£1.00

LUNAR ESCAPE

Vol 1 No 6 MAY 1984

GAMES
*HUNT THE NUMBERS
*FOURIN A ROW

PLUS

*SELECTIVE RENUMBER
*EXTENDING ASTAAD
*ALARM CLOCK
*DANCING LINES

PLUS

*NEW PRODUCTS
*GAMES REVIEWS
*BOOK REVIEW
*POSTBAG
*HINTS & TIPS

And much more

2

EDITORIAL

THIS MONTH'S MAGAZINE

Anyone who sets out to do much programming on their Electron will soon realise
that the Basic Renumber command is quite limited. This month's utility, a must for
all programmers, enables any part of a program to be renumbered, and it checks for
any clashes, and any relevant references elsewhere in the program.

Our continuing series on Electron graphics provides some more useful procedures,

this time for colouring irregularly shaped areas. All the procedures in this series
could form a very useful procedure library in the way we described last month.

In December, we published a program called ASTAAD for computer aided design. We
have now extended the features of this program to make it even more impressive. If
you are at all interested in any form of computer graphics, then ASTAAD is well
worth experimenting with.

We have also picked out three more entertaining games for this issue, ranging
from a computer version of 'Connect Four' through to another space game, 'Lunar
Escape', all good fun to play.

ELECTRON GRAPHICS '

In last month's article in this series, the program called FILLSQUAREZ on page 7
may have resulted in a little confusion. The usual headings for the program became
separated from the program itself, and were printed below the accompanying
illustration. Sharp-eyed readers will also have spotted the name BEEBUG rather than
ELBUG - a slip of the mind on the part of your editor. You can just ignore these
extra lines and use the program as correctly listed above the illustration.

ADD-ONS FOR THE ELECTRON

We have referred several times already to the so far disappointing development of
the add-on market for Electron users. However, at the Micro User Show at the end of
March, several manufacturers were demonstrating add-ons, some of which look very
good indeed. We report on these developments elsewhere in this issue. At long last
it does seem as though all those desirable extras are beginning to appear.

Mike Williams

TICE BOARD NOTICE BOARD NOTICE BOARD NOTICE BOALI

MAGAZINE CASSETTE

This month sees the launch of our magazine cassette service for ELBUG. Each month
all the programs in ELBUG magazine will be available on cassette, starting with this
issue. This will save all that wear and tear on the fingers. Cassettes for all
previous issues of ELBUG (1 to 5) are also being produced, and all cassettes will be
kept in stock. We expect all six cassettes to be ready for dispatch from mid May
onwards. Future magazine cassettes will be ready at the time of publication. Full
ordering details are on the back cover.

B e St T o e e S T B e S R ——

ELBUG May 1984 Volume-1 Issue-6

ELBUG MAGAZINE

GENERAL CONTENTS
Page Contents

2 Editorial
4 Hunt the Numbers
6 Postbag

7 Extending ASTAAD
10 Invisible Alarm
11 Selective Renumber Utility
14 New Products at the Micro User Show
15 100 Programs for the Acorn Electr Reviewed
16 Electron Graphics (Part 6)
20 The Latest Computer Games Reviewed
22 Lunar Escape
27 Dancing Lines
29 Using BBC Micro Programs on the Electron (Part 3)
Speeding up the Elk
32 Four in a Row

HINTS, TIPS AND INFO PROGRAMS
Page Contents Page Contents
9 Changing the Flash Rates 4 Hunt the Numbers Game
9 Stepping through Listings 7 Extensions to ASTAAD
19 Single Key Recovery 10 Invisible Alarm
26 Space Invader Prompt 11 Selective Renumber Utility
26 Preventing the Screen from Scrolling 16 Electron Graphics Examples
31 Speed Improvement with Logical Values 22 Lunar Escape Game
31 ‘NEXT' Effect with LISTO7 27 Dancing Lines Display

32 Four in a Row Game

ELBUG May 1984 Volume-1 Issue-6

HUNT THE NUMBERS

by K. Allen

Hunt the Numbers is a fast, all-action game written specifically for
the Electron. It incorporates coloured graphics in Mode 5 and at the
fastest level is very quick and extremely challenging.

Your man is a number—-eating beasty,
or a kind of number-cruncher, &
suppose, whose world consists of a nice
bright yellow square. Within this, by
the magic of computers, ever increasing
nunbers keep appearing as temptation to
your man to raise his calorific intake
for the day. But as you move him to
digest these numeric morsels, other
nasty monsters will give chase all
round the board with only the demise
and consumption of vyour innocent
glutton as their objective. These chaps
are number-cruncher gulpers and they
increase 1in quantity with your man's
success. With higher levels of skill,
selected at the beginning of the game,
these aggressors become faster and more
direct in their descent upon your
ever-hungry number-cruncher which can
result in a peculiarly loopy dance
around the board's surface.

=FHIJFABER—HURT =
SCORE L b R B

Controls to change the horizontal
and vertical directions of movement are
the '2','X', and '"*' and '/' keys but

it's important to note also that
simultaneous use of a horizontal and a
vertical control key will produce a
diagonal motion, which is just as well
because the 'nasty monsters' have no
qualms about cutting corners when
they're chasing vyou.

whese HUHT THE HUMBERS #%s-

The abject of the game 12 to collect
a% many numbers as you can, avoiding the
monster. Hhen you get to numbers you get
a 2nd monster and when you get 28 yeou*ll
have three to avoid.

for LEFT
for RIGHT
for UP

* for DODHH

Please snter Skill level C(1-4);

18 REM PROGRAM NHUNT
20 REM VERSION E@.3
38 REM AUTHOR K.ALLEN
43 REM ELBUG MAY 1984
58 REM PROGRAM SUBJECT TO COPYRIGHT
6@ :

1808 CLEAR:MODEG

11@ ON ERROR GOTO 330

12@ PROCinfo

130 man%=3:score%=-50:0%=0

1400 MODE 5

158 PROCsetup

168 PROCnumbers

178 REPEAT

1880 PROCmonster]

19¢ PROCman

200 IF Q%>10:PROCmonster2:ELSE PROCde
lay(6)

218 PROCman

220 IF skill%>»1:PROCmonster]:ELSE PRO
Cdelay(16)

23@ PROCman

240 IF ski1ll1%>2 PROCmonster]l:PROCman:
IF Q%>10:PROCmonster2:ELSE PROCdelay (8)

25@ PROCman

260 IF skill%>»3 PROCmonster1:IF Q%>10
:PROCmonster2:ELSE PROCdelay (8)

2760 PROCman

28@ IF skill%<4:PROCdelay(8)

290 IF Q%>2@:PROCmonster3

3d@ UNTIL FALSE

31@ END

ELBUG

May 1984

Volume-1 Issue-6

S

320 :

33@ ON ERROR OFF:MODE 6:IF ERR<>17 TH
EN REPORT:PRINT "at line";ERL

340 END

358 :

188@ DEFPROCman

1018 IF Q%>20 AND (A=W AND B=Z) PROCde
ad:GOTO 10@

1028 IF Q%>10 AND (A=F AND B=G) PROCd=
ad:GOTO 108

1830 IF (A=M AND B=N) PROCdead:GOTO1060

1848 IF NOT(A=K% AND B=L%) THEN GOTO 1
@#5@ ELSE VDU 7:PROCnumbers

1@85@ IF INKEY (-98):A=A-3:IF A<5 A=5

1068 IF INKEY (-67) :A=A+3:IF A>26:A=26

1878 IF INKEY (-73):B=B+4:IF B>31:B=3]

1880 IF INKEY(-105) :B=B-4:IF B<3:B=3

1898 IF a=A AND b=B:GOTO 1130

1180 *FX21,4

1118 SOUND @,-15,4,3

1120 GCOL @,2:MOVE 4@8*a,26*b:VDU 241

1130 GCOL @,1:MOVE 40*A,26*B:VDU 241

1140 a=A:b=B

1158 ENDPROC

11e@ :

1178 DEFPROCdelay(D%)

1188 now=TIME:REPEAT UNTIL TIME>now+D%

119@ ENDPROC

1200 :

12180 DEFPROCinfo

1220 CLS

123@ vDU 19,1,6;0;

1240 PRINT TAB(4,3)"™** HUNT THE NUMB
ERS **//"-TAB(3,4) STRINGS(28,"-")

125@ PRINT TAB(2,7)"The object of the
game is to collect as many numbers as
you can, avoiding themonster. When you
get two digit numbers"'"you get a 2nd m
onster and when you get"'"up to 28 you'
11 have three to avoid."

126@ PRINT TAB(14,14)"Z for LEFT™

1278 PRINT TAB(14,15)"X for RIGHT"

1280 PRINT TAB(14,16)"* for UP"

1290 PRINT TAB(14,17)"/ for DOWN"

1300 PRINT TAB(2,19)"Please enter Skil
1l level (1-4):"

1310 REPEAT:skill$=GETS$:UNTIL INSTR ("1
234" ,skills) >0

1320 skill%=VAL(skill$)

1330 PRINT TAB(33,19);skill%

1340 PRINT TAB(5,22)"=>PRESS SPACE BAR

TO START<="TAB(5,23) STRINGS(28,"-")

1350 REPEAT UNTIL INKEY (-99)

1360 ENDPROC

13769 :

1388 DEFPROCsetup

1390 ENVELOPE 3,2,8,4,8,2,2,2,126,0,@,
-126,126,126

1400 A=5:B=3:a3=5:b=3:f=26:F=26:9=31:G=
31:N=7:n=7:M=26:m=26:W=5:w=5:Z=31:2z=31:
K:=0:L%=0

1410 VDU 24,160;16;1120;848;

1420 VDU 23,240,102,153,153,255,129,16
5,165,126

1438 vDU 23,241,195,126,99,90,102,608,6
6,195

14406 VDU 5:VDU 18,0@,138:VDU 12

1458 VDU 26:VDU 19,0,4;0;:VDU 4

1460 VDU 19,2,3;@;:VDU 19,1,2:@;

147 vDU 19,3,1;0;:VDU 18,4,2

1480 start=TRUE:start2=TRUE:start3=TRUE
1498 COLOURZ

150@ PRINT TAB(1,2);"*HUNT THE NUMBERS
*"-TAB(1,4);"SCORE:";TAB(15,4);

1510 IF man%>1:COLOUR 1:FOR lives=2 TO
man%:vDU 9,241 :NEXT

1528 VDU 5

15380 GCOL @,3

1540 FOR X=168 TO 1120 STEP 12@0:MOVE X
»16:DRAW X,848:NEXT

155@ FOR Y=16 TO 848 STEP 104:MOVE 160
;Y:DRAW 1120,Y:NEXT

1568 ENDPROC

1570

1580 DEFPROCmonster]

1590 IF M=A:GO0TO 160@ ELSE M=M+3*(-1-2
* (M<A)) :IF M<5 M=5 ELSE IF M>26:M=26
1608 IF N=B:GOTO 161@ ELSE N=N+4%*(-1-2
* (N<B)) : IF N<3 N=3 ELSE IF N>31:N=31
16180 IF (M=F AND N=G) OR (M=W AND N=Z)
: N=n:M=m: ENDFROC

1620 GCOL 3,1

1638 MOVE 4@*m,26*n:VDU 240:IF start=T
RUE:start=FALSE:GOTO 1630

1640 MOVE 40*M,26*N:VDU 240

165¢@ n=N:m=M

166@ ENDPROC

1670 :

1688 DEFPROCmonster?2

1693 IF F=A:GOTO 17@@ ELSE F=F+3*(-1-2
*(F<A)):1IF F<5 F=5 ELSE IF F>26:F=26
178@ IF G=B:GOTQO 1710 ELSE G=G+4*(-1-2
*(G<B)) :IF G<3 G=3 ELSE IF G>31:G=31
171@ IF (M=F AND N=G) OR (W=F AND Z=G)
:G=qg:F=£f: ENDPROC

1720 GCOL 3,1

1730 MOVE 40*f,26*g:VDU 240@:IF start2=
TRUE:start2=FALSE:GOTO 1730

1740 MOVE 40*F,26*G:VDU 240

1758 f=F:g=0G

1768 ENDPROC

1770 :

1780 DEFPROCmonster3

1798 IF W=A GOTO 1800 ELSE W=W+3*(-1-2
* (W<A)) : IF W<5 W=5 ELSE IF W>26:W=26
180@ IF Z=B GOTO 1810 ELSE Z=Z+4%*(-1-2
*(Z<B)):IF Z<3 Z=3 ELSE IF Z>31:Z=3]

ELBUG

May 1984

Volume-1 Issue-6

6

1810 IF (W=F AND Z=G) OR (W=M AND Z=N)
s W=w:Z=2:ENDPROC

182@ GCoL 3,1

1830 MOVE 4@*w,26%z:VDU 240:IF start3=
TRUE:start3=FALSE:GOTO 1838

184@ MOVE 40*W,26*Z:VDU 244

1850 z=Z:w=W

186@ ENDPROC

1870 :

188¢@ DEFPROCnumbers

1899 MOVE 40* (K%-14.7-(0Q%>9)) ,26*L%:GC
OL @,2:PRINT Q%

1903 k%=3*RND(7)+2:1%=4*RND(7)-1:IF k%
=K% AND 1%=L%:GOT01900:ELSE K%=k%:L%=1%
191@ GCOL @,6:MOVE 4@* (K%-14.7-(Q%>8))
26%LE:0%=0%+1:PRINT 0%

19200 S=score%:score%=score%+50@

1938 GCOL @,@:score%=INT (score%) :MOVE
64,896:PRINT S:MOVE 64,896:GC0OL @,2:PRI

NT score$

194@% ENDFPROC

1950 :

1968 DEFPROCdead

197@ sounND 1,3,8@,24

1988 vDU 19,0,0;@;19,1,7;@;

199¢ TIME=@:REPEAT UNTIL TIME=250

2000 man%=man%-1:IF man%>@ GCOL @,128:
CLS:PROCsetup:(0%=0%-1:score%=score%-50:
GOTO 168

201@ VDU 4:PRINT TAB(2,18)SPC(21) "WOUL
D YOU LIKE ";SPC(23);"ANOTHER GAME? (Y/N
J"SEC (28)

20280 *FX15

2830 REPEAT KEYS=GETS:UNTIL INSTR("YyN
n" ,KEYS) >0

2040 IF KEYS="N" VDU22,6:END ELSE CLS:
AGAIN=TRUE: ENDPROC

®

POSTBAG POSTBAG POSTBAG POSTBAG POSTBAG POSTBAG
LOCKED OUT

Dear Sir,

As a newcomer to computing I have
found ELBUG of great value. However, 1
have come across something that puzzles
me and that is the message 'LOCKED'
when loading programs (including the
Welcome tape - TURTLE), but I have not
found this in the User Guide. This only
happens occasionally and I would
appreciate your advice.

