Triterpenoids from Melia toosendan

by Shi-Hui Dong, Xiu-Feng He, Lei Dong, Yan Wu, and Jian-Min Yue*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, P. R. China (phone/fax: +86-21-50806718; e-mail: jmyue@mail.shcnc.ac.cn)

Eleven new triterpenoids, named mesendanins K-U (1-11, resp.), together with seven known analogs, were isolated from the leaves and twigs of *Melia toosendan*. Their structures were elucidated on the basis of extensive spectroscopic analysis.

Introduction. – Triterpenoids are a group of chemically and pharmacologically interesting secondary metabolites, occurring in a wide variety of species [1], and many of them are being studied from the aspects of structure determination [2] and total synthesis [3]. Interest in the biological activities of triterpenoids is still increasing [4]. In our continuing investigation on the Chinese traditional medicine, from *Melia toosendan* SIEB. et ZUCC. (Maliaceae) collected in Yunnan Province of P. R. China [5], eleven new triterpenoids, mesendanins K – U (1–11, resp.), were isolated, together with seven known analogs, 12β -hydroxykulactone [6], cinamodiol [7], 3,16-dihydroxy-eupha-7,24-dien-21-oic acid methyl ester [8], (22*S*,23*R*)-22,23-epoxytirucall-7-ene- 3α ,24,25-triol [9], 22,23-epoxytirucall-7-ene- 3β ,24,25-triol [10], and meliasenins G and H [11]. Compound 1 is the first apoeuphane-type triterpenoid featuring a five-membered γ -lactone ring between C(21) and C(16). Here, we report the isolation and structure elucidation of these compounds.

Results and Discussion. – Compound **1**, a white, amorphous powder, has the molecular formula of $C_{30}H_{44}O_4$, as determined by the sodiated molecular-ion peak at m/z 491.3133 ($[M + Na]^+$, $C_{30}H_{44}NaO_4^+$; calc. 491.3137) in the HR-ESI-MS, implying nine degrees of unsaturation. The IR spectrum of **1** revealed the presence of OH (3435 cm⁻¹) and CO (1765 and 1705 cm⁻¹) groups, and the peak at 1765 cm⁻¹ strongly suggested the presence of a γ -lactone moiety [6]. The ¹³C-NMR data (*Table 1*) with DEPT experiments revealed the presence of seven Me, seven CH₂, and eight CH (two olefinic and two O-bearing) groups, and eight quaternary C-atoms (two CO groups and two olefinic C-atoms). The two trisubstituted C=C bonds (δ (C) 117.6, 122.6, 133.2, and 173.3), and an ester CO (δ (C) 179.9) and a keto CO (δ (C) 217.1) group accounted for four of the nine degrees of unsaturation, the remaining five requiring **1** to be pentacyclic. The above analysis suggested that **1** was an apotirucallane (apoeuphane)-type triterpenoid featuring a γ -lactone subunit [12–14]. The structure of **1** was further elucidated by analysis of 2D-NMR spectra, especially the HMBC (*Fig. 1*), in which the keto CO (δ (C) 217.1) was placed at C(3) by the correlations from CH₂(1), CH₂(2),

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

Me(28), and Me(29) to C(3). The signal at δ (C) 72.2 was assigned to C(7) bearing an OH group by the HMBCs Me(30)/C(7) and H–C(7)/C(5) and C(9). The trisubstituted C(24)=C(25) bond (δ (H) 5.10 (t, J = 5.8, H–C(24)); δ (C) 122.6 and 133.2) was located by the HMBC networks CH₂(22), CH₂(23), Me(26), and Me(27)/C(24), and CH₂(23), Me(26), and Me(27)/C(25); the other trisubstituted C(14)=C(15) bond (δ (H) 5.74 (d, J = 3.4, H–C(15)); δ (C) 117.6 and 173.3) was assigned by the HMBCs Me(18), Me(30), H–C(15), and H–C(16)/C(14), and H–C(15)/C(16) and C(17). The presence of 21(16)-lactone was indicated by the chemical shifts of C(21) and C(16) at δ (C) 179.9

Table 1. ¹³C-NMR Data of Compounds 1-11. δ in ppm.

Position	1 ^a)	2 ^a)	3 ^a)	4 ^a)	5 ^a)	6 ^a)	7 ^b)	8 ^a)	9 ^a)	10 ^a)	11 ^a)
1	38.4	38.3	38.3	35.9	31.1	38.3	32.8	39.8	37.1	38.5	38.8
2	33.8	34.7	34.7	34.3	25.3	34.8	27.6	34.1	27.6	34.8	34.0
3	217.1	216.4	216.4	216.4	76.0	216.5	71.6	218.2	79.2	216.8	217.0
4	46.8	47.8	47.8	47.4	37.4	47.8	44.0	47.4	38.9	47.8	46.9
5	46.3	52.5	52.6	60.1	44.5	52.2	47.1	55.3	50.5	52.3	48.2
6	25.2	24.3	24.3	68.8	23.9	24.3	25.2	19.6	24.0	24.3	24.3
7	72.2	118.5	118.5	122.7	119.3	119.2	120.0	27.5	118.9	118.2	75.3
8	44.8	143.4	143.4	146.6	143.0	143.7	147.6	42.4	144.7	145.4	42.0
9	40.6	47.8	47.8	46.8	48.1	47.3	50.4	49.9	48.1	48.4	43.0
10	37.1	35.5	35.5	40.0	35.0	34.9	36.2	36.8	34.9	35.0	36.9
11	15.8	16.7	16.8	16.8	29.9	30.4	19.4	18.4	29.8	21.6	16.8
12	32.8	29.5	29.6	29.2	72.1	73.9	32.8	34.5	74.7	33.2	34.8
13	47.5	39.5	39.5	39.4	44.3	49.8	45.1	40.2	47.9	43.8	46.4
14	173.3	55.1	55.2	54.9	54.9	49.9	52.9	50.2	51.7	50.7	159.2
15	117.6	35.6	35.6	35.5	36.1	45.6	34.9	31.2	35.1	34.2	119.2
16	86.1	82.6	82.5	82.2	82.2	77.0	26.7	24.8	28.2	27.3	34.8
17	57.3	57.0	57.9	58.1	53.2	51.7	48.2	49.8	40.7	50.4	52.2
18	24.7	21.6	21.6	21.5	19.8	21.0	23.1	15.1	19.7	22.0	19.9
19	15.2	12.4	12.4	13.2	12.8	12.7	14.8	16.0	13.1	12.7	15.2
20	42.8	45.8	45.7	45.3	45.5	47.4	41.6	75.4	39.6	38.7	35.8
21	179.9	179.8	180.5	180.4	180.6	177.4	178.0	25.6	11.6	16.3	70.0
22	31.2	31.4	25.0	29.4	29.0	31.0	24.8	40.9	78.6	60.3	36.3
23	26.0	123.2	32.4	26.0	25.9	26.1	21.3	22.0	201.0	58.9	64.4
24	122.6	141.1	75.8	123.3	123.7	123.2	87.8	44.4	119.0	74.0	86.5
25	133.2	70.6	146.9	132.8	132.6	132.6	72.6	71.0	159.9	72.8	74.2
26	25.7	29.8	111.6	25.7	25.7	17.7	25.9	29.2	28.0	25.4	24.0
27	17.9	29.8	17.5	17.9	17.9	25.7	26.1	29.4	21.4	25.4	28.5
28	26.4	24.4	24.4	29.3	27.7	21.5	22.9	26.7	27.6	21.6	21.2
29	21.0	21.4	21.4	22.1	21.6	24.4	66.1	21.0	14.7	24.5	25.8
30	27.6	32.2	32.2	31.8	33.6	28.9	28.4	16.3	28.2	27.5	26.9
AcO											170.2, 21.0
MeO						51.7					*
^a) Record	ded in C	DCl ₃ at	100 MH	z. ^b) Rec	corded in	1 CD ₃ OI	O at 100	MHz.			

