Four New Neoclerodane Diterpenoids from Ajuga decumbens

by Xiao-Chun Huang^a), Song Qin^a), Yue-Wei Guo^{*a}), and Karsten Krohn^b)

^a) State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China (phone: +86-21-50805813; e-mail: ywguo@mail.shcnc.ac.cn)
^b) Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn

Four new neoclerodane diterpenoids, 15-epilupulin A (1), 6-O-deacetylajugamarin (2), and ajugadecumbenins A (3) and B (4), were isolated from the whole plants of *Ajuga decumbens*. Their structures were elucidated on the basis of spectroscopic data and chemical correlations.

Introduction. – Ajuga decumbens THUNB. (family Labiatae) is a common perennial plant growing in China, Korea, and Japan. The whole herb of A. decumbens, has been used for the treatment of sore throat, removing phlegm, and alleviating fever as a folkloric crude drug [1][2]. Up to the present, several kinds of compounds have been isolated from A. decumbens and their structures have been characterized as neoclerodane diterpenoids [1-10], phytoecdysones [11-14], and iridoid glycosides [15], showing activities as insect antifeedants, insect-molting inhibitors, and bitter principles. As part of our ongoing research on the biologically active constituents of traditional Chinese herbal medicine [16-18], we investigated the chemical constituents of the plant A. decumbens, and four new neoclerodane diterpenoids, namely 15-epilupulin A¹) (1), 6-O-deacetylajugamarin¹) (2), and ajugadecumbenins A¹) (3) and B¹) (4), were isolated from the EtOH extract of the plant. The present paper describes the isolation and structural elucidation of these new compounds.

The plant *A. decumbens* was exhaustively extracted with 95% EtOH, and the EtOH extract was divided into Et_2O -, BuOH- and H_2O -soluble portions. The Et_2O -soluble portion was repeatedly subject to column chromatography (silica gel, petroleum ether/AcOEt gradients) to afford pure compounds 1-3, while pure 4 was obtained by further HPLC purification (*C18*).

Results and Discussion. – The diterpenoid 15-epilupulin A¹) (1) was obtained as colorless needles. The HR-EI-MS of 1 established a molecular formula $C_{30}H_{46}O_{11}$ (*m/z* 582.3068 (*M*⁺). On the basis of some ¹H-NMR data (*Table 1*), the presence of a clerodane diterpene skeleton as that of lupulin A (5) [19] could be easily deduced. In fact, the ¹H- and ¹³C-NMR spectra (*Table 1*) of 1 showed essentially the same signals as those present in the spectra of lupulin A. Further NMR data, including NOESY data (*Figure*), and their comparison with those of hativene A (6) [20] suggested that

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

Figure. Selected NOE correlations of the hexahydrofurofuran ring moiety of 1

MeO-C(15) of lupulin A (5) most likely should have α -configuration instead of the reported β one [19], and the structure of **1** was thus determined to be 15-epilupulin A.

The ¹H-NMR spectrum of **1** showed two acetate Me groups (δ 2.12 and 1.93), a MeO group (δ 3.32), and a 2-methylbutanoic acid ester functionality (2 Me groups at δ 0.89 (t, J = 7.5 Hz) and 1.11 (d, J = 7.0 Hz)). In addition, a characteristic Me *s* at δ 0.95 (*s*, Me(19)) and Me *d* at δ 0.87 (d, J = 7.7 Hz, Me(20)) were also observed. Likewise, the presence of a hexahydrofurofuran-ring moiety was suggested by the signals at δ 5.74 (d, J = 5.5 Hz, H–C(16)), 5.10 (d, J = 4.8 Hz, H–C(15)), 4.01 (dd, J = 4.4, 11.8 Hz, H–C(11)), and 3.00–3.02 (m, H–C(13)). These data were very similar to those of lupulin A (**5**) [19]. The observed differences between **1** and **5** were found mainly in the chemical shifts of H–C(11) ($\Delta \delta$ – 0.36 ppm), H–C(13) ($\Delta \delta$ + 0.19 ppm), and H–C(15) ($\Delta \delta$ – 0.07 ppm) and in the coupling constant of H–C(15) (J(14a,15) 4.8 Hz in **1** and 5.6 Hz in **5**, suggesting that **1** is the C(15) epimer of lupulin A. The NOESY data (*Figure*) of **1** revealed the correlations MeO–C(15)/H–C(16), H–C(16)/H–C(13), H–C(13)/H_{β}–C(14) and H–C(15)/H_{α}–C(14), in accord with the β configuration of MeO–C(15). The chemical shift and coupling pattern of H–C(15) of **1**, including the NOESY data, were closely comparable to the H–C(15) signal of hativene A (**6**) (δ 5.08 (d, J = 4.7 Hz)) [20], further confirming the β configuration of MeO–C(15).

