Stereoselective Approaches to Bioactive Carbohydrates and Alkaloids—With a Focus on Recent Syntheses Drawing from the Chiral Pool

Giovanni Casiraghi* and Franca Zanardi

Dipartimento Farmaceutico, Università degli Studi di Parma, Viale delle Scienze, I-43100 Parma, Italy^t

Gloria Rassu* and Pietro Spanu

lstituto per I'Applicazione delle Tecniche Chimiche Avanzate del CNR, Via Vienna 2,1-07100 Sassari, Italy*

Received February 14, 1995 (Revised Manuscript Received April 10, 1995)

Contents

/. Introduction

Bioactive glycosubstances, over the years, have received great attention in chemical, medicinal, and pharmaceutical research.¹⁻⁷ As a consequence, the design and implementation of stereoselective strategies for preparing them by using readily available homochiral precursors constitute prominent issues of a number of laboratories. $8-30$ The present article mainly highlights recent approaches to biofunctional carbohydrates and hydroxylated alkaloids, including our own achievements,^{13,27,28} which utilize enantiopure or enantioenriched precursors or templates derived from the chiral pool exploiting stereoselective totally chemical homologative techniques.

Here, the chiral pool refers to the domain of chiral nonracemic compounds from the natural realm, including monosaccharides and fragments thereof, amino and hydroxy acids, terpenes, and alkaloids. However, according to a broader definition, this class also includes synthetic entities readily available by resolution of racemates, chemical and enzymatic enantioselective procedures, or straight manipulation of naturally occurring derivatives.31-41

Procedures exploiting precursor-to-target interconversions based on functional group manipulations

where carbon-carbon bond formation does not constitute a relevant issue are excluded as are those syntheses utilizing auxiliaries or catalysts to introduce chirality into a multistage protocol. Also excluded are methodologies involving chiral or racemic starting materials, where enzyme catalysis governs the installation of the optical activity. These topics have been the subjects of a number of recent accounts.42-50

We have chosen to organize our discussion by homogeneous classes of compounds rather than by similarity of the chemical approaches. In the first part, a selection of the most recent diastereoselective syntheses of monosaccharides and modified carbohydrates are discussed. The second section deals with preparation of nitrogenous carbohydrate mimics (azasugars), including monocyclic and bicyclic pyrrolidine- and piperidine-based alkaloids.

The literature cited covers the period from 1992 to Fall 1994. Excellent accounts and book chapters dealing with some of the topics highlighted herein covering the antecedent period are available. Pertinent references are grouped in section V.

//. Synthesis of Carbohydrates and Congeners

The importance of carbohydrates in biochemistry, in medicinal chemistry, and in the various aspects of life processes coupled with the charm and structural diversity of their multichiral architecture have long challenged synthetic chemists toward a multitude of approaches to this rich class of compounds. Among the various means with which a carbohydrate unit can be assembled, methodologies involving as a key operation carbon—carbon bond formation between an enantiopure "short" precursor and a homologative manipulable reactant constitute a leading subject in the modern synthetic chemistry panorama.14,28-31 This chapter illustrates the design and syntheses of natural and unnatural sugars of biological importance including aminated derivatives and the so-called "higher sugars".1516,27 A section is devoted to carbon oligosaccharides where the interglycosidic oxygen atom has been replaced by a carbon-carbon bond.

A. Monosaccharides

The search for novel stereoselective and versatile methodologies to ascend the carbohydrate series represents an important goal of sugar research.³⁰ Recently, Whitesides, Schmid, and others introduced

^{*} E-mail: [casirag@ipruniv.cce.unipr.it.](mailto:casirag@ipruniv.cce.unipr.it)

^{*} E-mail: [iatcapa@ssmain.uniss.it.](mailto:iatcapa@ssmain.uniss.it)

Giovanni Casiraghi was born in Monza, Italy, in 1939 and took his laurea degree in Chemistry in the University of Pavia. After postdoctoral work at the same University with Professor S. Pietra (1965-1968), he joined the Department of Organic Chemistry at University of Parma. In 1971 he became an Assistant Professor and in 1980 an Associate Professor of Organic Chemistry. In 1986 he was promoted to a Professorship in Organic Chemistry and, in the same year, he transferred to the University of Sassari. In 1991 he returned to the University of Parma, joining the Faculty of Pharmacy (Pharmaceutical Department) where he was appointed to the Chair in Organic Chemistry. Topics he is now interested in include asymmetric organic synthesis and the design and implementation of novel synthetic strategies to densely functionalized compounds of biological interest, including carbohydrate mimics, amino acids, modified nucleosides, glyco- and nucleoporphyrins.

Gloria Rassu is a Researcher at the Consiglio Nazionale delle Ricerche, Area della Ricerca di Sassari. She was bom in Sassari, Italy, in 1954 and earned her laurea degree in Chemistry at the University of Sassari. After five years of postdoctoral work at the same University, in 1984 she joined the lstituto per I'Applicazione delle Tecniche Chimiche Avanzate del CNR, Sassari, where she assumed her current position. In 1987 she joined the research group of Professor Casiraghi beginning a fruitful scientific cooperation in the carbohydrate chemistry area. In 1991 she began her independent research and now heads a small team of researchers who study the various aspects of the asymmetric organic synthesis. In particular her interests focus on the development of novel stereoselective reactions and the synthesis of natural products and biologically active substances.

Franca Zanardi was born in S. Secondo, Parma, Italy, in 1968. She studied Chemistry at the University of Parma where she received her laurea degree in 1993. Since 1992 she has been working under the supervision of Professor Casiraghi at the Pharmaceutical Department of University of Parma, where she is currently completing the requirements for her Ph.D. in bioorganic chemistry. Her research interest is in the area of stereocontrolled synthesis of bioactive substances, including modified carbohydrates, nucleosides, amino acids, and porphyrin-sugar conjugates.

an extremely efficient technique to assemble various deoxysugars via elongation of unprotected carbohydrates utilizing *in situ* -generated indium reagents in aqueous solvent systems.⁵¹ A convenient route to D-glycero-D-galacto-heptose (6) was devised, utilizing D -arabinose (1) as a chiral precursor⁵² (Scheme 1). Treatment of 1 in water—ethanol with indium powder and allyl bromide under ultrasound conditions afforded a mixture of epimeric polyols which were converted into their corresponding acetyl derivatives (9:1 *threo Ierythro* diastereomeric ratio).

Separation of the diastereoisomers was easily achieved to give octenitol 2 as the major compound. The polyol derivative 2 was further transformed into the α , β -unsaturated aldehyde derivative 3 by com-

Pietro Spanu was bom in Sassari, Italy, in 1963. He studied Chemistry at the University of Sassari where he received his laurea degree in 1989. He was introduced to the asymmetric organic synthesis as a postdoc with Professor Casiraghi and, after a three-year stay at the Department of Chemistry of the same University, in 1994 he joined the lnstituto per I'Applicazione delle Tecniche Chimiche Avanzate del CNR, Sassari, where he is currently a research associate working under the guidance of G. Rassu.

bined catalytic osmylation and periodate cleavage, followed by treatment with tetrabutylammonium fluoride. The trans configuration of the double bond in 3 was assigned by proton NMR spectra analyses. Protection of the aldehyde moiety as the diethyl acetal was achieved by treatment of 3 with triethyl orthoformate under acid catalysis conditions giving the acetal 4. Catalytic osmylation and subsequent acetylation gave a mixture of diastereoisomers (6:1 diastereomeric ratio) which were separated to give 5 as the major product. The final deprotection of derivative 5 was easily attained by transesterification of the acetates with sodium methoxide in methanol followed by acidic cleavage of the diethyl acetal to give D-glycero-D-galacto-heptose (6) . By following the same chemistry D-glycero-L-galacto-heptose was obtained starting from D-xylose.

Scheme 1°

 A Key: (a) In powder, allyl bromide, ultrasonication; then Ac₂O, pyridine, DMAP; (b) OSO_4 , KIO_4 ; then TBAF; (c) H_3O^+ , HC(OEt)₃; (d) OsO₄, NMO; then Ac₂O, pyridine, DMAP; (e) NaOMe, MeOH; then H₃O⁺.

Scheme 2°

 $^{\mathsf{a}}$ Key: (a) In, ethyl α -(bromomethyl)acrylate, 10% formic acid, aq. MeCN; (b) O_3 , MeOH, $\cdot 78^{\circ}$ C; then Me₂S, MeOH, -78° C to it; (c) aq. TFA; then NH₄OH.

Allylation of 2,3:4,5-di-0-isopropylidene-D-arabinose (7) with ethyl 2-(bromomethyl)acrylate and indium was the strategy devised by Whitesides in order to obtain 3-deoxy-D-manno-2-octulosonic acid (KDO, 10) an integral component of the lipopolysaccharides of Gram-negative bacteria.53,54

So, as illustrated in Scheme 2, treatment of 7 with ethyl 2-(bromomethyl)acrylate, formic acid, and indium metal gave a mixture of diastereoisomers 8 $\frac{e}{2}$ (*erythro* / *threo* ratio = 2:1). After separation, the erythro product was ozonized at -78 °C in methanol to provide α -keto ester 9. Hydrolysis of the protecting groups under acidic conditions followed by neutralization finally yielded KDO 10 in 20% overall yield based on 7.

Similar chemistry was exploited to access the sialic acid $(+)$ -3-deoxy-D-glycero-D-galacto-nonulosonic acid $(KDN, 15)$ from D-mannose $(11,$ Scheme $3)$.⁵⁵ Treat**Scheme 3"**

 a Key: (a) In, methyl 2-(bromomethyl)acrylate, H₂O; (b) O₃, MeOH, \cdot 78°C; then Na₂SO₃; (c) spontaneous cyclization; (d) KOH, MeOH.

ment of 11 with methyl 2-(bromomethyl)acrylate in water in the presence of indium metal gave rise to *syn* adduct 12 along with a minor amount of the *anti* diastereoisomer (6:1 ratio). Direct ozonolysis of 12 in methanol afforded the corresponding keto ester 13 which immediately cyclized to give the $(+)$ -KDN methyl ester 14. Base-promoted saponification finally afforded pure KDN 15.

A convenient synthesis of KDN derivative 21 from D-mannose (11) was recently reported by Sato employing as a key reaction a two-carbon Horner-Wittig homologation.⁵⁶ The synthesis began with the preparation of *u-glycero-u-galacto-herose* (17) which was derived from 11 by nitromethane condensation to give 16 and subsequent Nef oxidation (Scheme 4). Treatment of 17 with ethanethiol in the presence of hydrochloric acid followed by perbenzylation and removal of the aldehyde protecting group resulted in formation of heptose 18 which was subjected to Horner-Wittig condensation with methyl 2-[(benzyloxycarbonyl)amino]-2-(diethoxyphosphoryl)acetate to generate the adduct 19 as a 1:1 mixture of Z/E isomers. Hydrogenolytic debenzyloxycarbonylation of 19 gave the corresponding methyl α -oxoalkanoate derivative 20 which was transformed to the target compound 21 via reductive debenzylation followed by glycosidation with methanol.

 $\rm L$ ópez-Herrera 57 utilized the well known rhodium II-mediated rearrangement of β -acetoxy- α -diazo esters to synthesize **KDO** 10 and 2-deoxy-KDO 28, a potent inhibitor of CMP-KDO synthetase. As depicted in Scheme 5, protected aldehydo mannose 22 was condensed with ethyl diazoacetate to obtain a 3.5:1 diastereomeric mixture of β -hydroxy- α -diazo esters 23. Acetylation and rhodium-catalyzed decomposition afforded the enol acetate 24 which was treated with hydrazine in methanol to afford the protected hydrazone 25. Desilylation with TBAF in THF provided the corresponding 4-0-unprotected hydrazone which was oxidized to diazo ester 26 by activated Mn02. This diazo compound was treated with *m*-chloroperoxybenzoic acid to give, after complete deprotection, the expected KDO 10.

The same intermediate 26 was efficiently exploited by the same author for a short synthesis of 2-deoxy- $KDO.⁵⁸$ Thus treating 26 with a catalytic amount of dirhodium tetraacetate effected its decomposition with nitrogen release and intramolecular OH trapping of the carbenoid species produced from the diazo

 a Key: (a) MeNO₂, DBU; (b) Nef oxidation; (c) EtSH, HCI; then NaH, BnBr, DMF; then MeI, Na₂CO₃; (d) (EtO)₂P(O)CH(NHCbz)CO₂Me, NaH, CH_2Cl_2 ; (e) H_2 , Pd/C; (f) H_2 , Pd(OH)₂; then Dowex H⁺, MeOH.

^a Key: (a) HCN₂CO₂Et; (b) Ac₂O, pyridine; then $Rh_2(ACO)_4$; (c) NH_2NH_2 , MeOH; (d) MnO₂, CHCI₃; then TBAF, THF; (e) MCPBA, CHCI₃; then AcOH; then NH_4OH ; (f) $Rh_2(ACO)_4$, C_6H_6 ; (g) TFA; then NH_4OH .

carbon. As expected, KDO derivative 27 was obtained as a single compound, which was converted to pure 2-deoxy-KDO 28 by removal of the acetonide protecting groups.

In a recent study focused on the design of potent inhibitors for lipopolysaccharide biosynthesis, Baasov synthesized a novel phosphonate analogue of 2-deoxy- $\rm KDO$ 28, namely the isosteric carbohydrate 33,⁵⁹ utilizing D-mannose (11) as a chiral template (Scheme 6).

First, 11 was converted to differentially protected alditol 29 and then phosphonomethylated to phosphonate 30. A suitable leaving group at C-I was introduced by conventional exchange of the protective funtionalities to attain the tosylate 31 which was successfully cyclized to single phosphonate 32 by Scheme 6^a

 a Key: (a) Me₂CO, H₂SO₄; then NaBH₄, MeOH; then TrCI, pyridine; (b) TfOCH₂PO₃Et₂, NaH; (c) H₂, Pd/C; then TsCI, pyridine, DMAP; (d) LDA, THF, -78°C; (e) Me₃SiBr, CH₂CI₂; then Dowex H⁺.

treatment with LDA, via intramolecular carboncarbon bond formation. Deprotection of 32 finally provided the target phosphonate 33, a potential inhibitor of enzymes of KDO biosynthesis.

A novel synthetic strategy to assemble KDO 10 and 2-deoxy-KDO 28 was introduced by Augé 60 based on a hetero Diels—Alder reaction involving a chiral diene derived from D-glyceraldehyde. As shown in Scheme 7, the synthesis started with diene 35 readily prepared in few steps from 2,3-O-isopropylidene-Dglyceraldehyde (34).

Under optimal conditions, 35 was allowed to react at 130 °C with neat butyl glyoxylate to produce a mixture of four benzylated cycloadducts 36 in the proportion 50:24:16:10. The mixture was hydroxylated with catalytic osmium tetraoxide in the presence of N -methylmorpholine oxide to afford an inseparable mixture of diols 37. To reach the configuration of KDO derivatives, double inversion at C-4 and C-5 was carried out on the mixture 37 by a conventional S_N2 protocol with tetrabutylammonium benzoate. Two diastereomeric compounds were obtained in the ratio 2:1 to which structures 38 (major compound) and 39 were attributed. Compound 38 represents a protected form of 2 -deoxy- α -KDO while **39** is a protected derivative of 2-deoxy- β -KDO. The major compound 38 was converted to KDO by a set of reactions involving, as a key operation, diastereoselective hydroxylation at C-2.

Scheme 7°

 A^a Key: (a) HCOCO₂Bu, 130°C; then MeOH, TsOH; (b) OsO₄, NMO; (c) Tf₂O, pyridine; then PhCO₂NBu₄.

Scheme 8"

 a Th $=$ 2-thiazolyl. Key: (a) 4-Å MS, CHCl₃, reflux; (b) BnONa; (c) HCl, MeOH; then BnBr, NaH; (d) TfOMe; then NaBH₄; then CuCI₂/CuO, H₂O; (e) Ag₂O; then H₂, Pd/C; then AcOH.

In a remarkable study aimed at developing the chemistry of 2-[(thiazolylcarbonyl)methylene]triphenylphosphorane (40) as a masked pyruvate anion unit, Dondoni⁶¹ successfully opened a versatile route to 3-deoxy-2-ulosonic acids, utilizing simple carbohydrate derivatives as synthons and sources of chirality. As an example, the total synthesis of the biological important sialic acid KDN (15) is illustrated in Scheme 8.

Condensation of aldehydo-D-mannose 41, available from D-mannose by simple functional group protection, with phosphorane 40 proceeded with excellent selectivity to give the (E) -enone 42 in good yield. Conjugate addition of sodium benzyl oxide to 42 gave the *syn* adduct 43 selectively, accompanied by only

Scheme 9"

^a Key: (a) 2-acetylthiazole, LiOBu^r, THF, -50°C; (b) DIBALH, THF, -78°C; then DMP, CSA; then MeI, MeCN, reflux; then NaBH4, MeOH; then HgCI2, MeCN.

a modest amount of its *anti* diastereoisomer. Two subsequent clean reactions, namely acidic removal of acetonide and silyl protecting groups and perbenzylation, gave rise to methyl pyranoside 44. Unmasking of the formyl group embodied in the thiazolyl substituent allowed generation of the pyranoside 45 which was finally converted to target KDN 15 by a set of reactions involving oxidation of the aldehyde function to carboxylic group, debenzylation, and hydrolysis of the O-methyl glycosidic linkage.

The same author, 62 with the utilization of 2-acetylthiazole as the surrogate of lactaldehyde, designed an effective route to a variety of polyhydroxylated carbon chains. Thus, for example (Scheme 9), condensation of protected glyceraldehyde 34 with the enolate anion of 2-acetylthiazole generated the *anti*adduct 46 which was transformed to three-carbon homologated hexose 47 by selective reduction of the carbonyl function followed by thiazole unmasking. Reiteration of the same three-carbon homologative reaction generated the polyalkoxy nonanal 48 bearing a sequence of 1,2- and 1,3-diol groups.

A reiterative $C_3 + C_4 + C_4$ homologation strategy was chosen for assembly of D-glycero-D-talo-L-taloundecose pentaacetonide (55).⁶³ The synthesis started with the popular three-carbon chiron 2,3-O-isopropylidene-D-glyceraldehyde (34) and required two elongation steps utilizing 2-(trimethylsiloxy)furan (49) as a nucleophilic four-carbon homologative reagent. The entire sequence is presented in Scheme 10.

Treatment of 34 with 49 in the presence of BF_3 etherate and protection of the crude product as the TMS ether afforded the seven-carbon butenolide 50 as the major component. Anti-selective cis-dihydroxylation of the double bond was performed using the $KMnO_4/dicyclohexano-18-crown-6-ether/CH_2Cl_2$ system at ambient temperature. There was obtained D-glycero-D-talo-heptonolactone (51) , with no trace of diastereomeric material. Attention was then directed toward elaborating the lactone framework into an open-chain *aldehydo* sugar. Compound 51 was directly transformed into methyl ester 52 by treatment with a large excess of dimethoxypropane in the presence of 3 moles equiv of p-toluensulfonic acid at room temperature. Controlled reduction of the methyl ester into subtarget aldehyde 53 was achieved, without any epimerization, by careful addition of DIBALH in CH_2Cl_2 at -90 °C. The first cycle of the

Scheme 10^a Scheme 11^a

 a Key: (a) BF₃ etherate, CH₂CI₂, -90°C; then TMSCI, pyridine; (b) KMnO₄, DCH-18-crown-6, CH₂CI₂; (c) DMP, TsOH; (d) DIBALH, CH₂CI₂, -90°C.

sequence was thus completed and the setting for proper installation of four additional contiguously oxygenated carbon atoms was at hand. Four-carbon elongation of 53 with 49 generated the 11-carbon unsaturated lactone 54 as the main component. Reiteration of the reaction sequence of the first cycle allowed clean conversion of lactone 54 to undecose pentaacetonide 55 with an overall yield of 5.1% for the entire sequence from 34.

Nonracemic butenolide 50, obtainable in multigram quantity as previously described, was the template employed in a divergent synthesis of uncommon 2,3-dideoxy-C-methylheptose derivatives $(Scheme 11).⁶⁴ Asymmetric conjugate addition of$ $Me₂CuLi$ in $CH₂Cl₂$ at -80 °C introduced a methyl group at C-3 of intermediate 50. The presence of a bulky substituent on C-4 directed the stereochemical course *(anti)* of this reaction, affording 56 as a single diastereoisomer in 86% yield. Methylation of the enolate (LiHDMS, THF, then MeI) converted 56 into 57. The diastereoselection was moderate (85:15) due σ . The diaster essered on was inductantly (00.10) due
to the presence of the 3β , 4 α -substituents in the furan ring. Nonetheless, the major crystalline *trans,trans*diastereoisomer 57 was obtained in 60% yield. At this point, all that remained was to convert the intermediates 56 and 57 into C-methylheptoses 58 and 59, respectively. A common enantioconservative protocol of two sequential reactions ensured clean transformations. Lactone-to-lactol reduction occurred under the usual conditions using DIBALH, while complete cleavage of the silyl and acetonide linkages was accomplished by acidic treatment. In this manner, the expected heptoses 58 and 59 were obtained.

 a Key: (a) Me₂CuLi, CH₂Cl₂; (b) LiHDMS, THF; then MeI; (c) DIBALH, CH₂CI₂; then 3N HCI, THF.

Scheme 12°

 a Key: (a) BF₃ etherate; (b) MgBr₂ etherate.

The addition of nonracemic or racemic γ -alkoxy allylic stannanes to enantioenriched aldehyde derivatives assisted by Lewis acids was recently employed by Marshall to create a number of polyol fragments endowed with varied chirality.¹² After extensive investigation it was shown⁶⁵ that coupling of nonracemic allylic stannane **(S)-60** with threose aldehyde 61 afforded the *syn,anti,syn-adduct* 62 in the BF3 promoted reaction, whereas the enantiomeric stannane CR)-60 gave the *syn,syn,syn-adduct* 63 under $MgBr₂$ catalysis (Scheme 12). On the other hand, (S)-60 and erythrose aldehyde 64 yielded the *syn,anti,anti*-adduct 65 with BF_3 , while (R) -60 gave rise to the *syn, syn, anti*-adduct 66 using MgBr₂ as a catalyst.

The enantioenriched unsaturated adducts 62, 63, 65, and 66 were exploited during a further investigation to produce a variety of hexose derivatives. Thus, as shown in Scheme 13, by starting with unsaturated polyol 63, exopyranose derivative 68 was obtained, through intermediate 67, via ozonolysis and Dess-Martin periodinane oxidation. Furthermore the homoallylic alcohol 65 was directly transformed to

 a Key: (a) BnBr, NaH, DMF, 0°C; then O₃, NaOH, MeOH, CH₂Cl₂, - 78°C; then TBAF, AcOH,THF; (b) Dess-Martin reagent, CH₂CI₂; then HCI, MeOH, reflux; (c) OsO4, NMO.

Scheme 14°

 a Key: (a) MgBr $_2$ etherate, CH $_2$ CI $_2$, -20°C to it; then. $L \cdot (\cdot) \cdot \alpha$ -amino-e-caprolactam, 2.0 M Me₃AI in hexanes; then Li, NH₃, THF, -78°C.

