## Two New Pentacyclic Triterpenoids from Centella asiatica

by Xiao-Xiang Weng, Jing Zhang, Wen Gao, Liang Cheng, Yan Shao, and De-Yun Kong\*

Department of Chinese Traditional Medicine, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W.), Shanghai 200040, P. R. China (phone: +86-21-62790148; fax: +86-21-62790148; e-mail: deyunk@yahoo.com.cn)

Two new pentacyclic triterpenoids, named centelloside D (1) and centelloside E (9), together with the seven known compounds 2-8, were isolated from the whole plants of *Centella asiatica*. Compound 5 was reported for the first time from this genus. Their structures were elucidated on the basis of chemical and spectral analysis, including 1D- and 2D-NMR, and HR-MS experiments, and by comparison with literature data. Compounds 1-4, 6, and 8 did not show any cytotoxicity against L929 (mouse embryonic fibroblast).

**Introduction.** – *Centella asiatica* (L.) URBAN, a plant of the family Umbelliferae, is a traditional herbal medicine used in China, Southeast Asia, India, Sri Lanka, and Africa. Experimental and clinical investigations showed that it had a number of medicinal properties, *e.g.*, for the treatment of venous insufficiency, striae gravidarum, and wound healing disturbances [1]. Previous chemical studies showed that pentacyclic triterpenes which contained many pairs of corresponding ursane- and oleanane-type triterpenes were the main components of this plant [2–4]. Our phytochemical investigation of this plant now revealed the presence of two new pentacyclic triterpenoids, named centelloside D (1) and centelloside E (9), besides that of the seven known triterpenes 2-8 (*Fig. 1*). Compound **5** was reported for the first time from this genus. Centelloside E (9) is the first pentacyclic skeleton with two C=C bonds discovered in this plant as well as with a C=C bond between C(6) and C(7). Compounds 1-4, **6**, and **8** were evaluated *in vitro* for cytotoxicity.

**Results and Discussion.** – The crude extract of *C. asiatica* was repeatedly subjected to column chromatography (silica gel) and prep. HPLC to afford compounds **1**–**9**. Compounds **1** and **9** were found to be new, and their structures were elucidated by 1Dand 2D-NMR data in combination with MS studies. The other seven compounds were identified as centellasaponin B (**2**) [4], asiaticoside E (**3**) [5], scheffoleoside A (**4**) [6], scheffursoside F (**5**) [6], ( $2\alpha$ , $3\beta$ , $6\beta$ )-2,3,6-trihydroxyolean-12-en-28-oic acid 28-[O- $\alpha$ -Lrhamnopyranosyl-( $1 \rightarrow 4$ )-O- $\beta$ -D-glucopyranosyl-( $1 \rightarrow 6$ )- $\beta$ -D-glucopyranosyl] ester (**6**) [3], asiaticoside F (**7**) [5], and isoasiaticoside (**8**) [7], by comparison of their spectroscopic data with those reported in the literature.

Compound 1 was obtained as a white amorphous powder. Its HR-ESI-MS showed a quasi-molecular-ion peak at m/z 851.4409 ( $[M + Na]^+$ ), in accord with the molecular formula  $C_{42}H_{68}O_{16}$ . The IR spectrum showed the presence of OH (3424 cm<sup>-1</sup>), C=O