and 86.1, respectively, and confirmed by the HMBCs H-C(16)/C(13), H-C(15)/C(16), and H-C(17), H-C(20), and $CH_2(22)/C(21)$ (*Fig. 1*).

The relative configuration of **1** was deduced from the analysis of its ROESY spectrum and NMR data. The ROESY cross-peaks Me(29)/Me(19), Me(19)/Me(30), and Me(30)/H–C(17) indicated that Me(19), Me(29), Me(30), and H–C(17) were cofacial and arbitrarily assigned β -orientation. In consequence, the ROESY correlations Me(28)/H–C(5), H–C(5)/H–C(9), and H–C(9)/Me(18) suggested that they were α -oriented. The absence of an 1,2-diaxial coupling of H–C(7) (δ (H) 4.06 (br. *s*)) suggested that the OH group at C(7) was α -oriented, which was confirmed by the ROESY correlations H–C(7)/H–C(15) and H–C(7)/Me(30) (*Fig.* 1). The H-atom H–C(16) preferred β -orientation on the basis of the ROESY correlations H–C(16)/H–C(17) and H–C(16)/CH₂(22) (*Fig.* 1), which was consistent with the coupling

Fig. 1. Selected HMBC $(H \rightarrow C)$ and ROESY $(H \leftrightarrow H)$ correlations of 1

constant between H–C(16) and H–C(17) (J = 6.5). H–C(20) was assigned *a*orientation on the basis of the ROESY correlations H–C(17)/H–C(20) and Me(18)/ H–C(20) (*Fig. 1*), implying that compound **1** is an apoeuphane-type triterpenoid. Thus, the structure of **1** (mesendanin K) was determined as shown. To the best of our knowledge, this is the first report of an apoeuphane-type triterpenoid featuring a 21(16)-lactone moiety [6][11][12].

Compound 2 gave a sodiated molecular-ion peak in the HR-ESI-MS (m/z 491.3141 $([M + Na]^+, C_{30}H_{44}NaO_4^+; calc. 491.3137))$, corresponding to the molecular formula $C_{30}H_{44}O_4$. The IR spectrum of 2 revealed the presence of OH (3439 cm⁻¹) and CO (1780 and 1709 cm⁻¹) groups, and the peak at 1780 cm⁻¹ strongly suggested the presence of a γ -lactone moiety [6]. The 1D-NMR data of 2 (Tables 1 and 2) revealed the presence of seven Me groups (*singlets*), an ester CO (δ (C) 179.8), a keto CO (δ (C) 216.4), an O-bearing CH group (δ (H) 4.18 (*ddd*, *J* = 18.0, 10.4, 7.7); δ (C) 82.6), an Obearing quaternary C-atom (δ (C) 70.6), a trisubstituted C=C bond (δ (H) 5.33 (dd, J = 6.0, 2.9); δ (C) 118.5 and 143.4), and a disubstituted C=C bond (δ (H) 5.59 (dt, J = 15.6, 7.5) and 5.70 (dd, J = 15.6, 1.1); $\delta(C)$ 123.2 and 141.1). The aforementioned data suggested that 2 was an euphane-type triterpenoid featuring a 21(16)-lactone moiety and shared the same pentacyclic core with kulactone [8][15], based on the analysis of its HMBC spectrum. The main differences were the substitution patterns of the side chain. In the HMBC spectrum (Fig. 2), the disubstituted C(23)=C(24) bond was located by the correlations of Me(26), Me(27), and CH₂(22)/C(24), and H-C(20) and $CH_2(22)/C(23)$; the O-bearing quaternary C-atom was assigned to C(25) (δ (C) 70.6), bearing an OH group, by the HMBCs from H-C(23), H-C(24), Me(26), and Me(27)

Table 2. ¹*H*-*NMR Data of Compounds* $1-5^{a}$). δ in ppm.