J.S.Webster
Reply:

This 1is a feature of cassette files
that is not described in the User
Guide. Machine code programs can be
saved on tape in a 'LOCKED' form so
that they may only be *RUN and not be
*LOADed. This is used by some software
producers as a means of protecting
their copyright software. It involves
setting Jjust a single bit in the first
block of such a program. Trying to
*LOAD a locked program will produce the
'"LOCKED' message.

Should any other program be poorly
recorded, or not otherwise load
correctly, the error can sometimes
appear to the micro as though you are
trying to load a locked file, to which
it responds with the message 'LOCKED'.
The fact that it only happens
occasionally confirms this. If the file
really was locked then wyou would get
this message every time you tried to
load that program. In this case it
seems that either your Welcome tape is

a poor recording, or your cassette
recorder is not providing a good signal
for the micro.

THE MISSING LINK
Dear Sir,

Bm I missing out? I enclose two
photographs o©f the Electron circuilt
board, one from a magazine review and
one of my own Electron. The thing that
is puzzling me are the two blank spaces
on my board labelled IC17 and IC18.

I would be pleased 1f vyou could
enlighten me on the missing 'bits'.

Robert Hamilton

Reply:

Paul Hulyer 1is another sharp-eyed
reader who has spotted this difference.
Nothing is effectively missing from
anyone's Electron. Early examples of
the Electron, sent out to magazines,
including ELBUG, for review contained
Basic and the Operating System as two
separate 16K chips (IC18 and IC2 to its
right). IC17 was needed for the micro
to operate in this way. In the majority
of production models of the Electron,
the Operating System and Basic are both
contained within the same 32K chip at
IC2, and the chips at the other two
locations are now quite redundant.

ELBUG

May 1984

Volume-1 Issue-6

EXTENDING ASTAAD

by David A. Fell

In the Decamber 1983 issue of ELBUG we presentad an excellent

program for computer aided design. We said then that the program
could be easily extended, and now we have done just that, to provide

2ven more features.

In the original version of ASTAAD,
published in ELBUG issue 2, we showed
how to extend the program in order to
save screens to cassette and how to
load them from cassette. We also
suggested further enhancements to the
graphics facilities of the program.

This month, we describe how to add
three important new features to improve
further the capabilities of this
already impressive package. The
features added are :

1, The ability to include
user-defined characters in
'ASTAAD' text and display them
at 'any size, any angle,
anywhere on the drawing'.

2. The facility to draw 'filled'
circles and polygons as well
as outlines only.

X The facility to reverse
foreground and background
colours and thus include 'white
on black' and 'black on white'
text and diagrams in the same
drawing.

"Hab sparstc

'.n' Fard the Deal od
E#'E‘*Fr Frlwhias

I#a o

=

S,
S

EEE%EE iniﬂuh
L

“&

AL

the ggrﬂnni

All the new features are dealt with
by contrel keys rather than function
keys as follows.

Ctrl-C Toggle user-defined characters.

Ctrl-F Toggle filled/unfilled polygons
and circles,

Ctrl-T Toggle reversal of foreground
and background colours.

To use a control key, press the key
marked 'CTRL' and the appropriate
letter key together. Each time one of
these control keys is pressed (or
toggled), it changes the state of the
feature selected (from 'on' to 'off',
or from 'off' to 'on').

USER DEFINED CHARACTERS

'ASTAAD' is also the name given to
the routine brought into action by
pressing Func-f@#. ASTAAD stands for Any
Size Text printed at Any Angle on the
Drawing. This facility, however, was
limited, in the original version, to
the normal keyboard characters. An
extension has been provided to allow
for the soft (or user defined)

ELBUG May 1984 Volume-1 Issue-6

8

characters to be used instead. This
allows for new characters to be
designed, and then also drawn at any
angle, and at any size.

The choice of characters is
controlled by Ctrl-C. With this in the
'off' state, as it is when you run the
program for +the first time, ASTAAD
behaves as it did in the old version of
the program. When in the ‘'on' state
(selected by pressing Ctrl-C), user
defined characters are taken from the
keyboard with 'A' selecting character
224, 'B' selecting character 225 and so
on. The characters are displayed at the
top of the screen as selected. This
allows for the new string to be seen as
it's being built up. The user defined
characters must be set up before
running the extended version of ASTAAD
(ASTAADZ) with the VDU23 statement (see
User Guide pages 93 and 109). If vou
have already been running ASTAAD2, you
may exit from this by pressing Break
and typing in OLD and Return. You may
now use VDU23 to re-define characters
before running ASTAAD2 again, without
the need to reload the program from
cassette. The character definer on the
ELBUG introductory cassette is also an
ideal way to design characters that you
may like to use in ASTAAD2.

As an example, try typing the
following into your Electron:

vDU23,224,0,255,191,159,159,145,17,17

Now load and run ASTAAD2, and press
'Ctrl-C'.

Press 'Func-f@' for ASTAAD text.

Press 'A' and Return.

Enter a size, say 20, and Return.

Enter an angle, say 1@, and Return.

Now watch a primitive elephant being
displayed. This 1illustrates that the
soft character is now being read from
the memory definition.

FILLED POLYGONS AND CIRCLES

Another new feature, controlled by
Ctrl-F, 1s the in-filling of polygons
(and thus also circles, as they are
drawn using the polygon routine).
Normally, when a polygon is drawn in
ASTAAD, it appears only as an outline,
but ASTAADZ allows for either an
outline, or a solid polygon to be

ASTAAD

Graphics Design
Program

drawn. The selection between the two is
made by pressing Ctrl-F. Initially, in
ASTAAD2, 'in-fill' is turned off. This
means that only the polygon's outline
will be drawn. T1f Ctrl-F is now
pressed, then the switch will be
altered, and the next polygon to be
drawn will be a solid one, The next
time the Func-f3 option 1is used to
repeat the last polygon drawn, then
whether or not the polygon is filled in
is dependent on the current state of
the 'in-fill' switch, and not the state
of the switch when the initial polygon
was drawn. This feature also applies to
the circle drawing routine selected by
Func-£9.

REVERSING FOREGROUND AND BACKGROUND
When drawing lines, filling in
polygons, or any other ASTAAD function,
the foreground <colour is normally
black, and the background colour white
(readers may like trying yellow on blue
as opposed to black on white by
including an appropriate VDU19 at the
start of the program - see the User
Guide page 107). There is a final
switch in ASTAADZ that affects the
drawing colours. Teo alter this switch,
press Ctrl-T. In the 'on' state, just
as when the program is first run, the
drawing will normally be made in black
on a white background. In the 'off'
state, the drawing will take place in
the reverse colours. This allows for
the 'blank out an area' function,
invoked by Func-f8, to fill in a
rectangular area. Examples of the use
of the wvarious functions, including
reverse colour, are shown in the
illustrations with this article.

EXTENDING THE ASTAAD PROGRAM

The additions to the original ASTAAD
program are listed below. They should
be typed into the computer AFTER
loading in the original ASTAAD, which
must not have been renumbered in any

TR ey S PRl T S T e S T T | e e T T W N e e o Sl e e W Ry T T [AT

ELBUG

May 1984

Volume-1 Issue-6

?

—

way, sSince some of the new lines 895 IF G%=@ THEN ENDPROC
replace lines from the earlier version. 910 LOCAL I%,K%,M%,N,C,5,B,D,R,T,Y
Alternatively, save the new section 911 IF E% Y=85 ELSE ¥=5
separately using *SPOOL after typing it 968 IF I%>»1 THEN PLOT Y,K%,M% ELSE MO
in, and then use *EXEC to append this VE X%,Y%:MOVE K% ,M%
to the original ASTAAD (see the article 961 IF I%>1 AND E% PLOTB5,X%,Y%
on Procedures and Functions in ELBUG 971 IF E% PLOT85,X%,Y%
issue 5 for more information on the use 1143 IF ERR<>17 THEN ON ERROR OFF :MODE
of *SPOOL and *EXEC or consult the User 6:REPORT:PRINT" at line ";ERL:END
Guide, page 20d). 1995 :
2008 DEF PROCcharacters
We have also included the correct 2313 IF F%=0 THEN F%=159 ELSE F3=0
version of line 350 (printed wrongly in 2023 ENDPROC
the original wversion) and we suggest 2030 :
the deletion of line 158 if you do not 2843 DEF PROCcolours
want the audible ‘'beeping' of the 2058 Z%=NOT Z%
original program. 2060 IF 2% GCOL@,128:GC0OLM,1

207@ IF NOT Z% THEN GCOL@,0:GCOL@,129
T e i 20808 ENDPROC
20942 :

18 REM Program EXTEND to ASTAAD 210@ DEF PROCread:LOCALX%,Y%
20 REM Version El1.3 2110 Y$=aB:7&BO@0=ASC(MIDS(T5,C%,1))+F%
3@ REM Author Jim Tonge 2120 A%=10:CALL&FFF1
40 REM ELBUG May 1984 2130 A%=&B01
50 REM Program subject to copyright 2140 ENDPROC
6l : 2150 :
61 E%=0:Z%=-1:F%=0 2160 DEF FNread:PRINT''"Text? “;.:TS=""
8@ ON ERROR:VDU 12,5,26:GO0TO 1148 2173 LOCAL I%:REPEAT I%=GET
131 IF key=6 E%=NOTE%:G0TO120 2180 IF I%=21 THEN PRINT STRINGS (LEN(T
132 IF key=3 PROCcharacters:GOTO120 $),CHRS(127)) ;:T8="":1%3=0
133 IF key=20 PROCcolours:GOTO120 2190 IF I%=127 AND LEN(TS) THEN VDU I%
356 vDu23,1,0;0;08;8; : 1%=@:TS=LEFTS (TS,LENTS-1) ELSE IF I%=1
52¢ VvDU4,28,6,1,59,1:T$=FNread: INPUT" 27 THEN VDU7:I1%=0
Size? (2 to 125): "S5%,"Angle(deg.)?"T% 220Q@ IF I% AND I%<>13 THEN TS=TS+CHRSI
:CLS:VDUS, 26 5:VDU I%+F%
550 IF F% PROCread ELSE A%=&BF@@+ASC(2210 UNTIL I%=13:CL3S
MIDS (TS,C%,1)) *8 2220 =TS

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

CHANGING THE FLASH RATES

The rate at which the flashing colours flash, can be changed using *FX9,m and
*FX10,s where m and s are described below,

*F¥9,8 forces the first named colour to show continually.

*F¥X9,m sets the duration for the first colour, with m in S@ths of a second

*FX1@,8 forces the second named colour to show continually.

*FX10@,s sets the duration for the second named colour, with s in 50ths of a
second.

Initially the values of m and s are 25. .

STEPPING THROUGH LISTINGS - S.WARD

To step through a listing, without it scrolling, enter the following command in
immediate mode:

VDU 14 <return>
Every time you list the program, the computer will list a page at a time. To get the
next page, press Shift. A similar effect can be obtained by holding down the Control
key (marked 'CTRL', and just to the left of the 'A' key) and pressing 'N' (Ctrl-N).
The effect can be stopped by entering VDU 15 or pressing Ctrl-0. Listings can also
be temporarily halted by pressing Ctrl and Shift together.

ELBUG May 1984 Volume-1 Issue-6

10
AT TN A A e e T P T WA R A TSP SIS S

INVISIBLE ALARM

by Gordon Weston

How many times have you sat up all
night long programming your Electron,
when you set out to finish in five
minutes? We present here a short
routine which will sound an alarm after
any preset period of time, up to a year
ahead if you wish!

The alarm program will sit invisibly
in your machine and produce a beep
after a predefined delay. This can be
anything from a fraction of a second to
several hundred years (though this has
not been fully tested yet!). The alarm
is not affected by running Basic or
machine code programs providing the
memory used by this routine is not
overwritten or Break is pressed.

When you run the program it asks for
the time delay in seconds. Type in the
required delay, and then carry on with
whatever you want to. When the period
of time is up, your Electron will sound
an alarm. Unfortunately, we have not
been able to provide a 'snooze' button.

TECHNICAL NOTES

The alarm routine has to be in
machine code so that it can be set up
in an area of memory not used by Basic.
In this way you can be using Basic
without in any way affecting the alarm
set. Mamory from address &70 (in hex)
up to &8F is reserved for routines like
this. Take care when typing in the
program, and remember to save a copy
before running it.

The program uses a timer which is
set initially to a negative value (the
number of centi-seconds before the
alarm is to sound). Your micro has a
built in 'clock' which will keep on
increasing the timer until it reaches
zero, at which time the alarm routine
is called.

The time delay is set as 5 bytes in
lines 150 and 16@8. The counter scans

upwards from the negative value given
to zero.

Lines 130 and 140 set up a control
block in memory (&78 TO &77) which
defines the sound parameters to be used
when the time limit has been reached.
Lines 170 and 180 then point to &@@7D
in memory, where the machine code
routine to generate the sound is
stored. Line 199 sets up the OSWORD
parameters to write the five byte value
at &0@78 to the interval timer, which
is subsequently called in line 200.

It is possible to execute vyour own
section of machine code after the time
delay, rather than just generate a
beep. This is accomplished by deleting
lines 13@ and 140 and 210 to 280. Lines
1780 and 180 must now point to the low
and high bytes, (currently 7D and @)
respectively), of the start address of
your code.

1@ REM Program ALARM

20 REM Version E1.0

3@ REM Author G.Weston

40 REM ELBUG May 1984

50 REM Program subject to copyright
60 :
123 INPUT "No. of seconds"n

11@ n=n*100

120 *FX14,5 218 P%=&7D
130 !&7@0=&FFF10001 228 [OPT3
140 1&74=5001400C8 230 LDX#&78@
15@ 1&78=-n 240 LDY#0
16@ ?&7C=&FF 250 LDA#&7
17@ 7&220=&7D 260 JSR&FFF1
180 7&221=0 278 RTS

190 A%=4:X%=&78:Y%=0 280 1]

203 CALL &FFF1 29@ END

“

ELBUG

May 1984

Volume-1 Issue-6

11

123836

_ > 436789

SELECTIVE

RENUMBER UTILITY
by G. and L. Pettit

This month we present a useful utility program which allows
selective renumbering of Basic programs, a much needed aid for Basic

programmers.

The RENUMBER command in BBC Basic is
limited in its usefulness, as you can
only renumber a whole program, and not
just part of a program. It is often
desirable to number different parts of
a program with different groups of line
numbers. For example, most programs
listed in the magazine place all the
procedure definitions starting at line
1888, just to make the layout of the
program clearer. Many program standards
(including ours for ELBUG magazine)
require that each program include
initial REMs containing dates, author's
name, peripherals required, algorithms
employed, etc. Since no two programs
will have identical REMs, the main
program will start at different line
numbers if blanket renumbering is used.