 ω -deoxyoctose derivative 69 by dihydroxylation with OsO₄/NMO mixture.

This fine chemistry was also applied to total synthesis of Bengamide $E(72)$, an unusual polyhydroxylated amino acid derivative recently isolated from a coral reef sponge⁶⁶ (Scheme 14). The synthetic scheme involves, as a pivotal operation, $MgBr₂$ promoted condensation of nonracemic meso-tartaric acid derivative 70 with allylic stannane 71 to generate the appropriate polyol fragment in the correct *syn,syn,anti* relative configuration.

This extremely versatile homologative technique was also exploited to synthesize long-chain polyols by sequential addition of enals with chiral nonracemic γ -siloxy allylic stannanes followed by diastereoselective hydroxylation.^{67,68} Addition of allylic stannane 73 to enal 74, derived from (R,R) -dimethyl tartrate, produced the adduct 75 as a single isomer, which was converted to nonaol 76 by a three-stage sequence including double diastereospecific dihydroxylation of the two nonconjugated double bonds (Scheme 15).

As a further remarkable extension of this chemistry, bidirectional assemblage of polyol 78 bearing 14 adjacent stereogenic hydroxymethine units was attained, via bis-homologation of the C_2 symmetric dialdehyde 77, derived from tartrate, with stannane 73.

From a synthetic perspective, hikizimycin, an anthelmintic agent showing significant activity against a variety of common parasites, constitutes a quite demanding compound by virtue of both the high level of structural complexity and chiral diversity. This

Scheme 15°

 a Key: (a) BF₃ etherate; (b) TBSOTf, 2,6-lutidine; then OsO₄, NMO; then ρ -TsOH.

compound is comprised of a cytosine base, an *O*linked aminohexose, and a core sugar unit of 11 fully oxidized carbons. In his elegant total synthesis of this complex nucleoside disaccharide, Schreiber 69 developed a clever approach to the core undecose moiety 84 by applying a two-directional strategy based on simultaneous two carbon Horner-Emmons homologation of the L-tartrate derived dialdehyde 79, at both termini (Scheme 16).

Treatment of 79 with triethyl phosphonoacetate and butyllithium afforded the α, β -unsaturated ester 80 via $4 + 2 + 2$ simultaneous elongation. Bishydroxylation with catalytic osmium tetraoxide and N -methylmorpholine N -oxide followed by silyl ether protection gave fully protected polyol 81. Careful treatment of C_2 -symmetric 81 with DIBALH at -78 ⁰C allowed selective functionalization of one of the two homotopic ester groups giving unsymmetrized alcohol 82. Swern oxidation of 82 followed by Tebbe olefination established the terminal vinyl group in one direction, whereas the α, β -unsaturated ester moiety at the other end of the chain was fashioned by a reduction, oxidation, and Horner-Emmons olefination sequence to furnish adduct 83. Replacement of the silyl ether protecting groups with acetonides and subsequent catalytic osmylation in the presence of a dihydroquinine p-chlorobenzoate stereoselectively afforded undecose 84, a key precursor of nucleoside antibiotic hikizimycin.

B. Aminated Compounds

This section discusses salient totally synthetic methodologies to access aminated derivatives of monosaccharides including simple aminosugars, polyhydroxylated cyclic and acyclic amino acids, and sialic acid and congeners. This remarkable class of compounds comprises various bioactive naturally occurring and artificial substances whose chemistry has recently received intense scrutiny resulting in a number of creative synthetic performances. $9,25,70-72$ A variety of biologically active compounds incorporate

^a Key: (a) triethyl phosphonoacetate*, n*-BuLi, -78°C; (b) OsO₄, NMO, aq. acetone; then TBSOTf, 2,6-lutidine, CH₂Cl₂; (c) DIBALH, CH₂Cl₂, -78°C; (d) Swern oxidation; then Tebbe reagent, toluene, THF, pyridine, -10°C; then DIBALH, CH₂CI₂, -78°C; then Swern oxidation; then triethyl phosphonoacetate, n-BuLi, -78°C; (e) TBAF, THF, 0°C; then acetone, H₂SO₄; then OsO₄, NMO, dihydroquinine p-chlorobenzoate, O ⁰C.

Scheme 17°

 a Key: (a) SnCl₄, CH₂Cl₂ -20°C; (b) LiAlH₄, THF; (c) TBSOTf, 2,6-lutidine, CH₂Cl₂; then Pd-black, HCO₂NH₄, reflux; then (Boc)₂O, Et₃N, THF.

chiral aminopolyol fragments. The chiral *erythro-2* amino polyol system found, for example, in sphingosine and phytosphingosine was assembled stereoselectively by employing oxazole 85 as a nucleophilic aminoethanol unit.⁷³

As illustrated for an erythro-2-amino 1,3,4,5-tetrol derivative 89 (Scheme 17), formal $[3 + 2]$ cycloaddition of oxazole 85 to 2,3-di-O-benzyl-D-glyceraldehyde (86) in the presence of SnCl₄ gave rise to *cis-*2oxazoline-4-carboxylate 87 diastereoselectively along with a small amount (less than 3%) of three other diastereoisomers. Reduction of 2-oxazoline 87 with LiAlH₄ gave the expected erythro-2-amino $1,3,4,5$ tetrol derivative 88 which was finally converted to the amino polyol 89 by a three-step operation including bis-silylation, benzyl and (p-methoxyphenyl) methyl protecting group removal, and protection of the amino function as the N -Boc derivative.

With the aim of developing a synthetic route to polyols bearing an adjacent chiral 1,2-diamino unit, Dondoni and Merino⁷⁴ exploited enantioenriched nitrones 91 and 92 as convenient bis-aminated synthons (Scheme 18).

According to a divergent protocol, the readily available L-serine derivative 90 was converted to either acetonide-protected nitrone 91 or to the silylated counterpart 92. Conveniently, the steric course of the coupling with *in* sita-generated 2-lithiothiazole was strictly dependent upon the nature of the nitrone

Scheme 18°

^a Key: (a) DMP, C₆H₆, TsOH, reflux; (b) DIBALH, toluene, -78°C; then PhCH₂NHOH, CH₂CI₂, MgSO₄; (c) Bu^fPh₂SiCI, DMAP, Et₃N, DMF; (d) 2-lithiothiazole, Et₂O, THF, -78° C; (e) TiCl₃, MeOH, H₂O; then Boc₂O, dioxane; then TfOMe, MeCN; then NaBH4, MeOH, 0°C; then CuO, CuCI₂, MeCN, H₂O; then NaBH₄, MeOH, 0°C; (f) TsOH, MeOH, 50°C; (g) TBAF, THF.

protecting groups thus allowing synthesis of either syn-adduct 93 or *anti-adduct* 94. Final deblocking of the masked formyl functionality and successive group manipulation afforded *threo-* and *erythro-2,3* diaminobutane-l,4-diols 95 and 96.

Analogously, a formal synthesis of destomic acid **(100)** and lincosamine **(101)** was reported by the same author⁷⁵ employing the D-galactose-derived

Scheme 19°

a Key: (a) 2-lithiothiazole, ZnBr₂, Et₂O, -80°C; then TiCI₃, MeOH, H₂O; then BnOCOCI, NaHCO₃, dioxane, 0°C; then CF₃SO₃Me, MeCN; then NaBH4, MeOH; then CuO, CuCl2, MeCN, H2O; (b) 2-lithiothiazole, Et2CIAI, Et2O, -10°C; then TiCI₃, MeOH, H₂O; then Ac₂O, pyridine, DMAP; then NaH, DMF, BnBr, O°C; then TfOMe, MeCN; then NaBH4, MeOH; then CuO, CuCl₂, MeCN, H₂O.

nitrone **97** as a common chiral precursor. Paralleling the chemistry above for the syntheses of diaminobutane diols **95** and **96,** two key intermediates **98** and **99** were selectively produced, suitable for conversion to amino sugars **100** and **101,** respectively (Scheme 19).

This chemistry also proved fruitful for the synthesis of polyoxamic acid **106**, the acyclic α -amino acid component of polyoxin J, by exploiting the furan ring as a masked carboxyl group.⁷⁶ This important polyhydroxylated amino acid was recently prepared 77 from the protected L-threose **102** via the key nitro olefin intermediate **103** (Scheme 20). Nucleophilic epoxidation of 103 gave the anti-epoxide 104 with 92% diastereoselectivity. Reaction with ammonia, followed by treatment with *tert-b\ity* pyrocarbonate, gave the syra-a-amino thioester **105** which was straightforwardly converted to polyoxamic acid **106.**

In approaching the same target, Hamada and Shioiri⁷⁸ employed the phenylglycinal derivative **107** as the starting chiron, where the aryl moiety was envisioned as a masked carboxyl unit (Scheme 21). Two-carbon Wittig elongation of **107** with 2-(triphenylphosphonylene)acetate followed by reduction of the ester group furnished the allyl alcohol **108** which was converted to the acetylated amino triol **109** by Sharpless asymmetric dihydroxylation and subsequent acetylation with moderate diastereoselectivity. The carboxylic function was created by oxidative degradation of the aryl group affording,

Scheme 20°

^a Key: (a) ToISCH₂NO₂, KOBu^r, Bu^rOH, THF, 0℃; then MeSO₂CI, Pr₂[']NEt, -78°C; (b) KOOBu^f, THF, -78°C; (c) NH₃, CH₂CI₂; then $Boc₂O$; (d) $CF₃CO₂H$, H₂O.

 a Key: (a) Ph $_3$ PCHCO $_2$ Et, CH $_2$ Cl $_2$, O°C; then DIBALH, BF $_3$ etherate, CH $_2$ Cl $_2$, -78°C, (b) Sharpless asymmetric dihydroxylation; then Ac₂O, pyridine, (c) RuCI₃, NaIO₄, EtOAc, MeCN; then O-tert-butyl-N-N⁻diisopropylisourea, CH₂CI₂, 40°C; then aq. HCI, MeOH; then 1N aq. NaOH.

Scheme 22"

 a Key: (a) PhCH₂OCH₂COCI, Et₃N, CH₂CI₂; then aq. AcOH; (b) aq. NaIO₄, MeCN; then NaBH₄, MeOH; then HCO₂NH₄, Pd/C, EtOH; then Ph₃CCI, Et₃N, CH₂CI₂; (c) LiAIH₄, THF; then Pd/C, EtOH, HCO₂NH₄; then NaOH, Boc₂O; then NaIO₄, MeCN, CCI₄, RuCI₃, H₂O; then TFA, MeOH.

after complete deprotection, polyoxamic acid **106.**

A quite different approach was designed by Bose⁷⁹ for an enantiospecific synthesis of the nonnatural enantiomer of polyoxamic acid *ent-106* from the protected D-arabinose 2V-benzylimine **110.** As shown in Scheme 22, through a set of several reactions involving β -lactam formation to 111 and oxidative one-carbon excision, the six-carbon lactam **112** was generated. This lactam was elaborated to the target five carbon amino acid *ent-106* according to a protocol entailing a series of enantioconservative reactions and further shortening of the chain.

Scheme 23"

 a Key: (a) MgBr₂ etherate, CH₂CI₂, -20°C; (b) TBAF; then ρ -TsOH; (c) PDC; then CH_2N_2 ; then O₃, MeOH; then NaBH₄; then CICO₂C₆H₄NO₂; then NH₃, MeOH.

Scheme 24°

 a Key: (a) SnCl₄, Et₂O, \cdot 80°C; then TBSCI, DMF, imidazole; (b) KMnO₄, DCH-18-crown-6, CH₂CI₂; (c) LiOH, THF, 0°C, then Na IO₄, SiO₂, CH₂CI₂; (d) NaIO_4 , RuO_2 H₂O cat., then CF_3CO_2 H, MeOH; then SiO_2 , NH_4OH .

The continuous synthetic efforts by the group of Marshall¹² in the development of γ -oxygenated allylic stannanes for asymmetric syntheses of complex polyhydroxylated derivatives led to an elegant highly stereoselective entry to the polyoxamic acid derivative 117 from the (R) -serine aldehyde 113.⁸⁰ As briefly depicted in Scheme 23, four-carbon homologation of **113** with nonracemic stannane **114** in a matched sense allowed production of a single *syn,* syn-allyl alcohol derivative 115 in high yield. Treatment of **115** with TBAF followed by acid afforded the desilylated rearranged acetonide **116** which was transformed to the polyoxamic acid derivative **117** by oxidation of the primary alcohol followed by oxidative cleavage of the double bond.

Extensive work from our laboratory has demonstrated the viability and excellent versatility of the homologative approach based on furan-, pyrrole-, and thiophene-based siloxydienes for syntheses of densely functionalized enantioenriched compounds.²⁸ Aimed at exploring the potential of $N-(tert-butoxycarbonyl)$ -2-(ter£-butyldimethylsiloxy)pyrrole **(118)** and 2-(trimethylsiloxy)furan (49) for the synthesis of biologically important acyclic and cyclic aminated derivatives, we embarked on a program directed to synthesize polyhydroxylated amino acids. Successful implementation of this strategy to chiral syntheses of polyhydroxy-a-amino acids was achieved starting from enantiopure sugar aldehydes. As an example, the synthesis of 4-epi-polyoxamic acid **122** is illustrated in Scheme $24.8^{\scriptscriptstyle{1}}$

Scheme 25°

^a Key: TrCIO₄, Et₂O, 0°C; (b) KMnO₄, DCH-18-crown-6, CH₂CI₂; then LIOH, THF, 0° C; then NaIO₄, SiO₂, CH₂CI₂; then NaIO₄, RuO₂ H₂O.

According to an optimal protocol, crystalline lactam **119,** easily available from **34** and silyl ether **118** (95:5 dr), was first subjected to double-bond dihydroxylation with $KMnO_4/18$ -crown-6 ether/CH₂Cl₂. This gave saturated lactam **120** as the sole stereoisomer. Hydrolytic lactam opening (LiOH, THF) and subsequent oxidative diol fission at the C2-C3 linkage (NaIO4) provided protected 2-amino-2-deoxy-D-arabinose 121. Exposure of 121 to NaIO₄/catalytic RuO₂ in $CH₃CN/CCl₄/water/acetone solvent mixture fur$ nished the protected amino acid almost quantitatively which was fully deprotected by 1:1 trifluoroacetic acid/methanol treatment to amino acid **122.** The same reaction protocol was successfully extended to other aldehydosugar derivatives easily obtainable from common precursors. Regardless of the aldehyde chirality and substitution, a wide variety of hydroxylated amino acids were obtained, via the corresponding amino sugar intermediates, in preparatively useful yields.

As a further extension of this technique,⁸² arabinofuranosylglycine **125** was synthesized, in a straightforward fashion, from benzylated O-acylarabinofuranose **123,** utilizing **118** as a masked glycine anion equivalent (Scheme 25). Thus, reaction of **118** with **123** in Et_2O in the presence of $TrClO_4$ (0.5 equiv) at O ⁰C, afforded unsaturated lactam **124** almost exclusively, which was directly transformed to the protected amino acid **125,** by following the reaction sequence outlined for the acyclic amino acid **122.**

A variety of protected lactam templates, *e.g.* **119, 126,** and **127** readily obtainable through diastereocontrolled coupling of **118** with suitable aldehyde precursors, were also exploited to prepare diversely substituted 4-amino-2,3,4-trideoxyaldonic acids, *e.g.* **128—130,** representatives of a novel class of GABA C-glycoconjugates (Scheme 26).⁸³ Noticeably, this reaction scheme utilized pyrrole-based silyl enol ether **118** as the y-anion equivalent of GABA.

Hybrid structures with carbon-carbon-joined amino acid and carbohydrate moieties are often encountered in nature as individual molecules or as the core components of complex nucleoside antibiotics.⁸⁴ Cyclic arrays comprise both furanose and pyranose derivatives, bearing either anomeric or terminal substitutions. Furan-based siloxydiene **49** was utilized for preparation of some pyranosidic representatives of this progeny.⁸⁵ A versatile synthetic plan (Scheme 27) called for C-glycopyranosyl glycine de-

 $^{\text{\tiny{\textsf{I}}}}$ Key: (a) H_{2,} Pd/C, THF, NaOAc; then aq. HCl, reflux.

rivatives **137** and **138** to be generated from the arabino- and ribo-configurated butenolides 131 and **132,** respectively.

The opening move was the preparation of the enantiomerically pure butenolides **131** and **132,** and this was achieved via four-carbon elongation of D-serinal **113** using 2-(trimethylsiloxy)furan (49). This reacted with 113 in CH_2Cl_2 in the presence of BF3 etherate providing seven-carbon *arabino-con*figurated butenolide **131** selectively along with only trace amounts of the *ribo*-counterpart 132. Basecatalyzed $C-4$ epimerization of the $arabino$ -butenolide using EtsN provided equilibrium mixtures of *ribo* and *arabino* epimers in a ratio of ca. 65:35 from which the more abundant component **132** was obtained in a pure state. The lactone fragments in **131** and **132** were first elaborated according to a highly stereoselective three-step sequence consisting of protection of the free OH at C-5 as the TMS ether, anti-cis dihydroxylation of the butenolide double bond using $KMnO₄$, and persilylation. This provided heptonolactones **133** and **134** in high overall yields.

The ring expansion to pyranoses **135** and **136** required three further operations. DIBALH reduction generated γ -lactol intermediates, which, by citric acid-methanol treatment and subsequent peracetylation, were converted to pyranoses **135** and **136.** In the final stages of the synthesis, the remaining carbon to be elaborated was the terminal hydroxymethylene group. Treatment of **135** and **136** with 70% aqueous acetic acid at 60 ⁰C resulted in selective removal of the acetonide groups, giving compounds with unprotected terminal $CH₂OH$ functions. The crude primary alcohols were subjected to oxidation using $NaIO₄$ and catalytic $RuO₂$, resulting in formation of the expected carboxylic acids, which were finally transformed into the corresponding methyl esters 137 and 138 by $CH₂N₂$ treatment.

The potential of peptide O-glycoconjugates as therapeutic agents has attracted great attention by virtue of the improved activity and bioavailability of peptidyl drugs. To combine these features with an

 a Key: (a) BF₃ etherate, CH₂Cl₂, -80°C; (b) TMSCI, pyridine; then KMnO₄, DCH-18-crown-6, CH₂CI₂; then TMSCI, pyridine; (c) DIBALH, CH₂CI₂, -80°C; then MeOH, citric acid; then Ac₂O, pyridine, DMAP; (d) aq. AcOH, 60° C; then NaIO₄, RuO_2 - H₂O; then CH₂N₂, Et₂O; (e) Et₃N, DMAP, CH₂Cl₂.

increased metabolic stability, it was planned to replace the labile O-glycosidic linkage in the conjugates with more resistant carbon-carbon junctions. The problem has been addressed by the development of synthetically useful strategies for the synthesis of C-glycosylated α -amino acid subunits to be incorporated into pharmacologically active peptides. Thus, for example, β -Gal-CH₂-Ser 142 was recently synthesized by Bednarski as outlined in Scheme 28.⁸⁶

The key reaction was the coupling of the Dgalactose-based aldehydo sugar template **139** with the Wittig reagent 140, a β -alanyl anion equivalent, to furnish the trans olefin **141** with a high level of stereoselectivity (15:1 *trans/cis* ratio). Subsequent reduction of the olefin, protecting group manipulation, and oxidation of the terminal hydroxymethyl to $CO₂H$ furnished a suitably protected C-glycosyl- α amino acid **142** in excellent yield. It was found that incorporation of this unit into a 17-amino acid α -helical peptide had a strong destabilizing effect on the helix.

Aimed at increasing the metabolic stability of the gonadodropin-releasing hormone against Buserelin,

 a Key: (a) BuLi, THF; (b) TsNHNH₂, NaOAc, DME, H₂O; then Boc₂O, Et₃N, DMAP; then CsCO₃, MeOH; then TFA, PhSH, CH₂CI₂; then Fmoc-OSuc, CH₂CI₂; then Jones.

Scheme 29^a

 a Key: (a) Bu $_3$ SnH, AIBN, toluene, 60°C; then TFA, NaHCO $_3$.

a nonapeptide developed by Hoechst, Kessler and his colleagues⁸⁷ prepared the C - α -D-galactosylated alanine derivative **145** via free radical addition of peracetyl galactosyl bromide **143** to a dehydroalanine derivative **144** (Scheme 29). The C-glycosylated GnRH agonist **145** showed a strongly increased water solubility and proved to be more active than the natural GnRH. The analogous $1-C-(\alpha-D-g)$ glucopyra- $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ a to a three-carbon stereoselective homologation of peracetyl glucose at the anomeric center.

Sialic acid **(151)** is an essential component of gangliosides which are involved in cellular interactions, differentiation, and growth. In addition, sialic acid and other related compounds could play an important role in cell-virion recognition. Exploiting his chemistry based on indium-mediated allylation of carbohydrates in aqueous media *(vide supra),* Whitesides⁸⁹ succeeded in synthesizing Neu5Ac **(151)** by starting with N -acetyl- β -D-mannosamine and ethyl a-(bromomethyl)acrylate.

Using a biomimetic analysis, Shiba⁹⁰ envisioned the nine-carbon skeleton of sialic acid **(151)** to be derived from inexpensive D-glucose **(146)** and oxaloacetic acid (Scheme 30). Thus, **146** was coupled with oxaloacetic acid in alkaline solution. The product was then decarboxylated under acidic conditions and treated with HCl in methanol. Five pyranose and furanose isomers, including pyranose compound **147** were obtained in 20% yield and separated from each other. Attention was now directed to introduction of the amino functionality at C-5 in compound **147** with configurational inversion, in the presence of several unprotected hydroxyls. To differentiate the hydroxyl at C-5 from the other ones, formation of bicyclic lactone intermediate **148** was effected by intramolecular lactonization. This resulted in temporary

Casiraghi et al.

 a R = PhNHCO. Key: (a) oxalacetic acid, OH'; then HCI, MeOH; (b) Ba(OH)₂; then DCC, pyridine; then PhNCO, pyridine; (c) HCI, MeOH; (d) Tf₂O, pyridine, CH₂CI₂; then Bu₄N·N₃; then H₂, Pd/C; then Ac₂O, DMAP; (e) NaOH; then Amberlyst 15.

protection of the C-5 OH. The remaining four hydroxyls were then phenylcarbamoylated and the lactone cleaved. This allowed synthesis of the advanced intermediate **149** bearing a free hydroxy function at C-5. The amino group was thus easily installed via the azide by conventional S_N2 displacement. The protected sialic acid **150** so obtained was finally liberated of all the protecting groups by successive alkaline and acidic hydrolyses to give **151.** Despite the low yield of the condensation stage, the low price of the starting sugar and the reagents makes this scheme one of the most valuable from a preparative point of view. Remarkably, the furanose counterparts obtained from the above-mentioned condensation proved useful for syntheses of sialic acid isomers to be evaluated as inhibitors of influenza virus neuramidases.⁹¹

Unnatural sialic acid iso-Neu4Ac **(154)** was recently obtained by Dondoni⁹² starting from the same intermediate 42 [ex D-mannose (11)] as that used for the synthesis of KDN **15** *(vide supra).* Conjugate azidation of **42** with trimethylsilyl azide in the presence of fluoride anion gave rise to *syn* adduct **152** preferentially (3:1 diastereomeric ratio) which was first cyclized to **153** and then transformed to *iso-*Neu4Ac **(154)** by a simple protocol consisting of unmasking of the formyl moiety embodied in the thiazole fragment, oxidation, reductive removal of the benzyl protecting groups, and N -acetylation (Scheme) 31).

