s)! 
(B2) 

where s runs over all possible values such that the 
factorials are nonnegative. The complex conjugates 
of these functions satisfy the relations 

jfD%m(a,P,y)* = hm'D%m(a,/3,Y)* (B3) 

(Jf ± ijf)DVja,/3,y)* = 

hjj(j + 1) - m'(m' ± l)Z)^±1>m(a,/?,y)* (B4) 

where the space-fixed angular momentum operators 
are defined in eq A29, with cp ** a, 6 ** /?, and rp**y. 
Note that the operators representing the components 
of the angular momentum along the space-fixed axes 
act on the first (row) index of the D matrix. The 
body-fixed operators of eq A52 act on the second 
(column) index 

j? FZ)£m(a)y3,y)* = hmD%m(a£,y)* (B5) 

( / f T ( / f )£>£,m(a,/?,y)* -

hylM + 1) - m(m ± l)Z^m±1(a,/?,y)* (B6) 

where the role of the step-up and step-down operators 
is interchanged due to the anomalous commutation 
relation A37. From eqs B3 to B6 we find 

( / 1 3 W J a A y ) * = (jSFmm(aAY)* = 
, 2 - / -Kj(J + l)D^m(a,P,y)* (B7) 

i.e., the complex conjugates of the D matrices are 
simultaneous eigenfunctions of the commuting op
erators (/SF)2 = (/BF)2, jf, and jfF. Since the sym
metric top Hamiltonian can be written as A(/'BF)2 + 
(C - A)(JYf (cf. eq A39) it follows that the complex 
conjugate D matrices are eigenfunctions of this 
Hamiltonian, which is why they are often referred 
to as symmetric top functions. 

The D matrices are orthogonal and normalizable: 

/ o T / o * ™ ^ ^ ' 1 ' ' 
8^2 

D%m{aJJ,y)Drti(aJ3,y)* = dff dmM bmy ^fj (B8) 

We recognize this as the great orthogonality relation 
applied to the full rotation group SO(3). Further
more, by the Peter-Weyl theorem (ref 251, section 
7.2) the D matrices are complete on the Hilbert space 
L2[SO(3)]. 

From the completeness of the symmetric top func
tions follows by a simple argument (ref 251, p 160) 
the completeness of the functions d^>m(J3) on the 
Hilbert space L2[0,JT], [arbitrarily fixed m and m',j 
running: j > max(|m|, \m'\)]. By the same argument 
it can be shown that the functions D^m(a,/?,0)* are 
complete with arbitrary fixed m and running j and 
m'. In particular it follows that the set 

Z)£0(a,/},0)* = 0m(p,a) = y ^ ^ Y ^ a ) (B9) 

is complete. 
Let us consider an angular basis for two rotors with 

Euler angles ^x = (<t>x,8x,ipx), X = A, B, with respect 
to the two-angle embedded frame introduced in 
Appendix A. 4. From the previous remarks it follows 
that 

D0A(SA)* D%USB)* DZ(VAO)* (BlO) 
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forms a complete set, when all indices—except k—are 
running. The value of k may be chosen arbitrarily. 
This set is larger than necessary for use in varia
tional calculations on the dimer, since it includes all 
different eigenfunctions of the total dimer angular 
momentum and its projection onto the space-fixed z 
axis. Because of the isotropy of space these two 
quantities are constants of the motion. To take 
advantage of this we first define, using Dirac's 
notation, 

(£A£B\)''A^AJ'B^BJAB^AB) = <£A»SBI{ A }"W = 

I (JABmABlJAm^m^Di^^r D^3)* 
mAmB 

(BIl) 

where <..|..;..) is a Clebsch—Gordan coefficient and 
{A} = (JA,kAJB,kBjAB). Further we define space-fixed 
angles for the rotors 

R(Sf) = R ^ c O R y W k ) ~ ISf) = W*M$x) 
(B12) 

where $?(a,/3) is unitary. In Dirac notation 

(R\lm) = Cl
m(/3,a) with R = (/3,a) (B13) 

and 

(RVMaMm) = ((0,O)]Im) = Cl
m(0,0) = dm0 (BU) 

Let I {A} JM) be an eigenket of the total angular 
momentum (J3*)2 and its projection j f on the 
space-fixed z axis obtained by vector coupling 

I {A} JM) = X \{^}m As)]Im)(J^m ^,Im]JM) 