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(H)$	$\delta(C)$
$H_a - C(1)$	1.79–1.81 (<i>m</i>)	30.3 (t)	$H_{\beta}-C(14)$	2.20 (dd,	-
$H_{\beta}-C(1)$	2.63 (ddd,	_	,	J = 9.6, 12.9	
,	J = 2.6, 5.6, 13.7)		H - C(15)	5.10 (d, J = 4.8)	104.9 (d)
$H_{\beta}-C(2)$	3.64 - 3.65 (m)	71.8(d)	H - C(16)	5.74 (d, J = 5.5)	107.3 (d)
$H_a - C(3)$	5.23 (d, J = 9.8)	72.4(d)	$H_{a} - C(17)$	2.55 (d, J = 4.2)	42.5(t)
C(4)	-	62.9(s)	$H_{b} - C(17)$	2.78 (d, J = 4.2)	-
C(5)	-	45.6 (s)	$H_{a} - C(18)$	4.40 (d, J = 12.5)	61.5 (t)
$H_{\beta}-C(6)$	4.69 (dd, J = 11.5, 4.4)	71.2(d)	$H_{b} - C(18)$	4.79 (d, J = 12.5)	
$H_a - C(7)$	1.61 - 1.63 (m)	33.3 (t)	Me(19)	0.95(s)	13.8(q)
$H_{\beta}-C(7)$	1.50 - 1.51 (m)	_	Me(20)	0.87 (d, J = 7.7)	16.5(q)
$H_{\beta}-C(8)$	1.44 - 1.46 (m)	35.9 (d)	C(1')=O	-	175.6 (s)
C(9)	-	40.0 (s)	H-C(2')	2.32–2.41 (<i>m</i>)	41.2 (<i>d</i>)
H - C(10)	1.67 - 1.69 (m)	43.7 (<i>d</i>)	$H_a - C(3')$	1.42 - 1.44 (m)	26.7(t)
H - C(11)	4.01 (dd, J = 4.4, 11.8)	83.0 (d)	$H_b - C(3')$	1.60 - 1.63 (m)	_
$H_{a} - C(12)$	1.47 - 1.49 (m)	32.5(t)	Me(4')	0.89(t, J = 7.5)	11.2(q)
$H_{\beta}-C(12)$	1.71 - 1.73 (m)	_	Me(5')	1.11 (d, J = 7.0)	16.3(q)
H - C(13)	3.00 - 3.02(m)	40.1(d)	AcO-C(6)	1.93(s)	21.0(q),
MeO-C(15)	3.32(s)	54.7 (q)			170.0 (s)
$H_a - C(14)$	1.66 - 1.68 (m)	38.1 (t)	AcO-C(18)	2.12(s)	21.1(q)
					170.1 (s)
^a) Assignments	s made by DEPT, ¹ H, ¹ H-C	OSY, HMQ	C, HMBC, and R	OESY experiments.	

Table 1. ¹*H*- and ¹³*C*-*NMR* Data^a) of Compound 1. δ in ppm, *J* in Hz. Trivial atom numbering.

