£1.00

ELBUG

= ELECTRON

Diggﬂr Vol 1 No 10 October 1984

Games

* Digger

* The Memory Game
PLUS

* Faster Programming

* Compacting Basic
Programs

* Fireworks Display
* Cassette Troubles
- PLUS

* Latest Add-ons
Reviewed

* New Games
Reviewed

* Book Reviews

* And much more

EDITORIAL

THE FIRST YEAR OF ELBUG

With this issue of ELBUG we complete the first wvolume of 1@ 1issues of our
magazine for Electron users. Each month we have striven to provide a variety of
material to entertain you and to assist you in making the most of your Electron. The
Electron is now in good supply in the shops, and there are a growing number of
different add-on units and a wide range of games and other software now available.
We believe that Acorn will soon announce details of their Plus-3 module to
complement the Plus-1 released earlier this year. This will allow disc wunits to be
used with the Electron, giving much improved saving and loading of files compared
with cassette.

We are preparing a useful index to all the issues of volume 1 and this will be
included free with your next copy of ELBUG (Vol.2 No.l). You will have seen from
the previous issue that we now have available an attractive binder to contain all
the issues of volume 1, and there is provision to include the index as well., The
next issue of ELBUG will be the Christmas issue, so you can expect an entertaining
ard seasonal magazine.

THIS MONTH'S MAGAZINE

This issue sees the publication of the last part in our series on Electron
Graphics. We have tried to finish with something of a flourish by including no less
than five interesting examples of graphics programs. We hope you have found this
series both useful and entertaining, and no doubt we shall be returning to the
fascinating world of graphics in future issues of ELBUG.

mmongst the letters that we receive from ELBUG members, problems with the use of
cassettes feature quite prominently. If you have troubles when using cassettes
then you should find the article on this subject by Peter Rochford to be of great
practical help.

We have also included in this issue another most useful utility in the form of a
program compacter, which will shrink a larger program so that it will fit into the

available memory. This is particularly useful when writing programs that use one of
the 20K graphics modes (modes @ to 2), and can sometimes make the difference between

a working and non-working program.

There are lots more articles and programs in this issue of ELBUG plus reviews of
all the latest software, hardware add-ons and books all helping you to make the most
of your Electron.

Mike Williams

OTICE BOARD NOTICE BOARD NOTICE BOARD NOTICE B(

Magazine Cassette

All the programs in this month's magazine are available on cassette and
this month we have added two extra programs, the winning entry in the by Dave
Channing in the'Oddfactors' Brainteaser competition (set in the June supplement),
and a machine code action game, Astro Wars, by Alan Malik. This makes the magazine
cassette even better value this month, and you can get one cassette free if you
take out a subscription now (see the back cover for details).

Hint Winners
This month the £18 prize goes to P.Jollyman and the £5 prize to E.Westhead. Any
new hints will always be most welcome.

3

ELBUG MAGAZINE

GENERAL CONTENTS

Page Contents

2 Editorial

4 Fireworks Display

5 New Electron Add-ons

7 Digger
11 Cassette Troubles
14 Electron Graphics (Part 10)
19 New Games for your Electron
20 Multiple Programs in Memory
22 Compacting Basic Programs
26 Books for Programmers
28 Faster Programming

Using Indirection Operators
30 The Memory Game

HINTS, TIPS & INFO PROGRAMS
6 Electron Clock Impression 4 Fireworks Display
13 Faster "TAND" in IF Statements 7 Digger Game
13 Direct Poke with INPUT 14 Five Examples of Animated Graphics
18 Reversing Flags ROTATE, WALK, RIPPLE,
18 Simulated BBC Tab Key SHIP1, SHIP2
18 Waiting for Keys 22 Program Compacter Utility
21 Another Rounding Error 30 The Memory Game

21 Speed Improvement when
Handling Logical Values

25 Getting the Right Character

25 Line Listing after Error

33 Screen Colour Changing

ELBUG OCTOBER 1984 Yolume-1 Issue 10

FIREWORKS DISPLAY

by D.D. Harriman

The short program listed here, by D.D. Harriman, is a good example
of an animated graphics display. As such it 1is an excellent
demonstration of the use of the VDU19 instruction described in this
month's "Electron Graphics" article, and provides a colourful
animation of a cluster of exploding fireworks.

To use the program, just 140 Q%=0:PROCF (300,0,0,100,9,

type it into your Electron, and 3 13,0)
F
150 X2%=X1%:Y2%=Y1%:F2%=F1%

run it. The display uses mode 2
160 FOR A=@ TO PI*2 STEP PI/8.5

toc build up a pattern of
coloured dots. After a short 176 PROCF (X2%,Y2%,C0S A*50,SI
N A*508,9,999,F2%)

delay the program will then
animate the display to produce 180 NEXT:0%=1
a multi-coloured sequence of 190 FOR A%=-8 TO 8
expladlnt_:! fireworks. | 200 PROCF (990@,9,4%, Té+RND (18)
The fireworks program listed ,5,999,@)
218 NEXT:F2%=0

here is both brief and quite
simple. A shgrt EECFIGH of 29@ FOR A=0 TO PI*2 STEP P1/7
code (contained ‘in the 230 GCOL@,F2%:MOVE6Dd, 800

procedure PROCF) displays a 240 DRAWAB@+COS A*50,800+SIN
A*5d

series of dots on the screen in
different colours to represent 25@ PROCF (60¢,80@,C0S A*5@,SI
N A*506,9,999,F2%)

three different types of

firework (lines 168 to 186, 190
to 216 and 220 to 268). The
colours are then redefined 1n a

260 F2%=F2%+1:NEXT
27@ REPEAT PROCPP:UNTIL INKEY

_ , @<>TRUE

fixed sequence (using the 286 END
procedure PROCPP called 29¢ -

repeatedly at line 278) to 333 MODE 6
produce the impression of 310 ON ERROR OFF
movement .

32@ IF ERR<>17 REPORT:PRINT"
at line ";ERL

330 END

340 :

1088 DEF PROCW

1816 TIME=0:REPEAT UNTIL TIME>3
1020 ENDPROC

1838 :

1846 DEF PROCPP

1050 C%=RND(7) :FOR F%=0 TO 13
1860 PROCW:VDU19,F%,C%;6;19, (F
$+13)M0OD14;46;0

1878 NEXT
i 1888 ENDPROC
fé; 1099 :
1180 DEF PROCF (X%,¥%,M%,YM,G,

N%,F%)

111¢ FOR K%=1 TO N%

1120 X%=X%+XM%/1.5:Y%=Y%+¥M/1.5
1136 YM=YM=-G:F%=(F%+1)MOD14:GC
OLG,F%

114@ PLOTES,X%,Y%

115¢ IF X%>=-1 AND X%<1280 AND
¥Y$>-1 AND Y%<1@24 NEXT ELSE K%=
9999 : NEXT

1168 X1%=X%:Y1%=Y%:F1%=F% .
117@ ENDPROC

18 REM PROGEAM FIREWOREKS

20 REM AUTHOR D.D. HARRIMAN
30 REM VERSION E1.0

43 REM ELBUG OCTOBER 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
6@ :

180 ON ERROR GOTO 300

11@ MODE 2:COLOUR143:COLOURT4

12@ vDU19,15,@;@; :VDU19,14,7;0;12
13@ vDU23,1,0:;9;0;@;

ELBUG OCTOBER 1984 VYolume-1 Issue 10

)]

NEW ELECTRON ADD-ONS

Reviewed by Alan Webster

This month sees the emergence of three new add-ons for the Electron,
a ROM expansion board, a printer interface and a combined printer

and joystick interface.

Product : Slogger ROMBOX

Supplier : Slogger Advanced Systems,
215 Beacon Rd., Chatham,
Kent. MES 7BU.

Price :

£39.50 incl. VAT

The first of the add-ons to be
reviewed this month is a ROM expansion
box from Slogger Advanced Systems which
will held up to eight extra ROMs. ROM
based software has already proved very
successful for the BBC micro and the
story 1s likely to be the same for the
Electron now that these add-ons are
available. The box is made of moulded
plastic in a darker shade of cream than
the Electron. It is a pity that a
little more trouble was not taken in
the design of the ROMBOX to ensure a
better match between the two units,

The unit plugs onto the edge
connector at the back of the Electron
and has two plastic screws to ensure
a firm fixing. Although the ROMBOX has
its own edge connector for further
expansion, this does not provide any
screw holes for the firm attachment of
any such add-ons. The unit is supplied
with an eleven page A4 manual, and
contains very detailed instructions on
the connection of the ROMBOX and the
fitting of ROMs and RAMs.

This type of expansion is bound to
become more popular as software

companies start to produce ROM-based
software for the Electron. Some
software already exists on ROM such as
Slogger's STARMON which is a machine
code monitor. Other ROMs for the BBC
micro will work partially on the
Electron provided that they are not
dependent upon the use of function keys
and mode 7. Examples are Acornsoft's
BCPL, Printmaster and Graphics ROM from
Computer Concepts, and BEEBUGSOFT's
Exmon and Toolkit, both of which will
be available in Electron versions soon
(watch the supplement for further
announcements) .

The ROMBOX is a sound product that
will provide the necessary expansion to
accomodate ROM based software as it
becomes avallable. The ROMBOX also
provides a connector for further
expansion. Many potential purchasers
are, however, likely to be put off by
the rather crude appearance compared
with the Electron itself.

Product : Printer Interface

Supplier : First Byte, 10 Castlefields,
Main Centre, Derby. DE1 2PE.

Price : £34.95 incl. VAT

First Byte were one of the earliest
companies to produce an add-on for the

Electron when
joystick interface

they produced their
(reviewed Vol.]

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

6

P s PO St B A ST e R R S S L ST R e T e e e e 220

No.7) . This printer interface 1is The PRINT STICK from SIR Computers Ltd
identical in appearance, with follows their ROM board which was
everything enclosed in a very neat reviewed in ELBUG Vol.1l No.5.
moulded plastic case. As with the
joystick port, there is no means of any In appearance, PRINT STICK is quite
further expansion. different from the previously released
ROM board, consisting of a fairly large
The printer interface is packaged in flat pack that is a push fit onto the
a glossy and colourful box, and the Electron's rear edge connector. Moulded
instructions for the use of the in black plastic the interface provides
interface are also printed on the a parallel printer connector and two
packaging. All printers using a switch-type joystick ports (Atari style
standard parallel Centronics interface joysticks) similar to the First-Byte
should work with the Electron using joystick interface.
this interface. The printer is readily
controlled from the facilities already The unit contains its own software
built into the Electron's operating to provide the user with two extra
system. commands (*DEFINEKEYS and *SCREENDUMP)
providing useful and convenient control
As with the joystick interface, of the interfaces provided. The keys
First-Byte are to be congratulated on equivalent to Jjoystick directions are
producing such a good looking and well defined using the first command. This
designed product. allows almost any suitable game or

other software to be quickly adapted to
joystick control. For example if your
game used the keys Z, X, *, 7, and
RETURN for left, right, up, down and

Product : PRINT STICK fire, then you would define the
Supplier : SIR Computers Ltd., joystick to be equivalent to these
91 whitchurch Rd., keys.,
Cardiff. CF4 3JP.
Price : £45,95 incl. VAT The interface also contains a screen

dump for a printer, including shading
if the picture 1s in colour. This is
activated by the command *SCREENDUMP,
or by pressing Func and Copy together,
and is a most useful feature of this
device.

Overall, this interface is very well
made and obviously a lot of thought has
gone into its functional design. The
built-in software functions are an
excellent feature. All this is marred
by the rather ‘'cheap and nasty’
appearance of the black plastic casing
which again does not match well in
appearance with the Electron. .

INTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

ELECTRON CLOCK IMPRESSION - R. Angus

The following program will enable an Electron to do an impression of a clock. It
uses the cassette motor relay to produce the ticking nolse. However, we don't advise
you to leave your Electron ticking away or you might wear the relay out!

10 REPEAT TIME=@:*M.1
20 REPEAT UNTIL TIME>18@:TIME=@:*M.0
30 REPEAT UNTIL TIME>10@:UNTIL @ .

ELBUG OCTOBER 1984 Yolume-1 Issue 10

DIGGER

by Andrew Logan

Digger 1is an arcade style game based on the popular home micro game
of "Monsters' or 'Panic!'. It is a one player game in which you have
to kill the gremlins before they kill you, and I am sure you will
find this an amusing and challenging game.

On running the program, vyou are
presented with instructions on how to
play and the keys to use. After
pressing the space bar, the screen is
drawn and the game starts. The screen
consists of a number of walkways made
from brick with several different
height ladders connecting each floor.

The game starts with you being
chased by three gremlins. To kill the
gremlins you must dig a heole in the
floor by pressing the space bar three
times. When a gremlin falls into the
hole you must hit it on the head with
your shovel (by pressing the space bar
again) so that it falls through to the
next floor and dies. As you progress to
the next level, you must dig two holes
directly underneath esach other- and drop

the gremlin through both in order to
kill it. On the third level the
gremlins have to be dropped through
three levels and so on.

To make the game harder, you only
have a limited amount of oxygen which
slowly runs out while vyou play each
level. If your oxygen runs out then
you suffocate and the game ends. You
start the game with three 1lives, and
lose a life every time you are caught
by a gremlin.

The keys to use for playing the game
are '2' and 'X' for left arnd right and
'*' and '?' for uwp and down. The
spacebar is used to dig and to hit the
gremlins on the head.

18 REM PROGRAM DIGGER
20 REM VERSION EQ0.4
3¢ REM AUTHOR ANDY LOGAN
4@ REM ELBUG OCTOBER 1984
50 REM PROGRAM SUBJECT TO COPYRIGHT
6@ :
100 ON ERROR QOTO 3180
1180 MODE1:PROCtitle
120 MODES:PROCstart
130 S%=0:0%=1:H%=3
148 PROCinit
158 PROCplatform
168 PROCladder
178 PROCsu
1880 TIME=0
19¢ REPEAT
200 PROCm:PROCg
PROCscore

ELBUG

OCTOBER 1984

Volume-1 Issue 10

8

TR T e T W T e I e e e e e S g (1)

2280 UNTIL DEAD% OR CO%=3

230 IF BON%<=00 GOTO260
247 IFDEAD% ANDH%<>@ CLEAR:CLS:GOTO140
250 IFC0%=3 U%=0U%+1:CLEAR:CLS:G0TO140@

260 COLOUR3:PRINTTAB (6,18) "GAME OVER"

: FORT=0TO300@ :NEXT : *FX15

27@ G=GET:CLEAR:CL5:GOTO 130

283 END

290 :
100@ DEFPRCCtitle

101@ COLOUR3:PRINTTAB(12,2);"D I GG E
R" :COLOUR1 : PRINTTAB(12,3) ;STRINGS (11,"

*II}

1820 COLOURZ2
1830 PRINT'TAB(2) ;"Lure the GREMLINS i

131@
6,60
1320
1330
1340
135@
1360
137@

1380

vDU23,236,231,36,60,126,219,126,3

vDU23,237,@,0,0,32,224,32,0,0
vDU23,238,0,0,0,0,128,80,32,64
vDU23,239,@,0,0,08,8,139,139,255
vDU23,240,@,0,0,238,238,8,119,119
vDU23,241,0,0,0,0,08,8,119,119
vDU23,242,@,0,0,0,1,10,4,2
VDU23,243,129,66,36,8,8,36,66,129
1390 A%=@:REM SET HI-SCORE

1400 ENVELOPE1,1,68,10,-127,24@,113,14
,126,8,0,-126,126,126

1410 ENVELOPE2,@,8¢,-11@,-5@,159,25d,
99,126,0,@,-126,126,126

142¢ ENVELOPE3,1,0,0,0,0,0,0,126,0,0,-

nto the holes that"''"you dig in the br 126,126,126

ick-work and knock"''"them on the head. 143@ ENDPROC

To kill a Gremlin you"™'"'"must knock it 1449 :

through at least the"''"sheet number of 1453 DEF PROCplatform

1460
1470
1480

COLOUR2:CLS
FORJ%=5T029 STEP3
FOR I%=0TO 19

levels.Kill all three"
104@ PRINT'"Gremlins before the oxygen
runs out if"''"you are to continue."''

