by Jia Liu^a)^b), Lin Feng^a), Hai-Dao Li^a), Qing-Li Dong^a), and Rong Chen*^a)

 ^a) Jiangsu Simcere Pharmaceutical R&D Co., Ltd., No. 699-18 Xuanwu Avenue, Xuanwu District, Nanjing 210042, P. R. China (phone: +86-25-85560000-3107; fax: +86-25-85479335; e-mail: chenrong11@simcere.com)

^b) Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009,
P. R. China (phone: +86-25-83271038; fax: +86-25-83271269; e-mail: tigerjiage@163.com)

Three new *ent*-kaurane glucopyranosides, 2-O-[β -D-apiofuranosyl-(1 \rightarrow 3)-2-O-isovaleryl- β -D-glucopyranosyl]-4-*epi*-atractyligenin (1), 2-O-[β -D-apiofuranosyl-(1 \rightarrow 3)-2-O-isovaleryl- β -D-glucopyranosyl]atractyligenin (2), and 2-O-[β -D-apiofuranosyl-(1 \rightarrow 3)-2-O-(3-methylpentanoyl)- β -D-glucopyranosyl]-4-*epi*-atractyligenin (3), along with 2-O-(2-O-isovaleryl- β -D-glucopyranosyl)-4-*epi*-atractyligenin (4), were isolated for the first time from the aerial parts of *Siegesbeckia pubescens*. The structures were established by extensive spectroscopic analyses including 1D- and 2D-NMR (HSQC, HMBC, and ROESY), and HR-ESI-MS, and by comparison with published data.

Introduction. – Plants of the genus *Siegesbeckia* are annual herbs widely distributed in tropical, subtropical, and temperate parts of the world. Three species of this genus grow in China (*Siegesbeckia pubescens, S. orientalis,* and *S. glabrescens*), the aerial parts of which are being used as traditional Chinese medicines called 'Xi-Xian' to treat rheumatic arthritis, hypertension, malaria, and snake bite [1]. The chemical composition of the aerial part of *Siegesbeckia* has been investigated by several research groups [2-4].

The medicinal importance and diverse activities of members of this genus promoted us to undertake further phytochemical investigations of *Siegesbeckia pubescens*. In this article, we describe the isolation and structure elucidation of three new *ent*-kaurane glucopyranosides from the aerial parts of *Siegesbeckia pubescens*, namely 2-*O*-[β -Dapiofuranosyl-(1 \rightarrow 3)-2-*O*-isovaleryl- β -D-glucopyranosyl]-4-*epi*-atractyligenin¹) (1), 2-*O*-[β -D-apiofuranosyl-(1 \rightarrow 3)-2-*O*-isovaleryl- β -D-glucopyranosyl]atractyligenin¹) (2), and 2-*O*-[β -D-apiofuranosyl-(1 \rightarrow 3)-2-*O*-(3-methylpentanoyl)- β -D-glucopyranosyl]-4-*epi*-atractyligenin¹) (3), along with the known 2-*O*-(2-*O*-isovaleryl- β -D-glucopyranosyl)-4-*epi*-atractyligenin¹) (4) isolated for the first time from this genus (*Fig. 1*).

Results and Discussion. – Repeated column chromatography (CC) of the EtOH extract from the the aerial parts of *Siegesbeckia pubescens* yielded compounds 1-4.

Compound **1** was obtained as a yellow viscous oil. Its molecular formula was determined as $C_{35}H_{54}O_{14}$ from the HR-ESI-MS (m/z 721.3427 ($[M+Na]^+$). The ¹³C-NMR spectrum (*Table 1*) showed resonances of 35 C-atoms, which were classified

¹⁾ Trivial and arbitrary atom numbering; for systematic names, see Exper. Part.