By the definition of vector coupling and the unitarity 
of the D matrix, we get 

Ma^T1IiAWM) = £|{A}JiOZC(a,/?,0)* (B16) 
K 

We now transform from space-fixed to embedded 
coordinates as follows, where we use eqs B12, B16, 
and B14, respectively 

<$f, ZfMA]JM) 

= ($T£fM\Ma,(5)Ma,l3Tl\{\}JM) 

= "ZGA£B,(0,0)\{A} JK)DM^AO)* 
K 

= Z(£A£B\{A}K)D$K(a,l3,0r(jABK;l0\JK) 

This shows that the representations of the eigenket 
\{A}JM) in space-fixed and embedded coordinates are 
related linearly. In a variational calculation such a 
linear combination serves no purpose and one often 
uses the uncontracted basis functions, defined with 
respect to the embedded frame 

X (JABK\jAmA-JBmB)Di^ArDi%^Br (B18) 
niAmg 

which are also eigenstates of (JSF)2 and jfF. An 
advantage of these basis functions over the space-
fixed basis in eq B17 is that they are simultaneously 
eigenstates of Jz, with eigenvalue K. 

We end by saying a few words about the calculation 
of kinetic energy matrix elements between the basis 
functions B18. Since 

mA4>A + mB(j)B = (1I2MA + 4>B)(mA + mB) + 

(1Z2X(PA - <j>B)(mA - mB) (B19) 

and TUA + mB — K, by virtue of a selection rule on 
the Clebsch-Gordan coefficient in eq B18, we see 
that the basis functions contain the factor exp(iLKy) 
with y = (4>A + 0B)/2. When operating with (JSF)2, 
appearing in the Hamiltonian A81, it is convenient 
to transfer this factor to the first D matrix, writing 
it as D(^a,l3,y)*, after which eq B7 may be used. In 
order to act with the pseudoshift operators, defined 
in eq A82, we use their relation to the regular body-
fixed step operators, eq A84, and find 

JJ)^aAY)* -
hJ(J(J + 1) - K(K ± l)eT;rZ^±1(a,/?,y)* (B20) 

C. Symmetry 
In this appendix we will discuss a few of the 

symmetry aspects that play a role in the study of van 
der Waals molecules. Let us first consider an atom-
diatom system from a purely geometric point of view, 
i.e., without introducing a coordinate frame. It 
consists of three atoms located at points A, B, and 
C, respectively. Let O be an arbitrary point and M 
be the center of mass of the diatom. The vector 
OP, (P = A, B, C, or M) points from point O to point 
P. Obviously 

T = A B = O B - Q A (Cl) 

R = MG=OC-OM (C2) 

Space inversion of an arbitrary point P with respect 
to the point O is defined by 

E*:OP OP (C3) 

and so 

E*--{R~~-R W 
Assume now that the atoms A and B are identical, 
so that the permutation PAB of A and B is a symmetry 
operation and M is at the midpoint of the diatom 
A-B. Since neither M nor C are touched by PAB the 
vector R is symmetric under PAB- It follows directly 
from the definition of r, eq Cl, that this vector 
changes sign under PAB-
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Next we take the point O at the dimer center of 
mass and erect an arbitrarily oriented space-fixed 
frame at O 

« = (**, • O (C5) 

What happens with the space-fixed coordinates of R 
and r (RSF and rSF, respectively) under the two 
symmetry operations E* and PAB? To answer this 
question, we note tha t these operations, as defined 
above, are active, that is, the frame e does not change 
under these operations. The space-fixed Cartesian 
coordinates therefore transform as 

E*: 
\RSF-

_SF r —* — r 
,SF AB- ,SF ,SF (C6) 

Ra* M [Rar-R* 
Let (r,0SF,0SF) be the polar coordinates of I S T and let 
(R,ft,a) be the same of RSF. The following symmetry 
properties are easily derived 

E*: 9 
r-

SF. 

,SF 

it- e SF 

,SF 

\R~R 
E*: Ip ~ ji-P 

\o^ Jt + a 
(C7) 

U/)*1 —* JT + (p 
The operation PAB leaves P and a invariant and 
transforms 9SF and (pSF in the same way as E*. In 
Table 1 we find the transformations of the angular 
functions under these substitutions. 