<sup>© 2012</sup> Verlag Helvetica Chimica Acta AG, Zürich



Fig. 1. Compounds 1-9, isolated from Centella asiatica

(1733 cm<sup>-1</sup>), and olefin moieties (1660 cm<sup>-1</sup>). The resonances for two anomeric CH groups at  $\delta(H)$  4.90 (*d*, *J* = 7.6 Hz)/ $\delta(C)$  105.2 and  $\delta(H)$  6.08 (*d*, *J* = 8.0 Hz)/ $\delta(C)$  95.7 showed signals assignable to two  $\beta$ -configured sugar moieties. The NMR data (*Table*) were similar to those of 2 for rings A - D and the sugar moiety. The <sup>1</sup>H-NMR data revealed six Me groups, and an olefinic H-atom at  $\delta(H)$  5.38 (br. s, H–C(12)) and a signal at  $\delta(H)$  3.09 (dd, J = 4.0, 13.6 Hz, H–C(18)) were characteristic for an olean-12en-28-oic derivative. The difference of the NMR data of an ursane- and oleanane-type glycoside mainly concerns the  $\delta(C)$  of C(12), C(13), C(27), C(29), C(30), and the Ering C-atoms, and the  $\delta(H)$  of Me(29) and Me(30) show splitting for an ursane derivative, while they display a single peak for an oleanane derivative [6][8]; comparison of the NMR data of **1** and **2** showed that they exactly matched these typical spectral features. The structure was further assigned by HMQC, HMBC, <sup>1</sup>H, <sup>1</sup>H-COSY, and NOESY experiments. The HMBC spectrum (Fig. 2) established the location and sequence of the sugar moieties, with the key correlations H–C(1') ( $\delta$ (H) 6.08)/C(28)  $(\delta(C) \ 176.5)$  and H–C(1'')  $(\delta(H) \ 4.90)/C(6') \ (\delta(C) \ 69.4)$ . The structure of compound **1** was, thus, determined as terminolic acid 28- $[O-\beta-D-glucopyranosyl-(1 \rightarrow 6)-\beta-D-gluco$ pyranosyl] ester, and named centelloside D.

Compound **9** was isolated as a white amorphous powder. The HR-ESI-MS exhibited a quasi-molecular-ion peak at m/z 979.4875 ( $[M + Na]^+$ ) consistent with the molecular formula  $C_{48}H_{76}O_{19}$ . The IR spectrum displayed characteristic absorptions for OH (3413 cm<sup>-1</sup>), C=O (1733 cm<sup>-1</sup>), and olefin moieties (1645 cm<sup>-1</sup>). Its <sup>13</sup>C-NMR



Fig. 2. Selected HMBC  $(H \rightarrow C)$  and  ${}^{1}H,{}^{1}H$ -COSY (-) features of 1

spectrum showed two groups of olefinic signals at  $\delta(C)$  127.3, 127.5, 134.5, and 139.6. The <sup>1</sup>H,<sup>1</sup>H-COSY plot showed the correlations H–C(6)  $\delta(H)$  5.98/ $\delta(C)$  127.3) and H–C(7) ( $\delta(H)$  5.5–5.60/ $\delta(C)$  134.5 (*cf. Fig. 3*) and, therefore,  $\delta(C)$  127.5 and 139.6 arose from another C=C bond than C(12)=C(13). The <sup>1</sup>H- and <sup>13</sup>C-NMR data (*Table*) were very similar to those of asiaticoside [6], except for the appearance of a set of olefinic signals ( $\delta(C)$  127.3 and 134.5) in **9**. The HMBC spectrum (*Fig. 3*) showed the long-range correlations  $\delta(H)$  5.98/ $\delta(C)$  44.1 and  $\delta(H)$  1.29/ $\delta(C)$  134.5. Further analysis of the <sup>1</sup>H,<sup>1</sup>H-COSY cross-peaks  $\delta(H)$  5.58 and 5.98/ $\delta(H)$  2.70 established that a C=C bond ( $\delta(C)$  127.3 and 134.5) existed between C(6) and C(7). The key correlations H–C(18) ( $\delta(H)$  2.53)/ $\delta(C)$  127.5 and 139.6, and Me(27) ( $\delta(H)$  1.23)/ $\delta(C)$  139.6 demonstrated the location of the C=C bond between C(12) and C(13). In the HMBC



Fig. 3. Key HMBC  $(H \rightarrow C)$  and <sup>1</sup>H,<sup>1</sup>H-COSY (-) features of 9