Another instance where selective
renumbering is most useful is in using
procedure libraries as an addition to a
main program (see ELBUG issue 5). These
main programs will inevitably be of
different lengths and, if the
Electron's RENUMBER command 1s used on
the resulting total programs, the line
numbers of the procedures will differ
from one program to the next. This
makes recognition of the procedures
difficult.

It is to cater for these and other
situations, where selective renumbering
is to the programmer's and end-user's
advantage, that the Selective Renumber
program has been written. It allows
renumbering of the leading statements
only, or of a portion of the middle of
the coding, or of the end statements
only. The new starting line number and
the new increment (applied to the
renumbered lines only) are specified by
the user and the program will inform
him if there 1is any overlap between
existing line numbers and the new ones
BEFORE renumbering takes place. The
user may therefore withdraw from an

parameters, confusion

OCCUrs.

BRlthough line numbers within REM
statements are not altered, line
numbers in all other statements will be
changed, including calls from the
non-renumbered statements. Thus if
subroutines are being renumbered, calls
from the main program are changed to
match, or if only a part of the main
program is being renumbered, the GOTO
or RESTORE instructions in the rest of
the main program will be changed 1f
necessary.

PROGRAM OPERATION
First type in the Selective Renumber

program and SAVE on cassette in the
usual way. The description that follows
assumes that you have saved the
Renumber program under the name
"RENUM', though you could of course use
any name. To use the program, make sure
that you are in Mode 6, load the Basic
program to be renumbered, as normal,

before any

then type
PAGE=TOP+&10@ <return>
LOAD"RENUM" {return>
RUN {return>

This procedure will prevent the
Renumber program over-writing the
user's program, assuming this is
already resident in memory at &E@G@. The
value TOP+&1@0@ has been chosen so that
the renumber program is 1loaded in at
the next page in memory, just above the
user program, thus giving the maximum
space for work.

When Selective Renumber is run, the
program will first check that the
user's program has been loaded. If not,
an error message is displayed and the
Renumber program will stop, to allow
the user to reset PAGE to &EG@ (type
PAGE=&E00 {return>), to load his
program and to reset PAGE again to
TOP+&10@ (type PAGE=TOP+&10@ <return>).

overlap situation and re-specify the When RUN is tzgﬁg, a message requests

ELBUG

May 1984

Volume-1 Issue-6

12

the range of line numbers to Dbe Electron RENUMBER command, this may get
renumbered., This may be answered by you back into production again.

#: £ E“r ai]l“ i’:“es ;ztt‘:’ B, VARIABLES USED
e iy~ Hes wWeen mmm The array E% contains the line

and nn 1?cluslve, o nurbers of the original program, and
gﬁiaiéé lines from mmm the array F% contains the egquivalent
i line numbers in the renumbered portion
of the program. Initially, all “elements
of F$ are set to -1 and this is used as
an indication of the renumbered range.

mmn .

The program will next request the
new initial line number and new

increment, for the section to be

renumbered. If the resulting line : b

numbers would conflict with the e ign P?Gfedfﬂr the program to be
unchanged numbers, a message will ask I3 is the t t'l £ 11 e i

the user 1f he wishes to abandon the ;iﬂgram otal number o el L
Efgumbe;iggéa;f hiilibangzns uigiteizg’ Gs is the first line to be renumbered.
otherwise the renumbering will e H% 1s the last line to be renumbered.

D% is the new starting line number of
the renumbered part.

M% is the increment of the
numbers 1n the renumbered part.

P$ counts the lines as they are

carried out without further messages.
At the end of the run, the user must
return PAGE to 1its original value by
typing PAGE=&E@G@ <return> before
listing his program.

line

ELBUG

EXPLAINING PAGE

Part of your computer's memory is
reserved for its own use. The point
where your own program starts is always
stored for reference in a special
varlable called PAGE. On the Electron,
this 1is normally set to &E@0 (3584 in

decimal), when vyou first switch the
computer

on., To check, type PRINT PAGE
<return>, PAGE can be set to other
values for special purposes, usually so
that a program can be located 1n a
different part of memory. It |is
possible, in this way, to have more
than one program in memory at the same
time. This happens when the RENUMBER
program and your program are in memory
together.

Finally, when running the program,
please note that it takes an
appreciable time to renumber even a

small part of a long program. Don't be
impatient,
having to adit all the line numbers on
the screen -
letters or read ELBUG, while your micro
does the job for
this program every few minutes, but
when you get in a
line numbers,
LA AT IS e I S i e A i Sl 4, e B Y T e N s Py T SN

just be thankful you're not
and go and file your
you. You won't use

tight corner with
and you can't use the

May 1984

renumbered,

20 REM Authors G & L Pettit

30 REM Version E1.0

43 REM ELBUG MAY 1984

50 REM PROGRAM SUBJECT TO COPYRIGHT

6@ 3

1898 ON ERROR GOTO 230

110 N%=&EG0

1280 MODE6:PRINTTAB (6,2) "SELECTIVE REN
UMBER PROGRAM"

13@ PROClines

140 DIMES (L%) ,F% (L%)

150 PROColdlines

168 PROCnewl ines

178 PROCtest

183 PROCline ren

199 PROCinfill

200 PRINT"Time = "TIME DIV1@@" secs"

218 END

238 ON ERROR OFF

24@ MODE 6
2580 IF ERR<>17 REPORT:PRINT" at line

260 END
270 :
18@0@ DEFPROCl1ines
18310 finish=FALSE:L%=0:C%=N%
1820 REPEAT
1830 IF ?(C%+1)=&FF finish=TRUE:GOTO1d

104@ C%=7(C%+3) +C%:L%=L%+]

1858 UNTILfinish
1860 ENDPROC H.

Volume-1 Issue-6

F

1876 :

1383 DEFPROColdlines

1093 C%=N%

1180 FORI%=1TOL%

1113 E%(I1%)=(2(C%+1)) *256+2 (CE+2)

1128 C%=C%+7(C%+3)

1136 NEXT

114@ ENDPROC

1158 :

116@ DEFPROCnewlines

1178 FORI%=1TOL%:F%(1%)=-1:NEXT

1180 NS="+***Must be numbers***"

119@ PRINT'"Give line numbers of first
and last"'"lines to be renumbered."''™
Use the format e.g. 108,258"

1200 INPUT" or ;250 (renumbers up to
line 25@)"'" or 100, (ditto from lin
e 258 to end)"',GS$,HS

121@ IF ASCGS=-1 G%=0:G0T0123@

1220 G%=VALGS:IF G%=0 AND GS<>"@"PFRINT
'NS:GOTO1190

123@ IF ASCHS=-1 H%=E%(L%) :GOTO1250
1240 H%=VALHS:IF H%=0PRINT'N$:GOTO1190
1250 INPUT'"Give new line number for £
irst line and increments (e.g.200,1@) "
DS, MS

1260 D%=VALDS:M3%=VALMS:IF D%=00RM%=0PR
INT'NS:GOTO1250

1270 P%=0:TIME=0

1280 PRINT'"Delay for processing"

1290 FORI%=1TOL%

1300 IF G%>E%(I%)THENYI=E%(I%):GOTO1340

1318 IF H%<E%(I%)GOTO1340

1320 Z%=1%

1330 F3(1%)=D%+M%*P%:P3=P%+]
1340 NEXT

1350 P%=D%+M%* (P%-1)

1368 ENDPROC

1370 :

1388 DEFPROCtest

1399 clash=FALSE

140@ FORI%=1TOL%

1418 Q%=F%(I%):IF Q%=-1G0TO1460
1420 FORJ%=1TOL%

1430 IF Q%<E%(J%) J%=L%:GOTO1458
1440 IF Q%=E%(J%) PROCclash

1458 NEXT

1460 NEXT

147@ IF (2%+1)>L% Z%=L%-1

1480 IF D%<=Y% PRINT'"Your ranges over
lap!":clash=TRUE

149¢ IF (Z%+1)>L% OR D%>E%(L%) GOTO1510

15@@ IF P%>=E%(Z%+1) PRINT'"Your range
s overlap!":clash=TRUE

1518 IF clash INPUT'"Do you want to go
on (Y or N) "AS:IF ASCOM"Y"ANDASO"Y" E
ND

1520 ENDPROC

1530 :

154@ DEFPROCclash

T A ed T e e R I T e e T R e e o) S TR S e L Rty S e W Y e SN

ELBUG

May 1984

13

15580 IF Q%<G% OR Q%>H% PRINT"Clash in
line ";Q%:clash=TRUE

1568 ENDPROC

1570 :

158¢ DEFPROCline ren

1598 C%=N%

1600 FORI%=1TOL%:F%=F%(1%)

1613 IF F%=-1GOTO1640

1628 ?(C%+1)=F%DIV256

1638 ?(C%+2)=FMOD256

1648 C%=C%+7 (C%+3)

1653 NEXT

166@ ENDPROC

1670 :

16800 DEFPROCiInfill

1693 finish=FALSE

1708 C%=N%

1713 REPEAT

1720 B%=?2C%:1IF B%=&20 C%=C%+1:G0T0172¢
1738 IF B%=13GOT0179¢

1740 IF B%=&22 REPEAT C%=C%+1:B%=7C%:0
NTILB%=&22:C%=C%+1:G0T0172@

1758 IF B%<&BB GOTO177@

1768 IF B%=&BB OR B%=&8C OR B%=&E4 OR
B%=&E5 OR B%=&F7 PROCsub

1776 C%=C%+1:G0T01810

17880 PRINT R%, 5%, T%

1798 IF ?(C%+1)=&FF finish=TRUE:GOTOI18
1@

1800 C%=C%+4

1818 UNTIL finish

1823 ENDFPROC

1830 :

1843 DEFPROCsub

18580 C%=C%+1:B%=2C%:IF B%=&2@0 OR B%=&E
5 GOTO1854@

1868 IF B%<>&8DGOTO2060

1870 C%=C%+1:U%=0

1880 R%=2C%:5%=7(C%+1) :T%=7?(C%+2)

1890 S5%=5%-&40

190@ T%=(T%-&40)*256

1910 IF REMOD&10=0 U%=163B4:R%E=R%+&4
1920 IF R%=&54 R%=0:G0T01960

1930 IF R%=&44 R%=64:G0T01960

194@ IF R%=&74 R%=128:G0T01960

1950 IF R%=&b6d R%=192

1960 O0%=U%+R%+5%+T%

1978 FORI%=1TOL%

1988 IF E%(I%)<>0% GOT02020

1990 IF F%(I%)=-1 GOTO2010

2000 PROCinsert

2010 I%=L%

2028 NEXT

2030 C%=C%+2

2040 B%=7(C%+1):IF B%=&20 C%=C%+1:G0TO
2040

2050 IF B%=&2C C%=C%+1:G0T0185@

2060 ENDPROC

2078 :

2080 DEFPROCinsert Tk

Volume-1 Issue-6

14

2099 U%=F%(I%)

2108 Vi=U% DIV&400ad
2118 Wi=U% MOD&4000
2120 S%=W% MOD64+&40
2130 T%=W% DIV256+&40
21408 U%=W% MOD256
2150 W3=U% DIVH4

2160 IF W3=1 W%=-&10:G0T02190@
217@ IF W3=2 W¥=&20:GOT0D2190

2188 IF W%=3 Wi=%14@

2190 RE=WE+&54-4*V%

2200 7C%=R%:7 (C%+1)=5%:7(C%+2)=T%
2210 ENDPROC

“
NEW PRODUCTS AT THE MICRO USER SHOW

by Nigel Harris

At the last Micro-User exhibition at
the end of March it was evident that
firms already involved in the
manufacture of add-ons for the
Electron's 'Big Brother' computer have
more than just an eye out for a
similarly developing Electron market.
Spurred on by the belief that the
Electron will be as successful as the
BBC micro, a number of devices are
beginning to appear that will extend
the Electron's facilities towards that
of the Beeb. This will greatly enhance
the capability of this very attractive
micro, and allow a much wider range of
software to be used.

DISC SYSTEMS

Pace were showing early versions of
their disc interface for the Electron.
Due for release around June, it plugs
on to the edge-connector at the back of
the Electron. This of course, would
allow you to load and save programs on
floppy disc much more quickly than
cassette, very useful to anyone who
continually finds themselves waiting
for their cassette recorder. Floppy
disc drives are quite complex devices,
and require direct computer contreol. A
complete disc system would normally
therefore, come complete with a disc
filing system program to control the
interface between the computer and the
disc machine, and render many disc
transactions invisible to the user. The
Pace disc interface will be supplied
with their own 'DFS' which, they say is
functionally equivalent to their 'AMCOM
DFS' already available for the BBC
micro. (We shall look at discs in more
detail in a later issue of ELBUG).

JOYSTICKS
Two firms, First Byte Computers and

Signpoint Ltd, had on show interface

boxes to allow the use of joysticks on
the Electron (inclusive prices £24.95
and £16.95 respectively). Both support
the Atari type of switching joystick.
There are a large number of joysticks
to this standard already available,
However, as many BBC owners have found
out, there are two functionally
different types of joystick around. One
1s the switched type that these
interfaces cater for, which is quite
suitable for games use. The other is
the continuously wvariable type that
allows the input of infinitely many
intermediate wvalues if required to the
computer, and is often used for more
serious graphics applications (this is
the analogue type of system that is
standard on the BBC micro). Like the
disc interface, these two joystick
interfaces will plug into the back of
the Electron, but neither extends the
expansion interface to allow for other
add-ons. They must come at the end of
one that has been expanded, or other
add-ons to the Electron unplugged.

Addresses of suppliers:

Pace Disc Systems, 92 New Cross
St., Bradford BDS 8BS.

First Byte Computing, 10
Castlefields, Main Centre, Derby
DE1 2PE.

Signpoint Ltd., 166a Glyn Road,
London ES5.

[We hope to review the two joystick
interfaces more fully in the next issue

..
e Py ey M N B, Kyl Pt S e
e T e L e e

ELBUG

May 1984

Volume-1 Issue-6

15

PARETE A o T T T LT T e e e e ey | e A T | T et I o S e T e T P R I e e T T | MW] |

100 PROGRAMS FOR THE ACORN ELECTRON

Reviewed by Mike Williams

This book, and cassette of the same title, can be purchased together
or separately. 100 programs is a lot of computing in either format
but is it value for money? Mike Williams looks at this well produced

package and reports.

Title: 10¢ Programs for the Acorn
Electron

Publisher:Prentice Hall International

Price: £6.95 (book)

£11.50 (cassette)

The book contains a listing of each
program which is <clearly printed
(unlike many computing books), with
many instructions indented to clarify
the structure of the program. Each
program is accompanied by brief notes
on the use and design of the program in
guestion. The binding of the book made
it very difficult (in fact impossible)
to keep the book open at any listing,
so that typing in any program was very
mich a one handed and somewhat
difficult task.