""Keys to use are:"''"Z - Left, X - Rig 1490 PRINTTAB(I%,J%);PS;:A%(I%,J%)=-1
ht, * = Up"''"? - Down, and SPACE to di 1500 NEXTI%

g or knock." 1510 NEXTJ%

1058 COLOUR3:PRINTTAB(12,30) ;"PRESS SP 1528 ENDPROC

ACE":REPEAT:UNTIL INKEY-99:ENDPROC 1530 :

1060 : 1540 DEF PROCladder

1078 DEF PROCinit 1550 C%=0@

188B@ IFU%=9 U%=1 1568 COLOUR1

1098 CO%=0:0XY%=50+ (U%*3d) 1578 FORJ%=4 TO 25 STEP3
110@ IFU%>=4 OXY%=0XY%+150 1580 C%=C%+]

1118 LA%=FALSE:STILL%=FALSE 1598 IFC%=3 C3%=1

1600 FOR L%=J% TO J%+3

161@ IFC%=1 PRINTTAE(2,L%);LS;:A%(2,L%
)=2:PRINTTAB(10,L%);LS;:A%(10,L%)=2:PRI
NTTAB (17,L%) ;LS; :A%(17,L%)=2

1620 IFC%=2 PRINTTAB(6,L%);LS;:A%(6,L%
)=2:PRINTTAB(14,L%);LS;:A%(14,L%)=2

1120 DIMAS%(20,31) ,E%(5) ,F¥(5) ,M$(3) ,PD
$(2) ,PRLS(2) ,BS(2) ,TRAP% (5) ,T%(5) ,DM% (5
) 15G% (4)

113¢ DEAD%=FALSE:R%=0

1140 FORI%=1 TO 3:M$(I%)=CHRS (I%+232):
NEXTI$%

11580 L$=CHRS$S231:P5=CHRS230 1630 NEXTL%
11680 MDS=CHRS$239:PRLS (1)=CHRS232:PRLS (1640 NEXTJ%
2)=CHRS237 1650 FORI%=1TO8
1178 PDS(2)=CHRS5238:PDS(1)=CHRS5242 1660 LX%=(RND(4)*4)-2:LY%=(RND(6)*3)+5

1180 GS=CHRS236:B5(1)=CHRS240:B5(2)=CH 1670 FORJ%=LY% TOLY%+2
RS241 1680 PRINTTAB (LX%,J%);L5;:A% (LX%,J%)=2
1198 SPL$=CHRS$243 1690 NEXTJ%:NEXTI%

12@@ ENDPROC 178@ ENDPROC

1210 : 1710 :

12280 DEFPROCstart 1728 DEF PROCm

1239 vDU19,1,6,9,0,0 1738 IF DEAD% ENDPROC

1240 vDU23,1,0;0:0:8; 1740 N%E=X%:M%=Y%:W%=B%:0%=C%

125¢ vDU23,230,119,119,@,238,238,0,119 1750 IFINKEY-73 Z%=3:Y%¥=Y%-1:G0T01818@
119 176@ IFINKEY-105 Z%=3:Y%=Y%+1:G0TO1814@
1260 vDU23,231,129,129,129,255,129,129 1778 IFINKEY-98 Z%=1:X%=X%-1:GOT0181@
;129,255 1780 IFINKEY-67 Z%=2:X%=X%+1:G0T01810

1276 vDU23,232,0,0,0,4,7,4,0,0 1790 IFINKEY-99 PROCdig:ENDPROC

1280 VvDU23,233,24,24,0,124,190,25,36,34
1296 vDU23,234,24,24,0,62,125,152,36,68
130@¢ vDu23,235,90,99,66,126,126,36,36, 1820 IFZ%=3 ANDA%T (X%,Y%)<>2 K%=N3:Y%=M

36 %:ENDPROC
—

180@ STILL%=TRUE: ENDPFRCC

1816 STILL%=FALSE :

ELBUG OCTOBER 1984 Yolume-1 Issue 10

DI 86 ER

Lure thé GREMLIMNS inta the holes Fhat

you dig In the brick=work and Enook

them omn the heéesd. o Kill a Gréslin goau

must kEnock 1t through at least the
gheet number of levels Kill all three

Giramlins before the oXxugen rFruns oubt 1 F

gou are t i cont inue .

Keys to use are:
LéefFE, X Right, = Up

Down, and SPACE to dig or knock.

FREEE SPRACE

1830 IFA%(X%,Y%+1)=0 PROCfall :ENDPROC

1840 IFZ%=1 ANDX%<1 X%=1

1850 IFZ%=2 ANDX%>18 X%=18

18600 IFZ%<>3 ANDX%<>1 ANDX%<>18 SOUNDT
12,185,1

1878 IFZ%=1 B%=X%-1 ELSEIFZ%=2 B%=X%+1

1880 C3=Y%

1898 PROCprint

199080 IFA%(X%,Y%)=4 ORA%(X%,Y%)=5 ORA%(
X%,Y%+1)=6 ORA% (B%,C%)=4 ORA% (B%,C%)=5
PROCdead

1910 ENDPROC

1926 1

1930 DEFPROCprint

194@ PROCback (N%,M%)

19580 PROCback (W%,0%)

1960 COLOUR3:PRINTTAB(X%,Y%) ;MS(2%)

1970 IFZ%=3 ORLA% ENDPROC

1980 COLOURZ:PRINTTAB(B%,C%) ;PRLS (Z%)

1993 ENDPROC

2009

2019 DEFPROCg

2020 IFDEADRENDPROC

2030 R%=R%+1:IFR%>3 R%=1

2040 K%=E% (R%) :L%=F% (R%)

20580 IFDM% (R%)=TRUE: ENDPROC

2060 IFNOTSTILL%® SG% (R%)=FALSE

2070 IFTRAP% (R%)ANDTIME-TS (R%)>300 TRA
P% (R%) =FALSE:A% (E% (R%) ,F% (R%)) ==-1:COLOU
R2: PRINTTAB (E% (R%) ,F% (R%)) ;PS:F% (R%)=F%
(R%)-1:E% (R%)=E% (R%) +5GN (X%-K%) : GOT0215
(8 ELSEIFTRAP% (R%) : ENDPROC

2080 IFS5G% (R%)GOTO210@

2090 IFSGN (X%-K%)=0 ANDINT((L%-1)/3)=
L%-1)/3 5G%(R%)=TRUE:IFRND(1)>.5 P%=1
LSEP%=-1

2108 IFS5G% (R%)ANDA% (K% ,L%+5@N (Y%-L%))<
>2 PROCstill:GOTO02150 ELSEIFSG% (R%)SG% (
R%) =FALSE

2118 IFL%>Y% ANDA% (K%,L%-1)=2 F%(R%)=F
% (R%)-1:GOTO2150

2120 IFL%<Y% ANDA% (K%,L%+1)=2 F%(R%)=F
% (R%)+1:G0T02150

2130 IFINT((L%-1)/3)=(L%-1)/3 E%(R%)=E
% (R%)+5CN (X%-K%) : GOT02150

(
E

21408 ENDPROC

2150 IFA%(E%(R%),F%(R%))=4 ORA%(E%(R%)
,F%{R%}}=5:E%{E%}=K%:F%{E%}=L%:PEGﬂhyp:
SOUND@ ,-15, 208,

21680 IFE%(R%)<0 E% (R%)=0

21780 IFE%(R%)>19 E%(R%)=19

2180 IFA%(E%(R%),F%(R%)+1)=0 F%(R%)=F%
(R%)+1:A% (E%(R%) ,F% (R%))=6:TRAP% (R%)=TR
UE::T% (R%)=TIME

2190 IFA%(E%(R%) ,F%(R%))=0 A%(E%(R%),F
t(R%))=4

2200 IFA%(E%(R%),F%(R%))=2 A%(E%(R%),F
$(R%))=5

2210 IFA%(K%,L%)=4 PRINTTAB (K%,L%):SPC
1:A% (K%,L%)=0

2220 IFA%(K%,L%)=5:COLOUR1:PRINTTAB (K%
L%) ;LS:A% (K% ,L%) =2

2230 COLOUR3:PRINTTAB (E% (R%) ,F% (R%)) ;GS

2240 IF(X%=E% (R%)ANDY%=F% (R%))OR (B%=E%
(R%) ANDC%=F% (R%)) THENPROCdead

2250 ENDPROC

2260 :

227@ DEFPROChyp:REPEAT:E% (R%)=RND(19):
F%(R%)=(RND(9) *3)+1:UNTILE% (R%) <>X% AND
F%(R%)<>Y% ANDE% (R%)<>B% ANDE% (R%)<>C%
ANDA% (E% (R%) ,F% (R%)) <>4 ANDA% (E% (R%) ,F%
(R%))<>5

2280 ENDPROC

2290 :

2300 DEFPROCstill

23180 IFK%=19 P%=-1:5CG%(R%)=FALSE ELSEI
FK%=0 P%=1:5G% (R%)=FALSE

2320 IF (A% (K3+P%,L%)=4 ORA% (K%+P%,L%)
5) SG% (R%) =FALSE: PROChyp ELSEE% (R%)=E% (R
%) +P%

233@ ENDPROC

2340 :

2350 DEFPROCsu

2360 DEAD%=0

2370 COLOUR3

2380 FORI%=1 TO23:E%(I%)=B:NEXTI%

239Q@ F%(1)=4:F8(2)=13:F%(3)=25

2400 FORI%=1TO3

2410 PRINTTAEB(E%(1%) ,F%(I%)); ;G5:A%(E%(
I%) ,F%(I1%))=4

2420 NEXTI%

2430 REPEAT:X%=RND(18) :¥%=(RND(8)*3)+1
tUNTILA% (X%,Y%)=0 ANDAR (X%-1,Y%)=0:2%=1
:B%=X%-1:C%=Y%

2440 COLOUR3:PRINTTAB (X%,Y%) :M5(1) :COL
OURZ: FRINTTAB (B%,C%) ; PRLS5 (1)

2450 COLOUR3:PRINTTAB(3,3);"SHEET ";U%

2460 COLOUR3:FORI%=1TOH%:PRINTTAB(I%,3
1)MS(1) ; :NEXTI%

2470 ENDPRCC

2480 :

2493 DEFPROCdead :PRINTTAB (H%,31) ;SPC1;
tH%=H%-1

2500 DEAD%=TRUE

2510 *FX15,0 —

ELBUG

OCTOBER 1984

VYolume-1 Issue 10

ELBUG

10

2528 COLOUR3:S0UND@,3,5,1

2530 PRINTTAR(B%,C%);SPCI

2540 PRINTTAB (X%,Y%);MDS

2550 ENDPROC

2560 :

2578 DEFPROCfall

2580 LA%=TRUE

25990 PROCprint

2600 COLOUR3:LA%=FALSE

2610 REPEAT

26200 COLOUR3:PRINTTAB (X%,Y%) ;MS(3)
2630 IFA%(X%,Y%)=6 PROCdead

2640 IFA%(X%,Y%)=-1 COLOURZ2:PRINTTAB (X
%,Y%) :PS ELSEPRINTTAB (X%,Y%) ;SPC1

2650 Y%=Y%+]

2660 UNTILAZ (X%,Y%3+1)==1 ORA% (X%,Y%+1)
=7 ORA% (X%,Y%+1)=8 ORDEAD%

2670 I1FDEAD% ENDPROC

2680 PRINTTAB (X%,Y%:) ;MS(3) :B%=X%-1:C%=
Yi=1:2%=3

2690 IFA%(X%,Y%)=4 PROCdead

2700 ENDPROC

271@ :

2720 DEFPROCdig

2730 IFA%(B%,C%+3)=2 ORA%(B%,C%+1)=0 O
RA% (B%,C%) =2 ORY%=28B ORZ%=3 ORB%=0 ORE%
=19 ENDPROC

2740 COLOURZ2:PRINTTAB(B%,C%) ;PDS(Z%):P
ROCg: IFDEAD% ENDPROC

2750 COLOUR2

2760 IFA%(B%,C%+1)=6 PROCmonstfall :GOT
02810

2770 SOUND@,1,206,1

2780 IFA%(B%,C%+1)=-1 A% (B%,C%+1)=7:PR
INTTAB (B%,C%+1) ;B5(1) :GOTO281¢0

2790 IFA% (B%,C%+1)=7 A% (B%,C%+1)=8:PRI
NTTAB (B%,C%+1) ;BS (2) :GOT02810

2800 IFA%(B%,C%+1)=8B A% (B%,C%+1)=0:PRI
NTTAB(B%,C%+1) ;SPC1

2810 COLOURZ:FRINTTABR(B%,C%) ;PRLS (2%)
28203 ENDPROC

2830 :

28403 DEFPROCmonstfall

2850 LVE=1

2860 FORI%=1TO3

2870 IFDM% (I%)GOTO2890

2880 IFE%(1%)=B% ANDF% (I%)=C%+1 XX%=E%
(I%) :¥YY%=F%(I%) :RR%=1I%

2890 NEXTI%

2900 COLOURZ:PRINTTAB (XX%,YY%);PS:A% (X
X%, YY%)==1

2910 YY%=YY%+1:COLOUR3:PRINTTAR (XX%,YY
%) ;G5

2920 REPEAT

2930 IFA%(XX%,YY%)=0 PRINTTAB (XX%,YY%)
;SPC1 ELSEIFA% (XX%,YY%)=6 PRINTTAR (XX%,
YY%);GS

&

&

*

OCTOBER 1984

SCODODRE =4 F]
=HE T =

o IS fSIffifif ITTEiiEiiqed o«

T i AIITIfadiIiEYy LI TiaeEs

i SETITTITI{fiC <{ICDIf <4940 4K

I{-I:I{ll'l{{{'li‘i:{{'ttl fIIfEL LITEELisEEL

ffEf JSIfEfif ffifdf ffEdEEEEELEE EEE4
CECEEEEEEsEE It oniicicaes {EifEEsisis
ITif SETLTEEfEAiit EHTTTOffCOEr SEE
seoeeseitioe Moororeoonnen ceronaoon