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | Centelloside D (1)                                              | Centelloside E (9) |                                                |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------|--------------------|------------------------------------------------|-------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | $\delta(\mathrm{H})$                                            | $\delta(C)$        | $\delta(H)$                                    | $\delta(C)$       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CH <sub>2</sub> (1)  | 1.31–1.38 ( <i>m</i> ), 2.23–2.29 ( <i>m</i> )                  | 50.1 (t)           | 1.40 - 1.43 (m), 2.26 (d, J = 11.0)            | 45.8 (t)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H-C(2)               | 4.22 - 4.30 (m)                                                 | 69.0(d)            | $4.66 - 4.70 \ (m)$                            | 69.5(d)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H-C(3)               | 4.03 - 4.12 (m)                                                 | 78.5(d)            | 4.07 - 4.13 (m)                                | 78.4(d)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(4)                 |                                                                 | 44.5(s)            |                                                | 44.1(s)           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H-C(5)               | 1.90 - 1.95(m)                                                  | 48.7(d)            | 2.70 (br. s)                                   | 47.6(d)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H-C(6)               | 4.95 (br. s)                                                    | 67.6(d)            | 5.98(d, J = 10.0)                              | 127.3(d)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_{2}(7)$          | 1.73 - 1.81 (m), $1.83 - 1.90$ (m)                              | 41.0(t)            | 5.55 - 5.60 (m)                                | 134.5(d)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or H–C(7)            |                                                                 | ()                 |                                                |                   |
| $\begin{array}{c} \mathrm{H-C}(9) & 1.83-1.89 \ (m) & 48.8 \ (d) & 2.10-2.15 \ (m) & 48.3 \ (d) \\ \mathrm{C}(10) & 38.1 \ (s) & 37.4 \ (s) \\ \mathrm{C}(11) & 1.77-1.84 \ (m), 1.89-1.98 \ (m) & 25.5 \ (i) & 1.18-1.22 \ (m), 1.97-2.02 \ (m) & 24.8 \ (i) \\ \mathrm{H-C}(12) & 5.38 \ (br. s) & 123.1 \ (d) & 5.59-5.62 \ (m) & 127.5 \ (d) \\ \mathrm{C}(13) & 143.5 \ (s) & 43.1 \ (i) \\ \mathrm{C}(14) & 2.08 \ (c) \ (m), 2.27-2.33 \ (m) & 28.2 \ (i) & 1.21-1.24 \ (m), 1.24-1.27 \ (m) & 29.0 \ (i) \\ \mathrm{C}(14) & 2.01-2.06 \ (m), 2.16-2.23 \ (m) & 24.0 \ (i) & 1.14-1.16 \ (m), 1.98-2.02 \ (m) & 23.6 \ (i) \\ \mathrm{C}(17) & 4.00 \ (m) & 1.16-2.23 \ (m) & 44.0 \ (i) & 1.14-1.16 \ (m), 1.98-2.02 \ (m) & 23.6 \ (i) \\ \mathrm{C}(17) & 1.11-1.18 \ (m), 1.60-1.66 \ (m) & 46.3 \ (i) & 0.83-0.85 \ (m) & 39.4 \ (d) \\ \mathrm{C}(12) & 0.96-1.04 \ (m), 1.18-1.24 \ (m) & 34.0 \ (i) & 2.51-2.55 \ (m) & 34.8 \ (d) \\ \mathrm{O} \ \mathrm{H-C}(19) & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(8)                 |                                                                 | 39.4 (s)           |                                                | 44.9 (s)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H–C(9)               | 1.83 - 1.89 (m)                                                 | 48.8(d)            | 2.10-2.15(m)                                   | 48.3(d)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(10)                |                                                                 | 38.1(s)            |                                                | 37.4 (s)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_2(11)$           | 1.77 - 1.84(m), 1.89 - 1.98(m)                                  | 23.5(t)            | 1.18 - 1.22 (m), 1.97 - 2.02 (m)               | 24.8(t)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H–C(12)              | 5.38 (br. s)                                                    | 123.1(d)           | 5.59 - 5.62(m)                                 | 127.5(d)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(13)                |                                                                 | 143.5(s)           |                                                | 139.6 (s)         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(14)                |                                                                 | 42.8(s)            |                                                | 43.1(t)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_{2}(15)$         | 1.05 - 1.11 (m), 2.27 - 2.33 (m)                                | 28.2(t)            | 1.21 - 1.24 (m), $1.24 - 1.27$ (m)             | 29.0(t)           |
