by Yu Lei^a), Li-Jun Wu^a), Hai-Ming Shi^b), and Peng-Fei Tu*^b)

 ^a) Department of Natural Medicinal Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
^b) Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100083, P. R. China (phone/fax: +86-10-82802750; e-mail: pengfeitu@vip.163.com)

Three new glycosides with the same saccharides, namely miliusoside A (1), miliusoside B (2), and miliusoside C (3), together with five known compounds were isolated from the stems of *Miliusa balansae*. Their structures were elucidated on the basis of detailed spectroscopic analysis and by comparison with the spectra of related model compounds. There was a rarely encountered α -D-apiose moiety occurring in all new compounds.

Introduction. – *Miliusa balansae* FINET et GAGNEP is an evergreen shrub, belonging to the family Annonaceae, which is used to treat gastropathy and glomerulonephropathy [1]. Previous investigations led to the isolation of flavonoids, dihydrochalcones, styryl derivatives, homogentistic acid derivatives, norditerpenes, and alkaloids [2–6]. Herein, we report the isolation and characterization of three new glycosides, *i.e.*, 2-hydroxy-5-(2-hydroxyethyl)phenyl *O*- α -D-apiofuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside (**1**), 2-(4-hydroxylphenyl)ethyl *O*- α -D-apiofuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside (**2**), and megastigm-7-ene-3,6,9-triol-9-*O*- α -D-apiofuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside (**3**). In addition, five known compounds were isolated and identified by comparison with literature values, *i.e.*, osmanthuside H [7], cuchiloside [8], 1-(α -L-rhamnosyl-(1 \rightarrow 6)- β -D-glucopyranosyloxy)-3,4,5-trimethoxybenzene [9], 3,4,5-trimethoxyphenol- β -D-glucopyranoside [10], and alangionoside B (**4**) [11] (*Fig.* 1).

Results and Discussions. – Compound **1** was obtained as an amorphous powder, with the molecular formula $C_{19}H_{28}O_{12}$, based on the $[M + Na]^+$ peak at m/z 471.1475 in the HR-ESI-MS, and confirmed by ¹H- and ¹³C-NMR experiments (*Table 1*). The ¹H-NMR spectrum of **1** in CD₃OD (*Table 1*) revealed three aromatic H-atom signals at $\delta(H)$ 6.74–6.77 (m, 1 H), 6.78–6.81 (m, 1 H), and 7.03 (d, J = 1.2 Hz, 1 H), and signals of two CH₂ groups at 3.67–3.74 (overlapped, 2 H), 2.87 (t, J = 7.2 Hz, 2 H). In an attempt to obtain a better resolution for aromatic H-atom signals, the NMR data of **1** were then acquired in C₅D₅N. The ¹H-NMR spectrum of **1** in C₅D₅N further supported the presence of a 1,2,4-trisubstituted benzene ring ($\delta(H)$ 7.65 (d, J = 2.0 Hz, 1 H), 7.18 (d, J = 8.5 Hz, 1 H), and 7.03 (dd, J = 8.5, 2.0 Hz, 1 H)). Acid hydrolysis of **1** yielded D-glucose and D-apiose, which were identified by TLC and GC analyses. The orientation of anomeric H-atoms was deduced from ¹H-NMR data as β ($\delta(H)$ 4.35 (d, J = 7.5 Hz)) for glucose and α ($\delta(H)$ 5.00 (d, J = 4.5 Hz)) for apiose. This was

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of compounds 1, 2, 3, and 4

confirmed by comparison of the ¹³C-NMR data of the apiose in **1** with those of methyl α -D- and β -D-apiofuranosides [12]. The position of attachment of the disaccharide moiety and the interglycosidic linkage were established from the HMBC correlation between H–C(1') (δ (H) 4.75 (d, J = 7.5 Hz)) and C(1) (δ (C) 146.9), and H–C(1'') (δ (H) 5.00 (d, J = 4.5 Hz)) and C(6') (δ (C) 68.0). Thus, compound **1** was characterized as 2-hydroxy-5-(2-hydroxyethyl)phenyl O- α -D-apiofuranosyl-($1 \rightarrow 6$)-O- β -D-glucopyranoside, and named as miliusoside A.

