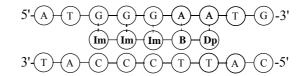
A Convenient Method for the Synthesis of Distamycin Analogue

Jin WANG, Fei Li TANG, Gu YUAN*

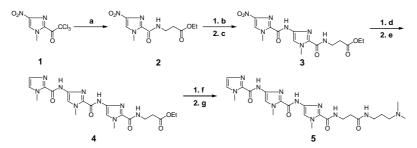

The Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Department of Chemical Biology, Peking University, Beijing 100871

Abstract: A novel distamycin analogue was synthesized by chloroform reaction and DCC / HOBT coupling reaction without using amino protection and deprotection.

Keywords: Distamycin analogue, polyamide, chloroform reaction.

The natural distamycin is a well known antibiotic, which contains three pyrrole rings and can selectively recognize AT region in DNA minor groove¹. However, many parts of DNA are rich of GC base pairs. For example, the telomere of DNA in cancer cell, which has repeatability GGG sequence. In this paper, 5'-GGGAA-3' was chosen as the target site, thus we substitute pyrrole rings for imidazoles to get high affinity to GC regions according to Dervan's recognizing rules².

Scheme 1 Binding model of ImImImβDp designed with 5'-GGGAA-3'


Im= *N*-methylimidazole, $\beta=\beta$ -alanine, Dp=*N*, *N*-dimethylaminopropylamine.

In the synthesis of ImImIm β Dp, the key point is that a novel chloroform reaction³ was introduced for the construction of amide bond in a simple way that amino protection and deprotection can be avoided. Compound **1** was used as a key intermediate, which was easily prepared from commercial *N*-methylimidazole through trichloroacetylization and nitration. In the synthesis of compound **2**, **3**, **4**, amide bond was constructed by a chloroform reaction conveniently and the product **2**, **3** can precipitate from the solution avoiding separation by column chromatography. *N*, *N*- Dimethylaminopropylamine was introduced to increase the hydrophilicity of ImImIm β Dp (**5**) in the last step.

^{*}E-mail: guyuan@pku. edu.cn

Jin WANG et al.

Scheme 2 The synthetic route of ImImImβDp

Reagents: **a**=NH₂CH₂CH₂COOEt/EtOAc; **b**=H₂, Pd-C/EtOAc; **c**=NO₂ImCOCCl₃; **d**=H₂, Pd-C/DMF; **e**=ImCOCCl₃; **f**=NaOH/H₂O; **g**=DMF, DCC/HOBT, H₂N(CH₂)₃N(CH₃)₂.

Experimental

$ImImIm\beta Dp 5$:

0.20 g (0.45 mmol) ImImImβCOOH was dissolved in 4 mL DMF. 0.07 g (0.50 mmol) HOBT and 0.11 g (0.50 mmol) DCC was added to the solution sequentially and stirred for 12 hr. Then, 0.06 mL (0.45 mmol) *N*, *N*-dimethylaminopropylamine was added and stirred for 12 hr. The reaction mixture was filtered and evaporated to remove DCU and DMF in vacuum, respectively. After purification by flash chromatography, 0.18 g slight yellow solid **5** was obtained (75% yield). ¹H-NMR(CDCl₃ δppm): 1.66(m, 2H, CH₂), 2.20(s, 6H, 2NCH₃), 2.37(t, 2H, J=6.5 Hz, CH₂), 2.47(t, 2H, J=6.2 Hz, CH₂), 3.37(m, 2H, CH₂), 3.68(m, 2H, CH₂), 4.03(s, 3H, NCH₃), 4.08(s, 3H, NCH₃), 4.10(s, 3H, NCH₃), 7.04(d, 1H, J=1.0 Hz, ArH), 7.09(d, 1H, J=1.0 Hz, ArH), 7.16(t, 1H, J=6.2 Hz, CONH), 7.41(s, 1H, ArH), 7.50(s, 1H, ArH), 7.82(t, 1H, J=6.2 Hz, CONH), 9.38(s, 1H, ArCONH). FAB-MS: calcd for C₂₃H₃₄N₁₁O₄(MH⁺) 528, found 528.

Acknowledgments

The Project was supported by the National Natural Science Foundation of China (No.39970169, 29872001).

References

- 1. A. Blasko, K. A. Browne, T. C. Bruice, J. Am. Chem. Soc., 1994, 116, 3726.
- 2. W. S. Wade, M. Mrksich, P. B. Dervan, J. Am. Chem. Soc., 1992, 114, 8783.
- 3. J. H. Xiao, G. Yuan, W. Q. Huang, A. S. C. Chan, K. L. D. Lee, J. Org. Chem., 2000, 65, 5506.

Received 22 February, 2002