Position	1	2	3	4	5
1α	1.53–1.57 (<i>m</i>)	1.42-1.46 (<i>m</i>)	1.47–1.50 (<i>m</i>)	1.58-1.60 (<i>m</i>)	1.36-1.40 (<i>m</i>)
1β	1.82 - 1.88 (m)	1.95 (ddd,	1.92 - 1.98 (m)	1.87 (ddd,	1.57 - 1.64(m)
		J = 13.2, 5.3, 2.8)		J = 13.4, 6.7, 3.2)	
2α	2.48-2.53 (m, 2 H)	2.21-2.25 (<i>m</i>)	2.22-2.26 (<i>m</i>)	2.43–2.47 (<i>m</i>)	1.59–1.63 (<i>m</i>)
2β		2.74–2.77 (<i>m</i>)	2.74–2.78 (<i>m</i>)	2.56–2.59 (<i>m</i>)	1.91–1.94 (<i>m</i>)
3					3.47 (br. s)
5	2.12–1.16 (<i>m</i>)	1.71 - 1.76(m)	1.72 - 1.77 (m)	1.81 (d, J = 9.4)	1.78 (dd,
					J = 11.9, 5.9)
6α	1.80-1.82 (m, 2 H)	2.11-2.15 (m, 2 H)	2.16-2.19 (m, 2 H)	4.40 (br. <i>d</i> ,	1.94–1.98 (<i>m</i>)
				J = 9.4)	
6β					2.04 - 2.08 (m)
7	4.06 (br. s)	5.33 (dd,	5.34 (dd,	5.37 $(t, J = 3.1)$	5.32 (br. <i>d</i> ,
		J = 6.0, 2.9)	J = 6.5, 3.4)		J = 3.0)
9	2.70 (dd,	2.48 - 2.50 (m)	2.49 (dd,	2.63–2.67 (<i>m</i>)	2.40-2.43 (<i>m</i>)
	J = 12.1, 7.4)		J = 7.8, 5.0)		
11α	1.72 - 1.77 (m)	1.58 - 1.62 (m)	1.72–1.77 (<i>m</i> , 2 H)	1.75-1.79 (<i>m</i> , 2 H)	2.34 - 2.38(m)
11β	1.59 - 1.63 (m)	1.68 - 1.72 (m)			1.44 - 1.48 (m)
12α	1.81 - 1.86 (m)	1.67-1.73 (<i>m</i> , 2 H)	1.73-1.77 (<i>m</i> , 2 H)	1.94–1.98 (<i>m</i>)	3.99-4.02 (<i>m</i>)
12β	1.42 - 1.44 (m)			1.46–1.49 (<i>m</i>)	
15α	5.74 (d, J = 3.4)	2.28–2.33 (<i>m</i>)	2.27–2.31 (<i>m</i>)	2.33 (dd,	2.25 (dd,
				J = 13.7, 10.1)	J = 13.5, 10.5)
15β		1.71 - 1.74 (m)	1.71 - 1.75(m)	1.74–1.77 (<i>m</i>)	1.70 - 1.76(m)
16	5.17 (dd,	4.18 (ddd,	4.17 (ddd,	4.16 (ddd,	4.17 (ddd,
	J = 6.5, 3.4)	J = 18.0, 10.4, 7.7)	J = 18.0, 10.2, 7.6)	J = 17.8, 10.1, 7.6)	J = 18.1, 10.5, 7.3)
17	2.20 (br. $d, J = 6.5$)	2.18-2.20 (<i>m</i>)	2.11-2.14 (<i>m</i>)	2.13–2.16 (<i>m</i>)	2.49–2.51 (<i>m</i>)
18	1.14 (s, 3 H)	0.94 (s, 3 H)	0.97 (s, 3 H)	0.98 (s, 3 H)	0.83 (s, 3 H)
19	1.00 (s, 3 H)	1.01 (s, 3 H)	1.02 (s, 3 H)	0.94 (s, 3 H)	0.78 (s, 3 H)
20	2.63 (dd,	2.51 - 2.53 (m)	2.45 (dd,	2.41 - 2.45 (m)	2.37–2.42 (<i>m</i>)
	J = 9.6, 5.8)		J = 7.7, 4.9)		
22a	1.80 - 1.82 (m)	2.56 - 2.60 (m)	1.96 - 1.99 (m, 2 H)	1.75 - 1.78(m)	1.97 - 2.00 (m)
22b	1.58 - 1.61 (m)	2.33 - 2.35(m)			1.54 - 1.58(m)
23	2.11-2.17 (m, 2 H)	5.59 (<i>dt</i> ,	1.70–1.74 (<i>m</i> , 2 H)	2.12-2.16 (m, 2 H)	2.12-2.17 (m, 2 H)
		J = 15.6, 7.5)			
24	5.10(t, J = 5.8)	5.70 (<i>dd</i> ,	4.10(t, J = 5.0)	5.09 - 5.11 (m)	5.10(t, J = 7.0)
		J = 15.6, 1.1)			
26a	1.71 (s, 3 H)	1.31 (s, 3 H)	4.97 (dd,	1.69 (s, 3 H)	1.68 (s, 3 H)
			J = 1.5, 0.9)		
26b			4.87(t, J = 1.5)		
27	1.63 (s, 3 H)	1.31 (s, 3 H)	1.73 (s, 3 H)	1.62 (s, 3 H)	1.61 (s, 3 H)
28	1.11 (s, 3 H)	1.04 (s, 3 H)	1.05 (s, 3 H)	1.34 (s, 3 H)	0.93 (s, 3 H)
29	1.05 (s, 3 H)	1.11 (s, 3 H)	1.12 (s, 3 H)	1.28 (s, 3 H)	0.91 (s, 3 H)
30	1.13 (s, 3 H)	1.23 (s, 3 H)	1.25 (s, 3 H)	1.26 (s, 3 H)	1.34 (s, 3 H)
a) Record	rded in CDCl. at 400) MHz			
,					

to C(25). The (*E*)-geometry of C(23)=C(24) bond was deduced from the coupling constant between H–C(23) and H–C(24) (J = 15.6). Configurations at the other stereogenic centers in **2** were established to be identical with those in kulactone by the

Fig. 2. Selected HMBCs $(H \rightarrow C)$ of 2

analysis of its ROESY spectrum as well as comparing their NMR data [8][15]. Thus, the structure of **2**, mesendanin L, was determined.

Compound **3** had the molecular formula $C_{30}H_{44}O_4$, as determined by its HR-ESI-MS. The IR spectrum of **3** indicated the presence of OH (3450 cm⁻¹) and CO (1780 and 1707 cm⁻¹) groups, and further the peak at 1780 cm⁻¹ strongly suggested the presence of a γ -lactone moiety [6]. The 1D-NMR data of **3** (*Tables 1* and 2) closely resembled those of meliasenins N and O [16], a pair of C(24)-epimers with nearly identical NMR data, except for the presence of an OH group instead of the OOH group in meliasenins N and O. The proposed structure of **3** was confirmed by detailed analysis of its 2D-NMR (HSQC and HMBC) spectra. As a result, the resonance of C(24) in **3** shifted upfield by 13.4 ppm as compared to that in meliasenins N and O [16]. Configurations at the stereogenic centers in the pentacyclic core of **3** were determined to be identical to those of meliasenins N and O [16] by analysis of its ROESY spectrum, while the configuration of C(24) was not determined. Thus, the structure of **3**, mesendanin M, was elucidated as shown.

Compound **4** had the molecular formula $C_{30}H_{44}O_4$, as determined by the HR-ESI-MS. Features of an euphane-type triterpenoid with the 21(16)-lactone moiety for **4** were evident from its ¹H- and ¹³C-NMR specta (*Tables 1* and 2), which were very similar to those of 6β -hydroxykulactone [6], except for the presence of an upfieldshifted H–C(6) resonance at δ (H) 4.40 (br. *d*, J=9.4) instead of that of 6β hydroxykulactone at δ (H) 4.49 (br. *s*). The above analysis indicated that **4** is the *C*(6)epimer of 6β -hydroxykulactone [6], which was supported by the ROESY correlations H–C(6)/Me(19) and H–C(6)/Me(29). Configurations at the other stereogenic centers in **4** were determined to be identical to those of 6β -hydroxykulactone by the analysis of its ROESY spectrum (*Fig. 3, top*). Thus, the structure of **4**, mesendanin N, was elucidated as 6α -hydroxykulactone.

Compound **5** was assigned the molecular formula $C_{30}H_{46}O_4$, as deduced from its HR-ESI-MS. The ¹H- and ¹³C-NMR data (*Tables 1* and 2) revealed that **5** was also an euphane-type triterpenoid featuring a 21(16)-lactone moiety and had the same *B*, *C*, *D*, and *E* rings and side chain with 12 β -hydroxykulactone [6], based on the analysis of its HMBC spectrum. The main difference was the presence of an O-bearing CH group (δ (H) 3.47 (br. *s*); δ (C) 76.0) instead of the C(3)=O group (δ (C) 216.3) in 12 β -hydroxykulactone [6], indicating that **5** was the hydrogenated derivative of 12 β -

Fig. 3. Selected ROESY ($H \leftrightarrow H$) correlations of **4** (top) and selected HMBCs ($H \rightarrow C$) of **5** (bottom)

hydroxykulactone [6]. This deduction was confirmed by the HMBCs Me(28)/C(3) and H–C(3)/C(1), C(5), and C(29) (*Fig. 3*, (*bottom*)). As a result, the resonances of C(1), C(2), C(4), and C(5) of **5** were shifted upfield by 7.5, 9.6, 10.7, and 8.1 ppm, respectively, as compared with those in 12 β -hydroxykulactone [6]. The OH group at C(3) in **5** was determined to be α -oriented by its NMR data (δ (H) 3.47 (br. *s*); δ (C) 76.0). Configurations at the other stereogenic centers in **5** were established to be identical to those of 12 β -hydroxykulactone by analysis of its ROESY spectrum. Therefore, the structure of **5**, mesendanin O, was assigned as shown.