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Compounds $1-4^{1}$) isolated from Siegesbeckia pubescens

by their chemical shifts, DEPT, and HSQC spectra as three Me groups, twelve CH₂ groups (three O-bearing and one olefinic), 14 CH groups (nine O-bearing), and six quaternary C-atoms (one olefinic, one COOH, and one ester C=O group). The ¹H-NMR spectrum of **1** (*Table 1*) exhibited signals for one β -glucose unit and one β apiose unit [5], comprising two anomeric H-atom signals at $\delta(H)$ 4.63 (d, J = 8.1 Hz) and 5.01 (d, J = 2.9 Hz). Additionally, signals of an isovaleric acid (= 3-methylbutanoic acid) ester were observed at $\delta(H) 2.32 - 2.24 (m, 2 H), 2.10 (sept., J = 6.8 Hz, 1 H), 0.98$ (d, J = 2.0 Hz, 3 H), and 0.98 (d, J = 2.0 Hz, 3 H). The presence of a β -glucose and a β appiose unit was also evident by signals of the anomeric C-atoms at $\delta(C)$ 100.9 and 111.6. The ¹³C-NMR signals of the sugar mojeties were identified by a combination of the HMQC and HMBC data. The structure of the aglycon and position of the sugar and isovalerate moieties of 1 could be deduced from the 2D-NMR measurements, including the ROESY, HMQC, and HMBC experiments. The structure of the aglycon was shown to be a norditerpene by the presence of 19 signals in the ¹³C-NMR spectrum, in addition to the C-atom signals of the sugars and the isovalerate moieties. Moreover, the ¹H-NMR spectrum showed only one Me signal, at $\delta(H)$ 0.99, while the ¹³C-NMR spectrum showed one carboxylic C-atom signal at $\delta(C)$ 178.8. Two O-bearing C-atoms found at $\delta(C)$ 74.2 and 83.6 were correlated in the HMQC spectrum with the H-atom signals at $\delta(H)$ 4.23 (m, H–C(2)) and 3.76 (br. s, H–C(15)), respectively. An olefinic group was detected by the signals at $\delta(C)$ 160.4 and 109.0, and the corresponding Hatoms appeared at 5.18 and 5.07 (2 br. s, each 1 H). The positions of the functional groups and the sugar and isovalerate moieties were determined from the HMBC spectrum (Fig. 2). Thus, the C-atom at $\delta(C)$ 74.2 (C(2)) showed a cross-peak with the anomeric H-atom at $\delta(H)$ 4.63 (H–C(1')) as well as with the H-atoms at $\delta(H)$ 2.28 $(H_a - C(1)), 0.75 (H_b - C(1)), 2.38 - 2.42 (H_a - C(3)), and 1.18 - 1.22 (H_b - C(3)), thereby$ furnishing the partial structure C(1)-C(2)(O-sugar)-C(3). This result was supported by the ROESY data (Fig. 3) which revealed the correlation of the anomeric H–C(1') with H_a -C(3) and H-C(2) (δ (H) 4.20-4.25). The HMBC cross-peaks δ (C) 173.6 $(C(15))/\delta(H)$ 4.77 (H–C(2')) and $\delta(C)$ 84.2 (C(3'))/ $\delta(H)$ 5.01 (H–C(1'')) showed that