Compound 2, 6-*O*-deacetylajugamarin¹), was obtained as colorless needles. The molecular formula of 2 was inferred as $C_{27}H_{38}O_9$ from the HR-EI-MS data (*m/z* 506.2530 (*M*⁺)). The ¹H- and ¹³C-NMR data (*Table 2*) of 2 were very similar to those of ajugamarin (7) [21]. In fact, 2 differs from 7 only by bearing a OH group instead of an AcO group at C(6). Due to the deacetyl effect, the O-bearing methine proton H–C(6) (δ 3.61 (*dd*, *J* = 4.4, 10.8 Hz)) of 2 was obviously upfield shifted with respect to H–C(6) of 7 (δ 4.8–4.6). The molecular mass of 2, *i.e.*, 42 mass units lower than that of 7, further supported structure 2 for this isolate. Compound 2 was, therefore, determined as the 6-*O*-deacetylajugamurin.

Ajugadecumbenin A¹) (3) was obtained as colorless needles. The ESI-MS of 3 prominently showed a quasimolecular-ion peak at m/z 923.0 ($[2M + Na]^+$), and its molecular formula was inferred as C₂₄H₃₄O₈ from the HR-ESI-MS data (m/z 450.2269 (M^+). It was immediately apparent from the ¹H- and ¹³C-NMR data (*Table 2*) of 3 that it shared the same molecular-skeleton with 2. Further spectral data established that 3 is the 12-*O*-acetyl-1-de(tigloyloxy) derivative of 2, named ajugadecumbenin A.

Two acetate Me signals ($\delta 2.07$ and 2.10) in the ¹H-NMR spectrum suggested that **3** had an additional AcO group as compared to **2**. On the other hand, the signals for the tigloyloxy functionality and the downfield signal of H-C(1) of **2** were not observed in **3** indicating that there is no tigloyloxy group at C(1) of **3**. Moreover, the downfield-shifted broad d of H-C(12) ($\delta 5.80$ (br. d, J = 9.0 Hz)) with respect to that of **2** suggested clearly that the OH group at C(12) of **2** ($\delta 4.71-4.73$ (m, H-C(12))) was acetylated in **3**. The presence of an acetate group at C(12) was confirmed by the HMBC cross-peak between H-C(12) and the O-bearing ester carbonyl group ($\delta 169.5$).

