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Abstract: Michael addition of the chiral α,β-unsaturated ester 2 with furyl lithium proceeded in 
syn manner with excellent diastereoselectivity.  The diastereoselectivity was not affected by the 
configuration of the double bond in 2. 
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Recently we reported that the diastereoselective intramolecular [4+3] cycloaddition of 4 
led to the formation of cycloadduct 5 as the only isolated isomer in 50% yield.  The 
chiral C-3 of compound 4 could be used to direct the stereochemical course of [4+3] 
cycloaddition enabling the control of the relative stereochemistry between three 
contiguous asymmetric centers in adduct 51.  The stereogenic center at C-3 of 4 was 
constructed by the asymmetric Michael addition of α, β-unsaturated ester 2 with furyl 
lithium.  The configuration of C-3 of adduct 3 was deduced to be R based on the 
Leonard and others reports2.  

Most recently, we examined the configuration of the newly formed stereogenic C-3 
in Michael addition of 2, particularly with respect to the role of the α, β-unsaturated ester 
geometry in directing the sense and degree of the diastereoselection in the addition. 

A mixture of α, β-unsaturated esters Z-2 and E-2 was prepared in excellent 
yield (98%) and 5:1 ratio by Wittig reaction of D-glyceraldehyde acetonide 1 with 
ylide 6 using methanol as reaction solvent.  Z-2 and E-2 were easily separated by 
chromatography.  The Michael addition was performed respectively by treatment of 
an ether solution of Z-2 or E-2 with furyl lithium at -78°C and quenching the 
resultant anion with aqueous NH4Cl solution.  It is noteworthy that both Z-2 and 
E-2 gave the same adduct 3 as the only product in 70% yield (Scheme 1).  
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Reagents and reaction conditions:  
a) Ph3P=CHCO2C2H5 (6), CH3OH, r.t., overnight, 98%;  
b) furyl lithium, Et2O, -78oC, 2 h, 70%; 
c) (CF3CO)2O, 2,6-lutidine, CH2Cl2, r.t., 4 h, 50%. 
 

The stereochemical assignment was made after the conversion of 3 to 
conforma-tionally restricted lactone 7 or 8 via acid-catalyzed transesterification (Scheme 
2).  In homonuclear decoupling experiment, irridiation on hydroxy proton of lactone 
changed multiplets at δ 3.52 corresponding to two protons at C-5 into doublets of 
doublets at 3.51(dd, 1H, J = 5.5, J = 12.6Hz) and 3.61 (dd, 1H, J = 3.8, J = 12.6Hz), 
respectively.  This compound also showed a characteristic IR-absorption band of γ
-latone at 1778 cm-1.  Therefore, the structure of lactone should be 7. 

 
Scheme 2 

 
Reagents and reaction conditions: p-TsOH, MeOH, reflux, overnight. 

 
The stereochemistry of lactone 7 was determined based on the coupling constant of 

H-3,H-4 and ab initio calculation of the stable conformations of cis 7 and its trans 
isomer.  Irridiation on H-2 simplified the signal of H-3 to a doublet at 3.97 (d, 1H, 
J=6.9Hz).  The stable conformations of cis 7 and its trans isomer were obtained by the 
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optimized geometry of lactones by use of Hartree-Fock method with Guassian 94 
program (Figure 1).  The computational result indicated that in cis-form 7 the 
H3-C3-C4-H4 dihedral angle was 16° and in trans-form, it was 135°.  According to 
Karplus equation, the observed coupling constant (J = 6.9 Hz) of H-3,H-4 is consistent 
with cis stereochemistry.  In literature, Abraham et al.3 reported that the trans coupling 
constant of H-3,H-4 in D-ribono-1→4-lactone was <0.5 Hz and the cis coupling constant 
of H-2-H-3 was 5.5 Hz.  Therefore, the absolute configuration of C-3 in compound 3 is 
assigned as R-form, and our initial, tentative assignment of stereochemistry of 
compounds 3 and 51b were thus verified. 

 
Figure 1  The stable conformations and Newman projections for cis-7 and its trans isomer. 
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In summary, the configuration of C-3 in Michael adduct 3 is assigned as R based on 
the value of coupling constant between H-3 and H-4 in the conformationally restricted 
lactone 7 with homonuclear decoupling experiment.  The results demonstrated that 
Michael addition of α,β-unsaturated ester 2 with furyl lithium proceeded in syn manner 
and the geometry of α,β-unsaturated ester had not significant effect on stereoselectivity 
in Michael addition.  
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