C. Carbon-Carbon-Linked Oligosaccharides

Carbon oligosaccharides are a class of nonnatural analogues of oligosaccharides wherein the interglycosidic oxygen bridge is replaced by a methylene linker. In a broader context this subclass also includes examples in which the monosaccharide units are connected either directly or by way of more extended carbon linkers. This novel class of pseudocarbohydrates—the first example was reported in

Scheme 31°

 a Th = 2-thiazolyl. Key: (a) TMSN₃, F⁻, CH₂Cl₂, -20°C; (b) HCl, MeOH; then NaH, BnBr; (c) CHO deblocking; then oxidation; then Li/NH₃; then Ac₂O; then AcOH, $H₂O$.

1983 by Sina \ddot{y}^{93} —is of considerable interest and has attracted wide attention as a result of its biological and structural significance. Among the various approaches culminating in the syntheses of well-defined C-oligosaccharides, strategies based on stereocontrolled connection of suitably preformed monosaccharides constitute the avenue of choice for a number of research groups.⁹⁴ While, certainly, this technique allows construction of the oligomeric target in an expeditious fashion it, conversely, lacks versatility as construction of the resulting oligomer is strictly biased by the inherent nature of the monomeric carbohydrate blocks. To overcome this intrinsic limitation, novel flexible strategies to access Cdisaccharides or higher order oligomers have been envisioned and executed *(vide infra),* on the basis of *de novo* implementation of the carbohydrate frame(s) during the homologative process.

According to Sinay, ⁹⁵ the intermolecular regio- and stereocontrolled condensation of a nucleophilic, anomeric radical donor with an exomethylene sugar would constitute a potentially general and expeditious strategy for C-disaccharide construction. Temporary covalent connection between the donor and acceptor counterparts by means of easily cleavable ketal or silaketal tethers strongly facilitated $C-C$ bond formation between the reacting vicinal centers. Indeed, condensation of enol ether **155** with carbinol **156** generated the ketal intermediate **157** which was selectively cyclized to a-C-mannoside **158** with promotion by $Bu_3SnH-AlBN$ (Scheme 32).

Removal of the temporary ketal connection then allowed synthesis of the C-disaccharide **159.** According to a similar expedient, methyl α -C-maltoside **(161)** was straightforwardly prepared from the silaketal connected precursor **160,** by a regioselective *9-endo-trig* radical cyclization process.⁹⁶ The protected maltoside **163** likewise could be prepared from the silyl-connected intermediate **162** (Scheme 33).⁹⁷

By employing a conceptually related stratagem, a direct and efficient stereoselective synthesis of methyl a-C-isomaltoside **167** was devised by Beau and Skrydstrup,⁹⁸ as shown in Scheme 34. Coupling of the two subunits **164** and **165** proceeded well providing intermediate**¹⁶⁶** which was cyclized in the presence of SmI2 and further transformed to the ethylidene-linked maltose homologue **167.**

In recent endeavors to synthesize methylene-linked C-disaccharides, two complementary approaches,

Scheme 32°

 a Key: (a) camphorsulfonic acid, 4\AA MS, MeCN, $\cdot 40^{\circ}$ C; (b) Bu₃SnH, AIBN, toluene, reflux; (c) CF₃CO₂H, CH₂CI₂, H₂O; then Ac₂O, pyridine; then MeONa, MeOH; then H2, Pd/C, MeOH, AcOH.

Scheme 33^a

^a Key: (a) Bu₃SnH, AIBN, benzene, 60°C; then HF, THF; then H₂,Pd/C, MeOH, AcOEt; (b) Sml₂, benzene, HMPA, 60°C; then aq. HF.

namely the coupling of a C_6 electrophile with a C_7 nucleophile and the coupling of a C_6 nucleophile with a $C₇$ electrophile have been exploited by Schmidt and co-workers. $99-101$ For example, C-C bond formation between the lithiated species **168** and gluconolactone **169** furnished the $\beta(1,4)$ -connected branched undeculose **170,** while condensation of 1-C-lithiated 2- (phenylsulfinyl)-D-galactal **171** with 4-C-formylglucopyranoside **172** provided a direct entry to hydroxymethine-bridged $\beta(1,4)$ -disaccharide 173 (Scheme 35). Extending this procedure, $\beta(1,3)$ -connected C-disaccharide **175** was also prepared, by starting with homochiral sulfoxide 171 and the C₇ aldehyde 174.

The photolytically induced cross-coupling of α - and β -glycosylmethyl radicals, generated from the corresponding cobaloximes, with nitronate ions derived from 6-nitrosugars, provided a direct entry to α - and β -(1,6)-linked C-disaccharides.¹⁰² Thus, for example, protected C-isomaltoside **178**, an analogue of the

Scheme 34^a

 P^a Pyr = 2-pyridyl. Key: (a) Et₃N, DMAP, CH₂CI₂; (b) SmI₂, THF; then TBAF, THF; then H₂, Pd/C, then Ac₂O, pyridine.

Scheme 35°

^a Key: (a) THF, -50°C, (b) THF, -100°C; (c) Raney-Ni, THF; then BF₃·Me₂S, THF, 0° C; then NaOH, H_2O_2 .

previously disclosed compound **167,** was quickly assembled from (glycosylmethyl)cobaloxime **176** and D-glucose-based nitro derivative **177** under irradiation with a 300 W visible light lamp (Scheme 36).

The condensation of *aldehydo-sugars* with glycosylnitromethanes, readily accessible from the parent sugars, was devised by Martin in a concise approach to $(1,6)$ - and $(1,1)$ -linked C-disaccharides.¹⁰³ As an example of this powerful technique, the synthesis of the carba analog of $6-\theta$ -D-glucopyranosyl-D-galactose **(182)** is detailed in Scheme 37.

 a Key: (a) hv, NaOH, EtOH; then Ac₂O, pyridine; then Bu₃SnH.

Scheme 37°

^a Key: (a) KF, MeCN, DCH-18-crown-6; (b) Ac₂O, pyridine, CHCl₃; then NaBH₄, MeOH, CH₂CI₂, 0°C; then Bu₃SnH, AIBN, reflux; then MeONa, $MeOH$; then H_3O^* .

The opening move was a nitroaldol condensation between galactose-derived aldehyde **179** and glucosylnitromethane peracetate **180.** When promoted by fluoride ion, the reaction proceeded successfully, providing the adduct **181** in reasonable yield and excellent diastereoselectivity $(\sim 90\%)$. Three clean reactions, namely dehydration, reduction of the double bond, and radical denitration allowed transformation of the aldol intermediate **181** into C-disaccharide **182.** Enlarging the synthetic scope of this chemistry, β , β -(1,1)-linked systems, including $C-\beta$, β -threalose, were also produced.

A stereocontrolled route to higher-carbon sugars, comprising $(1,6)$ -linked C-disaccharide derivatives, was recently introduced by $Paton, 104-106$ utilizing, as a key step, cycloaddition of carbohydrate-derived nitrile oxides with carbohydrate alkenes, followed by reductive hydrolytic cleavage of the formed isoxazolines. As a representative example of this remarkable approach, the synthesis of the $(1,6)$ -hydroxymethylene-linked xylose—glucose derivative **187** is described in Scheme 38, utilizing D-xylose nitrile oxide **(183)** and alkene **184,** obtainable from Dglucose, as the two components.¹⁰⁴

In situ-generated nitrile oxide 183 was thus reacted with **184** to produce the $(5R)$ -isoxazoline **185** as the predominant adduct, accompained by 20% of the (5S) epimer. Isoxazoline 185 was converted to β -hydroxy ketone **186** in acceptable yield, by deacetylation

 a Key: (a) toluene, reflux; (b) KCN, MeOH; then H₂ / Raney-Ni; (c) H₃BO₃, MeOH, THF, H₂O; then L-Selectride; then aq. TFA.

Scheme 39^a

^a Key: (a) ethyl vinyl ether, 80°C; (b) TfOMe, MeCN; then NaBH₄, MeOH, 0°C, then HgCl₂, MeCN, H₂O; then NaBH₄, MeOH; then BH₃ ·THF; then $H₂O₂$, NaOH, 60°C.

followed by reductive hydrolytic cleavage of the isoxazoline ring. Compound **186** is only few steps away from disaccharide **187** which was obtained by stereoselective reduction of the C=O function (L-Selectride) and final acid-promoted deacetalization and furanose-to-pyranose ring expansion. The method is capable of connecting various combinations of monosaccharide units, permitting syntheses of a wariety of higher-carbon aldoses¹⁰⁵ and dialdoses,¹⁰⁶ as well as variously linked C-disaccharide derivatives.

A stereoselective hetero-Diels—Alder reaction was applied by Dondoni in designing a versatile approach to carbon-carbon disaccharides.¹⁰⁷ As illustrated for the C(3)-C(5)-linked dipyranoside **190,** the second sugar fragment was created *de novo,* its chirality dictated by the chirality of the starting sugar matrix (Scheme 39). The route started with oxabutadiene **188** readily available by Wittig olefination of *dialdo-*D-galactose with the thiazole carbonyl ylide 40, as previously disclosed for the synthesis of KDN **15** *(vide supra).* The key reaction was the asymmetric cycloaddition reaction of this heterodiene with neat ethyl vinyl ether, providing **189** as the predominant cycloadduct (4:1 diastereomeric ratio). Elaboration of the dihydropyran fragment of **189** into a 2,3 dideoxy-pyranosyl unit was carried out by first deblocking of the formyl moiety embodied in the thiazole ring and then submitting the glycal double bond

^a Key: (a) KF, THF; then TBAF, THF; then TPSCI, imidazole, DMF; (b) NBS, Br₂, MeCN; then TBAF, THF; (c) Na / NH₃; then p-TsOH, MeOH.

to cis-specific hydroboration. This provided pseudodisaccharide **190** wherein the two aldoses are directly joined by a carbon-carbon link.

An analogous $(1,4)$ -C-disaccharide bearing direct connectivity of the two carbohydrate rings, namely a-methyl l',2'-dideoxycellobioside **(194),** was synthesized by Armstrong by a homologative procedure based on a Wittig-type olefination (Scheme 4O).¹⁰⁸

Condensation of aldehydo-D-arabinose 191 with the phosphonium salt **192** in the presence of potassium fluoride afforded a mixture of olefins which was photochemically isomerized and easily transformed into a major compound **193.** After some trials, satisfactory cyclization conditions were found (NBS, Br2) allowing formation of a brominated disaccharide intermediate as a single diastereoisomer, albeit in low yield. Conventional debromination and deprotective workup finally afforded cellobioside analog **194.** It should be noted that regiochemical control governing the crucial *6-endo* (versus *5-exo)* cyclization is exerted by the trans-fused dioxolane ring connecting the erythro-disposed allylic and homoallylic oxygens in **193.** This restricts the scope of the synthesis to glucono- β -C-glycosides and their derivatives.

In a quest for water-soluble C-oligosaccharide units to be used as tethers to covalently link biomolecules, the same author¹⁰⁹ recently described syntheses of certain interesting dipyranosyl sugars containing an acetylenic linker. The chemistry involved preparation of a lithiated C-I acetylenic carbohydrate which was coupled to suitable electrophilic sugar acceptors.

Paralleling recent combinatorial approaches to peptide libraries,¹¹⁰ Armstrong¹¹¹ designed a skill growth technique to homologate a given carbohydrate template with maximal constitutional and stereochemical versatility. That is, keeping constant the stereochemistry of a unit in the oligomer, while varying the structure and shape of the newly emerging one. A representative example (Scheme 41) highlights the preparation of several D -glucose- α - $(1,6)$ -hexose C-disaccharides by starting with a common C-I homologated monosaccharide template bearing a fixed sugar. Diene ether **195,** readily available

 a Key: (a) OsO₄, NMO; then DIBALH, \cdot 32°C; then H₂, Pd(OH)₂/C, MeOH.

by Wittig-type homologation of perbenzylated 1-Callylglucose, was subjected to normal osmylation $(OsO₄, NMO)$ followed by selective reduction of the ester moiety to give two pairs of lactols in a 5:1 ratio.

The more abundant pair of adducts was separated and deprotected to afford D -Glu- α - (1.6) -D-Gal (196) and the hybrid $D\text{-Glu-}\alpha\text{-}(1,6)\text{-}L\text{-Gal}$ (197). $D\text{-Glu-}\alpha\text{-}$ (l,6)-D-Ido **(198)** and D-Glu-a-(l,6)-L-Ido **(199)** emerged from the less abundant pair of lactols. To make a detailed structure assignment, these diastereomeric C-disaccharides were also prepared individually according to a Sharpless asymmetric dihydroxylation protocol.

Extremely flexible synthetic routes to carba di- and trisaccharides have been developed by Kishi and coworkers with the principal aim to investigate the conformational properties of this nonnatural sugar subclass and to get a further insight into the relationship between the conformation of the carbohydrates and their binding affinity toward biomolecular conjugates. Of the numerous synthetic achievements of that laboratory, three relevant examples are selected herein, which emphasize the creativity of the authors and the beauty of the chemistry involved.

For the carbon analogue 205 of cellobioside,¹¹² the opening synthetic move was a Wittig olefination of the ylide generated from anhydro sugar **200** and the five-carbon aldehyde **201** (Scheme 42). This reaction provided the cis-olefin **202** bearing the complete 13 carbon skeleton of the disaccharide target. Catalytic osmylation under the usual conditions proceeded with good selectivity giving, after suitable protection, the higher carbohydrate **203.** The selectivity of this reaction was greatly improved to 60:1 by using asymmetric catalysis. Compound **203** was converted into protected disaccharide **204** according to a sequence of four successive reactions, namely alcohol to ketone oxidation, deprotection of the terminal

Scheme 42°

 R ey:(a)n-BuLi,THF,-78°C to 0°C; (b) OsO₄, N,N'-bis(mesitylmethyl)- (R, R) -1,2-diphenyl-1,2-diaminoethane, CH₂CI₂, -80°C; then MPMBr, NaH, THF; (C) Swern oxidation; then aq. HCI, THF; then PhCOCI, pyridine; then n-Pr₃SiH, BF₃ etherate, MeCN, -20°C; (d) Swern oxidation; then BH₃-Et₃N, THF; then NaOMe, MeOH; then H₂, Pd(OH)₂/C, MeOH; then MeOH, HCI. 9O⁰C.

acetonide moiety and spontaneous annulation, protection of the terminal hydroxymethylene function, and reductive removal of the ketal hydroxyl. Compound **204** was not too far from target compound **205.** The final conversion entailed configurational inversion of the C-2' stereocenter. This was achieved by Swern oxidation-borane reduction. Remarkably, a 2'-epimeric glycoside was also synthesized, employing **204** as a common intermediate.

The flexibility and efficiency of this synthetic tactic was also demonstrated by syntheses of deoxy and deshydroxymethyl derivatives. For a C-3-deoxy-Cmaltoside, a nickel(II)/chromium(II)-mediated coupling of D-threose aldehyde and a branched iodopropynyl pyranose was employed as a pivotal step $(vide \infra)$. A single unified strategy¹¹³ for the stereocontrolled syntheses of $\alpha, \alpha, \alpha, \beta$ -, and β, β trehaloses was also developed by the same research group, taking advantage of extensive previous work in this field. Thus, as shown in Scheme 43 for pseudotrehalose **211,** the synthesis started with the reaction of the iodopropynyl derivative **206** with L-threose aldehyde **207** through the well-exploited Ni(II)/Cr(II)-mediated coupling to give, as the major diastereoisomer, **208** (4:1 ratio). Acetylenic alcohol **208** was subjected to partial hydrogenation to the alkene followed by selective dihydroxylation of the double bond producing, after suitable protecting group manipulations, compound **209.**

Selective removal of the acetonide, tosylation of the primary alcoholic moiety, and basic treatment afforded terminal epoxide **210** which was annulated according to a 6-exo-tet mechanism first to a protected disaccharide unit and then, by full deprotection, to the target trehalose **211.**

An extremely flexible synthesis of certain carbon trisaccharides, including trisaccharide **222** related to **Scheme** 43"

 $*$ Key: (a) NiCI₂, CrCI₂, THF, DMF; (b) H₂, Pd, Pb on CaCO₃, MeOH; then BnBr, NaH, imidazole, TBAI, THF, DMF; then OsO₄, THF, pyridine; then Bu₂SnO, toluene; then CsF, MPMCI, TBAI, DMF; then Ac₂O, DMAP, pyridine; (c) aq. AcOH; then p-TsCI, pyridine; then NaH, imidazole, THF; (d) DDQ, CH2CI2; then p-TsOH, CH2CI2; then MMTrCI, pyridine; then K₂CO₃, MeOH; then Swern oxidation; then BH₃, THF; then aq. AcOH, THF; then H_2 , Pd(OH) $_2$ / C, MeOH.

the type II 0(H) blood group determinant, was also developed.¹¹⁴

This admirable synthesis (Scheme 44) started with the carbinol **212,** available in large scale from glu-

Bioactive Carbohydrates and Alkaloids **Chemical Reviews, 1995, Vol. 95, No. 6 1693**

cose, which was converted to ketone **213** by routine reactions. Aldol condensation with aldehyde **214** yielded **215** as a 4:1 diastereomeric mixture, which was used directly in the subsequent step. Selective removal of the TBS protecting group followed by thioketalization afforded **216,** which was first reduced and then oxidized to give the carbon-linked disaccharide ketone 217 . The ketone in THF at -79° C was treated with 3 equiv of LiHMDS and TMEDA, followed by the addition of $MgBr_2$. This furnished a magnesium enolate which reacted with the aldehyde **218** obtained, in turn, from 2,3,4-O-tribenzyl-L-fucose. There was obtained the equatorial C-trisaccharide **219** as a 2:1 epimeric mixture. Mesylation of the mixture followed by treatment with liquid $NH₃$ gave **220** as a mixture of isomers, which was reduced to the methylene-linked protected trisaccharide **221** using Bu₃SnH in the presence of catalytic AIBN. In the event, the C-2' equatorial ketone forms, exclusively. This was stereoselectively reduced using NaBH4 creating the last chiral center with the desired configuration. Finally, full debenzylation by hydrogenolysis provided the polyol target **222.**

A strategy based on *de novo* construction of an additional sugar unit by stereocontrolled manipulation of a carbon frame appended to a given carbohydrate template was developed by Nicotra and coworkers¹¹⁵ in connection with a remarkable synthesis of C-disaccharide antimetabolites of sucrose. As displayed in Scheme 45, treatment of D-glucose-based phosphorane **223** with D-glyceraldehyde acetonide (34) allowed preparation of the α , β -unsaturated ketone **224** in high yield. Osmylation of the double bond, followed by a series of manipulations led to the carbon analogue of sucrose **225,** as a mixture of

Scheme 44°

 a Key: (a) Swern oxidation; then MeMgBr, THF; then Swern oxidation; (b) LiHMDS, THF; then 214; (c) TBAF, THF; then MeSH, BF $_3$ etherate, CH₂CI₂; (d) Bu₃SnH, AIBN, toluene; then Swern oxidation; (e) LiHMDS, TMEDA, THF, -79°C; then MgBr₂; then 218; (f) MsCI, Et₃N, Et₂O; then NH₃, THF; (g) Bu₃SnH, AIBN, toluene; (h) NaBH₄, MeOH; then H₂, Pd(OH)₂/C, MeOH.

Scheme 45"

 a Key: (a) MeCN; (b) OsO $_4$, NMO, -30°C; then Ac $_2$ O, pyridine; then FeCI₃, SiO₂, Et₂O; then K₂CO₃, EtOH; then H₂, Pd / C, MeOH.

Scheme 46°

^a Key: (a) Bu₃SnH, AIBN; (b) NaBH₄, THF, MeOH, 0°C; then MCPBA, CH_2Cl_2 , $-78^{\circ}C$; then Ac₂O, pyridine, DMAP; then OsO₄, CCI₄, NaHCO₃, H₂O₂, THF, 0°C; then Ac₂O, pyridine, DMAP; then NaHCO₃, MCPBA, CH₂CI₂; (c) SOCI₂, MeOH; then Ac₂O, pyridine, DMAP; then LiAIH₄, THF, then Ac₂O, pyridine, DMAP.

pyranosidic and furanosidic forms. Also, the same research group succeeded in preparing an additional analogue of sucrose through BF_3 -mediated dimerization of exo -methylene glucose.¹¹⁶

A versatile methodology to access a variety of α -(1,2)-, α -(1,3)-, α -(1,4)-, and α -(1,5)-C-linked disaccharides was introduced by Vogel¹¹⁷ employing his "naked sugar" chemistry.¹⁹¹¹⁸ Scheme 46 illustrates how fully protected α -D-Glcp-C-(1,3)- β -L-Manp-OMe **(230)** was prepared. The opening move was the radical addition of oxabicyclo[2.2.1]heptan-2-one **226** to a-acetobromoglucose **227** according to a conventional protocol $(Bu_3SnH/AIBN)$. There was obtained the exo ketone **228** as a major adduct along with a minor amount of an anomeric isomer. A set of clean transformations including Baeyer-Villiger oxidative ring expansion led to urono-6,l-lactone **229** which

^a Ur≡uracil. Key: (a) LiHMDS, THF, HMPA, -70°C to -10°C; (b) BH_{3} ⁻ THF, -20°C to 10°C; then NaOH, $H_{2}O_{2}$; then Ac₂O, pyridine, DMAP; then H₂, Pd / C, EtOH; then Ac₂O, pyridine, DMAP; (c) Ur(TMS)₂, TMSOTf, MeCN.

Scheme 48"

 $^{\circ}$ Key: (a) Et₃N, THF, 0°C; then Bu₃SnH, ABCN, toluene; then NaBH₄; then Et₃SiOTf, Ac₂O.

was transformed to the target disaccharide **230** by acidic methanolysis followed by LiAlH4. reduction and full acetylation.

A simple five-step approach to O-protected deaminotunicaminyluracil **235,** an 11-carbon nucleoside disaccharide with potential inhibitory effect on the biosynthesis of polysaccharides and glycoproteins, was engineered by Banaszek and Karpiesiuk (Scheme 47),¹¹⁹ utilizing, as a key operation, a Wittig coupling "tail to tail" between two sugar units.