So far the development is completely straight
forward, but in the dimer-embedded frame more care 
is required, as this frame is not invariant under the 
two symmetry operations—in contrast to the space-
fixed frame. In order to show this, we first recall the 
definition of the rotation matrices, cf. eqs A l l , and 
the definition, eq A17, of the dimer frame 

f=e Rz(O)Ry(P) (C8) 

By direct matrix multiplication the following useful 
rules are easily proved 

Rx(Jt)Ry(Ji) = Rx(Jt) (C9a) 

Rx(Ji)Ry^y) = Ry(Y)Rx(Jt) (C9b) 

Rx(Y)Rx(Y') = \(Y + / ) (C9c) 

The same relations hold also with x, y, and z 
permuted. 

Substitute now the angles (eq C7) transformed by 
E* into eq C8 defining the dimer-embedded frame, 
and rewrite the ensuing matrix equation by the rules 
just stated: 

RZ(JI + O)Ry(Jt - P) = Rz(o)R2(jt)Ry(jt)Ry(-p) 

= Rz(o)Ry(P)Rx(jt) (ClO) 

Hence we find that the dimer frame f transforms 
under E* as 

E*: f^fRx(Jt) ( C I l ) 

Bunker108 refers to Rx(Ji) as the equivalent rotation 
of E*. Since P and a are invariant under PAB, the 
dimer frame itself is also invariant under this 
permutation. 

Consider next how the dimer-embedded coordi
nates transform 

E*: 7 = / r — - r = fRx(jt)r' (C12) 

so that 

= -Rx(ji)r or E* -Rx(Jt^ (C13) 

For the elements x, y, z of r and its spherical polar 
coordinates this gives 

r = 
Z1 

and E*\ 
r—-r 

• 9 — 9 
0—* Jl 

(C14) 

<P 
so that E* is equivalent to a reflection of? in the yz 
plane of the dimer frame. 

The dimer-frame coordinates 

R = [O 

IR/ 
of R are invariant under E* as well as under PAB-
Since the frame f is invariant under PAB, it follows 
straightforwardly for the dimer-frame coordinates of 
r that 

AB-

\r —* r 
]9~JI-9 (C15) 

\<p^ Jt + 4> 
Before leaving the atom—diatom case we wish to 

point out that E* is a feasible operation of the first 
kind, because the intermolecular potential does not 
depend on § and E* only affects </>, cf. eq C14. 
However, PAB gives a tunneling through a possible 
barrier in 9, see eq C15. Depending on the height of 
this barrier PAB may, or may not, be feasible. Given 
the weakness of van der Waals forces, the barrier will 
in general be so low that the permutation is feasible 
and the symmetry group of the atom—homonuclear 
diatom system is of order 4 and isomorphic to C&,. 

In the case of a van der Waals molecule containing 
nonlinear monomers X, we must choose right-handed 

frames gx attached to the monomers and specify 
the Euler angles of these frames with respect to 
another right-handed frame. This latter frame is in 
practice either a_ space-fixed frame e or a dimer-
embedded frame f. If a monomer is rigid, any body-
fixed frame will do, because in that case the only 
feasible permutation inversions are of the first kind 
and equivalent to proper rotations. Recalling that a 
proper rotation conserves the handedness of a frame, 
this means that the feasible monomer permutation 
inversions transform the Euler angles of a rigid 
monomer in a well-defined way. If, however, the 
monomer is not (nearly) rigid, or in other words 
feasible operations of the second kind must be 
considered, then special care in defining the molecule 
frame must be taken. For instance, the well-known 
ammonia (umbrella) inversion transforms a right-
handed monomer Eckart frame into a left-handed 
one, so that the effect of this inversion on the Euler 
angles of an Eckart frame cannot be defined. In such 
a case it is better to use the construction that is 
commonly applied to planar molecules, which consists 
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of choosing two orthonormal body-fixed vectors, say 
gx andg y , and define the third as the vector product: 
gz — gx x g , In that case the frame is right-handed 
by definition, all the feasible permutation inversions 
are equivalent to rotations of the monomer and their 
effect on the Euler angles can be given. 