The HR-ESI-MS of compound **6** displayed a sodiated molecular-ion peak at m/z 523.3413 ($[M + Na]^+$, $C_{31}H_{48}NaO_5^+$; calc. 523.3394), corresponding to the molecular formula $C_{31}H_{48}O_5$. The ¹H- and ¹³C-NMR spectra (*Tables 1* and *3*) displayed resonances assignable to eight Me groups (*singlets*; one MeO), two trisubstituted C=C bonds, and a keto CO, an ester CO, and two O-bearing CH groups. These data revealed that **6** was also an euphane-type triterpenoid, and shared the same *A*, *B*, and *D* rings and side chain with methyl kulonate [8][17], isolated from the title plant previously. The main difference was the presence of the H- and C-atom signals for the additional O-bearing CH group (δ (H) 3.82 (t, J = 8.7); δ (C) 73.9), which was assigned to C(12) bearing an OH group by the HMBCs Me(18) and CH₂(11)/C(12), and H–C(12)/C(13) and C(14) (*Fig. 4*). A ROESY correlation between H–C(12) and Me(18) (*Fig. 4*) suggested that the OH group at C(12) in **6** was β -oriented. Configurations at the other stereogenic centers in **6** were determined to be identical to those in methyl kulonate by analysis of its ROESY spectrum (*Fig. 4*). Thus, the structure of **6**, mesendanin P, was depicted as methyl 12 β -hydroxykulonate.

·=
δ
6–11.
5
Compound
£
0
Data
¹ H-NMR
Table 3.

		Table	3. ¹ H-NMR Data of Cor	<i>проинds</i> 6–11. д in ppm.		
Position	6 ^a)	7 ^b)	8 ^a)	9 ^a)	10 ^a)	11 ^a)
1a 1β	1.42–1.47 (<i>m</i>) 1.99–2.03 (<i>m</i>)	$1.35 - 1.39 \ (m)$ $1.54 - 1.58 \ (m)$	$1.43 - 1.48 \ (m)$ $1.91 \ (ddd,$ $J = 12.7 \ 75 \ 45)$	1.10–1.15 (<i>m</i>) 1.69–1.73 (<i>m</i>)	1.44–1.49 (<i>m</i>) 1.97–2.02 (<i>m</i>)	$1.49 - 1.52 \ (m)$ $1.90 - 1.94 \ (m)$
2α	2.23–2.27 (m)	$1.11 - 1.16 \ (m)$	2.41 - 2.45 (m)	1.65–1.70 (<i>m</i> , 2 H)	2.23–2.26 (<i>m</i>)	2.41 (ddd, 7 - 15 0 5 0 5 5
2β	2.76 (ddd, J = 20.2, 14.9, 5.6)	1.26–1.31 (<i>m</i>)	2.50-2.54 (m)		2.72–2.76 (<i>m</i>)	J = 15.6, 5.9, 5.9, 5.5) 2.59 (ddd, J = 18.4, 11.1, 5.5)
ωv	(m) CL 1 09 1	3.84 (br. s)	(9 C 5 11 - 1 PP) LE 1	3.23 (dd, J = 11.0, 4.3)	(08 091-1 PP) 121	1 85 1 80 ()
ς 6α	2.09-2.13 (m, 2 H)	2.08 - 2.12 (m)	1.37 (<i>uu</i> , <i>J</i> = 11.3, 2.0) 1.45 - 1.49 (<i>m</i> , 2 H)	$2.10-2.13 \ (m)$	2.07 - 2.12 (m, 2 H)	1.00 - 1.03 (m) 1.70 - 1.73 (m)
6β		1.90-1.93(m)		2.00-2.02(m)		1.86 - 1.90 (m)
7	5.32 (br. s)	$5.26 (\mathrm{br.}s)$	$1.85 - 1.87 \ (m, 2 H)$	5.31 (br. s)	$5.31 \ (dd, J = 6.4, 3.6)$	5.20 (br. s)
9	2.22 - 2.24 (m)	2.39-2.41 (m)	$1.42 - 1.45 \ (m)$	2.19-2.23 (m)	$2.29 - 2.32 \ (m)$	2.00-2.03 (m)
$\frac{11\alpha}{11\beta}$	2.18–2.23 (<i>m</i> , 2 H)	1.56–1.60 (<i>m</i> , 2 H)	1.47–1.51 (<i>m</i> , 2 H)	1.10 - 1.13 (m) 1.47 - 1.52 (m)	1.57–1.62 (<i>m</i> , 2 H)	1.55–1.60 (<i>m</i> , 2 H)
12α	3.82 (t, J = 8.7)	$1.54 - 1.58 \ (m)$	$1.32 - 1.36 \ (m)$	3.85 (t, J = 7.8)	$1.82 - 1.86 \ (m)$	$1.86 - 1.89 \ (m)$
12β		1.77 - 1.80 (m)	1.55 - 1.59 (m)	~	1.64 - 1.67 (m)	1.55 - 1.60 (m)
15α	$1.57 - 1.60 \ (m)$	$1.50 - 1.54 \ (m)$	$1.10 - 1.14 \ (m)$	$1.55 - 1.60 \ (m, 2 H)$	1.51–1.55 (m, 2 H)	5.30 (br. $d, J = 1.9$)
15β	$2.03 - 2.07 \ (m)$	$1.55 - 1.60 \ (m)$	$1.47 - 1.52 \ (m)$			
16α	$4.09 \ (dd, J = 8.5, 4.7)$	$1.59 - 1.61 \ (m)$	$1.50 - 1.54 \ (m)$	$1.64 - 1.68 \ (m, 2 \text{ H})$	1.33 - 1.35 (m)	1.91 - 1.95 (m)
16β		$1.88 - 1.92 \ (m)$	1.75 - 1.77 (m)		$1.92 - 1.96 \ (m)$	2.26 - 2.29 (m)
17	2.50-2.56 (m)	2.31 (dd,	$1.72 - 1.78 \ (m)$	$2.54 \ (dd, J = 18.0, 10.5)$	$1.66 - 1.71 \ (m)$	$1.62 - 1.68 \ (m)$
		J = 18.7, 9.3)				
18	0.76 (s, 3 H)	0.95 (s, 3 H)	0.99 (s, 3 H)	0.82 (s, 3 H)	0.80 (s, 3 H)	0.96 (s, 3 H)
19	1.03 (s, 3 H)	0.75 (s, 3 H)	0.94 (s, 3 H)	0.77 (s, 3 H)	1.01 (s, 3 H)	1.03 (s, 3 H)
20	2.53 - 2.57 (m)	2.55-2.60 (m)		$1.85 - 1.90 \ (m)$	$1.30 - 1.34 \ (m)$	1.87 - 1.92 (m)
21a 21b			1.14(s, 3H)	0.75 (d, J = 6.8, 3 H)	1.03 $(d, J = 6.6, 3 \text{ H})$	$3.43 \ (dd, J = 11.3, 2.4)$ $3.96 \ (br. d. J = 11.3)$
22α	$1.75 - 1.80 \ (m)$	2.00-2.04 (m)	$1.44 - 1.49 \ (m, 2 H)$	4.20 (br. $d, J = 2.8$)	2.76-2.81 (m)	2.01 - 2.06 (m)
22β	$1.60 - 1.64 \ (m)$	1.73 - 1.76 (m)				$1.50 - 1.54 \ (m)$
23α	$1.88 - 1.92 \ (m)$	1.83–1.88 (<i>m</i> , 2 H)	1.50–1.55 (m, 2 H)		3.10 (br. s)	3.86 (ddd, T = 12.1.05.45)
						J = 15.1, 9.5, 4.5