The cassette 1s well packaged to
look 1like the book, and comes complete
with a 32 page booklet containing notes
on each program, very similar to those
in the book. The only omission here is
the book's 1list of contents which
conveniently classifies the programs
under various headings,and a general
introductory chapter.

With 1@0@ programs on offer, clearly
the emphasis is on gquantity, rather
than quality,and consequently many of
the programs are quite short. They
cover a wide range including games (of
course) , business and home
applications, mathematics and science
applications and graphics examples. I
believe that there are too many
mathematical examples for the typical
Electron user, and in contrast, there
is insufficient coverage of string and
text handling. This perhaps reflects
the author's academic background, but
even so, current ideas on the teaching
of programming have long since moved on
from the idea of the computer as a
nunber machine.

The program descriptions, and indeed

even the instructions for their use in
some cases, are often frustratingly
short in the information provided. Many
of the programs should really be
considered as basic routines which the
reader could integrate into a more
polished program. As such, this
collection could form an invaluable
resource, particularly for the novice
programmer. In view of this, I feel it
is unfortunate that the notes
accompanying many of them are so short,
with often inadequate explanation of
how the program works.

Despite some of the criticisms that
I have made above, I am sure that many
Electron owners, interested in learning
more of programming, will find much of
interest in these programs. Either book
or cassette on their own would be
sufficient, the former giving the
advantage of printed listings for
reference, the latter the convenience
of direct cassette loading. Few people
will quibble at programs costing a mere
7p (book) or 11.5p (cassette) each,
though I do believe that half the
number of programs and twice the
explanation would have provided a more
useful publication. But then, I
suppose, the title wouldn't have been
quite so eye-catching! .

ELBUG

May 1984

Volume-1 Issue-6

16

ELECTRON GRAPHICS (Part 6)

by Mike Williams

This month in our series on Electron Graphics we look at some of the
more interesting and also amusing effects that can be achieved using

the PLOT command.

Last month we looked at how to use
the PLOT85 command to produce a variety
of filled in shapes, but all based on
the triangle. It would be rather nice
if Basic allowed us to fill in and
colour any shape, and indeed BBC Basic
does just that in another variation of
the PLOT command.

To fill in an area of literally any
shape on the screen is in fact quite a
complex task, and although this can be
achieved just using Basic, we shall
concentrate on some much simpler but
never-the-less very useful fFill
routines. Sophisticated £fill routines
are included in commercially available
graphics packages such as the 'Electron
Graphics System' from Salamander
Software that we reviewed in ELBUG
issue 4, and in PAINTBOX shortly to be
released by us for the Electron.

The fill instruction that we shall
be using takes the form:

PLOT77,%,Y
where the '77' specifies which PLOT
option we are going to use, and 'x,y'

refers to a point on the screen in the
usual graphics co-ordinates. This
instruction draws a line in the current
drawing colour to the right and to the
left of the point given. The line is
continued in both directions until a
point is reached which is not in the
background colour, or the edge of the
screen is reached.

Now this may well sound rather
complicated, and you might alsoc be
wondering how this can be used to fill
in an area, since the instruction just
draws a straight line. Let's look at a
very simple example:

160 MODE 2

116 GCoL @,3

120 PLOT77,640,512

138 END
We shall be using Mode 2 in all the
examples this month as it allows us the

ELBUG

choice of all 16 colours. Line 110
selects yellow as the drawing colour,
and the background is black by default.

The PLOT instruction in line 12@ starts
at the point (64@,512), the centre of

the graphics screen, and draws a yellow
line horizontally right and left till
it reaches the edges of the screen.

useful to
procedure to draw an

At this point it will be
introduce a

outline circle in white, and of any
radius and in any position on the
screen. This is wvery similar to the

basic circle routine described in part
4 of this series in ELBUG issue 4, The
main difference 1is the inclusion of a
GCOL command to ensure that the circle
is drawn in white, while VDU29 is used
to reset the graphics origin back to
(#,8) after moving it to the centre of
the circle at the start of the
procedure. Here 1s the procedure:

1098 DEF PROCcircle(radius,x,y)
1818 LOCAL angle,X,Y

1828 VDU29,x;y;:GCOL 4,7

1838 MOVE radius,ﬁ

1048 FOR angle=0 TO 2*PI STEP PI/16
1850 X=radius*C0S (angle)

1068 Y=radius*SIN(angle)

1870 DRAW X,Y

13880 NEXT angle

1898 VDU29,@;0;

11808 ENDPROC

May 1984

Assuming that vyou have typed this
procedure into your Electron, add this
variation on our first program given
above:

18¢@ MODE 2

11@ PROCcircle(20@,64@,512)

1200 GCOL @,3

13@ PLOT77,64@,512

14@ END
This very short program draws a white
circle of radius 200 and with its
centre at (646,512). The PLOT command

Volume-1 Issue-6

| P

-—

in line 4@ draws a Yyellow line as
before, but it stops as soon as it
reaches the circumference of the circle
because this is no longer the
background colour.

You might 1like to try some
variations on this program, by changing
the x and y co-ordinates given in the
PLOT command. You should find that as
long as vyou choose a point inside the
circle, you get a horizontal yellow
line inside the circle. If you choose a
point that is outside the circle, then
the line will reach at one end to the
circumference of the circle, and at the
other end to the edge of the screen (or
indeed to both edges of the screen).
The usefulness of this PLOT instruction
lies in the fact that we do not need to
know in advance where the ends of the
line will be.

All we need to do now to fill
completely the inside of the circle 1is
to repeat the PLOT77 command from the
bottom to the top (or top to bottom if

you wish). Yes, you guessed 1t - we
need to use a FOR-NEXT loop. Rewrite
yvour main program as follows:

186 MODE 2

11@ PROCcircle(20@,640,512)
126 GCOL @,3

13@ FOR ¥%=312 TO 712

14@ PLOT77,648,Y%

158 NEXT Y%

168 END

If you run this program you should find
that the white circle is neatly filled
with a yellow centre (of course!).

Now although this seems to work
quite well, it is very easy indeed to
improve the speed. To see how, we need
to refer back to a previous article in
this series, that in ELBUG issue 4,
where we looked briefly at screen
resolution.

Mode 2 that we have been using
provides low resolution graphics, and
the screen actually consists of 168
points horizontally by 256 points
vertically, compared with the graphics
co-ordinates that we use of 1280 by
1824, What this means is that in the
vertical direction, for example, we
have to move by a minimum of 4 graphics
units in order to move 1 physical point
on the screen. If we move in steps of
less than 4 then we are still referring
to the same physical screen point.

This means that in our Mode 2
programs any vertical movement in steps
of less than 4 is wasted, and in the
horizontal direction we need steps of
at least 8 to move physically on the
screen. If we return to our previous
program you should see that we can
change line 13@ to read:

13@ FOR Y%=312 TO 712 STEP 4
If you run the revised program, you
should find that you get exactly the
same result as before, but four times
faster!

Similar factors apply in all
graphics modes. The minimum vertical
step size is always 4 (physically 256
points on the screen), but the minimum
horizontal step size varies according
to the mode: 2 in Mode 6, 4 in Modes |1
and 4, and 8 in Modes 2 and 5.

We have now seen enough to write a
more general £ill routine, that will
fill not just a circle, but any shape,
though with some limitations. We will
write a procedure that will specify a
point on the screen, and will fill the
surrounding area. We will assume that
the existing colour on the screen at
the point specified is the background
colour, and that the boundaries of the
area to be filled will be marked by
lines or areas of a different colour,
or the edges of the screen, whichever
are reached first.

sl e S T R A T T e e Tl S S e e e e L LR T PR |

ELBUG

May 1984 Volume-1 Issue-6

18

In filling the circle we moved in
one direction only, from bottom to top.
With a more general approach, we no
longer know where the boundaries are
going to occur, and so we need to fill
in the area in two sections, both
starting from the point specified. The
first section will be to fill in line
by line moving vertically upwards from
the starting point, and then to fill
downwards from the starting point., In
both cases we continue moving and
filling until we encounter a point
which is not in the background colour.

The processes of first filling up
from a point, and then £filling down
from the point are essentially the
same, so this has been written as a
procedure called PROCfillupdown, which
is then called twice in the main
procedure, PROCEill. These two
procedures are defined as follows:

1288 DEF PROCfill (colour,x,y)

1228 PROCfillupdown(colour,x,y.4)
1230 PROCfillupdown(colour,x,y-4,-4)
1248 ENDPROC

1250 :

130@ DEF PROCfillupdown(colour,x,y,inc)

1310 newy=y:background=POINT (x,vy)

13280 GCOL@,colour:GCOLA, 1 28+background

1330 REPEAT

1348 PLOT77,x%,newy

13580 newy=newy+inc

1360 UNTIL POINT (x,newy)<>background
137@ ENDPROC

Let's look first at the procedure
PROCfillupdown, as this is the one
which does all the work. Notice the
POINT instruction. This tells us the
colour (as a number) of any point on
the screen. The parameters X,Y
represent the starting point for
filling an area, so the first task is
to find the colour of this point and
set 1t as the background colour using
the GCOL command (lines 131@, 1328).
Remember that background colours are
always specified by adding 128 to the
colour number. The other two parameters
of this procedure are the colour to use
for filling (colour) and the increment
(inc) for filling up (4) or down (-4).

Since we no longer know in advance
the start and end points we cannot
readily use a FOR-NEXT loop this time,

but this is exactly the situation for
using REPEAT-UNTIL. We shall repeatedly
call the PLOT77 command, as we move up
or down the screen, until the colour of
the next starting point is different to
the background colour, again detected
by using the POINT function. Because we
are using REPEAT-UNTIL we must
ourselves program the incrementing of
the new value of y (newy) to move up
(or down) the screen.

The £fill procedure itself simply
calls the other procedure twice, once
to f£ill up from the starting point, and
once to fill downwards from the
starting point.

S0 now we have a general fill
procedure that will enable us to fill
in (or colour) any area, starting from
any peoint on the screen., Some examples
will soon expose the limitations of
this procedure and you will begin to
see why a really general fill routine
is bound to be quite complex.

Our ' procedure will fill any circle
provided the starting point is directly
between the highest and lowest points
of the the circle. Any other position,
and the filling will stop as soon as
the starting point for each line
reaches the circumference. You will
also have to be careful about using
this fill procedure for concave areas,
or you may well find 'holes' being left
unfilled.

Despite these limitations, this
procedure does have a lot of uses, some
of them quite amusing as we shall see
in the two examples with which we shall
finish this month's article., Both of
these examples require all three
procedures that we have already been
using. The first example draws two
overlapping circles on the screen, and
then colours in each of the three
enclosed areas with a different colour,
Any problems are avoided by carefully

selecting a central starting point for
each area. Here is this example:

160 MODE 2

110 ON ERROR GOTO 510

120 PROCcircle(300,440,512)
130 PROCcircle(300,843,512)
148 PROCEill(1,44@,512)

—

ELBUG

May 1984 Volume-1 Issue-6

19

156 PROCEf111(2,648,512)
1680 PROC£i11(4,846,512)
198 END

The final example has to be run to see
the full effect. The program first
draws a large circle and colours it in.
Two small circles are then added and
coloured as eyes, and a third circle
added and <coloured as a nose. A
REPEAT-UNTIL 1loop is then used to
repeatedly open and close one eye to
give the effect of winking. This is
done by colouring in the eye with the
same colour as the rest of the face,
and then again with the colour of the
eye. The starting points are carefully
selected just inside the top and bottom
edges in each «case to give the
realistic effect of an eye first
closing and then opening again.

16@ MODE 2

11@ ON ERROR GOTO 510

120 PROCcircle(40@,640,512)
125 PROCfill(5,640,512)

130 PROCcircle(50,440,612)

1480 PROCcircle(56,840,612)
150 PROCFi11(4,448,612)
166 PROCFill (4,84@,612)
1780 PROCcircle(75,640,400)
18¢ PROCEill(1,64@,400)
193 REPEAT

20@ PROCEill (5,44@,658)
21@ PROCEill(4,440,568)
22@ Z=INKEY (20@)

230 UNTIL FALSE

24@ END

I hope that you will be able to think
of further ways to experiment with this
fill routine., Although a fill routine

may seem attractive, it can be be
complex, and the triangle plotting
described last month will often be
simpler to use, particularly when the
shape ©of an area to be coloured is
known in advance. Next month we will
continue to look at more simple
variations in the .use of the PLOT

command.
@

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SINGLE KEY RECOVERY - C.Luck

The following single function key definition will attempt to recover as much of a
bad program as possible, enabling it to be listed, and corrupt lines corrected. When
you need 1it, press function key zero (Func-f@), and the computer will display the

lines successfully recovered.

*KEYPMODEG :p=&E@0: ?p=13:p?1=0:REPEAT:c=4:REPEAT:Cc=c+1 :UNTILp?c=13:p?3=c:P.p?1*256+p?

2:p=p+c:UNTILp?1=&FF |M

This is much more limited than the Rescue program in issue 2 of ELBUG but might

be well worth trying in the first instance.

h

ELBUG

May 1984

VYolume-1 Issue-6

20

ﬂ

THE LATEST GAMES REVIEWED

Title :737 Flight Simulator
Supplier:Salamander Software
Price t£9.95

Reviewer:Mike Williams

Rating i¥%**

If you have ever fancied your
chances piloting a modern jet airliner,
then this program gives you that
opportunity, in this computer
simulation. You are the pilot of a
Boeing 737 Jjet with a full display of
all the necessary instruments on the
screen in front of you. The top part of
the screen either shows a visual
impression of the runway during
take-off and landing, or a radar plot
of the runway approach and the
immediate vicinity.

This is certainly a comprehensive
and realistic simulation. The cockpit
display adequately shows 22 different
instruments, making good use of the
Electron's graphics facilities. A
further clue to your status is provided
by the reassuring sound of the engines’
turbine whine in the background. This
amount of feedback is very useful for
the 'pilot', as there are 27 keyboard
commands to control all aspects of the
plane! Fortunately there 1s also a very
good manual, which not only lists 1in
detail all the instruments and
controls, but also gives you the
necessary information for take-off and
landing.

Take-off is not too difficult - you
just use maximum thrust to achieve
sufficient take-off speed and then
climb (make sure you raise the landing
gear and retract the flaps quickly
though). You «can then climb the
aircraft up to any height you like,
banking and setting course as you wish.
You'll soon find that you need to brush
up on your navigation as the plane
flies out of radar range and you have
to rely solely on the instruments.

ELBUG

May 1984

Assuming you are able to find your
way back to the airport, the most
challenging task of all is to make a
safe landing. I found I needed to
practice this several times before 1
was able to land the plane
successfully, and even more to do so
regularly. The program helps by
allowing you to practice just landings
(as well as take-offs), and 1in the
event of a crash (very likely) allows
yvou to take a metaphorical step back
and try again (a pity you can't do this
with the real thing!).