Thus, treatment of phosphonium salt **231** with D-ribo-pentodialdo-1,4-furanoside 232 (LiHMDS, THF-HMPA) stereoselectively resulted in formation of undecose **233,** which was then converted to hydroxylated compound **234** through a moderately selective hydroboration—oxidation reaction followed by appropriate protection. Final condensation of compound **234** with l,3-bis-0-(trimethylsilyl)uracil led to the target compound **235.**

Levoglucosenone **(236)** is an excellent substrate for C -C bond formation through Michael addition of sugar-based carbon nucleophiles. Accordingly, disaccharide **238** was obtained by conjugate addition of nitro derivative **237** to **236** followed by a denitrationreduction sequence (Scheme 48).¹²⁰ In addition, a carbon-trisaccharide was prepared by Henry reaction of 4-formyl levoglucosenone with the Paton adduct of nitromethane to levoglucosenone.

Utilizing scantly exploited sugar-derived β -keto phosphonates, Narkunan and Nagarajan have re-

Scheme 49°

 $^{\mathsf{a}}$ Key: (a) Cs $_2$ CO $_3$, Pr $^{'}$ OH.

cently proposed a quite general approach to higher sugar enones, by Wadsworth—Emmons reaction with aldehydo sugar derivatives.¹²¹ As shown for **240** (Scheme 49), the glucose-derived phosphonate **239** was coupled with isopropylidene-protected α -D $galacto$ -hexodialdo-1,5-pyranose using, as a base solvent, cesium carbonate in 2-propanol. According to a bilateral version of this technique, higher C-2 symmetric bis enones were assembled by starting with a L-tartrate derived bis-phosphonate.

Very recently Johnson¹²² succeeded in synthesizing a novel 1,6-linked aza-C-disaccharide related to $6-\overline{O}$ - β -D-mannopyranosyl-D-galactose utilizing, as a key step, a Suzuki coupling of an alkyl boron reagent derived from D-galactose.

///. Synthesis of Hydroxylated Alkaloids

Alkaloidal sugar mimics with a nitrogen in the ring (azasugars), including naturally occurring and synthetic monocyclic and bicyclic derivatives, constitute a realm of important functional molecules which have drawn considerable attention by virtue of their potent and varied biological activities. $47,49,123$ Many azasugar representatives have been reported to inhibit various glycosidases in a reversible and competitive manner. Glycosidases are involved in a number of processes, such as digestion, the biosynthesis of glycoproteins, and the catabolism of glycoconjugates. Since inhibitors of glycosidases have shown remarkable therapeutic potentialities in the treatment of metabolic diseases, in the inhibition of tumoral metastasis, and as antiviral substances, including the human immunodeficiency virus, an impressive number of synthetic routes to such compounds and structural variants thereof have been recently developed. It is the intention of this section of the review to bring together the range of totally synthetic methodologies for producing nonracemic monocyclic and bicyclic azafuranose and azapyranose derivatives from simple azaiuranose and azapyranose derivatives from simple
chirons.¹²⁴ For the purpose of this survey some widely exploited approaches such as chemoenzymatic methods and conventional carbohydrate-to-azasugar interconversions are not considered.

A. Monocyclic Compounds

/. Pyrrolidine Derivatives

A number of compounds in this subgroup display interesting bioactivity, as for example the inhibition **Scheme 50°**

*Key:(a) Ph3PCHiCO2Et; (b) MsCI, pyridine; then NH3, EtOH; then, LiAIH4; then TFA, HCI.

Scheme 51°

^a Key: (a) R²MgX, THF; (b) R¹ = Bn, R² = CH:CH₂, Tf₂O, pyridine; (c) R^1 = n-C₆H₁₃, R^2 = n-C₈H₁₇, PCC; then BH₃·Me₂S; then TMEDA.

of α -glucosidase I of glycoprotein processing or inhibition of yeast α -glucosidase.¹²³ Enantiospecific syntheses of a series of l,4-dideoxy-l,4-imino alditols have been reported on the basis of elongation of short aldehyde or carbohydrate templates. According to Wightman¹²⁵ (Scheme 50), two-carbon Wittig homologation of 2,3-O-isopropylidene-L-erythrose **(241)** with (ethoxycarbonylmethylene)triphenylphosphorane allowed preparation of the key six-carbon enoates **242** which were converted to L-lyxo-iminohexitol (243) via mesylation of the terminal hydroxymethyl function followed by ammonia-promoted annulation and deprotection. In a similar fashion, octitol derivatives were synthesized by starting with suitably protected *aldehydo-hexoses.*

A novel expedient procedure for the synthesis of alkylated azafuranose derivatives was introduced by Nicotra,¹²⁶ involving, as a key reaction, stereoselective additions of Grignard reagents to protected furanosyl amines (Scheme 51).

Aminosugar **244** was thus treated with saturated and unsaturated magnesium derivatives to afford open-chain aminoalditols **245** with excellent margin of diastereoselection favoring *threo* products (chelation control). Intermediates **245** were transformed to either **246** or **247** by conventional cyclization procedures.

A recent approach¹²⁷ relies upon the use of an intramolecular Wittig reaction to generate the fivemembered heterocycle. Thus, for example, the *N*protected α -amino acid 248 was first converted to enantiopure ketone **249** by direct reaction with a lithium reagent (Scheme 52). The ketone was then treated with NaH followed by the appropriate phosphonium salt. There was obtained pyrroline **250,** likely arising from an intramolecular olefinationcyclization. Noticeably, the L-serine-derived pyrro-

Scheme 52°

 a Key: (a) CH $_3$ Li; (b) NaH; then CH $_2$:C(SPh)P*Ph $_3$.

Scheme 53°

a
A Key: (a)Triphosgene, NaOH; then MeOH; (b) NaH, DMF, allyl iodide; then DIBALH; then $NH₂OH$; (c) toluene, 170°C; (d) Ra-Ni, MeOH, H₂O; (e) aq. $Cs₂CO₃$, 100°C.

line **250** allowed access to novel hydroxylated pyrrolidines via diastereoselective dihydroxylation or epoxidation procedures.

Starting with L-serine and utilizing intramolecular oxime-olefin cycloaddition, Hassner and co-workers established a nice synthetic route to certain selective inhibitors of α -glucosidase.¹²⁸ As shown in Scheme 53, oxazolidone **251,** obtained from L-serine by treatment with triphosgene, was converted to unsaturated oxime **252** by a sequence of three reactions, namely N -allylation, ester-to-aldehyde reduction, and oxime formation. Thermolysis of **252** provided the cycloadduct **253** in high yield and stereoselectivity, which was then reduced to enantiopure amino alcohol **254.** At this point all that remained was the removal of the carbamoyl protection at nitrogen, and this was performed by catalytic aqueous $Cs₂CO₃$ treatment. Disappointingly, epimerization at C-2 took place under these rather forcing conditions, resulting in formation of a 1:3 mixture of isomers **255.**

Isoxazolines **257** and **258** have been viewed by Jager as five-membered aza-aldol ring structures. These heterocycles, readily available by 1,3-dipolar cycloaddition of alkene derivatives with hydroxylated nitrile oxides, provide key intermediates which are elaborated into a variety of glycosidase inhibiting iminopolyols.¹²⁹ This clever plan is detailed by the sequences in Scheme 54, leading to iminohexitols **259** and **260.**

1,3-Dipolar cycloaddition of the nitrile oxide derived from hydroxamic acid chloride **256** (ex 2-0 benzyl-L-glyceraldehyde) with allyl chloride according to Huisgen's *in situ* method gave, as expected, the **Scheme 54°**

^a Key: Et₃N, Et₂O; then chromatogr. separation; (b) H_2 , Pd/C, MeOH; then H_2 , Pd / C, MeOH, HCI.

Scheme 55

oxazoles **257** and **258** as an approximately 1:1 mixture of diastereoisomers. Separation of individual compounds was carried out by chromatography allowing preparation of gram quantities of pure intermediates. In a divergent manner, each compound was elaborated into iminohexitols **259** or **260** via the respective amino triol intermediates by hydrogenolytic ring opening and deprotection.

Retrosynthetically, polyhydroxylated pyrrolidine derivatives of type \mathbf{A}^{130} can be envisioned as deriving from pyrrole-based silyl dienol ether **118** and chiral aldehydes of type B (Scheme 55). Accordingly, **118** can be considered as a masked pyrrolidine. In our own laboratory, the synthetic potential of **118** was explored with diastereomeric polyhydroxylated pyrrolidinones **265** and **266** as the first objectives (Scheme 56).

Treatment of 2,3-O-isopropylidene-D-glyceraldehyde (34) in anhydrous Et_2O with 118 at -85 °C in the presence of $SnCl₄$ gave crystalline *p-arabino* α, β unsaturated y-lactam **261** as the sole reaction product. Doubling the scope of the synthesis, when 34 was allowed to react at the same temperature with **118** in Et_2O in the presence of BF_3 etherate, reversal of stereochemistry occurred, resulting in predominant formation of crystalline *B-ribo* epimer **262,** along with minor amount of **261.** Also, clean and almost quantitative epimerization at C-4 was observed when $\text{lactam 261 was subjected to treatment with Et}_3\text{N in}$ $CH₂Cl₂$ at room temperature in the presence of DMAP, and this provided a good alternative preparation of the thermodynamically more stable *p-ribo* lactam **262.** Next, after protection of the free OH group as the trimethylsilyl ether, the double bond of

 a Key: (a) SnCl₄, Et₂O, -85°C; (b) BF₃ etherate, CH₂Cl₂, -85°C; (c) Et₃N, CH₂CI₂, DMAP; (d) TMSCI, pyridine; then KMnO₄, DCH-18-crown-6, CH₂Cl₂; (e) TFA, CH₂Cl₂.

both epimers was selectively dihydroxylated $(KMnO₄)$ producing diastereoisomeric pyrrolidinones **263** and **264.** In the event, the compounds were obtained as *2,3-cis-3,4:-anti* diastereoisomers only, as functionalization of the double bond is strictly governed by the presence of a bulky substituent at C-4 which hinders the *syn* face of the lactam ring. Finally, the acetonide, TMS, and Boc protections in **263** and **264** were cleanly removed by acidic treatment giving the free lactams **265** and **266.**

The hydroxy pyrrolidine frame is also embodied in a variety of naturally occurring alkaloidal compounds displaying antibiotic, anthelmintic, and antitumoral activities. An efficient stereoselective total synthesis of the potent antifungal agent (+)-preussin **(273),** was achieved via an intramolecular imidotitaniumalkyne $[2 + 2]$ cycloaddition-acyl cyanide condensation sequence (Scheme 57).¹³¹

The first reaction of the elegant sequence of Livinghouse was the addition of allenylmagnesium bromide to imino aldehyde **267** which is readily accessible from L-phenylalanine by a trivial procedure. A 3.2:1 mixture of *threo* and *erythro* homopropargyl alcohols were obtained in high yield from which the desired *threo* isomer **268** was isolated by chromatography. Compound 268 was then transformed to the key intermediate **269** by O-benzylation followed by mild acidic hydrolysis of the imino group. Exposure of 269 to $CpTi(CH_3)_2Cl$ in THF gave rise to the reactive azatitanetine **270** which was directly transformed to the α , β -unsaturated nitrile 271 by treatment with octanoyl cyanide. Stereoselective 2V-methylation of **271** followed by direct reduction of the resulting iminium salt provided pyrrolidine **272**

 a Key: (a) CH₂:C:CHMgBr; (b) KH, THF, BnBr; then aq. H₂C₂O₄; (c) CpTi(CH3J2CI, THF; (d) octanoyl cyanide, THF; (e) MeOTf; then NaBH₃CN; (f) Mg, MeOH; then K, HMPA, Et₂O, toluene; then H₂, Pd / C.

Scheme 58^a

 a Key: (a) Pd catalysis; (b) L- Selectride, THF, -78°C; then I_2 , MeOH; then TBSCI, Et₃N, DMAP, DMF.

as a single stereoisomer. Chemoselective reduction of the double bond in **272** followed by reductive removal of both the cyano and O-benzyl groups gave rise to $(+)$ -preussin (273) .

Two brief syntheses of $(+)$ -bulgecinine (278) , the enantiomer of the naturally occurring constituent of the bulgecin glycopeptides, were recently executed by the Jackson and Shibuya groups. The English researchers¹³² utilized the coupling of the D-serinederived zinc reagent 274 with (R) -isopropylideneglyceryl chloride (275) to afford, in a single step, the protected oxonorleucine derivative **276** (Scheme 58).

Selective reduction of the carbonyl function in **276** using L-Selectride and appropriate deprotectionprotection operations produced the advanced intermediate **277,** which was employed to synthesize the alkaloid **278** according to the sequence used by Fleet in his synthesis of natural $(-)$ -bulgecinine.¹³³

A novel synthesis of the same alkaloid was developed by Shibuya¹³⁴ employing, as the key operation, an intramolecular radical cyclization of a O-stannyl ketyl with a proximate alkene function (Scheme 59). Thus, condensation of partially protected triol **279,** derived from (S)-malic acid through trivial chemistry, with oxazolidine-2,4-dione according to the Mitsunobu protocol provided compound **280.**

^a Key: (a) PPh₃, (PrⁱOCON:)₂, oxazolidine-2,4-dione; (b) NaBH₄; then MsCI, Et₃N; (c) NBu₄F, THF; then Swern oxidn.; (d) Bu₃SnH, AIBN; (e) TBSCI, imidazole, DMF; then H_2 , Pd/C; then RuCI₃, NaIO₄; (f) NaOH, EtOH.

Scheme 60°

^a Key: (a) NaN₃, MeOH; then BnBr, NaH, Bu₄NI; then PPh₃, THF; then Boc₂O, NaHCO₃; then DDQ; (b) Swern oxidn.; then $CH_2:PPh_3$; (c) MCPBA; then BF₃ etherate; (d) Swern oxidn.

Reduction of **280** with NaBH4 followed by treatment with methanesulfonyl chloride in the presence of triethylamine gave **281** through spontaneous elimination of methanesulfonic acid. Desilylation of **281** and subsequent Swern oxidation of the resulting alcohol afforded the key aldehyde intermediate **282** which was treated with tributyltin hydride in the presence of AIBN to afford the desired bicyclic compound **283** together with its C-7 epimer (1:1 diastereomeric mixture) which is conveniently convertible to **283** via oxidation and subsequent stereoselective reduction. Protection of the hydroxyl group of **283** as the TBS ether, debenzylation of the *O*silylated adduct, and subsequent oxidation of the hydroxymethylene function afforded carboxylic acid **284** which was finally transformed to $(+)$ -bulgecinine **(278)** by base-promoted cleavage of the oxazolidinone ring followed by ion exchange chromatography.

In their total synthesis of AB3217-A, a recently isolated natural substance showing marked activity against the two spotted spidermite, Nakata and coworkers¹³⁵ were able to develop a viable synthesis of the pyrrolidine subunit **289** (Scheme 60).

Starting from enantiopure epoxy alcohol **285,** which was in turn prepared through a seven-step procedure

 a Key: (a) (Me $_2$ N) $_2$ CHOBu t ; (b) HCl, THF; then NaBH $_3$ CN; (c) MOMCl, Pr'_{2} EtN; then DIBALH; (d) PPTS, MeOH; then TMSCN, BF $_{3}$ etherate; (e) DIBALH; (f) DIBALH; then K_2CO_{3} , MeOH, reflux.

from dimethyl L-tartrate, the authors effected epoxide-opening with NaN_3-NH_4Cl to give an azido alcohol intermediate which was then easily manipulated to produce the N-Boc-protected amino triol **286**. Swern oxidation followed by Wittig methylenation then gave olefin **287.** Epoxidation of the olefin with MCPBA followed by BF_3 treatment gave a 3:1 diastereomeric mixture of two pyrrolidines, the major being the desired stereoisomer **288.** Swern oxidation of the terminal hydroxyl gave aldehyde **289,** an advanced intermediate for the synthesis of AB3217- A.

The key D-ring fragments of enantiomeric pairs of quinocarcin¹³⁶ and 10-decarboxyquinocarcin, *Streptomyces* metabolites exhibiting prominent antitumor activity, have been recently obtained by Terashima by employing each enantiomer of glutamic acid and pyroglutamic acid as chiral starting materials. As an example, the synthesis of 3,5-disubstituted 2 formylpyrrolidine **295** required for the total synthesis of quinocarcin is detailed in Scheme 61.

Pyrrolidinone **290,** obtainable from (S)-glutamic acid, was first treated with the Bredereck reagent providing enamine **291** which was next transformed to epimeric alcohols **292** as a 88:12 mixture. After suitable protection, the thermodynamically more stable isomer was reduced to 2-hydroxypyrrolidine **293** (anomeric mixture) which was directly homologated at the 2-position with cyanide anion to give a 30:70 mixture of *cis* and *trans* isomers **294a** and **294b.** To complete the synthesis of the key intermediate **295,** the minor isomer was directly reduced (DIBALH) while the major one was first reduced and then epimerized under basic conditions.

2. Piperidine Derivatives

Piperidinose alkaloids have been mainly prepared by simple elaboration of suitable carbohydrate pre-

Scheme 62°

 $^{\mathsf{a}}$ Key: (a) Ph $_3$ P:CHCO $_2$ Et; then OsO $_4$, NMO; then DMP, TsOH; (b) $^-$ 2-lithiothiazole, Et₂O; (c) NaBH₄; then TBSCI, imidazole; (d) MeI, MeCN; then NaBH₄; then HgCI₂, MeCN, H₂O; (e) TFA, H₂O; (f) Red-AI, toluene; then Ac₂O, pyridine, DMAP.

cursors. Only a few recent reports involving totally chemical approaches based on chiron homologation have appeared. Exploiting his elegant chemistry based on thiazole intermediates, Dondoni¹³⁷ engineered a divergent synthetic route to the $(-)$ antipodes of nojirimycin 301 and mannonojirimycin 304 via a common advanced intermediate from protected L-serinal 296 (Scheme 62).

Two-carbon Wittig elongation of 296 with (ethoxycarbonylmethylene)triphenylphosphorane followed by OsO4 dihydroxylation of the resulting adduct and acetonide protection gave rise to intermediate 297 accompained by a small amount of a diastereomer. Elongation by one more carbon was effected employing 2-lithiothiazole as a masked formyl anion equivalent *giving* the masked keto aldehyde 298. Conveniently, access to the same intermediate 298 was provided by direct three-carbon homologation of serinal by using a thiazole-based carbonyl phosphorane as an equivalent of a formyl ketophosphorane (not shown). To access either $L(-)$ -nojirimycin (301) or L -(-)-mannonojirimycin (304) from the common precursor 298, a stereocontrolled reduction of the carbonyl function to carbinol of either *(R)-* or *(S)* configuration had to be performed.

For 301, ketone 298 was reduced by using NaBH⁴ in methanol to afford the masked aminohexose 299 Scheme 63^a

^a Key: (a) BF₃ etherate, CH₂Cl₂; (b) CbzCl, NaHCO₃; (c) KMnO₄, DCH-18-crown-6 ether, CH₂CI₂; then DMP, TsOH; (d) H₂, Pd(OH)₂, MeOH; (e) BH_3 Me₂S, THF; then aq. TFA.

as a single diastereoisomer. Deblocking of the formyl function within the thiazole ring to aldehyde 300 and subsequent removal of all the protecting groups furnished the unnatural alkaloid 301 in high yield. On the other hand, alternative reduction of the same precursor 298 with Red-AI proceeded with a stereochemistry opposite to that previously observed, allowing synthesis of the *h-manno* compound 302 which was easily converted to 304 via mannose 303 by the same set of reactions as described for 301. By utilizing similar chemistry, it was possible to synthesize 3-deoxy derivatives from L-serine using 2-substituted thiazoles as homologative reagents and aldehyde equivalents.

By exploiting the synthetic utility of enantioenriched butenolide matrices,¹³⁸ iminoalditol 310 containing five consecutive stereocenters, was synthesized from D-glyceraldehyde imine 305 and 2-(trimethylsiloxy)furan (49) as outlined in Scheme 63, utilizing the single chiral element in the precursor imine.

The target called for D -ribo-butenolide 307 as the chiral matrix. Four-carbon homologation of imine **305** with 2-(trimethylsiloxy) furan (49) in CH_2Cl_2 in the presence of BF_3 etherate resulted in formation of butenolide 306. This was isolated as a 1:1 mixture of two epimers at C-4, which could not be separated owing to rapid equilibration. Mixture 306 was smoothly converted into the N, N-diprotected butenolide 307 by reaction with benzyloxycarbonyl chloride under the usual Schotten—Baumann conditions. Although the intermediate 306 was a mixture of isomers, the Cbz-protected butenolide 307 was isolated as the *D-ribo* stereoisomer only. Presumably, the formation of 307 is controlled by thermodynamics of base-catalyzed lactone equilibration, strongly favoring, in this instance, the *D-ribo* isomer. On the basis of precedents for related compounds, butenolide 307 was selectively hydroxylated at C-2 and C-3 by

Scheme 64^a

 a Key: (a) (CF₃CO)₂O, 2,4,6-trimethylpyridine, MeCN; then CuCI₂, K₂CO₃; then BnONH₂; (b) NaCNBH₃, HCI, MeOH; then $(CF_3CO_2)_2Hg$, THF; then KCI, H_2O ; (c) NaBH₄, $(CF_3)_2$ CHOH, O₂; then H₂, Pd / C, TFA.

using $KMnO₄$ under solid-liquid phase-transfer conditions. There was obtained, after protection (DMP, TsOH), D-glycero-D-allo-heptono-1,4-lactone **(308)** as a homogeneous material with no trace of other stereoisomers. Hydrogenolytic cleavage of the protective groups at the C-5 nitrogen of **308** using Pd- $(OH)_2$ in methanol gave the δ -lactam **309** which was then transformed to **310** in excellent yield by reduction with the BH_3Me_2S complex in CH_2Cl_2 , subsequent deprotection, and chromatography on DOWEX OH⁻ and lyophilization.

The substitution of a fluorine for a hydroxy group in a bioactive substance often results in improved activities. Recently, Resnati and co-workers described a total asymmetric synthesis of fluorinated analogues of 1-deoxynojirimycin by utilizing, as ultimate chiral source, (S) -methyl p-tolyl sulfoxide.¹³⁹ The sequences to piperidines **315** and **316** is shown in Scheme 64.

Thus, the fluorosulfinylhexenol **311,** obtained in three steps from the above chiral sulfoxide, was first subjected to Pummerer rearrangement to generate a geminal thioacetoxy moiety. Deblocking of the masked aldehyde function and subsequent reaction with O-benzylhydroxylamine afforded oxime **312** as a 10:1 mixture of *E* and Z isomers. After reduction of the oxime double bond, intramolecular aminomercuration allowed the assembly of the piperidine ring of the target compounds. Unfortunately, the cyclization proved to be unselective resulting in formation of a 1:1 C-5 epimeric mixture of two piperidines **313** and **314,** which were separated by flash chromatography. The individual compounds were finally elaborated to fluorinated pyrrolidine derivatives **315** and **316** according to the chemistry illustrated in the scheme.

 a Key: (a) TBSCI, imidazole; then CO, Bu $_3$ SnH, Pd(Ph $_3$ P) $_4$; then NaBH $_4$, CeCI₃; then O₃, MeOH; then Me₂S; (b) I₂, pyridine, CCI₄; then NaBH₄, CeCI₃; then TBSCI, imidazole; then CO, Bu₃SnH, Pd(Ph₃P)₄; then N aBH₄, CeCI₃; then TBSCI, imidazole; (c) O_3 , MeOH; then DMS; then BnNH₂, NaCNBH₃; (d) HCI, MeOH; then H₂, Pd/C.