TR A T L T L S L AT EEEEE4Eid
Py OXMYOEMN 11@

2940 YY3=YY%+]1

2950 PRINTTAB (XX%,YY%) ;GS

2960 IFINT((YY%-2)/3)=(YY%-2)/3 LV%=LV
$+1

2970 UNTILA% (XX%,YY%+1)=-1 ORA% (XX%,YY
%4+1) =7 ORA% (XX%,YY%+1)=8

2980 TRAP% (RR%)=FALSE

2990 TIFLV%>=U% PRINTTAB (XX%,YY%):;SPLS:
SOUND@, 3,5, 1 :PRINTTAB (XX%,YY%) ; SPC1 : 5%=
S%+ (LVE*10Q) : DM% (RR%) =TRUE :C0%=C0%+1 EL
SEE% (RR3)=XX%:F%(RR%)=YY%:A% (XX%,YY%) =4
1008 ENDPROC

e :

3020 DEFPROCscore

3@30@ COLOUR3:PRINTTAB(3,1);"SCORE ":5%
3040 BON%E=0XY%- (INT (TIME/100))

3050 IFBON%<=99 PRINTTAB(15,31);SPCl1;
3060 IFBON%<=9 PRINTTAB(14,31):5PCl:
3@7@ PRINTTAB(6,31);"OXYGEN ";BON%;
3J0B0 IFBON%<=0 PROCdead

309@ ENDPROC

3108

3118 DEFPROCback (BX%,BY%)

3120 IFA% (BX%,BY%)=0 PRINTTAB(BX%,BY%)
: SEC1 : ENDPROC

3130 IFA%(BX%,BY%)=2 COLOUR] : PRINTTAB (
BX%,BY%) ; LS: ENDPROC

3140 IFA% (BX%,BY%)=-1 COLOURZ:PRINTTAR
(BX%,BY%) ; PS: ENDPROC

3150 IFA% (BX%,BY%)=7 COLOURZ2:PRINTTAB (
BX%,BY%) ;B5 (1) : ENDPROC

3160 IFA% (BX%,BY%)=8 COLOUR2:PRINTTAR (
BX%,BY%) ;BS5(2) : ENDPROC

317@ ENDPROC

3188 :

3198 ON ERROR OFF

3208 MODE 6

32180 IF ERR=17 END

322@ REPORT:PRINT" at line ";ERL

323@ END .

* &

Yolume-1 Issue 10

11

CASSETTE TROUBLES

By Peter Rochford

This month Peter Rochford takes a close look at the problems that
you can encounter when using cassettes for storing programs, and
gives some suggestions to help alleviate the troubles that you may

Come across.

If there is a particular aspect of
using a micro that causes more frayed
tempers than any other, it must be
loading and saving cassette programs, I
must admit that, compared to other
computers, the Electron like its bigger
brother the BBC micro does have a
better cassette interface than most.

Still, problems do occur from time
to time for wvarious reasons and
computer shops seem to spend a great
deal of their time sorting out
customers' troubles in this area.
Remembering to observe a few golden
rules and armed with a bit of extra
knowledge, most of these problems can
be avoided. We'll start by discussing
two of the simplest (and in my
experience most neglected) causes of
problems with loading and saving.

THE CASSETTES

Firstly, the cassettes you use on
yvour deck must be of good quality. Most
of the so-called 'computer cassettes'
that bear no brand name or label, are
of dubious quality. The tape they
contain 1is thin, |possessing poor
magnetic qualities, has a tendency for
the brown oxide coating to flake off,
and 1is very prone to creasing or being
chewed up by the cassette deck tape
transports. Even the cassette shell and
its mechanism are made to poor
tolerances, causing uneven tape feed
and possibly uneven tape speed.

The Japanese company TDK, well known
for their high quality audio cassettes,
are now producing C15 tapes suitable
for home computer use. These tapes are
excellent and the only ones that I
would recommend [We have found that any
'quality' brand will normally produce
good results - Ed.]. If you are unable
to locate a shop selling these, try to
obtain the C45 by the same manufacturer
that sells for around the same price.
This may seem a better buy at first,

but the extra time spent winding and
rewinding is detrimental to the
cassette deck and the tape in the long
run, not to mention inconvenient when
in a hurry. If you find that 22 minutes
per side 1is too long, you can always
cut and splice the tape to the most
suitable length. It's worth all the
effort I can assure you.

THE CASSETTE RECORDER

Next, the importance of correct care
and cleaning of the heads and tape
transport of your deck cannot be
overstressed, ©Sadly, so many people
seem to neglect this and the results
are damaged tapes and constant load and
save problems. I blame manufacturers
for this, as they never seem to
emphasize the importance of good
maintenance in the literature they
supply with the machine.

The use of 'head-cleaning tapes' Iis
a real waste of time and money and has
my total condemnation. I spent ten
years 1in the hi-fi business and never
came across a head-cleaning tape that
cleaned the heads effectively - let
alone the rest of the tape transport.
The best way to do the job is with
cotton wool buds and a proprietary
head-cleaning fluid. A company called
BIB market a kit containing all the
things you need and this is available
from most of the better hi-fi dealers.
Instructions are included on cleaning
the heads, rubber pinch roller, capstan
and tape guides., How often you perform
this operation depends on how often you
use the deck, but an average guide is
every three weeks if the machine is in
regular use.

With periodic attention paid to the
cleaning of the transport of your tape
machine and the use of good quality
tape you will save yourself a lot of
aggravation. So, now let's look at some

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

12

of the more involved problems with
cassette machines and their causes.

A great many owners of computers 1
know have all experienced the annoyance
of getting their new computer home and
being unable to get the demonstration
tape, or other commercially made tape
to load with their cassette deck. This
may be due to the deck being
incompatible with the cassette
interface of the Electron. However,
quite often it 1is a case of the
record/playback head-alignment of your
cassette recorder being different to
that of the duplicating machine the
demonstration tape was made on.

The problem occurs because when the
tape passes over the head on your deck,
the position of the recorded signal is
mis-aligned on the tape in relation to
the positicn of the |head. The
mis-alignment is never so far out that
the head picks up no signal at all, but
just enough to cause a loss in level
and information.

The cure is for the position of the
head on your machine to be adjusted by
means of a screw on the platform that
the head sits on. I don't intend to
give you instructions on how to do it
yourself for two reasons. Firstly, all
cassette decks differ in how accessible
the screw is, making a description too
involved. Secondly, it is all too easy
to get intc a lot of trouble unless you
know what vyou're doing. 1 therefore
urge you +to take your deck to your
computer dealer or hi-fi specialist and
get hils engineer to align it using a
commercially recorded engineering test

tape.

If you encounter only the occasional
load or save problem using your
computer, try checking the connections
on the leads you are using and if they
are even slightly suspect, re-solder
them using a fine-tipped iron and a
good quality resin-cored solder. Plugs
that wobble in their sockets and do not
provide a firm connection should
obviously be replaced.

Getting a consistently good save or
load success rate may be just a matter
of experimenting with the tone and
volume controls of your recorder until

you find the best setting. Once you
have discovered the optimum setting,
mark the controls accordingly for
future reference. On some decks, if you
are using a DIN socket, no amount of
fiddling with the controls will do
anything, as the level of these is
fixed and independent of volume and
tone settings.

Electrical interference can often be
the hidden source of trouble. The
switching on and off of the thermostat
on your fridge or central heating can
send a nasty spike through your mains
supply and cause your load or save to
fail at some point. The best answer
here is, once you have identified the
offending unit, bhave it fitted with a
suppressor by a qualified electrician.
There are devices on the market which
you can plug your computer into to
suppress mains borne interference.
Scmetimes they work, but it may be that
the interference is not coming through
the mains itself, but transmitted
through the air. So it 1is better to
suppress the problem at source.

The last question I am going to look
at is the most complex. That of tape
deck compatibility with the Electron.
You should try and get a machine that
features a five pin DIN socket and
preferably has remote motor control.
Unfortunately, many of the machines on
the market feature five pin DIN sockets
which have fixed output levels.
Provided the specification is within
that given elsewhere in this article
and the machine is of high quality this
probably won't be a problem; there can
be no guarantees though. Try and avoid
a machine which relies on the earpiece
output for loading and the microphone
input socket for saving. The load
impedances 1in both cases are wrong and
the output of the earpiece socket at
high volume settings may be large
enough to damage the cassette Iinterface
in your computer. The input/output
levels and impedances for a tape deck
to match the Electron should be as
shown in Table 1.

Any decent hi-fi dealer should be
able to help you chocse the right deck
given these figures. Don't however,
think they will guarantee the deck will
work with the Electron. Bear in mind

md DL L e S o ST R L e e e L e L T e R R - B

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

13

other tasks apart from a data recorder.

Input Sensitivity - Between 65 to 100mv
peak-to-peak Finally, there are a few other do's

and don'ts to remember that might help
save you some problems.

Output Level - Between 20mv to 5v

peak-to-peak
Apart from keeping the tape heads
clean, it 1is worthwhile buying or
| borrowing a head demagnetiser. These
devices should be used carefully and
I with strict adherence to the
instructions that come with the unit.

Input Impedance - Greater than 100k

Output Impedance - Less than 20@ohms

Table 1.

Correct storage of tapes is an often
overlooked consideration. Don't leave
them near magnetic fields such as those
produced by loudspeakers, electric
motors, malns transformers and TV
monitors. Always return them to their
protective cases when not in use and
whatever you do, don't touch the
surface of the tape itself.

the question
discussed earlier,

taking the deck to your dealer for

of head-aligmnment we
which may mean

adjustment. Tape speed can be quite
critical on a cassette machine when
used with a computer., The maximum
variation in speed from the mean value
of one-and-seven-eighths inches per
second 1is expressed as the wow and
flutter. The wow and flutter figures
should be lower than plus or minus 2%

If your machine has remote motor
control, never leave it in the play

on any machine you wish to consider
buying.

The really expensive stereo
radic/cassette recorders usually allow
manual or automatic recording level.
Use the manual control 1if yours has
this facility and set the level on the
recording meters to just below the zero

mode with the motor off for longer than
is necessary. Whilst in this situation,
the metal capstan 1is in contact with

the soft rubber pinch roller causing it
to deform and this will subsequently

lead to irregular tape feed. It will
also put a crease in a tape that is in
situ, leading to signal dropout when
that portion is next used.

VU mark. Also, don't forget to switch

the unit into mono mode if possible. We all curse cassette loading at

some time or other for wvarious reasons.
Amongst its many disadvantages are that
of speed and flexibility. If you follow
am sure it will
for

Don't be tempted to go for the
cheapest machine. The extra expense
will mean a deck which has a better
chance of performing reliably, and with
greater longevity. In addition, if you
buy a good machine you can use it for

the above advice, 1
help to remove some of the pain

you.

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

FASTER "AND" IN IF STATEMENTS - S. Williams

When using multiple conditions in an IF statement it is marginally faster to use
nested IF commands to replace the AND operator. For example:
IF A>@ THEN IF B>@ THEN PROCdo
is marginally faster than
IF A>@ AND B>@ THEN PROCdo

...
...
''

DIRECT POKE WITH INPUT - J.5. Wellsman

It is possible to pocke a wvalue directly into a memory address with the INPUT
command, for example: INPUT "A value "?&70 will input a value and store it at memory
address &7@0. The value must be expressed in decimal and, of course, cannot be
greater than 255. .

ELBUG OCTOBER 1984 Volume-1 Issue 10

14

ELECTRON GRAPHICS (Part 10)

by Mike Williams

This month, in the last part of this series on Electron graphics, we
show you how to achieve really fast and smooth animation of graphics

displays. We have also tried
illustrate the

programs. These
round off the series,

The instructions needed to produce
animation have already been discussed
in some detail in the previous articles
in this series. The animation technique
itself depends heavily on the use of
VDU19, which we introduced in part 8.
So to make a start, let's recap on this
useful and versatile feature.

The VDU19 instruction essentially
requires two parameters, one to refer
to a colour relative to the current
graphics mode, and the other to refer
to the actual colour to be used. In
addition, there must be a further three
bytes, each Zero, Just for
completeness.

For example, in modes 1 and 5, we
are able to use four colours referred
to by number as @, 1, 2, and 3. These
are the relative colour values (RCV)
and they can be changed to any of the
16 actual colours avallable on the
Electron by using the vou19
instruction. By default, colours @, 1,
2, and 3 are black, red, yellow and
white in modes 1 and 5. However, 1f we
execute the following two i1nstructions:

vDul19,9,4,98,0,0

voui9e,3,2,0,0,a
then the same four numbers will refer
to the colours blue, red, vyellow and
green, because we have changed the
relative colours @ and 3.

Thus in any graphics mode, whether
two, four or sixteen colours are in use
we can always use the VDU19 instruction
to turn these into any set of colours
we like out of the total of 16
(including flashing colours) that are
possible. Indeed we could select mode 2
and change all 16 relative colours so
that they all appear as black (or any
other colour we care to choose) but we
would then be drawing in black on a
black background and nothing would be
visible. However, although this doesn't
seem initially very useful, this is the

to include several interesting
techniques involved and serve to

whole basis of the animation technique
that we are going to use.

Suppose we select mode 2 (this gives
us the use of the maximum 16 colours)
and we then change all of these to
black using VDU19, Next we will program
the computer to draw some object in 15
different positions on the screen, each
time using a different relative colour
(1, 2, 3 etc). If we now use VDUI9 to
change first colour 1 to white, then
colour 2 to white and so on, the object
will seem to appear in each of the
positions where it was originally
drawn. With the right set of positions
this will make the object appear to
move, and very quickly indeed. We shall
always need a background, so we will
leave relative colour @ (black) alone
and just manipulate the other 15,

[2t's now have a look at an example.
The program ROTATE when run appears to
make a square rotate about a central
point on the screen. The main program
1s quite short - VDU29 resets the
graphics origin to the centre of the
screen, PROCblackall sets all 15
'colours' 1n mode 2 to black, and
PROCsquares (20@) draws 15 squares of
size 200 evenly rotated about the
central point and all in black so that
they cannot be seen at the start. Then

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

15

18 REM Program ROTATE apparent speed of animation is quite

20 REM Version El1.1 independent of the complexity of the

30 REM Author Mike Williams object being animated since it is only

40 REM ELBUG October 1984 the colour which 1is being changed,

5@ REM Program subject to copyright nothing is being erased or redrawn.