Table 3 (cont	÷					
Position	6 ^a)	7 ^b)	8 ^a)	9 ^a)	10 ^a)	11 ^a)
23β	$1.97 - 2.00 \ (m)$					
24	5.06 $(t, J = 7.0)$	$4.18 \ (dd, 9.9, 5.8)$	$1.47 - 1.50 \ (m, 2 \ H)$	(s) = (0, 0, 0, 0)	3.48 (br. s)	2.89 (d, J = 9.5)
26	1.57 (s, 3 H)	1.22(s, 3H)	1.22 (s, 3 H)	1.98(s, 3H)	1.28(s, 3H)	1.27 (s, 3 H)
27	1.68 (s, 3 H)	1.24(s, 3H)	1.22(s, 3H)	2.23 (s, 3 H)	1.29(s, 3H)	1.31 (s, 3 H)
28	1.11(s, 3H)	1.01(s, 3H)	1.07 (s, 3 H)	0.97 (s, 3 H)	1.11(s, 3H)	1.03(s, 3H)
29a	1.03 (s, 3 H)	$3.77 \ (d, J = 11.7)$	1.03 (s, 3 H)	0.86(s, 3H)	1.04 (s, 3 H)	1.01 (s, 3 H)
29b		3.51 (d, $J = 11.7$)				
30	1.35 (s, 3 H)	1.01 (s, 3 H)	0.88(s, 3 H)	1.13 (s, 3 H)	1.02 (s, 3 H)	1.16(s, 3H)
AcO						1.95(s, 3H)
MeO	3.72 (s, 3 H)					
^a) Recorded i	n CDCl ₃ at 400 MHz. ^b) Recorded in CD ₃ OD at	400 MHz.			

294

Helvetica Chimica Acta – Vol. 95 (2012)

Fig. 4. Selected HMBC $(H\!\rightarrow\!C)$ and ROESY $(H\!\leftrightarrow\!H)$ correlations of $\boldsymbol{6}$

Compound 7 had the a molecular formula $C_{30}H_{48}O_5$, as established by the HR-ESI-MS displaying a sodiated molecular-ion peak at m/z 511.3412 ($[M + Na]^+$) $C_{30}H_{48}NaO_5^+$; calc. 511.3394). The ¹³C-NMR data (*Table 1*) with DEPT experiments revealed the presence of six Me, ten CH_2 (one O-bearing), and seven CH (one olefinic and two O-bearing) groups, and seven quaternary C-atoms (one ester CO, one olefinic, and one O-bearing). These data suggested that 7 was a tirucallane-type triterpenoid, and shared the same B, C, and D rings as cneorin-NP₃₂ [18], with the major differences being due to the different substitution patterns of their A ring and side chain. The structure of 7 was further elucidated by analysis of its 2D-NMR spectra, especially the HMBC (*Fig. 5*), in which the O-bearing CH group (δ (H) 3.84 (br. s); δ (C) 71.6) was assigned to C(3) bearing an OH group by the correlations from $CH_2(1)$, Me(28), and $CH_2(29)$ to C(3). The O-bearing $CH_2(\delta(H) 3.51 (d, J = 11.7))$ and 3.77 (d, J = 11.7); $\delta(C)$ 66.1) was attributed to C(29) bearing an OH group by the HMBCs CH₂(29)/C(3) and Me(28)/C(29), and the ROESY correlation between H_a -C(29) and Me(19). The OH-bearing quaternary C-atom was C(25) (δ (C) 72.6) by the HMBCs Me(26), Me(27), and H–C(24)/C(25). The presence of a lactone between C(21) and C(24) was deduced from by their chemical shifts ($\delta(C)$ 178.0 and 87.8) and the HMBCs CH₂(22)/ C(24), H-C(24)/C(26) and C(27), and H-C(17) and CH₂(22)/C(21) (Fig. 5). The relative configuration of 7 was determined by analysis of its ROESY spectrum (Fig. 5) and NMR data (*Tables 1* and 3). The OH group at C(3) was determined as being α oriented by the splitting pattern of H–C(3) (br. s). H–C(24) was assigned to be in α orientation by the ROESY correlation between H-C(20) and H-C(24) (Fig. 5). Configurations at the other stereogenic centers in 7 were identical to those in cneorin-NP₃₂, based on the analysis of its ROESY spectrum and their similar NMR patterns [18]. Thus, the structure of 7, mesendanin Q was elucidated as shown.

Fig. 5. Selected HMBC $(H \rightarrow C)$ and ROESY $(H \leftrightarrow H)$ correlations of 7

Compound **8** had the molecular formula $C_{30}H_{52}O_3$, as established by the HR-ESI-MS (*m*/*z* 483.3825 ([*M* + Na]⁺, ($C_{30}H_{52}NaO_3^+$; calc. 483.3809)). Analysis of ¹H- and ¹³C-NMR spectra of **8** (*Tables 1* and *3*) suggested a tirucallane-type triterpenoid with eight Me groups (*singlets*), a keto CO (δ (C) 218.2), group and two O-bearing quaternary C-atoms (δ (C) 71.0 and 75.4) [19]. In the HMBC spectrum of **8** (*Fig. 6*, *left*), the keto CO was established as C(3)=O by the correlations from CH₂(1), Me(28), and Me(29) to C(3). An O-bearing quaternary C-atom at signal δ (C) 71.0 was assigned to C(25) bearing an OH group by the HMBCs Me(26), Me(27), and CH₂(23)/C(25); the other O-bearing quaternary C-atom signal at δ (C) 75.4 was attributed to C(20),

Fig. 6. Selected HMBCs $(H \rightarrow C)$ of 8 (left) and 11 (right)

bearing an OH group by the HMBCs from H–C(17), Me(21), and CH₂(23) to C(20) (*Fig. 6, left*). The relative configuration of **8** was assigned as shown by the analysis of its ROESY spectrum, in which the OH group at C(20) was assigned as being α -oriented by the correlations H–C(17)/CH₂(22), Me(21)/H–C(17), and Me(21)/Me(18). Thus, the structure of **8**, mesendanin R was elucidated.