	2		3		4	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
$H_a - C(1)$	5.81 (<i>ddd</i> , <i>J</i> = 11.1, 11.1, 4.9)	71.3 (<i>d</i>)	1.56 (dd , J = 13.5, 2.1)	21.2 <i>(t)</i>	1.57–1.59 (<i>m</i>)	21.3 <i>(t)</i>
$H_{\beta}-C(1)$	-	-	1.78 (d, J = 13.5)	-	1.77 (d, J = 7.0)	-
$H_a - C(2)$	1.60 - 1.62 (m)	32.0 (t)	1.29 - 1.31 (m)	24.8(t)	1.26 - 1.28 (m)	25.0(t)
$H_{\beta}-C(2)$	2.17 - 2.19(m)	-	2.02 - 2.04 (m)	-	2.06 - 2.07 (m)	-
$H_a - C(3)$	2.37–2.38 (<i>m</i>)	30.1 (t)	2.08 - 2.09(m)	31.8 (t)	2.05 - 2.08 (m)	31.9 (t)
$H_{\beta}-C(3)$	1.17 - 1.19(m)	-	1.09 - 1.11 (m)	-	1.10 - 1.12 (m)	-
C(4)	-	66.2(s)	-	66.7(s)	-	66.9 (s)
C(5)	-	46.1(s)	_	45.3 (s)	-	45.4(s)
$H_{\beta}-C(6)$	3.61 (dd,	73.0(d)	3.53 (dd,	73.0(d)	3.55 (dd,	72.9(d)
r ()	J = 4.4, 10.8)		J = 4.1, 11.1		J = 4.5, 11.0	
$CH_2(7)$	1.59 - 1.61 (m)	33.8(t)	1.51 - 1.52 (m)	33.7(t)	1.58 - 1.59 (m)	33.8(t)
$H_{\theta} - C(8)$	1.59 - 1.62 (m)	34.9(d)	1.60 - 1.63 (m)	35.2(d)	1.63 - 1.65 (m)	35.3 (d)
C(9)	_	39.6(s)	_	39.5(s)	-	39.6(s)
$H_{\beta}-C(10)$	2.57 $(d, J = 11.3)$	50.2 (<i>d</i>)	1.37 (dd , $J = 2.8, 12.3$)	47.8 (<i>d</i>)	2.37 $(d, J = 3.5)$	47.9 (<i>d</i>)
$H_{\alpha}-C(11)$	2.01 (d , $J = 11.0, 16.0$)	43.1 <i>(t)</i>	2.05-2.08 (<i>m</i>)	40.7 (<i>t</i>)	2.07–2.09 (<i>m</i>)	40.8 (<i>t</i>)
$H_{\beta}-C(11)$	1.55 - 1.57(m)	_	1.56 - 1.58 (m)	_	1.56 - 1.58(m)	_
H-C(12)	4.71-4.73 (<i>m</i>)	65.8 (d)	5.80 (d, J=9)	66.3 (<i>d</i>)	5.72 (br. d , $J = 8.7$)	66.3 (<i>d</i>)
C(13)	-	170.5(s)	_	168.2(s)	-	168.1(s)
H - C(14)	5.86 (dd,	114.5(d)	5.92 (dd,	116.0(d)	5.93 (br. s)	116.1(s)
	J = 1.7, 3.3)		J = 1.8, 3.1)		· · · ·	
C(15)	-	173.7(s)	-	172.3(s)	-	171.7(s)
$H_{\alpha} - C(16)$	4.77 $(d, J = 1.8)$	70.9 (<i>t</i>)	4.71 (dd, J = 1.8, 17.6)	70.3 (<i>t</i>)	4.72 (dd, J = 1.9, 17.6)	70.4 (<i>t</i>)
$H_{\beta}-C(16)$	4.77 $(d, J = 1.8)$	-	4.82 (dd, J = 1.8, 17.6)	-	4.83 (dd, J = 1.9, 17.6)	-
Me(17)	0.86 (d, J = 6.7)	15.5(q)	0.84 (d, J = 6.6)	15.5(a)	0.85 (d, J = 6.5)	15.5(a)
$H_{-}C(18)$	2.55 (d, J = 3.4)	49.6(t)	2.38(d, J=3.4)	48.3(t)	2.40 (d, J = 3.6)	48.4(t)
$H_{h} - C(18)$	3.33 (dd.	_	3.16 (<i>dd</i> .	_	3.19 (br. s)	_
0 - (-)	I = 3.4, 2.2		I = 3.4, 2.1			
$H_{-}C(19)$	4.54 (d, J = 12.4)	62.3(t)	4.49 (d, J = 12.0)	61.8(t)	4.54 (d, J = 12.1)	61.8(t)
$H_{1} - C(19)$	4.73 (d, I = 12.4)	_	4.54 (d, I = 12.0)	_	4.56 (d, I = 12.1)	_
Me(20)	0.82(s)	17.7(a)	0.71(s)	17.3(a)	0.74(s)	17.3(a)
C(1'')=0	-	166.1(s)	-	-	-	168.2(s)
C(2'')	_	129.1(s)	_	_	_	128.5(s)
H = C(3'')	6.72. (da	138.6(d)	_	_	6.99(a, I=7.2)	138.0(d)
11 0(5)	I = 14, 6.9	100.0 (u)			(q, v = r.2)	100.0 (u)
Me(4'')	1.80 (br. $d_{J} = 7.0$)	12.7(a)	_	_	1.79 (d, I = 7.2)	12.0(a)
Me(5'')	1.85 (s)	14.5(a)	_	_	1.85(s)	14.5(q)
AcO-C(12)	-	-	2.07 (s)	20.9(q), 169.5(s)	-	-
$A_{c}O = C(10)$	2 12 (s)	211(a)	210(s)	211(a)	2 11 (s)	211(a)
	2.12 (3)	170.9(s)	2.10 (3)	171.0(s)	2.11 (3)	171.0(s)
AcO-C(12) AcO-C(19) ^a) Assignmen	- 2.12 (s)	– 21.1 (q), 170.9 (s) H, ¹ H-COS	2.07 (s) 2.10 (s) Y, HMQC, HMBC	20.9 (q), 169.5 (s) 21.1 (q), 171.0 (s)	– 2.11 SY e	xperiments.

Table 2. ¹*H*- and ¹³*C*-*NMR Data*^a) of Compounds **2**–**4**. δ in ppm, *J* in Hz. Trivial atom numbering.