6@ :

160 MODE 2 The program ROTATE shows this
110 vDU23,1,0;@;0;0; technique being used with line drawing
120 ON ERROR GOTOC 190 graphics (MOVE, DRAW, and PLOT).
130 VvDU29,640;512; Similar effects can be achieved with
14@ PROCblackall user defined characters. In the program
15@ PROCsquares (2@0) called WALK a small man 1is defined in
168 PROCrotate two positions (legs together, legs
17@ END astride) as characters 240 and 241 at
180 : the start of the program. Again using
190 ON ERROR OFF:MODE 6 mode 2 all the 15 colours are set to
20@ IF ERR=17 THEN END black and the man drawn alternately 1in
213 REPORT:PRINT" at line ":;ERL his two versions across the screen
22@ END (PROCsetup) . Once again by changing the
230 : colour in each position in turn to
180@ DEF PROCblackall white and back to black, we can make
181@ FOR X%=1 TO 15 the man appear to walk across the
18280 vDU19 ,X%,0,0,0,0 screen, In this case, two loops in the
1030 NEXT X% procedure PROCwalk first make him walk
1@94@ ENDPROC from left to right, and then back again
1458 : from right to left. All this Iis
1060 DEF PROCsquares(size) achieved simply by using VDU19 to

1678 FOR C%=1 TO 15 change colour,
1080 GCOL@,C%:angle=2*PI*C%/15 :
1898 PROCArawsquare(size,angle)

1180 NEXT C%

1118 ENDPROC

1120 :

1138 DEF PROCArawsquare (size,angle)

1140 x1=s5i12ze*C0S (angle) :y1=size*SIN (an
gle)

115¢ MOVE®,#:DRAW x1,y]

1160 DRAW x1-y1,x1+y]

1178 DRAW -y1,%1:DRAW @,0

1188 ENDPROC

119@ :

1208 DEF PROCrotate

1218 REPEAT

1220 FOR C%=1 TO 15

1236 vDU19,C%-1,@,0,0,0

1248 vDU19,C%,7,0,0,0

18 REM Program WALK

1258 T%=INKEY (5] 200 REM Version E1.1
1260 NEXT C% 30 REM Author John Wellsman
1276 vDU19,15,0,@,0,@ 4@ REM ELBUG OCTOBER 1984
1280 UNTIL FALSE 50 REM Program subject to copyright
1298 ENDPROC 6@ :

116 ON ERROR QOTO 22@
PROCrotate simply changes each of the 120 INPUTTAB(5,10)"Delay (in centisec
colours 1 to 15 in turn to white. This ords)? "T
gives the effect of a square rotating 136 MODE 2:VDU23,1,09;0;0;0;
about the centre of the screen and so 140 vDU23,240,28,28,8,127,8,20,34,65
fast that the delay at line 1258 is 158 vDu23,241,28,28,8,127,8,20,20,20
needed to slow things down a bit. The 160 :
beaudty of this method is that the 178 PROCblackall

s e e e e O

ELBUG OCTOBER 1984 Volume-1 Issue 10

16

R R ey A B e T o T e T e A e PSP B S oy ST

188 PROCsetup

19¢ PROCwalk

200 END

218 :

22680 ON ERROR OFF:MODE 6

230 REPORT:PRINT" at line ";ERL
243 END

250

1@0@ DEFPROCsetup

181@ FOR X%=0 TO 15

182@ COLOUR X%

1030 PRINTTAB (X%,10)CHRS (240+X% MOD 2)
:REM Each successive character printed
to each of the fifteen relative colour
values in this mode.

1843 NEXT X%

1858 ENDPROC

1068 :

187@ DEFPROCwalk

1886 REPEAT

1090 FOR X%=@ TO 15

11608 C%=X%:1IF C%=0@ THEN C%=1

1113 M=INKEY (T)

11200 vDU19,C%-1,@,0,0,0:REM This line
blacks out the previous character displ
ayed.

113@ vDU19,C%,7,0,08,08:REM This changes

the relative colour value of the next
character to white.

114@ NEXT X%

1156 FOR X%=15 TO @ STEP -1

11683 C%¥=X%:IF C%=00 THEN C%=1

1178 M=INKEY (T)

1188 vDU19,C%+1,0,0,

1198 vpDU19,C%,7,0,8,

1200 NEXT X%

1218 UNTIL FALSE

1228 ENDPROC

123@ :

1248 DEFPRCCblackall

1258 FOR X%=1 TO 15

1260 VDU19,X%,0,0,0,0:REM Every relati
ve colour value switched to black.

1270 NEXT X%

1288 ENDPROC

a,0
a,0

switch on and off). Nevertheless the
technique is a very useful one indeed
and widely used.

Iet's have a look at some further
variations on this basic idea. The next
example called RIPPLE produces a
different kind of movement. The program
again uses mode 2 and sets colours 1,
2, and 3 to be blue, cyan and white.
The program then draws a series of
short horizontal lines diagonally from
the bottom to the top of the screen
using each of the three colours in
rotation. The remainder of the program

18 REM Program RIPPLE
20 REM Version E1.2
3@ REM Author : John Wellsman
4@ REM ELBUG OCTOBER 1984
50 REM Program subject to copyright
6@ :

18@ ON ERROR GOTO 410

11@ MODE 2

120 VvDU23,1,0;@;0;0;

138 colour=1

143 REM This sets RCV 1,2 & 3 initial
ly to blue, cyan & white

15¢ vDU19,1,4,0,09,0

168 vDU19,2,6,0,0,0

17@¢ vDU19,3,7,0,0,0@

180 FOR Y%=0 TO 10@0 STEP 18:REM This
FOR loop draws horizontal lines

190 GCOL@,colour:REM This draws each
line in RCV 1,2 & 3 successively

200 MOVE 100+Y%/1.5,Y%:DRAW 500+Y%/1.
5.Y%

218 colour=colour+1:IF colour=4 colou
r=1:REM Increases RCV

2208 NEXT Y%

230 REPEAT

24@ vDU19,1,7,0,08,@

25@ vDU19,2,4,06,0,0

266 vDU19,3,6,0,0,@

270 M$=INKEY (1@)

286 vDU19,1,6,0,0,0

Of COoUr se there are some 29¢ vpul19,2,7,0,0,0
limitations. We are really forced to 36¢ vDU19,3,4,0,0,0
use mode 2 to provide sufficient 313 M$=INKEY (18)
colours and hence positions for an 320 VDU19,1,4,0,0,0
object. Because of the need for a 33¢ vDU19,2,6,d,0,0
background <colour we are already 34@ vDU19,3,7,0,0,0
restricted to 15 positions, and if we 350 M%=INKEY (10)
wish to display anything else on Fhe 360 UNTIL FALSE
screen at the same time then this will 37@ REM Lines 248 to 346 progressivel
use up more colours, further y change RCV 1,2 & 3 through blue, cyan
restricting the number that we can use and white.
for animation (otherwise any text or 380 REM Lines 270,310 & 35@¢ induce a
other graphics would also appear to delay.

ELBUG OCTOBER 1984 Yolume-1 Issue 10

17

35@ END
419 MODE6:0N ERROR OFF

420 IF ERR<>17 THEN REPORT:PRINT" at

line ";ERL
43@ END

then progressively changes each of the
relative colours 1, 2, and 3 through
the cycle of three colours (7, 4
and 6). Three complete changes return
the picture to its original state. The
effect on the screen is of the three
colours rippling up the screen. Again
the apparent movement 1is completely
illusory, being purely the result of
carefully managed colour charges.

We have already seen that the
technique is limited by the number of
colours, thus we can place an object
in just 15 different positions on the
screen. However, we can still apply a
variation on the basic theme when many
more positions are being used. The
advantage of having a large number of
positions is that the movement appears
to be much smoother. The problem when
using the MOVE, DRAW and PLOT
instructions is that you see the object
as it is being drawn on the screen. If
it is then erased, maybe by using the
Exclusive-OR technique described much
earlier in this series, a jerky ard
flickering effect results.

This is illustrated in the next
example called SHIP1 - its purpose is
to make a sailing ship move across the
sea from left to right. The procedure
PROCsail draws the ship, (made up of
triangles) by calling PROCdraw first to
display the ship, and then to make it
disappear by drawing it a second time
in the background colour. This is done
progressively across the screen.

OCTOBER 1984

160 REM Program SHIP]
20 REM Version E1.2

30 REM Author Colin Opie
40 REM ELBUG OCTOBER 1984
50 REM Program subject to copyright
6@ :

133 MODE 1

118 vDU23,1,0;0;@:0;

120 ON ERROR GOTO 190

138 vDU19,3,6,0,0,0

14¢8 QCOLWG, 3: PROCsea

158 PROCsail

16@ vDU19,3,7,0,0,0

178 END

188 :

199 ON ERROR OFF:MODE 6
200 REPORT:PRINT" at line ";ERL
2180 END

220 :
180@@ DEF PROCsea
1810 FOR X=00 TO 1279 STEP 4
1028 Y=5045*SIN(X/10)
1830 PLOTE9,X,Y
18040 NEXT X
1858 ENDPROC
1d6@ :
1878 DEF PROCdraw(X%,Y%,C%)
1880 PLOT4,X%,Y%
189@ PLOT4,X%+80,Y%

1108 PLOTS80+C%,X%+8@,Y%+80
1118 PLOT4,X%+88,Y%
1120 PLOT4,X%+88,Y%+80

1130 PLOT8B@+C%,X%+128,Y%
1148 PLOT4,X%,Y%-8B
1158 PLOT4,X%+128,Y%-8
1160 PLOTBO+C%,X%+20,Y%-48
1178 PLOT4,X%+24,Y%-48
11800 PLOT4,X%+132,Y%-8

1190 PLOT80+C%,X%+108,Y%-48
1280@ ENDPROC

1218 :

1220 DEF PROCsail

1236 GCOL@,2

1240 FORX=0 TO 1279 STEP 4
1258 PROCAraw(X,185,5)

1260 PROCAraw(X,195,7)

12780 NEXT X

1280 ENDPROC

Unfortunately, the result 1is not
very satisfactory for the reasons
described above. The solution 1s each
time to draw the ship in the next
position in black while still visible
in the previous position, and then by
changing colour to switch off the first
image and switch on the second. Because
we no longer see the ship being drawn
the resulting movement 1is very much

Yolume-1 Issue 10

18

smoother. We can change our program colours. Colour 1 is used for the first
SHIP1 into the new version (SHIP2) by display and colour 2 for the second. On
replacing the procedure PROCsall by the the third display we want to erase the
new version below together with the display drawn in colour 1, but not the

additional procedure PROCshow. one in colour 2. This is achieved by
———— & using GCOL1,c when drawing the ship and
GCOL3,c when erasing the ship where c

1220 DEF PROCsail is the relative colour, alternately 1
1230 VDU19,3,3:0; and 2. Relative colour 3 1s set to
1240 FOR X=0 TO 1279 STEP 16 yellow, the colour of the ship, at the
1258 @CoLl,1 start of the procedure PROCsail,
126@ PROCAraw(X,1@5,5) because any overlapping points between
1278 PROCshow(1) two images are always visible until the
128@ GCoL1,2 previous image is erased. The purpose
1290 PROCAraw(X+8,105,5) of the procedure PROCshow 1is to
1380 PROCshow (2) switch colours 1 and 2 between black
1310 GCOL3,1 and yellow each time it is called,
1320 PROCAraw(X,105,5) causing one image to appear and the
1330 GCOL1,1 other to disappear, ready to be erased
1348 PROCAraw(X+16,185,5) before the next image is invisibly
135@ PROCshow (1) drawn.

1360 GCOL3, 2

1370 PROCdraw(X+8,1@5,5) Clearly, from this last example,
1380 NEXT X animated graphics can quickly become a
1399 ENDPROC complicated subject. If you want to
1400 : understand the techniques described
1413 DEF PROCshow(S%) here fully, then time spent studying
1420 P%=3:REM YELLOW and playing with these programs will be
143@ VDU19,S%,P%,0,0,0 well rewarded.

14409 VDU19,3-5%,0,0,0,0

1453 ENDPROC This now completes our series on

Electron graphics. We have progressed
from wvery basic ideas to some quite

The new version 1is longer because sophisticated and complicated
there is a complication in this new techniques. The world of graphics is a
technique. Each of the new ships fascinating one and also a most
overlaps the ©previous one, so0 we rewarding one for the computer
actually need to use three relative programmer. Have fun. .

REVERSING FLAGS - R. Sterry

To change a boolean flag between its states (FALSE and TRUE) you could use:
IF FLAG%=TRUE THEN FLAG%=FALSE ELSE FLAG%=TRUE
More elegant however is: .

...

A lot of BBC programs will work on the Electron, but some use the Tab key, which
is not present. For most programs (apart from some games), this can be simulated by
pressing the Ctrl key down and at the same time pressing the 'I' key, still
with the Ctrl key held down. This is known as a Control-I. .

...
|||
''
...
...

WAITING FOR KEYS - K. Allen
To make a program wait until no keys are being pressed use:
REPEAT UNTIL INKEY (-129)
To make it wait for a key to be pressed, use:
REPEAT UNTIL NOT INKEY(-129) .

ELBUG OCTOBER 1984 VYolume-1 Issue 10

19

NEW GAMES FOR YOUR ELECTRON

Name : Ghouls
Supplier : Micro Power
Price + £7.95
Reviewer : Alan Webster
Rating = kkkk

& o UL LR

G <)

D> o o e Ll wea e

FMar= i « wslhs i 1 &= T e

TR T e 1 oad= -+

'Ghouls' takes place inside a creepy
mansion set on the top of a hill. Your
aim is to find the "power Jjewels"
whilst trying to avoid the nasty
inhabitants of the mansion, deadliest
of which is the ghost. You have to run
and jump around the floors, avoiding
poisonous spiked traps and trying not
to fall off the escalators. Avoid the
ghosts at all costs, though these can
be made to disappear for a time by
eating a stray 'power pill'.

There are four different screens in
this game and each screen has its own
room name. In my opinion the sound in
this game detracts from the overall
enjoyment, but this can be switched off
1f required from within the program.

I am sure that this game will sell
well as 1t is a lot of fun to play. It
requires the use of only three keys so
that it is easy to operate. As an extra
bonus, for people who have a joystick
interface, this game will allow you to
use switched-type joysticks (i.e the
type used by the First Byte interface
reviewed in ELBUG Vol.l No.7) to play
the game.

Name : Mr.Wiz

Supplier : Superior Software
Price : £7.95

Reviewer : Alan Webster
Rating s kkk

BCDRE « @8 588

Mr.Wiz is a version of the arcade
game 'Mr.Do' in which you take the role
of a wizard trying to collect the
cherries in his garden. There are the
usual gremlins to avoid, and these can
be killed by dropping apples on them.
You also have a crystal ball which you
can throw at the gremlins to kill them.

There are about eight different
sheets, and the game can become quite
difficult at some stages. Despite this,
my overall impression is that the
movement and sound in this game are
disappointing. The basic concept on
which the game is based is certainly a
good one, but I did not find that the
action was fast enough in this
implementation to produce an enjoyable
game playing experience.

Name : The Wheel of Fortune
Supplier : Epic Adventures
Price : £9,.95

Reviewer : John Waller

Rating s khkkk

Adventure games have something of a
cult following amongst micro
enthusiasts. This excellent adventure
from Epic contains some of the advanced

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

20

e S T e e e e T s~ St e i Nl B W]

You sre walking slong tha wll path
You are walking aleng the w=ill prath
There iz bave:

A pocket wateb

You are walking along the path, thers
iz a sroswresds ts the seuth and an ald
wrill te the nerth

VYaou have cone te & srodsreads. Faths
iead in all direstieas

Thers iz an sld bepsar here i
‘Spare & panny fer & sup o ' tes Bue¥”
‘siatech swt for that mssty policssasl’
VYou are on 2 path threough fislds te the
sauth af tThe oressroesds

Vou are om a path through fieslds te tThe
sowth af [he oresscosds

Thare is hare:

A Long soresdrieer

You are on & Path throwgh fields te the
south of the cressresds

You hawe cons to & bend in thes path,
eaths lesd nerth and sast

et maewT

features first seen in 'The Hobbit'
from Melbourne House. The aim in this
adventure is to find the 'Wheel of
Fortune' and escape the mystical world
into which you have been plunged. There
are some 'intelligent' characters in
the game who help (or hinder) your

#

progress. Be careful how vyou treat
these as they have varying moods, and
will do their best to kill you or lock
you up in jail if wyou ill treat them.
You have been warned!