The molecular formula of compound **9** was determined as $C_{30}H_{48}O_4$ by the HR-ESI-MS. The ¹H- and ¹³C-NMR data (*Tables 1* and 3) of **9** displayed the resonances assignable to two trisubstituted C=C bonds ($\delta(H)$ 5.31 (br. s) and 6.09 (s); $\delta(C)$ 118.9, 119.0, 144.7, and 159.9), a keto CO group ($\delta(C)$ 201.0), and three O-bearing CH groups ($\delta(H)$ 3.23 (dd, J = 11.0, 4.3), 3.85 (t, J = 7.8), and 4.20 (br. d, J = 2.8); $\delta(C)$ 74.7, 78.6, and 79.2). These data revealed that **9** was the C(3)-hydrogenated derivative of meliasenin G [11], which was confirmed by the HMBCs from Me(28), Me(29), and CH₂(1) to C(3) ($\delta(C)$ 79.2). The OH group at C(3) was determined as being β -oriented by the splitting pattern of H–C(3) at $\delta(H)$ 3.23 (dd, J = 11.0, 4.3). Configurations at the other stereogenic centers in **9** were identical to those in meliasenin G based on its ROESY spectrum and comparison of their NMR data. Thus, the structure of **9**, mesendanin S, was determined.

Compound **10** had the molecular formula $C_{30}H_{48}O_4$, as determined by the HR-ESI-MS. The 1D-NMR data (*Tables 1* and 3) showed many similarities to those of 22,23epoxytirucall-7-ene-3 β ,24,25-triol [10], with the major difference being due to the presence of a C(3)=O moiety (δ (C) 216.8) instead of the OH group at C(3) in the known analog [10], which was confirmed by the HMBCs from Me(28), Me(29), and CH₂(1) to C(3). Configurations of the stereogenic centers of **10** were identical to those in 22,23-epoxytirucall-7-ene-3 β ,24,25-triol, as revealed by analysis of its ROESY spectrum. Thus, the structure of **10**, mesendanin T, was assigned as shown.

Compound **11** had the molecular formula $C_{32}H_{50}O_6$, as determined by its HR-ESI-MS. The 1D-NMR data (*Tables 1* and 3) displayed resonances assignable to a keto CO group (δ (C) 217.0), a trisubstituted C=C bond (δ (H) 5.30 (br. d, J = 1.9); δ (C) 119.2 and 159.2), an O-bearing CH₂ group (δ (H) 3.43 (dd, J = 11.3, 2.4) and 3.96 (br. d, J =11.3); δ (C) 70.0), three O-bearing CH groups (δ (H) 2.89 (d, J = 9.5), 3.86 (ddd, J =13.1, 9.5, 4.5), and 5.20 (br. s); δ (C) 64.4, 75.3, and 86.5), an O-bearing quaternary C-atom (δ (C) 74.2), and an Ac group. These data resembled those of grandifoliolenone [20], except for the absence of the C(1)=C(2) bond in **11**, indicating that **11** was the hydrogenated derivative of grandifoliolenone [20]. As a result, the resonance of C(3)=O in **11** shifted downfield by 12.3 ppm relative to that in grandifoliolenone [20]. This deduction was further confirmed by its 2D-NMR experiments, especially the HMBC spectrum (*Fig. 6, right*). The relative configuration of **11** was assigned as being identical to that of grandifoliolenone by analysis of its ROESY spectrum and comparing their NMR data [20]. Thus, the structure of **11**, mesendanin O, was determined as shown.

Financial support of the National Natural Science Foundation (Grant Nos. 30630072, 30721005, and 20932007) and National Science & Technology Major Project 'Key New Drug Creation and Manufacturing Program' (Grant No. 2009ZX09301-001) of the P. R. China is gratefully acknowledged. We thank Prof. Y.-K. Xu, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, for the identification of the plant material.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 300–400 mesh; Qingdao Marine Chemical Plant, Qingdao, P. R. China), MCI gel (CHP20P, 75–150 μ M, Mitsubishi Chemical Industries, Ltd.), and C₁₈ reversed-phase (RP) silica gel (250 mesh, Merck). TLC: pre-coated silica gel GF254 plates (Qingdao Marine Chemical Plant, Qingdao, P. R. China). Semi-prep. HPLC: Waters 515 pump with a Waters 2487 detector (254 nm), and an YMC–Pack ODS–A column (250 × 10 mm, S-5 μ m, 12 nm). Optical rotations: Perkin-Elmer 341 polarimeter. IR Spectra: Perkin-Elmer 577 IR spectrometer. NMR Spectra: Bruker AM-400 NMR spectrometer with TMS as internal standard. HR-ESI-MS: Bruker Daltonics micrOTOFQ II mass spectrometer.

Plant Material. The twigs and leaves of *Melia toosendan* were collected from Xishuangbanna, Mengla County, Yunnan Province, P. R. China, and were authenticated by Prof. *You-Kai Xu* of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. A voucher specimen (2008-Meltoo-1Y) has been deposited with the Shanghai Institute of Materia Medica.

Extraction and Isolation. The air-dried powder of leaves and twigs (5 kg) of M. toosendan was extracted three times with 95% EtOH (each 25 l, 3 d) at r.t. to give an EtOH extract (340 g), which was partitioned between AcOEt and H₂O, to obtain the AcOEt-soluble fraction (200 g). The AcOEt-soluble fraction was subjected to CC (MCI gel CC; MeOH/H₂O $3:7 \rightarrow 9:1$) to give four fractions, Frs. A – D. Fr. C (22 g) was separated by CC (SiO₂; petroleum ether (PE)/acetone $20:1 \rightarrow 1:1$) to afford five subfractions, C1-C5). Fr. C4 was subjected to CC (RP C_{18} silica gel; MeOH/H₂O $6:4 \rightarrow 9:1$) to give three major fractions, C4a - C4c, each of which was separated in turn by CC (SiO₂; CHCl₃/MeOH 200:1 \rightarrow 50:1) to provide compounds 6 (10 mg), 9 (7 mg), and 11 (8 mg), resp. Using the same purification procedures, Fr. C5 gave 3,16-dihydroxyeupha-7,24-dien-21-oic acid methyl ester (10 mg). Fr. D (15 g) was subjected to CC (SiO₂; PE/acetone $20:1 \rightarrow 1:1$), to afford four major fractions, Fr. D1-D4. Fr. D1 was subjected to CC (RP C_{18} silica gel; MeOH/H₂O 6:4 \rightarrow 9:1) to give sub-fractions D1a - D1d, each of which was purified by semi-prep. HPLC (MeCN/H₂O 85:15; 3 ml/min) to give compounds 1, 4, 5, and 12β-hydroxykulactone (3, 9, 12, and 20 mg, resp.), resp. By the same procedure, Fr. D2 was purified to yield compounds 2, 3, meliasenins G and H, and cinamodiol (6, 8, 12, 10, and 15 mg, resp.), while Fr. D3 was purified to give compounds 7, 8, 10, (22S,23R)-22,23-epoxytirucall-7-ene-3 α ,24,25-triol, and 22,23epoxytirucall-7-ene- 3β ,24,25-triol (5, 11, 8, 12, and 15 mg, resp.).