Ajugadecumbenin B¹) (4) was obtained as amorphous powder. The molecular formula of 4 was determined to be $C_{27}H_{38}O_8$ (HR-EI-MS: m/z 490.2551 (M^+)), with two H-atoms less than that of ajugamarin F₃ (8) [22]. Careful comparison of the ¹H-and ¹³C-NMR data (*Table 2*) of 4 and 8 revealed that the only difference between those two compounds resided in the substitutents at C(12) (tigloyloxy in 4 and 2-methylbutanoyloxy in 8).

In the ¹H-NMR spectrum of **4**, the signals due to two olefinic Me groups Me(4") and Me(5"), replacing the Me signals of the 2-methylbutanoyl group of **8**, appeared as a d (J = 7.2 Hz) at δ 1.79 and a broad s at δ 1.85, resp. The presence of the 12-(tigloyloxy) group was further confirmed by comparison of the NMR data of **4** with those of the related compound ajugatakasin A [9].

The absolute configurations of compounds 1-4 including the configuration at C(2') of the 2-methylbutanoyl group of **1** and **4** were not ascertained. However, biogenetic consideration led to the conclusion that these new diterpenoids had the same absolute structure as other neoclerodane-type diterpenoids isolated from *Ajuga* species whose absolute configurations have been established by X-ray diffraction analysis [23–26].

All the new compounds were evaluated for their inhibitory activity against hPTP1B (human protein tyrosine phosphatase 1B), a key target for the treatment of type-II diabetes and obesity [27], as well as cytotoxicity against several tumor cell lines. Unfortunately, the results indicated that all compounds were inactive. Other bioassays, such as antibacterial and anti-inflammatory activities, are currently ongoing.

Experimental Part

General. TLC: precoated silica gel plates (Yan Tai Zi Fu Chemical Group Co.; G60, F-254). Column chromatography (CC): commercial silica gel (Qing Dao Hai Yang Chemical Group Co.; 200–300 mesh) and Sephadex LH-20 (Amersham Biosciences). Reversed-phase HPLC: Agilent-1100 instrument for liquid chromatography, with a VWD-G1314A detector at 210 nm; semi-prep. ODS-HG-5 (5 µm, 10 mm (i.d.) × 25 cm) column. M.p.: X-5 apparatus; uncorrected. Optical rotations: Perkin-Elmer 341 polarimeter. UV Spectra: 756-CRT spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Nicolet Magna-FT-IR-750 spectrophotometer; \tilde{v}_{max} in cm⁻¹. ¹H- and ¹³C-NMR spectra: Varian Mercury-400 spectrometer (¹H at 400 MHz and ¹³C at 100 MHz); chemical shifts δ in ppm, with residual CHCl₃ (δ (H) 7.26, δ (C) 77.0) or CD₃OD (δ (H) 3.30, δ (C) 49.5) as internal standard, coupling constants J in Hz. ESI- and HR-ESI-MS: Q-TOF-Micro LC-MS/MS spectrometer; in m/z.

Plant Material. Plant material was purchased from *Shanghai Huayu Pharm. Co.* and identified as *A. decumbens* by Assoc. Prof. *J.-G. Shen* of the Shanghai Institute of Materia Medica, Chinese Academy of Sciences. A voucher specimen (P-21) is available for inspection at the Herbarium of the Shanghai Institute of Materia Medica, CAS.

Extraction and Isolation The dried whole plants (5.0 kg) of *A. decumbens* were powdered and exhaustively extracted with EtOH. The extract was concentrated, and the resulting residue was dissolved in H₂O and partitioned with Et₂O and BuOH resp. The Et₂O-soluble portion was repeatedly subjected to CC (silica gel, increasing amounts of AcOEt in petroleum ether): **1** (5.7 mg), **2** (18.0 mg), and **3** (41.0 mg). The fraction eluting with AcOEt/petroleum ether 9:1 was repeatedly subjected to CC (silica gel) and further purified by semi-prep. HPLC (*C18 TSK ODS* (5 µm), 45% aq. MeCN, flow rate 2.5 ml/min, detection at 210 nm): **4** (3.7 mg, t_R 42.7 min).

