Poly[styrene(iodosodiacetate)]: An Efficient Reagent for Regioselective Azido-arylselenylation of Olefins

You Chu ZHANG², Lu Ling WU¹, Xian HUANG¹*

Abstract: Poly[styrene(iodosodiacetate)] reacted with diaryl diselenides, followed by sodium azide, giving 1-azido-2-arylselenoalkanes regioselectively. The polymer reagent could be regenerated and reused.

Keywords: Poly[styrene(iodosodiacetate)], regioselectivity, azido-arylselenylation.

Polymer-supported organic reagents have been rapidly applied to the preparation of small organic molecules¹. Recently, polymer-supported hypervalent iodine reagents are increasingly used in organic synthesis with their versatile reactivities. Among them, Poly[styrene(iodosodiacetate)] is most widely used as a mild and clean oxidant².

1-Azido-2-arylselenoalkanes are very important intermediates in organic synthesis³. Here we report a novel solid synthesis of 1-azido -2-arylselenoalkanes with outstanding advantages of easy operations, high regioselectivities and environmental benign characteristics compared with the same reaction carried out in solution conditions³.

The azido-arylselenylation reactions were simply carried out by stirring a mixture of resin 1 (1.2 mmol) with diaryl diselenides (0.3 mmol), sodium azide (1.2 mmol), and terminal olefins (0.5 mmol) in methylene chloride at room temperature (**Scheme 1**). 1-Azido-2-arylselenoalkanes was obtained regioselectively and the reaction yields are summarized in **Table 1**. A mixture of geometric isomers (yield: 82%, cis / trans = 3.5/1) were obtained when cyclohexene was used (**Scheme 2**). Resin 1 could be regenerated and reused⁴.

Scheme 1

¹Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028 ²Department of Chemistry, Shaoxing College of Arts and Sciences, Shaoxing 312000

^{*}E-mail: huangx@mail.hz.zj.cn

Products	Substrate 2	Substrate 3	Time(h)	Yield (%) ^a
4a	PhCH=CH ₂	(PhSe) ₂	3	79
4b	>>>>	$(PhSe)_2$	2.5	75
4c	CH ₃ C(O)CH ₂ CH ₂ CH=CH ₂	$(PhSe)_2$	3	70
4d	PhCH=CH ₂	$(4-ClC_6H_4Se)_2$	2	81
4e	>>>>	$(4-ClC_6H_4Se)_2$	2.5	73
4f	CH ₃ C(O)CH ₂ CH ₂ CH=CH ₂	$(4-ClC_6H_4Se)_2$	2.5	68
$4a^{b}$	PhCH=CH ₂	$(PhSe)_2$	3	78

 Table 1
 Azido-arylselenenylation of olefins

a. Isolated yields. b. Using regenerated resin 1.

Scheme 2

We have developed a novel method to prepare 1-azido-2-arylselenoalkanes with poly[styrene(iodosodiacetate)]. The reaction is easy operated and environmental benign. And also poly[styrene(iodosodiacetate)] can be regenerated and reused.

Acknowledgment

Project 29932020 was supported by the National Natural Science Foundation of China.

References

- 1. F. Guillier, D. Orain, M. Bradley, Chem. Rev., 2000, 100, 137.
- 2. V. V. Zhdankin, P. J. Stang, Chem. Rev., 2002, 102, 2523.
- M. Tingoli, M. Tiecco, D. Chianelli, R. Balducci, A. temperimi, J. Org. Chem., 1991, 56, 6809.
- 4. X. Huang, Q. Zhu, J. Chem. Research (s), 2000, 300.

Received 28 September, 2002