Mesendanin K (=7*a*-*Hydroxy*-21-*oxo*-21,16β-*epoxyapoeuphol*-14,24-*dien*-3-*one* = (5*a*,7*a*,13*a*,16*a*, 17*a*,20R)-7-*Hydroxy*-4,48-*trimethyl*-16,21-*epoxycholesta*-14,24-*diene*-3,21-*dione*; **1**). White amorphous powder. $[a]_{D}^{2D} = -8.0$ (c = 0.25, MeOH). IR (KBr): 3435, 2933, 2874, 1765, 1705, 1628, 1458, 1385, 1180, 1055. ¹H- and ¹³C-NMR: see *Tables* 2 and 1, resp. HR-ESI-MS: 491.3133 ($[M + Na]^+$, $C_{30}H_{44}NaO_4^+$; calc. 491.3137).

Mesendanin L (=(23E)-25-*Hydroxy*-21-*oxo*-21,16β-*epoxyeuphol*-7,23-*dien*-3-*one* = (13*a*,14*β*,16*β*, 17*a*,20R,23E)-25-*Hydroxy*-16,21-*epoxylanosta*-7,23-*diene*-3,21-*dione*; **2**). White amorphous powder. $[a]_{D}^{20} = -63.0$ (c = 0.25, MeOH). IR (KBr): 3439, 2968, 2935, 1780, 1709, 1460, 1387, 1369, 1161. ¹H- and ¹³C-NMR: see *Tables* 2 and 1, resp. HR-ESI-MS: 491.3141 ($[M + Na]^+$, $C_{30}H_{44}NaO_4^+$; calc. 491.3137).

Mesendanin M (=24-Hydroxy-21-oxo-21,16 β -epoxyeuphol-7,25-dien-3-one = (13 α ,14 β ,16 β ,17 α , 20R)-24-Hydroxy-16,21-epoxylanosta-7,25-diene-3,21-dione; **3**). White amorphous powder. [α]_D^a = -45.0 (c = 0.20, MeOH). IR (KBr): 3450, 2947, 2875, 1780, 1707, 1450, 1387, 1369, 1157, 1030. ¹H- and ¹³C-NMR: see *Tables 2* and *1*, resp. HR-ESI-MS: 491.3147 ([M+Na]⁺, C₃₀H₄₄NaO⁴₄; calc. 491.3137).

Mesendanin N (=6*a*-Hydroxy-21-oxo-21,16*β*-epoxyeuphol-7,24-dien-3-one = (6*a*,13*a*,14*β*,16*β*, 17*a*,20R)-6-Hydroxy-16,21-epoxylanosta-7,24-diene-3,21-dione; **4**). White amorphous powder. $[a]_{D}^{20}$ = +4.0 (*c* = 0.28, MeOH). IR (KBr): 3562, 3485, 2962, 2877, 1776, 1703, 1452, 1383, 1159, 1028, 953. ¹H-and ¹³C-NMR: see *Tables 2* and *1*, resp. HR-ESI-MS: 491.3135 ($[M + Na]^+$, C₃₀H₄₄NaO⁴₄; calc. 491.3137).

Mesendanin O (= 3α , 12β -*Dihydroxy*-21-*oxo*-21, 16β -*epoxyeuphol*-7, 24-*diene* = (3α , 12β , 13α , 14β , 16β , 17α , 20R)-3, 12-*Dihydroxy*-16, 21-*epoxylanosta*-7, 24-*dien*-21-*one*; **5**). White amorphous powder. [α]_{10}^{20} = -35.0 (c = 0.23, MeOH). IR (KBr): 3523, 3456, 2970, 2928, 1767, 1448, 1394, 1163, 1030, 754. ¹H- and ¹³C-NMR: see *Tables 1* and 2. HR-ESI-MS: 493.3311 ([M + Na]⁺, $C_{30}H_{46}$ NaO[‡]; calc. 493.3294).

Mesendanin P (=12 β ,16 β -Dihydroxy-3-oxoeuphol-7,24-dien-21-oic Acid Methyl Ester = Methyl (12 β ,13 α ,14 β ,16 β ,17 α)-12,16-Dihydroxy-3-oxolanosta-7,24-dien-21-oate; **6**). White amorphous powder.

 $[\alpha]_{D}^{20} = -36.5 \ (c = 0.34, \text{MeOH})$. IR (KBr): 3462, 2968, 1709, 1450, 1385, 1167, 1032. ¹H- and ¹³C-NMR: see *Tables 3* and *1*, resp. HR-ESI-MS: 523.3413 ($[M + \text{Na}]^+$, $C_{31}H_{48}$ NaO₅⁺; cal. 523.3399).

Mesendanin Q (= 3 α ,25,29-*Trihydroxy*-21-*oxo*-21,24 β -*epoxytirucall*-7-*ene* = (3 α ,13 α ,14 β ,17 α , 20S,24R)-3,25,29-*Trihydroxy*-21,24-*epoxylanost*-7-*en*-21-*one*; **7**). White amorphous powder. $[\alpha]_{20}^{20} = -24.0$ (c = 0.21, MeOH). IR (KBr): 3452, 2968, 2935, 1716, 1184, 1041. ¹H- and ¹³C-NMR: see *Tables* 3 and 1. HR-ESI-MS: 511.3412 ($[M + Na]^+$, $C_{30}H_{48}NaO_5^+$; calc. 511.3394).

Mesendanin R (=20*a*,25-*Dihydroxytirucall-3-one* = (13a, 14β ,17a,20R)-20,25-*Dihydroxylanostan-3-one*; **8**). White amorphous powder. [a]²⁰_D = +100.0 (c = 0.19, MeOH). IR (KBr): 3423, 2958, 1668, 1703, 1460, 1381, 1163, 905. ¹H- and ¹³C-NMR: see *Tables 3* and *1*, resp. HR-ESI-MS: 483.3825 ([M+Na]⁺, $C_{30}H_{52}NaO_3^+$; calc. 483.3809).

Mesendanin S (= 3β ,12 β ,22 α -*Trihydroxytirucalla*-7,24-*dien*-23-*one* = (3β ,12 β ,13 α ,14 β ,17 α ,20R,22S)-3,12,22-*Trihydroxylanosta*-7,24-*dien*-23-*one*; **9**). White amorphous powder. [a]_D^{2D} = + 39.0 (c = 0.20, MeOH). IR (KBr): 3450, 2947, 1668, 1446, 1356, 1126, 1047, 916. ¹H- and ¹³C-NMR: see *Tables 3* and 1, resp. HR-ESI-MS: 495.3462 ([M + Na]⁺, C₃₀H₄₈NaO⁺₄; calc. 495.3445).