15-Epilupulin A (=(2S)-2-Methylbutanoic Acid (1R,2S,3R,4aR,5S,6R,8S,8aR)-8-(Acetyloxy)-8a-[(acetyloxy)methyl]-5-[(2S,3aS,5R,6aR)-hexahydro-5-methoxyfuro[2,3-b]furan-2-yl]octahydro-3-hydroxy-5,6-dimethylspiro[naphthalene-1(2H),2'-oxiran]-2-yl Ester; 1): Colorless needles. M.p. 133–135°. $[\alpha]_{D}^{20} = -85$ (c = 1.14, CHCl₃). UV (MeOH): 218 (4.3). IR (KBr): 3450, 3025, 1729, 1644, 1391, 1251,1124. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS: 605.3 ($[M + Na]^+$). HR-EI-MS: 582.3068 (M^+ , C₃₀H₄₆O₁₁; calc. 582.3096).

6-O-Deacetylajugamarin (= (2E)-2-Methylbut-2-enoic Acid (1R,4R,4aR,5S,6R,8S,8aR)-8a-[(Acetyloxy)methyl]-5-[(2S)-2-(2,5-dihydro-5-oxofuran-3-yl)-2-hydroxyethyl]octahydro-8-hydroxy-5,6-dimethylspiro[naphthalen-1(2H),2'-oxiran]-4-yl Ester; **2**): Colorless needles. M.p. 127–128°. [a]₂₀^D = +10 (c = 0.4, CHCl₃). UV (MeOH): 217 (4.2). IR (KBr): 3539, 3479, 1774, 1743, 1716, 1695, 1458, 1367, 1269, 1238, 1136, 1086, 883, 739. ¹H- and ¹³C-NMR: *Table 2*. ESI-MS: 529.3 ([M + Na]⁺). HR-EI-MS: 506.2530 (M⁺, C₂₇H₃₈O₉⁺; calc. 506.2544).

Ajugadecumbenin A (=(1R,4aR,5S,6R,8S,8aR)-8a-[(Acetyloxy)methyl]-5-[(2S)-2-(acetyloxy)-2-(2,5-dihydro-5-oxofuran-3-yl)ethyl]-5,6-dimethylspiro[naphthalen-1(2H),2'-oxiran]-8-ol; **3**): Colorless needles. M.p. 156–158°. [a]_D²⁰=0 (c=0.3, CHCl₃). UV (MeOH): 217 (4.4). IR (KBr): 3477, 1778, 1747, 1643, 1367, 1261, 1229, 1036, 883. ¹H- and ¹³C-NMR: *Table* 2. ESI-MS: 473.1 ([M + Na]⁺), 923.0 ([2M + Na]⁺). HR-EI-MS: 450.2269 (M⁺, C₂₄H₃₄O^{*}₈; calc. 450.2284).

Ajugadecumbenin B (= (2E)-2-*Methylbut-2-enoic Acid* (*I*S)-2-{(*I*R,*4a*R,5S,6R,8S,8*a*R)-8*a*-{(*Acetyloxy*)*methyl*]*octahydro-8-hydroxy-5,6-dimethylspiro*[*naphthalene-1*(2H),2'-*oxiran*]-5-*yl*]-1-(2,5-*dihydro-5-oxofuran-3-yl*)*ethyl Ester*; **4**): Amorphous powder. [a]^D_D = +6 (c = 0.64, CHCl₃). UV (MeOH): 218 (4.3). IR (KBr): 3483, 1778, 1743, 1718, 1700, 1468,1366, 1270, 1137, 1088, 886, 739. ¹H- and ¹³C-NMR: *Table* 2. HR-EI-MS: 490.2551 (M^+ , $C_{27}H_{38}O_8^+$; calc. 490.2535).

The research work was financially supported by the *Natural Science Foundation of China* (Nos. 30730108, 20721003), CAS Key Project (grant KSCX2-YW-R-18) and STCSM Projects (No. 07XD14036 and 06DZ22028), and partially funded by the grant from the *Syngenta-SIMM-PhD Studentship Project*.

