A New Abietane Diterpenoid from the Barks of Taxus yunnanensis

Sheng Hong LI¹, Hong Jie ZHANG¹*, Ping YAO², Han Dong SUN¹

¹Phytochemistry Laboratory, Kunming Institute of Botany, Academia Sinica, Kunming 650204 ²Guizhou Institute of Traditional Chinese Medicine, Guiyang 550002

Abstract: The structure of a new abietane diterpenoid, taxayunnin (1), from the barks of *Taxus yunnanensis*, was determined by spectroscopic analysis. A known abietane diterpenoid, taxamairin C (2), was also isolated.

Keywords: Taxus yunnanensis, Taxaceae, abietane diterpenoid, Taxayunnin.

Along with the major constituents taxoids, some non-taxane diterpenoids have also been isolated¹. During the course of our phytochemical investigation on the bark of *Taxus yunnanensis*. Cheng *et* L. K. Fu, a new abietane diterpenoid, taxayunnin (1), and the known taxamairin C ($(2)^2$), were isolated. The structure elucidation of taxayunnin 1 was established by spectral analysis.

$$\begin{array}{c} \text{OCH}_{3} \text{ 16} \\ \text{HO} & 11 \\ 12 \\ 12 \\ 13 \\ 19 \\ 18 \\ 1 \end{array} \begin{array}{c} \text{OCH}_{3} \text{ 16} \\ \text{HO} \\ 12 \\ 13 \\ 17 \\ \text{HO} \\ \end{array}$$

Taxayunnin 1, pale yellow needles, mp 215°C, showed a molecular ion peak at m/z 346 [M⁺] in its EI mass spectrum, which was in combination with 1H and ^{13}C NMR (including DEPT) spectra to suggest a molecular formula $C_{21}H_{30}O_4$. Its 1H NMR spectrum displayed three methyls bound to quaternary carbon atoms, an isopropyl group, and a deshielded aromatic proton at δ 7.62. These evidences indicated 1 was an abietane diterpenoid. Analogy of 1H and ^{13}C NMR spectra of 1 with those of 2 revealed that 1 was similar to 2 except for A-ring moiety². The difference could be rationalized to an oxygen bridge, which occurred between C-3 and C-20 in 2. Further comparison of the 1H NMR data of 1 with those of 3 β -hydroxy-demethyl cryptojaponol³, an abietane diterpenoid isolated from *S. pubescens*, suggested that 1 was a mono-methylate of 3 β -hydroxy-demethyl cryptojaponol. The methoxy group attached to C-12 was supported by the HMBC correlations of C-12 with both of 12-OCH₃ and H-15. Thus the structure of taxayunnin was determined as 3,11-dihydroxy-12-methoxy-8,11,13-abietatrien-7-one, and was given the trivial name taxayunnin.

Table 1 NMR data of 1 (500 MHz, CDCl₃, J in Hz, δ in ppm, * values may be interchanged)

Proton	$\delta_{ ext{H}}$	Carbon	δ_{C}	Carbon	δ_{C}
H-1a	3.30 (1H, dt, J = 3.6, 13.9)	C-1	34.7 t	CH ₃ -17	*23.5 q
H-1b	1.58 (1H, m)	C-2	27.9 t	CH ₃ -18	28.0 q
H-2	1.81 (2H, m)	C-3	78.0 d	CH ₃ -19	15.3 q
H-3	3.35 (1H, dd, J = 5.2, 6.9)	C-4	39.2 s	CH ₃ -20	18.0 q
H-5	1.83 (1H, dd, J = 3.1, 13.9)	C-5	49.7 d	12-OCH ₃	61.8 q
H-6a	2.68(1H, dd, J = 3.1, 16.9)	C-6	35.3 t		
H-6b	2.60 (1H, dd, J = 14.2, 16.9)	C-7	198.5 s		
H-14	7.62 (1H,s)	C-8	128.6 s		
H-15	3.20 (1H, spt, J = 6.9)	C-9	137.3s		
CH ₃ -16	1.24 (3H,d, J = 6.9) *	C-10	39.9 s		
$CH_{3}-17$	1.26 (3H,d, J = 6.9) *	C-11	146.5 s		
CH ₃ -18	1.07 (3H, s)	C-12	149.3 s		
CH ₃ -19	0.95 (3H, s)	C-13	139.4 s		
CH ₃ -20	1.39 (3H, s)	C-14	117.5 d		
11-OH	6.12 (1H, s)	C-15	26.8 d		
12-OCH ₃	3.81 (3H, s)	CH ₃ -16	*23.4 q		

Acknowledgment

This project was supported by the National Natural Science Foundation of China (3950081), the Young Academic and Technical Leader Raising Foundation of Yunnan Province (awarded to H.-J. Zhang.), and the Special Supported Bioscience and Biotechnique Foundation of Academic Sinica (STZ-11).

References

- 1. V. S. Pharmar, A. Jha, K. S. Bisht, P. Taneja, et al., Phytochemistry, 1999, 50, 1267.
- 2. L. J. Yu, M. Z. Da, T. Tanaka, et al., Acta Chimica Sinica, 1988, 46, 21.
- 3. M. A. Galicia, B. Esquivel, A. A. Sánchez, et al., Phytochemistry, 1988, 27, 217.

Received 11 September, 2000