Scheme 66°

^a Key: (a) (EtO)₂P(O)CH₂CO₂Et, NaH, THF; (b) DIBALH; then TsCI, DMAP (c) NaH, $Pd(PPh₃)₄$, Bu₄NI, THF; (d) O₃, MeOH, PPh₃; then NaBH₄.

Using optically pure cyclopentene diol monoacetate 317 as a chiron, $\rm{Johnson^{14\hat{0}}}$ designed a nice diastereoselective route to 1,3-dideoxynojirimycin **(321)** (Scheme 65). Compound **317** was obtained by enzymatic asymmetrization *(Candida antarctica)* of *meso-*3,5-cyclopentenediol.

First, **317** was transformed into enone **318** by simple chemistry. The trihydroxylated cyclopentene derivative **319** was prepared from **318** by a-iodination, Luche reduction, and Pd(0)-mediated carbon monoxide coupling. Ozonolysis of **319,** followed by reductive workup gave the corresponding keto aldehyde which was then transformed into trisilylated piperidine **320** by a highly stereoselective double reductive amination with benzylamine and sodium cyanoborohydride in methanol. Acidic hydrolysis followed by hydrogenation finally afforded enantiopure 1,3-dideoxynojirimycin **(321).**

In a recent paper, Tadano¹⁴¹ and co-workers reported total syntheses of certain congeners of Prosopis piperidine alkaloids using Pd(0)-catalyzed in $tramolecular N-alkylation to forge the key pipeline$ ring. As an example, the total synthesis of $(-)$ desoxoprosopinine **(327)** is outlined in Scheme 66.

Protected amino aldehyde **322** was obtained from D-glucose according to a sequence of conventional

Scheme 65°

Scheme 67°

*** Key: (a) allyltrimethylstannane, BF3 etherate; (b) TBSOTf; then OsO⁴ , NMO; then NaIO⁴ ; then Ph3P:CHC02Me; (c) NaBH⁴ , MeOH; (d) CbZ2O, DIPEA; then LiBH4; then Swern oxidn.; then Ph3P:CH-C1 0H2 1 ; then H² , Pd/C; then TBAF; then TFA; then diethanolamine.**

reactions. Two-carbon Wittig homologation gave rise to the eight-carbon enoate **323** as a 10:1 diastereomeric mixture. Although the authors utilized in the next stages of the sequence the enoate mixture, Scheme 66 depicts only transformations involving the most abundant isomer. Thus, **323** was transformed to unsaturated chloro derivative **324** by selective reduction of the carbethoxy moiety followed by treatment with an excess of TsCl. Chloride **324** underwent intramolecular N -alkylation yielding the piperidine intermediate. With $NaH-Pd(PPh₃)-THF-$ Buⁿ₄NI, the cyclization occurred with good diastereoselectivity allowing for synthesis of dihydroxylated piperidine 325. Ozonolysis followed by reduction of the resulting aldehyde gave the key trihydroxypiperidine intermediate **326** which is endowed with all the chirality of the target compound **327.** A series of several reactions, including elongation of the chain at C-6 by the Wittig protocol, finally permitted the synthesis of $(-)$ -desoxoprosopinine (327). To expand the synthetic scope of this chemistry, intermediate **327** was also utilized to complete the synthesis of the $C-6$ epimer $(-)$ -desoxoprosophylline.

Pseudodistomins are hydroxylated amino piperidine alkaloids isolated from tunicate species which possess *in vitro* activity against leukemia cells. Recently, in order to confirm the absolute stereochemistry of this important class of compounds, μ and Hale¹⁴² projected a total synthesis of $(+)$. tetrahydropseudodistomin **(332)** by utilizing D-serine as the starting chiral synthon. As shown in Scheme 67, protected diamino aldehyde **328,** obtained in nine steps from D-serine ethyl ester, was homologated to allyl alcohol derivative **329** with high diastereoselection. After hydroxyl protection, the carbon chain was extended by oxidative cleavage of the alkene and by Wittig reaction of the resulting aldehyde to afford ester 330 as a *trans/cis* mixture.

Scheme 68"

" Key: (a) toluene, retlux; (b) MsCI, pyridine; (C) Pd(OH)2, H2; then TFA, CH2CI2.

Treatment of this mixture with $NaBH₄$ resulted in removal of the N -trifluoroacetyl protection and subsequent intramolecular 1,4-addition wherein piperidine **331** formed as the only product. To reach the target **332,** all that remained was to elongate the chain at C-2; and this was effected by reduction of the ester moiety, Swern oxidation, and Wittig elongation. The entire scheme required 24 steps with an overall yield of $~6\%$ from D-serine ethyl ester.

More recently, a Japanese group¹⁴³ reported a practical asymmetric synthesis of the same piperidine alkaloid **332** along with some stereoisomeric derivatives. For **332** (Scheme 68), cycloaddition of the nitrone **333** to enantiopure 2-aminobutenol **334** led to the key intermediate **335.** Of note, the cycloaddition proved unselective, giving a separable mixture of all four of the possible diastereoisomers with **335** as a minor component.

Mesylation of the free hydroxyl group of **335** transformed this compound into bicyclic iminium salt **336,** allowing formation of the piperidine framework. Hydrogenolysis of the benzyl protecting group and cleavage of the $N-O$ bond followed by acidic deprotection, finally generated pseudodistomin **332.** Compared to the above-mentioned procedure, this route appears to be shorter; however, the lack of selectivity during the crucial cycloaddition step in the Japanese approach represents a severe drawback, only partially mitigated by the synthetic divergence of the plan and by the possibility of converting an unwanted isomer into a desired one.

B. Bicyclic Compounds

1. Pyrrolizidine Derivatives

The pyrrolizidine subgroup includes a number of naturally occurring alkaloids, many of which exhibit useful activities as glycosidase inhibitors as well as antiviral and anticancer agents.144-146 In spite of these remarkable biological applications, only a few reports dealing with the design and implementation of totally chemical approaches to hydroxylated pyrrolizidines have appeared during the period covered by this article. Most syntheses in this area have used pentoses or hexoses as chiral sources while employing extensive manipulation of functional groups. To gain access to hydroxylated pyrrolizidines, McCaig and Wightman¹⁴⁷ utilized 1,3-dipolar cycloaddition reacScheme 69^a

^a Key: (a) CH₂:CHCH₂OTBDPS; (b) TBAF, THF; then MsCl, Et3Ni(C)H2, Pd/C; then HCI.

Scheme 70^a

^a Key: (a) CH₂:CHMgBr, THF; (b) NaBH₄, CeCl₃; (c) O₃, CH₂Cl₂; then NaBH₄; then TBSCI, imidazole; then MsCI, TEA; then Bu^fOK; then TBAF, THF; (d) Swern oxidn.; then allylation.

tions of suitable cyclic nitrone units. For compound 340, for example, the key four-carbon nitrone intermediate 337, easily obtained from diethyl L-tartrate, was treated with allyl *tert*-butyldiphenylsilyl ether to give in high yield a single cycloadduct 338. Desilylation and mesylation gave 339, which on hydrogenolysis of the *N-O* linkage followed by removal of all the protecting groups, gave the pyrrolizidine 340 (Scheme 69).

A novel approach to l,7a-diepialexine (346) starting with (S)-pyroglutamic acid is shown in Scheme 70 148 Thus, the advanced intermediate 341 was first homologated to ketone 342 which was then reduced to allylic alcohols 343 (1:2.4 diastereomeric ratio). Ozonolysis of the double bond and subsequent reductive workup allowed transformation of 343 into a mixture of polyols, the major isomer being then converted to pyrrolidine 344 by ring-closure through sequential mesylation and desilylation. Swern oxidation of the terminal hydroxymethylene and subsequent homologation by two carbon atoms gave rise to allyl alcohol 345 predominantly, which was finally converted to the bicyclic target 346 by conventional chemistry.

N-(tert-Butoxycarbonyl)-2-(tert-butyldimethylsiloxy) pyrrole (118) served admirably to forge the skeleton of these important alkaloids. From D-glyceraldehyde acetonide (34) (or its L-enantiomer) all four isomers of cis-l,2-dihydroxypyrrolizidine (349, 350) and their enantiomers were recently prepared in our laboratory according to a divergent protocol (Scheme 71).¹⁴⁹

Unsaturated γ -substituted γ -lactams of type 261 and 262 were envisioned to be ideal building blocks for the preparation of the oxygenated pyrrolizidine ring systems. These compounds incorporate the complete seven-carbon skeleton of the final pyrrolizidines and are already equipped with proper substitution and chirality. Starting with these intermediates, the sequences shown in Scheme 71 were executed in a parallel and repetitive fashion. Thus, unsaturated lactam 261 was converted to 347 by hydrogenation followed by acidic treatment and mesylation. This compound was transformed into the protected pyrrolizidine 348 by a two-step protocol consisting of carbonyl reduction followed by DBU-assisted ring closure. For the intermediate 348 to be converted to either 349 or 350, a divergent protocol had to be employed. Enantioconservative demesylation to the free base 349 was performed by exposing 348 to sodium amalgam in 2-propanol. Conversely, exposure to tetrabutylammonium benzoate in refluxing toluene resulted in efficient displacement of the two adjacent OMs groups by the benzoate anion with inversion to produce a benzoyl derivative which was transformed to the free base 350 upon treatment with catalytic sodium methoxide in methanol. Paralleling this scheme and exploiting the same chemistry, but reversing the mode of execution of the final transformation, *ent-349* and *ent-350* were prepared from 262, via intermediates *epi-347* and epi-348.

The necine alkaloids, such as hastanecine (358) and a variety of hydroxylated congeners, have received much attention due to their interesting physiological activities. Practical multistep syntheses of both hastanecine (358) and dihydroxyheliotridane (not shown), involving a regioselective Claisen rearrangement, have been devised by Mulzer.¹⁵⁰ The exchiral pool route to 358 is shown in Scheme 72.

From known enantiopure triol 351, aldehyde intermediate 352 was first prepared which was homologated to unsaturated ester 353 and then transformed to the key alcohol 354. Heating this compound with triethyl orthoacetate resulted in clean formation of the C-branched ester 355 by stereoselective orthoester Claisen rearrangement. Three subsequent reactions, namely reduction of the ester moiety, Mitsunobu amination, and epoxidation, allowed conversion of 355 to the major epoxide 356 which was elaborated into the suitable pyrrolidine derivative 357 by regioselective ring closure and functional group manipulation. Acidic cleavage of the carbamoyl protection at nitrogen easily permitted the second annulation to take place producing the expected hastanecine (358).

The first synthesis of petasinecine (362), the necine base of the natural alkaloid petasinine, was recently reported by the same author using L-proline as the

Scheme 71°

^a Key: (a) SnCI₄, Et₂O, -85°C; (b) BF₃ etherate, Et₂O, -85°C; (c) H₂, Pd/C; then 6N HCI; then MsCI, pyridine; (d) BH₃·DMS; then DBU, benzene, reflux; (e) Na/Hg, Pr[/]OH; (f) Bu₄N*BzO`, toluene; then NaOMe, MeOH.

^a Key: O₃, MeOH; then NaBH₄; then BnBr, NaH; then AcOH, H₂O; then $Pb(OAc)_4$; (b) $(EtO)_2PCH_2CO_2Et$, NaH; (c) DIBALH; then MOMCI, Pr^{\prime}_2EtN ; then Na, NH₃; then TrCI, DMAP; (d) MeC(OEt)₃, EtCO₂H, 100°C; (e) DIBALH; then PPh₃, PhtNH, DEAD; then MCPBA; (f) N₂H₄, EtOH; then Boc₂O, Pr[']₂NH, then H₂, Pd/C, cat. HCI; then MsCI, pyridine; (g) TFA, MeOH.

chiral component. As shown in Scheme 73, the sequence features an Ireland-Claisen rearrangement.¹⁵¹ Protected L-proline methyl ester **359** was thus homologated by two carbons and transformed to the key intermediate **360.** Treatment of **360** with LiHMDS/TMSCl resulted in formation of pyrrolizidinone **361** in a single operation. The synthesis of the alkaloid **362** was then completed by conversion of the vinyl group to hydroxymethylene, reduction of the lactam carbonyl, and removal of the benzyl protection.

Scheme 73^a

a Key: (a) LiHMDS, TMSCI, THF; then TFA, BuOH; (b) O₃, MeOH; then NaBH₄, MeOH; then BH₃, THF; then H₂, Pd/C, MeOH.

Scheme 74°

 $^{\textrm{\texttt{a}}}$ Key: (a) 180°C, neat; (b) LiAlH $_{\textrm{\texttt{4}}}$, THF; (c) NaNO $_{\textrm{\texttt{2}}}$, 2N HCl, THF; then K₂CO₃, CHCI₃.

A short synthesis of (—)-supinidine **(366)** from L-proline was described by Hassner and co-workers¹⁵² employing, as the crucial operation, a thermal intramolecular oxime-olefin cycloaddition. Thus, Lproline was converted to the key oxime **363** through one-carbon elongation and N -allylation (Scheme 74). Heating of **363** afforded the tricyclic derivative **364** which was converted to hydroxylated 2-amino-

 a Key: (a) ZnCl₂, dioxane; (b) NaBH₄, EtOH; (c) aq. AcOH; then $Pb(OAc)₄$; then aq. TFA; (d) H₂, Pd/C, AcOH.

pyrrolizidine **365**, the immediate precursor of $(-)$ supinidine **(366).**

2. Indolizidine Derivatives

The chemistry, biochemistry, and biological implications of hydroxylated indolizidine alkaloids, both natural and synthetic, have attracted enormous interest in recent years. Aspects of the chemistry and biology of castanospermine **(404)** and swainsonine **(409),** two remarkable naturally occurring representatives of this subgroup, have been surveyed in noteworthy reviews.26,153-155 An important article summarizing a variety of synthetic approaches to stereoisomers and analogues of castanospermine has been recently compiled by Burgess and Henderson.⁸ Because of the unique value of these alkaloids as glycoprocessing inhibitors and therapeutic agents, a plethora of publications focused on their preparation have appeared. This forced us to limit the present discussion to those approaches which are, in our opinion, relevant as far as chemistry and synthetic viability are concerned.

Due to close resemblance between sugars and polyhydroxyindolizidines, a number of homologative approaches utilize carbohydrates as starting materials and sources of chirality. As depicted in Scheme 75,¹⁵⁶ swainsonine analogue **372** was synthesized from D-arabinose, through $ZnCl_2$ -promoted cyclocondensation of azomethine derivative **367** with Danishefsky's diene **368.** The major cycloadduct **369** so obtained was then stereoselectively reduced to the nine-carbon pyrrolidine **370** which was first shortened to aldehyde **371** and finally cyclized to 1,2,7 trihydroxyindolizidine **(372)** by reductive amination.

The same research group¹⁵⁷ utilized D-xylose to assemble the tetrahydroxyindolizidine derivative **376** (Scheme 76). Thus, unsaturated ester **373,** obtained by two-carbon Wittig elongation of a dialdose mercaptal (ex D-xylose), was first transformed to the key nitrone derivative **374** by an intramolecular conjugate addition involving an *in situ* generated oxime.

^a Key: (a) NH₂OH, EtOH; (b) methyl acrylate; (c) Zn, AcOH; then BH₃·Me₂S; then Ba(OH)₂, EtOH, H₂O; then H₂, Pd/C, AcOH.

Scheme 77'

^a Key: (a) lcr₂BCH₂CH:CH₂, Et₂O; then TBSCI, imidazole; then Sharpless AD; then DMP, TsOH; then TBAF, THF; (b) MsCl, Et₃N; then $NaN₃$, DMF; then Dowex H⁺; then TsCI, pyridine; (c) H₂, Pd/CaCO₃, EtOH; then K₂CO₃, EtOH; then DDQ; then HCI, MeOH.

Remarkably, the subsequent 1,3-dipolar cycloaddition of **374** with methyl acrylate gave **375** as the major adduct. This was converted to indolizidine **376** by a four-step sequence involving reduction, lactamization, reduction, and deprotection.

The synthesis of trihydroxyindolizidine **380** employed L-arabinose-derived aldehyde **377** as a chiral template to control the installation of all the stereocenters of the target.¹⁵⁸ Diastereoselective chain elongation of **377** was effected by allylation to form a homoallylic alcohol intermediate which was converted to Cs-polyol **378** by means of a Sharpless asymmetric dihydroxylation (Scheme 77). The nitrogen at C-5 (C-8a in the target compound) was installed by conventional azide- S_{N2} displacement to produce, after deprotection—protection, the requisite advanced intermediate **379** which was cyclized, in the final stages of the sequence, to indolizidine **380.**

In searching for a flexible unified protocol amenable to preparation of several castanosperminerelated stereoisomers, Burgess and his colleagues¹⁵⁹ developed a methodology of wide synthetic applicability. The envisioned strategy was based upon preliminary formation of an acyclic precursor endowed with the required stereochemistry via diastereoselective allylation of suitable homochiral aldehyde precursors. As illustrated for indolizidine **385** (Scheme 78), the synthesis begins with D-xylosederived aldehyde **381.**

^a Key: (a) lpc₂BCH₂CH:CH(OMOM), BF₃ etherate; (b) MsCl, Et₃N; then MeNH₂; then Cbz-CI, NaHCO₃; (c) BH₃, THF; then H₂O₂; (d) MsCI, Et₃N; then H₂, Pd/C, MeOH; then ag. HCI.

Scheme 79°

' Key: (a) Lawesson's reagent; then methyl acrylate, NaOH, THF; then ag. NaOH, MeOH; then CICO₂Et; then CH₂N₂; then [Rh(OAc)₂]₂, benzene, reflux; then Ra-Ni, acetone; (b) LiAIH₄, THF; then MeOH; then H₃O⁺.

Stereospecific allylation to **382** was effected with a chiral borane reagent taking advantage of double stereodifferentiation (matched sense). Mesylation of **382** and N-deprotection gave rise to piperidine **383** which was transformed to intermediate **384** by hydroboration-oxidation. Mesylation and hydrogenolysis facilitated the second cyclization and almost complete deprotection. Acid-catalyzed hydrolysis of the methoxy methyl ether finally gave the target compound 385. In an analogous manner other stereoisomers were also synthesized by employing suitable aldehydopentoses.159,160

A total synthesis of trihydroxyindolizidine **388** was achieved in few steps from dihydroxy lactam **386** which was obtained in turn from readily available D-isoascorbic acid.¹⁶¹ As shown in Scheme 79, isopropylidene-protected lactam **386** was transformed to bicyclic enaminone **387** by a set of reactions involving, as a key step, rhodium(II)-catalyzed cyclization of a diazo ketone intermediate. Reduction of both the double bond and carbonyl function in **387** followed by removal of the acetonide protection, resulted in selective formation of the target indolizidine **388.**

Enantioselective syntheses of certain castanospermine congeners, based on the C-2 enolate of *N*substituted pyrrolinone **389,** were recently illustrated **Scheme 80°**

 a Key: (a) LDA, DMPU, THF; then NaCl, DMSO, H $\rm{_2}O,$ 130°C; (b) NaBH(OAc)₃, AcOH, CH₂CI₂; (c) KOH, MeOH, 120°C; then \langle CISiPr'₂)₂O, pyridine; then H₂, Pd/C; then Ph_3P , CBr₄, Pr^{l_2}NEt; then aq. HCI.

by Gallagher.¹⁶²¹⁶³ Homologation of *h-threo* aldehyde **390** with the above anion furnished a mixture of four diastereomeric adducts of which the *anti* isomers **391a,b** were predominant (1:1 ratio) (Scheme 80). To access $(+)$ -8,8a-diepicastanospermine (393), for example, pure isomer **391a** was utilized. Stereoselective reduction of the carbonyl group of this precursor was accomplished with hydroxy direction providing pyrrolidine **392** in high yield. After suitable manipulation of the hydroxy functions, the indolizidine skeleton of **393** was completed by intramolecular iV-alkylation and deprotection during workup.

By utilizing protected L-threose **394** and 2-furyllithium as a four-carbon homologative nucleophile, a clever approach to 1-deoxycastanospermine **(398)** was recently devised by Martin and colleagues (Scheme 81).¹⁶⁴ When the coupling reaction of the aldehyde substrate with the organolithium reagent was conducted in the presence of ZnBr_2 , the *threo*furylcarbinol **395** was obtained predominantly (12:1 ratio) along with a minor amount of the *erythro* isomer. Compound **395** was then transformed into a 2:1 mixture of hydroxypyranones **396** by oxidation and methylation of the anomeric hydroxyl. The major α -anomer was transformed to the key azido intermediate **397** by reduction and subsequent nucleophilic displacement of the terminal hydroxyl. To reach 1-deoxycastanospermine **(398)** a reductive annulation was performed by a two-step sequence consisting of azide-to-amine conversion (PPh_3) and subsequent stereoselective reduction of the intermediate bicyclic imine. Alternatively, reduction of the azido ketone **397** by catalytic hydrogen furnished exclusively l-deoxy-8a-epi-castanospermine (not shown).

In a non-carbohydrate-based approach, total syntheses of $(+)$ -castanospermine (404) and its 1-epiderivative have been achieved by Kibayashi starting

Scheme 81°

 a Key: (a) 2-furyllithium, ZnBr $_2$; (b) Bu^rO $_2$ H, VO(acac) $_2$; then Mel, Ag₂O; (c) K-Selectride; then Bu₄NF; then MsCl, Et₃N, DMAP; then NaN₃, DMF; then Swern oxidn.; (d) PPh₃, benzene; then $TiCl₄$, LiAIH₄; then H₃O⁺; then H₂, Pd/C, MeOH.

Scheme 82^a

^a Key: (a) Sharpless epoxidn.: (b) Et_2 AINBn₂; then AcCI,Et₃N; then MOMCI, Pr'_2 NEt; then LiAIH₄; then Swern oxidn.; (c) LiHMDS, EtOAc; (d) LiAIH4; then TBSCI, imidazole, DMF; then Mitsunobu inversion; (e) TBAF, THF; then TsCI, pyridine; then H₂, Pd(OH)₂; then Et₃N, MeOH, reflux; then HCI, MeOH.

from a tartrate precursor.¹⁶⁵ For **404** (Scheme 82), the key building block **399,** obtained in six steps from dimethyl-L-tartrate, was first subjected to asymmetric Sharpless epoxidation in a matched sense (Ltartrate) to generate epoxide **400** whose oxirane ring was cleaved, regio- and stereoselectively, by exposure to $Et₂AlNBn₂$.

