A New Binary Carbazole Alkaloid from Murraya koenigii

Yun Song WANG, Hong Ping HE, Xin HONG, Qing ZHAO, Xiao Jiang HAO*

Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

Abstract: A new binary carbazole alkaloid, 8, 8"-biskoenigine (1), along with its monomer, koenigine, was isolated from the dried leaves of *Murraya koenigii* collected in Xishuangbanna, Yunnan province. The structure of 1 was established by spectroscopic methods.

Keywords: Murraya koenigii, rusticate, 8, 8"-biskoenigine, carbazole alkaloid.

The plants from genus *Murraya*, being rich in bioactive carbazole alkaloids^{1,2}, have been attracting much attention. The extract of *Murraya koenigii* displayed significant *in vitro* activity against cultured KB cells¹. We report here the isolation and elucidation of a new binary carbazole alkaloid, 8, 8"-biskoenigine (1) and its monomer, koenigine^{3,4}.

Figure 1 The structure, selected HMBC (H \rightarrow C) and ROESY (H \rightarrow H) of 1

Compound **1**, $[\alpha]_D^{17}$ +139.6 (c 0.01, CHCl₃), was isolated as a brown gum. HREIMS gave the $[M]^+$ peak at m/z 616.2585 corresponding to the molecular formula $C_{38}H_{36}N_2O_6$ (calcd. 616.2573). The 1H and ^{13}C NMR spectra of **1** disclosed that **1** was a carbazole alkaloid^{2,4}. The number of the proton and ^{13}C NMR signals was half of that expected, suggesting that **1** has a completely symmetrical structure⁵. The data of EIMS spectra in **1** [m/z (%): 616 (M⁺, 100), 601(56), 308(10), 293(36)] suggested that koenigine³ $[(m/z)^2]$ (%): 309(M⁺, 93), 294(100)) was the monomer of **1**. The UV (343, 301, 225 nm), 1H and ^{13}C NMR spectra of **1** were similar to those of koenigine (**Table 1**), supporting that **1**

^{*}E-mail: xjhao@mial.kib.ac.cn

was a dimer of koenigine^{3, 4, 5}. The HMBC experiment revealed the presence of the correlations between H-5 (δ 7.61s, C-5 δ 102.3d) and C-6 (δ 143.5s), C-7 (δ 144.4s) and C-8 (δ 105.0s). The correlations between δ_H 4.05s (OMe) and δ_C 143.5s (C-6) proved that OMe group was linked to C-6 (**Figure 1**). This was also supported by the NOE correlation between δ_H 4.05s (OMe) and δ_H 7.61s (H-5) (**Figure 1**). The ¹H NMR signal at δ 7.43s for the H-8 of koenigine disappeared in **1**, and the ¹³C NMR signal at δ 97.9d for the C-8 of koenigine was replaced by δ 105.0s in **1**, revealing that the C-8 and C-8" were connected. The linkage was further supported by 2.0 and 0.2 ppm of upfield shifts observed for C-7 and C-8a, respectively (**Table 1**). Thus, the structure of **1** named 8, 8"-biskoenigine, was elucidated to be as shown in **Figure 1**.

Table 1 The NMR data of compound 1 and koenigine ^a in CD ₃ CO ₉
--

1			koenigine		
Position	$\delta_{\! ext{H}}^{ ext{b}}$	$\delta_{\rm C}$	Position	$\delta_{ ext{H}}^{\;\; ext{b}}$	$\delta_{\rm C}$
1 (1")	/	105.7s	1	/	105.4s
1a (1a")		136.1s	1a		136.1s
2 (2")	/	149.0s	2	/	149.1s
3 (3")	/	117.5s	3	/	117.5s
Me-3	2.31(s, 3H)	16.3q	Me-3	2.28(s, 3H)	16.2q
(Me-3")		•			•
4 (4")	7.66 (s, 1H)	120.5d	4	7.58 (s, 1H)	120.7d
4a (4a")		115.4s	4a		116.3s
4b (4b")	/	118.8s	4b	/	118.3s
5 (5")	7.61 (s, 1H)	102.3d	5	7.53 (s, 1H)	103.0d
6 (6")		143.5s	6		143.4s
7 (7")	/	144.4s	7	/	146.4s
8 (8")	/	105.0s	8	7.43 (s, 1H)	97.9d
8a (8a")	/	135.9s	8a	/	136.1s
1'(1''')	6.74 (d, 9.8,1H)	119.2d	1'	6.87 (d, 9.7,1H)	118.7d
2' (2"")	5.56 (d, 9.8,1H)	129.2d	2'	5.73 (d, 9.7,1H)	129.7d
3' (3"")	/	76.0s	3'	/	76.2s
4' (4''')	1.41 (s, 3H)	27.2q	4'	1.45 (s, 3H)	27.8q
5' (5"")	1.41 (s, 3H)	27.9q	5'	1.45 (s, 3H)	27.8q
OMe	4.05 (s, 3H)	57.1q	OMe	4.05 (s, 3H)	57.0q
(OMe")		•			•
NH (N"H)	9.56 (s, 1H)		NH	9.56 (s, 1H)	

^{a 1}H, ¹³C NMR and HMBC spectra were obtained at 500 MHz, 125 MHz and 500 MHz. ^b J in Hz.

Acknowledgment

This work was financially supported by the National Natural Science Foundation for Outstanding Young Scientists to Prof. X. J. Hao (No. 39525025).

References

- M. Fiebig, J. M. Pezzuto, D. D. Soejarto, A. D. Kinghorn, *Phytochemistry*, 1985, 24 (12), 3041.
- 2. H. Furukawa, T. S. Wu, T. Ohta, C. S Kuoh, Chem. Pharm. Bull., 1985, 33 (10), 4132.
- 3. I. H. Bowen, K. P. W. C. Perera, Phytochemistry, 1982, 21 (2), 433.
- 4. C. Itto, H. Ohta, H. T. W. Tan, H. Furukawa, Chem. Pharm. Bull., 1996, 44 (12), 2231.
- 5. T. S. Wu, M. L. Wang, J. S. Lai, C. Ito, H. Furukawa, *Phytochemistry*, **1991**, 30 (3), 1052.

Received 26 November, 2001