Compound **2** was obtained as an amorphous powder, with the molecular formula $C_{19}H_{28}O_{11}$, based on the $[M + Na]^+$ peak at m/z 455.1526 in the HR-ESI-MS, and confirmed by ¹H- and ¹³C-NMR experiments (*Table 1*). The ¹H-NMR spectrum of **2** showed signals for two CH₂ groups at $\delta(H)$ 2.83 (t, J = 6.6 Hz, 2 H), and $\delta(H)$ 3.94– 4.00 (m, 1 H) and $\delta(H)$ 3.70–3.74 (m, 1 H). Signals for aromatic H-atoms at $\delta(H)$ 6.64 (d, J = 8.4 Hz, 2 H) and 7.02 (d, J = 8.4 Hz, 2 H) suggested a 2-(4-hydroxyphenyl)-ethanol moiety in **2**. Acid hydrolysis of **2** yielded D-glucose and D-apiose, which were identified by TLC and GC analyses. Comparison of the ¹H- and ¹³C-NMR data of **2** with those of **1** suggested that **2** contained the same disaccharide moiety. The position of attachment of the glycosidic chain and the interglycosidic linkage in **2** were determined from the HMBC correlations between H–C(1') ($\delta(H)$ 4.75 (d, J = 7.5 Hz)) and C(8) ($\delta(C)$ 72.3), and H–C(1'') ($\delta(H)$ 5.00 (d, J = 4.5 Hz)) and C(6') ($\delta(C)$ 68.1). Therefore, compound **2** is identified as 2-(4-hydroxylphenyl)ethyl O- α -D-apiofurano-syl-($1 \rightarrow 6$)-O- β -D-glucopyranoside, and named as miliusoside B.

Compound **3** was obtained as an amorphous powder, with the molecular formula $C_{24}H_{42}O_{12}$, based on the $[M + Na]^+$ peak at m/z 545.2555 in the HR-ESI-MS, and

Position	1		2	
	$\overline{\delta(\mathrm{H})}$	$\delta(C)$	$\overline{\delta(\mathrm{H})}$	$\delta(C)$
1		146.9		130.7
2		146.5	7.02 (d, J = 8.4)	130.9
3	6.74 - 6.77 (m)	117.1	6.64 (d, J = 8.4)	116.1
4	6.78 - 6.81(m)	125.5		156.8
5		131.0	6.64 (d, J = 8.4)	116.1
6	7.03 (d, J = 1.2)	119.9	7.02 (d, J = 8.4)	130.9
7	2.87 (t, J = 6.6)	39.2	2.83 (t, J = 6.6)	36.4
8	3.67 - 3.74(m)	64.5	3.94 - 4.00 (m), 3.70 - 3.74 (m)	72.3
Glc				
1′	4.75 (d, J = 7.5)	104.5	4.30 (d, J = 7.8)	104.5
2′	3.48 (dd, J = 7.4, 9.4)	75.3	3.47 (dd, J = 7.4, 9.4)	75.0
3′	3.46(t, J = 9.4)	77.9	3.46 (t, J = 9.4)	77.9
4′	3.32(t, J = 9.4)	71.6	3.34 (t, J = 9.4)	71.8
5′	3.58 - 3.68(m)	77.0	3.38 - 3.44(m)	76.6
6′	3.96 (dd, J = 12.0, 6.2),	68.0	3.96 (dd, J = 12.0, 6.2),	68.1
	3.66 (dd, J = 12.0, 2.0)		3.66 (dd, J = 12.0, 2.0)	
Api				
1″	5.00 (d, J = 4.5)	104.0	5.00 (d, J = 4.5)	104.2
2''	3.90 (d, J = 5.0)	73.6	3.89(d, J = 4.5)	73.6
3‴		78.0		78.0
4‴	4.01 (d, J = 9.9), 3.82 (d, J = 9.9)	75.3	4.02 (d, J = 10.0), 3.83 (d, J = 10.0)	75.3
5″	3.46 (d, J = 11.0), 3.50 (d, J = 11.0)	65.2	3.47 (d, J = 11.0), 3.49 (d, J = 11.0)	65.1