 $\begin{array}{l} \textit{Mesendanin } T \ (=\!24,\!25\text{-}Dihydroxy\!-\!22,\!23\text{-}epoxytirucall}\text{-}7\text{-}en\!-\!3\text{-}one = (5\text{R},9\text{R},10\text{R},13\text{S},14\text{S},17\text{S})\text{-}17\text{-} \\ (1\text{R})\text{-}1\text{-}[3\text{-}(1,\!2\text{-}Dihydroxy\!-\!2\text{-}methylpropyl)oxiran\-}2\text{-}yl]ethyl]\text{-}1,\!2,\!4,\!5,\!6,\!9,\!10,\!11,\!12,\!13,\!14,\!15,\!16,\!17\text{-}tetradecahydro\-}4,\!4,\!10,\!13,\!14\text{-}pentamethyl\-}3\text{H-}cyclopenta[a]phenanthren\-}3\text{-}one;\ \mathbf{10}). \\ \textbf{White amorphous powder.} \\ [\alpha]_{D}^{20} = -162.0 \ (c = 0.27, \text{MeOH}). \\ \textbf{IR} \ (\text{KBr}):\ 3456,\ 2970,\ 1709,\ 1462,\ 1387,\ 1109,\ 889.\ ^{1}\text{H-} \text{ and}\ ^{13}\text{C-NMR}: \\ \textbf{see } Tables \ 3 \ \text{and}\ 1, \ \textbf{resp. HR-ESI-MS}:\ 495.3457 \ ([M+Na]^+,\ C_{30}H_{48}NaO_4^+;\ calc.\ 495.3445). \\ \end{array}$

Mesendanin U (=23 α ,25-*Dihydroxy*-21,24 β -epoxy-7 α -acetoxytirucall-14-en-3-one = (5 α ,7 α ,13 α ,17 α , 20S,23R)-23,25-*Dihydroxy*-4,4,8-trimethyl-3-oxo-21,24-epoxycholest-14-en-7-yl Acetate; **11**). White amorphous powder. [α]_D²⁰ = -65.0 (c = 0.10, MeOH). IR (KBr): 3439, 2937, 1734, 1705, 1381, 1248, 1074, 1032. ¹H- and ¹³C-NMR: see *Tables 3* and 1, resp. HR-ESI-MS: 553.3524 ([M + Na]⁺, C₃₂H₅₀NaO₆⁺; calc. 553.3505).

Supplementary Information. IR, HR-ESI-MS, 1D- and 2D-NMR spectra of compounds 1-11 are available from the corresponding author.

REFERENCES

- [1] J. D. Connolly, R. A. Hill, Nat. Prod. Rep. 2010, 27, 79.
- [2] J.-H. Yang, J.-X. Pu, J. Wen, X.-N. Li, F. He, Y.-B. Xue, Y.-Y. Wang, Y. Li, W.-L. Xiao, H.-D. Sun, J. Nat. Prod. 2010, 73, 12; F. He, J.-X. Pu, S.-X. Huang, Y.-Y. Wang, W.-L. Xiao, L.-M. Li, J.-P. Liu, H.-B. Zhang, Y. Li, H.-D. Sun, Org. Lett. 2010, 12, 1208.
- [3] K. Surendra, E. J. Corey, J. Am. Chem. Soc. 2009, 131, 13928.
- [4] T. Akihisa, Oreo Saiensu 2007, 7, 445; P. Wafo, R. S. T. Kamdem, Z. Ali, S. Anjum, S. N. Khan, A. Begum, K. Krohn, B. M. Abegaz, B. T. Ngadjui, M. I. Choudhary, Org. Lett. 2010, 12, 5760; Y.-C. Lin, I-W. Lo, S.-Y. Chen, P.-H. Lin, C.-T. Chien, S.-Y. Chang, Y.-C. Shen, Org. Lett. 2011, 13, 446.
- [5] S.-H. Dong, C.-R. Zhang, X.-F. He, H.-B. Liu, Y. Wu, J.-M. Yue, J. Nat. Prod. 2010, 73, 1344.
- [6] C. L. Cantrell, M. S. Rajab, S. G. Franzblau, N. H. Fischer, J. Nat. Prod. 1999, 62, 546.
- [7] A. Kelecom, M. M. O. Cabral, E. S. Garcia, J. Braz. Chem. Soc. 1996, 7, 39.
- [8] C.-K. Chiang, F. C. Chang, Tetrahedron 1973, 29, 1911.
- [9] L. Yu, J.-Z. Yang, D.-M. Zhang, Acta Pharm. Sin. 2009, 44, 625.
- [10] X.-D. Luo, S.-H. Wu, Y.-B. Ma, D.-G. Wu, Phytochemistry 2000, 54, 801.
- [11] Y. Zhang, C.-P. Tang, C.-Q. Ke, S. Yao, Y. Ye, J. Nat. Prod. 2010, 73, 664.
- [12] S. Siddiqui, B. S. Siddiqui, Ghiasuddin, S. Faizi, J. Nat. Prod. 1991, 54, 408.
- [13] X.-D. Luo, S.-H. Wu, D.-G. Wu, Y.-B. Ma, S.-H. Qi, Tetrahedron 2002, 58, 6691.
- [14] E. Rodrigues Fo., J. B. Fernandes, P. C. Vieira, M. F. das G. F. da Silva, J. Zukerman-Schpector, R. M. O. C. de Lima, S. C. Nascimento, W. Thomas, *Phytochemistry* 1996, 43, 857.
- [15] M. Ochi, H. Kotsuki, T. Tokoroyama, T. Kubota, Bull. Chem. Soc. Jpn. 1977, 50, 2499.
- [16] S.-B. Wu, J.-J. Su, L.-H. Sun, W.-X. Wang, Y. Zhao, H. Li, S.-P. Zhang, G.-H. Dai, C.-G. Wang, J.-F. Hu, J. Nat. Prod. 2010, 73, 1898.

- [17] G. R. Pettit, A. Numata, C. Iwamoto, H. Morito, T. Yamada, A. Goswami, P. J. Clewlow, G. M. Cragg, J. M. Schmidt, J. Nat. Prod. 2002, 65, 1886.
- [18] A. Mondon, B. Epe, U. Oelbermann, Tetrahedron Lett. 1981, 22, 4467.
- [19] K. H. Kim, S. U. Choi, Y. C. Kim, K. R. Lee, J. Nat. Prod. 2011, 74, 54.
- [20] J. D. Connolly, R. McCrindle, J. Chem. Soc. C 1971, 1715; K. Mitsui, H. Saito, R. Yamamura, H. Fukaya, Y. Hitotsuyanagi, K. Takeya, Chem. Pharm. Bull. 2007, 55, 1442.

Received May 16, 2011