We will now exemplify the procedure on the a rgon-
ammonia van der Waals molecule8 and start by 
reviewing briefly the symmetry of the free ammonia. 
Let M be the center of mass of NH3 and let the 
protons be Hi, H2, and Hz. The following is a body-
fixed frame attached to ammonia: 

gx = ^1/6(2MH1 - MH2 - MH3) (C16a) 

Ty = Vm(MlT2 - JlHl) (C16b) 

Tz=TxXlTy (C16c) 

This frame is not necessarily orthonormal, but if we 
impose the constraints that the N - H bond lengths 
and the HNH angles stay equal, then the frame 
becomes orthogonal and can be normalized. It is 
important to note that the normalization of gx and 
gy is equal, so that the frame as it stands can be 
used to derive the effects of the monomer permuta
tion inversions. By some simple algebra it can be 
derived that 

(123)g = £ R 2 ( - 2 ; r / 3 ) (C17) 

(23W=^Rx(TT) (C18) 

The vectors gx and g change sign under E* and the 
vector product gz is invariant, so that 

£ * I = | R » (C19) 

We define the NH3 inversion coordinate r as the inner 
product of two collinear vectors: 

T = MN-gz (C20) 

This coordinate is related to the umbrella angle Q 
defined in section III.C as x — (3Z2VQ(I - £)sin2

 Q X 

cos Q, where ro is the N - H bond length and £ = 
mN/(Sm.H + WAT). Since MAT' is invariant under per
mutation of the protons, r inherits its permutational 
properties from gz, or in other words, r changes sign 
(and Q I— Jt — Q) under the permutation (23) and 
both are invariant under (123). Because it does not 
affect the geometry of the molecule, (123) is a feasible 
permutation of the first kind. However, the permu
tation (23) is of the second kind, as it changes the 
internal coordinate x. The operation E* inverts 
MAT' and leaves gz alone, so that x changes sign 
under E*, and E* is also of the second kind. The 
operations of the second kind yield a tunneling 
through the umbrella barrier of NH3 and give rise to 
an observable splitting of about 0.8 cm - 1 . The group 
of operations of the first kind consists of 
{E,(123),(132),(12)*,(13)* (23)*} and is isomorphic to 
the point group C$u of the nearly rigid molecule. The 

total molecular symmetry group, generated by (23), 
(123), and E*, is of order 12 and is isomorphic to D^h-

If we now assume that argon is at the point A, then 
we observe that the vector MA is invariant under 
the permutations of the protons, as the center of mass 
M of ammonia and the position of argon are not 
affected by the permutations. The operator E* 

inverts the direction of MA We choose a dimer 
frame as in eq C8 and let the Euler angles of 
ammonia be given with respect to that frame 

i = fRz(<t>)Ry(d)Rz(ip) (C21) 

By using the rules in eq C9 we easily derive the effect 
of the operations on the coordinates and by the use 
of Table 1 we find how the angular functions behave. 

The operations which are of the first kind in the 
free ammonia become of the second kind in the dimer, 
as ammonia no longer moves in an isotropic space, 
but experiences a 9- and ^-dependent intermolecular 
potential. In the case of argon-ammonia the !/'-de
pendent barriers are so low that all first kind 
permutation inversions of the free ammonia remain 
feasible in the dimer. The permutation inversions 
of the second kind in the free ammonia are hindered 
by the intermolecular potential and for some time it 
was not clear whether these latter permutation 
inversions were feasible, that is, whether the um
brella inversion was quenched by the argon. Micro
wave experiments138 and computations9 have shown 
an umbrella splitting almost as large as in the free 
monomer, however, and hence the argon-ammonia 
dimer also has a group isomorphic to D3h-

As a next example we will discuss briefly the 
ammonia dimer. Some early spectroscopic work193 

on this dimer did not show umbrella inversion 
splittings, and so it was assumed that the inter
molecular potential quenches the inversions of both 
umbrellas. In this case of two identical monomers 
there are many permutations (the complete per
mutation inversion group is of the order 2 x 6 ! = 
2880), and some of the mfermonomer permutations 
may be feasible. And indeed, an analysis by Nelson 
and Klemperer252 in the footsteps of earlier work253 

by Dyke on (HzO)2, revealed that a few intermolecu
lar permutation inversions give rise to observable 
tunneling splittings. They found that the feasible 
operations constitute a group of order 36, which they 
refer to as G36, following Bunker.108 This group is a 
semidirect product,109 designated by ®, of two outer 
products. Numbering the protons on monomer A by 
1, 2, and 3 and those on B by 4, 5, and 6, and 
designating the respective nitrogens by 7 and 8, we 
can write the group as follows: 