Complex commands of up to 254
characters are allowed. You can talk to
the more 1ntelligent characters, but
they tend to be a bit deaf and not very

helpful. The function keys «can be
defined to store the more common
instructions to speed your progress

through the game. There is also a very
fast 'Save game' facility, so you don't
have to work your way through the
initial stages of the game every time
you play.

Overall this is an excellent
adventure, which will prove satisfying
to the novice adventurer, yet still be
challenging to the more experienced

plavyer. .

MULTIPLE PROGRAMS IN MEMORY

By Nigel Harris

If you've had your

Electron for many months now,

you're perhaps

already wordering if there are ways of reducing the number of times
that you have to load a program from your cassette recorder. Here is

a simple idea which will

help do just that. It also allows one

program to operate on another in memory at the same time.

In the Acorn Electron you have at
your mercy 32k of “random access
memory". Of course not all of this is
directly available for your use. Some 1S
used by the computer's operating system
and some by the computer's peripheral
ports; the rest is left for you and
your program. When using Basic, you can
expect to have as much as 20k of space
for a program, though this will depend
on the screen mode chosen. If you're
like me, the chances are that the great
majority of your programs use only a
part of this, the rest going vacant for
the duration of the program. When one
realises this, the obvious question is
how the remaining empty space might
best be used - how about, for example,
having more than one program in memory
at the same time?

PAGE, TOP, LOMEM & HIMEM

When a Basic program is loaded 1n
memory, the computer's Basic interpreter
needs to know where to find it. That

is, where the program starts and ends.
It also neads to know where the
beginning of unused memory is and where
the display memory starts. All of these
positions have got names and you can
print out their wvalues on the screen.

Typing PRINT "“PAGE (followed by
Return - the squiggle is tilde;dctrl gnd
the left arrow keys together) will print

the start address of your current
program and it will normally be the
value E@@, in hexadecimal notation, or
rather &E@G@ in 'computer-speak'. TOP

points, as it says, to the top of (or
the end of) your program. So after
you've loaded a program, printing the
difference, TOP-PAGE, will tell you 1ts
length in bytes. LOMEM and HIMEM define

the empty memory that's left over
between the top of the Basic program
(LOMEM) and the bottom of the memory

that's used for the screen display.
TOP and LOMEM will usually have the

ELBUG

OCTOBER 1984

VYolume-1 Issue 10

21

same value before a program is run, but
during run time, LOMEM moves away from
TOP as the memory between them is used
up by the variables in the program. So
LOMEM points at the last byte used in
this work space or 'heap'.

You can control the values of these
variables to some extent but the most
useful variable that you can control is
PAGE. Provided that vyou leave enough
space for each program and for its heap
ko grow (this includes space for
variables, arrays, procedure and
function calls and - most thirstily of
all - strings) then you can set PAGE at
different levels throughout memory and
load a different program at each point.

If you type in a program, don't
forget to type in NEW before you start,
this forces Basic to reset the other
pointers to agree with PAGE's new value.
If you load a program this 1s not
necessary as the computer automatically
does a NEW itself. Suppose you had 3
short programs "A", "B", arnd "C" on
tape. You could type (assuming that
PAGE 1is already set to &E@0, the
default setting on switch-on):

LOAD "A"™ <return>

PAGE=§1000 <return>

LOAD "B" <return>

PAGE=&2000 <return>

LOAD "C" <return>
After each LOAD command, you should
wait while the program is
loaded before proceeding to the next
step.

To use any one of these three
programs, you must first set the
pointers to find the one required. all
that is needed to do this is to type

PAGE=&1000 <Return>

OLD <Return>

RUN <Return>
which runs the program "B". For one of
the others simply set PAGE accordingly
and type OLD and ROUN.

You can also arrange for one program
in memory to switch automatically to a
different program.

As an experiment you might like to
try the following two programs. Type NEW
and then enter these lines (without
running them).

18 ON ERROR END

2@ PRINT TAB(5,5)"PROGRAM ONE here"

3@ TIME=@:REPEAT UNTIL TIME=200

4@ MODE 6

58 PAGE=PAGE+&10@:RUN

Now chamge the wvalue of PAGE by typing
PAGE=PAGE+&1 80 <Return>
NEW <Return.

and enter the next short program
1@ ON ERROR PAGE=PAGE-&1@@:END
20 PRINT TAB(3@,20)"PROGRAM TWO here"
3@ TIME=0:REPEAT UNTIL TIME=200

4@ MODE 6
50 PAGE=PAGE-&10d: RUN
Fun either program and you will

actually find that ©both will keep
running alternately until Escape is
pressed. Notice however, that only one
program is executed at a time, although
removing line 3@ from both programs
may make it look as though they were
running simultaneously. An enlargement
on this technique is used in bigger
computers to make them appear to do many
jobs at the same time.

This is rather a brief
description, but hopefully one that will
help in understanding the way that your
Basic programs fit into the Electron's
memory. Exploiting the ideas touched
upon here, you may now find more
effective ways of using your machine. (@

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

ANOTHER ROUNDING ERROR - G.Shally

This should return 1 but it actually returns @:

PRINT (40¢.21*10@) MOD 1@

You can investigate this further with the following two short lines:

PRINT INT (40.21*108)

''
__

|||||||||||||||||||||
..
..

When storing the logical wvalues TRUE and FALSE these are represented as the
numbers -1 and @ respectively:. These can be stored in a floating point variable, but

this 1is much slower than using an integer wvariable for the same purpose e.q.
ok%=TRUE. i

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

oe

COMPACTING BASIC PROGRAMS

by David Tall

If you have problems in getting your larger programs to fit into the

available memory, then the utility described here will be a great
help in finding the extra space which you require.

INTRODDCTION

Several of the articles that we have
published in various issues of ELBUG
have emphasized the desirability of
presenting programs in a clear and
readable format. Indeed this is
something we try to achieve with all
the programs listed in ELBUG magazine.
Clarity and readability are achieved
principally by two devices, the
inclusion of comments wherever
appropriate and the frequent inclusion
of spaces to separate the different
parts of an instruction.

Of course, excessive use of both
these features would considerably
lengthen any program and increase the
amount of typing when entering a
program through the keyboard. Even so
it is true to say of most programs that
a significant proportion of memory
space 1is used to store information
(spaces and comments) which is totally
unnecessary for the correct execution
of the program by the computer. For
example, we normally list all programs
in the magazine with one space between
the line number and the start of the
instruction on each line. There is no
need for this at all as far as the
computer is concerned, but it certainly
helps to make the program more
readable.

Now most of the time, the extra
memory used up in this way 1is of no
consedquence, but sometimes,
particularly with larger programs, you
can run out of memory, either when the
program is running, or even earlier
when trying to type the program in.
This is most likely to occur when using
modes @, 1 and 2, which require 20K of
memory for the screen display, than it
is for the other modes where the screen
display uses only 10K of memory, for
example, in modes 4 and 5.

Sometimes the situation becomes very
critical, amd it 1is then that the
ability to recover as much free memory

ELBUG

space as possible can be invaluable,
and the way to do this of course 1s to
remove all unnecessary spaces and
comments. Now it would be possible but
very tedious to do this by hand, and
that is where the utility listed here
will come into 1its own by doing this
for you gquite automatically.

You may wonder how, 1f you don't
have enough memory for your own
program, Yyou can now run a secord
program to compact and sgqueeze out the
spaces. This is achieved by writing the
compacter program in machine code, and
storing it lower down in memory in an
area not used for Basic programs.

SETTING UP THE PROGRAM COMPACTER
The program listed here, called

PACK, should be typed in and saved to
cassette as for a normal Basic program.
For example:
SAVE "PACK" <return>

Take care if vyou are unfamiliar with
machine code to ensure that you copy
the program accurately. You can also
save yourself quite a lot of time and
effort by omitting the '\' character
arnd any text following this character
up to the end of that line. These are
just comments and can thus be safely
left out.

To produce a working version of the
PACK program, run the program and when
it stops (the machine code has now been
assembled) type as follows:

*SAVE COMPACT B@O@ D@@ B73 <return>
This will save the actual machine code
on cassette under the name of COMPACT.
This is the program you will use each
time you want to perform a compaction.

USING THE COMPACT PROGRAM

OCTOBER 1984

There are -two ways of running this
version of the program. First, however,
load in the program to be compacted.
Then you can type:

*LOAD COMPACT {return>
in order to load the compacter into

mamory, and you can then wuse function

Yolume-1 Issue 10

23

key 1 (Func/f1) to compact your
program. Alternatively after loading
the program to be compacted you could
simply type:

*RUN COMPACT <return>
which will automatically load the
machine code and then run it. The
compacter occupies that part of memory
reserved for function key definitions
and user defined characters. Provided
yvou do nothing to alter the contents of
these memory areas, the compacter will
remain in memory, and may be called by
using Func/f1 whenever required.

The compacter program when run
offers three independent choices as
follows:

SPACES? To remove spaces.

REMs? To remove Basic REM
statements.

COMs? To remove assembler
comments.

You should answer Y (yes) or N (no) to
each choice in turn. If you don't have
any assembler code in your program it
will not matter what reply you give to
the third choice. If you choose to
remove spaces, then only those spaces
not essential to the program will be
removed . For example, any spaces
enclosed within quotes, such as may
occur with a PRINT instruction, will
always be left alone.

It 15 quite a good idea with large
programs to keep two copies, one
containing spaces and comments for
readability as the prime copy, and a
compacted version as the working copy.

10 REM PROGRAM PACK

28 REM VERSION Ed@.1

3@ REM AUTHOR David Tall
403 REM ELBUG OCTOBER 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

60 :

70 REM To reside in pages &B@@, &C@d

80 REM RUN the program & then
9@ REM *SAVE "COMPACT" BO@ D@@ B73

18@ REM The *SAVEd program may be *RUN

118 REM to compact BASIC programs.

1280 REM Reply Y to SPACEs? to remove

130 REM redundant spaces.

148 REM Reply Y to REMs? to remove RE

Ms

178 3

150 REM Reply Y to COMMENTs? to delete
160 REM comments in assembler coding.

180 *FX18

190 *K.1 CA.&B73|L|M

200 :

210 S&B5SF="SPACEsS?REMs?COMs?"

220 FORN%=0TO1:P%=&B73

230 [OPT3*N%:CLD:LDA#&5E:STALT70: LDARE
B:STAST1 :LDX#2:LDY#0

240 .a LDA(&7@) ,Y:JSR&FFE3: INY:CMP#&3
F:BNEa\print options

250 .x JSR&FFE@:AND#223:CMP#89:BEQy:C
MP#78 :BNEx\input response Y or N

260 .y STA&74,X:JSR&FFE3:JSR&FFE7:DEX
:BPLa\store response (& print it)

270 INX:STX&70:STX&T2: STX&TC: STX&T
D:STX&B@:LDX&18: STX&T71 : STX& T3\ store

line-start pointers & set ASSEMBLER fl
ag = @

280 .b CLC:LDA&72:ADC&7D:STA&T2:BCCc:
INC&73\start of next input line

299 .c CLC:LDA&7@:ADC&7C:STA&T@:BOCA:
INC&71\start of next output line

300 .d LDA#Q:LDY#4

31@ .e STA&77,Y:DEY:BPLe‘\set all flag
S to zero (except ASSEMBLER)

320 .f INY:LDA(&7@) ,Y:STA(&72),Y:CPY#
3:BEQg :CPY#1 :BNEf : CMP#&FF :BNEf : RTS\ tran
sfer initial bytes & check if last line

33¢0 .g STA&T7C:STA&TD:INY:STY&T7E\sStore

line lengths & output pointer

340 .h STY&B1:LDA(&7@) ,Y:STA&TFY (STAR
T TRANSFER LOOP) store input point
er & current byte

35@ LDX&7B:BNEt :CMP#&8D :BNEt : LDX#4
“check for coded numbers (outside gquote
s)

368 .G INC&B1:JSRP:DEX:BPLG:BMIh\if c
oded, transfer

370 .t LDX&B@:BEQi\if outside ASSEMBIL
ER, go to i

380 LDX&74 :CPX#&59 :BNEu :CMP#&5C :BN
Eu:STX&79\(in ASSEMBLER) check \ & set
COMMENT flag accordingly

39¢9 .u CMP#58:BNEv:LDX#@:STX&79\(in A
SSEMBLER) seek colon and turn off COMME
NT flag if found

40@ .v LDX&79:BNEj:CMP#93:BNEj:LDX#M:
STH&BON\ (in ASSEMBLER) if outside COMME
NT, seek] and turn off ASSEMBLER flag
as appropriate; in all cases go to j

410 .1 LDX&77:BNEo\ (outside ASSEMBLER
) if in REM delete, move on

420 CMP#&22:BNEj:LDA&7B: EOR#1 : STA&
7B:LDA&7F\look for ", change QUOTE flag
as necessary

430 .j LDX&7B:BNEp\if inside QUOTES m
ove on to transfer

4403 CMP#91 :BNEk : LDX#1 : STX&80% (outs
ide QUOTES from here on) if [, set ASSE
MBELER flag

450 .k CMP#&DC:BEQN\DATA?

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

24

T T T e S S S S B~ Sl R

460 .m CMP#&F4:BNEo:LDX&75:CPX#&59:BN
En:LDX#1:STX&77\REM? - if found & delet
ion required, set REM flag

473 .n LDX#1:5TX&7A\set DATA flag (fo
r DATA or REM)

480 .o LDA&77:0RA&79:BNEqQ\if REM or C
OMMENT don't transfer

490 LDA&TA :ORA&B@ :BNEp: LDA& 7F :CMP#
32:BNEp\if DATA or ASSEMBLER or not a

SPACE, do transfer

S58@ LDX&76:CPX#559:BNEp: LDX#0: STX&
B2:INY:LDA(&7@) ,Y:JS5Rsearch:BEQg:DEX:TX
A:EOR#1:STA&82\1if SPACES are to be dele
ted, consider following byte

518 LDY&7E:DEY:LDA(&72) ,Y:JSRsearc
h:BEQg:LDX#1:INY\look at previous byte
transferred

520 .2 DEX:TXA:ORA&B2:STA&B2:DEY:LDA(
&72) ,Y:JSRsearch:BNEA:LDX&82 :CPX#@:BEQq
\search earlier bytes

53@ .p LDY&B1:JSRP:BNEz\transfer byte

540 .g LDY&B1:DEC&7DN\don't transfer

55@ .z CPY&7C:BCCs\check for end of 1
ine and repeat as necessary

560 LDA&79:BEQw: INC&7D\adjust for
COMMENT (1 deletion too many!)

570 .w LDA&7D:CMP#5:BCCr\if line leng
th less than 5, abort current line tran
sfer

580 LDY#3:STA(&72) ,Y: JMPb\else tra
nsfer adjusted line length & move to ne
xt line

59¢ .r JMPc\ (abort)

60@ .s INY:JMPh\ (next byte)

61@ .search LDX#@:CPY#5:BCCF:(MP#&30:
BOCF :CMP#53A:BCCN:CMP#&40: BOCF :CMP#45B:
BCCL : CMP#&5F : BCCF : CMP#4& 7B :BCSF

620 .L INX

630 N INX

640 .F LDA#420:CPX#0:RTS\consider byt
e, X =1 (nunber), = 2 (letter), =0 (
otherwise)

650 .P LDA(&70),Y:LDY&TE:STA(&72),Y:1I
NC&7E:LDY&81:RTS\ (transfer) :]

660 NEXT:END

TECHNICAL NOTES

It is beyond the scope of this
article to explain in detail the
working of the compacter program.