I found this a fascinating and
exciting program to use; one which is
rather different from the normal run of
computer games, and with many more
features than there is space to
describe here. Even though I can now
take off and land reliably, after a
flight of up to half an hour, I don't
think I'm quite ready for the real
thing. My only slight criticism is that
I persconally lost interest once I could
take-off and land without coming too
close to crashing the plane, although
there are other features that could
maintain your interest longer (such as
setting up a strong crosswind or
specifying your own airport layout).
Despite the small criticism, I
thoroughly recommend this program.

—_———— T h RN a

[PRESS C- T0 COWNTIMUE |

Volume-1 Issue-6

21

GUARDIAN

‘-.-1* _

FaslE ol o an

GAMES WITH A 'BYTE'

FROM ALLIGATA SOFTWARE
Reviewed by Alan Webster

Title : BLAGGER
Price « £7.95
Rating - kkkk

Blagger 1s one of three new games
for the Electron from Alligata
Software. It has twenty (yes twenty!)
different screens, each with 1its own
title and level of complexity. It will
take you a long time to get through the
first few screens, bhut persevere - it's
well worth the effort.

The object of the game 1is to
retrieve the keys to a safe. Once all
the keys on that level have been found,

you can open the safe and proceed to
the next level. There are a number of

lifts and coveyor belts that have to be

negotiated, as well as a host of
different creatures to avoid. The game

is very simple to operate, needing only
three keys, and is an excellent example
of 1ts genre.

Title GUARDIAN
Price = £7.95
Rating ST TTTY

In my view, Guardian is the ultimate
game for the Electron. This game 1is a
version of the arcade game called
Defender, and it does run very well.
Although speed limits the game to a
four colour mode, the game is still
fast and very smooth, with some of the
best sound effects you are likely to
find on an Electron.

At one time, it was thought that a
version of Defender for the Electron
would be 1mpossible because of the
sheer speed necessary, the sideways
scrolling and the extent of the
graphics and movement involved.
Alligata Software have not only proved
this wview wrong, but provided the
fastest game I have so far seen for the
Electron.

The idea of the game is to navigate
your spacecraft over the surface of a
planet, and to shoot the marauding
aliens before they abduct the
humananoids. If the aliens reach the
top of the screen with a humanoid, they
mutate and hunt you down with
unbel ievable ferocity. Additional
features include other undesirables
such as baiters, pods and swarmers. An
extra ship is awarded at every 10800
points.

Like all good games, this one
requires a degree of practice before
you appreciate how exceptional it is. A
high score of 658,000 for Guardian was
achieved by the author, Steven Evans,
at the recent Micro User Show. However,
if you don't quite measure up to this
level, still send your high scores into
us for inclusion in our high score
table for the Electron.

Title : BUG BLASTER
Price + £7.95
Rating 1 ***

Bug Blaster is a wvery good
implementation of the arcade game
called Centipede. The action takes
place in a mushroom patch full of
centipedes, spiders, frenzied fleas,
and a mushroom poisoning scorpion
called 'Brian'.

Your main objective is to wipe out
the centipedes before they take over.
The Jjob is not too easy, especially in
the later stages when the game speeds
up and the action becomes fast and
furious, although the early stages do
tend to become rather boring after a
while.

All of these games include a high
score table and extra life features.
They are available direct from Alligata
Software Limited, 178 West Street,
Sheffield S1 4ET. .

ELBUG

May 1984

Volume-1 Issue-6

22

T N el T A e A e e T T IR TR ST S e N e A O R Y S N O S T W by e e S T

LUNAR ESCAPE
by C. J. Hall

The following game, written entirely in Basic, is an implementation
of the arcade game Lunar Rescue, where you control a space shuttle
ferrying survivors from the lunar surface to the orbiting space
ship. The game is quite fast, is fun to play and very addictive.

In this game, you have to steer a
rescue shuttle safely through a belt of
asteroids, touching down on one of the
three landing pads where vyou take on
board a survivor. You then launch the
craft away from the pad and steer vyour
way back through the asteroids, finally
docking safely with the main ship. The
survivor disembarks, and the process is
repeated. Each landing gets harder
since the landing pads are partially
burnt away by the shuttle's thrusters
during each launch, leaving a smaller
landing pad for the next trip.

The four controls for the shuttle
are as follows:

Space bar - releases shuttle from
main craft or launches
it from the landing
pad.

Return - brakes as the shuttles
climbs or descends.

- moves the shuttle left.

gl
[

moves the shuttle right.
) ; L

May 1984

You have a choice of two skill
levels, level 1 having fewer asteroids
than level 2. On successive screens the
number of asteroids increases and they
also move faster as well as diagonally,
making the game progressively harder.

The listing is quite long and
complicated, so take great care when
entering the program as debugging could
be difficult due to the complicated
interactions between the various parts
of the program.

This is a deceptively simple game,
which is much harder to play
successfully than it might appear
initially. Like all good computer games
this one is quite addictive, and well
worth the effort of typing it in.

13 REM Program LUNAR

20 REM Version E@.2

30 REM Author C.J.Hall

40 REM ELBUG MAY 1984

50 REM Program subject to Copyright
60

180 ON ERROE GOTO 354@

118 MODE 6:VDU19,0,4,06:8
120 PROCinst
13@ PROCsetchars
140 *FX4,1
158 II%=END (-TIME)
168 IFS%<>-1 !&B8@=1000
17@ PRINT''"Skill level (1/2)"
180 REPEAT:ZS=GETS:UNTIL ZS="1"0QRZS="

Volume-1 Issue-6

LUNAR ESCRAFE

Biide wour shuttle down throuah the
asteraids to the launoh pads below.
Colleat the wsiting peaple and Fly
baok ta the sether ship.

Your shuttle has only & limited ambunt
of fuoel., se wateah Ffor it running out.

F 4 = move LEFT
o = move RIGHT
RETURN - BLODH DD
EPACE - RELERSE FROM
MOTHER BHIPM
OR TAKE GFF

BRill lewel (1773

19@ IF Z$="1" G%=FALSE:AT%=5 ELSE %=
TRUE:AT%=10
200 MODE4:VDU23,1,0;0;@;@;:VDU 19,0,4
HH
2180 *FX15,0
220 DOCK=20:LL%=1:5%=0:B%=17000:1%=B%
tF1%=400@:F%=FI1%:X%=0:NS$=FALSE:U%=0:FLA
G1%=FALSE

230 NL%=3:IN%=FALSE:AN%=FALSE:D%=0:FT
$=TRUE:A%=981434236:5PS=CHRS(32)

240 WE=16777183:Y%=-66822:Y1%=-842972
9:H%=1&80:V3=FALSE:BBB%=V%:*FX11,0

250 CLS:DIMX%(41),Y%(41),IX%(41),1IY%(
41) :NG3=0

260 L$=STRINGS (40,CHRS238) : PRINTTAR (0
,3)"Score : OGO0Q@ag"

IE?@ PRINTTAB (@, 2) ;LS; : PRINTTAB(28,8) "
Hiscore : @d@0@d@ga"

280 PRINTTAB(@,71)"Landers : @G@":TAB(14
1) "Fuel : 0000";TAB(29,1)"Level : 0@":

298 PRINTTAB(@,31)"Landings: This lev
el @3 : This game 000";

30@ SEA1S5=STRINGS (4@,CHRS253)

319 STMPS=STRINGS (2,5PS)+CHRS247+CHRS
245+CHRS2494+STRINGS (2,5PS) +CHRS1 B+STRIN
GS(7,CHRS8) +SPS+CHRS243+5PS

3280 STM25=SPS+CHRS244+SPS+CHRS1@+5TRI
NGS (7,CHRS8) +STRINGS (2,5PS) +5TRINGS (3,C
HR$248) +SPS+SPS

330 SHIPS=STMPS+SPS545TM2S

34@ QS=SHIPS:ANYS=STRINGS (3,CHRS232)

350 WHTS=STRINGS (2,CHRS$234)

360 FORII%=@TOH%STEP (H3DIV10@) : PRINTT
AB(37-LEN(STRS(II%)),d):1I%

370 SOUND@,-15,3,1:NEXT

380 PRINTTAB (37-LEN (STRS (H%)) ,0) ;HS

390 SOUND1,-15,154,4

400 FORII%=1 TO 3:PRINTTAB(11,1):1I1%:
SOUND@,-15,3, 3:NEXT

410 FORII%=20TOF%STEP20:PRINTTAB (25-L
EN(STRS(II%)),1);I1%:50UND@,-15,7,1:NEXT

420 SOUND1,-15,150,8:PRINTTAB(38,1)™1"

430 MANSHIPS=STMPS+CHRS (255) +5TM2S

44@ ENTERS=STMPS+SPS+SPS+CHRS244+5PS

ELBUG

T e e e e o e e i

May 1984

23

450 PRINTTAB(@,30) ;SEA1S;
460 PRINTTAB(@,29);:VDU234,234,232:PR
INTSPC(34);:VDU233,234,234
470 PRINTTAB(@,28);:VDU234,232:PRINTS
PC(36);:VDU233,234
480 PRINTTARB (0,27) ;CHR$232;SPC(38) ;CH
R$S233;
490 PRINTTAB (9,29) ;WHTS; SPC(8) ;WHTS; S
PC(8) jWHTS;
5@@ PRINTTAB(8,28) ;WHTS;WHTS;SPC(6) :W
HTS;WHTS ;SPC(6) ;WHTS :WHTS ;
518 PRINTTAB(17,27) ;WHTS :WHTS ;WHTS;
528 IF IN%=TRUE GOTO 1860
53@ L%=RND(25)+5
540 M%=3
550 PRINTTAB (L%,M%) ;SHIPS
56@ N%=RND(3)-2:1IF N%=0 GOTO 56@
578 J%=0:K%=0
580 TIME=@
598 PROCsetastros
6@@ PROCdispastros
613 BEB%=FALSE
628 REPEAT
63@ PROCmaninship
640 PROCmoveastros
65@ UNTIL V%=TRUE
660 REPEAT
678 PROCmoveman
68@ PROCmoveastros
698 PROCmoveship
7880 UNTIL BBB% OR U%=1
71@ IF BBB% THEN BBB%=FALSE:GOTO 62@
720 X%=0
73@ REPEAT
743 PROCmoveastros
758 PROCmoveship
760 UNTIL INKEY (-99)
773 PRINTTAB (QW%,K%+1) STRINGS (6,5PS)
780 REPEAT
79@ PROCmoveastros
80@ PROCupwego
818 PROCmoveship
820 UNTIL BBB% OR DOCK<6:IF BBB% THEN
BBB%=FALSE:GOTQO 620
83@ PROChavewedocked
840 *FX15,0
85@ GOTO 620
860 END
87d:
1300 DEFPROCmoveship:T%=L%+N%:IFT%=@ O
R T%=35 N%=-N%:T%=L%+N%
18019 LE=T%:PRINTTAB (L%,M%) ;SHIPS:ENDPR
o
1826 :
1030 DEFPROCManinship:T%=L%+N%: IFT%=0
OR T%=35 N%=-N%:T%=L%+N%
1040 L3%=T%:PRINTTAB (L%,M%) ;MANSHIPS: IF
INKEYS (2) <>SP$ ENDPROC
1858 V%=TRUE:PRINTTAB (L%,M%+2) :;SPC1d:P
RINTTAB (L%+3,M%+1) ;SPS

Volume-1 Issue-6

1960 SOUND1,-15,2208,1:J%=L%+3:K¥=M%+3
1870 PRINTTAB (J%,K%) ;CHRS (255) : PRINTTA
B(L%,M%) ; SHIPS:X%=0: ENDPROC

108@:

1898 DEFPROCsetastros

1188 FOR Q%=0 TO ATS%+]

1110 X% (Q%)=RND(37)+1

1120 Y%(Q%)=RND(18)+6

1130 IX%(0%)=RND(5)-3:IF IX%(Q%)=0 GOT
O 113@

1140 IF G%=FALSE GOTO 1160

1150 IY%(Q%)=RND(3)-2

11608 IF Q%MODS=@ PROCmoveship

1173 NEXT

1188 ENDPROC

1198:

12680 DEFPROCmoveastros

1210 IF AT%<10@ BG%=1:E%=AT%:GOTO 1240
1220 IF FT%=TRUE BG%=1:E%=AT% DIV 2:FT
$=FALSE:GOTO 1240

123@ BG3%=AT% DIV 2:E%=AT%:FT%=TRUE
1240 FOR Z%=BG% TO E%

1250 T%=X% (Z2%)+IX%(Z%)

1260 R%=Y%(Z2%)+IY%(Z%)

12738 IF T%<@ PRINTTARB (X% (Z%),Y%(2%))5P
S::T%=39:%% (2%) =T%:GOTO1290

1280 IF T%>39 PRINTTAB (X% (Z%),Y%(2%))5
PS;:T%=0:X%(Z%)=T%

1293 IF R%<7 PRINTTAB (X% (Z%) ,Y%:(Z%))5P
S:R%=24:Y%(2%)=R%:G0TO1330

1300 IF R%>24 PRINTTAB (X%(Z%) ,Y%(Z2%))5
PS:R%=7:Y%(2%)=R%:G0OT01330

1310 PRINTTAB (X% (2%),Y%(2%))SPS;

1320 YS(Z%)=Y%(2%)+1Y%(2%)

1330 X%(Z2%)=X%(2%)+IX%(Z2%)

1340 PRINTTAB (X% (Z%) ,Y%(Z%)) ;CHRS (254) ;
1350 NEXT

1360 PR=!((K%*40*8)+4+55800+ (J%*8))
137@ IF P%=A% BEB%=TRUE:PROClosealife
1383 ENDPROC

1394@:

1400 DEFPROCdispastros

141@ FOR I1%=1 TO AT%:PRINTTAB(X%(II%)
;Y% (II%)) ;CHRS (254) ; : NEXT: ENDPROC

ELBUG

May 1984

#

1420:

14303 DEFPROCupwego

1440 X%=0

1453 IF INKEY (-98) X%=-1

146@ IF INKEY (-67) X%=I

147@ IF INKEY(-74) PROCwaitabit

148F IF AN%=TRUE AN%=FALSE:ENDPROC
149F PROClessenfuelbyone:J3=J%+X%

1583 IF BBB%=TRUE THEN ENDPROC

1518 IF J%<@ J%=0:X%=0

1520 IF J%»39 J%=39:X%=0

15308 IF K%<6 DOCE=5:ENDPROC

1540 IF K%<9 SHIPS=ENTERS:PRINTTAB (L%,
M%+2) ; SPC(7)

1550 K%=K3%-1

1568 PRINTTAR (J%-X%,K%+1)5SPS;

1570 P%=!((K3*40*8) +4+&580@+ (J%*8))
1580 PRINTTAB (J%,K%) ;CHRS (255);

15983 IF P%=¢ ENDPROC

1680 PROClosealife:BBB%=TRUE:ENDPROC
16130:

1620 DEFPROChavewsdocked

1630 PRINTTAB(L%,M%+2)SPC6

1640 IF J%<L%+2 OR J%>L%+4 YES=FALSE E
LSE YES=TRUE

1656 IF YES=FALSE J%=J%-X%:PROCloseali
fe :BBB%=TRUE: ENDPROC

1668 PRINTTARB (L%,M%) ;MANSHIPS

167@ SHIPS=QS

1680 J%=L%+3:KE=M%+]

1693 IF NS%=FALSE oldfuel%=F%:F%=F%+10@
@:IF F%>FI% THEN F%=FI%

17¢0@ IF NS%=FALSE PROCdispfuel (oldfuel
%)

171@ IF NS%=TRUE NS%=FALSE:PROCnewscre
en

17268 VE=FALSE:U%=0:D0CK=20

1730 SHIPS=0QS$

1748 ENDPROC

175@:

1768 DEFPROCnewscreen

1778 IN%=TRUE

1788 D%=0

1798 PROCclearastros

1800 PRINTTAB(0,12)"Well done ... you
cleared a screen !!"

1810 PROCnoise:PROCnolise

1828 PROCbonuscount

183@ PRINTTABR (3,16)"You have a bonus of
":PRINTTAB (20,16) ;B%; : PRINT" points "
1843 PRINTTAB(21,31)"@@";

1850 GOTO45¢

1868 PROCaddbonus

187@ AT%=AT%+5

1880 IF AT% MOD 2=1 AT%=AT%+5

1893 IF AT%>40 AT%=40

196@ IF AT%>9 BG%E=0:E%=AT% DIV 2

191¢ PROCsetastros

1923 PROCclearastros

193¢ PROCdispastros

B]

Volume-1 Issue-6

1940 LL%=LL%+1

1950 IF LL%=3 NL%=NL%+1:PRINTTAB (12-LE
M (STRS (NL%)) ,1) :NL%:PROCnoise

1960 SOUND1,-15,158,26

197@ PRINTTAB (39-LEN(STRS(LL%)),1);LL%

1980 I%=I%+3000:B%=I%:TIME=0

1999 FI%=FI%+108

2000 oldfuel%=F%:F%=FI%

2019 PROCdispfuel (oldfuel%)

2020 I%=I%+4000

2030 B%=I%

2040 D%=0

2053 ENDPROC

2064:

2078 DEFPROCclearastros:VDU 28,0,24,39
s 1:CLS:VDU 28,0,31,39,8:ENDPROC

2080

2090 DEFPROCdockingssofar

216@ PRINTTAR(39-LEN (STRS(TD%)),31);TD
%; :PRINTTAB (22, 31) ;D%; : ENDPROC

2118:

2120 DEFPROCmoveman

2130 X%=0

2140 IF INKEY (-98) X%=-]

2158 IF INEKEY (-67) X%=1

2160 IF INKEY(-74) PROCwaitabit

2178 IF AN%=TRUE AN%=FALSE:ENDPROC

2180 J3=J%+X%:PROClessenfuelbyone
2190 IF BBB%=TRUE THEN ENDPROC

2200 IF J%<0 J%=0:X%=0

2218 IF J%>39 J%=39:X%=0

2220 K%=K%+]

2230 PRINTTAB (J%-X%,K3%-1)5PS5;

2240 PE=!((K%*40%8) +4+55808+ (J2*8))
2250 PRINTTAB (J%,K%) ;CHRS (255) ;

2260 IF P%=0 ENDPROC

2278 IF P%=A% OR P%=W% PROClosealife:B
BB%=TRUE: ENDPROC

2280 IF P%=Y¥% OR P%=Y1% FLAG]%=2+(P%=Y
%) :PROCloseal i fe :BBE%=TRUE: ENDPROC

2290 PROCblock

2300 U%=1

2313 ENDPROC

2320:

23380 DEFPROCblock

2340 IF J%<13 QWE=6

2350 IF J%<26 AND J%>12 QW3=17

2360 IF J%<39 AND J%>25 QW%=26

2370 PRINTTAB(J%,K%-1);CHRS(255)

2380 PRINTTAB(J%,K%) ;CHRS234;

2390 IF K%=28 SC%=100 ELSE IF K%=29 5C
$=20@ ELSE 5C%=58

24030 D%=D%+1

2410 IF D%=7 NS%=TRUE

2420 TD%E=TD%+]

2430 PROCdockingssofar

244@ PROCnoise

2450 S%=5%+5C%:PROCscore

2460 K%=K%-1

247@ ENDPROC

25

R T B TR SR e e L N T W A I Y R T T

2480:

24903 DEFPROClosealife

25@0@ SHIPS=0S

2510 NL%=NL%-1

2520 PRINTTAB(12-LEN(STRS (NL%)),1):NL%

2530 PRINTTARB(J%,K%) ;CHRS242

2540 PROCcrash

2550 PRINTTAB(J%,K%)SPS

2560 IF FLAG1% THEN PRINTTAB (J%,K%) ;CH
RS (231+FLAG1%) ; :FLAG]1%=FALSE

2578 IF NL%=0 PROCfinish:IF ZS{"Y" E
ND

2580 VE=FALSE:U%=0:DOCK=20

2590 PRINTTAB(@,3@) ;SEA1S:

2600 J%=L3%+3:K%=M%+2

2610 *FX15,0

2620 IF NS%=FALSE ENDPROC

2630 PROCnewscreen:DOCKS=0:NS%=FALSE:E
NDPROC

2640:

2650 DEFPROCfinish

2660 VDU28,0,31,39,3:CLS:*FX15,0

26780 PRINTTAB(9,12)"G A ME OV ER"

2680 PRINTTAB(@,25)"Do you want to pla
y again (¥/N)":VDU28,@,31,39,0

2690 IF S%>H% PRINTTAE(@,17)"You got t
he high-score : well done!!"™:H%=5%:!580
=H%

2708 S%=-=1:Z5=CGETS:IF Z5<>"N" RUN

2710 *FX4

2720 VDU22,6:*FX11,4@

2730 ENDPROC

2740@:

2750 DEFPROCbhonuscount

2760 B3=I1%-TIME:B%=B% DIV 1@:IF B%<@ B
%=0:ENDPROC ELSE ENDPROC

277a:

2780 DEFPROCaddbonus:S%=5%+B%:FOR II%=
S%-B% TO S% STEP 1@

2798 PRINTTAB (14-LEN(STRS(I1%)),0):II%
:SOUND@,-15,3,1:NEXT

2800 PRINTTAB (14-LEN(STRS(S%)),d);5%:P
ROCnoise: ENDPROC

281@:

2820 DEFPROClessenfuelbyone

2830 F3=F%-1

2840 IF F%=-1 F%=FI%:PROClosealife:PRO
Cdispfuel (19) :BBB%=TRUE

2850 PRINTTAB(21,1)"@@ag"

2860 PRINTTAB (25-LEN(STRS(F%)),1) :F%:
287@ ENDPROC

288d:

2890 DEFPROCdispfuel (oldfuel%) : PRINTTA
B(21,1) "eaap"

2903 FOR II%=oldfuel% TO F% STEP 1@:PR
INTTAB (25-LEN(STRS(II%)),1);I1%

291@ SOUND@,-15,3,3:NEXT: ENDPROC

2920:

2938 DEFPROCwaitabit

2943 IF F%<11 AN%=FALSE:ENDPROC

_

ELBUG

May 1984

Volume-1 Issue-6

26

M

2950 F%=F%-10 3290 PRINTSPC11;"RETURN - SLOW DOWN"'
296@ PRINTTAB(21,1)"@daa" 3300 PRINTSPC11;"SPACE - RELEASE FROM"
297@ PRINTTAB (25-LEN(STRS(F%)),1);F% 3310 PRINTSPC2@;"MOTHER SHIP"

2980 ANE=TRUE 3320 PRINTSPCZ0;"OR TAKE OFF"

2990 ENDPROC 33309 vDU28,0,24,39,0

300d: 3340 ENDPROC
301@ DEFPROCscore:FOR II%=5%-5C% TO S53% 3350:
STEP 2 3360 DEFPROCsetchars

3@20 PRINTTAB(14-LEN(STRS(I1%)),@);II% 3370 VDU23,1,0;@;0;06;

+ SOUND@, =15, 3,1 : NEXT: ENDPROC

3380 vDU23,255,24,60,189,255,102,60,66

3@38: 129
3043 DEFPROCnoise 3390 vDU23,232,96,232,232,232,250,258,
385@ FOR II%=1 TO 6 254,255

3669
3870
3080
3990
3109

sounNp1,-15,5,3
SOUND1,-15,206,3

NEXT

*FX15,1

TIME =@:REPEAT UNTIL TIME>90

3400 vDU23,233,6,23,23,23,95,95,127,255
3419 vDU23,234,255,255,255,255,255,255

1 255,235

3420 vDU23,238,255,255,0,0,0,0,0,0

3430 vDU23,242,153,96,60,231,231,60,90

3119 ENDPROC 153

3120: 3440 vDU23,254,78,255,255,252,124,127,
3138 DEFPROCcrash 127,58

3143 FOR II%=-15 TO @ 345@¢ vDU23,253,144,146,210,218,223,255
3150 SOUND@,II%,3+RND(3),5 »255,0

316@ NEXT 3460 VvDU23,243,1,3,3,7,7,3,3,.1

3173 ENDPROC 347@ VDU23,244,128,192,192,224,224,192
3188: ,192,128

3198 DEFPROCinst 3480 VDU23,245,61,255,255,195,129,0,8,0
320@ PRINTTAB(12)"LUNAR ESCAPE"'' 349@ vDU23,247,0,3,7,31,63,126,124,248

321@ PRINT''" Guide your shuttle down 3500 vDU23,248,129,126,0,0,0,0,0,0
through the" 3510 vDU23,249,0,192,224,248,252,126,6
322@ PRINT" asteroids to the launch pa 23]
ds below." 1520 ENDPROC
3238 PRINT" Collect the waiting people 3530:

and fly"

3240

PRINT" back to the mother ship.™'

354@ ON ERROR OFF
3550 IF ERR=17 THEN PROCfinish ELSE RE

325@ PRINT" Your shuttle has only a 1i PORT:PRINT" at line ";ERL
mited amount" 3568 *FX4
3260 PRINT" of fuel, so watch for it r 3576 *FX12
unning out.™'" 3588 vDU23:;11,255;0;0;0
3270 PRINTSPC11;"Z - move LEFT" 3598 END
3280 PRINTSPC11;"X - move RIGHT"

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS

SPACE INVADER PROMPT

The VDU 23 call can be used very amusingly to re-define the prompt symbol '>' to
be a space invader. Try the following:

vDu23,62,60,126,219,255,126,60,36,66 <return>

PREVENTING THE SCREEN FROM SCROLLING - P.Davies

The screen will automatically scroll if a character
right corner

is printed in the bottom

of the screen. This will have the effect of deleting any text on the
top line. An easy way to prevent this is to type in ?&D0=2 <{return>.
second bit of the location &D@, which controls the scrolling of the screen.

This sets the

If this

bit is set, then the scrolling facility is inhibited. After printing a character in

this position, the screen must be returned to its former state by using ?&D@=0
<return>. &
ELBUG May 1984 Volume-1 Issue-6

27

DANCING LINES
by David A. Fell

This intrigquing program not only produces an interesting graphics
display, but also shows how a sequence of random numbers generated

in Basic is not really random at all!

This short program produces an
attractive screen display by
simulating the bouncing of two points
around the screen at random, with a
randomly coloured line drawn between
the two. An apparently random sequence
is built up on the screen, and then
erased in the same order as it was
created. Once the screen has 'emptied',
the program repeats, producing a
different sequence for each screen.

FANDOM NUMBERS

Thne two key facts that enable the
program to precisely erase the lines,
without any co-ordinates being stored,
are the Exclusive-OR plotting technique
used (see the User Guide page 97), and
the repeatability of Basic's random
number generator. This is not a true
random number generator, but produces
what are termed pseudo-random numbers.
This means that the numbers that it
produces may appear random, and indeed
will satisfy most tests for randomness,
but are actually produced by a fixed
set of calculations which can be made
to repeat. Whenever a 'seed', or
starting point, for the Electron's
random number generator is entered, it
is possible to identically regenerate
a particular series of 'random'
numbers.

To seed the random number generator,
you use the form:

X=RND (N)
where N is a negative number. As an
example, try this:

PRINT RND(-10@)
When 'seeding' the Electron's random
number generator, the wvalue that RND
returns is the same as was passed to
it, in this case -10@. Once a negative
value has been passed, the generator is
'seeded', and thus now predictable.
Moreover, if you now type:

PRINT RND(14@)
for example, immediately after seeding
the generator as above you will always
get a 9 printed, which is always the

first wvalue to be returned 1in the
particular sequence chosen.

PROGRAM NOTES

In the program, line 158 creates a
random seed, and this is used at lines
168 and 180 to start the generator off
producing the same sequence of numbers.
Lines 17@ and 198 call the procedure to
produce a screen of lines, and both the
calling and seeding sections are
contained within a REPEAT ... UNTIL
loop that cycles endlessly, or until
Escape is pressed.

At the start of the program, line
120 turns off the cursor, as this only
serves as a distraction in graphical
displays. Line 13@ effectively turns
off the flashing colours, which are
inevitably going to be generated as a
result of both the usage of
Exclusive-OR plotting and the random
colour range that is selected, and
which would appear unattractive if left
flashing. This is achieved by setting
the 'mark' period to =zero, and thus
leaving all of the flashing colours

permanently in only one of their two
possible colours.

FLASHING COLOURS

2ll the flashing colours show each
of two colours alternately on the
screen. The time for which each of the
two colours is displayed can be altered
by wusing the *FX9 call to set the time

for the first colour and *FX1@ to set
the time for the second (see page 280
of the User Guide). Setting either time
to zero (but not both) results in the
other colour being permanently
displayed.