The formed amino intermediate was then converted to the six-carbon α -amino aldehyde 401 by suitable manipulation of the protective groups followed by Swern oxidation. Two-carbon elongation of aldehyde **401** was carried out according to a diastereoselective aldol reaction using lithio ethyl acetate to afford a major *anti* ester **402** (89:11 ratio) ac**Scheme 83°**

^a Key: (a) Pr₄NIO₄, H₂O; (b) Na(Hg), Na₂HPO₄; then TBSCI, imidazole; then OsO4, NMO; then DMP, PPTS; (c) LiAIH₄, THF; then CBr_4 , PPh₃, Et₃N; then H_2 , PdCI₂; then HCI, THF.

companied with its *syn* isomer. The diastereomeric mixture was reduced (LiA) and protected at the terminal hydroxyl. The major *anti* product, with the undesired configuration at C-3, was converted to the requisite $syn-\beta$ -carbinol **403** by the Mitsunobu protocol and subjected to a series of transformations culminating in the formation of the target castanospermine **(404).** In the same study, through use of common intermediates, syntheses of anti-HIV active 1-epicastanospermine and certain 1-0-acetyl derivatives were also performed.

D-Malic acid was the chiron from which Kibayashi synthesized (-)-swainsonine (409).¹⁶⁶ The remarkable chemistry, featuring an intramolecular hetero-Diels-Alder reaction of a homochiral acylnitroso derivative, is outlined in Scheme 83. Dioxane aldehyde **405,** obtained in three steps from D-malic acid, was homologated by three-carbon atoms in a Wittig protocol to generate, after a series of conventional transfomations, the key eight-carbon hydroxamic acid **406** in preparatively useful yield.

The pivotal step was an intramolecular cycloaddition of an intermediate acylnitroso diene. Optimally, oxidation of **406** was conducted with tetrapropylammonium periodate in aqueous solution which ensured formation of the *trans* cycloadduct **407** with a high degree of stereoselection (4.1:1). The next stages of the sequence involved reductive cleavage of the N-O bond, dihydroxylation of the double bond in **407** and suitable protection to prepare **408,** which was subjected to carbonyl reduction, desilylation of the terminal hydroxyl, and $CBr_4-PPh_3-Et_3N-as$ sisted cyclocondensation to generate swainsonine **(409).**

Quite similar chemistry was independently adopted by Keck and Romer¹⁶⁷ in an important study designed to provide a general means to prepare densely oxygenated indolizidine alkaloids. As shown in Scheme 84, the opening move of the synthesis of $(-)$ -8,8a-diepiswainsonine (416) was the BF₃-catalyzed homologation of lactone carboxaldehyde **410** with

^a Key: (a) BF₃ etherate; then Bu^fOK; (b) LiOH; then TBDPSCI; then LiOH; then Suc-OCOCF₃; then NH₂OH; (c) Pr₄NIO₄; (d) OsO₄; then DMP, H⁺; then Na(Hg); then MsCI; then $Na₂CO₃$; (e) F"; then BH₃-DMS; then H⁺.

vinyl silane **411** to produce, after basic treatment, the eight-carbon lactone **412.**

The dienyl lactone **412** was then converted to hydroxamic acid **413** which was next subjected to the crucial acylnitroso Diels—Alder reaction step. Under nonaqueous conditions, the reaction afforded a major cycloadduct **414** with low level of stereoselectivity (2.3:1). This cycloadduct was first dihydroxylated and then subjected to N-O bond cleavage. This allowed preparation of bicyclic lactam intermediate **415** which was elaborated directly into indolizidine **416** by simple chemistry.

In our continuing effort to utilize furan-, pyrrole-, and thiophene-based siloxy dienes for syntheses of densely oxygenated compounds, viable routes to indolizidine alkaloids have been devised and executed. Protected D-threose imine **417** was the enantiopure substrate from which, by reaction with siloxy diene 49, the swainsonine derivative **422** was generated. 168

The route to **422** is outlined in Scheme 85. The reaction of 417 with 49 in the presence of BF_3 etherate gave the expected butenolide **418** with no detectable stereoisomeric contamination. Doublebond saturation with concomitant reductive cleavage of the $C-N$ and $C-O$ benzylic bonds to provide aminobutanolide **419** was effected under controlled hydrogenation conditions. Next, upon treatment with DBU in benzene at reflux, amino y-lactone **419** underwent clean ring expansion to provide δ -lactam **420** in good yield. Treatment of this compound with 3 equiv of BH3-DMS complex in THF effected the reduction of the lactam carbonyl to the corresponding amine-borane adduct. Deprotection of the crude adduct was accomplished by acidic treatment giving the fully deprotected piperidine derivative **421.** Finally, the amino alcohol was exposed at room temperature to $PPh_3-CCl_4-Et_3N$ in anhydrous DMF. This led cleanly to intramolecular dehydration, resulting in formation of the target compound **422** in good yield.

An expedient synthesis of $(+)$ -1-deoxy-8-epicastanospermine **(428)** called for the use of 4-0-benzyl-2,3- O-isopropylidene-L-threose **(423)** as a chiral source

^a Key: (a) BF₃ etherate, CH₂CI₂; (b) H₂, Pd/C; (c) DBU, benzene, reflux; (d) BH₃·Me₂S, THF; then TFA; then DOWEX OH⁻; (e) PPh₃, CCI₄, Et₃N, DMF.

Scheme 86"

 a Key: (a) SnCl₄, Et₂O; (b) PhSH, TMSOTf, CH₂Cl₂; (c) H₂, Pd/C; (d) BH₃-Me₂S, THF; then aq. HCI; (e) PPh₃, CCI₄, Et₃N, pyridine; then BBr₃, CH₂CI₂.

and pyrrole-based siloxy diene **118** as a four-carbon nucleophile.¹⁶⁹ The approach (Scheme 86) envisaged double-bond saturation in the lactam adduct **424** followed by ring closure to create the indolizidine skeleton.

Optimally, threose **423** was treated with **118** in diethyl ether at -80 °C in the presence of SnCl₄. The addition occurred regio- and stereoselectively at the C-5 carbon of 118 to form α , β -unsaturated lactam 424 exclusively. Treatment of **424** with TMSOTf in $CH₂Cl₂$ in the presence of thiophenol cleanly afforded lactam **425,** which was hydrogenated and deprotected to compound **426.** Lactam **426** was directly exposed to an excess of $BH₃$ DMS in THF at room temperature and the crude amine—borane adduct thus formed was subjected to acidic treatment at room temperature.

Surprisingly, this treatment afforded isopropyl ether **427** likely to have arisen from reduction of the lactam with concomitant regioselective opening of the acetonide at the $O(7)-C(Me)_2$ linkage and overreduction. Amino alcohol **427** was ready for the final and crucial cyclization step. This was achieved by subjecting this compound to $\text{PPh}_3-\text{CCl}_4-\text{Et}_3\text{N}$ in pyridine at room temperature. There was obtained, after ion-exchange resin purification and BBr_3 -promoted dealkylation, the indolizidine **428** in high yield.

A concise, enantioselective synthesis of natural castanospermine **(404)** was recently achieved by Cha and colleagues¹⁷⁰ utilizing readily available lactol **429** as a chiral source (Scheme 87). Wittig homologation followed by azide introduction and Sharpless enantioselective epoxidation resulted in clean production of the eight-carbon intermediate **430.** An enantioselective Sharpless osmylation led to the acyclic ester **431.** Double cyclization of this material to indolizidine **432** was accomplished by reduction of the azide group, thermal cyclization, and peracetylation. Finally, reduction of the lactam carbonyl and global deprotection afforded castanospermine **(404).**

Exploiting quite similar chemistry, the same re- search group¹⁷¹ also succeeded in preparing 6,7diepicastanospermine **(438,** Scheme 88). Thus, azidodiene **433** was prepared from the same lactol precursor **429** as that used for castanospermine **(404)** *{vide supra).* Intramolecular 1,3-dipolar cycloaddition took place with complete diastereoselectivity to provide aziridine **434.** A regio- and stereoselective ring opening was efficiently accomplished by the action of di-ter£-butyl dicarbonate to furnish protected alcohol **435** which was converted to the eight-carbon pyrrolidine **436** by Sharpless catalytic asymmetric dihydroxylation. Subsequent removal of the N -Boc was selectively achieved by HF in acetonitrile permitting clean cyclization $(Et₃N)$ to pyrrolizidinone **437.** The final stages to the target indolizidine **438** entailed lactam reduction and deprotection.

Four different isomers of 1-deoxycastanospermine were prepared by St-Denis and Chan utilizing Lproline as a common chiral precursor.¹⁷² As illustrated for trihydroxyindolizidine **443** (Scheme 89), stereocontrolled homologation of L-prolinal **439** with the titanium salt of allyl phenyl sulfide gave a 2:1 mixture of two isomers which could be easily separated. The major compound **440** was first transformed into cyclic carbamate **441** and then elaborated into diol **442** by chlorination and subsequent diaste**Scheme 88°**

 a Key: (a) pyridine, 50-70°C; (b) Boc₂O, THF, H₂O; (c) TBSOTf; then OSO_4 , (DHQD)-PHAL; (d) HF, MeCN; then Et₃N, Δ ; then Ac₂O, pyridine; (e) BH₃-Me₂S; then NH₃.

Scheme 89"

^a Key: (a) CH₂:CHCH₂SPh, BuLi, Ti(OPr⁾₄; (b) MCPBA, CH_2Cl_2 ; then $(MeO)_3P$, MeOH; then NaOH, Pr^IOH, H₂O; (c) PPh₃, CCI₄; then OsO₄, NMO; (d) DMP, CSA; then NaOH, aq. MeOH, 80°C; then TFA.

reoselective (3:1 diastereomeric ratio) dihydroxylation $(OsO₄)$. The indolizidine skeleton was generated next, after acetonide formation and decarbamoylation, by conventional base-promoted nucleophilic displacement of the terminal chlorine function. The protected indolizidine so formed was finally deprotected by acidic treatment and then converted to the free base **443.** From the different isomeric intermediates, three further hydroxylated indolizidines were also prepared, thus enlarging the synthetic scope of the entire plan.

An elegant approach to swainsonine-related alkaloids from noncarbohydrate sources was reported by Ikota¹⁷³ utilizing (S)-pyroglutamic acid as the precursor of the pyrrolidine moiety. As shown for $(+)$ -1,8diepiswainsonine **(447,** Scheme 90), diastereospecific TiCU-promoted allylation of hydroxylated aldehydo pyrrolidine **444,** easily obtained from pyroglutamic acid by trivial chemistry, afforded homologated com-

 a Key: (a) CH₂:CHCH₂SiMe₃, TiCl₄, CH₂Cl₂; (b) NaH, BnBr; then $BH₃$, THF; then NaOH, $H₂O₂$; then MsCI, TEA; (c) H_2 , Pd/C, HCI, EtOH; then Dowex H⁺.

446 447

Scheme 91°

 a Key: (a) MsCl, pyridine; then H₂, Pd(OH)₂; then aq. K₂CO₃; then H_3O^* .

pound **445** as the dominant product, with all stereochemistry correctly implemented.

After benzylation of the free hydroxyl, hydroboration-oxidation and subsequent mesylation directly afforded the bicyclic compound **446** which was transformed to swainsonine derivative **447** by catalytic hydrogenolysis. The use of a different catalysis during the allylation stage allowed preparation of an epimeric adduct which was used to prepare $(-)$ -1episwainsonine **(422).**

Rather similar chemistry allowed preparation of $(-)$ -cis-1,2-dihydroxyindolizidine (449).¹⁷⁴ In the event, the eight carbon pyrrolidine **448** was directly cyclized to the target compound upon mesylation, ring closure, and deprotection (Scheme 91).

Lentiginosine **(452),** first isolated from *Astragalus lentiginosus*, was indicated to inhibit fungal α -glucosidase. To synthesize this alkaloid, Yoda *et al.* converted L-tartaric acid to the C_2 -symmetric imide **450** which was next elongated by four atoms using $[\omega$ -(benzyloxy)butyl]magnesium bromide.¹⁷⁵ After deoxygenation, there was obtained intermediate **451** endowed with all carbons and chirality of lentiginosine. Annulation through mesylation, desilylation, and reduction of the lactam carbonyl finally provided the target indolizidine **452** (Scheme 92).

A total synthesis of the same alkaloid **452** was recently introduced by Brandi,¹⁷⁶ employing L-tartaric acid. Thus, protected nitrone **453,** easily prepared from L-tartrate, was treated with methylenecyclopropane to give isoxazolidine **454** predominantly (10.1 ratio) . Thermal rearrangement provided indolizidinone **455** in moderate yield along with an unwanted monocyclic derivative. Reduction of the ketone function in **455** via the tosylhydrazone and subsequent desylilation afforded lentiginosine **452** (Scheme 93).

Scheme 92°

Scheme 93°

^a Key: (a) methylenecyclopropane; (b) xylenes, 140°C; (c) TsNHNH2, MeOH; then NaBH4; then aq. HF, MeCN.

Enlarging further the scope of homochiral "naked sugars" in the organic synthesis domain, Vogel synthesized hyperoxygenated indolizidine **462** (Scheme 94).¹⁷⁷ The optically pure Diels-Alder adduct **456** of furan and 1-cyanovinyl $(1R')$ -camphanate was the synthetic chiron from which the key precursor **457** was generated.

Clean opening of the lactone ring to form benzyl ester **458** was then achieved by exposure to benzyl alcohol/cesium fluoride in DMSO. Silylation of the anomeric hydroxyl in **458** and debenzylation followed by Curtius rearrangement provided the corresponding isocyanate that was treated with benzyl alcohol to give the protected aminofuranose **459.** Remarkably, desilylation of the anomeric function and hydrogenolytic removal of the carbobenzyloxy protection effected ring expansion to **460** according to an efficient intramolecular reductive amination. Acidic hydrogenolysis of the two dioxolane moieties in **460** resulted in quantitative formation of the free octitol **461** which was finally cyclized to indolizidine **462** by exposure to PPh_3/CCl_4 in the presence of triethylamine.

Indolizidine alkaloid slaframine **(469),** a mycotoxin produced by the fungus *Rhizoctonia leguminicola,* has been shown to be the causative agent for a disease in ruminants (black patch) who graze on fungus contamined feeds. Only two synthetic approaches to nonracemic slaframine were reported during the period antecedent to this review, while four elegant studies on this subject have appeared in the subsequent period. The Pearson approach to **469** (Scheme 95) utilizes N-benzyl-L-glutamic acid

Scheme 94°

 a Key: (a) BnOH, CsF, DMSO; (b) TBSOTf, 2,6-lutidine; then H₂, Pd/C; then N₃PO(OPh)₂, toluene, Et₃N; (c) TBAF; then H_2 , Pd/C; (d) aq. TFA; (e) Ph₃P, CCI₄, Et₃N, pyridine.

Scheme 95°

^a Key: (a) Ph₃P:CHCH₂CH₂OTMS, THF; (b) MCPBA; (c) TsCl, pyridine; then H_2 , Pd/C; then K_2CO_3 , EtOH; (d) Ac₂O, pyridine; then H_2 , Pd/C.

(463) as the starting chiral precursor.¹⁷⁸ Conversion of this acid to azido-aldehyde **464** was accomplished in six steps. Then, a stereoselective Wittig homologative alkenylation of the five-carbon aldehyde **464** using a siloxy substituted ylide afforded the key (Z)-azidoalkene **465** which was subjected to epoxidation with m-chloroperoxybenzoic acid. In the event, epoxides **466** and **467** were produced in equal amounts, but in excellent yields. Once separated, the individual epoxides **466** and **467** were processed independently by the same sequence, to reach slaframine **(469)** and its l,8a-diepi derivative **471,** respectively.

Thus, after activation of the terminal hydroxyl as a tosylate and azide-to-amine conversion by catalytic

Scheme 96°

^a Key: (a) BuLi; then H₂, Pd/C; then TBAF, HMPA (b) 270°C; then Ac₂O.

hydrogen, the epoxide underwent clean base-promoted double annulation to give the N -diprotected indolizidine 468 from which $(-)$ -slaframine (469) was obtained through acetylation of the free hydroxyl and hydrogenolytic N -deprotection. Paralleling this protocol, (-)-l,8a-diepislaframine **(471)** was also synthesized from the protected derivative **470.**

In a concise entry to the same alkaloid **469¹⁷⁹** (Scheme 96), the aldehyde **472,** obtained from Dproline ethyl ester, was treated with the ylide derived from the chiral phosphonium salt **473** to afford, after hydrogenation of the double bond and desilylation, the saturated intermediate **474.** The crucial step was ring closure to form the piperidine ring; the process involved concomitant removal of the Boc protection in **474,** ring closure at the 5-position of the oxazolidinone, and loss of carbon dioxide under pyrolytic conditions. Remarkably, the reaction produced in high yield an indolizidine whose acetylation afforded natural slaframine **469.**

The prolinal derivative **475** was the chiron utilized by Knight¹⁸⁰ to synthesize 469, by homologation with the dianion derived from chiral β -amino sulfone **476** (Scheme 97). The condensation proceeded with an acceptable level of diastereoselectivity (3:1) affording intermediate **477** as the dominant isomer. A sequence of four simple reactions allowed conversion of **477** into the key pyrrolidine **478** bearing all the required atoms and stereochemistry. Removal of the N-Boc group followed by basic treatment led to the desired indolizidine **479,** the immediate precursor of slaframine **469.**

Scheme 97°

^a Key: (a) Julia condensation; (b) Na(Hg), Na₂HPO₄, MeOH; then trisylhydrazide, Et₃N, Et₂O; then TBAF, THF; then MsCI, pyridine; (c) TFA, CH₂CI₂; (d) HCI, MeOH; then Ac₂O, CH₂CI₂; then H₂, Pd/C.

Scheme 98°

^a Key: (a) NaH, DMF; then TBAF, THF; then Ac₂O, pyridine; (b) $(TMS)_3$ SiH, AIBN; then aq. AcOH, THF; (c) MsCl, Pr'_2 EtN, CH_2Cl_2 ; then NaN_3 , DMF, 105°C; (d) $BH_3 \cdot Me_2S$, THF; then TMEDA; (e) H₂, Pd/C; then Ac₂O, pyridine.

An elegant synthesis of **469,** in 11 steps and 25% overall yield, has been executed by Knapp and Gibson¹⁸¹ utilizing resolved (3S)-hydroxy-4-pentenamide **(480,** Scheme 98). Thus, **480** was first transformed into the lactam intermediate **481** by a fivereaction sequence involving iodolactamization and replacement of iodo with phenylseleno. The required substrate for the crucial free radical-initiated ampllation, compound 483, was then obtained by Nalkylation of **481** with THP-protected iodo derivative **482,** followed by suitable exchange of the protecting groups. Radical cyclization of **483** was carried out using the AIBN-tris(trimethylsilyl)silane system to afford, after removal of the THP protection, indolizidinone **484** predominantly (7:1), along with a minor C-6 epimeric alcohol. Conversion of **484** to its methanesulfonic ester, followed by S_N2 displacement of the O-mesyl group with azide, gave azidoindolizidinone **485** which was converted to stable slaframine azide **486** by BH3 reduction of the lactam carbonyl and then transformed to (—)-slaframine **(469)** by catalytic hydrogenation and acetylation.

Quite recently, Gmeiner¹⁸² and co-workers reported a chirospecific synthesis of l,8a-diepislaframine **(471)** and 8a-epislaframine from natural aspartic acid.

3. Quinolizidine Derivatives

While considerable effort has been devoted to prepare a wide number of polyhydroxylated indolizidines as well as ring-contracted versions, few studies dealing with the assembly of chiral ring-expanded analogues, namely the hydroxylated quinolizidines, have appeared. Some work in this area was aimed at the bicyclic quinolizidine alkaloids of the lupinine family, ranging from simple lupinine and epilupinine to more elaborated bioactive tetracyclic assemblies.^{153,183}

A concise stereoselective route to enantiomerically enriched $(-)$ -epilupinine (**492**) from L-proline benzyl ester **(487)** has been recently reported by West and Naidu¹⁸⁴ (Scheme 99). Thus, N-alkylation of 487

Scheme 99°

^a Key: (a) Et₃N, EtOAc; (b) Cu(acac)₂, toluene, reflux; (c) $\left(\text{CH}_2\text{SH}\right)_2$, BF_3 etherate; then LiAIH₄; then Na, N₂H₄, (CH₂OH)₂.

with diazopentanone **488** gave in excellent yield diazo ketone **489** which was subjected to transition metalcatalyzed annulation. Under optimal conditions, exposure of **489** to catalytic copper(II) acetylacetonate in toluene at reflux resulted in preferential formation of quinolizidinone **491** accompained by only a few percent of its 9a-epimer. NMR analysis of **491** (chiral shift reagent) indicated an ee of 65-75%. The stereochemical outcome of the reaction suggested formation of ylide **490** and stereospecific [l,2]-shift to give enantiopure **491.** The racemic portion of **491** would arise from a homolytic coupling mechanism with concomitant randomization. The final conversion of **491** to epilupinine **492** (75% ee) was carried out in three steps, involving thioketalization, reduction of the carbobenzyloxy moiety, and desulfurization with Na/hydrazine. From proline ester **487,** the entire sequence required five steps proceeding in 30% overall yield.

Very recently, Pearson¹⁸⁵ concluded a detailed study directed toward the synthesis of polyhydroxylated quinolizidine alkaloids. His remarkable research culminated in a successful entry to four novel tetrahydroxyquinolizidine stereoisomers, by exploiting, as a key synthetic operation, a reductive double alkylation of suitable α, ω -chloro azide intermediates. Scheme 100 illustrates how diastereomeric indolizidines **498** and **499** were assembled from a common precursor, namely the hydroxylated α, ω -chloro azide **495.**

Scheme 100"

 $^{\textit{a}}$ Key: (a) PPh $_3$:CH(CH $_2$) $_3$ CI, THF; (b) PPh $_3$, HN $_3$, DEAD; then OsO $_4$, NMO; (c) MsCI, Et₃N; then NaH, THF; (d) TBSCI, imidazole; (e) H₂, Pd/C; then K₂CO₃, EtOH; then H₂, Pd/C, HCI, MeOH; (f) Swern oxidn.; then H₂, Pd/C; then NaBH₄, MeOH; then K2CO3, EtOH; then H2, Pd/C, HCI, MeOH,

Easily available tri-O-benzyl-D-arabinopyranose **(493)** was first elongated by four carbon atoms by a Wittig protocol to give alkene **494** which possesses the requisite nine-carbon skeleton of the targets. The key divergent intermediate **495** was next created by azidation of **494** at one terminal and subsequent diastereoselective (85:15) double-bond hydroxylation. For **498,** epoxide **496** was required, while for the isomeric quinolizidine **499,** intermediate **497** had to be prepared. Epoxide **496** was directly cyclized to **498** through azide reduction, base-promoted double annulation, and deprotection, whereas transformation of ketone **497** into **499** required preliminary reductive amination and subsequent ring closure and deprotection.

Preparation of the same quinolizidine **499** was also reported by us in a recent publication focused on the use of the siloxy diene reagent **49** for syntheses of densely oxygenated quinolizidines (Scheme 101).¹⁸⁶

Scheme 101"

 $^{\texttt{a}}$ Key: (a) BF $_3$ etherate, CH $_2$ CI $_2$; then H $_2$, Pd/C; (b) DBU, xylenes, 140°C; then BH₃ Me₂S, THF; then aq. TFA; (c) Ph₃P, CCI₄, Et₃N, DMF.