G36 = (C3
1 ® Cf) © (C2 ® C8) (C22) 

where 

C3
1 = {£,(123),(132)} Cf = {£,(456),(465)} 

(C23) 
C2 = {£,(14X25X36X78)} C8 = {£,(23X56)*} 

(C24) 
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Recently the inversions of both monomer umbrellas 
have been observed11 and hence (23) and (56) must 
now be considered to be feasible in the dimer. Adding 
these elements to the molecular symmetry group 
gives a group of order 144, designated by Gm. This 
group has the following structure 

P7 2 s (S£ ® Sf) ® C2, Glu = P12®Ct (C25) 

where Sf contains all six permutations of monomer 
X, (X = A, B), C2 is defined in eq C24, and C1 = 
{E, E*}. The effect of the generators of this group 
on the spherical polar components R, a, B of 
MAMB and the Euler angles, defined as in eq C21, of 
both monomers is given in Table 16. The umbrella 
coordinates QA and QB are defined as in section III.C, 
cf. also eq C20. 

As a final example we will discuss the case of 
argon—benzene, where we choose to describe the 
motion of argon in a frame fixed to benzene, as 
introduced in Appendix A. 3. We number the carbon 
atoms counterclockwise from 1 to 6 and choose fx 

and f to be Eckart vectors.254 Thus, we have the 
frame 

f* = ~JQ& + if2 ~ if3 ~ °A ~ 2Cb + 2C& i 
(C26a) 

Ty = V2(C2* + C"* - ~Cb - 'Cl) (C26b) 

/T=TT x r (C26c) 

The notation C1 is shorthand for MC1, where M is 
the mass center of the benzene. When the molecule 
is a regular hexagon, the vector fx lies on the line 
from atom 4 to 1 and f is perpendicular to it. 
When the molecule does not have 6-fold symmetry, 
the vectors are not necessarily orthogonal, and an 
orthogonalization must be performed in order to be 
able to define Euler angles. A symmetric (Lowdin) 
orthogonalization leads to an Eckart frame.254 

The permutation inversion group of the free ben
zene is isomorphic to its point group Deh and is 
referred to as PI(Deh)- This isomorphism arises by 
virtue of the fact that benzene is nearly rigid, i.e. it 
does not show observable torsional or inversional 
splittings. All feasible permutation inversions are of 
the first kind. The group has the following structure: 

PI(C6v) = C6 (D {£,(35X26)*} (C27) 

PI(D6h) = PI(CJ ® {E£*} (C28) 

where Ce is the cyclic group generated by (1 2 3 4 5 6). 
By acting with the generators on the basis (C26), we 
easily derive 

( 1 2 3 4 5 6 ) ? = ? R,(|) (C29) 

(3 5)(2 6)* ? = ? Rx(Jt) (C30) 
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E*~f=fRz(ji) (C31) 

Let us now add argon with position vector MA = ?A 
to the system. Since both M and A are invariant 
under pure permutations, MA is also. So we find 

(1 2 3 4 5 6) MA = (1 2 3 4 5 6) ? A = ? ' A' = 

? R , ( | ( A ' = M 4 = ? A (C32) 

By this, and similar reasoning for the other genera
tors, while remembering that MA changes sign 
under E*, we find for the argon coordinate vector 

(12 3 4 5 6)A — R Z ( - | ) A (C33) 

(3 5X2 6)*A — -Rx(Tr)A (C34) 

E*A — -R2(Tr)A (C35) 

In order to study the feasibility of the operations, we 
designate the spherical polar coordinates of A by R, 
6, and <p. Obviously the length R is invariant and 
the angles transform as 

[6 — 6 
(1 2 3 4 5 6): \ , , Ji 

(3 5)(2 6)*: r ~~6 . E*:\6^' K~6 (36) 
\ < p — " J i - <p \<p — <p 

The interaction between the benzene and the argon 
is not strongly 4> dependent. But it is very 6 depend
ent, since the plane 6 = 90° is the plane of the 
benzene and the barrier for the tunneling of argon 
through this plane is high. We can expect, therefore, 
that .E* will not be feasible, whereas (12 3 4 5 6) and 
(3 5)(2 6)* will very likely be feasible. Indeed, this 
has been found, both in the spectra169,171 and in 
calculations.51 Consequently, the appropriate per
mutation inversion group for the system argon-
benzene is PI(C6V)- We wish to emphasize that this 
symmetry does not imply that argon is restricted to 
move on the 6-fold axis of the rigid benzene; the atom 
moves above (or under) the plane of the molecule, 
hindered only by the weak van der Waals potential. 
The wave functions of argon below and above the 
plane are degenerate to all practical purposes. 
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