However , it 1is interesting ard
informative to examine some of the
ideas involved. In principle, the

compacter program needs to start at the
first byte or character of the program
to be compacted, working through it
character by character to analyse the
structure and take action as required.
Thus the prime need 1is for an

ELBUG

OCTOBER 1984

understanding in some detail of how a
Basic program is stored 1n the
Electron's memory.

The starting point for any Basic
program is referred to as PAGE, and if
you print out the value of PAGE (PRINT
PAGE <return>) you will see where this
is. Unless you have changed the value
of PAGE yourself (or a program has done
this - see the article in this issue on
multiple programs in memory) then this
should be the address 3584 (&E@@ in
hex). A Basic program is stored as a
series of coded numbers and we need to
be able to examine any memory location
to see the number stored there. This is
done using a so called 'indirection
operator', 1in this case '?' (see the
article in this issue on making
programs go faster for more information
about indirection operators).

If you type
PRINT 73584 <return>
this will display on the screen the

number stored at memory location 3584.
If you try this you should find that
the number 13 is displayed as it is a
convention on the Electron that the
first byte of any Basic program is 13.

In fact this 1is the ASCII code for
Return. ASCII codes are used to code’
numerically all the different

characters that are wused with vyour
Electron and this includes non-printing
characters like Return and Escape.

If you have just switched on your
Electron (type NEW <return> if you have
been using it for something else) and
you display the contents of the next
memory location (3585) on the screen in
the same way, then you should get the
result 255. This value is always used
to mark the end of any Basic program in
memory. Since there is nothing between
the two values of 13 and 255 there is
no Basic program at the moment in your
Electron.

If we want to examine a Basic
program byte by byte it is convenient
to program one of the function keys to
do this for us. Before continuing enter
the following definition for function
key @ into your Electron:

*KEY @ I%=PAGE:REPEAT:PRINT I%,?I%,TAB(
28) ;CHR$ (?1%) :I1$=I%+1:UNTIL ?I$=255|M

Yolume-1 Issue 10

This piece of code is essentially a
loop which looks at every memory
location starting at PAGE and displays
the address of that location, the
number stored at that location, and the
corresponding character. This continues
until a memory location is found that
contains 255,

To see this in operation, create a
very short Basic program. For example,
type in the following two lines:

1@ PRINT "HELLO"

20 END .

If you now press Func/f@ you will see
this program listed down the screen
byte by byte. The first byte contains
13 as the starting point. The next two
bytes, containing @ and 10, represent
the line number. You always multiply
the walue 1n the first byte by 256 and
add on the value in the second byte to
get the line number. The next byte
always contains a count of the number
of characters in this line of the
program, in this case 14. Because the
maximum value that can be stored in one
byte of memory is 255 this sets the
limit for the maximum length of any
instruction in Basic.

After the line number and byte count
you will find the bytes comprising this
particular instruction which continues
up to the next byte code of 13 marking
the end of this instruction. In this
case the first code is 32, the ASCII
code for space. This is then followed

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

25
[T e TR TR e B R T T e e P B S B L e . T Y e e e | S T N

by 241 which is the code or token for
the PRINT instruction. Every Basic
keyword is coded as a single byte in
this way. We listed all the tokens in
ELBUG Vol.1 No.7, and they are also
contained in the Electron User Guide
with the description of Basic. After
the token for PRINT, vyou should see
another 32 (another space) followed by
the ASCII codes for the rest of the
PRINT instruction. You should also be
able to follow through the bytes of the
second instruction with its token of
224 for END.

One peculiarity that you may notice
15 the blank line on the screen after
the line containing the second byte of
the line number (the wvalue 10). This
arises Dbecause the function key
definition tries crudely to display
every character on the screen. It tries
to do this with the value 18 which is
the ASCII code for Linefeed, and that's
exactly what happens. This may also
explain any other unexpected characters
that appear on the screen. The function
key definition given above is adequate
rather than comprehensive.

Once you know how a Basic program is
stored in the computer's memory it is
not then too difficult to write a
routine that goes through the program
locking for spaces, REM statements and

the like and removing these if
necessary, and that's what the PACK
program listed here does. .

GETTING THE RIGHT CHARACTER - J.S5. Swiszczowski
The following expressions will ensure that the correct character is interpreted

on input ignoring the state of Caps Lock. This
when the user may have selected Caps Lock mode, but the

can make programs more user-friendly
state of the micro is not

known for certain. Each expression will input one character as shown.

Expression

keyS=CHRS (GET OR &3@)
keyS=CHRS (GET OR &6@)
key$=CHRS (GET AND &5F)

Ensures correct entry of
digits

lower case

upper case

If you use the following key definition, you can get a listing of the 1line in

which the last error occurred.

Once typed in this you can display any line which

generates an error by pressing the keys Func and 1 together (Func-1).
*KEY] C$="L."+STE$ERL+EHE$]E:A%=I38:K%zH:FOHJ%=ITDLENC$:Y%=ASUHID${A$,J%]:

CA.&FFF4:N.EH

ELBUG

OCTOBER 1984

(Note that the '|' character is next to Break on the l-ceyboard.}.

Volume-1 Issue 10

26

"'5 'BOOKS FOR PROGRAMMERS
Reviewed by Mike Williams

When you buy your Electron, you not
only get a clear and readable User
Guide, but a most valuable introduction
to Basic programming in the form of the
book "Start Programming with the
Electron" by Masoud Yazdani. This is an
excellent book to get you started, but
where do you turn for more information?

Both of the books reviewed this
month assume some knowledge of both

machine and language so where better to
loock for that extra advice and help?

"Getting more from you BBC and Electron
Computers' by Noel Kantaris & Keilth
Thompson, published by Sigma Technical
Press at E6.95.

This is a most [l
attractive looking |
book that has clearly
attempted ko take
advantage of the high
degree of
compatibility between
the Electron and the
BBC micro. To a large
extent I think that
the book has been
successful in this
aim, as Teletext mode, v
one of the main e
features of the Beeb has been
completely left out of this book. This
is not to say that as an Electron owner
you won't occasionally find references
applicable only to that other machine,
but that these are largely few 1n
nunber and readily skipped. There are
also some references to devices like
printers which are only possible with
the Electron if you buy one of the new
printer interfaces (like the Plus |1
from Acorn reviewed in ELBUG issue 8).

Overall, this book provides a most
thorough and comprehensive coverage of
BBC Basic. That it does so in just over
200 pages means that the pace is quite
fast, hence the desirability of having

already started to program in a small
way. The first three chapters introduce
all the fundemantal aspects of Basic
programming with a good introduction to
high resolution graphics (using MOVE
and DRAW) but a very sketchy
description of SOUND and no reference
at all to the use of envelopes. This is
all good stuff, though I would wish
more of the examples had a less
mathematical flavour to them.

The next two chapters deal with
strings, functions, procedures and
subroutines. Again this is very
thorough although, in my view, there is
insufficient emphasis on the use of
procedures and their role in producing
well structured and readable programs.

The next two chapters deal with
'Advanced Graphics' covering much that
is both wuseful and fundemental to
graphics programming on the Electron.
The emphasis is strongly on plotting
high resolution graphics, and user
defined characters, so wvital in most
games programs, get limited cover here.
For example, there is nothing about how
to build up larger characters (other
than two side by side - the easiest
arrangement to program), or about how
to program two-coloured characters. On
the other hand, the descriptions of the
use of MOVE, DRAW and PLOT are quite
comprehensive, and only a specialist
book on graphics could be expected to
contain more.

This book is well produced, the
program listings are very clear, and
there are 32 programs listed at the
back as answers to exercises set
throughout the earlier chapters. The
book has a rather mathematical and
academic flavour to it, and indeed it
might well have been written as a
textbook on Basic pregramming. If you
have a technical bent and want a very
thorough treatise on nearly all aspects

e T M T e e s P T O e oG S R Sy W - g iy Sl S s TR T TR S S e e

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

27

of BBC Basic then this could well be
the book for you.

'Advancing with the Electron' by Peter
Seal, published by Micro Press at £5.95

This is another :

; T 5 O TR
most attractive § —
looking book, though §
this time with only |[EEERTIGEIS
just over 100 pages. NSNS0y
This is 1n some ways | Feter eal :
an unusual book in | '
that it quite
deliberately does not |
set out to teach
Basic, but instead @
takes as its task the J§
design, development |
and programming of a %
single major program @0

for managing a small

database. The design of large programs
15 something that beginners, and even
some who are more than beginners, find
a difficult task, and this 1s a most
commendable attempt.

ADVANCING

The first three chapters cover some
basic programming concepts for the
Electron, and then move on to discuss
the design and development o©f the
database system itself. This covers
some of the necessary detail of file
design and discusses the wvarious
functions to be included 1n the
database program.

The main chapter in the book, indeed
it takes up nearly half the book, is
concerned with the progressive and
detailed coding of the entire database
program. For a number of reasons I feel
less than enthusiastic about the
result, I believe this section of the
book would have been more readable had
it been divided up functionally into
three or four shorter chapters. The
approach to coding seems to lack any
real feel for structuring, and I often
found myself lost as to exactly which
part of the program I was dealing with,
and more particularly how it related to
the rest of the program.

Developing a complete program in

and techniques of program design and
structure, and sadly this chance scems
to have been missed.

I also found the detailed choice of
particular coding techniques to be
second best in several instances. I
would have expected to see functions
and procedures used almost exclusively
throughout a program of this nature,
but in fact subroutines are used as
well. The author says, on page 35, "The
main purpose of using procedures rather
than subroutines is that if its
necessary to shift them about the
program, you can do so without having
to reset line numbers. In this way it
(viz, the procedure) is very similar to
a data statement." I thought the merit
1n using procedures was that they were
called by name with parameter passing,
with the opportunity to produce a
better structured and more readable

program,

Frequent use of GOTO in many of the
routines followed by a line number also

hinders readability, and hence
understanding, of the coding. Some
detailed constructions are also

confusing in printed form. On page 41 a
PRINT statement contains (I think) 46
spaces. Surely it is much clearer, and
takes up less space, to write SPC46
instead.

The last chapters in the book deal
with testing, debugging and
documentation. The information here is
quite useful, but of a very general
nature. It would have been interesting
to discuss the design of specific test
data to ensure that the program
described performed according to the
initial design and specification.
Instead the book tends to concentrate
more on how to debug programs typed in
from book and magazine listings.

Overall I was rather disappointed
with this book. The decision to base
the entire book about the design and
construction of one major program is a
brave one on which the author is to be
congratulated. It 1s a pity that the
final result does not live up to its

this way 1s a marvellous opportunity to earlier promise. .
really get to grips with the problems
ELBUG OCTOBER 1984 Volume-1 Issue 10

28 .

FASTER PROGRAMMING ¢ {\

USING INDIRECTION OPERATORS
By C.E.H. Francis

—— e —
= e — —— T__
L IE s e e

In

issue of ELBUG we published a game called 'Flowers of

Hell', In this article, one of a number of occasional articles on
efficient programming, the author of this game divulges some of his
secrets on making programs run faster.

If you have tried writing any but
the most simple Basic game, the chances
are that you will have tried using
arrays (see also last month's article
on 'Debugging Programs' for some more
information about arrays). This causes
two problems: arrays use up a lot of
memory, and they are relatively slow,
Fortunately both problems can be solved
without resorting to machine code by
the use of the so-called indirection
operators provided by BBC Basic. The
full description of indirection
operators lies in the part of the
manual that most of us don't read
(pages 129, 130 and the section on
assembly language programming), but in
fact they are remarkably easy to use.

An indirection operator allows a
Basic program to use directly any
memory location. On many micros the
actions involved are known as 'peeks'
and ‘'pokes'. The simplest way to use
indirection operators applies to
integer arrays when 1t is known that
all the numbers to be stored are
positive integers less than 256, For
example, two arrays could be used to
store. the X anmd Y co-ordinates of a
user defined characters within a game,
with one for the X wvalues, and the
other for the Y values. In this case
the two arrays can be replaced
directly. Consider the following short
program, which loops round setting an
array to a specific value:

10 DIM A% (999)

28 TIME=@

3@ FOR I%=@ TO 999:A%(I%)=1:NEXT
43 PRINT TIME

In mode 6 this took 1.38 seconds on my
Electron. Now replace A% (999) by A% 999
and A%(I%) by A%?I% (? is pronounced as

'query'). With this replacement the
loop took 1.02 seconds: a saving of
25%. This can be a very major saving in
a game in which you may access a number
of arrays hundreds of times whenever
the main loop of the program is
executed. For example, in "Flowers of
Hell"™ (July issue) by the time there
are five fireballs the main loop has to
read over two hundred array elements.
The slowing down of "Flowers of Hell"
is mainly due to the use of arrays (in
this case slowing down doesn't matter
as the game would otherwise become
unplayable as the number of flowers and
fireballs increases).

DIM A% 999 assigns 10@0@ bytes of
memory from A% to A%+999. To find out
where in memory this might be, type
PRINT A% after the above program has
been run. A%?I% gives the contents of
memory location A%+I%, but this could
also be accessed with ?(A%+I%). This
gives the clue to an even qgreater
saving. Replace line 30 above with:

3@ FOR I%=A% TO A%+999:2I%=1:NEXT

This accomplishes exactly the same

thing, but the program now runs in @.92
seconds, a total saving of around 33%.

This is all very well, but what if
you want to use an array which takes
values requiring more than one byte of
memory (i.e. integers greater than
255). The savings in time are no less
dramatic using the ! (pronounced
'pling') indirection operator. The
Electron stores integers in four
consecutive bytes, and !I% gives the
integer stored in locations 1%, 1%+1,
I%+2, and I%+3. For an integer array
with 100@ members, 4000 (1800*4) memory
locations must be reserved, and the

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

step size should be 4. Replace lines 1@
and 30 with:

1¢ DIM A% 3999
30 FOR I%=A% TO A%+3999 STEP4:!1%=1:
NEXT

This 1is barely slower, taking @.94
seconds. In addition, any integer value
can be placed in the location I% by
using !I%=<value>.