By starting with arabinose-derived imine **500** and paralleling exactly the chemistry previously applied to the synthesis of the swainsonine analogue **422** *(vide supra),* amino-y-lactone **501** was prepared and then converted to the key piperidine intermediate **502.** The final cyclization was achieved upon exposure of 502 to PPh₃-CCl₄-Et₃N. This treatment allowed formation of an alkaloid to which structure **499** was assigned upon the basis of ¹H and ¹³C NMR analyses. However, inspection of the NMR spectral data provided by Pearson for **499** revealed profound discrepancies.¹⁸⁷

IV. Concluding Remarks

Highlighted in this article have been conceptually diverse syntheses of carbohydrates and variants thereof, including preparation of aminated derivatives and carbon-carbon-linked oligosaccharides, a rapidly growing subclass of carbohydrate mimics. Also emphasized have been total syntheses of certain hydroxylated alkaloids ranging from monocyclic pyrrolidine and piperidine derivatives to bicyclic pyrrolizidine, indolizidine, and quinolizidine compounds. All these alkaloids represent N -containing sugar mimics which have gained increasing attention recently as inhibitors of the glycoprotein processing and as potential chemotherapeutic agents.¹²³

The described chemistry demonstrates the usefulness of the chiron approach and the various substratecontrolled asymmetric tranformations for syntheses of complex chiral compounds. The flexibility embodied in chiron-based synthesis coupled with its divergent and/or convergent nature has now rendered a multitude of constitutionally and stereochemically diverse compounds accessible by total synthesis.

Future improvements of this mature technique for the assembly of multifunctional bioactive substances will include novel synthetic strategies minimizing protection-deprotection, or combining, in a rational way, the chiron protocol with other complementary techniques, such as chemical and enzymatic asymmetric catalysis. Furthermore, application of com- $\frac{1}{2}$ binatorial chemistry^{110,188} by exploiting the constitutional and stereochemical diversity of a number of readily available chirons, will ensure rapid assembly of small-compound libraries to be used in the development of novel drugs. This exciting prospect, while providing a new tool for chemists to discover bioactive lead compounds, will encourage the search for unified chemo- and stereoselective protocols to assemble active components or even simplified and superior agents.

V. An Overview of Reviews on Related Topics

A large number of papers on the stereoselective preparation of bioactive carbohydrates and hydroxylated alkaloids were found on searching the literature. We tried to cover the majority of those related to the present topics that appeared in the period of 1992 to the present, and we apologize for inevitable omissions. For the convenience of the readers a compilation of relevant review articles, books, and book chapters, some of which are mentioned throughout the text, is presented here.

The Carbohydrates: Chemistry and Biochemistry; Pigman, W., Horton, D., Eds.; Academic Press: New York, 1970-1980.

Kennedy, J. F.; White, C. A. *Bioactive Carbohydrates in Chemistry, Biochemistry and Biology;* HaIsted Press: New York, 1983.

Hanessian, S. *The Total Synthesis of Natural Compounds: the Chiron Approach;* Pergamon Press: Oxford, 1983.

Danishefsky, S. J.; DeNinno, M. P. Totally Synthetic Routes to the Higher Monosaccharides. *Angew. Chem., Int. Ed. Engl.* 1987, *26,* 15.

Baggett, N. Synthesis of Monosaccharides by Chain Extension. In *Carbohydrate Chemistry;* Kennedy, J. F., Ed.; Clarendon Press: Oxford, 1988.

Pearson, W. H. The Synthesis of Pyrrolidine-Containing Natural Products Via [3+2] Cycloadditions. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1988; Vol. 1, p 323.

Secrist, J. A., Ill; Barnes, K. D.; Wu, S.-R. Use of Unstabilized Carbohydrate Ylides for the Synthesis of Long-Chain Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 93.

Buchanan, J. G.; Edgar; A. R.; Hewitt, B. D.; Jigajinni, V. B.; Singh, G.; Wightman, R. H. Synthesis of Chiral Pyrrolidines from Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 107.

Schmidt, R. R. Stereoselective Synthesis of Carbohydrates from Acyclic Precursors. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington D. C, 1989; p 182.

Vogel, P.; Auberson, Y.; Bimwala, M.; de Guchteneere, E.; Vieira, E.; Wagner, J. Synthesis of Carbohydrates and Derivatives from 7-Oxanorbornenes ("Naked Sugars"). In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., Mc-Garvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 197.

Roush, W. R. Application of Allylboronates in the Synthesis of Carbohydrates and Polyhydroxylated Natural Products. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., Mc-Garvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 242.

Mukaiyama, T. A Fresh Approach to the Synthesis of Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., Mc-Garvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 278.

Narasaka, K. Asymmetric reactions Toward the Synthesis of Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 290.

Witczak, Z. J. Recent Developments in Modern Synthetic Carbohydrate Chemistry. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1989; Vol. 3, p 209.

Jurczak, J.; Golebiowski, A. From a-Amino Acids to Amino Sugars. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1989; Vol. 4, p 111.

Wong, C-H.; Drueckhammer, D. G.; Durrwachter, J. R.; Lacher, B.; Chauvet, C. J.; Wang, Y.-F.; Sweers, H. M.; Smith, G. L.; Yang, L. J.-S.; Hennen, W. J. Enzyme-Catalyzed Synthesis of Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 317.

Dondoni, A. New Organometallic Reagents. Use of 2-(Trimethylsilyl)thiazole in Acyclic Stereoselective Strategies. *Pure Appl. Chem.* **1990,** *62,* 643.

Hanessian, S., Ed. Aspects of Modern Carbohydrate Chemistry. (Tetrahedron Symposia-in-Print Number 40). *Tetrahedron* **1990,** *46,* 1-290.

Hudlicky, T.; Seoane, G.; Price, J. D.; Gadamasetti, K. G. An Overview of the Total Synthesis of Pyrrolizidine Alkaloids Via [4+1] Azide-Diene Annulation Methodology. *Synlett* **1990,** 433.

Naturally Occurring Pyrrolizidine Alkaloids; Rizk, A.-F. M., Ed.; CRC Press: Boca Raton, FL, 1990.

Michael, J. P. Indolizidine and Quinolizidine Alkaloids. *Nat. Prod. Rep.* **1990, 7,** 485; **1991,** *8,* 553; **1993,** *10,* **51; 1994,** *11,* 17; **1994,** *11,* 639.

Drueckhammer, D. G.; Hennen, W. J.; Pederson, R. L.; Barbas, C. F., Ill; Gautheron, C. M.; Krach, T.; Wong, C-H. Enzyme Catalysis in Synthetic Carbohydrate Chemistry. *Synthesis* **1991,** 499.

David, S.; Augé, C.; Gautheron, C. Enzymic Methods in Preparative Carbohydrate Chemistry. *Adv. Carbohydr. Chem. Biochem.* 1991, *49,* 176.

Dondoni, A. Carbohydrate Synthesis Via Thiazoles. *Mod. Synth. Methods* 1992, *6,* 377.

Dondoni, A. Acyclic Diastereoselective Synthesis Using Functionalized Thiazoles. Routes to Carbohydrates and Related Natural Products. In *New Aspects of Organic Chemistry II;* Yoshida, Z., Ohshiro, Y., Eds.; Kodansha: Tokyo, 1992; p 105.

Wong, C-H.; Liu, K. K. C; Kajimoto, T.; Chen, L.; Zhong, Z.; Dumas, D. P.; Liu, J. L. C. Enzymes for Carbohydrate and Peptide Syntheses. *Pure Appl. Chem.* **1992,** *64,* 1197.

Burgess, K.; Henderson, I. Synthetic Approaches to Stereoisomers and Analogs of Castanospermine. *Tetrahedron* 1992, *48,* 4045.

Garegg, P. J. Saccharides of Biological Importance: Challenges and Opportunities for Organic Synthesis. *Ace. Chem. Res.* **1992,** *25,* 575.

Frontiers in Carbohydrate Research; Giuliano, R. M., Ed.; Elsevier: London, 1992; Vol. 2.

Carbohydrates. Synthetic Methods and Applications in Medicinal Chemistry; Ogura, H., Hasegawa, A., Suami, T., Eds.; Kodansha: Tokyo, 1992.

Marshall, J. A. Chiral Alkoxyallylic and Allenic Stannanes as Reagents for Diastereo- and Enantioselective Synthesis. *Chemtracts-Org. Chem.* **1992,** 5,75.

Casiraghi, G.; Rassu, G. Rational Synthesis and Manipulation of Complex Polyol Units and Carbohydrates. In *Seminars in Organic Synthesis;* Societa Chimica Italiana: Roma, 1992; p 211.

Casiraghi, G.; Rassu, G.; Spanu, P. Use of Dihydroxyacetone Phosphate Dependent Aldolases in the Synthesis of Deoxyazasugars. *Chemtracts-Org. Chem.* **1992,** 5, 120.

Kibayashi, C. Some Chiral Approaches to Syntheses of Bioactive Indolizidine Alkaloids. In *Studies in*

Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1992; Vol.11, p 229.

Casiraghi, G.; Rassu, G. Aspects of Modern Higher Carbon Sugar Synthesis. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1992; Vol.11, p 429.

Look, G. C; Fotsch, C. H.; Christopher, H.; Wong, C-H. Enzyme-Catalyzed Organic Synthesis: Practical Routes to Aza Sugars and their Analogs for Use as Glycoprocessing Inhibitors. *Ace. Chem. Res.* **1993,** *26,* 182.

Golebiowski, A.; Jurczak, J. α -Amino- β -hydroxy Acids in the Total Synthesis of Amino Sugars. *Synlett* **1993,** 241.

Ager, D. J.; East, M. B. The Synthesis of Carbohydrate Derivatives from Acyclic Precursors. *Tetrahedron* **1993,** *49,* 5683.

Takahata, H.; Momose, T. Simple Indolizidine Alkaloids. In *The Alkaloids. Chemistry and Pharmacology;* Cordell, G. A., Ed.; Academic Press: New York, 1993; Vol. 44.

Robins, D. J. Pyrrolizidine Alkaloids. *Nat. Prod. Rep.* **1990,** *7,* 377; **1991,** *8,* 213; **1992,** *9,* 313; **1993,** *10,* 487; **1994,** *11,* 613.

Huges, A. B. Deoxynojirimycin: Synthesis and Biological Activity. *Nat. Prod. Rep.* **1994,** *11,* 135.

Casiraghi, G.; Rassu, G. Furan-, Pyrrole-, and Thiophene-Based Siloxydienes for Syntheses of Densely Functionalized Homochiral Compounds. *Synthesis* **1995,** 607.

Wong, C-H.; Halcomb, R. L.; Ichikawa, Y.; Kajimoto, T. Enzymes in Organic Synthesis: Application to the Problems of Carbohydrate Recognition (Part 1). *Angew. Chem., Int. Ed. Engl.* **1995,** *34,* 412.

Acknowledgments. We thank the Consiglio Nazionale delle Ricerche (CNR) and the Ministero dell'Universita e della Ricerca Scientifica e Tecnologica (MURST) for continuing support of our research in this area.

Vl. References

- (1) Roberts, S. M. *Chem. Br.* **1991,** *27,* 518.
- (2) Garegg, P. J. *Ace. Chem. Res.* **1992,** *25,* 575.
- (3) *Frontiers in Carbohydrate Research;* Giuliano, R. M., Ed.; Elsevier: London, 1992; Vol. 2.
- (4) *Carbohydrates. Synthetic Methods and Applications in Medicinal Chemistry;* Ogura, H., Hasegawa, A., Suami, T., Eds.; Kodansha: Tokyo, 1992.
- (5) Kennedy, J. F.; White, C. A. *Bioactive Carbohydrates in Chemistry, Biochemistry and Biology;* Halsted Press: New York, 1983.
- (6) Schaver, R. *Adv. Carbohydr. Chem. Biochem.* **1982,** *40,* 131.
- (7) *The Carbohydrates: Chemistry and Biochemistry;* Pigman, W., Horton, D., Eds.; Academic Press: New York, 1970-1980.
- (8) Burgess, K.; Henderson, I. *Tetrahedron* **1992,** *48,* 4045. (9) Golebiowski, A.; Jurczak, J. *Synlett* **1993,** 241.
-
- (10) Ager, D. J.; East, M. B. *Tetrahedron* **1993,** *49,* 5683. (11) Hanessian, S., Ed. Aspects of Modern Carbohydrate Chemistry. (Tetrahedron Symposia-in-Print Number 40). *Tetrahedron* **1990,** *46,* 1-290.
- (12) Marshall, J. A. *Chemtracts-Org. Chem.* **1992,** 5, 75.
- (13) Casiraghi, G.; Rassu, G. Rational Synthesis and Manipulation of Complex Polyol Units and Carbohydrates. In *Seminars in Organic Synthesis;* Societa Chimica Italiana: Roma, 1992; p 211.
- (14) Hanessian, S. *The Total Synthesis of Natural Compounds: the Chiron Approach;* Pergamon Press: Oxford, 1983.
- (15) Danishefsky, S. J.; DeNinno, M. P. *Angew. Chem., Int. Ed. Engl.* **1987,** *26,* 15.
- (16) Secrist, J. A., Ill; Barnes, K. D.; Wu, S.-R. Use of Unstabilized Carbohydrate Ylides for the Synthesis of Long-Chain Carbohy-
drates. In *Trends in Synthetic Carbohydrate Chemistry*; Horton,
D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical
Society: Washington DC, 1989; p 93.
- (17) Buchanan, J. G.; Edgar, A. R.; Hewitt, B. D.; Jigajinni, V. B.; Singh, G.; Wightman, R. H. Synthesis of Chiral Pyrrolidines from Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 107.
- (18) Schmidt, R. R. Stereoselective Synthesis of Carbohydrates from Acyclic Precursors. In *Trends in Synthetic Carbohydrate Chem-istry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 182.
- (19) Vogel, P.; Auberson, Y.; Bimwala, M.; de Guchteneere, E.; Vieira, E.; Wagner, J. Synthesis of Carbohydrates and Derivatives from 7-Oxanorbornenes ("Naked Sugars"). In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 197.
- (20) Roush, W. R. Application of Allylboronates in the Synthesis of Carbohydrates and Polyhydroxylated Natural Products. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 242.
- (21) Mukaiyama, T. A Fresh Approach to the Synthesis of Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 278.
- (22) Narasaka, K. Asymmetric reactions Toward the Synthesis of Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 290.
- (23) Pearson, W. H. The Synthesis of Pyrrolidine-Containing Natural Products Via [3+2] Cycloadditions. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1988; Vol. 1, p 323.
- (24) Witczak, Z. J. Recent -Developments in Modern Synthetic Carbohydrate Chemistry. In *Studies in Natural Products Chem-istry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1989; Vol. 3, p 209.
- (25) Jurczak, J.; Golebiowski, A. From a-Amino Acids to Amino Sugars. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1989; Vol. 4, p 111.
- (26) Kibayashi, C. Some Chiral Approaches to Syntheses of Bioactive Indolizidine Alkaloids. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1992; Vol.11, p 229.
- (27) Casiraghi, G.; Rassu, G. Aspects of Modern Higher Carbon Sugar Synthesis. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1992; Vol.11, p 429.
- (28) Casiraghi, G.; Rassu, G. *Synthesis* **1995,** 607.
- (29) Dondoni, A. *Pure Appl. Chem.* **1990,** *62,* 643. Dondoni, A. Carbohydrate Synthesis Via Thiazoles. *Mod. Synth. Methods* **1992,** *6,* 377. Dondoni, A. Acyclic Diastereoselective Synthesis Using Functionalized Thiazoles. Routes to Carbohydrates and Related Natural Products. In *New Aspects of Organic Chemistry II;* Yoshida, Z., Ohshiro, Y., Eds.; Kodansha: Tokyo, 1992; p 105.
- (30) Baggett, N. Synthesis of Monosaccharides by Chain Extension. In *Carbohydrate Chemistry;* Kennedy, J. F., Ed.; Clarendon Press: Oxford, 1988.
- (31) Hanessian, S.; Franco, J.; Larouche, B. *Pure Appl. Chem.* **1990,** *62,* 1887.
- (32) Inch, T. D. *Tetrahedron* **1984,** *40,* 3161.
- (33) Reissig, H.-U. *Angew. Chem., Int. Ed. Engl.* **1992,** *31,* 288.
- (34) Blaser, H.-U. *Chem. Rev.* **1992,** *92,* 935.
- (35) Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzocchi, A. *Chem. Rev.* **1992,** *92,* 1071.
- (36) Kunz, H.; Ruck, K. *Angew. Chem., Int. Ed. Engl.* **1993,** *32,* 336. (37) Nugent, W. A.; RajanBabu, T. V.; Burk, M. J. *Science* 1993,*259,*
- 479. (38) Crosby, J. *Tetrahedron* **1991,** *47,* 4789.
- (39) Cintas, P. *Tetrahedron* **1991,** *47,* 6079.
- (40) Sheldon, R. A. *Chem. Ind. (London)* **1990,** 212.
-
- (41) Ho, T. L. *Enantioselective Synthesis: Natural Products from Chiral Terpenes;* John Wiley: New York, 1992.
-
-
- (42) Wong, C.-H. Chemtracts-Org. Chem. 1990, 3, 91.

(43) Akiyama, A.; Bednarski, M.; Kim, M. J.; Simon, E. S.; Waldmann, H.; Whitesides, G. M. CHEMTECH 1988, 18, 627.

mann, H.; Whitesides, G. M. CHEMTECH 1988, 18, 627.

- (45) David, S.; Auge, C; Gautheron, C. *Adv. Carbohydr. Chem. Biochem.* **1991,** *49,* 176.
- (46) Wong, C-H.; Liu, K. K. C; Kajimoto, T.; Chen, L.; Zhong, Z.; Dumas, D. P.; Liu, J. L. C *Pure Appl. Chem.* **1992,** *64,* 1197. (47) Look, G. C; Fotsch, C H.; Christopher, H.; Wong, C-H. *Ace.*
- *Chem. Res.* **1993,** *26,* 182.
- (48) Wong, C-H.; Whitesides, G. M. *Enzymes in Synthetic Organic Chemistry;* Pergamon: Oxford, 1994.
- (49) Casiraghi, G.; Rassu, G.; Spanu, P. *Chemtracts-Org. Chem.* 1992, *5,* 120.
- (50) Wong, C-H.; Drueckhammer, D. G.; Durrwachter, J. R.; Lacher, B.; Chauvet, C J.; Wang, Y.-F.; Sweers, H. M.; Smith, G. L.; Yang, L. J.-S.; Hennen, W. J. Enzyme-Catalyzed Synthesis of

Carbohydrates. In *Trends in Synthetic Carbohydrate Chemistry;* Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989; p 317. Wong, C-H.; Halcomb, R. L.; Ichikawa, Y.; Kajimoto, T. *Angew. Chem., Int. Ed. Engl.* **1995,***34,*412. Sparks, M. A.; Williams, K. W.; Lukacs, C; Schrell, A.; Priebe, G.; Spaltenstein, A.; Whitesides, G. M. *Tetrahedron* **1993,** *49,* 1.