RERERENCES

- [1] H. Shimomura, Y. Sashida, K. Ogawa, Chem. Pharm. Bull. 1989, 37, 996.
- [2] Z.-D. Min, S.-Q. Wang, Q.-T. Zheng, B. Wu, M. Mizuno, T. Toshiyuki, I. Munekazu, Chem. Pharm. Bull. 1989, 37, 2505.
- [3] H.-M. Chen, Z.-D. Min, I. Munekazu, T. Toshiyuki, Chem. Pharm. Bull. 1995, 43, 2253.
- [4] Z.-D. Min, M. Mizuo, S.-Q. Wang, I. Munekazu, T. Toshiyuki, Chem. Pharm. Bull. 1990, 38, 3167.
- [5] I. Kubo, Y. Lee, V. Balogh-Nair, K. Nakanishi, A. Chapya, J. Chem. Soc., Chem. Commun. 1976, 949.
- [6] I. Kubo, Y. Lee, Y. Fukuyama, A. Chapya, Chem. Lett. 1983, 223.
- [7] H. Shimomura, Y. Sashida, K. Ogama, Chem. Pharm. Bull. 1989, 37, 354.
- [8] H. Shimomura, Y. Sashida, K. Ogama, Y. Iitaka, Chem. Pharm. Bull. 1989, 37, 2505.
- [9] A. Takashi, N. Ritsuo, K. Yasumasa, Biosci. Biotechnol. Biochem. 1997, 61, 1518.
- [10] M. Takasaki, H. Tokuda, H. Nishino, T. Konoshima, J. Nat. Prod. 1999, 62, 972.
- [11] S. Imai, S. Fujioka, E. Murata, K. Otsuka, K. Nakanishi, Chem. Commun. 1969, 546.
- [12] S. Imai, E. Murata, S. Fujioka, M. Koreeda, K. Nakanishi, Chem. Commun. 1969, 82.
- [13] S. Imai, T. Toyosato, M. Sakai, Y. Sato, S. Fujioka, E. Murata, M. Goto, *Chem. Pharm. Bull.* 1969, 17, 340.
- [14] M. Koreeda, K. Nakanishi, M. Goto, J. Am. Chem. Soc. 1970, 92, 7512.
- [15] Y. Takeda, S. Tsuchida, T. Fujita, *Phytochemistry* 1987, 26, 2303.
- [16] W. Zhang, Y.-W. Guo, K. Krohn, Chem. Eur. J. 2006, 12, 5122.
- [17] W. Zhang, Y.-W. Guo, Chem. Pharm. Bull. 2006, 54, 1037.
- [18] Z.-Y. Li, P. Chen, H.-G. Xu, Y.-M. Yang, S.-Y. Peng, Z.-Z. Zhao, Y.-W. Guo, Org. Lett. 2007, 9, 477.
- [19] H. Chen, R.-X. Tan, Z.-L. Liu, Y.-J. Zhang, J. Nat. Prod. 1996, 59, 668.
- [20] H. B. Jannet, A. Z. Chaari, M. Mighri, T. Martin, A. Loukaci, Phytochemistry 1999, 52, 1541.
- [21] H. Shimomura, Y. Sashida, K. Ogawa, Y. Iitaka, Chem. Pharm. Bull. 1983, 31, 2192.
- [22] H. Shimomura, Y. Sashida, K. Ogawa, Chem. Pharm. Bull. 1989, 37, 988.
- [23] F. Camps, J. Coll, A. Cortel, A. Messeguer, Tetrahedron Lett. 1979, 20, 1709.
- [24] F. Camps, J. Coll, A. Cortel, Chem. Lett. 1981, 8, 1093.

- [25] D. Rogers, G. G. Unal, D. J. Williams, S. V. Ley, G. A. Sim, B. S. Joshi, K. R. Ravindranath, J. Chem. Soc., Chem. Commun. 1979, 97.
- [26] P. Y. Malakov, G. Y. Papanov, A. Perales, M. C. de la Torre, B. Rodriguez, *Phytochemistry* 1992, 31, 3151.
- [27] J. C. H. Byon, A. B. Kusari, J. Kusari, Mol. Cell. Biochem. 1998, 182, 101.

Received November 1, 2007