| $\begin{array}{c} \mathrm{C1}(7) & \mathrm{Lit} \ \ \mathrm{Lit} \ \mathrm$ | $CH_{2}(16)$         | 2.01 - 2.06 (m), 2.16 - 2.23 (m)                                | 24.0(t)            | 1.14 - 1.16 (m), 1.98 - 2.02 (m)               | 23.6(t)           |
| $\begin{array}{c} (17) \\ H-C(18) \\ 3.09 \ (dd, J=4.0, 13.6) \\ (H-C(19) \\ C(20) \\ (C19) \\ (C19) \\ (C19) \\ (C19) \\ (C10) \\ (C10) \\ (C12) \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(17)                | 2101 2100 (117), 2110 2120 (117)                                | 47.0(s)            | 1111 1110 ( <i>m</i> ), 1100 2102 ( <i>m</i> ) | 493(s)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $H_{-C(18)}$         | 3.09 (dd I - 4.0, 13.6)                                         | 41.0(3)            | 251-255(m)                                     | 54.7(d)           |
| $\begin{array}{c} \operatorname{Cl}_{2}(17) & \operatorname{inf} 1.13 & (m), 1.00 - 1.00 & (m) & 40.5 & (1) & 0.00 - 0.03 & (m) & 35.4 & (d) \\ \operatorname{or} \operatorname{H-C}(19) & & & & & & & \\ \operatorname{Cl}_{2}(21) & 0.96 - 1.04 & (m), 1.18 - 1.24 & (m) & 34.0 & (t) & 1.21 - 1.24 & (m), 1.30 - 1.35 & (m) & 30.3 & (t) \\ \operatorname{CH}_{2}(22) & 1.63 - 1.68 & (m), 1.78 - 1.84 & (m) & 32.5 & (t) & 1.75 - 1.77 & (m), 1.88 - 1.90 & (m) & 37.0 & (t) \\ \operatorname{CH}_{2}(23) & 3.93 - 4.00 & (m), 4.26 - 4.35 & (m) & 66.2 & (t) & 3.78 - 3.82 & (m), 4.19 - 4.24 & (m) & 66.3 & (t) \\ \operatorname{Me}(24) & 1.63 & (s) & & & & & & & & & & & & & \\ \operatorname{Me}(25) & 1.60 & (s) & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH(10)               | $1.11  1.18 \ (m)  1.60  1.66 \ (m)$                            | 46.3(t)            | 2.51 - 2.55 (m)                                | 39.7(a)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_2(19)$           | 1.11 - 1.10 (m), 1.00 - 1.00 (m)                                | 40.5(l)            | 0.05 - 0.05 (m)                                | 39.4(u)           |
| $\begin{array}{ccccccc} 50, & 50, 7(s) & 1.51-1.35(m) & 58.8(d) \\ 50, 7(s) & 1.51-1.35(m) & 58.8(d) \\ 50, 7(s) & 1.51-1.35(m) & 58.8(d) \\ 50, 7(s) & 1.51-1.77(m), 1.30-1.35(m) & 30.3(t) \\ 10, 7(s) & 1.22(1) & 0.96-1.04(m), 1.18-1.24(m) & 32.5(t) & 1.75-1.77(m), 1.88-1.90(m) & 37.0(t) \\ 10, 7(s) & 1.22(1) & 1.23-1.68(m), 1.78-1.84(m) & 32.5(t) & 1.75-1.77(m), 1.88-1.90(m) & 37.0(t) \\ 10, 7(s) & 1.22(1) & 1.23(s) & 1.23(m) & 1.22(m) & 1.22(m) & 1.23(m) & 1.23(s) \\ 10, 7(s) & 10, 7(s) \\ 10, 7(s) & 10, 7($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(20)                |                                                                 | 20.7(-)            | 1.21 1.25 ()                                   | 200(J)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(20)                |                                                                 | 50.7(s)            | 1.31 - 1.35(m)                                 | 38.8 ( <i>a</i> ) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or $H-C(20)$         |                                                                 | 24.0 (1)           | 101 104 ( ) 100 105 ( )                        | 20.2 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_2(21)$           | $0.96 - 1.04 \ (m), \ 1.18 - 1.24 \ (m)$                        | 34.0(t)            | $1.21 - 1.24 \ (m), \ 1.30 - 1.35 \ (m)$       | 30.3(t)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_2(22)$           | 1.63 - 1.68 (m), 1.78 - 1.84 (m)                                | 32.5(t)            | 1.75 - 1.77 (m), $1.88 - 1.90$ (m)             | 37.0(t)           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_2(23)$           | $3.93 - 4.00 \ (m), 4.26 - 4.35 \ (m)$                          | 66.2(t)            | 3.78 - 3.82 (m), 4.19 - 4.24 (m)               | 66.3(t)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Me(24)               | 1.63(s)                                                         | 15.9(q)            | 1.12 - 1.14 (m)                                | 14.9(q)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Me(25)               | 1.60(s)                                                         | 18.9(q)            | 1.09 - 1.11 (m)                                | 18.5(q)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Me(26)               | 1.69(s)                                                         | 19.0(q)            | 1.29 (s)                                       | 18.6(q)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Me(27)               | 1.06(s)                                                         | 26.0(q)            | 1.23 (s)                                       | 24.5(q)           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(28)                |                                                                 | 176.5(s)           |                                                | 176.7 (s)         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Me(29)               | 0.73(s)                                                         | 33.0(q)            | 0.90 - 0.94 (m)                                | 17.9(q)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Me(30)               | 0.75(s)                                                         | 23.6(q)            | 0.85 - 0.90 (m)                                | 21.5(q)           |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glc I                |                                                                 |                    |                                                |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H-C(1')              | 6.08 (d, J = 8.0)                                               | 95.7(d)            | 6.21 (d, J = 8.0)                              | 95.9 (d)          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H-C(2')              | 4.01 - 4.10 (m)                                                 | 73.8(d)            | 4.33 - 4.39 (m)                                | 74.4(d)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H-C(3')              | 4.04 - 4.12 (m)                                                 | 78.3(d)            | 4.43 - 4.47 (m)                                | 78.3 (d)          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H-C(4')              | 4.13 - 4.23 (m)                                                 | 71.0(d)            | 4.30 - 4.36(m)                                 | 71.3(d)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H = C(5')            | 3.94 - 4.01 (m)                                                 | 77.9(d)            | 3.66 - 3.70 (m)                                | 77.5(d)           |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $CH_{(6')}$          | $A_{18} = A_{25} (m) A_{58} (dd I = 16.96)$                     | 69.4(t)            | 4.28 - 4.31 (m) 4.66 - 4.70 (m)                | 69.8(t)           |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glc II               | 4.10 4.25 ( <i>m</i> ), 4.50 ( <i>uu</i> , <i>y</i> = 1.0, 9.0) | 0).4 (1)           | 4.20 4.31 ( <i>m</i> ), 4.00 4.70 ( <i>m</i> ) | 09.0 (1)          |
| $H-C(2'')$ $3.83-3.91 (m)$ $75.1 (d)$ $3.97 (t, J=8.5)$ $75.7 (d)$ $H-C(3'')$ $4.04-4.13 (m)$ $78.3 (d)$ $4.15-4.19 (m)$ $76.8 (d)$ $H-C(4'')$ $4.05-4.13 (m)$ $71.5 (d)$ $4.21-4.25 (m)$ $79.1 (d)$ $H-C(5'')$ $3.74-3.81 (m)$ $78.3 (d)$ $4.07-4.12 (m)$ $78.5 (d)$ $CH_2(6'')$ $4.20-4.28 (m), 4.32-4.40 (m)$ $62.6 (t)$ $4.07-4.13 (m), 4.20-4.24 (m)$ $61.6 (t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H–C(1")              | 4.90 (d, J = 7.6)                                               | 105.2 (d)          | 4.97-5.01 ( <i>m</i> )                         | 105.4 (d)         |
| $H-C(3'')$ $4.04-4.13 (m)$ $78.3 (d)$ $4.15-4.19 (m)$ $76.8 (d)$ $H-C(4'')$ $4.05-4.13 (m)$ $71.5 (d)$ $4.21-4.25 (m)$ $79.1 (d)$ $H-C(5'')$ $3.74-3.81 (m)$ $78.3 (d)$ $4.07-4.12 (m)$ $78.5 (d)$ $CH_2(6'')$ $4.20-4.28 (m), 4.32-4.40 (m)$ $62.6 (t)$ $4.07-4.13 (m), 4.20-4.24 (m)$ $61.6 (t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H - C(2'')           | 3.83 - 3.91 (m)                                                 | 75.1(d)            | 3.97(t, J = 8.5)                               | 75.7(d)           |
| $H-C(4'')$ $4.05-4.13 (m)$ $71.5 (d)$ $4.21-4.25 (m)$ $79.1 (d)$ $H-C(5'')$ $3.74-3.81 (m)$ $78.3 (d)$ $4.07-4.12 (m)$ $78.5 (d)$ $CH_2(6'')$ $4.20-4.28 (m), 4.32-4.40 (m)$ $62.6 (t)$ $4.07-4.13 (m), 4.20-4.24 (m)$ $61.6 (t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H–C(3")              | 4.04 - 4.13 (m)                                                 | 78.3 (d)           | 4.15 - 4.19 (m)                                | 76.8 (d)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H–C(4")              | 4.05 - 4.13 (m)                                                 | 71.5(d)            | 4.21 - 4.25 (m)                                | 79.1 (d)          |
| $CH_2(6'')$ 4.20-4.28 (m), 4.32-4.40 (m) 62.6 (t) 4.07-4.13 (m), 4.20-4.24 (m) 61.6 (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H-C(5'')             | 3.74 - 3.81 (m)                                                 | 78.3(d)            | 4.07 - 4.12 (m)                                | 78.5(d)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>2</sub> (6") | 4.20 - 4.28 (m), $4.32 - 4.40$ (m)                              | 62.6(t)            | 4.07 - 4.13 (m), $4.20 - 4.24$ (m)             | 61.6 ( <i>t</i> ) |