	1	2		
	$\frac{1}{\delta(H)}$	$\delta(C)$	$\frac{2}{\delta(H)}$	$\delta(C)$
<u> </u>		0(0)		(0)
$CH_{2}(1)$	2.28 $(dd, J = 2.0, 12.0, H_{a}),$	48.9	2.28 $(dd, J = 2.0, 12.0, H_{a}),$	48.9
II. C(2)	$0.75 (dd, J = 12.0, 12.0, H_{\beta})$	74.0	$0.72 (dd, J = 12.0, 12.0, H_{\beta})$	74.4
H = C(2)	4.20 - 4.25 (m)	74.2	4.28 - 4.35 (m)	74.4
$CH_2(3)$	$2.38-2.42 (m, H_a),$	35.7	$2.39 - 2.43 (m, H_a),$	36.4
II C(I)	$1.18 - 1.22$ (<i>td</i> , $J = 11.7$, 6.7, H_{β})		$1.10 - 1.16 (td, J = 12, 5.5, H_{\beta})$	16.0
H-C(4)	2.66 (td, J = 5.0, 1.7)	44.7	2.57 (td, J = 5.0, 1.6)	46.0
H-C(5)	1.40 (br. $d, J = 5.4$)	50.4	1.37 (br. $d, J = 4.9$)	50.8
$CH_2(6)$	1.92 (dd, J = 2.1, 13.2),	26.6	1.95 (dd, J = 2.5, 12.4),	26.7
	1.63 - 1.66 (m)		1.66 - 1.68 (m)	
$CH_2(7)$	1.67 - 1.70, 1.42 - 1.48 (2 m)	36.2	1.66 - 1.68, 1.39 - 1.42 (2 m)	36.2
H-C(8)		48.9		48.9
H-C(9)	1.05 (br. $d, J = 6.3$)	54.5	1.02 (br. $d, J = 2.2$)	54.5
C(10)		41.8		41.8
CH ₂ (11)	1.42 - 1.48, 1.61 - 1.63 (2 m)	19.2	1.39 - 1.50, 1.60 - 1.63 (2 m)	19.2
CH ₂ (12)	1.42 - 1.48, 1.61 - 1.63 (2 m)	33.6	1.39 - 1.50, 1.60 - 1.63 (2 m)	33.6
H–C(13)	2.70 (br. s)	43.7	2.69 (br. s)	43.7
CH ₂ (14)	1.37 (br. $d, J = 10.0$),	37.2	1.32 (br. $d, J = 6.6$),	37.2
	1.87 (br. $d, J = 11.6$)		1.95 (br. $d, J = 11.7$)	
H–C(15)	3.76 (br. s)	83.6	3.75 (br. s)	83.6
C(16)		160.4		160.5
CH ₂ (17)	5.18, 5.07 (2 br. s)	109.0	5.17, 5.06 (2 br. s)	108.9
C(18)		178.8		180.6
Me(20)	0.99(s)	17.2	1.03(s)	17.4
H-C(1')	4.63 (d, J = 8.1)	100.9	4.68(d, J = 8.1)	100.7
H-C(2')	4.77 (dd, J = 8.1, 9.5)	74.1	4.77 (dd, J = 8.1, 9.5)	74.1
H-C(3')	3.62 (dd, J = 8.8, 9.5)	84.2	3.62 (dd, J = 8.8, 9.5)	84.2
H-C(4')	3.44 (dd, J = 8.8, 9.7)	70.2	3.45 (dd, J = 8.8, 9.7)	70.2
H-C(5')	3.34 - 3.37(m)	77.7	3.36 - 3.39(m)	77.5
CH ₂ (6')	3.72 (dd, J = 5.1, 12.0).	62.5	3.72 (dd, J = 5.0, 12.0).	62.4
2()	3.86 (dd, J = 2.2, 12.0)		3.85 (dd, J = 2.4, 12.0)	
H-C(1'')	5.01 (d, J = 2.9)	111.6	5.02 (d, J = 2.9)	11.5
H - C(2'')	3.84 (d, J = 2.9)	78.0	3.84 (d, J = 2.9)	78.0
C(3'')		80.4		80.4
$CH_2(4'')$	4.10 (d I = 9.6)	75.1	4.11 (d I = 9.8)	75.1
0112(1)	378 (d I = 96)	7011	379 (d I = 98)	7011
$CH_{2}(5'')$	355(d, I=15)	65.2	3.56 (d, I = 1.9)	65.2
Me(I 1)	0.98 (d, I-2.0)	22.9	0.99 (d I - 2.2)	22.9
$Me(I_2)$ or $CH_{(I_2)}$	0.98 (d I - 2.0)	22.9	0.98 (d, I - 2.2)	22.9
$H_{-C(I3)}$	2.10 (sent $I - 6.8$)	26.6	2.10 (sent I - 6.8)	26.5
$CH_{(I4)}$	2.10(30pt., 3 - 0.0) 2.32 - 2.24(m)	20.0 44 4	$2.10 (30 \mu, 3 - 0.0)$ 2.32 - 2.23 (m)	20.0 44 A
C(15)	2.32 - 2.24 (m)	44.4 172.6	2.32 - 2.23 (m)	44.4
C(13)		1/3.0		1/3./

Table 1. ¹*H*- and ¹³*C*-*NMR Data* (CD₃OD, 27°, 500 and 125 MHz resp) of Compound **1** and **2**. δ in ppm, *J* in Hz.

the isovalerate moiety was located at C(2') and the β -apiose unit at C(3'). The Me signal at δ (H) 0.99 showed a HMBC with δ (C) 48.9 (C(1)), 50.4 (C(5)), and 52.9 (C(9)). The second C-bearing O-atom was placed at C(15) on the basis of the HMBC spectrum. In the ROESY experiment, δ (H) 4.20–4.25 (H–C(2)) showed correlations with 2.28