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1** and **2**^a). δ in ppm, J in Hz.

confirmed by ¹H- and ¹³C-NMR experiments (*Table 2*). The ¹H-NMR spectrum of **3** showed signals for two alkene H-atoms at $\delta(H)$ 5.77 (dd, J = 16.0, 7.0 Hz) and 5.61 (d, J = 16.0 Hz, and those for four Me groups at $\delta(\text{H}) 1.30 (d, J = 6.0 \text{ Hz}), 0.97 (s), 0.89$ (s), and 0.80 (d, J = 6.0 Hz). By comparison of the ¹H- and ¹³C-NMR data of **3** with those of 4 (alangionoside B) [11] indicated that 3 was similar to 4 except for the orientation of the apiose (Table 2). Acid hydrolysis of 3 yielded D-glucose and Dapiose, which were identified by TLC and GC analysis. HMBC Correlation (Fig. 2) between H-C(1') (δ (H) 4.35 (d, J = 7.5)) and C(9) (δ (C) 78.0) indicated that the glucose was linked to C(9) of aglycone. Moreover, another HMBC (Fig. 2) correlation between H-C(1") (δ (H) 5.00, (d, J = 4.5)) and C(6') (δ (C) 67.8) suggested that glucose and apiose were connected by a $(1 \rightarrow 6)$ linkage. NOE Correlations (*Fig. 3*) were observed between H-C(5) (δ (H) 1.88–1.95 (*m*)) and H-C(3) (δ (H) 3.78–3.80 (*m*)), between H–C(5) (δ (H) 1.88–1.95 (*m*)) and H–C(7) (δ (H) 5.61 (d, J = 16.0)), and between H–C(3) (δ (H) 3.78–3.80 (*m*)) and H–C(11) (δ (H) 0.97 (*s*)), indicating that H-C(3) and H-C(5) were coplanar and β -oriented, and OH-C(6) was α configured. Therefore, compound 3 was identified as megastigma-7-ene-3,6,9-triol-9-O- α -D-apiofuranosyl- $(1 \rightarrow 6)$ -O- β -D-glucopyranoside, and named as miliusoside C.

The absolute configuration of compound **3** may be proposed as (3S,5R,6R) in view of the reported absolute configuration of alangionoside B (**4**).

 $R = \alpha$ -D-Api(1 \rightarrow 6) β -D-Glc Fig. 3. Important NOE correlations of **3**

 α -D-Apiose is rarely encountered in natural products, examples including 4-[O- α -D-apiofuranosyl-(1" \rightarrow 2')- β -D-glucopyranosyloxy]benzaldehyde and 2-{4-[O- α -apiofuranosyl-(1" \rightarrow 6')- β -D-glucopyranosyloxy]phenyl}ethanol [13–15]. On the other hand, it is the first report of α -D-apiofuranosides from the genus *Miliusa*. Of particular interest is the fact that both α -D-apiose and β -D-apiose coexist in the same plant.

This work was supported by the program for *Changjiang Scholar and Innovative Team* in University (No. 985-2-063-112).