Table. <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR Data* (( $D_5$ )pyridine) of **1** (400 and 100 MHz, resp.) and **9** (500 and 125 MHz, resp.).  $\delta$  in ppm, *J* in Hz.

| Table (cont.) |                      |             |                      |             |  |  |  |  |
|---------------|----------------------|-------------|----------------------|-------------|--|--|--|--|
|               | Centelloside D (1)   |             | Centelloside E (9)   |             |  |  |  |  |
|               | $\delta(\mathrm{H})$ | $\delta(C)$ | $\delta(\mathrm{H})$ | $\delta(C)$ |  |  |  |  |
| Rha III       |                      |             |                      |             |  |  |  |  |
| H–C(1''')     |                      |             | 5.88 (br. <i>s</i> ) | 103.0(d)    |  |  |  |  |
| H–C(2''')     |                      |             | 4.69 - 4.72 (m)      | 73.0(d)     |  |  |  |  |
| H–C(3''')     |                      |             | 4.56 - 4.60(m)       | 73.1 (d)    |  |  |  |  |
| H–C(4''')     |                      |             | 4.11 - 4.17(m)       | 74.2(d)     |  |  |  |  |
| H–C(5''')     |                      |             | 4.99 - 5.04 (m)      | 70.6(d)     |  |  |  |  |
| Me(6''')      |                      |             | 1.72 (d, J = 5.0)    | 18.9 (q)    |  |  |  |  |