Fig. 2. Key HMBCs of compounds 1 and 2

Fig. 3. Key ROESY correlations of compounds 1 and 2

 $(H_{\alpha}-C(1))$ and 0.99 (s, Me(20)), but not with $\delta(H)$ 1.40 (br. d, H–C(5)). Besides that, $\delta(H)$ 0.75 $(H_{\beta}-C(1))$ showed correlations with $\delta(H)$ 1.05 (H-C(9)), and the latter with $\delta(H)$ 3.76 (H-C(15)). Finally, the structure and relative configuration of **1** were confirmed as 2-O-[β -D-apiofuranosyl- $(1 \rightarrow 3)$ -2-O-isovaleryl- β -D-glucopyranosyl]-4epi-atractyligenin.

Compound **2** was obtained as a yellow powder. Its molecular formula was determined as $C_{35}H_{54}O_{14}$ from the HR-ESI-MS (m/z 721.3433 ($[M+Na]^+$). The ¹H- and ¹³C-NMR data of **2** (*Table 1*) suggested that its structure is similar to that of compound **1**, except for C(4) and H–C(4) and others which have relations with C(4) and H–C(4). The ROESY experiment indicated a correlation between H–C(4) and H–C(5) (*Fig. 3*), which confirmed the β -configuration of COOH group at C(4) in **2**. Consequently, the structure of compound **2** was established as the 2-*O*-[β -D-apiofuranosyl-(1 \rightarrow 3)-2-*O*-isovaleryl- β -D-glucopyranosyl]atractyligenin.

Compound **3** was obtained as a white powder. The relative molecular mass of **3** was determined as 712 on the basis of the ion peak m/z 711 ($[M - H]^+$) in the ESI-MS. The structure of **3** was found to be similar to that of **1**, except for the molecular mass (**3** = **1**+14). The ¹H- and ¹³C-NMR data of **3** and **1** were almost coincident with respect to their β -glucose and β -apiose units and the aglycon (*Table 2*). The ¹H-NMR spectrum showed an additional Me group in the ester side chain. Closer inspection revealed that

224

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
$\overline{CH_2(1)}$	2.28 $(dd, J = 3.7, 12.0, H_a),$	48.9	H–C(1′)	4.63 (d, J = 8.1)	100.8
	$0.75 (dd, J = 12.0, 12.0, H_{\beta})$		H-C(2')	4.77 (dd, J = 8.1, 9.5)	74.1
H-C(2)	4.22-4.27 (<i>m</i>)	74.1	H–C(3')	3.62 (dd, J = 8.8, 9.5)	84.2
$CH_2(3)$	$2.38-2.42 (m, H_a),$	35.8	H–C(4')	3.44 (dd, J = 8.8, 9.7)	70.3
	$1.20 (td, J = 11.7, 6.7, H_{\beta})$		H–C(5')	3.34–3.37 <i>(m)</i>	77.7
H-C(4)	2.66 (td, J = 5.0, 1.7)	44.8	CH ₂ (6')	3.72 (dd, J = 5.1, 12.0),	62.5
H-C(5)	1.40 (br. $d, J = 5.3$)	50.5		3.86 (dd, J = 2.2, 12.0)	
$CH_{2}(6)$	1.93 (dd, J = 2.1, 13.2),	26.6	H–C(1")	5.01 (d, J = 2.8)	111.6
	1.63 - 1.66 (m)		H–C(2")	3.84 (d, J = 2.8)	78.0
$CH_{2}(7)$	1.67 - 1.70 (m), 1.42 - 1.48 (m)	36.2	C(3'')		80.4
C(8)		48.9	CH ₂ (4")	4.10 (d, J = 9.6), 3.78 (d, J = 9.6)	75.1
H–C(9)	1.05 (br. $d, J = 7.2$)	54.5	CH ₂ (5")	3.55 (d, J = 1.5)	65.2
C(10)		41.8	Me(I 1)	0.92 (t, J = 7.5)	11.7
$CH_{2}(11)$	1.42 - 1.48 (m), 1.61 - 1.63 (m)	19.2	$CH_2(I 2)$	1.37 - 1.47 (m), 1.17 - 1.30 (m)	30.4
$CH_{2}(12)$	1.42 - 1.48 (m), 1.61 - 1.63 (m)	33.6	H-C(I3)	1.86 - 1.94 (m)	33.0
H–C(13)	2.71(br. <i>s</i>)	43.7	$CH_2(I 4)$	2.40 (dd, J = 6.3, 15.2),	42.5
$CH_{2}(14)$	1.38 (br. $d, J = 5.2$),	37.2		2.21 (dd, J = 7.8, 15.2)	
	1.87 (br. $d, J = 12.9$)		C(I 5)		173.8
H–C(15)	3.76 (br. <i>s</i>)	83.6	Me(I 6)	0.97 (d, J = 8.6)	19.8
C(16)		160.4			
$CH_{2}(17)$	5.18 (br. s), 5.07 (br. s)	109.0			
C(18)		180.0			
Me(20)	1.00(s)	17.2			

