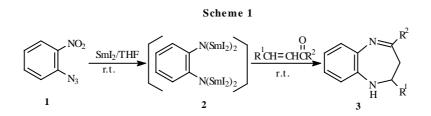
A New Approach to 2,3-Dihydro-1*H*-1,5-Benzodiazepines from the Reaction of *o*-Nitrophenylazide with α,β-Unsaturated Ketones Promoted by Samarium Diiodide

Xiao Yuan CHEN³, Wei Hui ZHONG¹, Yong Min ZHANG^{*,1,2}


¹Department of Chemistry, Zhejiang University at Xixi Campus, Hangzhou 310028 ²Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032 ³Department of Chemistry, Hunan Jishou University, Jishou 416000

Abstract: *o*-Nitrophenylazide was reduced by SmI₂ in anhydrous THF at room temperature to produce active intermediate **2** (samarium amide), "living" double-anion *in situ* which reacted smoothly with α , β -unsaturated ketones to afford 2,3-dihydro-1*H*-1,5-benzodiazepines in good yields under mild and neutral conditions.

Keyword: Samarium diiodide, reduction, nitro group, azide, 2,3-dihydro-1H-1,5-benzodiazepine.

Applications of samarium diiodide as a mild, neutral, selective and versatile single-electron transfer reducing and coupling reagent in organic synthesis have grown significantly in the last decade¹. It is well known that both nitro compounds^{2a} and azide compounds^{2b} can be easily reduced by SmI_2 to the corresponding amines. Little attention has been given to the intermediates derived from nitro or azide groups by treatment of SmI_2 , which may lead to reactions difficult to accomplish by other existing methodologies³.

2,3-Dihydro-1*H*-1,5-benzodiazepine derivatives have attracted interest due to their biological properties such as anticonvulsant activity⁴. The methods for preparing these compounds using *o*-phenylenediamines as starting materials involved harsh conditions such as using acid or base catalysts, moderate thermal conditions and long reaction time⁵. Here we described a new approach to 2,3-dihydro-1*H*-1,5-benzodiazepines *via* simultaneous reduction of nitro group and azide group of *o*-nitrophenylazide **1** by SmI₂ followed by reaction with α , β -unsaturated ketones (Scheme 1).

The results are summarized in **Table 1**. When *o*-nitrophenylazide **1** was treated with SmI_2 at room temperature, the simultaneous reduction of nitro group and azide

Xiao Yuan CHEN et al.

group resulted in the formation of trivalent samarium species. According to the literatures³, we considered the trivalent samarium species was the intermediate 2(samarium amide) which was "living" double-anion in situ and might react smoothly with α , β -unsaturated ketones to afford 2,3-dihydro-1*H*-1,5-benzodiazepines **3**. The results proved our consideration. According to **Table 1**, It was found that chalcones (entries 3a-g) are more reactive towards the new anion species 2 than any other α , β -unsaturated ketones (entries 3h-i).

Table 1 Preparation of 2,3-dihydro-1H-1,5-benzodiazepines promoted by SmL^a

Entry	R ¹	\mathbb{R}^2	T(h)	Yield(%) ^b
3a	Ph	Ph	3	87
3b	p-MeC ₆ H ₄	Ph	3	85
3c	p-MeOC ₆ H ₄	Ph	3	78
3d	p-ClC ₆ H ₄	Ph	2	83
3e	$p-BrC_6H_4$	Ph	2	78
3f	$3,4-(OCH_2O)_2C_6H_3$	Ph	4	76
3g	$m-NO_2C_6H_4$	Ph	2	87
3ĥ	Ph	Me	5	58
3i	Ph	C ₆ H ₅ CH=CH	4	65

^aImmol of *o*-nitrophenylazide, 1mmol of α , β -unsaturated ketones and 8mmol of SmI₂ were used. ^bIsolated yields based on *o*-nitrophenylazide. All products were characterized by IR, ^H NMR, MS spectra and elemental analysis.

In summary, a new approach to 2,3-dihydro-1H-1,5-benzodiazepines has been provided using available starting materials under mild and neutral conditions.

General procedure: a solution of o-nitrophenylazide 1 (1 mmol) in anhydrous THF (2 mL) were added dropwise to a solution of SmI₂ (8 mmol) in THF (30 mL) at room temperature under a dry nitrogen atmosphere. The mixture was stirred for 5 minutes and became yellow gradually. Then α,β -unsaturated ketones (1.1 mmol) in THF (2 mL) were added. After stirring at room temperature for a given time (Table 1, the reaction was monitored by TLC), the reaction was quenched with dilute hydrochloric acid (0.1mol/L, 1 ml). The crude product was isolated and purified by preparative TLC on silica gel using ethyl acetate and cyclohexane (1: 6) as an eluent.

Acknowledgment

We thank the National Natural Science Foundation of China (Project No.29872010) and NSF of Zhejiang province for financial support.

References

- 1. For reviews see: a) G. A. Molander, C. R. Harris, Chem. Rev., 1996, 96, 307. b) T. Imamoto, Lanthanides in Organic Synthesis; Academic Press: London, 1994, Chapter 4.
- a) Y. M. Zhang, R. H. Lin, Synth. Commun., 1987, 17, 329. b) C. Goulaouic-Dubois, M. Hesse, Tetrahedron Lett., 1995, 36, 7427.
 L. H. Zhou, Y. M. Zhang, J. Chem. Soc. Perkin Trans. I, 1998, 2899. 2.
- 3
- a) A. Chimirri, *Farmaco*, 1991, 46(1, Suppl.), 289.(Chem. Abstra., 1991, 115: 8753m). b) G.
 B. DE Sarro, M. Zappala, A. Chimirroi, C. Spagnolo, A. De Sarro, *Mol. Neuropharmacol.*, 1992, 1, 195(Chem. Abstra., 1992, 117: 103572b) 4.
- a) V. D. Orlov, S. M. Desenko, J. Quiroga, *Khim. Geterotsikl. Soedin.*, **1987**, 370 (Russ)(*Chem. Abstra.*, **1987**, 107: 217604n). b)A. S. El-Sayed, B. Haggag, K. A. M. El-Bayouki, *Orient. J. Chem.*, **1987**, 3, 66(*Chem. Abstra.*, **1988**, 108: 5910e). c) N. Mishriky, B. Haggag, N. Latif, *Egypt J. Chem.*, **1991**, 32, 679. d) B. Insuasty, R. Abonia, J. Quiroga, H. 5. Meier, J. Heterocycl. Chem., 1993, 30, 229.

Received June 30, 2000