- (51) Casiraghi, G.; Rassu, G. *Chemtracts-Org. Chem.* **1993,** *6,* 336.
- (52) Premier, R. H.; Binder, W. H.; Schmid, W. *Liebigs Ann. Chem.* **1994,** 73.
- (53) Gao, J.; Harter, R.; Gordon, D. M.; Whitesides, G. M. *J. Org. Chem.* **1994,** *59,* 3714.
- (54) Two relevant syntheses of KDO, using D-mannose and D-lyxose as starting templates, have been recently reported: Cutrot, Ph.; Grison, C; Tabyaoui, M. *Tetrahedron Lett.* **1993,***34,* 5089. Giese, B.; Linker, T. *Synthesis* **1992,** 46.
- (55) Chan, T.-H.; Li, C-J. *J. Chem. Soc, Chem. Commun.* **1992,** 747.
- (56) Sato, K.-I.; Miyata, T.; Tanai, I.; Yonezawa, Y. *Chem. Lett.* **1994,** 129.
- (57) Lopez-Herrera, F. J.; Sarabia-Garcia, F. *Tetrahedron Lett.* **1994,** *35,* 6705.
- (58) Sarabia-Garcia, F.; López-Herrera, F. J.; Pino-Gonzalez, M. S. *Tetrahedron Lett.* **1994,** *35,* 6709.
- (59) Sheffer-Dee-Noor, S.; Belakhov, V.; Baasov, T. *Tetrahedron Lett.* **1994,** *35,* 5077.
- (60) Lubineau, A.; Auge, J.; Lubin, N. *Tetrahedron* **1993,** *49,* 4639.
- (61) Dondoni, A.; Marra, A.; Merino, P. *J. Am. Chem. Soc.* **1994,***116,* 3324.
- (62) Dondoni, A.; Merino, P. *Synthesis* **1993,** 903.
- (63) Casiraghi, G.; Colombo, L.; Rassu, G.; Spanu, P. *J. Org. Chem.* **1991,** *56,* 2135.
- (64) Casiraghi, G.; Pinna, L.; Rassu, G.; Spanu, P.; Ulgheri, F. *Tetrahedron: Asymmetry* **1993,** *4,* 681.
- (65) Marshall, J. A.; Seletsky, B. M.; Luke, G. P. *J. Org. Chem.* **1994,** *59,* 3413.
- (66) Marshall, J. A.; Luke, G. P. *J. Org. Chem.* **1993,** *58,* 6229.
- (67) Marshall, J. A.; Beaudoin, S.; Lewinski, K. *J. Org. Chem.* **1993,** *58,* 5876.
- (68) Marshall, Marshall, J. A.; Beaudoin, S. *J. Org. Chem.* **1994,** *59,* 6614. J. A.; Jablonowski, J. A.; Luke, G. P. *J. Org. Chem.* **1994,***59,* 7825. Marshall, J. A.; Beaudoin, S. *J. Org. Chem.* **1994,** *59,* 7833.
- (69) Ikemoto, N.; Schreiber, S. L. *J. Am. Chem. Soc.* **1992,***114,* 2524.
- (70) DeNinno, M. P. *Synthesis* **1991,** 583.
- (71) Danishefsky, S. J.; DeNinno, M. P.; Audia, J. E.; Schulte, G. Total Synthesis of \pm -N-Acetylneuraminic Acid: A New Strategy for the Synthesis of Glycosides of Sialic Acids. In Trends in Synthetic Carbohydrate Chemistry; Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; American Chemical Society: Washington DC, 1989;
p. 16. D., Eds.; American Chemi *68,* 199.
- (72) For relevant examples not included in this article, see: Paz, M. M.; Sardina, F. J. *J. Org. Chem.* 1**993**, 58, 6990. Bouifraden, S.;
El Hadrami, M.; Ittobane, N.; Lavergne, J.-P.; Viallefont, Ph.
Synth. Commun. 1**993**, 23, 2559. El Hadrami, M.; Lavergne, J.-
P.; Viallefont, Ph.; Chia *Commun.* **1993**, 23, 157. Palomo, C.; Aizpurua, J. M.; Cabre, F.;
Garcia, J. M.; Odriozola, J. M. *Tetrahedron Lett.* **1994**, 35, 2721.
Palomo, C.; Aizpurua, J. M.; Cabre, F.; Cuevas, C.; Munt, S.;
Odriozola, J. M. *Tetra*
- (73) Suga, H.; Fujieda, H.; Hirotsu, Y.; Ibata, T. *J. Org. Chem.* **1994,** *59,* 3359.
- (74) Dondoni, A.; Merchan, F. L.; Merino, P.; Tejero, T.; Bertolasi, V. *J. Chem. Soc, Chem. Commun.* **1994,** 1731.
- (75) Dondoni, A.; Franco, S.; Merchan, F.; Merino, P.; Tejero, T. *Synlett* **1993,** 78.
- (76) Dondoni, A.; Franco, S.; Merchan, F. L.; Merino, P.; Tejero, T. *Tetrahedron Lett.* **1993,** *34,* 5479.
- (77) Jackson, R. F. W.; Palmer, N. J.; Wythes, M. J. *J. Chem. Soc, Chem. Commun.* **1994,** 95.
- (78) Matsuura, F.; Hamada, Y.; Shioiri, T. *Tetrahedron Lett.* **1994,** *35,* 733.
- (79) Banik, B. K.; Manhas, M. S.; Bose, A. K. *J. Org. Chem.* **1993,** *58,* 307.
- (80) Marshall, J. A.; Seletsky, B. M.; Coan, P. S. *J. Org. Chem.* **1994,** *59,* 5139.
- (81) Rassu, G.; Zanardi, F.; Cornia, M.; Casiraghi, G. *J. Chem. Soc, Perkin Trans. 1* **1994,** 2431. Casiraghi, G.; Rassu, G.; Spanu, P.; Pinna, L. *Tetrahedron Lett.* **1994,** *35,* 2423.
- (82) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. *Tetrahe-*
- *dron: Asymmetry* **1995,** *6,* 371. (83) Rassu, G.; Pinna, L.; Spanu, P.; Ulgheri, F.; Cornia, M.; Zanardi, F.; Casiraghi, G. *Tetrahedron* **1993,** *49,* 6489.
- (84) Garner, P. P. Synthetic Approaches to Complex Nucleoside Antibiotics. In *Studies in Natural Products Chemistry;* Atta-ur-Rahman, Ed.; Elsevier B. V.: Amsterdam, 1988; Vol. 1, p 397.
- (85) Casiraghi, G.; Colombo, L.; Rassu, G.; Spanu, P. *J. Org. Chem.* **1991,** *56,* 6523.
- (86) Bertozzi, C R.; Hoeprich, P. D., Jr.; Bednarski, M. D. *J. Org. Chem.* **1992,** *57,* 6092.
- (87) Wittmann, V.; Michael, K.; Kessler, H.; König, W.; Sandow, J.; Knolle, J. XVIIth International Carbohydrate Symposium, Ottawa, July 17–22, 1994, Abstracts, p 469. Wittmann, V.; Kessler,
H*. Peptides 1992*; Schneider, C. H., Eberle, A. N., Eds.; ESCOM Science Publ., 1993; p 369. Kessler, H.; Wittmann, V.; Kock, M.; Kottenhahn, M. *Angew. Chem., Int. Ed. Engl.* **1992,** *31,* 902.
- (88) Gurjar, M. K.; Mainkar, A. S.; Syamala, M. *Tetrahedron: Asymmetry* **1993,** *4,* 2343.
- (89) Gordon, D. M.; Whitesides, G. M. *J. Org. Chem.* **1993,** *58,* 7937.
- (90) Yamamoto, T.; Teshima, T.; Inami, K.; Shiba, T. *Tetrahedron Lett.* **1992,** *33,* 325.
- (91) Yamamoto, T.; Kumazawa, H.; Inami, K.; Teshima, T.; Shiba, T. *Tetrahedron Lett.* **1992,** *33,* 5791.
- (92) Dondoni, A.; Boscarato, A.; Marra, A. *Tetrahedron: Asymmetry* **1994,** 5, 2209.
- (93) Rouzaud, D.; Sinay, P. *J. Chem. Soc, Chem. Commun.* **1983,** 1353. Neuman, A.; Longchambon, F.; Abbes, O.; Gillier-Pan-draud, H.; Perez, S.; Rouzaud, D.; Sinay, P. *Carbohydr. Res.* **1990,** *195,* 187.
- (94) For relevant examples not included in this article, see: Giese, B.; Witzel, T. *Angew. Chem., Int. Ed. Engl.* 1986, 25, 450. Giese,
B.; Hoch, M.; Lamberth, C.; Schmidt, R. R. *Tetrahedron Lett.*
1988, 29, 1375. Babirad, S. A.; Wang, Y.; Kishi, Y. *J. Org. Chem.*
1987, 52, 1370. Preuss, 1991, 10, 887. Bimwala, R. M.; Vogel, P. *Tetrahedron Lett.* 1991, 32, 1429. Dyer, U. C.; Kishi, Y. J. Org. Chem. 1988, 53, 3384. Carcano, M.; Nicotra, F.; Panza, L.; Russo, G. J. Chem. Soc., Chem. Commun. 1989, 642. Schmi hedron Lett. 1989, 30, 3409. Dawson, I. M.; Johnson, T.; Paton,
R. M.; Rennie, R. A. J. Chem. Soc., Chem. Commun. 1988, 1339.
Motherwell, W. B.; Ross, B. C.; Tozer, M. J. Synlett 1989, 68.
Beau, J. M.: Sinaÿ, P. *Tetrahedr* Danishefsky, S. J.; Pearson, W. H.; Harvey, D. F.; Maring, C. J.; Springer, J. P. *J. Am. Chem. Soc.* **1985,** *107,* 1256. Jarosz, S.; Mootoo, D.; Fraser-Reid, B. *Carbohydr. Res.* 1**986**, *147*, 59.
Hanessian, S.; Martin, M.; Desai, R. Č. J. *Chem. Soc., Chem.
<i>Commun.* 1**986**, 926. Daly, S. M.; Armstrong, R. W*. Tetrahedron Lett.* **1989,** *30,* 5713. de Raadt, A.; Stiitz, A. E. *Carbohydr. Res.* **1991,***220,*101. Secrist, J. A., Ill; Wu, S.-R. *J. Org. Chem.* **1979,** *44,*1434. Aebischer, B.; Meuwly, R.; Vasella, A. *HeIv. Chim. Acta* **1984,** *67,* 2236. Goekjian, P. G.; Wu, T.-C; Kang, H.-Y.; Kishi, Y. J. Org. Chem. 1987, 52, 4823. Jarosz, S.; Fraser-Reid, B.
Tetrahedron Lett. 1989, 30, 2359. Boschetti, A.; Nicotra, F.;
Panza. L. Russo. G.: Zucchelli. L. J. Chem. Soc.. Chem. Commun. **1989,** 1085. Martin, O. R.; Lai, W. *J. Org. Chem.* **1990,***55,* 5188.
- (95) Vauzeilles, B.; Cravo, D.; Mallet, J.-M.; Sinay, P. *Synlett* **1993,** 522.
- (96) Xin, Y. C; Mallet, J.-M.; Sinay, P. *J. Chem. Soc, Chem. Commun.* **1993,** 864.
- (97) Chenede, A.; Perrin, E.; Rekai, E. D.; Sinay, P. *Synlett* **1994,** 420.
- (98) Mazeas, D.; Skrydstrup, T.; Doumeix, 0.; Beau, J.-M. *Angew. Chem., Int. Ed. Engl.* **1994,** *33,* 1383.
- (99) Preuss, R.; Jung, K.-H.; Schmidt, R. R. *Liebigs Ann. Chem.* **1992,** 377.
- (100) Dietrich, H.; Schmidt, R. R. *Liebigs Ann. Chem.* **1994,** 975.
- (101) Schmidt, R. R.; Beyerbach, A. *Liebigs Ann. Chem.* **1992,** 983.
- (102) Martin, O. R.; Xie, F.; Kakarla, R.; Benhamza, R. *Synlett* **1993,**
- 165.
- (103) Martin, O. R.; Lai, W. *J. Org. Chem.* **1993,** *58,* 176.
- (104) Paton, R. M.; Penman, K. J. *Tetrahedron Lett.* **1994,** *35,* 3163.
- (105) McGhie, K. E.; Paton, R. M. *Tetrahedron Lett.* **1993,** *34,* 2831.
- (106) Paton, R. M.; Young, A. A. *J. Chem. Soc, Chem. Commun.* **1994,** 993.
- (107) Dondoni, A.; Kniezo, L.; Martinkova, M. *J. Chem. Soc, Chem. Commun.* **1994,** 1963.
- (108) Armstrong, R. W.; Teegarden, B. R. *J. Org. Chem.* **1992,** *57,* 915. (109) Sutherlin, D. P.; Armstrong, R. W. *Tetrahedron Lett.* **1993,** *34,*
- 4897. (110) Eckes, P. *Angew. Chem., Int. Ed. Engl.* **1994,** *33,* 1573 and
- references therein. (111) Armstrong, R. W.; Sutherlin, D. P. *Tetrahedron Lett.* **1994,** *35,*
- 7743.
- (112) Wang, Y.; Babirad, S. A.; Kishi, Y. *J. Org. Chem.* **1992,** *57,* 468. (113) Wei, A.; Kishi, Y. *J. Org. Chem.* **1994,** *59,* 88.
-
- (114) Haneda, T.; Goekjian, P. G.; Kim, S. H.; Kishi, Y. *J. Org. Chem.* **1992,** *57,* 490.
- (115) Lay, L.; Nicotra, F.; Pangrazio, C; Panza, L.; Russo, G. *J. Chem. Soc, Perkin Trans. 1* **1994,** 333.
- (116) Lay, L.; Nicotra, F.; Panza, L.; Russo, G.; Caneva, E. *J. Org. Chem.* **1992,** *57,* 1304.
- (117) Bimwala, R. M.; Vogel, P. *J. Org. Chem.* **1992,** *57,* 2076.
- (118) Vogel, P.; Fattori, D.; Gasparini, F.; Le Drian, C. *Synlett* **1990,** (150 173. (151 (119) Karpiesiuk, K.; Banaszek, A. *Tetrahedron* **1994,** *50,* 2965. (152 (120) Witczak, Z. J. *Pure Appl. Chem.* **1994,** *66,* 2189.
-
-
- (121) Narkunan, K.; Nagarajan, M. *J. Org. Chem.* **1994,** *59,* 6386. (153 (122) Johnson, C. R.; Miller, M. W.; Golebiowski, A.; Sundram, H.; Ksebati, M. B. *Tetrahedron Lett.* **1994,** *35,* 8991. (154:
- (123) van den Broek, L. A. G. M.; Vermaas, D. J.; Heskamp, B. M.; van Boeckel, C. A. A.; Tan, M. C. A. A.; Bolscher, J. G. M.; Ploegh, H. L.; van Kemenade, F. J.; de Goede, R. E. Y.; Miedema, (155 F. *Reel. Trav. Chim. Pays-Bas* **1993,***112,* 82. Fellows, L. E.; Kite, G. C; Nash, R. J.; Simmonds, M. S. J.; Scofield, A. M. *Recent* Adv. Phytochem. **1989**, 23, 395. Elbein, A. D. Annu. Rev. (156)
Biochem. **1987**, 56, 497. Elbein, A. D. FASEB J. **1991**, 5, 3055.
Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. J. Med. Chem. **199**4,
37, 3701. Winchester, B. Bi
- (124) Very recent examples not discussed in this article include: (a)
Pyrrolidine derivatives, Deng, W.; Overman, L. E. J. Am. Chem. (158)
Soc. 1994, 116, 11241. Ryu, Y.; Kim, G. J. Org. Chem. 1995, 60, 103. (b) Piperidine derivatives, Johnson, C. R.; Golebiowski, A.; (159)
Sundram, H.; Miller, M. W.; Dwaihy, R. L. *Tetrahedron Lett.*
1995, 36, 653. Rudge, A. J.; Collins, I.; Holmes, A. B.; Baker, R. (160)
Angew. Chem. derivatives, Green, D. L. C.; Kiddle, J. J.; Thompson, C. M. *Tetrahedron* **1995,** *51,* 2865. Nukui, S.; Sodeoka, M.; Sasai, H.; (162 Shibasaki, M. *J. Org. Chem.* **1995,** *60,* 398. Jadhav, P. K.; Woerner, F.J. *Tetrahedron Lett.* **1994,***35,* 8973. (d) Quinolizidine (163 derivatives, Herczegh, P.; Kovacs, I.; Szilagyi, L.; Sztaricskai, F.; Berecibar, A.; Riche, C; Chiaroni, A.; Olesker, A.; Lukacs, G (164 *Tetrahedron* **1995,** *51,* 2969.
- (125) Thompson, D. K.; Hubert, C. N.; Wightman, R. H. *Tetrahedron*
- **1993,** *49,* 3827. (165 (126) Lay, L.; Nicotra, F.; Paganini, A.; Pangrazio, C; Panza, L. (166! *Tetrahedron Lett.* **1993,** *34,* 4555.
-
- (127) Burley, L; Hewson, A. T. *Tetrahedron Lett.* **1994,** *35,* 7099. (167 (128) Hassner, A.; FaIb, E.; Nudelman, A.; Albeck, A.; Gottlieb, H. E. (168 *Tetrahedron Lett.* **1994,** *35,* 2397.
- (129) Miiller, R.; Leibold, T.; Patzel, M.; Jager, V. *Angew. Chem., Int.* (169 *Ed. Engl.* **1994,***33,*1295. Jager, V.; Miiller, R.; Leibold, T.; Hein, M.; Schwarz, M.; Fengler, M.; Jaroskova, L.; Patzel, M.; LeRoy, P.-Y. *Bull. Soc. Chim. BeIg.* **1994,***103,* 491. (170
- (130) Casiraghi, G.; Rassu, G.; Spanu, P.; Pinna, L. *J. Org. Chem.* (171 **1992,** *57,* 3760.
- (131) McGrane, P. L.; Livinghouse, T. *J. Am. Chem. Soc.* **1993,** *115,* (172 **11485.** (173)
- (132) Jackson, R. F. W.; Rettie, A. B. *Tetrahedron Lett.* **1993,***34,* 2985. (174 (133) Bashyal, B. P.; Chow, H.-F.; Fleet, G. W. J. *Tetrahedron* **1987,**
- *43,* 423. (175 (134) Yuasa, Y.; Ando, J.; Shibuya, S. *J. Chem. Soc, Chem. Commun.*
- **1994,** 1383. (176 (135) Nakata, M.; Tamai, T.; Kamio, T.; Kinoshita, M.; Tatsuta, K.
- *Tetrahedron Lett.* **1994,** *35,* 3099. (177
- (136) Katoh, T.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; (178 Terashima, S. *Tetrahedron* **1994,** *50,* 6221. Katoh, T.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; Terashima, S. *Tetrahe-* (179 *dron Lett.* **1993,** *34,* 5743. (137) Dondoni, A.; Merino, P.; Perrone, D. *Tetrahedron* **1993,***49,* 2939. (180
- (138) Rassu, G.; Pinna, L.; Spanu, P.; Culeddu, N.; Casiraghi, G.; (181
- Gasparri Fava, G.; Belicchi Ferrari, M.; Pelosi, G. *Tetrahedron* (182 **1992,** *48,* 727. (183
- (139) Arnone, A.; Bravo, P.; Donadelli, A.; Resnati, G. *J. Chem. Soc, Chem. Commun.* **1993,** 984.
- (140) Johnson, C. R.; Golebiowski, A.; Braun, M. P.; Sundram, H. (184
- *Tetrahedron Lett.* **1994,** *35,* 1833. (185 (141) Takao, K.-I.; Nigawara, Y.; Nishino, E.; Takagi, I.; Maeda, K.; (186 Tadano, K.-I.; Ogawa, S. *Tetrahedron* **1994,** *50,* 5681.
- (142) Knapp, S.; Hale, J. J. *J. Org. Chem.* **1993,** *58,* 2650. (187 (143) Naito, T.; Ikai, M.; Shirakawa, M.; Fujimoto, K.; Ninomiya, I.;
- Kiguchi, T. *J. Chem. Soc, Perkin Trans. 1* **1994,** 773. (188 (144) Hudlicky, T.; Seoane, G.; Price, J. D.; Gadamasetti, K. G. *Synlett*
- **1990** 433 (145) Robins, *D.* J. *Nat. Prod. Rep.* **1990, 7,** 377; **1991,** *8,* 213; **1992,**
- *9,* 313; **1993,** *10,* 487; **1994,** *11,* 613. (146) *Naturally Occurring Pyrrolizidine Alkaloids;* Rizk, A.-F. M., Ed.;
- CRC Press: Boca Raton, FL, 1990. (147) McCaig, A. E.; Wightman, R. H. *Tetrahedron Lett.* **1993,** *34,*
- 3939.
- (148) Ikota, N. *Tetrahedron Lett.* **1992,** *33,* 2553.
- (149) Casiraghi, G.; Spanu, P.; Rassu, G.; Pinna, L.; Ulgheri, F. *J. Org. Chem.* **1994,** *59,* 2906.
- Mulzer, J.; Scharp, M. *Synthesis* **1993,** 615;
-
- Mulzer, J.; Shanyoor, M. *Tetrahedron Lett.* **1993,** *34,* 6545. Hassner, A.; Singh, S.; Sharma, R.; Maurya, R. *Tetrahedron* **1993** *49* 2317
- Michael/j. P. *Nat. Prod. Rep.* **1990, 7,** 485; **1991,** *8,* 553; **1993,** *10,* **51; 1994,** *11,* **17; 1994,** *11,* 639.
- Takahata, H.; Momose, T. Simple Indolizidine Alkaloids. In *The Alkaloids. Chemistry and Pharmacology;* Cordell, G. A., Ed.; Academic Press: New York, 1993; Vol. 44.
- Elbein, A. D.; Molyneux, R. J. In *Alkaloids: Chemical and Biological Perspectives;* Pelletier, S. W., Ed.; John Wiley and
Sons: New York, 1987; Vol. 5, p 1.
Herczegh, P.; Kovdcs, I.; Szilágyi, L.; Zsely, M.; Sztaricskai, F.;
- Berecibar, A.; Olesker, A.; Lukacs, G. *Tetrahedron Lett.* **1992,** *33,* 3133.
- Herczegh, P.; Kovacs, I.; Szilagyi, L.; Varga, T.; Dinya, Z.; Sztaricskai, F. *Tetrahedron Lett.* **1993,** *34,* 1211.
- Jirousek, M. R.; Cheung, A. W.-H.; Babine, R. E.; Sass, P. M.; Schow, S. R.; Wick, M. M. *Tetrahedron Lett.* **1993,** *34,* 3671.
- Burgess, K.; Chaplin, D. A.; Henderson, L; Pan, Y. T.; Elbein, A. D. *J. Org. Chem.* **1992,** *57,* 1103.
- Burgess, K.; Chaplin, D. A. *Tetrahedron Lett.* **1992,** *33,* 6077. Maggini, M.; Prato, M.; Ranelli, M.; Scorrano, G. *Tetrahedron Lett.* **1992,** *33,* 6537.
- Gallagher, T.; Giles, M.; Subramanian, R. S.; Hadley, M. S. *J.*
- *Chem. Soc, Chem. Commun.* **1992,** 166. Thompson, S. H. J.; Subramanian, R. S.; Roberts, J. K.; Hadley,
- M. S.; Gallagher, T. J. Chem. Soc., Chem. Commun. **199**4, 933.
Martin, S. F.; Chen, H. J.; Yang, C. P. J. Org. Chem. **1993**, 58,
2867. Martin, S. F.; Chen, H. J.; Lynch, V. M. J. Org. Chem. **1995,** *60,* 276.
-
- Ina, H.; Kibayashi, C. *J. Org. Chem.* **1993,** *58,* 52. Naruse, M.; Aoyagi, S.; Kibayashi, C. *J. Org. Chem.* **1994,** *59,* 1358.
-
- Keck, G. E.; Romer, D. R. *J. Org. Chem.* **1993,** *58,* 6083. Casiraghi, G.; Rassu, G.; Spanu, P.; Pinna, L.; Ulgheri, F. *J. Org. Chem.* **1993,** *58,* 3397.
- Casiraghi, G.; Ulgheri, F.; Spanu, P.; Rassu, G.; Pinna, L.; Gasparri Fava, G.; Belicchi Ferrari, M.; Pelosi, G. *J. Chem. Soc, Perkin Trans. 1* **1993,** 2991. Kim, N.-S.; Choi, J.-R.; Cha, J. K. *J. Org. Chem.* **1993,** *58,* 7096.
-
- Kim, N.-S.; Kang, C. H.; Cha, J. K. *Tetrahedron Lett.* **1994,** *35,* 3489.
- St-Denis, Y.; Chan, T.-H. *J. Org. Chem.* **1992,** *57,* 3078.
- Ikota, N. *Chem. Pharm. Bull.* **1993,** *41,* 1717. Takahata, H.; Banba, Y.; Momose, T. *Tetrahedron: Asymmetry*
- **1992,** *3,* 999. Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K. *Tetrahedron: Asymmetry* **1993,** *4,* 1455.
- Cordero, F. M.; Cicchi, S.; Goti, A.; Brandi, A. *Tetrahedron Lett.*
- **1994,** *35,* 949. Chen, Y.; Vogel, P. *Tetrahedron Lett.* **1992,** *33,* 4917.
- Pearson, W. H.; Bergmeier, S. C; Williams, J. P. *J. Org. Chem.* **1992,** *57,* 3977.
- Sibi, M. P.; Christensen, J. W.; Li, B.; Renhowe, P. A. *J. Org. Chem.* **1992,** *57,* 4329.
- Knight, D. W.; Sibley, A. W. *Tetrahedron Lett.* **1993,** *34,* 6607. Knapp, S.; Gibson, F. S. *J. Org. Chem.* **1992,** *57,* 4802.
-
- Gmeiner, P.; Junge, D.; Kartner, A. *J. Org. Chem.* **1994,***59,* 6766. Aslanov, H. A.; Kushmuradov, Y. U.; Sadykov, A. S. In *The Alkaloids;* Brossi, A., Ed.; Academic Press: San Diego, CA, 1987; Vol. 31, Chapter 5.
- West, F. G.; Naidu, B. N. *J. Am. Chem. Soc.* **1994,** *116,* 8420.
-
- Pearson, W. H.; Hembre, E. J. *Tetrahedron Lett.* **1993,** *34,* 8221. Rassu, G.; Casiraghi, G.; Pinna, L.; Spanu, P.; Ulgheri, F.; Cornia, M.; Zanardi, F. *Tetrahedron* **1993,** *49,* 6627.
- (187) This controversial matter is presently under investigation in our
- laboratory. The results will be published in due course. Pavia, M. R.; Sawyer, T. K.; Meos, W. H. *Bioorg. Med. Chem.* Lett. 1993, 3, 387. Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P.; Gordon, E. M. J. Med. Chem. 1994, 37, 1233. Chen, C.; Randall, L. A. A.; Miller, R. B.; Jones, A. D.; Kurth, M. J. J.
C.; Randall, L. A. A.; Mi *(London)* **1991,** *354,* 82.

CR941108Y