Table 2. ¹H- and ¹³C-NMR Data (CD₃OD, 27°, 500 and 125 MHz, resp.) of Compound **3**. δ in ppm, J in Hz.

the former isopropyl group was replaced by the CH₂ homologous (1-methyl)propyl unit in **3**. The ¹³C-NMR spectrum, with δ (C) 11.7, 30.4, 33.0, 42.5, 173.8, and 19.8, showed that the different unit connected with C(2') was 3-methylpentanoate [6]. The structure of **3** was established as the 2-*O*-[β -D-apiofuranosyl-(1 \rightarrow 3)-2-*O*-(3-methylpentanoyl)- β -D-glucopyranosyl]-4-*epi*-atractyligenin.

The known compound 4 was isolated for the first time from this genus. The structure of compound 4 was assigned by its spectral data and comparison with those reported in the literature [7].

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂, 200–300 mesh; Qingdao Marine Chemical Plant), Sephadex LH-20 (GE Healthcare Bio-Sciences AB, USA), and MCI gel (Mitsubishi Chemical Corporation, Tokyo, Japan). TLC: silica gel GF_{254} (10–40 µm; Qingdao Marine Chemical Plant, Qingdao, P. R. China). ¹H-, ¹³C-, and 2D-NMR Spectra: Bruker-AV-500 spectrometers; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI-MS: Agilent 1100 JC/MSD Trap spectrometer; in m/z. HR-ESI-MS: Micro Q-TOF spectrometer; in m/z.

Plant Material. The aerial parts of Siegesbeckia pubescens were purchased from Bozhou Bohua Pharmaceutical Co., Ltd., Anhui Province, P. R. China (December 2009), and identified by M.-J. Qin, the curator of China Pharmaceutical University (China). A voucher specimen has been deposited with the Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China.

Extraction and Isolation. The air-dried and powdered *Siegesbeckia pubescens* (10 kg) was extracted with 95% EtOH. The crude extract was mixed with H₂O (5 l) to form a suspension and then extracted successively with petroleum ether, AcOEt, and BuOH. The AcOEt-soluble part (130 g) was subjected to CC (*MCI*, EtOH/H₂O 1:10, 4:6, 3:1, and 10:1): *Fractions* A - D. *Fr. B* was separated by CC (*ODS* acetone/H₂O 1:2 and 1:1). Each subfraction of *Fr. B* was subjected to repeated CC (SiO₂, *Sephadex LH-20* CC), and further purified by recrystallization. At last, compounds **1** (60 mg), **2** (10 mg), **3** (6 mg), and **4** (20 mg) were isolated.

2-O-[β -D-Apiofuranosyl-(1 \rightarrow 3)-2-O-isovaleryl- β -D-glucopyranosyl]-4-epi-atractyligenin (= (2 β , 4 β ,15 α)-2-{[3-O- β -D-Apiofuranosyl-2-O-(3-methyl-1-oxobutyl)- β -D-glucopyranosyl]oxy}-15-hydroxy-19-nor-ent-kaur-16-en-18-oic Acid; **1**). Yellow, viscous oil. ¹H- and ¹³C-NMR: Table 1. HR-ESI-MS: 721.3427 ([M+Na]⁺; calc. 721.3411).

2-O-[β -D-Apiofuranosyl-($1 \rightarrow 3$)-2-O-isovaleryl- β -D-glucopyranosyl]atractyligenin (= (2β , 4α , 15α)-2-{[3-O- β -D-Apiofuranosyl-2-O-(3-methyl-1-oxobutyl)- β -D-glucopyranosyl]oxy}-15-hydroxy-19-norent-kaur-16-en-18-oic Acid; **2**). Yellow powder. ¹H- and ¹³C-NMR: Table 1. HR-ESI-MS: 721.3433 ([M+Na]⁺, calc. 721.3411).