String arrays can be replaced using
the § (pronounced 'string') indirection
operator, and the savings are even
greater. Try using

1@ DIM AS(999)
30 FORI%=0 TO 999:AS(I%)="TEST" :NEXT

This took 1.48 seconds on my Electron.
When using indirection operators the
string "TEST" requires five memory
locations, one for each letter, and one
for a Return to indicate the end of the
string. To see how the § indirection
operator works try altering lines 1@
and 30 to:

18 DIM A% 4999

380 FOR I%=A% TO A%+4999 STEP5:5I1%="T
EST" : NEXT

This saves over half a second, taking
@.96 seconds. Virtually no time is lost
by setting aside more memory, and using
a larger step size, for example
DIM A% 9999 and STEP 18. The maximum
length of a string which can be stored
like this is one less than the step
size used., Due to the way in which
string arrays are allocated memory on
the Electron, the savings in memory are
quite significant.

Incidentally, when indirection
operators are used like this some of
the Basic string operators can be
simulated very easily. In the above
examples PRINT ?A% gives the ASCII code
for T, while PRINT SA% gives 'TEST', as
might be expected. PRINT S(A%+1) gives
EST, simulating the operation of the
RIGHTS function. The Electron simply
reads the string from wherever it is
told to start, and stops when it
reaches a Return (ASCII wvalue 13).

29

LEFTS can also be simulated by placing
a Return in a particular memory
location. For example $(A%+2)="" which
puts a Return character at A%+2,
followed by PRINT SA% will give TE.
Strings can be combined by placing the
first letter of one string in the
location occupied by the Return for
another string. For exXample type
S(A%+2)="STING". PRINT SA% now gives
TESTING.

Finally it 1is worth examining the
savings which can be made on using two
(or more) dimensional arrays. These are
even slower than one dimensional
arrays. For example type in the lines
listed here:

1¢ DIM A%(9,99)
3@ FOR K%=0 TO 9:FOR J%=0 TO 99:
A% (K%,J%)=1:NEXT

When run, the program now takes 2.27
seconds. Indirection operators do not
allow the use of more than one
dimension, so the two dimensional array
above must be replaced by the one
dimensional set of memory locations DIM
A% 999. Then K% and J% have to be
replaced by I% running from A% to
A%+999, This brings the time down to
@.92 seconds, but you do have to be
careful with the arithmetic. In this
example the actual location of the
element A(K%,J%) is found as follows:

[%3=A%+100*K%+J%

So you must remember that increasing I%
by one corresponds to increasing J% by
one, unless the value of J% is 99, when
it corresponds to increasing K% by 1
and resetting J% to @. Increasing I% by
1800 corresponds to increasing K% by 1
and leaving J% alone. The situation is
essentially similar in the case of the
! and $§ indirection operators, but then
you also have to be careful about step
sizes. By the way, don't succumb to the
temptation of letting the micro do the
arithmetic for you by using an equation
such as the one above inside the
FOR-NEXT loop - vyou will very likely
lose all the time saved!

ELBUG

OCTOBER 1984

Volume-1 Issue 10

30

THE MEMORY GAME

by Alan Dickinson

The Memory Game is based on the old card game of Pelmanism where you
turn over cards one at a time, and match up pairs., This version
makes excellent use of the Electron's colour graphics to provide an
attractive variation of this game with a computing theme.

In our version of the Memory Game
you are presented with eight rows of
eight characters, all hidden from view.
You can then look at any character to
identify it, and by remembering
positions, locate and match pairs of
characters on the board.

The program listed below is in two
parts, each of which must be typed in
and saved on cassette. The first part
consists entirely of character
definitions which set up the various
'characters’ used in the game. Type
the lines in carefully, as any mistakes
will show up in the design of the
characters later on. The second program
is loaded and run automatically by the
first. You must make sure that the
programs are recorded in the order
presented here, and named as 'PEL1' and
'*PEL2'.

You can choose between playling with
four, eight or the full sixteen
characters. Obviously, the more designs
yvou play with, the harder the game. You
will also need to select whether you
want to play on vyour own, agalnst
another player or against the computer.
The computer can play at three levels
of skill, and on level three you'll
find it hard to beat!

wWhen vyou have selected the options
you want, press the Return key or the
space bar, and the game will begin.
Enter your pairs by moving the hairline
cursor using the cursor keys, and press
Return when you're over the desired
square. The program will Dbriefly
display each character selected. The
computer will keep a record of your
score, as well as how many tries you've
had 1f you are playing alone. The game
1s over when all the squares are
uncovered, and after the final scores
are given you can play agaln by
pressing any key.

attractive use of

The very
user-defined characters makes this a
most satisfying game to play, and
illustrates how good presentation can
add much to the quality of any computer
game.

10 REM PROGRAM Pelman 1
2@ REM VERSION E@.1
3@ REM AUTHOR A.Dickinson
43 REM ELBUG OCT 1984
58 REM PROGRAM SUBJECT TO COPYRIGHT
6@ :
10@ REM Character Definitions
11@ REM 224-225 Acorn
1280 REM 226-227 B
1380 REM 228-229 Pacman
1480 REM 238-231 Vader
158 vDU23,224,24,60,60,126,126,126,12
6,0,23,225,255,126,126,60,24,24,12,6
168 VDU23,226,252,252,102,162,102,102
,;24,124,23,22?,1E2,1@2,1@2,1@2,252,252
)
Fer
17@ vDU23,228,608,126,126,255,153,153,
153,153,23,229,255,255,171 ,213,255,255,
85,85
18@ vDU23,23@,60,126,255,189,153,153,
255,255,23,231,126,60,24,24,36,66,129,0
190 :
200 REM 232-233 Diamond
210 REM 234-235 Club
220 REM 236-237 Heart
230 REM 238-239 Spade

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

24@ vDU23,232,0,24,24,60,60,126,126,2
55,23,233,255,255,126,126,60,60,24,24

250 vDU23,234,0,24,24,60,60,24,90,219
;23,235,255,255,90,24,24,24,60,126

260 vDU23,236,0,102,231,255,255,255,2
55,255,23,237,126,126,126,60,60,24,0,0

270 vDU23,238,0,24,60,60,126,126,126,
255,23,239,255,255,219,219,24,24,60,126

280 :

290 REM 240-241 Smiley

300 REM 242-243 Grumpy

31@ REM 244-245 Train

320 REM 246-247 Car

33@ VvDU23,240,60,102,195,129,129,165,
165,129,23,241,129,165,165,189,129,195,
182,60

340 vDU23,242,6@,1082,195,129,129,165,
165,129,23,243,12%,189,165,165,129,195,
182,60

350 vpu23,244,7,5,229,69,69,85,85,253
»23,245,253,255,255,254,255,3,171,168

360 VvDU23,246,0,0,62,34,34,34,34,227,
23,247,191,255,255,24,219,219,195,195

370

380 REM 248-249 Rook

390 REM 250-251 Knight

40@ REM 252-253 Bishop

410 REM 254-255 King

420 vDU23,248,219,219,219,255,255,126
,126,126,23,249,126,126,126,126,255, 255
» 126,255

430 vDU23,250,12,4,28,52,118,246, 246,
254,34,23,251,30,28,60,126,255,255,126,
£55

440 vDU23,252,60,24,60,126,62,159,207
,231,23,253,247,255,126,60,255,255,126,
255

45@ vVDU23,254,24,60,189,153,219,255,1
89,153,23,255,219,126,60,24,255,255,126
» 255

460 CLS:CHAIN"PELZ2"

+

1@ REM PROGRAM Pelman 2

2@ REM VERSION E@.3

3@ REM AUTHOR A Dickinson

4@ REM ELBUG OCT 1984

53¢ REM PROGRAM SUBJECT TO COPYRIGHT
6d :

10@ DIM M%(63)

11@ DIM N%(63)

200

2108

220

230
19608
101@
1028
1830
10408
1858
1d6d
1870
1080
1098
1188
1110
1128
1138
1148
11508
1168
1178
1180
1198
1208
1218
1220
1238
12440
1250@
1260
1270
1280
129@
1368
1318
1320
1338
1340
1350
1360
137¢
1380
13908
140@
141@
1428
1430
1448
1450
1460

31

MODES : PROCpelman
MODEG : PROCsummar y
UNTIL FALSE

DEF PROCheader
PRINTTAB (@,@) STRINGS (4@ ,"*")
PRINTTAB(0,4) STRINGS (4@,"*")
PRINTTAB(12,2) ;"The Mamory Game";
ENDPROC

DEF PROCintro

vDU23,1,0;0;0;0;

PROCheader

PRINTTAB(13,6)"1. Solo"
PRINTTAB(13,7)"2. Two player"
PRINTTAB(13,8)"3. Computer(1)"
PRINTTAB(13,9)"4. Computer (2)"
PRINTTAB(13,1@)"5. Computer(3)"
PRINTTAB(13,12)"A. 4 designs"
PRINTTAB(13,13}"B. 8 designs"
PRINTTAB(13,14)"C. 16 designs"
PRINTTAB(13,28)"Q. Quit"
PRINTTAB(13,24) "SPACE to start";
a5=PS$:PROCoption

asS=HS: PROCoption

REPEAT

a$=GETS

PROCoption

UNTIL aS=" " OR ASC(aS)=13
ENDPROC

DEF PROCoption

IFas="0Q" CLS:PROCend:END
IFaS="1" pPS$="1":PROCv(6,6)
IFasS="2" pPS="2":PROCv(7,6)
IFas="3" pS="3":PROCv(8,6)
IFaS="4" pS="4":PROCv(9,6)
IFas="5" pS="5":PROCv(1@,6)
IFaS="A" HS="A":PROCv(12,12)
IFas="B" HS$="B":PROCv(13,12)
IFaS="C" HS="C":PROCv(14,12)
ENDPROC

DEF PROCV (j%,k%)
FORm&=k% TO k+4
vDU31,6,m%,32,32,32
NEXT
vDU31,6,j%,45,45,62
ENDPROC

L

DEF PROCpelman

120 DIM 0%(63) 147@ vDU19,0,14,0,0,0
130 B%=0 1488 vDU19,1,4,0,0,0
140@ P$="]“ 1493 WU1912;E;ErE;E
158 HS="A" 1588 VDU23,0,10,114;0;0;:0;
16d : 1518 PROCscreen
17@ ON ERROR IF ERR<>17 MODEG6:PROCabe 15280 PROCsetboard
nd: END 1530 IFPS="1" PROCgamel ELSE PROCgameZ
18¢ REPEAT 154@ PROCtune
19¢ MODEG6:PROCintro 1558 TIME=@:REFPEAT UNTIL TIME>350
ELBUG OCTOBER 1984 Yolume-1 Issue 10

32

1564
157@
1586
1590
1600
1610
1620
1630
1640
1658
1660
1670
1680
1690
1768
1718
1720
1738
1740
175@
1768
1779
1780
1794@
1800
1810
1820
1830
1840
1854
1860
.187@
1880
1890
1909
1918@
1920
19308
1940
1958
1960
1978
1980
1990@
200¢
201@
2028
2030
20440
265
2060
2070
2080
2090
21008
2118
2128
2138
2148
21508

FOR k%=1 TO m%

ENDPROC

DEF PROCtune

RESTORE

FOR 1%=1 TO 7

READ f£%

SOUNDI1 ,-12,£%+32,2: 50UND1,6,1,1
NEXT

SOUND1 ,-10,64 ,60

DATA 64,72,48,56,64,72,88
ENDPROC

DEF PROCscreen

GCOLY,130:CLG

GCOL@, 1

MOVE12@,215: FLOTO,0, 784
PLOTB1,1040,-784:PLOT81,0,784
GCOL@, 3

FOR j%=1 TO 9

MOVE128*7%,223: PLOT1,@,768
MOVE128,127+7%*96:PLOT1,1024,0
NEXT

COLOUR] : COLOUR1 30

FORx%=1200 TO 716 STEPS588
MOVEx%, 48

PLOT1,0,64:PLOTI ,448,0
PLOT1,@,-64:PLOT1,-448,0

NEXT

ENDPROC
DEF PROCsetboard *

FORj%$=0 TO 63
N%E(j%)=0:0% (%) =0
NEXT

PROCtune

IF HS="A" n%=4:m%=16
IF H$="B" n%=B:m%=8
IF HS="C" n%=16:m%=4
FOR j%=@ TO n%-1

&

Z%=RND (40) +RND (48)
REPEAT

2%=Z%+1:IF 2%>63 Z%=0
UNTIL N%(Z%)=0
N%(Z2%)=1:M% (Z2%)=224+33%*2
NEXT

NEXT

ENDPROC

DEF PROCgamel
C¥=0:X%=0:Y3=0:G%=0
COLOUR1 : COLOUR1 30
PRINTTAB(2,27)"Tries"
PRINTTAB(13,27)"Pairs"
REPEAT
PRINTTAB (4, 29) ;G%;
PRINTTAB(14,29) ;C%;
T%=FNpair

G%=G%+1

UNTILC%=32

2160
2178
2180
2190
2280
2210
2220
2230
2240
2250
2260
2274
2280
2290
23080
2310
2320
2334d
2340
23508
2360
237@
238d
239@
2400
2410
2420
2430
2440
24508
2460
2478
24808
2490
2500
2510
2520
2530
2540
25508
2560
257¢@
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
271@
2720
2730
2748
2750

ENDPROCC

DEF PROCgame?2
C3=0:X%=0:Y%=0:L%=0:R%=0:G3%=TRUE
COLOUR1 :COLOUR1 3@

REPEAT

PRINTTAB(8,29);
PRINTTAB(2,27)SEC(7);
PRINTTAB(11,27)SPC(7);

IFG% PRINTTAB(2,27) "Player1";
IFNOTGPRINTTAB (11,27) "Player2";
PRINTTAB (3,29) ;L%;
PRINTTAB (13, 29) ;R%;

T%=FNpair

IF G% L%=L%+T% ELSER%=R%+T%
IF T%=0 G%=NOT G%

UNTIL L%+R%=32

ENDPROC

DEF FNpair

REPEAT

F%=FNchoice(1)

UNTIL N%(F%)=1

PROCsquare (F%,9,1)

REPEAT

S%=FNchoice(2)

UNTIL N%(5%)=1 AND S%<>F%
PROCsquare (5%,0,1)

IFM% (F%) =M% (S5%) T%=1 ELSE T%=0
IF T%=1 PROCmatch
TIME=0@:REPEAT UNTIL TIME>1@@
PROCsquare (F%,1,T%)
PROCsquare (S%,1,T%)

=T%

DEF PROCmatch

FORj%$=1 TO 20@ STEP32
SOUND1,-9,3%,1

NEXT

N% (F%)=0:N% (5%)=0:C%=C%+]
ENDPROC

DEF FNchoice (ch$)

IFPS>"2" IFNOTG% THEN=FNcomp(ch%)
GCOLA4, @

REPEAT
MOVEX%*128+128,Y%*96+268
PLOT1,128,0@
a$=FNin:SOUND&11,-1@,100,1
PLCOT1,-128,0

IFas="L" IFX%>0 X%=X%-1
IFaS="R" IFX%<7 X%=X%+
IFaS="D" IFY%>0 Y%=Y%-1
IFaS="U" IFY%<7 Y%=Y%+]
UNTIL aS="E"