Experimental Part

General. Column chromatography (CC): silica gel H (200–300 mesh; Qingdao Marine Chemical Industry), Sephadex LH-20 gel (Pharmacia), Semi-prep. HPLC: ODS column (250×10 mm, 5 µm; Alltech), with Waters 2996 photodiode-array detector (280 nm) and WatersTM 600 pump; flow rate, 2.5 ml/min. GC: Agilent 6890 N gas chromatograph, with a HP-5 cap. column (28 m×0.32 mm) and a FID detector operated at 260° (column temp. 180°), 1.0 ml/min N₂ as carrier gas. M.p.: X-4 micro-meltingpoint apparatus; uncorrected. Optical rotations: Perkin-Elmer 243 B digital polarimeter. UV Spectra: UV-240 (Shimadzu) spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: NEXUS-470 FTIR (Nicolet). NMR Spectra: Varian INOVA-500, INOVA-300, and UNITY-500 spectrometers, TMS as an internal standard. HR-ESI-MS: APEX II FT-ICRMS (Bruker Daltonics) spectrometer.

Plant Material. The stems of *Miliusa balansae* FINET et GAGNEP were collected in August 2004 from Guangxi Zhuang Autonomous Region, P. R. China. The identification of the plant was performed by *P.-F. T.* A voucher specimen (CM200408) was deposited with the Herbarium of Peking University Modern Research Center for Traditional Chinese Medicine.

Extraction and Isolation. The dried stems (20 kg) of *M. balansae* were extracted three times with hot 80% EtOH (201) for 2 h each time. After removal of the solvent under reduced pressure at 60° , the residue (1 kg) was suspended in H₂O (1 l) and defatted with petroleum ether (3 × 1 l). The aq. layer was further extracted with AcOEt (3 × 1 l) and BuOH (3 × 1 l) successively. The BuOH extract (240 g) was

Position	3		4	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
1		40.5		40.6
2	1.62 - 1.67 (m),	45.9	1.66 $(t, J = 12),$	45.9
	1.34 - 1.41 (m)		1.32 - 1.43 (m)	
3	3.78 - 3.80(m)	67.4	3.80 (tt, J = 4.0, 12.0)	67.5
4	1.65 - 1.68(m),	39.9	1.61 - 1.69 (m),	39.9
	1.38 (d, J = 12.5)		1.39 (d, J = 12.0)	
5	1.88 - 1.95 (m)	35.5	1.89 - 1.97 (m)	35.4
6		78.2		78.3
7	5.61 (d, J = 16.0)	136.1	5.63 (d, J = 16.0)	136.1
8	5.77 (dd, J = 7.0, 16.0)	133.4	5.78 (d, J = 6.0, 16.0)	133.7
9	4.37 - 4.40 (m)	78.0	4.38 (q, J = 6.0)	78.0
10	1.30 (d, J = 6.0)	21.5	1.30 (d, J = 6.0)	21.5
11	0.97(s)	25.3	0.98(s)	25.4
12	0.89(s)	26.1	0.90(s)	26.3
13	0.80 (d, J = 6.0)	16.5	0.82 (d, J = 7.0)	16.6
Glc				
1′	4.35 (d, J = 7.5)	104.1	4.32 (d, J = 8.0)	102.5
2'	3.47 (dd, J = 7.4, 9.4)	75.3	3.16(t, J = 8.0)	75.4
3′	3.30(t, J = 9.4)	77.9	3.30(t, J = 9.6)	78.1
4′	3.40(t, J = 9.4)	71.6	3.39(t, J = 9.6)	71.6
5'	3.32 - 3.34(m)	76.5	3.31 - 3.34 (m)	77.9
6′	3.96 (dd, J = 11.0, 2.0),	67.8	3.90 - 3.95(m),	68.5
	3.66 (dd, J = 11.0, 4.0)		3.55 - 3.58(m)	
Api				
1″	5.00 (d, J = 4.5)	102.7	4.98 (d, J = 3.0)	111.0
2‴	3.90 (d, J = 5.0)	73.6	3.92 (d, J = 3.0)	76.9
3‴		78.0		80.6
4‴	4.02 (d, J = 9.5),	75.3	3.76 (d, J = 10.0),	75.0
	3.83 (d, J = 9.5)		3.97 (d, J = 10.0)	
5‴	3.46 (d, J = 11.0),	65.1	3.58(s)	65.7
	3.50 (d, J = 11.0)			