2-O-[β -D-Apiofuranosyl-(1 \rightarrow 3)-2-O-(3-methylpentanal)- β -D-glucopyranosyl]-4-epi-atractyligenin (= (2 β ,4 β ,15 α)-2-{[3-O- β -D-Apiofuranosyl-2-O-(3-methyl-1-oxopentyl)- β -D-glucopyranosyl]oxy}-15-hy-droxy-19-nor-ent-kaur-16-en-18-oic Acid; **3**). White powder. ¹H- and ¹³C-NMR: Table 2. ESI-MS: 711 ([M-H]⁺).

2-O-[2-O-Isovaleryl- β -D-glucopyranosyl]-4-epi-atractyligenin (= (2 β ,4 β ,15 α)-15-Hydroxy-2-[[2-O-(3-methyl-1-oxobutyl)- β -D-glucopyranosyl]oxy]-19-nor-ent-kaur-16-en-18-oic Acid; **4**). Yellow oil. ¹H-NMR (500 MHz, CD₃OD): 5.18 (br. *s*, H_a–C(17)); 5.07 (br. *s*, H_b–C(17)); 4.68 (dd, *J*=8.1, 9.5, H–C(2')); 4.59 (d, *J*=8.1, H–C(1')); 4.22 (m, H–C(2)); 3.86 (dd, *J*=2.4, 12.0, H_b–C(6)); 3.76 (br. *s*, H–C(15)); 3.70 (dd, *J*=5.3, 12.0, H_a–C(17)); 3.50 (t, *J*=6.0, H–C(4')); 3.38 (m, H–C(5')); 2.71 (br. *s*, H–C(13)); 2.66 (td, *J*=5.0, 1.7, H–C(4)); 2.26–2.24 (m, H–C(I 4)); 2.10 (sept., *J*=6.8, H–C(I 3)); 1.05 (br. *d*, *J*=6.3, H–C(9)); 0.99 (*s*, Me(20)); 0.98 (*d*, *J*=2.0, Me(I 1)); 0.98 (*d*, *J*=2.0, Me(I 2)). ¹³C-NMR (125 MHz, CD₃OD): 178.8 (C(18)); 173.8 (C(I 5)); 160.3 (C(16)); 109.0 (C(17)); 101.1 (C(1')); 83.5 (C(15)); 77.9 (C(5')); 76.3 (C(2')); 75.1 (C(3')); 74.1 (C(2)); 71.7 (C(4')); 62.6 (C(6')); 54.4 (C(9)); 50.4 (C(5)); 48.8 (C(1)); 48.8 (C(8)); 44.6 (C(4)); 44.4 (C(I 4)); 43.7 (C(13)); 41.8 (C(10)); 37.2 (C(14)); 36.1 (C(7)); 35.6 (C(3)); 33.6 (C(12)); 26.8 (C(6)); 26.6 (C(I 3)); 22.9 (C(I 1)); 22.8 (C(I 2)); 19.2 (C(11)); 17.2 (C(20)). ESI-MS: 565 ([*M* – H]⁺).

REFERENCES

- [1] F. Wang, X.-L. Cheng, Y.-J. Li, S. Shi, J.-K. Liu, J. Nat. Prod. 2009, 72, 2005.
- [2] R.Wang, W.-H. Chen, Y.-P. Shi, J. Nat. Prod. 2010, 73, 17.
- [3] J. Wang, J. Ruan, Y. Cai, Y. Wu, Pak. J. Pharm. Sci. 2008, 21, 89.
- [4] J. Xiong, Y. Ma, Y. Xu, Phytochemistry 1992, 31, 917.
- [5] I. Calis, H. A. Gazar, S. Piacente, C. Pizza, J. Nat. Prod. 2001, 64, 1179.
- [6] K. Totani, T. Nagatsuka, S. Yamaguchi, K.-I. Takao, S. Ohba, K.-I. Tadano, J. Org. Chem. 2001, 66, 5965.
- [7] H. Richter, G. Spiteller, Chem. Ber. 1978, 111, 3506.

Received June 30, 2011