The display itself is produced by
the procedure PROCpicture. Lines 1010
to 1088 generate random starting points
and random increments for the two ends

P IR T T L AN S i L e T e S S O T e T S T S S i P S S L D

ELBUG May 1984 Volume-1 Issue-6

28

e P T S e R T e P R T T e P T TR e g) o e T T e e e R e N T e S W o B

of the 1line. The increments are fixed 120 vDU23,1,d;0;6;0;
so that they will start the two ends 1380 *FXS
moving off in opposing directions. The 140 REPEAT
FOR-NEXT loop starting at 1line 1090 150 SEED%=ABS (RND)
will determine how many lines will be 160 A%=RND (-SEED%)
drawn for each pattern, and adjusting 17@ PROCpicture
the value of 508 to, say, 100 will give 180 A%=RND (-SEED%)
a shorter pattern. 19@ PROCpicture
200 UNTIL FALSE
The procedure uses the Exclusive-OR 21@ END
plotting option of the GCOL instruction 220
(selected at line 1108), and the random 23@ ON ERROR OFF: MODE 6
colour. Exclusive-OR plotting has the 24@ IF ERR<>17 THEN REPORT:PRINT" at
line ";ERL
25@ END
260 :

160@ DEF PROCpicture
1818 X1%=RND(1279)
1020 Y1%=RND(1023)
1030 X2%=RND(1279)
1040 Y2%=RND(1023)
1058 XI1%=RND(4)*5
1368 YI1%=RND(4)*5
1070 XI2%=-RND(4)*5
1@8@ YI2%=-RND(4)*5
1090 FORI%=0TO500
1188 GCOL3,RND(16)-1
1118 MOVE X1%,Y1%
1120 DRAW X2%,Y2%

unusual property in that, 1f any
graphics with the same colour and
co-ordinates are plotted an even number
of times, then they 'cancel' out,
leaving whatever happened to be on the
screen before. As we start of with a
blank screen, and all plotting is done
twice, at the same co-ordinates and in
the same colour sequence, the net
result is that there is nothing left on
the screen by the end of the sequence.

The overall effect, therefore, is of

a completely random pattern 1in shape
and in colour, and yet one which can be
precisely repeated, and hence erased

from the screen. 1130 IF X1%4XI1%>1279 XI1%=-RND(4)*5
1148 IF X1%+XI1%<0@ XI1%=RND(4)*5

Lines 1090 to 1250 are concerned 1150 IF ¥Y1%+YI1%>1823 YI1%=-RND(4)*5
with the mechanics of bouncing a point 1160 IF Y1%4YI1%<@ YI1%=RND(4)*5

around an enclosed rectangle (in this 1178 IF X2%+XI2%>1279 XI2%=-RND(4)*5
case the screen). 1180 IF X2%+XI2%<@ XI2%=RND(4)*5

1190 IF Y2%+YI2%>1023 YI2%=-RND(4)*5
120@ IF Y2%+YI2%<0 YI2%=RND(4)*>
1210 X1%=X1%+XI1%

1220 Y1%=Y1%+YI1%

1230 X2%=X2%+XIZ2%

1¢ REM Program Dancing Lines

2@ REM Author David A. Fell

3@ REM Version El1.2

4@ REM ELBUG MAY 1984

5@ REM Program subject to Copyright.

B 1240 Y23%=Y23%+YI2%
: 125@ NEXT
16@ ON ERROR GOTO 230
118 MODE 2 1260 ENDPROC .

ELBUG May 1984 Volume-1 Issue-6

29

USING BBC MICRO PROGRAMS ON AN ELECTRON (Part 3)

by David Graham

h

As I suggested in the first article in this series, one of the major
differences between the BBC Micro and the Electron is its speed of
operation. The Electron runs at up to three times slower than the
Beeb. This can cause serious problems when adapting BBC Micro
software for the Electron - as anyone at Acornsoft, Program Power or
Beebugsoft will tell you! But there are ways around the problem, and
this month, in the last article of this series, I want to look at

how to speed up Basic programs on the Electron.

MODE DEPENDENCE

The most striking thing about the
speed of the Electron when compared to
the BBC Micro, is that the Elk's speed,
unlike that of the Beeb, is Mode
dependent. If you run the program "Time
Test" you will get some idea of this.
The program simply prints out the time
taken by the Eleciron to calculate the
sine of an angle two hundred times
over. Set your Electron to Mode 6, and
run 1it. Note the result printed on the
screen, then run it in Mode 2. You will
see that it takes more than twice as
long. The exact relative speeds of the
different Modes depends on the program
that you are running - but the speed
difference between Modes @, 1 or 2 and
4, 5 or 6 will always be significant.

14 REM TIME TEST

20 TIME=@
30 FOR A%=1 TO 200

483 X=SIN(12)
5@ NEXT
6@ PRINT TIME

From this we can easily establish

certain rules of thumb. These are as
follows:

1. If speed is important in a
program, keep to as high a screen
Mode as possible.

2. Perform as many of the time
critical parts of your program
while in a high Mode. For example,
if you are generating a maze for a
game in Mode 2, make sure that you
are 1in Mode 6 while you calculate
the maze. Only switch to Mode 2 at
the last moment.

CHANGING MODE

In most situations where a time
critical BBC micro program uses Modes
g, 1 or 2 (the slowest on the
Electron), you can change these to Mode
4 or 5 - see table 1. There are
several provisos here. If you replace
Mode @ by Mode 4 you will get 40 rather
than 8@ column text, and you will also
lose resolution. Replacing Mode 1 with
Mode 4, or Mode 2 with Mode 5 you will
not lose resolution, but the number of
available colours will be reduced from
4 to 2, or from 16 to 4 respectively.

64@x256
320x256
16@x256

3280x256
168x256

One of the most commonly used Modes
for games on the BBC micro - and where
consequently speed is of a premium - is
Mode 2., Fortunately it 1is usually
possible to replace this with Mode 5,
Character size and resclution are
identical in both Modes - and the only
difference is the loss of colours. Mode
5> leaves you with only four, including
the background. Fortunately four
colours is usually just about enough to
get by with., We have adopted this
technique for example with the game
Hedgehog (ELBUG Vol. 1 No. 1). This was
originally published in BEEBUG as a

h

ELBUG

May 1984

Volume-1 Issue-6

30

#

Mode 2 BBC micro game. The way to
approach the problem is simply to look
for all Mode statements in your program
- the Utility BEditor published in ELBUG
No. 5 might be helpful here. Then just
change all occurrences of Mode 2 for 5,
and Modes @ and 1 for 4. There 1is no
real need to change Mode 7 to Mode 6
since the Electron gets into Mode 6
whenever it encounters the instruction
"MODE 7".

Now run the program and see what
happens. You will almost certainly need
to alter some of the new colours
produced. One reason for this 1is that
some things printed on the screen will
probably have become invisible. What
has really happened is that they have
been printed in the same colour as the
background. The way to sort out the
colours is to find every COLOUR or GCOL
statement - again the Utility Editor
could be helpful here - and ensure that
the colour number called 1s in the
range @ to 3. You will have to choose
the numbers carefully so that objects
show up as well as possible.

Remember though, that you are not
stuck with the four colours black,
vellow, red, and white. Each of these
may be changed for any of the 16
available colours (but vyou can still
only have a total of four different
colours on the screen at any one time).
The way to change colours is by using
the VDU 19 call. See the User Guide
page 187. Suppose that you have
converted a Mode 2 screen to Mode 5,
and have assigned colours @, 1, 2 and 3
in such a way as to keep all parts of
the screen distinguished, but wish to
change all the red objects to cyan.
Just insert the statement VDU
19,1,6,3,8,0 after the last Mode change
- and so on.

OTHER STRATEGIES

I want to look now at a series of
further strategies for increasing the
speed of programs adapted from the Beeb
- although like those treated above,
the principles involved will in general
be egqually effective 1f you are
originating the code yourself - and
wish to make your program as 'fast' as
possible. Some of the principles
treated here are touched upon in
appendix 'E' of the User Guide which

LT T T T N M e E e T S A e i B W e T e T S N e A SR

ELBUG

gives notes on 'Fast and efficient
programs'.

TIME DELAYS

One of the most obvious things to
look for in a Beeb program that you are
trying to speed up are time delays. The
most likely forms of delay are as
follows:

For A=1 to 1@@:NEXT

or

TIME=0:REPEAT UNTIL TIME = 20
or

X=INKEY (2@)

The first two are very obviously
waiting loops, ard can be removed to
test their effect. You have to be more
careful with the third type, because as
well as performing a waiting function
it also assigns a value to X. The
easiest way to test its effect is to
remove the (20) or whatever, and see
what effect this has on the program.

INTEGER VARIABLES

May 1984

The next thing to do is to replace
as many variables as possible by
integer variables - and where possible
single letter integers. For example,
suppose your program has the following
variables:

INVADERS
LOOBCOUNT
LASERX
LASERY
BULLETS
SCORE
TEXTS

INVADERS and TEXTS are string variables
(the $ tells you this), and should not
be changed. BULLET% is an integer
variable (the % tells you this). You
could change this for B%, but there
will not be much saving here. Bigger
savings are achieved when you change
any of the others to integer variables.
You could just call the A%, B%, C% etc.
and change each occurrence throughout
the program, but unfortunately you
cannot always substitute integers for
so-called 'real' wvariables.

The problem with integers is that
they can only take a certain range of
values: they <can never represent
decimal numbers. But looking at the

Volume-1 Issue-6

31

N T TR T S RS T R W o e R B B Al o SR e ST B T T N e g Y e L s el e e R TR O T - S SN T FGH R AT RIS S
reals that we have - ie. LOOPCOUNT, 100 X%=100:Y%=50:

LASERX, LASERY and SCORE - they may IFZ%*SINX>40THENP%=50

well all be wused as integers. Loop

counts are often integers - you can't and so on. The speed gained here will
go round a loop 1.5 times - but do not be great however, though every

check that the step size is also
integer or the program will not work
correctly when the loop count is
converted to integer. The same goes for The User Guide also suggests that
the position of the laser base in a you use REPEAT....UNTIL loops. REPEAT
game, or the score. In this case you loops are certainly faster than
could replace all occurrences of unstructured GOTO loops; but what the
LOOPCOUNT by say C%, of LASERX by X%, Guide does not say is that FOR...NEXT
of LASERY by Y% and of SCORE by S%. loops are the fastest of all - and by a
This 1is likely +to improve speed considerable margin. So try to use
considerably. - these where at all possible - and as
the Guide does mention, leave off any
possible wvariable in the NEXT
statement. Thus wuse NEXT rather than
say NEXT X - the X is quite redundant,
and slows execution.

little helps and readability will be
reduced.

If possible you should also replace
all normal division signs "“/" by "DIV",
the much quicker integer division
function - but again you will lose
decimal precision. The answer to 5 DIV
4 is 1, not 1.25. Very often in games,
where speed 1is of the essence, the
extra precision is not necessary.

By using a combination of these
techniques you will be able to
considerably enhance the speed of
Electron programs; and 1f you are

REMS AND PROGRAM LINES

In Acorn's advice on making programs
run faster they suggest that you remove
all REM statements, and reduce the
number of program lines. For example
the four lines below:

10¢ REM CALCULATION SECTION

converting programs from the Beeb you
will find that most can be converted
satisfactorily if these various points
are born in mind. There-will always be
some that cannot be satisfactorily
converted from a speed point of view
however, and there is a certain degree
of skill in spotting which these are

118 X%=100
120 Y3=50
130 IF Z%*SINX>4¢ THEN P%=50

before you have invested too much time
and effort on them.

could be rewritten as: .

HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINTS HINT

SPEED IMPROVEMENT WITH LOGICAL VALUES - R.Jefferyes

Internally TRUE and FALSE are held as integers, represented by -1 and @
respectively. So, for example, if you write

crash=TRUE
the TRUE will be converted to floating point form when it is stored. The statement
will execute faster if you use an integer variable like this:

crash$=TRUE g

'"NEXT' EFFECT WITH LISTO7 - M.Robinson

You may know that FOR..NEXT loops can be terminated with commas e.g. NEXT,,
(which has the same effect as HNEXT:NEXT:NEXT). However these commas are not
recognised by the LISTO7 option, used to format listings by indenting by two spaces
for each nested loop. Loops terminated by a comma will not be indented by two extra
spaces for each NEXT that has been replaced by a comma.

This also applies if the controlling variable of the loop is included e.g. NEXT

A,B,C. The actual keyword 'NEXT' must be included to cancel the indentation e.q.

NEXT : NEXT: NEXT. !

ELBUG

May 1984 Volume-1 Issue-6

32
—

FOUR IN A ROW
by J. Webb

This is an excellent and colourful implementation of the game
popularly known as 'Connect Four'. In this game of strategy, you try
to arrange four counters in a line in any direction, while
preventing your opponent from doing the same.

This is a game for one or two players, with the option of choosing the computer
as the opponent. The two players take turns deciding in which colum to place a
counter. As in the real game, counters always end up in the lowest empty position in
any column chosen. The object of the game is to arrange a row of four of your own
counters, either horizontally, vertically or diagonally, on
the 6 x 7 position board, while trying to prevent your
opponent from doing the same. The winner is the first
person to get four counters in a row.

The program displays instructions for playing the game
on the screen. You can choose whether to play against the computer or another person
before the game starts. You then simply select which column to place your counter in
by typing in the column number followed by Return.

The usual red and yellow colours are
used in the program for the counters,
but the vellow can be a little
difficult to see against the
surrounding white frame in certain
circumstances. To change it to magenta
(colour 5), for example, add the

following line: 120 DIMposition%(6,7) :PROCcircles
138 ENVELOPE1,6,0,0,0,0,0,@,121,
245 vDU19,2,5,0,0,9 -13;"*5;—2,]23,153' P, 0,9,9,
.]4H EN‘JELGPEE;5,4,*3,-4;15;16,32r
You may also llkErtG Eqrﬁér'ﬁér'54r1zﬂrg
try alternative 156 PROCtitles
colours.

168 go%=1:win%=@:turn¥=0:comp%=0
1780 FORrow%=1T06

You will f£find that the computer 180 FORcol%=1TO7
plays a reasonably strong game and 190 positions (rows,cols)=0
generally speaking, 1t will win unless 206 NEXT:NEXT
you can set 210 CLS
a trap for 226 PROCsetupgame
1t by 230 REPEAT
gradually 240 PROCturn
building 250 IF go%=0 AND comp%=0 PROCcolour
, up two 268 IF go%=@ AND comp%=1 PROCcomputer
interrelated rows of four counters. : PROCcolour

278 IF go%=1 PROCcolour
280 PRINTTAB(@,8)"Last go"'"col: ";co

18 REM Program FOUR IN A ROW lumn%

20 REM Version E1.0 29@ SOUND&11,1,86,111:screen%=14347+4
38 REM Author J.Webb B*column%:REPEAT:screen¥=screen%+1920:0
4@ REM ELBUG May 1984 NTIL?screeni>@d

50 REM Program subject to Copyright 300 missweigh%=0:PROCweighandcheck :mi
6@ : ssweigh%=1

180@ MODE 1 310 UNTILwin%=990Rturn%=42:PROCwin:GO
11¢ ON ERROR GOTO 340 TO160

T Y e T T e T v A T e e S N S T e S Y T S e e S T b S e G0 remed

ELBUG May 1984 Volume-1 Issue-6

328 END

330 :

340 ON ERROR OFF:MODE 6

358 IF ERR<>»17 THEN REPORT:PRINT" at
line ";ERL

360 END

1@@@ DEFPROCsetupgame

181@ REM This draws the board, and est
ablishes who is playing.