Table 2. ¹*H*- and ¹³*C*-*NMR* Data of **3** and **4**^a). δ in ppm, *J* in Hz.

subjected to CC (SiO₂; CHCl₃/MeOH 100:1 \rightarrow 3:1) to give *Fractions A – R. Fr. O* (10 g) was subjected to CC (*Sephadex LH-20*; MeOH/H₂O 10:90) to afford *Fr. 1–4. Fr. 2* was subjected to CC (SiO₂; CHCl₃/MeOH 100:15) to give *Fr. 2.1–2.3. Fr. 2.3* was subjected to CC (ODS; MeOH/H₂O 10:90) to yield *Fr. 2.3.1–2.3.5. Fr. 2.3.2* was subjected to semiprep. HPLC (MeOH/H₂O 15:85) to provide compounds **1** (6.3 mg, $t_{\rm R}$ 17.4 min), osmanthuside H (7.8 mg, $t_{\rm R}$ 20.84 min), and cuchiloside (9.2 mg, $t_{\rm R}$ 24.9 min). *Fr. 2.3.3* was subjected to semiprep. HPLC (MeOH/H₂O 15:85) to yield compounds **2** (6.7 mg, $t_{\rm R}$ 20.3 min). *Fr. 2.3.4* was subjected to semiprep. HPLC (MeOH/H₂O 18:82) to yield compounds **3** (3.8 mg, $t_{\rm R}$ 12.9 min) and alangionoside B (**4**; 2.7 mg, $t_{\rm R}$ 11.4 min). *Fr. M* (25.35 g) was subjected to CC (SiO₂; CHCl₃/MeOH/H₂O 10:1:0.1) to afford *Fr. 1–5. Fr. 4* was subjected to CC (*Sephadex LH-20*; H₂O) and semiprep. HPLC (MeOH/H₂O 38:62) to yield 3,4,5-trimethoxyphenol- β -D-glucopyranoside (7.4 mg, $t_{\rm R}$ 9.4 min).

Miliusoside A (=2-*Hydroxy*-5-(2-*hydroxyethyl*)*phenyl* O-α-D-*Apiofuranosyl*-($1 \rightarrow 6$)-O-β-D-*gluco-pyranoside*; **1**). Amorphous powder. [a]_D²⁰ = -75.0 (c = 0.056, MeOH). UV (MeOH): 278 (3.22), 220 (3.75). IR (KBr): 3419, 2926, 1760, 1605, 1514, 1434, 1279, 1233, 1039, 799, 604. ¹H- and ¹³C-NMR: see *Table 1.* HR-ESI-MS: 471.1475 ([M + Na]⁺, C₁₉H₂₈NaO₁₂; calc. 471.1473).

Miliusoside B (=2-(4-Hydroxylphenyl)ethyl O-α-D-Apiofuranosyl-(1 \rightarrow 6)-O-β-D-glucopyranoside; **2**). Amorphous powder. [a]_D²⁰ = -70.0 (c = 0.050, MeOH). UV (MeOH): 278 (3.13), 223 (138.2). IR (KBr): 3419, 2927, 2881, 1614, 1516, 1449, 1370, 1236, 1080, 1032, 829, 551, 518, ¹H- and ¹³C-NMR: see *Table 1.* HR-ESI-MS: 455.1526 ([M + Na]⁺, C₁₉H₂₈NaO⁺₁₁; calc. 455.1524).

Miliusoside C (=*Megastigma*-7-*ene*-3,6,9-*triol*-9-O-α-D-*apiofuranosyl*-($1 \rightarrow 6$)-O-β-D-glucopyranoside; **3**). Amorphous powder. [a]_D²⁰ = -86.7 (c = 0.015, MeOH). IR (KBr): 3421, 2930, 1631, 1463, 1370, 1316, 1030, 750, 606. ¹H- and ¹³C-NMR: see *Table 2*. HR-ESI-MS: 545.2555 ([M + Na]⁺, C₂₄H₄₂NaO₁₂⁺; calc. 545.2569).