=X%+Y%*8

e vin P *
*FX4,1

*FX15

ELBUG

OCTOBER 1984

Yolume-1 Issue 10

33

2769
2778

a%=CGET
IFa%=13 THEN="E"
IFa%=136 THEN="L"
IFa%=137 THEN="R"
2800 IFa%=138 THEN="D"
2810 IFa%=139 THEN="U"
2820 GOTO2760
2830 :
2840 DEF FNcomp (ch%)
2850 TIME=@:REPEAT UNTIL TIME>150
2860 IFPS="3" ORch%=1 r%=FNcomp3
2870 IFPS>"3" IFch%=2 r%=FNcomp4
2880 SOUND&11,-8,r%*3,3
2890 =r%
2900 :
2913 DEF FNcomp3
2920 r%=RND(64)
2930 REPEAT
2940 r%=r%+1:IFr%>63r%=0
2950 UNTIL N%(r%)=1 AND r%<>F%
2960 =r%
2973 :
2980 DEF FNcompd
299@ IFPS="4" IFRND(10)<7 THEN=FNcomp3
3000 k%=99
3019 FOR j%=1 TO 63
3020 IF N%(j%)=1 AND O%(j%)=1 AND j3<>
F% AND M%(j%)=M%(F%) THEN k%=j%:j%=99
3030 NEXT
3040 IFKk%<99 THEN=k% ELSE=FNcomp3
3050 :
30680 DEF PROCsquare(z%,c%,d%)
30780 REM z - square number

2784@
2799

3080 REM c - background colour
3093 REM 4 - detail (@=no,l=yes)
3100 0%(2%)=1

3118 GCOLd@,c%

3120 x%=(z%MODB) *128+136

3130 y%=(z3DIVB) *96+312

3140 MOVEx%,y%:PLOT@,116,0

3150 pLOT81,-116,-88:PLOT81,116,0
3168 IFd%=0 ENDPROC

3176 IFc%=0 GCOL®@,1 ELSE QCCL@,3
3180 MOVE x%+32,vy%-8

3196 VvDU5,M%(z%),10,8,M%(z%)+1,4
3200 ENDPROC

3219 :

322¢ DEF PROCsummary

3230 PROCheader

3240 IF P$="1" PROCsul ELSE PROCsuZ2
325@ *FX15

3260 AS=GETS

327@ ENDPROC

3280 :

32980 DEF PROCsul

3300 P%=3200,/G%+@.5:IFF%>B% B%=P%
3310 PRINTTAB(13,8) "Percentage"
3320 PRINTTAE(15,1@);P%;" %"

3330 PRINTTAE(13,15)"High score"
3340 PRINTTAB(15,17);B%;" &"
3350 ENDPROC

3360 :

337@ DEF PROCsu2

3380 PRINTTAB(13,8)"Player 1 scor=d"
3390 PRINTTAB(15,10);:L%

3403 PRINTTAB(13,15)"Player 2 scored"

3410 PRINTTAB(15,17) ;R%
3420 ENDPROC

3430
&

3440 DEF PROCabend
3450 ON ERROR OFF:CLS
3460 REPORT

3478 PRINT" at ":ERL
3480 PROCend

3493 ENDPROC

3500 :
3518 DEF PROCend
3520 *FX4

3530 *FX15

3543 ENDPROC

E
4

INTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SCREEN COLOUR CHANGING - A. Porter

You can change the colours for screen displays without using the VDU 19 sequence

by using the Contrel key: type
the logical colour, then the key for

example,
B400d.

toc change the background colour

in Control-S then press the key that corresponds to
the physical colour,

then three '@'s. For
(@) to blue, type Ctrl-S, followed by

OCTOBER 1984

VYolume-1 Issue 10

BACK ISSUES AND SUBSCRIPTIONS

BACK ISSUES (Members only) SUBSCRIPTIONS

All back issues will be kept in print Send all applications for membership,
(from November 1983). Send 90p per and subscription gueries to the

issue PLUS an A5 SAE to the subscriptions address.
subscriptions address. Back copies of
BEEBUG are available to ELBUG members MEMBERSHIP COSTS:
at this same price. This offer 1s for U.K.
members only, so it 1is ESSENTIAL to £5.90 for 6 months (5 lssues)
quote your membership number with vyour £9.92 for 1 year (10 1ssues)
order. Please note that the advertising Eire and Europe
supplements are not supplied with back Membership £16 for one year.
issues. Middle East £19
Americas and Africa £21
Subscription and Software Address Elgewhere £23
Payments in Sterling preferred.
ELBUG SOFTWARE (Members only)
Hfghﬂﬁicégge This is available from the software
Bucks address.,

_MAGAZINE CONTRIBUTIONS
AND TBCHNICAL QUERIES

Please send all contributions and _ .

technical queries to the editorial Editorial Address

address opposite. All contributions

published in the magazine will be paid

for at the rate of £25 per page. ELBUG
PO Box 5@

We will also pay £1@ for the best Hint St Albans

or Tip that we publish, and €5 to the Herts

next best, Please send all editorial

material to the editorial address

opposite. If you require a reply it is

essential to quote your membership

nunber and enclose an SAE.

ELBUG MAGAZINE is produced by BEEBUG Publications Ltd.

Editor: Mike Williams.

Production Editor: Phyllida Vanstone.

Technical Assistants David Fell, John Waller and Alan Webster.
Managing Editor: Lee Calcraft.

Thanks are due to, Sheridan Williams, and Adrian Calcraft for assistance with this
issue.

All rights reserved. No part of this publication may be reproduced without prior
written permission of the Publisher. The Publisher cannot accept any responsibility,

whgtgnever, for errors in articles, programs, or advertisements published. The
opinions expressed on the pages of this journal are those of the authors and do not

necessarily represent those of the Publisher, BEEBUG Publications
Limited, BEEBUG Publications LTD (c) 1984,

New Elbug Binders

We have produced an attractive
hard-backed binder for the
ELBUG magazine. These
binders are green in colour
with “ELBUG” in gold lettering
on the spine and allow for the
whole of one volume of the
magazine to be stored as a
single reference book.

Bach binder will accommodate
10 ELBUG magazines, and is
supplied with 12 wires to
enable the index and the latest
copy of the supplement to be
included within the binder if
required. Individual issues may
be easily added and removed,
allowing for the latest volume
to be filed as it arrives.

The price of the new ELBUG binder is £3.90 including VAT,
please add 50p post and packing for delivery within the U.K.
Overseas members please send the same amount, this will
cover the extra postage but not VAT.

Plese send to:

BEEBUGSOFT, PO BOX 109, High Wycombe, Bucks, HP10 8HQ.

THE BEST OF ELBUG ON CASSETTE
Many of the best programs published in ELBUG have been collected together and

published by Penguin Books under the name "Games and other programs for the Acorn
Electron™ at £3,95. This book is part of the Penguin Acorn Computer Library and at
present there is just one other title available though others are planned.

There are 20 programs in all in four different categories:
Action Games [

Munch-Man Mars Lander Invasion , EWE
Robot Attack Hedgehog for tha A

Thought games EIEC.[‘RON
Higher/Lower Five-Dice . Life

Anagrams Return of the Diamond

Visual Displays
Union Jack Square Dance Ellipto
Screenplay 3-D Rotation

_ JaR R AR A

Sound Wizard Bad Program Lister
3-D Lettering Bad Program Rescue e e LamAy
Double Height Text

All 20 programs are now available on cassette from our software address (in High

Wycombe) price £7 to members and £9 to non-members, plus 5@p post & packing in
either case.

ELBUG MAGAZINE CASSETTE

To save wear and tear on fingers and brain, we offer, each month, a cassette of the programs featured in
the latest edition of ELBUG. The first program on each tape is a menu program, detailing the tape's
contents, and allowing the selection of individual programs. The tapes are produced to a high technical
standard by the process used for the BEEBUGSOFT range of titles.

Magazine cassettes have been produced for each issue of ELEUG from Volume 1 Number 1 onwards and
are all available from stock, priced £3.00 each inclusive of VAT, See below for ordering information

This months cassette includes:

Volume 1 Number 10
(an action packed arcade-style &), Fireworks Display, a useful p compactor, The

amur;gr Game (an tSw updated version of Pellmanism), five example programs illustrating Electron

Graphics, plus winning program in the ‘Oddfactors’ Brainteaser competition, and as an extra
attraction, another colourful action game, Astro Wars, written in machine code.

MAGAZINE CASSETTE SUBSCRIPTION

We are also able to offer ELBUG members subscription to the magazine cassette, this gives the added
advantage of receiving the cassette at around the same time as the magazine each month Subscriptions
may either be for a period of 1 year or & months (NOTE Magazine cassettes are produced 10 times each
year).

If required, subscriptions may be backdated as far as Volume 1 fumber 1, so when applying please write
to the address below quoting your membership number and the issue from which you would like your
subscription to start

MAGAZINE CASSETTE ORDERING INFORMATION

Individual ELBUG Magazine Cassettes £3.00.
P& P: Please add 50p for the first and 30p for each subsequent cassette. :
Overseas orders: Please send the same amount, this will include the extra post but not VAT.

Magazine Cassette Subscription
1 YEAR (10 issues) £33.00 Inclusive..... O'SEAS £39.00 No VAT payable
6 MONTHS (5 issues) £17.00 Inclusive. O’'SEAS £20.00 No VAT payable

Flease be sure to specify that you require subscription to the ELBUG magazine cassette (as opposed to

the BEEBUG casssette), and enclose your membership number with a cheque made payable to
BEEBUGSOFT.

Flease send to. .

ELBUG Magazine Cassette, BEEBUGSOFT, PO Box 109, High Wycombe, HP10 8HQ

Printed in England by Staples Printers 5t Albans Limited at The Prniory Press

ELBUG Magazine Cassette

Each month we offer a cassette containing the programs featured in the latest issue
of ELBUG and overleaf is a list of the programs included on each tape from Volume 1
Number 1 up to this month’s issue. All tapes are available from stock and are ready
for iImmediate despatch, price £3.00 including VAT.

Cassette Subscription

We are also able to offer subscription to the magazine cassette for periods of 6
months (5 issues) or 1 year (10 issues), prices are shown below. Subscribers have the
added advantage of receiving their cassettes generally just before, or at the same
time as the magazine.

SPECIAL OFFER
If you take out a new subscription to the ELBUG magazine Cassette before
November 16th using the form below, you may claim any one of the past
magazine cassettes absolutely free.

MAGAZINE CASSETTE ORDER FORM

Number Price Total
Volume 1 Number | N R e £3.00
Volume 1 Number 2 e e £3.00
Volume 1 Number 3 ... £3.00 L
Volume 1 Number 4 . t3.00 .
Volume 1 Number 5 o £3.00 R
Volume 1 Number B 0 ca oo . £3.00 R
Volume 1 Number T s . £SO e
Volume 1 Number 8 ooy Eo): cone s
Volume 1 Number 9 ... £3.00
Volume 1 Number 10 £3.00
MAGAZINE CASSETTE SUBSCRIPTION UK 6 MONTHS EIEAE osnuowrsows
MAGAZINE CASSETTE SUBSCRIPTION OVERSEAS 6 MONTHS £20.00
MAGAZINE CASSETTE SUBSCRIPTION UK 1 YEAR £33.00
MAGAZINE CASSETTE SUBSCRIPTION DWVERSEAS 1 YEAR s 1 Y 2 T e et
Postage...Please add 50p for first cassette POSTAGE
and 30p for each subsequent item.
Subscription rates include post TOTAL

|
ELBUG MAGAZINE CASSETTE SUBSCRIPTION

SUBSCRIPTION TORUN FROM . .. oo oo oo SEE OVER
STATE WHICH FREE CASSETTE FOR MAGAZINE
(IF ORDERED BEFORE 16th NOVEMBER)o CASSETTE
NAME © . CONTENTS
{570 - L S U LIST

Send to:— ELBUG, PO Box 109, High Wycombe, Bucks. HP10 8HQ

ELBUG MAGAZINE CASETTES
CONTENTS LIST

Volume1 Number 1

Munch-Man —a Snapper type of game, Sound
Wizard for designing and experimenting with sound
envelopes, Graphics example program, a utility for
producing double height characters, Highlo Card
Game, a colourful Union Jack display, A Keyset
program for setting up the function keys, and the
exciting Hedgehog game.

Volume1 Number 2

Return of the Diamond —a fascinating adventure
game, a utility for displaying 3D lettering, an in-
teresting wisual display called Square Dance,
ASTAAD - a versatile computer aided design pro-
gram, a musical Christmas card, Robot Attack
game, a Graphics example program, Santa's
Parcels game, a utility to rescue ‘Bad Programis’,
and a fast moving football game.

Volume 1 Number 3

Mars Lander game, a program for rotating, enlarg-
ing and reducing 3D objects, examples of Electron
Graphics (3), a utility for designing a new character
set, Reversi board game, a changing visual pattern
based on ellipses, a utility for listing ‘Bad Programs’,
and a challenging Dive Bomber game.

Volume 1 Number 4

Killer Dice game, The Spider and the Fly — an amus-
ing visual display, further examples of Electron
Graphics (7), Moving Chequer Board display, a ver-
satile editor for developing sound envelopes, and
the superb Block Blitz game.

Volume1 Number5

Invasion of the Aliens game, more examples of Elec-
tron Graphics (6), a short utility for saving screen
displays, a simulation of continually changing fabric
patterns, a classic Dominoes game, a versatile Utili-
ty Editor for Basic programmeis, and the ex-
hilarating Elevasion game.

Volume1 Number 6

Hunt the Numers game, Invisible Alarm Clock, a
Selective Renumber utility for basic programs,
ASTAADZ - the original CAD program extended,
Graphics example programs (3), Lunar Escape
game, Dancing Lines — an interesting visual display,
and Four in a Row game.

Volume 1 Number 7

Flip Fap Game, Screen Freezer utility, routines for
Expanding and Rotating Characters, Cursor keys
demonstration, an interesting Stock Market Game,
an action packed Galactic Invasion Game, and
Niagara, the winning Electron entry in the March
Brainteaser competition.

Volume1 Number 8

The Flowers of Hell game, Disco Lights Display,
automatic Cassette Indexer, the classic Breakout
game for the Electron, Graphics Example (on
manipulating colours), a useful Program Protection
routine, and a colourful version of the Pontoon card
game.

Volume 1 Number 9

Codebreaker game, Harmonograph display, a Mini
Text Editor for simple word processing, Build a
House graphics display, Kayak Kapers game,
graphics demonstration program— GCOLMANIA,
Dartboard game and a program to generate a
TV/monitor Test Card.

Volume1 Number 10

Digger (an action packed arcade-style game),
Fireworks Display, a useful program compactor,
The Memory Game (an updated wversion of
Pellmanism), five example programs illustrating
Electron Graphics, plus the winning program in the
‘Oddfactors’ Brainteaser competition, and as an ex-
tra attraction, another colourful action game, Astro
Wars, written in machine code.

