A New Limonoid from the seed of Aphanamixis polystachya

Hua Ping ZHANG, Shao Hua WU, Xiao Dong LUO, Yun Bao MA, Da Gang WU*

Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

Abstract: A new limonoid named rohituka-15 **1**, with a known limonoid dregeana-1 **2**, was isolated from the seed of *Aphanamixis polystachya* (Meliaceae). The ¹³C NMR data assignment of dregeana-1 **2** and the structural elucidation of the new compound **1** were based on spectral analysis including ¹H-¹H COSY, HMQC and HMBC experiments.

Keywords: Aphanamixis polystachya, Meliaceae, limonoid, rohituka-15, dregeana-1.

Figure 1 Structures of Compounds 1, 2, 3, and 4

1 R₁=H Rohituka-15 2 R₁=HCO Dregeana-1 3 R₂=H Rohituka-12 4 R₂=HCO Polystachin

The seed of *Aphanamixis polystachya* J. N. Parker (Syn: *Amoora rohituka* Weight. & Arn.), Meliaceae, is a rich source of limonoids^{1, 2}. As part of our interest in the chemistry of the family Meliaceae, we herein report the ¹³C NMR data assignment of a known limonoid dregenan-1 2 and structural elucidation of a new limonoid 1 designated as rohituka-15, isolated from the EtOH extract of the seeds of *Aphanamixis polystachya* collected in Yunnan province, the People's Republic of China.

Compound **1**, amorphous, mp 122-124°C, $[\alpha]_D^{2\,7}$ -105.7 (*c* 0.29, CHCl₃). In ¹³C NMR spectrum of **1** (**Table 1**), 32 carbon signals were observed. The multiplicities of the carbons determined by DEPT led to the attribution: 5 CH₃, 6 CH₂, 11 CH, 10 C, including one keto group (C-15), one oxymethylene group (C-29), four oxymethine groups (C-1, 11, 12, 2') and two oxyquaternary carbons (C-4, 14). According to ¹³C NMR and ¹H NMR data (**Table 2**) and IR spectrum (absorption at v 3484, 3400, 1750, 1510, 874 cm⁻¹), one β -substituted furanyl ring and two hydroxyl and three ester groups

 $(\delta_C\ 168.2,\ 174.0,\ 175.3)$ should exist. EI mass spectrum of **1** exhibited a molecular ion peak at $m/z\ 600\ [M]^+$, thus the molecular formula of **1** was deduced to be $C_{32}H_{40}O_{11}$. The NMR spectra of **1** were similar to those for **2** (**Figure 1**)³ but lacked the resonances due to formate group at C-11 β presented in the NMR spectra of **2**. $^1H^{-1}H\ COSY$ and HMQC spectra indicated that H-11 α resonated at δ 4.01 (m) and C-11 at δ 74.4. Thus one hydroxyl group was placed at C-11 β instead of the formate. These results were substantiated by comparing the NMR data to those of rohituka-12 **3** and polystachin **4** ² isolated from the seeds of the same plant and confirmed by $^1H^{-1}H\ COSY$, HMQC and HMBC experiments. So structure **1** was assigned to rohituka-15.

Table 1 13 C NMR data of compound **1** and **2** (in CDCl₃, 125 MHz, δ in ppm)

C	1	2	C	1	2	C	1	2	C	1	2	C	1	2
1	74.2	74.2	8	135.8	134.2	15	205.6	205.0	22	110.4	110.3	3′	38.6	38.1
2	38.6	38.4	9	56.4	55.3	16	41.1	41.1	23	143.5	143.3	4'	24.0	23.1
3	168.2	167.5	10	50.7	50.0	17	37.1	36.8	28	28.1	29.1	5′	11.7	11.4
4	79.4	78.6	11	74.4	72.1	18	12.5	12.3	29	74.1	74.3	3'-CH ₃	15.0	15.1
5	41.0	40.7	12	79.2	74.4	19	22.6	22.2	30	117.8	119.3	formate		160.3
6	32.5	32.8	13	48.8	49.2	20	122.2	121.8	1′	175.3	174.9			
7	174.0	172.3	14	87.3	87.3	21	140.5	140.6	2′	75.1	75.1			

Table 2 ¹H NMR data of compound **1** (in CDCl₃, 500 MHz, δ in ppm, J in Hz)

Pos.		Pos.		Pos.	
H-1	3.68 (dd, 10.7, 7.2)	H-17	3.85 (dd, 10.1, 9.3)	H-30	5.36 (s), 5.33 (s)
H-2	3.12 (m), 2.88 (m)	H-18	0.80 (s)	H-2'	3.52 (d, 4.1)
H-5	3.14 (m)	H-19	1.08 (s)	H-3'	1.60 (m)
H-6	3.12 (m), 2.67 (m)	H-21	7.22 (s)	H-4'	1.20 (m), 0.92 (m)
H-9	2.69 (d, 6.2)	H-22	6.19 (s)	H-5'	0.78 (t, 7.3)
H-11	4.01 (m)	H-23	7.35 (s)	3'-CH ₃	0.82 (d, 5.2)
H-12	5.84 (d, 9.8)	H-28	1.83 (s)		
H-16	2.82 (m), 2.33 (m)	H-29	4.22 (d, 11.7), 4.00 (d, 11.7)		

References

- 1. D. A. Brown, D. A. Taylor, Phytochemistry, 1978, 17, 1995.
- 2. D. A. Mulholand, N. Naidoo, Phytochemistry, 1999, 51, 927.
- 3. D. A. Mulholand, D. A. Taylor, Phytochemistry, 1980, 19, 2421.

Received 9 July, 2001