Acid Hydrolysis and Analysis of Sugars. Compounds 1-3 (2 mg) was hydrolyzed with 2N aq. CF₃COOH (10 ml) at 110° for 8 h in a sealed tube. The mixture was diluted with H₂O (20 ml) and extracted with AcOEt (3 × 10 ml).

The aq. layer was evaporated under reduced pressure, and the residue was analyzed using TLC by comparison with the standard sugars. The solvent system was $CHCl_3/MeOH/H_2O 8:5:1$. Spots were visualized by spraying with 95% $EtOH/H_2SO_4/anisaldehyde 9:0.5:0.5 (v/v)$, then heated at 120° for 10 min. The R_f of glucose and apiose were 0.23 and 0.45, resp. For GC analysis, the aq. layer was evaporated, and the residue was dissolved in anh. pyridine (100 µl). 0.1M L-Cysteine methyl ester hydrochloride (200 µl) was added, and the mixture was warmed at 60° for 1 h. HMDS/TMCS (hexamethyldisilazane/Me₃SiCl/pyridine 2:1:10) (*Acros Organics*, Belgium) was added, and the mixture was warmed at 60° for 30 min. The thiazolidine derivatives were analyzed by GC; D-glucose (t_R 11.63 min) and D-apiose (t_R 5.12 min) were detected from compounds 1, 2, and 3.

REFERENCES

- D. L. Wu, 'Contributions of Plant Investigation in the Upper Reaches of Hongshui River', Science Press, Beijing, 1996, p. 120.
- [2] R. Wu, Q. Ye, N. Y. Chen, G. L. Zhang, Chin. Chem. Lett. 2001, 12, 247.
- [3] C. Kamperdick, N. H. Van, S. T. Van, *Phytochemistry* **2002**, *61*, 991.
- [4] D. T. Huong, C. Kamperdick, S. T. Van, J. Nat. Prod. 2004, 67, 445.
- [5] B. Chen, Q. Ye, B. G. Li, G. L. Zhang, Indian J. Heterocycl. Chem. 2002, 12, 81.
- [6] G. G. Harrigan, A. A. L. Gunatilaka, D. G. I. Kingston, J. Nat. Prod. 1994, 57, 68.
- [7] M. Sugiyama, M. Kikuchi, Phytochemistry 1993, 32, 1553.
- [8] N. G. Bisset, A. K. Choudhury, P. J. Houghton, Phytochemistry 1989, 28, 1553.
- [9] J. O. Andrianaivoravelona, C. Terreaux, S. Sahpaz, J. Rasolondramanitra, K. Hostettmann, *Phytochemistry* 1999, 52, 1145.
- [10] L. Verotta, M. DellAgli, A. Giolito, M. Guerrini, P. Cabalion, E. Bosisio, J. Nat. Prod. 2001, 64, 603.
- [11] H. Otsuka, K. Kamada, C. Ogimi, E. Hirata, A. Takushi, Y. Takeda, *Phytochemistry* 1994, 35, 1331.
- [12] T. Ishii, M. Yanagisawa, Carbohydr. Res. 1998, 313, 189.
- [13] I. Kitagawa, K. Hori, M. Sakagami, F. Hashiuchi, M. Yoshikawa, J. Ren, Chem. Pharm. Bull. 1993, 41, 1350.
- [14] I. Dupin, Z. Gunata, J. C. Sapis, C. Bayonove, J. Agric. Food Chem. 1992, 40, 1886.
- [15] B. I. Kamara, E. V. Brandt, D. Ferreira, E. Joubert, J. Agric. Food Chem. 2003, 51, 3874.

Received October 1, 2007