spectrum, the long-range correlations H–C(1') ( $\delta$ (H) 6.21)/C(28) ( $\delta$ (C) 176.7), H–C(1'') ( $\delta$ (H) 4.97–5.01)/C(6') ( $\delta$ (C) 69.8), and H–C(1''') ( $\delta$ (H) 5.88)/C(4'') ( $\delta$ (C) 79.1), established the linkage sequence of the sugar units. From the above evidence, the structure of compound **9** was elucidated as ( $2\alpha$ , $3\beta$ , $23\alpha$ )-2,3,23-trihydroxyursa-6,12-diene 28-[O- $\alpha$ -L-rhamnopyranosyl-( $1 \rightarrow 4$ )-O- $\beta$ -D-glucopyranosyl-( $1 \rightarrow 6$ )- $\beta$ -D-glucopyranosyl] ester, and was named centelloside E.

This work was sponsored by the *Program of State* 'Created a Significant New Drug' Science and Technology Funding, P. R. China (Grant No. 2009ZX09301-007).

## **Experimental Part**

General. Column chromatography (CC): silica gel (SiO<sub>2</sub>; 200–300 mesh; Shanghai Sanpont Co., Ltd., P. R. China). TLC: SiO<sub>2</sub> HSGF<sub>254</sub> (Yantai Jiangyou Guijiao Kaifa Co., Ltd., P. R. China); detection by spraying with 10% H<sub>2</sub>SO<sub>4</sub> in EtOH, followed by heating. Prep. HPLC: Shimadzu HPLC system (LC-8A pump, SPD-M10A detector, Japan); Shimadzu-PRC-ODS column (15 µm, i.d. 20 × 250 mm);  $t_R$  in min. Optical rotations: Perkin–Elmer-341 polarimeter. IR Spectra: Nicolet-Nexus-670 FT-IR spectrophotometer; KBr pellets; in cm<sup>-1</sup>. NMR Spectra: Varian Inova-400 or -500 instrument; at 400 or 500 MHz (<sup>1</sup>H) and 100 or 125 MHz (<sup>13</sup>C); in (D<sub>5</sub>)pyridine;  $\delta$  in ppm rel. to Me<sub>4</sub>Si; J in Hz. MS: Waters-Q-Tofmicro-YA019 mass spectrometer; in m/z.

*Plant Material.* The whole-plant material of *Centella asiatica* (L.) URBAN was collected in the Guangxi Zhuang Autonomous Region, P. R. China, in July 2008, and identified by Dr. *Tong Wu* at the Shanghai Institute of Pharmaceutical Industry. A voucher specimen (SIPITCM-080711) has been deposited with the institute.

*Extraction and Isolation.* The air-dried whole plants of *C. asiatica* (10 kg) were extracted 2 times with H<sub>2</sub>O (1001 for 1.5 h; 801 for1 h). The extracts were combined and concentrated to 3 l, and then 95% EtOH (15 l) was added and the mixture kept for 24 h. The precipitate was removed by filtration. After solvent removal from the filtrate to reach a volume of 3 l, the crude extract was suspended in H<sub>2</sub>O and extracted 2 × with BuOH (6 and 4.8 l). The BuOH extract (165 g) was subjected to CC (SiO<sub>2</sub>; CHCl<sub>2</sub>/MeOH/H<sub>2</sub>O 10:2:0.2, 10:4:0.4, 10:5:0.6, and 10:6:1, and finally EtOH, each 6 l): *Frs. 1–12. Fr. 6* (2.0 g) was purified by prep. HPLC (MeOH/H<sub>2</sub>O 70:30, 6 ml/min, 204 nm): *Frs. 8<sub>6-1</sub>–8<sub>6-4</sub>. Fr. B<sub>6</sub>* (1.5 g) was suparated by prep. HPLC (MeCN/H<sub>2</sub>O 27:73, 6 ml/min, 204 nm): **1** (17 mg;  $t_R$  27), **2** (43 mg;  $t_R$  44), and **8** (57 mg;  $t_R$  56). Similarly, **4** (19 mg;  $t_R$  33) and **9** (8 mg;  $t_R$  50) were isolated from *Fr. B<sub>6-2</sub>* (42 mg). *Fr. B<sub>6-4</sub>* (44 mg) was further purified by prep. HPLC (MeCN/H<sub>2</sub>O 29:71, 6 ml/min, 204 nm): **3** (35 mg,  $t_R$  42). *Fr. C<sub>6</sub>* (70 mg) was submitted to prep. HPLC (MeCN/H<sub>2</sub>O 29:71, 6 ml/min, 204 nm): **3** (35 mg,  $t_R$  42). *Fr. C<sub>6</sub>* (70 mg) was submitted to prep. HPLC (MeCN/H<sub>2</sub>O 29:71, 6 ml/min, 204 nm): **3** (35 mg,  $t_R$  42).