1820 vDU19,3,@;@; :MOVE285,895: DRAW285,
205:DRAW1Q@23, 205: DRAW1 020, 895 : DRAWZ285, 8
95

FOUR IH R ROM

The obiect i3 te get
af Your own oo loure
diFect 1anm .

Youw can chooge

computer or against %
machine alwauys plaus ¥

tpaceE bar to plavy.

19030 MOVE30@,880:MOVE300,220:PLOTS5,10@
#5,888:PLOTR5,10@5,220:VDU20

1840 vDU19,0,4,0,0,0

1850 FORR=1TO6:FORC=1TO7:PRINTTAB (7+3*
C,2+3*R) ;CS5; : NEXT: NEXT

1868 VDUS:MOVE3S55,26@:GC0LA, @: PRINT"]

2 3 4 5 6 7T":vDU4

1878 vDU23,1,0;0:0;0;

1388 REPEAT:PROCclear:PRINTTAB(11,27)"
Do you want to play"™:PRINTTAB(10,29)"th
e computer?(Y or N) ":ansS$=GETS:UNTILan
E$="Y"DEHHE$="N"

1893 IF ansS="N"THEN ENDPROC

1183 REPEAT:PROCclear :comp%=1:PRINTTAB
(12,27)"Do you want to go":PRINTTAB(13,
29 "first?(Y or N) ":ansS=GETS:UNTILans
$="Y"DREHS$=“N"

1118 IF ansS="Y" go%=0

1120 ENDPROC

11308 :

1148 DEFPROCcolour

1158 REM This colours display at next
available position

1160 col%=column%:row%=0:REPEAT: row%=r
ows+1:UNTILpositions (row%,columnt) =0

117@ position% (row:,columni)=1

1188 COLOUR (130-go%) : PRINTTARB (7+3*colu
mn%, 23-3*row%) ;CS:COLOUR] 28

33

1200 :

1210 DEFPROCcircles:REM Draws one circ
le

1220 vDU23,224,255,255,255,252,240,224
,224,192:VDU23,227,192,128,128,128,128,
128,128,192:vDU23,229,3,1,1,1,1,1,1,3:V
pU23,226,255,255,255,63,31,15,7,3

1230 vDU23,232,3,7,15,31,63,255,255,25
5:VDbU23,228,06,0,0,0,0,0,0,0:VvDU23,225,2
55,255,94,9,0,0,0,0:VvDU23,231,0,0,0,0,0,
@,255,255

1240 VDU23,230,192,224,224,240,252,255
y 255,255

1258 C1$=CHRS$224+CHRS225+CHRS226:C25=C
HRS227+CHRS228+CHRS5229 :C35=CHRS230+CHRS
231+CHRS$232:COLOUR3:COLOUR1 27

126@ C5=C1S5+CHRS8+CHRSB+CHRS84CHRS18+C
25+CHRS8+CHRSB+CHRSB4+CHRS1@+C38S

1278 ENDPROC

1288 :

1290 DEFPROCtitles:VDU23,1,0;0;0;08;

1388 vDU28,0,2,39,0:COLOUR 129:CLS:COL
OUR 3

13180 PRINTTAB(11,1)"FOUR IN A ROW"

1320 VDU26:COLOUR 128:COLOUR 6

1338 PRINTTAB(2,5)"The object is to ge
t four counters"'"of your own colour in

a line in any"'"direction."

1340 PRINT'TAB(2)"You can choose to
play against the":PRINT"computer or ag
ainst another player. The":PRINT"machin
e always plays yellow."

1350 PRINTTAB(6,19)"Press the space ba
r to play."

1360 REPEAT UNTIL GET=32

1373 ENDPROC
1380 :

-+ Hl o

® & o
] ry i i "

& 7 |

Red wins!

Press spaoe bar to plaw again.

1390 DEFPROCWin:PROCclear : SOUND&11,2, 1
00,121

119@ ENDPROC 140@ REM This responds to a win or draw
T S Y R e N e e e R W G R N e e e e S R T e e e W s e S W R L T e A O Y ey

ELBUG May 1984 Volume-1 Issue-6

34

141@ IF turn%=42 AND win%<>99 PRINTTAB
(12,27) "Honourable draw!":GOTO1449
1420 IF go%=0 PRINTTAB(14,27)"Yellow w
ins!"ELSE PRINTTAB(16,27)"Red wins!"

1439 *FX15,1

144@ PRINTTAB (5,30) "Press space bar to

play again.":IF GETS=" "THEN145@ELSECL
S:END

1450 ENDPROC

1460 :

1473 DEFPROCclear :PRINTTAB(@,27);5PC(]
28)

1483 ENDPROC

1490 :

150@ DEFPROCturn

151@ REM This displays whose turn next
, and accepts response

1523 turn$=turni+]

1530 IF comp%=1AND go%=1THEN1614@

1543 REPEAT:PROCclear:IF go%=0PRINTTARE
(8,27)"Reds turn - ";

1550 IF go%=1PRINTTAB(6,27)"Yellows tu
rn - u;

1568 *FX15,0@

1573 PRINT"which column?":column%=VALG
ETS:UNTILcolumni>@ANDcolumn<8

1580 IFposition% (6,column%) >@THEN]540

159@ IF go%=1 go%=@ ELSE go%=l

160@ ENDPROC

161@ PROCclear :PRINTTAR (16,27) "Computi
ng"

1620 go%=0

1638 ENDPROC

1648 :

1658 DEFPROCcomputer

1660 REMThis must calculate a value fo
r columns

16780 flag%=0:IF turn%<4 column¥=4:TIME
={: REPEATUNTILTIME>10@: ENDPROC

168¢ dontgol%=0:dontgo2%=0:dontgo3%=0:
dontgod%=0

169¢ swap%=0:columnl%=0:column2%=0

1788 FORcol%=1T07

1718 IFposition%(6,c0l%)>@THEN1798

1728 IF col%=dontgol% OR col¥=dontgo2?

OR col%=dontgo3% OR col%=dontgo4% THEN
179@

1730 screen%=14347+4B*col%:REPEAT:scre
en3=screen+1920:UNTIL? (screeni+1920) >0
ORscreent>26203

1740 IFscreen%>262@3screent=25867+48*c
ol%

1758 PROCweighandcheck

1760 IFweight%>swap%THENcolumn¥=col%

1770 IFweight%>swap%THENswapi=weight$%

P A e AT R A T TR T S Sy P I S 0 v e Ty S N L P T, T LTI e T TN ST

1788 IFcheck%=3 col%=7

1798 NEXT

180@ IF columnl%>@THENcolumni=columnl?$
: ENDPROC

1818 IF column2%>@THENcolumn%=column2%
: ENDPROC

1820 flagi=flag%+]

1830 IF turn%<9 OR position% (5,column%
) =1 THENENDPROC

1840 screen%=14347+48*column%:col%=col
umns

1850 REPEAT:screeni=screents+1920:UNTIL
? (screen%+3840) >B0Rscreent>=22363

1860 PROCweighandcheck

1878 IF flag%>4 THENIF dontgol%>@ AND
dontgol$<>dontgo3% AND dontgol%<>dontgo
4% THENcolumni=dontgol%:ENDPROC

1880 IF flag%>4 AND dontgo2%>@ THENcol
umn¥=dontgo2%: ENDPROC

1890 IF flag%>4THENcolumn%=dontgo3%:EN
DPROC

19908 IF dontgol%=column% OR dontgo2%=c
olumn% OR dontgo3%=column% OR dontgo4%=
column% THEN1690

1918 ENDPROC

1920 :

1938 DEFPROCweighandcheck

1940 REM This gives a weighting to eac
h possible move selected in PROCcompute
r, and also checks for a winning line a
fter each turn.

1950 weight%=0@

1960 FORA%=@TO3

1970 B%=A%=0AND1ORA%>0AND3B+A%

1980 FORC%=0TO3:checks=@

1990 FORD%=0TO3

2000 peek%=? (screent+Bi*48* (DE-C%))
2018 check%=peek$%=240ANDcheck%+10Rpeek
%=15ANDcheck%-10Rpeek$=0ANDcheck$

2020 NEXT

2030 IFmissweigh%=0 THEN2090

2040 weight%=weight%- (75+RND(30)) * (che
ck%=-2)-(15+RND (1)) * (check%=-1) - (15+RN
D(1@))* (check%=1) - (75+RND (30) } * (check$=
2)

2058 IF check%=3 THENcolumnl%=col%:IF
dontgol1%=0 THENdontgol=col#%

2068 IF check%=3 THENdontgo23%=col%
207@ IF check%=-3 THENcolumn2%=col%:IF
dontgo3%=0 THENdontgo3%=col%

2080 IF check%=-3 THENdontgod%=col%
2@9@ IF check%=4 OR check%=-4 win%=99
2103 NEXT:NEXT

2113 ENDPROC

e —

ELBUG

May 1984

Volume-1 Issue-6

[T I R RN AR R b T e I P R T 1 T R e P R RN S e e e S R e S S R

ELBUG MAGAZINE CASSETTE

To save wear and tear on fingers and brain, we offer, each month, a casette
of the programs featured in the latest edition of ELBUG. The first program
on each tape is a menu program, detailing the tape's contents, and allowing
the selection of individual programs. The tapes are produced to a high
technical standard by the process used for the BEEBUGSOFT range of titles.

Magazine cassettes have been produced for each issue of ELBUG from Volume 1
Number 1 onwards and are all available from stock, priced £3.00 each
inclusive of VAT. See below for ordering information.

This months cassette (Vol.l No.6) includes:

Hunt The Numbers Game, Invisible Alarm Clock, Selective Renumber Utility for
Basic programs, ASTAAD2 (The complete extended version of the original CAD
program), Graphics Example Programs (3), Lunar Escape Game, Dancing Lines
(an interesting visual display), and Four In A Row Game.

MAGAZINE CASSETTE - SPECIAL OFFER ON BACK ISSUES

The first 6 ELBUG magazine cassettes (Vol 1 No 1 - Vol 1 No 6) are offered
to UK members for the price of £15 inclusive of VAT and post. This
represents a saving of £5 (including post) and is only offered to members
of ELBUG who place orders before 30th June 1984.

MAGAZ INE CASSETTE SUBSCRIPTION

We are also able to offer ELBUG members subscription to the magazine
cassette, this gives the added advantage of receiving the cassette at around
the same time as the magazine each month. Subscriptions may either be for a

period of 1 year or 6 months, however for an introductory period we are also
offering a trial 3 months subscription. (NOTE Magazine cassettes are

produced 1@ times each year).

If required, subscriptions may be backdated as far as Volume 1 Number 1, so
when applying please write to the address below quoting your membership
number and the issue from which you would like your subscription to start.

AS A SPECIAL INTRODUCTORY OFFER, WE WILL ALLOW YOU TO CHOOSE ANY ONE OF THE
FIRST 6 MAGAZINE CASSETTES ABSOLUTELY FREE, IF YOU SUBSCRIBE TO THE MAGAZINE
CASSETTE FOR A PERIOD OF 1 YEAR, BEFORE JUNE 30th 1984,

MAGAZINE CASSETTE ORDERING INFORMATION

Individual ELBUG Magazine Cassettes £ 3.060

P & P: Please add 50p for the first and 3@p for each subsequent cassette.
Overseas orders: Calculate the UK price including post, then deduct 15% VAT
and add €1 per item.

Magazine Cassette Pack (Vol 1 No 1 - Vol 1 Mo 6) UK £15.8@

Magazine Cassette Pack Overseas £19.00

Magazine Cassette Subscription

1 YEAR (10 issues) £33.00 InClicevssases Q'SEAS £39.08 No VAT payable
6 MONTHS(5 issues) £17.00 Incl...... .es.0"SEAS £20.00 No VAT payable

3 MONTHS(3 issues) E£16.00 Incl..........0'SEAS £13.00 No VAT payable

Please be sure to specify that vyou require subscription to the ELBUG
magazine cassette, and enclose your membersip number with a cheque made
payable to BEEBUGSOFT.

Send to ELBUG Magazine Cassette, BEEBUGSOFT, PO Box 189, High Wycombe.

A i et By 4 R A T e B D e T e e T T N e T g e e = e T S DR e s S T ol 3 AT

ELBUG May 1984 Volume-1 Issue-6

_BACK ISSUES AND SUBSCRIPTIONS

BACK ISSUES (Members only) SUBSCRIPTIONS

8l1 back issues will be kept in print Send all applications for membership,
(from November 1983). Send 90p per and subscription gqueries to the
issue PLUS an AS SAE to the subscripticons address,

subscriptions address. Back copies of

BEEBUG are avallable to ELBUG members MEMBERSHIP COSTS:

at this same price. This offer 1s for U.EK.

members only, so it is ESSENTIAL to £5.92 for 6 months (5 issues)

quote your membership number with vour £9.99 for 1 year (1@ issues)

order. Please note that the advertising Eire and Europe

supplements are not supplied with back Membership £16 for one year.

issues. Middle East £19

Americas and Africa £21
Subscription and Software Address Elsewhere E23
- Payments in Sterling preferred.
ELBUG SOFTWARE (Members only)
H?Shﬂgicéige This is availlable from the software

Bucks address.

MAGAZINE CONTRIBUTIONS
AND TECHNICAL QUERIES

Please send all contributions and .
technical queries to the editorial Editorial Address
address opposite. All contributions
published in the magazine will be paid
for at the rate of £25 per page. ELBUG
PO Box 5@

We will also pay £18 for the best Hint St Albans
or Tip that we publish, and £5 to the Herts
next best. Please send all editorial

material to the editorial address

opposite. If you require a reply it is

essential to quote your membership

nunmber and enclose an SAE.

ELBUG MAGAZINE is produced by BEEBUG Publications Ltd.

Editor: Mike Williams.

Production Editor: Phyllida Vanstone.

Technical Assistants David Fell, Nigel Harris and Alan Webster.

Managing Editor: Lee Calcraft.

Thanks are due to Sheridan Williams, and Adrian Calcraft for assistance with this
issue,

All rights reserved. No part of this publication may be reproduced without prior
written permission of the Publisher. The Publisher cannot accept any responsibility,
whatsoever, for errors in articles, programs, or advertisements published. The
opinions expressed on the pages of this journal are those of the authors and do not
necessarily represent those of the Publisher, BEEBUG Publications
Limited. BEEBUG Publications LTD (c) 1984,

Prnted in England by Staples Printers 51 Albans Limited at The Priory Press.