204 nm): **6** (37 mg,  $t_R$  29). Compounds **5** (10 mg,  $t_R$  57) and **7** (26 mg,  $t_R$  96) were isolated from *Fr.*  $E_6$  (80 mg) by prep. HPLC (MeCN/H<sub>2</sub>O<sup>1</sup>) 3:7, 6 ml/min, 204 nm).

Centelloside D (= $(2\alpha,3\beta,4\alpha,6\beta)$ -2,3,6,23-Tetrahydroxyolean-12-en-28-oic Acid 6-O- $\beta$ -D-Glucopyranosyl- $\beta$ -D-glucopyranoyl Ester; 1): White amorphous powder. [ $\alpha$ ]<sub>D</sub><sup>24</sup> = -1.3 (c = 0.64, MeOH). IR (KBr): 3424, 2925, 1733, 1660, 1462, 1384, 1263, 1162, 1062, 534. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table. ESI-MS (pos.): 851 ([M + Na]<sup>+</sup>). ESI-MS (neg.): 863 ([M + Cl]<sup>-</sup>). HR-ESI-MS: 851.4409 ([M + Na]<sup>+</sup>, C<sub>42</sub>H<sub>68</sub>NaO<sub>16</sub>; calc. 851.4405).

Centelloside E (= (2 $\alpha$ ,3 $\beta$ ,4 $\alpha$ )-2,3,23-Trihydroxyursa-6,12-dien-28-oic Acid O-6-Deoxy- $\alpha$ -L-mannopyranosyl-(1  $\rightarrow$  4)-O- $\beta$ -D-glucopyranosyl-(1  $\rightarrow$  6)- $\beta$ -D-glucopyranosyl Ester; **9**): White amorphous powder. [ $\alpha$ ]<sub>D</sub><sup>24</sup> = -15 (c = 0.26, MeOH). IR (KBr): 3413, 2925, 2856, 1733, 1645, 1456, 1384, 1067, 1036, 813, 535. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table. ESI-MS (pos.): 979 ([M + Na]<sup>+</sup>). ESI-MS (neg.): 991 ([M + Cl]<sup>-</sup>). HR-ESI-MS: 979.4875 ([M + Na]<sup>+</sup>, C<sub>48</sub>H<sub>76</sub>NaO<sup>+</sup><sub>19</sub>; calc. 979.4879).

*MTT Cytotoxicity Assay.* Compounds **1**–**4**, **6**, and **8** were evaluated *in vitro* for cytotoxicity against the L929 cell lines by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide (MTT) method. All of them showed no inhibitory activity against L929 cells with  $IC_{50}$  values of 100 µg/ml. Cisplatin was used as a positive control which exhibited inhibitory activity with an  $IC_{50}$  value of 9.12 µg/ml.

## REFERENCES

- [1] B. Brinkhaus, M. Lindner, D. Schuppan, E. G. Hahn, Phytomedicine 2000, 7, 427.
- [2] J. T. James, I. A. Dubery, Molecules 2009, 14, 3922.
- [3] M. Kuroda, Y. Mimaki, H. Harada, H. Sakagami, Y. Sashida, Nat. Med. 2001, 55, 134.
- [4] H. Matsuda, T. Morikawa, H. Ueda, M. Yoshikawa, Chem. Pharm. Bull. 2001, 49, 1368.
- [5] Z.-Y. Jiang, X.-M. Zhang, J. Zhou, J.-J. Chen, Helv. Chim. Acta 2005, 88, 297.
- [6] C. Maeda, K. Ohtani, R. Kasai, K. Yamasaki, N. M. Duc, N. T. Nham, N. K. Q. Cu, *Phytochemistry* 1994, 37, 1131.
- [7] Q. L. Yu, H. Q. Duan, W. Y. Gao, Y. Takaishi, Chin. Chem. Lett. 2007, 18, 62.
- [8] X. X. Weng, Y. Y. Chen, Y. Shao, D. Y. Kong, Zhongguo Yiyao Gongye Zazhi 2011, 42, 187.

Received July 12, 2011

<sup>1)</sup>  $\beta$ -Cyclodextrin was added to H<sub>2</sub>O (4 g/l) for separating compounds **5** and **7**, and can be removed by means of extraction.